
Dynamic offloading of application services to
edge servers using docker swarm and

microservices

George Georgiou

Supervisors
Spyros Lalis, Associate Professor

Christos D. Antonopoulos, Assistant Professor

2018, Volos Greece

To those who withstood

Acknowledgements

First I would like to thank my supervisor Spyros Lalis for his help and guid-
ance throughout this work. His high standards and tireless work vastly im-
proved the quality of the presented work. I would also like to thank Christos
D. Antonopoulos for his help in the evaluation of this work.

My gratitude also extends to Dimitris Syrivelis and Manos Koutsoubelias
for their crucial contributions in the beginning of this thesis and its general
direction. I would also like to thank all of my departments faculty and staff
for our cooperation throughout the years

My special thanks to my family and friends for their unwavering and
continuous support, both moral and material. Finally to Katerina Charisi;
Thank you for being the light when all was dark.

2

Περίληψη

Η επικράτηση του Internet of Things και των κινητών συσκευών έχει εισάγει
ευρεία διαθεσιμότητα υπολογιστικών πόρων σε κοντινή απόσταση από τελικό

χρήστη. Αυτό, με την σειρά του, έχει οδηγήσει στην εμφάνιση της δομής του

edge computing, που προσπαθεί να αξιοποιήσει αποτελεσματικά τους πόρους
αυτούς και έχει επιπλέον εισάγει υπολογιστικές συσκευές με την μορφή των

micro-servers. Ως αποτέλεσμα υπάρχουν πρόσθετες προκλήσεις που αφορούν
στην ετερογένεια των διαθέσιμων συσκευών καθώς και την βέλτιστη αξιοποίησή

τους.

Σε αυτή την έρευνα προσπαθούμε να αντιμετωπίσουμε μερικές από αυτές

τις προκλήσεις χρησιμοποιώντας την γνωστή αρχιτεκτονική των microservices
και ελαφριές εικονικές μηχανές όπως τα Docker containers. Παρουσιάζουμε
το πρότυπο ενός συστήματος που έχει αναπτυχθεί πάνω στο Docker Swarm.
Λαμβάνει, ως είσοδο, μια microservices εφαρμογή και εκμεταλλεύεται ευκαι-
ριακά, με βάση μια απλή πολιτική μετανάστευσης, κοντινούς υπολογιστικούς

πόρους ώστε να αυξήσει την επίδοσή της. Αξιολογούμε το σύστημά μας χρη-

σιμοποιώντας μια ρεαλιστική εφαρμογή και διαπιστώνουμε ότι σε ένα μετρίως

δυναμικό περιβάλλον μπορεί να προσφέρει σημαντική αύξηση της επίδοσης στην

προαναφερθείσα εφαρμογή.

3

Abstract

The prevalence of the Internet of Things and mobile devices has introduced
widespread availability of computational resources in close proximity to the
end user. This has, in turn, led to the emergence of the edge computing
paradigm, attempting to efficiently leverage these resources and further in-
troducing computing devices in the form of micro-servers. As a result added
challenges exist, pertaining to the heterogeneity of available devices as well
as their optimal utilisation.

In this research we attempt to address some of these challenges by utilizing
the well established architecture of microservices and lightweight virtualiza-
tion in the form of Docker containers. We present the prototype of a system
that is built on top of Docker Swarm. It receives, as input, a microservices
application and opportunistically exploits, based on a simple migration pol-
icy, nearby computing resources in order to increase its performance. We
evaluate our system using a realistic test application and find that in a mod-
erately dynamic environment it can provide a significant performance gain
to the target application.

4

Contents

1 Introduction 9
1.1 Motivation . 9
1.2 Thesis Structure . 11

2 Background 12
2.1 Microservices . 12
2.2 Containers . 14
2.3 Docker . 16
2.4 Docker Swarm . 17

3 Related Work 20
3.1 Mobile Cloud Computing . 20
3.2 Mobile Edge Computing . 23
3.3 Containers & Microservices in Edge Computing 24

4 System Architecture & Implementation 26
4.1 Approach . 26
4.2 System Architecture . 28
4.3 Local Execution . 29
4.4 Device Selection . 30

4.4.1 Device Discovery . 30
4.4.2 Device Pruning . 31
4.4.3 Latency Calculation 32

4.5 Service Profiling and Migration Policy 32
4.5.1 Collecting Service Statistics 32
4.5.2 Compute Migration . 33

4.6 Remote Execution . 33
4.6.1 Swarm Scaling . 34

5

4.6.2 Service Scheduling . 35
4.7 Migration Policy . 36

5 Experimental Evaluation 38
5.1 Microservice-based Application 38
5.2 Experimental Setup . 41
5.3 Results and Analysis . 42

5.3.1 Monolithic version . 42
5.3.2 Local Execution . 44
5.3.3 Remote Execution . 46
5.3.4 Setup and Service Transition Overhead 48

5.4 Summary . 49

6 Conclusions & Future Work 51

List of Figures

2.1 Monolithic and microservice-based approach 13
2.2 Virtual machines and containers 14
2.3 Docker engine components . 17
2.4 Docker swarm nodes . 18
2.5 Docker service management and execution functions 19

4.1 Structure of indicative application. 27
4.2 High Level System Architecture 28
4.3 Device Selection . 30
4.4 Service Profiling and Migration Policy 32
4.5 Remote Execution . 34
4.6 Token Exchange Protocol . 35

5.1 Typical message exchange for translating an oral (speech) mes-
sage to text in a different language (here, English to Spanish). 39

5.2 Evaluation Application Execution Time Percentages 40
5.3 Experimental Device Setup . 42
5.4 Monolithic version (per file performance) 43
5.5 Monolithic version (overall, full experiment) 43
5.6 Local execution (per file performance) 44
5.7 Local execution (overall, full experiment) 45
5.8 Remote execution. Per file performance 47
5.9 Remote execution (Overall, Full Experiment) 47

7

List of Tables

5.1 Service Docker Image Size . 41
5.2 Testing Device Specifications 41
5.3 Wav File Size and Running Time 42
5.4 Setup and Service Transition Overheads. 48
5.5 Individual Service Transition Overhead (Warm) 49

8

Chapter 1

Introduction

1.1 Motivation

In recent years we have witnessed the evolution and prevalence of the Inter-
net of Things (IoT) [1] alongside the widespread adoption of mobile devices
(mainly smartphones) as the de-facto ubiquitous computational platform.
This has created new opportunities for the development of novel applica-
tions, which are typically location-aware, time-critical and have access to a
multitude of data produced by the numerous sensing devices. But this also
introduces increased requirements in terms of processing power, storage, and
low latency. Moreover, it brings additional challenges in terms of device/-
platform heterogeneity, stable and fast connectivity, and security.

Traditionally, support for mobile and IoT computing has been provided
using the Cloud Computing paradigm [2]. Cloud computing provides readily
available computing power that leads to increased performance as opposed
to a strictly local execution on much slower embedded platforms, as well as
achieves better data reliability in case a device fails or is lost. Computation at
large data centres also enables the management and processing of very large
data sets, while taking care of software update and maintenance problems.

However, the fact that computation may take place at a server almost
anywhere in the world, presents security concerns and removes control from
the end user. In addition, the physical distance between the location where
data is produced and where it is processed can introduce significant latency
due to the uncontrolled nature of the Internet. These constraints, added to
the requirement for constant Internet connectivity and availability of cloud

9

resources, render cloud computing inappropriate for certain types of applica-
tions, for example time-critical applications that require fast service response.

The IoT as an inherently distributed paradigm is in contrast with the cen-
tralized approach of classic cloud computing. This has pushed the industry
towards a more distributed architecture, leveraging more powerful computing
infrastructure (e.g., based on microservers) near or inside the mobile access
network, with a very fast communication to the mobile and IoT devices in
the vicinity. This architectural approach is often referred to in literature
as fog computing [3], mobile-edge computing [4], or simply edge computing.
It makes computing resources readily available in close proximity to where
the data is produced, can significantly reduce the amount of data that is
sent to the cloud, decrease Internet congestion and improve the application’s
response time.

The challenges though still stand on how to leverage these resources, in
a practical and easy way. The heterogeneity of the numerous IoT devices
presents a number of technical problems, burdening developers with accom-
modating a large number of different execution environments. Moreover,
since the computing power of edge-based infrastructures (micro-servers) is
typically smaller than in the cloud, there exists a more apparent and urgent
need for provision and optimal exploitation of such resources. Finally, in
some cases, the security concerns can become even greater at the edge, if po-
tentially untrusted devices need to collaborate and share their own provide
resources, calling for increased isolation of hosted executions.

In this thesis we present a prototype of a system aimed towards enabling
flexible resource sharing and offloading of computations at the network edge.
Given a component-based application, our goal is to: (1) support the dy-
namic migration or offloading of selected application components by oppor-
tunistically exploiting heterogeneous nearby computing resources, be they
microservers or other devices that offer their resources for this purpose; (2)
propose and evaluate a simple policy for triggering/controlling this migra-
tion/offloading so as to improve application performance in terms of response
time; (3) allow this migration/offloading to happen transparently in order to
achieve an uninterrupted execution of the application, also in case the appli-
cation host loses connectivity with part of the computing infrastructure.

To accomplish our goals we utilize the well established architecture and
technology of microservices [5] and containerization with Docker [6] and
Docker Swarm [7]. Microservices are a relatively new software architec-
ture whereby an application is composed of a set of small independent ser-

vices. This allows for an intuitive mapping to the distributed domain, where
the computationally intensive components/microservices can be identified
and migrated/offloaded to remote computing resources. Containers are a
lightweight alternative to traditional virtualization techniques, having the
advantage of smaller image sizes and easier deployment while retaining the
advantages of security and isolation of service execution on a remote host.
Docker is the most popular platform that provides substantive tooling for
containers. In our approach, each microservice is realized inside a Docker
container. To achieve flexible distributed execution, we build our system
on top of Docker Swarm, an established solution for the orchestration and
management of Docker containers.

1.2 Thesis Structure

The thesis is structured as follows. Chapter 2 briefly gives some background
information about the utilized technologies. Chapter 3 outlines the related
work. In Chapter 4 the system architecture and implementation is presented.
Chapter 5 discusses the evaluation of our system prototype. Finally the thesis
is concluded in Chapter 6 alongside goals for future work.

Chapter 2

Background

This chapter briefly introduces the main architectural concepts and technolo-
gies that were used to implement our system prototype.

2.1 Microservices

The term microservices refers to the architectural style of developing a soft-
ware application as a suite of loosely coupled services [5]. It can be seen as
an evolution or detailing of the more traditional Service-Oriented Architec-
ture (SOA) model. In the microservice architecture, each service implements
specific functions or business logic. Services aim to be fine-grained and com-
municate through lightweight mechanisms, typically HTTP/REST [8]. As in
traditional SOA, microservice interfaces are typically language- and platform-
neutral, so that they ca be easily invoked from a wide range of client programs
that are written in many different programming languages and run on widely
different platforms.

It is useful to examine microservices as opposed to traditional monolithic
applications, as illustrated in Figure 2.1. In a typical client-server monolithic
application, the server-side application is expected to process requests, exe-
cute all the processing and business logic, handle potential calls to a database,
and produce a response for the client. Such an application scales by repli-
cating the server-side as a whole, and is typically maintained and updated
at this rather coarse of granularity. On the contrary, a microservice-based
application requires minimal central governing as it consists of several rel-
atively small and autonomous services. These can be deployed and scale

12

Figure 2.1: Monolithic and Microservice-based approach. Image taken from Martin
Fowler1

individually as well as accommodate code or technology updates in a more
fine-grained manner. Moreover, this approach provides better fault isolation
and allows for a more granular/focused monitoring of individual application
components.

Microservices also have drawbacks. For instance, they introduce larger
architectural complexity in both deployment and testing. It is often not
trivial to decompose a software application into meaningful components. At
times, microservices also impose a significant communication overhead cost,
unlike for components that interact and synchronize using faster inter-process
communication that relies on shared memory. Lastly, if designed poorly,
overly small services can lead to increased memory and resource overhead.

The concept lends itself particularly well to web-applications; although
traditional desktop application could also be designed to use both locally
resident and remote microservices. In our work, we utilize microservices
to implement a component-based application since it naturally allows for
per-service monitoring and profiling. Based on this monitoring, our system
decides which service/component to migrate/offload on an available host, in
order to utilize the available resources more efficiently.

1https://martinfowler.com/articles/microservices.html

https://martinfowler.com/articles/microservices.html

2.2 Containers

Containerization is a method of virtualization at the Operating System (OS)
level, achieved through isolation into multiple user-space instances, typically
called containers. Containerization is a lightweight alternative to the more
traditional Hypervisor-based virtualization. The main difference is that, in-
stead of running an entire and completely separate system software stack on
top of emulated hardware, containers share system calls and kernel features
(see Figure 2.2). Containers typically have separate filesystem, processes,
network stack etc, and are allotted resources such as CPU, memory and disk
by the Host-OS. It is common for containers to be used in order to accommo-
date the execution of a single application in an environment that is isolated
as well as restricted in terms of resources.

Figure 2.2: Virtual machines and containers.

Containers are an attractive method for application virtualization be-
cause they introduce minimal overhead compared to other methods. The

fact that system calls are executed natively on the Host-OS and the kernel
features are shared amongst different containers on the same machine, allow
for increased creation and execution speed. In addition, the image size for
containers is significantly reduced compared to full Virtual Machines (VM).
These facts translate to highly increased portability and agility. Thanks to
the more lightweight nature of containerization compared to hardware-level
virtualization, a host can usually accommodate a larger number of containers
but only a limited number of traditional VMs.

One of the disadvantages of containerization is that it raises security
concerns due to the decreased level of separation between different contain-
ers. For this reason, to have a stronger separation among different container
groups, it is not uncommon for a bundle of containers to be created and
run inside a separate full VM. In addition, because of the sharing of kernel,
containers are less flexible. For instance, it is not possible for containers to
be accommodated inside a host that runs a different native OS. There are
workarounds to this problem, but they give away a number of the traditional
advantages of containerization.

In Linux systems, the assortment of tools, templates, libraries and lan-
guage bindings that provide support for containerization is referred to as
Linux Containers (LXC) [9]. LXC acts as a driver for the creation and ex-
ecution of containers. Container engines, such as Docker or LXD, are built
on top of it. The key kernel features that make containerization possible are
namespaces and control groups. These are discussed below.

Namespaces is the underlying mechanisms that provides containers with
an isolated environment in terms of system view. Currently there are 6
namespaces that are utilized by container technology, achieving isolation for
different aspects/characteristics of each container. These are: (i) mnt : con-
trol of mount points as well as filesystems; (ii) pid : provision of separate
process IDs; (iii) net : virtualization of the network stack; (iv) ipc: iso-
lated System V interprocess communication; (v) uts : separate hostnames;
(vi) user : root and privilege isolation, as well as separate user IDs

Control groups (cgroups) are responsible for limiting resource and mon-
itoring resource usage, like memory, CPU, block I/O and network. They
allow for the setting of soft and hard limits in terms of available memory,
CPU shares and/or number of cores. Additionally, they provide network
prioritization as well as limits for read and write I/O. Cgroups also monitor
and report corresponding resource usage metrics. Notably, cgrouns function
in a hierarchical manner where each subsystem (i.e. CPU, memory etc.) has

an independent hierarchy tree consisting of nodes. Each node consists of a
group of processes sharing a resource and each process belongs to exactly one
node [10].

2.3 Docker

Docker [6] is an open platform and tool chain that provides an additional
abstraction layer for managing and running an application program in a
wrapped and isolated manner, as a separate container. It is built on top
of the features of the Linux kernel that allow for OS-level virtualization
like namespaces, cgroups etc. Docker used to employ LXC as its default
execution driver, but currently employs its own libcontainer facility in order
to communicate directly with the kernel (however, it still supports LXC,
libvirt and systemd-nspawn as alternative execution drivers). Apart from
the aforementioned kernel features, Docker uses a union-mount capable file
system in order to build the container images. This means that images
are built by creating multiple separate layers on top of each other, allowing
multiple containers to re-use basic layers, thus making the process more
lightweight. By images we refer to the read-only template that includes
the necessary information to create a Docker container. This information is
given by the user in the form of a simple syntax text-file called Dockerfile.

The Docker engine is responsible for creating, running and managing the
containers. It is built on a client-server architecture that consists of 3 main
parts (as illustrated in Figure 2.3): the Docker daemon/server, a Command
Line Interface (CLI) client, and the REST API through which calls to the
server are made. Users typically use Docker through the CLI client, which
in turn communicates with the Docker daemon through the REST API over
UNIX sockets or a network interface. The Docker daemon is responsible
for building and running containers as well as for managing Docker objects
like images, containers, networks and volumes. It can communicate with the
clients or other daemons in order to manage Docker services. The Docker
server and client are not required to run on the same machine, even though
this is possible.

Aside from the basic engine, Docker offers additional tools for the man-
agement and extend use of containers. The most prominent ones are Docker
Registry, Docker Compose and Docker Swarm. The Docker Registry stores
images, which are retrieved from the Docker daemon in order to create new

Figure 2.3: Docker engine components. Image taken from docker.com2

containers if a base image does not exist in the local machine. Docker Com-
pose is a tool for defining and running applications that consist of multiple
containers. The requirements and specifics are described in a YAML text-file
by the user, which is then used by Docker in order to create the desired en-
vironment. Docker Swarm is a formerly stand-alone tool, now integrated in
the Docker Engine. It provides native cluster management and orchestration
functionality for Docker containers. More information about Docker Swarm
is given in the next section.

2.4 Docker Swarm

As mentioned above, the Docker engine can be used to create a cluster or
swarm of containers where application services can be deployed. The corre-
sponding cluster management and service orchestration support is referred to
as Docker Swarm [7]. This is based on a declarative service model whereby
an application stack comprises a set of services that have a specific desired
state. Configuration happens at runtime, meaning that a swarm can be

2https://docs.docker.com/engine/article-img/engine-components-flow.png

https://docs.docker.com/engine/article-img/engine-components-flow.png

reconfigured and scaled dynamically. Docker Swarm offers multi-host net-
working by the creation of an overlay network to which it automatically
assigns IP addresses for each node. It offers service discovery, as nodes are
assigned a unique DNS name. Containers are load-balanced through ingress
load balancing, and fault tolerance is achieved by utilizing the Raft Consen-
sus Algorithm [11]. Security is handled through mutual TLS authentication
and encryption between Docker Swarm nodes.

Figure 2.4: Docker swarm nodes. Image taken from docker.com 3

A Docker Swarm consists of manager and worker nodes (see Figure 2.4).
A node is a distinct instance of the Docker engine that participates in the
swarm. Manager nodes are responsible for cluster management and orches-
tration. They maintain a consistent cluster state, schedule services and serve
the swarm API endpoints. They elect a single leader that is responsible for
handling orchestration issues. Worker nodes execute the work dispatched to
them by the managers. They do not participate in any cluster decision. By
default every manager node also serves as a worker.

An application that is deployed to a Docker Swarm consists of services.
Each service that is created follows a desired state that is pre-defined by the
developer. This includes the number of replicas, the network configuration,
given resources etc. Docker Swarm tries to maintain this state, so as to
always have the desired number of service replicas running. Services can be
defined as global, meaning that each node in the swarm will execute a replica

3https://docs.docker.com/engine/swarm/images/swarm-diagram.png

https://docs.docker.com/engine/swarm/images/swarm-diagram.png

Figure 2.5: Docker service management and execution functions. Image taken from
docker.com4

of that service.
Tasks are the basic scheduling unit in a swarm. They are assigned to

worker nodes by managers, and represent a running instance or replica of
a service. Tasks do not migrate; they either successfully execute on the
assigned node, or fail, in which case the manager may create a new task to
counter-balance the failure. Figure 2.5 illustrates the main functions/respon-
sibilities of the swarm manager and worker nodes with respect to service/task
management and execution.

4https://docs.docker.com/engine/swarm/images/service-lifecycle.png

https://docs.docker.com/engine/swarm/images/service-lifecycle.png

Chapter 3

Related Work

The research efforts related to the work presented in this thesis, outlined in
this chapter, can be roughly divided into 3 thematics. First is literature fo-
cusing on the more traditional concept of mobile cloud computing, that aims
to address the objective of offloading from mobile devices onto cloud infras-
tructure. Next are the works that expand this concept at the environment
of the network edge and the Radio Access Network(RAN), with the presence
of edge servers and other devices. Last recounted are the works that dis-
cuss the utilization of container technology, most notably Docker, alongside
microservices for use at the network edge.

3.1 Mobile Cloud Computing

MAUI [12] is a system that focuses on energy saving by offloading code at
the method level onto cloud infrastructure. It is built on top of the .NET
CLR utilizing its reflection feature and partitions code based on manual an-
notations (@Offloadable) set by the application programmer. A profiler is
continuously evaluating the mobile device, the application and the network
conditions and then passes this data to the solver. In turn, the solver com-
putes a global optimization problem to make the decision of whether to of-
fload. The application state is transfered by leveraging the type-safenature of
the .NET runtime. Only data which is potentially referenced by the method
to be offloaded are transfered over the network, and is transfered back at the
end of the remote execution. MAUI currently supports only single thread
execution.

20

CloneCloud [13] relieves the programmer from having to indicate the of-
floadable code in a manual way. The system achieves this goal by performing
static offline analysis to determine all the legal partitions, based on a set of
constraints, e.g., not to include code that accesses device-specific features.
Dynamic profiling is conducted for multiple executions, on both device and
cloud, with random inputs to create behaviour profiles. Last in the offline
analysis is an optimization solver that given the behaviour profiles picks the
legal partition that minimizes costs referring to execution time or energy con-
sumption. This process produces a database of legal partitions optimized for
different conditions. During execution, a suitable partition is chosen based
on this database and the specific running conditions.

Another effort closely related to MAUI is ThinkAir [14]. It also requires
developers to annotate their methods with @Remote annotations. The sys-
tem comprises 3 key components. The execution controller runs locally on
the device, and is responsible for taking the offloading decision, based on
previous method executions, the network environment and the policies for
energy, execution time, energy and cost optimization. In the cloud runs a
client handler that is responsible not only for remote code execution but also
for automatically scaling the virtual machines (VM), that actually execute
the offloaded code, to fit the required needs. In order to take the offload-
ing decision ThinkAir uses a set of three different profilers for hardware (or
device) features, software (or application) and network environment. They
respectively collect data pertaining to the hardware state like CPU and WiFi
utiliaztion, software execution like number of instructions and method calls
and network state in the form of estimated network bandwidth. These data
are then fed to an energy consumption model, based on which the actual
offloading decision is made.

Similar work is presented in COSMOS [15], where computation offloading
is offered as a service. The main component of the system is the so-called
master service. Based on computation tasks given by the COSMOS clients
and workloads given by the COSMOS servers, it decides the spawning and
destruction of VM instances, in the authors implementation Amazon EC2
instances were used, and performs the allocation of the tasks that were of-
floaded. The COSMOS client is responsible for the task selection, in a man-
ner similar to MAUI and CloneCloud (according to the authors), and takes
the offloading decision. Finally the COSMOS server executes tasks on a
first come first serve basis, and provides the COSMOS master with expected
workload information, based on predictors such as Mantis [16].

An effort that focuses on how to perform offloading is COMET [17]. It
follows a distributed shared memory approach, trying to keep in-sync mem-
ory states across local and offloaded execution threads. The work is aimed
at the specifics of VM synchronization between a pusher and a puller end-
point. A ”happens-before” relationship is established before lock acquisition,
to keep memory states in sync. The system offloads every possible method,
excluding native functions that utilize device hardware (these are manually
pre-determined). Finally, a basic scheduler moves threads between endpoints
if they have not executed a native function for more than a given time win-
dow. This time window is chosen to be twice the Round Trip Time, as to
minimize the chances that a thread has to immediately migrate back to the
device to execute a native function.

One of the earliest attempts is Cuckoo [18], that aims to enable offloading
integrated with the Android system. One of its key contributions, according
to the authors, is a programming model offered through the Eclipse IDE1.
It is based on the pre-existing Android model of services (compute intensive
parts) and activities (interactive parts). The application programmer writes
the local service implementation, and the Cuckoo framework generates a
dummy remote service implementation that must be completed/refined by
the developer. On the smartphone runs a resource manager with which
available remote resources, that are willing to execute the remote services,
register. For the execution of remote methods the Ibis [19] communication
middleware is used. The offloading decision made by the system is based on
simple heuristics, always giving preference to remote resources if these are
reachable.

Serendipity [20] is an approach that shifts focus on multiple devices (called
nodes) rather than a single cloud server. The basic job component of the
system is called a PNP-block, and consists of a pre-process program that
processes input data, N parallel worker tasks, and a post-process program
that merges the output of the worker tasks. Each Serendipity node runs
three basic system components. The job engine is responsible for building
job profiles, based on methods similar to the offline analysis in MAUI and
CloneCloud, and for disseminating tasks using a greedy task allocation water-
filling algorithm. The master process monitors task execution on the several
worker processes that run on each node. The job engine launches a job ini-
tiator that initiates PNP-blocks and propagates them to Serendipity nodes.

1https://www.eclipse.org/

https://www.eclipse.org/
https://www.eclipse.org/

Once results are available they are gathered from the worker processes by
the master and are sent back to the job initiator, which in turn returns them
to the user.

3.2 Mobile Edge Computing

FemtoCloud [21] is a system that offers computation as a service by creating
an on the spot compute cluster with participating devices in the vicinity.
A client service that runs on the mobile devices is responsible for the re-
porting of resource sharing capabilities and limits set by the devices, as well
as metadata about user behaviour. A server service that runs on a special
”controller” device utilizes the data reported by the client devices to calculate
the execution load introduced by devices and their expected presence time.
The server service is also responsible for task scheduling that is performed
based on greedy heuristics. There also exist modules for service discovery
and network connectivity estimation.

In CloudAware [22] an abstract programming model that is based on
top of the Jadex [23] middleware is presented. The model is meant to be
used for elastic mobile applications and the design goal of the authors is
to support ad-hoc and short-time interaction with centralized and nearby
resources. The application developer is required to create his application with
the Jadex components in mind, that are in turn utilised by the framework.
The CloudAware theoretical framework consists of 5 key components. A
discovery service, a partitioner and solver for determining which components
and when to offload them, a context manager for the acquiring of device and
user metrics and a coordinator that is tasked with error management.

REPLISOM [24] attempts to reduce traffic to the cloud, in offloading
scenarios, via an LTE-optimized memory replication protocol that utilizes
the LTE nodes together with neighbouring devices. ME-VoLTE [25] is a
work that aims at reducing energy consumption in the event of Video Calls
by utilising mobile edge servers located on LTE nodes.

There are also a number of research efforts that are focused on the op-
timization problems that arise in mobile edge offloading and/or migrating
scenarios. Wang et al [26] utilize Markov Decision Processes for the predic-
tion of mobility based on distance and random walk. In [27] a device offloads
only if it doesn’t break the Nash equilibrium and in [28] an effort is made for
the joint optimization of radio and computational resources.

3.3 Containers & Microservices in Edge Com-

puting

Stankovski et al in [29] design an Autonomous Self Adaptation Platform
(ASAP) that focuses on satisfying specific Quality of Service (QoS) con-
straints for time-critical functionalities by deploying application specific con-
tainers to meet these constraints. The authors focus on the particular use
case of File Upload. A monitoring system is responsible for the gathering of
metrics metrics. This systems consists of monitoring ”probes” that interact
with the application, a ”monitoring agent” that aggregates the data from the
probes and a server that stores relevant information in a time-series database.
A performance diagnoser estimates the desired QoS of the application and
finally a decision maker specifies the optimal placing where a temporary File
Upload Server is deployed inside a container.

Rufino et al in [30] propose a layered architecture for the orchestration
of dockerized microservices for Industrialized IoT. The proposed architecture
consists of 3 layers. In each of these layers a set of containerized services run
on top of the Docker platform. First is the sensing layer that hosts cyber-
physical system (CPS) end devices such as sensors and actuators that interact
with the environment. Next is a mediation layer where exist microservices for
Software-Defined Network (SDN) controllers, databases and Machine Learn-
ing Units that perform service monitoring and behaviour analysis. Last is
an enterprise layer that is responsible for the execution of the more compu-
tationally intensive services and high level management and control of the
system.

In [31] a fog-oriented middleware is presented. The middleware is realized
as an extension of the Kura framework [32]. On each node a message broker
queue is included in order to collect sensed information and possibly perform
data filtering and the second extension relates to enabling cluster topologies,
instead of strictly layered, for Kura Gateways. The proposed fog nodes act
as IoT Gateways that provide a base skeleton to install and run a number of
dockerized services. All container management and orchestration is proposed
to be performed in the cloud computing level.

Morabito and Beijar in [33] present the design of an edge computation
platform that functions through intermediate edge devices. These devices
run fuctional blocks that in reality are dockerized services. These blocks
can offer diverse functionality; the authors focus on data compression and

processing to reduce load to cloud infrastructure. Orchestration is achieved
through a special IoT Application Orchestrator and networking is handled
through the creation of separate virtual network slices for each user.

In Poster [34] a very simple framework for the migration of applications
is presented and evaluation of the performance of containers and traditional
VM is conducted. The layered framework consists of a base layer consisting
of the Operating System that is pre-installed on edge servers, the applica-
tion layer that includes the application logic and is also pre-distributed and
the instance layer that is the running state of an application. In terms of
VM and container evaluation, the authors find that containers in conjunc-
tion with their model can offer reduced RAM usage as well as reduced use
of bandwidth. Similarly Ramalho et al in [35], focus on the performance
evaluation of Virtualization techniques at the Network Edge. By performing
a number of synthetic benchmarks on hypervisor-based virtualization and
the Docker platform, the authors arrive to the conclusion that while the first
method introduces significant overhead, container-based virtualization looks
promising

In [36] a web-based collaborative document editing, with face recogni-
tion, application is built utilizing microservices. The authors have developed
a number of microservices that run inside Docker containers. They are de-
ployed and orchestrated through the use of Docker Tools like Docker Compose
and Docker Registry. The authors have created separate microservices for
the collaboration, chat and face recognition servers as well as microservices
for the corresponding document, chat history and face template databases.
Similar work is presented in [37] where authors present their research about
the characteristics of the Docker platform and arrive to the conclusion that
it is well paired with microservices. To support that claim a code versioning
system is enhanced by the authors with automated distributed deployment
utilizing dockerized services.

Chapter 4

System Architecture &
Implementation

This chapter discusses the system architecture. The main components of
they system will be presented and analysed, alongside the most important
implementation details.

4.1 Approach

In this work, we target component-based applications and focus on the of-
floading of one or several components in order to improve the performance /
response time of the application. The key idea is to opportunistically exploit
computing resources offered by nearby devices, such as edge-based servers,
in order to offload computationally intensive services or components of an
application that would otherwise run locally on a slower (potentially mobile)
personal device, like a smartphone.

The developer creates his application with the microservices architecture
in-mind and implements the application’s components as independent mi-
croservices, packed inside Docker containers. The Docker images for these
containers, are expected to be uploaded in an accessible registry such as the
Docker Hub.

The service definitions, their relations, desired state and image location
are all described in a ”docker-compose” YAML [38] file. As an example,
Listing 4.1 shows the docker-compose file for a sample microservices applica-
tion, which receives speech as input, recognizes it, turns it to text and finally

26

translates it to text on the chosen language. It consists of 3 services, that
respectively handle the speech recognition, translation and service commu-
nication. The respective component diagram is shown in Figure 4.1.

Figure 4.1: Structure of indicative application.

ve r s i on : ’3 ’

s e r v i c e s :
s p e e c h s e r v i c e :

image : georgeorg / s p e e c h t o s p a n i s h : s p e e c h s e r v i c e
por t s :
− 6001:80

t r a n s l a t i o n s e r v i c e :
image : georgeorg / s p e e c h t o s p a n i s h : t r a n s l a t i o n s e r v i c e
por t s :
− 6002:80

s e n d e r s e r v i c e :
image : georgeorg / s p e e c h t o s p a n i s h : s e n d e r s e r v i c e
por t s :
− 6000:80

depends on :
− s p e e c h s e r v i c e h

− t r a n s l a t i o n s e r v i c e

Listing 4.1: The docker-compose.yml for the indicative application.

This file is the only input that needs to be provided to our system. Based
on this application description, the system deploys the application compo-
nents (micro-services) and automatically tries to identify the most compute-
intensive ones , and then tries to offload them to faster machines instead of
running them as usual on the local device.

Our system utilises the Docker platform by creating an ad-hoc Docker
Swarm where available resources are invited to join as workers. The offloading
decision is made based on service profiling and device characteristics (such
as CPU and memory) following a simple migration policy.

4.2 System Architecture

The high level architecture of the system as well as the main system compo-
nents can be seen in Figure 4.2.

Figure 4.2: High Level System Architecture

Initially all services of the application are expected to run locally. On
system start a Docker Swarm is deployed consisting of a single node, the
local application device, that acts as leader and manager to the swarm. All
the microservices of the application are deployed and run locally, on the ap-
plication device. Remote devices, that want to share their resources, register
with an LDAP [39] server.

Device selection made by the system starts with periodically querying the
LDAP server and retrieving available device together with metadata describ-
ing their computing resources. After pruning ineligible devices, the average
latencies to the remaining ones are calculated. In parallel our system’s Ser-
vice Profiling constantly monitors the running services, in order to calculate
their CPU, memory and network usage.

Next, based on service statistics and device characteristics, the Migration
Policy is applied and computes the optimal candidate device for each service.
The devices that emerge from this procedure are then invited to join the
docker swarm by the Remote Execution component.

Finally the Docker Swarm is updated to reflect the results of the migration
policy.

4.3 Local Execution

The first part of the system is responsible for the local execution of the ap-
plication. As mentioned, a ”docker-compose” file describing the application
services, their relations as well as their image locations, is to be provided by
the application developer. The services are deployed in a single node Docker
Swarm that consists solely of the local application device, acting as man-
ager and sole worker to the swarm, adopting all administrative swarm duties
as well as execution of required tasks. At this point a worker join-token is
generated. This token is to be shared with potential devices that wish to
participate in the swarm.

Alongside the application services, a special cAdvisor [40] service is de-
ployed globally, meaning that it will be replicated in every node that joins the
swarm. The cAdvisor service is responsible for the monitoring of statistics
pertaining to the application services deployed; this process will be discussed
thoroughly in the service profiling section of the chapter.

After all services are deployed we exploit the fact that Docker Swarm can
be dynamically reconfigured at runtime. The local device/node is labelled

and placement directives are placed on all of the services to remain on the
device. This last step prevents Docker Swarm from auto-scheduling services
on joining nodes and keeps all services running on the local node, unless
explicitly defined otherwise.

At a more technical level, note that these directives can expressed either
as a ”soft rule” in the form of placement-preferences, or as a ”hard rule” in
the form of a placement constraint. The former option instructs Docker to
make a best-effort attempt to spread services among nodes that satisfy the
placement requirements. The latter explicitly schedules services on nodes
fulfilling the requirements or leaves the service pending until a suitable node
is found. We have found that while placement-preferences provide increased
system stability, constraints allow for a more direct control over the swarm
services. The current implementation of our system utilizes the latter option.

4.4 Device Selection

This part of our system is responsible for discovering all available devices
that wish to share their computing resources. This is a 3-step process (as
illustrated in Figure 4.3) that results in a dictionary listing devices by IP
together with metadata describing their computational potency and network
latency. It is periodically run, with an infrequent period.

Figure 4.3: Device Selection

4.4.1 Device Discovery

Remote devices register with an LDAP server from where they are retrieved
by the local application device. One of the reasons we have chosen LDAP
as the directory service for device discovery is because of its tree-based hi-
erarchical structure. In a network edge scenario, it is useful to attribute

location awareness our directory service. This can be done by exploiting the
LDAP hierarchy and retrieving a list of devices under an organizational unit
describing a specific location (i.e the city of Volos). We assume that the
devices that register with the server have reduced mobility and do not intent
to very quickly move out of reach.

Each remote device that registers with the LDAP server also reports its
computing resources in the form of metadata describing the number of cores
the device has available, the amount of memory and a score describing its
CPU. For the CPU score, we have not conducted separate benchmarks but
rather use the Passmark CPU mark. Passmark [41] provides scores for a very
wide number of CPUs based on a number of benchmarks conducted. The
scores are relative, meaning that a CPU with score of 2x is roughly twice as
fast as a CPU with a score of x. Scores are provided for overall and single
thread performance. In our case we utilize the single thread mark and take
in consideration the number of cores separately, since a remote server is not
guaranteed to allow execution on all the cores of its CPU.

The application device periodically, with an infrequent period, queries
the LDAP server to retrieve available devices. Our system taking the results
as input, constructs a device dictionary that identifies each device by its IP
and stores the corresponding metadata. This dictionary is used as input for
the next step of the Device Selection process.

4.4.2 Device Pruning

After retrieving the data from the server, devices are pruned to exclude
ineligible devices. The Prune Devices function receives the device dictionary
constructed from querying the LDAP server as input and returns a trimmed
version of it. For this purpose the combination of number of cores and the
CPU score of available remote devices is considered and compared to those of
the local device. The system currently follows a simple greedy approach. It
prunes all devices that are computationally inferior to the local application
device as they would never be selected for offloading purposes. The result of
this function is a new ”pruned” device dictionary that is then used for the
last part of the Device Selection.

4.4.3 Latency Calculation

The final step of the Device Selection process is the calculation of latency
between the local application device and the remote devices present in the
pruned device dictionary. The system determines the ping latency by calcu-
lating the average between 5 pings for every remote device. Packet loss is ac-
counted for by adding a large value for any packets lost; these are considered
regularly in the calculations. After these operations, the device dictionary is
updated by adding the information about latency in every device entry.

4.5 Service Profiling and Migration Policy

This next part of our system is making the offloading decision. In order
to accomplish this, the system constantly monitors the running containers
(corresponding to application services) and return metrics describing their
CPU, memory and network usage. These statistics combined with device
characteristics taken from the Device Selection procedure are used as input
to a simple migration policy that in turn calculates the optimal device to
schedule each service on. An overview of this procedure can be seen in
Figure 4.4

Figure 4.4: Service Profiling and Migration Policy

4.5.1 Collecting Service Statistics

As stated above, in order to monitor the performance of the running con-
tainers, at system startup a global cAdvisor(container Advisor) service is
deployed. cAdvisor is an open-source monitoring tool for containers devel-
oped by Google. It collects a large number of metrics including CPU and
memory use as well as network usage. These statistics derive mainly from
the kernel’s corresponding cgroups. cAdvisor runs as a daemon that polls for

new statistics at roughly every second. Those metrics can be obtained for
use through a variety of means. We draw them through calls to the REST
API that cAdvisor exposes, in timestamps for each second in the last minute.

Our system gathers statistics for all the containers running on each host.
The stat collection function is called periodically and reports the average
CPU usage in the last minute, the average memory usage in the last minute
and the average network usage as it accumulates based on the most recent
data available. These metrics are calculated as percentages and are stored in
a dictionary for every container corresponding to a an application service.

4.5.2 Compute Migration

After the collection of metrics, the system uses said metrics combined with
the device characteristics stored in the device dictionary as input to determine
the optimal candidate devices for offloading the application services. This
decision is made by the system based on a given migration policy, making
use of the specific gathered service statistics (CPU, Memory and Network
usage) and optimizing for the requested parameters. The proposed migration
policy and current implementation is based on simple heuristics and a greedy
approach, aiming for minimal total response time. The proposed policy will
be discussed more thoroughly on the corresponding section.

The migration policy calculation takes place for every container and de-
vice pair, every time new service statistics are collected. We determine the
score for each service for every available device, including the local applica-
tion device. After we have determined the device that provides the maximum
score for each service, the policy results are produced in the form of a dic-
tionary with a key-value pair of container-device IP address, describing the
target device each service /emphshould be offloaded to. These policy results
are then propagated to the remote execution part of our system, to actually
perform the offloading.

4.6 Remote Execution

The final part of the system developed is expanding the Docker Swarm with
the selected devices and offloading the corresponding services. An overview
is presented in Figure 4.5.

This step includes communicating with chosen remote devices in order for

Figure 4.5: Remote Execution

them to join the swarm and then updating the swarm configuration accord-
ingly. It follows the calculation of the migration policy, as it uses its results
as input.

4.6.1 Swarm Scaling

Receiving as inputs the policy results together with the worker token gener-
ated at Swarm creation, the system invites remote devices to join the Swarm.
Communication is done via sockets, following a simple protocol illustrated in
Figure 4.6.

The application device sends an invitation message to the remote device.
The remote device checks whether it is still available, by checking if it has
joined another swarm or of it is overloaded in terms of processes. If available
it replies with a request for the worker token. The token is exchanged and the
remote device joins the swarm as a worker node, sending an acknowledgement
message. If the exchange is successful and the device joins the swarm, it is
then labelled as a node according to its hostname so that it can be identified
in placement directives.

Figure 4.6: Token Exchange Protocol

4.6.2 Service Scheduling

After the chosen devices have joined the swarm as worker nodes, it is time
to update the swarm configuration based on the migration policy results,
so that services execute on the optimal nodes. First, all previous place-
ment directives(placement-preferences or constraints) are removed. Next, all
Swarm nodes are retrieved from the Docker daemon and the system checks
if the optimal device for every service, is in fact a node of the Docker Swarm.
If this is true, placement directives are placed on the service and the service
is updated, so that it will execute on the desired node. This step essentially
”offloads” the computational load of the service unto the new node.

Services are updated with a ”start-first” policy, meaning that when a
service migrates the Docker Swarm will wait first for the new service container
to go up and then remove the existing service. This feature offers a seamless
and transparent transition from local to remote execution. The user does
not experience wait-time in order for the services to go up on the remote
device. Instead services continue to run locally until they are readied. If the
optimal device has failed to join the swarm, the service executes on the local
application device.

4.7 Migration Policy

The proposed migration formula follows a greedy approach and attempts to
determine the optimal device from those available(including the local appli-
cation device) that minimizes total execution time. For every service a device
score is calculated based on the service and device characteristics. The tar-
get device that accumulates the maximum positive score is the one that gets
chosen to join the swarm and offload the service to. The algorithm behind
the process can be seen in Algorithm 1

Algorithm 1 Migration Algorithm

for Every Service do
Max Score = 0
Target Device = Local
for Every Device do

if MemoryUsage < DestinationMemory then
Compute Device Score
if Device Score > Max Score then

Max Score = Device Score
Target Device = Device

end if
end if

end for
end for

The available memory of the remote device is used as a first filter on
whether it can accommodate the service to be offloaded, based on the service
memory usage. We then calculate the device score that is broken down to
2 parameters. The CPU Score and the Communication Overhead. The
Formula is seen in Equation 4.1

DeviceScore = CPUScore− CommunicationOverhead (4.1)

The CPU Score consists of first calculating what increase in performance
we expect to see by migrating based on the Passmark single thread score and
the number of cores, comparing the local application device and the remote
device. We then factor in the service’s CPU usage gathered from profiling
to determine how much will the service take advantage of this increase. The
exact formula for the CPU Score can be seen in Equation 4.2

CPU Score = CPU Increase * CPU usage (4.2)

CPUScore = CPUDestination∗CoresDestination−CPUScoreHost∗CoresHost
CPUScoreHost∗CoresHost

∗ 100 ∗ CPUusage

Next we calculate the communication overhead based on the average net-
work usage of the service and the expected throughput of the connection with
the remote device. Throughput is defined as the fraction of the TCP Win-
dow Size versus the Round Trip Time (RTT) or as is commonly known, the
ping latency. The formula can be seen in Equation 4.3. Through this over-
head that is calculated as a percentage we attempt to calculate the expected
performance hit due to network latency.

CommunicationOverhead =
NetworkUsage

Throughput
∗ 100 (4.3)

CommunicationOverhead =
NetworkUsage

WindowSize/RTT
∗ 100

WindowSize = Typically 65535 B

RTT = Ping Latency

It must be specified that in order for the proposed policy to be effective,
a ”star” service topology is assumed. This means that all services receive
input and send output to a master thread that runs the application logic.
Else, if the application is an arbitrary graph, and services communicate with
each other directly, this policy will not yield the expected results.

Chapter 5

Experimental Evaluation

In order to evaluate the performance of our system prototype, we have con-
ducted a number of experiments using an indicative microservice-based ap-
plication. This chapter presents the application we have developed and the
experimentation setup, and discusses the experimental results.

5.1 Microservice-based Application

For the evaluation of our system we have developed an application, that is
intended for use in tourist scenarios. It takes as input speech from the mi-
crophone of the personal device, converts it to text, and translates it to a
target language. This application makes particular sense in an edge com-
puting scenario. Speech recognition and translation naturally benefits from
location awareness as natural language models can be divided and stored in
servers for a specific language use, i.e. directions or a guided tour near tourist
attractions. It can also be reasonably expected that such a service will be
particularly popular in touristic areas, thus one can intelligently place addi-
tional computational resources, at those specific edge locations. This way the
application would benefit from the low latency to a server located nearby, as
opposed to using a service running on a cloud server anywhere in the world.

Our application consists of 3 independent microservices that are accessed
through a REST interface over HTTP. The Speech service receives .wav files
containing speech as input, and converts them to text files. The Translation
service receives text files as input, and returns the text translated to the
requested language. Finally, the Sender service accepts the application in-

38

put, communicates with the Speech and Translation services as needed, and
returns the end result. We call the application services through a simple call
script. All services, as mentioned, communicate through a REST API. Con-
sequently POST calls create the resource requested and GET calls retrieve
it. A typical exchange that converts English speech to Spanish text can be
seen in Figure 5.1.

Figure 5.1: Typical message exchange for translating an oral (speech) message to text in
a different language (here, English to Spanish).

The speech recognition service implementation utilizes the open source
toolkit CMU Sphinx [42] developed at the Carnegie Mellon University [43].
In our test application, speech recognition currently accommodates only En-
glish, and is based on the acoustic model and test data offered by the Sphinx

toolkit. We specifically use pocketsphinx in order to minimize execution
time at the cost of recognition accuracy. The translation service utilizes the
Apertium [44] open source platform. It is a platform for rule-based machine
translation. All services are developed in Python.

Each service runs inside a Docker container that packs all its software
dependencies and execution environment. Containerization is pivotal to the
ability of the services to be migrated, as they require a large number of
dependencies in order to run successfully in a remote execution environment.

Figure 5.2: Evaluation Application Execution Time Percentages

The size for the corresponding Docker images can be seen in Table 5.1.
Also, Figure 5.2 gives a breakdown of execution time, per service. It can be
clearly seen that the speech recognition service takes most of the execution
time and thus is pivotal for the performance of the application.

Table 5.1: Service Docker Image Size

Docker Image Size

Speech Service 325 MB

Translation Service 215 MB

Sender Service 30 MB

cAdvisor 24 MB

5.2 Experimental Setup

For practical development and testing purposes the application device is a
Laptop and the edge machines are personal computers on the cluster in-
frastructure of the department. The machine specifications can be seen on
Table 5.2. Connection is over a WiFi local area network. The device setup
can also be seen in Figure 5.3

Table 5.2: Testing Device Specifications

Application Device Edge Device Edge Server

CPU Intel i5-4200U CPU Intel Xeon E5-2620 v2 @ 2.10GHz Intel Xeon E5-2630 @ 2.30GHz

Cores 1 Active (4 Originally) 4 Active (8 Originally) 8 Active

Memory 4 GB 8 GB 8 GB

An effort was made to minimize any external network and CPU load by
deactivating all external software, save for basic exceptions like the terminal
emulator and the graphical interface (XFCE) in the application device. The
system load was monitored through the uptime Linux utility and remained
stable throughout different experiments. All experiments were conducted
multiple times and the ones best representing the median values are the ones
presented here.

For a rough evaluation of our system we have run a number of experi-
ments. We have conducted the same long running experiment in 3 different
scenarios (i) Monolithic version (ii) Local Execution (iii) Remote Execution .
The experiment in each of these scenarios consists of the testing application
receiving as input a list of 9 wav files described in Table 5.3. The wav files are
recordings of Aesop’s fables taken from LibriVox recordings [45] and differ
in size and running time. In the sequence portrayed they are given as serial

Figure 5.3: Experimental Device Setup

Table 5.3: Wav File Size and Running Time

File Name File Size Running Time

Fox and Grapes 1.5 MB 36s

Dog and Sow 1.4 MB 44s

Golden Goose 2.1 MB 1m 6s

Fox and Crow 3.1 MB 1m 36s

Mice in council 2.9 MB 1m 30s

Lion and Mouse 3.4 MB 1m 47s

Cat and Mice 3.2 MB 1m 41s

Goods and Ills 3.3 MB 1m 43s

Mercury and Woodman 5 MB 2m 35s

input to the application and are then recognized, turned to English text and
translated to Spanish text that is then provided as output.

5.3 Results and Analysis

5.3.1 Monolithic version

The first experiment is conducted with no presence of Docker or our system.
The test application is re-written to remove the microservices architecture
and the consequent communication overhead. All functions run locally on
the application device as it is described.

Figure 5.4: Monolithic version (per file performance)

Figure 5.5: Monolithic version (overall, full experiment)

The results can be seen per file and for the full experiment in Figure 5.4
and Figure 5.5 respectively. As mentioned, it is easily observable that the
speech recognition part of the application is central in determining the overall
execution time.

5.3.2 Local Execution

For this experiment we deploy our system and run the test application in its
microservices form, inside Docker containers. In this experiment no remote
devices are available and all execution occurs locally on the application de-
vice. This scenario is meant to replicate conditions where either no devices
are willing to join the swarm or there is no connectivity. The respective re-
sults can be seen in Figure 5.6 per file and for the full experiment compared
to the Monolithic version execution in Figure 5.7.

Figure 5.6: Local execution (per file performance)

In the per file results we can observer an increase of around 7% in ex-
ecution time as expected. This is due to the introduced joint overhead of
running Docker, the developed system’s functions(like service profiling, mi-
gration policy calculations etc) and HTTP communication of microservices.

Figure 5.7: Local execution (overall, full experiment)

In a local execution environment latency is minimal to non-existent. As a re-
sult the introduced overhead by HTTP communication and microservices in
general is similarly minimal. Thus the main bulk of the introduced overhead
has to be attributed to Docker and system functions as in a local execution.
Our system periodically (with different periods) collects service statistics,
calculates the migration policy, attempts to contact the LDAP server and
checks if available devices exist. Additionally the Docker platform introduces
overhead of its own, for the management and running of Docker containers.

The delay is mostly present in the speech recognition service because the
service takes up the most execution time; consequently due to the periodic
nature of system functions a lot more function calls are likely to occur during
the recognition process increasing its execution time. On the contrary no
overhead is observed in the translation service. In fact the translation service
seems to run faster on this experiment. As the translation service execution
time is small it is less likely to collide with system functions. It should
however experience some small overhead due to Docker and communication
delay, we believe this isn’t observed due to minor external factors.

On the overall execution time of the experiment we can also see an added
overhead of 2,56 seconds. This added execution time can be attributed to
the same factors as discussed but takes place in between service calls and
thus was not apparent in the per-file results. This added delay brings the

increase to execution time to around 9%.
It needs to be noted that the measurement do not take into account the

initial setup time of the system that will be discussed separately along with
service transition time.

5.3.3 Remote Execution

In the final experiment we test the performance of our system on the event
of Remote execution. The application device, a remote device and an edge
server, as described in Table 5.2, are present from the start. This scenario
aims to gauge how the developed system performs in conditions where remote
devices of different specifications are available to offload services to. Latency
to the remote devices throughout the scenario is low and ranges from 3 to
10 ms.

The system’s migration policy, as expected, chooses to offload services to
the edge server as it is considerably faster to both the application and the
remote device. It needs to be noted that in the this experiment our system
consistently chose to offload all 3 application services. The per file results
of this experiment can be seen in Figure 5.8 and in Figure 5.9 we can see a
comparison of performance among all conducted experiments.

As seen the full system execution offers a decrease in execution time of
around 15% compared to the monolithic version execution and of around 21%
compared to the local-only execution. The overhead that occurs in-between
service calls, can be seen as rather stable with a small decrease at 2.16 seconds
compared to the 2.56 seconds of the local-execution experiment. This is due
to the decreased Docker load, since the services execute on a faster machine.

The increase in performance can also be seen in the per-file results. Both
speech recognition and translation services benefit considerably from de-
creased execution time, in an analogous manner. Another interesting obser-
vation is that the first 3 files of the experiment see no particular performance
boost compared to the local execution. This is due to the service transition
overhead that will be explained in the following section.

Figure 5.8: Remote execution. Per file performance

Figure 5.9: Remote execution (Overall, Full Experiment)

5.3.4 Setup and Service Transition Overhead

A number of experiments has also been conducted in order to measure the
time needed by the system to setup and initially deploy the application
services, as well as the time required for the application services to be in-
stalled/migrated and start running on a remote device once the decision to
offload them has been made by the system we refer to this as the service
transition time.

For the case of service installation/migration we investigate 2 scenarios.
In the so-called ”warm” scenario, the remote device has pre-downloaded or
cached the Docker image for the service in question. In the ”cold” scenario,
before offloading can take place, the remote host also has to download the
required image.

As seen in Table 5.4 on average the system requires 142 seconds to setup.
This time can be further broken down; a considerable amount of time (about
60 seconds) are need specifically for the monitoring container of cAdvisor
to be fully functional. The rest of the elapsed time is accounted to Docker
creating the overlay network and launching the service tasks and the corre-
sponding containers, and in order for the system to update the services based
on the initial placement directives.

Table 5.4: Setup and Service Transition Overheads.

Average Std Dev

Setup Time 142.36 8.7
Transition Time (Warm) 66.02 0.24
Transition Time (Cold) 143.09 6.8
Offloading Decision 5.22 1.6

The service transition time averages on 66 seconds for a warm remote
device, and 143 seconds for the cold scenario, the added time being due to the
downloading of Docker images. This overhead directly relates to the number
of services needed to migrate. In our case all 3 services of the application
were migrated by the system. In Table 5.5 we can see a typical breakdown of
transition time for each service. It is easily apparent that the transition time
is roughly equal for all services in the ”warm” scenario. This of course differs
on the ”cold” scenario, where individual service transition time is dependent
on the image size and the time it needs to be download on the remote device.

Assuming that a valid remote device is available the developed system

Table 5.5: Individual Service Transition Overhead (Warm)

Average Std Dev

Speech Service 22.12 1.58

Translation Service 21.94 1.24

Sender Service 21.96 0.27

takes on average 5.22 seconds to make the offloading decision. This translates
to the time need to begin migrating the services and is considerably smaller
compared to the time needed for service transition. This value added to
the average service transition time, yields on average 71.24 seconds until
the user experiences benefit from the system in the ”warm” scenario and
148.31 seconds in the ”cold” scenario. These values also represent a minimum
running time after which utilizing the developed system begins to make sense
for a user.

While these overheads are considerable, in practice, they are almost unob-
servable to the user. This is because our system and Docker updates service
on a ”start-first” policy, meaning that services are readied on the background.
As long as a service is not ready, all related calls are routed to the active
service instance that is running on the current host device. Consequently,
from the application’s and user perspective, the benefits of offloading can be
enjoyed without any visible performance degradation.

5.4 Summary

Overall the developed system seems to be able to, under specific circum-
stances, offer considerable performance gain for compute intensive applica-
tion services. The introduced overheads constitute a small percentage, even
though not insignificant, of the overall execution time in the experiments con-
ducted even compared to the total absence of microservices architecture and
its communication costs. This holds true even in worst-case scenarios where
no available remote computing resources exist. It is also deemed important
that most time-consuming operations are performed in the background, thus
leaving the end user relatively unaffected.

It needs to be noted however that the experiments were conducted in
a favourable network environment and their duration was considerable, at

over 5 minutes. Applications that do not have computationally intensive
components or have really fast execution times, can be unfit to take advantage
of the developed system. In addition, even though the system is design to
accommodate dynamic changes of present devices, these changes need to
happen in a slow manner for the system to have time to converge. Otherwise
the overhead costs of the system can be paid with no significant performance
gain.

Chapter 6

Conclusions & Future Work

We have presented our system for the dynamic offloading of application ser-
vices to devices at the network edge. To achieve our goal of opportunistically
exploiting nearby devices we have used microservices architecture and built
our system on top of Docker swarm. A simple migration policy has also been
proposed. In order to evaluate our system, we conducted a series of exper-
iment using a speech recognition and translation microservices application
that we build. We have found that our system, under specific conditions
concerning execution time and presence of remote devices, can provide a
considerable performance boost to application services.

In the future our system can be extended or improved upon in various
ways. The migration policy proposed can be more fine grained to include
metrics like energy consumption and the offloading decision could be made
to accommodate more complex information like expected device presence,
expected service usage etc. The system could also be extended to become
less greedy and aim to improve the overall network and system load of all
devices present. Finally the system’s response to the dynamic arrival and
departure of devices and other application services could be improved.

51

References

[1] Friedemann Mattern and Christian Floerkemeier. “From Active Data
Management to Event-based Systems and More”. In: ed. by Kai Sachs,
Ilia Petrov, and Pablo Guerrero. Berlin, Heidelberg: Springer-Verlag,
2010. Chap. From the Internet of Computers to the Internet of Things,
pp. 242–259. url: http://dl.acm.org/citation.cfm?id=1985625.
1985645.

[2] The NIST definition of cloud computing. url: http://nvlpubs.nist.
gov/nistpubs/Legacy/SP/nistspecialpublication800-145.pdf.

[3] Flavio Bonomi, Rodolfo Milito, Jiang Zhu, et al. “Fog Computing and
Its Role in the Internet of Things”. In: Proceedings of the First Edition
of the MCC Workshop on Mobile Cloud Computing. MCC ’12. Helsinki,
Finland: ACM, 2012, pp. 13–16. isbn: 978-1-4503-1519-7. doi: 10 .

1145/2342509.2342513. url: http://doi.acm.org/10.1145/

2342509.2342513.

[4] Mobile Edge Computing: Introductory Technical Whitepaper - ETSI.
url: https://portal.etsi.org/Portals/0/TBpages/MEC/Docs/
Mobile-edge_Computing_-_Introductory_Technical_White_Paper_

V1%2018-09-14.pdf.

[5] James Lewis Martin Fowler. Microservices, a definition of this new
architectural term. url: https : / / martinfowler . com / articles /

microservices.html.

[6] Docker: About. url: https://www.docker.com/what-docker.

[7] Docker Swarm. url: https://docs.docker.com/engine/swarm/.

[8] Representational State Transfer (REST). url: https://www.ics.

uci.edu/~fielding/pubs/dissertation/rest_arch_style.htm.

[9] LXC: LinuX Containers. url: https://linuxcontainers.org/.

52

http://dl.acm.org/citation.cfm?id=1985625.1985645
http://dl.acm.org/citation.cfm?id=1985625.1985645
http://nvlpubs.nist.gov/nistpubs/Legacy/SP/nistspecialpublication800-145.pdf
http://nvlpubs.nist.gov/nistpubs/Legacy/SP/nistspecialpublication800-145.pdf
http://dx.doi.org/10.1145/2342509.2342513
http://dx.doi.org/10.1145/2342509.2342513
http://doi.acm.org/10.1145/2342509.2342513
http://doi.acm.org/10.1145/2342509.2342513
https://portal.etsi.org/Portals/0/TBpages/MEC/Docs/Mobile-edge_Computing_-_Introductory_Technical_White_Paper_V1%2018-09-14.pdf
https://portal.etsi.org/Portals/0/TBpages/MEC/Docs/Mobile-edge_Computing_-_Introductory_Technical_White_Paper_V1%2018-09-14.pdf
https://portal.etsi.org/Portals/0/TBpages/MEC/Docs/Mobile-edge_Computing_-_Introductory_Technical_White_Paper_V1%2018-09-14.pdf
https://martinfowler.com/articles/microservices.html
https://martinfowler.com/articles/microservices.html
https://www.docker.com/what-docker
https://docs.docker.com/engine/swarm/
https://www.ics.uci.edu/~fielding/pubs/dissertation/rest_arch_style.htm
https://www.ics.uci.edu/~fielding/pubs/dissertation/rest_arch_style.htm
https://linuxcontainers.org/

[10] Anatomy of a Container: Namespaces, cgroups and Some Filesystem
Magic - LinuxCon. url: https://www.slideshare.net/jpetazzo/
anatomy-of-a-container-namespaces-cgroups-some-filesystem-

magic-linuxcon.

[11] The Raft Consensus Algorithm. url: https://raft.github.io/.

[12] Eduardo Cuervo, Aruna Balasubramanian, Dae-ki Cho, et al. “Maui”.
In: Proceedings of the 8th international conference on Mobile systems,
applications, and services - MobiSys ’10 (2010), p. 49. issn: 10058885.
doi: 10.1145/1814433.1814441. url: http://portal.acm.org/
citation.cfm?doid=1814433.1814441.

[13] Byung-Gon Chun, Sunghwan Ihm, Petros Maniatis, et al. “CloneCloud”.
In: Proceedings of the sixth conference on Computer systems - EuroSys
’11 (2011), p. 301. issn: 10058885. doi: 10.1145/1966445.1966473.
url: http : / / portal . acm . org / citation . cfm ? doid = 1966445 .

1966473.

[14] Sokol Kosta, Andrius Aucinas, Pan Hui, et al. “ThinkAir: Dynamic
resource allocation and parallel execution in the cloud for mobile code
offloading”. In: Proceedings - IEEE INFOCOM (2012), pp. 945–953.
issn: 0743166X. doi: 10.1109/INFCOM.2012.6195845. arXiv: 1105.
3232.

[15] Cong Shi, Karim Habak, Pranesh Pandurangan, et al. “COSMOS :
Computation Offloading as a Service for Mobile Devices”. In: Proceed-
ings of MobiHoc (2014), pp. 287–296. doi: 10.1145/2632951.2632958.

[16] Yongin Kwon, Sangmin Lee, Hayoon Yi, et al. “Mantis: automatic
performance prediction for smartphone applications”. In: (June 2013),
pp. 297–308.

[17] Ms Gordon, Da Jamshidi, and Scott Mahlke. “COMET: code offload
by migrating execution transparently”. In: Proceedings of the 10th . . .
(2012), pp. 93–106. url: https://www.usenix.org/system/files/
conference/osdi12/osdi12-final-11.pdf.

[18] Roelof Kemp, Nicholas Palmer, Thilo Kielmann, et al. “Cuckoo: a com-
putation offloading framework for smartphones”. In: Mobile Comput-
ing, Applications, . . . (2012), pp. 59–79. issn: 18678211. doi: 10.1007/
978- 3- 642- 29336- 8_4. url: http://www.springerlink.com/

index/U6777405301NP063.pdf.

https://www.slideshare.net/jpetazzo/anatomy-of-a-container-namespaces-cgroups-some-filesystem-magic-linuxcon
https://www.slideshare.net/jpetazzo/anatomy-of-a-container-namespaces-cgroups-some-filesystem-magic-linuxcon
https://www.slideshare.net/jpetazzo/anatomy-of-a-container-namespaces-cgroups-some-filesystem-magic-linuxcon
https://raft.github.io/
http://dx.doi.org/10.1145/1814433.1814441
http://portal.acm.org/citation.cfm?doid=1814433.1814441
http://portal.acm.org/citation.cfm?doid=1814433.1814441
http://dx.doi.org/10.1145/1966445.1966473
http://portal.acm.org/citation.cfm?doid=1966445.1966473
http://portal.acm.org/citation.cfm?doid=1966445.1966473
http://dx.doi.org/10.1109/INFCOM.2012.6195845
http://arxiv.org/abs/1105.3232
http://arxiv.org/abs/1105.3232
http://dx.doi.org/10.1145/2632951.2632958
https://www.usenix.org/system/files/conference/osdi12/osdi12-final-11.pdf
https://www.usenix.org/system/files/conference/osdi12/osdi12-final-11.pdf
http://dx.doi.org/10.1007/978-3-642-29336-8_4
http://dx.doi.org/10.1007/978-3-642-29336-8_4
http://www.springerlink.com/index/U6777405301NP063.pdf
http://www.springerlink.com/index/U6777405301NP063.pdf

[19] Rob Van Nieuwpoort, Jason Maassen, Gosia Wrzesińska, et al. “Ibis:
A Flexible and Efficient Java-based Grid Programming Environment”.
In: 17 (Feb. 2005), pp. 1079–1107.

[20] Cong Shi and Vasileios Lakafosis. “Serendipity: Enabling remote com-
puting among intermittently connected mobile devices”. In: . . . Net-
working and Computing (2012), pp. 145–154. issn: 10848045. doi: 10.
1145/2248371.2248394. url: http://dl.acm.org/citation.cfm?
id=2248394.

[21] Karim Habak, Mostafa Ammar, Khaled A. Harras, et al. “Femto Clouds:
Leveraging Mobile Devices to Provide Cloud Service at the Edge”. In:
Proceedings - 2015 IEEE 8th International Conference on Cloud Com-
puting, CLOUD 2015 (2015), pp. 9–16. issn: 2159-6182. doi: 10.1109/
CLOUD.2015.12.

[22] Gabriel Orsini, Dirk Bade, and Winfried Lamersdorf. “Computing at
the Mobile Edge: Designing Elastic Android Applications for Compu-
tation Offloading”. In: Proceedings - 2015 8th IFIP Wireless and Mo-
bile Networking Conference, WMNC 2015 (2016), pp. 112–119. issn:
19328184. doi: 10.1109/WMNC.2015.10. arXiv: 1510.00888.

[23] Alexander Pokahr and Lars Braubach. “The Active Components Ap-
proach for Distributed Systems Development”. In: Int. J. Parallel Emerg.
Distrib. Syst. 28.4 (Aug. 2013), pp. 321–369. issn: 1744-5760. doi:
10.1080/17445760.2013.785546. url: http://dx.doi.org/10.
1080/17445760.2013.785546.

[24] Sherif Abdelwahab, Bechir Hamdaoui, Mohsen Guizani, et al. “Repli-
som: Disciplined Tiny Memory Replication for Massive IoT Devices in
LTE Edge Cloud”. In: IEEE Internet of Things Journal 3.3 (2016),
pp. 327–338. issn: 23274662. doi: 10.1109/JIOT.2015.2497263.

[25] Michael Till Beck, Sebastian Feld, Andreas Fichtner, et al. “ME-VoLTE:
Network functions for energy-efficient video transcoding at the mobile
edge”. In: (Mar. 2015), pp. 38–44.

[26] Shiqiang Wang, Rahul Urgaonkar, Murtaza Zafer, et al. “Mobility-
Driven Service Migration in Mobile”. In: (). doi: 10.1109/MILCOM.
2014.145. arXiv: 1503.05141.

http://dx.doi.org/10.1145/2248371.2248394
http://dx.doi.org/10.1145/2248371.2248394
http://dl.acm.org/citation.cfm?id=2248394
http://dl.acm.org/citation.cfm?id=2248394
http://dx.doi.org/10.1109/CLOUD.2015.12
http://dx.doi.org/10.1109/CLOUD.2015.12
http://dx.doi.org/10.1109/WMNC.2015.10
http://arxiv.org/abs/1510.00888
http://dx.doi.org/10.1080/17445760.2013.785546
http://dx.doi.org/10.1080/17445760.2013.785546
http://dx.doi.org/10.1080/17445760.2013.785546
http://dx.doi.org/10.1109/JIOT.2015.2497263
http://dx.doi.org/10.1109/MILCOM.2014.145
http://dx.doi.org/10.1109/MILCOM.2014.145
http://arxiv.org/abs/1503.05141

[27] Xu Chen, Lei Jiao, Wenzhong Li, et al. “Efficient Multi-User Compu-
tation Offloading for Mobile-Edge Cloud Computing”. In: IEEE/ACM
Trans. Netw. 24.5 (Oct. 2016), pp. 2795–2808. issn: 1063-6692. doi:
10.1109/TNET.2015.2487344. url: https://doi.org/10.1109/
TNET.2015.2487344.

[28] S. Sardellitti, G. Scutari, and S. Barbarossa. “Joint optimization of ra-
dio and computational resources for multicell mobile cloud computing”.
In: IEEE Workshop on Signal Processing Advances in Wireless Com-
munications, SPAWC 2014-Octob.October (2014), pp. 354–358. issn:
2373-776X. doi: 10.1109/SPAWC.2014.6941749. arXiv: 1412.8416.

[29] Vlado Stankovski, Jernej Trnkoczy, Salman Taherizadeh, et al. “Imple-
menting time-critical functionalities with a distributed adaptive con-
tainer architecture”. In: Proceedings of the 18th International Con-
ference on Information Integration and Web-based Applications and
Services - iiWAS ’16 (2016), pp. 453–457. doi: 10.1145/3011141.
3011202. url: http://dl.acm.org/citation.cfm?doid=3011141.
3011202.

[30] Joao Rufino, Muhammad Alam, Joaquim Ferreira, et al. “Orchestration
of containerized microservices for IIoT using Docker”. In: Proceedings
of the IEEE International Conference on Industrial Technology (2017),
pp. 1532–1536. doi: 10.1109/ICIT.2017.7915594.

[31] Paolo Bellavista and Alessandro Zanni. “Feasibility of Fog Computing
Deployment based on Docker Containerization over RaspberryPi”. In:
Proceedings of the 18th International Conference on Distributed Com-
puting and Networking - ICDCN ’17 (2017), pp. 1–10. doi: 10.1145/
3007748.3007777. url: http://dl.acm.org/citation.cfm?doid=
3007748.3007777.

[32] Eclipse Kura: Open Source Framework for IoT. url: https://www.
eclipse.org/kura/.

[33] Roberto Morabito and Nicklas Beijar. “Enabling Data Processing at
the Network Edge through Lightweight Virtualization Technologies”.
In: 2016 IEEE International Conference on Sensing, Communication
and Networking, SECON Workshops 2016 607728 (2016). doi: 10.

1109/SECONW.2016.7746807.

http://dx.doi.org/10.1109/TNET.2015.2487344
https://doi.org/10.1109/TNET.2015.2487344
https://doi.org/10.1109/TNET.2015.2487344
http://dx.doi.org/10.1109/SPAWC.2014.6941749
http://arxiv.org/abs/1412.8416
http://dx.doi.org/10.1145/3011141.3011202
http://dx.doi.org/10.1145/3011141.3011202
http://dl.acm.org/citation.cfm?doid=3011141.3011202
http://dl.acm.org/citation.cfm?doid=3011141.3011202
http://dx.doi.org/10.1109/ICIT.2017.7915594
http://dx.doi.org/10.1145/3007748.3007777
http://dx.doi.org/10.1145/3007748.3007777
http://dl.acm.org/citation.cfm?doid=3007748.3007777
http://dl.acm.org/citation.cfm?doid=3007748.3007777
https://www.eclipse.org/kura/
https://www.eclipse.org/kura/
http://dx.doi.org/10.1109/SECONW.2016.7746807
http://dx.doi.org/10.1109/SECONW.2016.7746807

[34] Andrew Machen, Shiqiang Wang, Kin K. Leung, et al. “Migrating run-
ning applications across mobile edge clouds”. In: Proceedings of the
22nd Annual International Conference on Mobile Computing and Net-
working - MobiCom ’16 (2016), pp. 435–436. doi: 10.1145/2973750.
2985265. url: http://dl.acm.org/citation.cfm?doid=2973750.
2985265.

[35] Flavio Ramalho and Augusto Neto. “Virtualization at the network
edge: A performance comparison”. In: WoWMoM 2016 - 17th Inter-
national Symposium on a World of Wireless, Mobile and Multimedia
Networks (2016). doi: 10.1109/WoWMoM.2016.7523584.

[36] Cristian Gadea, Mircea Trifan, Dan Ionescu, et al. “A microservices ar-
chitecture for collaborative document editing enhanced with face recog-
nition”. In: SACI 2016 - 11th IEEE International Symposium on Ap-
plied Computational Intelligence and Informatics, Proceedings (2016),
pp. 441–446. doi: 10.1109/SACI.2016.7507409.

[37] David Jaramillo, Duy V. Nguyen, and Robert Smart. “Leveraging mi-
croservices architecture by using Docker technology”. In: Conference
Proceedings - IEEE SOUTHEASTCON 2016-July (2016), pp. 1–4. issn:
07347502. doi: 10.1109/SECON.2016.7506647.

[38] Docker Compose File Reference. url: https://docs.docker.com/
compose/compose-file/.

[39] Open LDAP. url: https://www.openldap.org/.

[40] cAdvisor. url: https://github.com/google/cadvisor.

[41] Passmark CPU Benchmarks. url: https://www.cpubenchmark.net/.

[42] CMU Sphinx. url: https://cmusphinx.github.io/.

[43] Carnegie Mellon University. url: https://www.cmu.edu/.

[44] Aperitum, a free/open source machine translation platform. url: http:
//wiki.apertium.org/wiki/Documentation.

[45] LibriVox Aesop’s Fables. url: https : / / librivox . org / aesops -

fables-volume-1-fables-1-25/.

http://dx.doi.org/10.1145/2973750.2985265
http://dx.doi.org/10.1145/2973750.2985265
http://dl.acm.org/citation.cfm?doid=2973750.2985265
http://dl.acm.org/citation.cfm?doid=2973750.2985265
http://dx.doi.org/10.1109/WoWMoM.2016.7523584
http://dx.doi.org/10.1109/SACI.2016.7507409
http://dx.doi.org/10.1109/SECON.2016.7506647
https://docs.docker.com/compose/compose-file/
https://docs.docker.com/compose/compose-file/
https://www.openldap.org/
https://github.com/google/cadvisor
https://www.cpubenchmark.net/
https://cmusphinx.github.io/
https://www.cmu.edu/
http://wiki.apertium.org/wiki/Documentation
http://wiki.apertium.org/wiki/Documentation
https://librivox.org/aesops-fables-volume-1-fables-1-25/
https://librivox.org/aesops-fables-volume-1-fables-1-25/

	Introduction
	Motivation
	Thesis Structure

	Background
	Microservices
	Containers
	Docker
	Docker Swarm

	Related Work
	Mobile Cloud Computing
	Mobile Edge Computing
	Containers & Microservices in Edge Computing

	System Architecture & Implementation
	Approach
	System Architecture
	Local Execution
	Device Selection
	Device Discovery
	Device Pruning
	Latency Calculation

	Service Profiling and Migration Policy
	Collecting Service Statistics
	Compute Migration

	Remote Execution
	Swarm Scaling
	Service Scheduling

	Migration Policy

	Experimental Evaluation
	Microservice-based Application
	Experimental Setup
	Results and Analysis
	Monolithic version
	Local Execution
	Remote Execution
	Setup and Service Transition Overhead

	Summary

	Conclusions & Future Work

