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Scale effects modeling in bubbles and trusses using
first strain gradient elasticity

Apostolos Nasikas

University of Thessaly, Department of Civil Engineering,2015

Supervisor: Dr. Antonios. E. Giannakopoulos, Professor

1.a. Abstract

In today’s technology applications in most scientific branches, structures
of micro and nano scale are often used in attempt to minimize the volume
of the objects, the material use and to optimize the material’s properties.
Experimental studies, though, indicate that the behavior of structures of
such scale cannot always be described using the classical theory of
elasticity. Scale effect appear resulting to significantly stiffer behaviors in
many cases. That directed research to approach small scale problems
using non classical non local theories with extra length parameters in
order to model scale effects. Various such theories have been developed,
and one of the simplest ones is the Aifantis’ ( (Aifantis, 1992) (Altan &
Aifantis, 1992)) modification of Mindlins ( (Mindlin & Tiersen, 1964)
(Mindlin, 1964) ) strain gradient theory of elasticity, which is used in this
work.

Several boundary condition (BC) problems have been addressed and
solved the past decades using strain gradient elasticity and other non local
theories. However, due to the complexity of resulting fourth order
differential equations, only problems of simple geometry have been
solved. This fact was the inspiration for the present thesis. This thesis is
based on gradient problems already solved, especially those by
(Tsepoura, et al., 2002) and (Polyzos, et al., 2003), and attempts to model
the behavior of structures of more complex geometry. Such are structures
consisting of multiple structural elements, possibly of different
mechanical properties. Following this, a need emerged to return to the
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fundamental theory and then make an extensive research in the available
literature in order to investigate the continuity and boundary conditions
between the different members of the composite bodies that are being
studied.

The present work is divided in two main parts. First, is presented the
simplified strain gradient theory for two and three dimensional (2D and
3D) problems suggested by Aifantis along with the respective classical
one. Then, its form is obtained for bodies of spherical geometry,
subjected to radial loads only. Such are the cases of a solid sphere and a
spherical cavity in an infinite gradient elastic space under various loading
cases. Although, some loading cases have already been addressed by
(Tsepoura, et al., 2002), they are also presented in the present work, along
with some new boundary value problems, for completeness. All results
are compared to the results of respective classical elasticity problems.

Next, thin walled spherical shell problems are being studied, triggered by
an experimental investigation by (Glynos & Koutsos, 2009). It suggests
stiffening of microbubbles which may be attributed to scale effects. A
thin walled spherical shell theory is developed that aspires to model the
scale effects in microbubbles -or microspheres which is the term used in
the article-. Having modeled the single gradient elastic bubble, a
composite bubble is modeled. It is the case of a composite thin walled
spherical shell, consisting of two gradient elastic materials that share a
fully elastic interface (a double-layered microbubble). The shell’s
behavior is found and compared with behavior described by the
respective classical problems.

In the second part of this thesis, the goal is to form an algorithm for
solving gradient elastic 2D truss structures. This part begins by
addressing the simplest problem in gradient elasticity. That is the case of
a one dimensional bar subjected to uniaxial loading. Several boundary
value problems for the bar are presented in order to obtain a good
understanding of each BC’s effect on the bar’s behavior.

As a first step to solving 2D structures, 1D composite structures of
multiple collinear bars under various load case are solved. In order to
investigate the interaction of different collinear bar elements, the
connecting nodes’ properties needed to be determined. Two types of node

6



where considered; the fully elastic node, which works as an interface
between the elements, has no stiffness of its own and imposes a
continuous strain to the bars’ ends, and the rigid node that restrains the
strain at the bar’s ends. The appropriate 1D stiffness matrix is obtained,
and using the stiffness method, multiple bar problems of non standard
loading and geometry are solved and compared to the respective
analytical gradient solutions and , both analytical and numerical, classical
solutions. In this way, it is show that the bar elements can be used as
finite elements, too, in 1D problems and describe the bar’s scale effects.

Finally, the 2D truss problem is addressed. The function of the node is
discussed in the 2D case, and the case of a two bar truss is presented as a
simplest example of 2D structure. Also, o simple indeterminate bar
structure with classical loading is solved, in order to find how
indeterminate gradient trusses behave.



Movtehomoin o1 QUIVOREVOV KMUOKOS 6 QUOUAOES
KOl OIKTVONOTO HECO PadpmTig EAAoTIKOTNTOS

Amoctorog Nocikog

[Tavemotmuio Osccariog, Tuqua [ToArtikov Mnyavikdv, 2015

Emprénov: Ap. Avtoviog. E. INavvakomovioc, Kadnynmg

1.b. Hepiinwn

YTG  OUYYpPOVEG  TEXVOAOYIKEC  EQOPHOYEG, OTOVG TMEPLGGOTEPOVC
EMOTNUOVIKOVUG KAAOOVS, GLYVE YPNOLOTOI0VVTOL KATACKEVEG UIKPO 1
vévo kKMpokag oty mpoondOeia va ehayiotomombel o dykog Kot 1 udla
TOV TEMKOV OVTIKEIUEVOV, VO, BEATIOTOTOMO0VV 1 ¥P1OT VAIK®OV Kol Ot
1010 1eg avtdv. Tepapaticég perétec deiyvouv OTL N GLUTEPLPOPA LLOC
KOTOOKEVNG TéTO0C KMpaKag de urmopet mévia vo meptypagel HEc® NG
KAMooowknG  Oewploc  ehaotikOTTOG, O0TL  QOouvOpEVA  KAILOKOG
TOPOVGLALOVTAL, TPOKAADVTAG GLYVE KPATLVOT OVTAOV TOV UEADV. AVTO
00N YNGE TNV EMGTNHOVIKY] EPELVO GTO VO TPOGEYYIGEL UIKPT|G KATLOKOGC
npofAnuate péo® pn KAacwkov, un tomik®v (non local) Bewpiov
EAUOTIKOTNTOG UE EMUTAEOV TAPAUETPOVS UNKOVS, Ol OTOIES UTOPOVV VAL
povteAomomoovy  @avopevo. kAipokag. Atdgopeg non local Oeswpieg
&xyovv avamtuoyfel. Mo and 11 amAovoTEPES, N OTOln YPMNOLOTOLEITON
otV mapovoa epyacia eivar n Bewpia g PabumThg EAcTIKOTNTOSC TOV
Mindlin(  (Mindlin & Tiersen, 1964) (Mindlin, 1964)) mov otv
amAomomuévn ¢ Hopen tpotddnke and tov Adeavty ( (Aifantis, 1992)
(Altan & Aifantis, 1992)).

Tic televtaieg Oekoetieg, OPKETO TPOPANUOTA GUVOPLOKAOV GLVONKOV
&yovv emAvBel avolvTtikd ypnoipomoidvtag Pabumty elocTikOTNTO.
AOY®, SHOC, TG TOAVTAOKOTNTAG TTOL EMPEPEL 1| AOENON TNG TAENG TV
dwpopikadv eElomdoemy, kol 1 ofefoadtnra YOpw amd TV QLGIKN
onuacio TV Un KAUGIK®OV CLVOPLIK®OV cLVONKOV, avtd teplopilovtal o
COUATO TOAD OTANG YEMUETPLOG Ko TEPLOPIGUEVA €101 QopTicE®V. AV
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1 TOPATAPNOTN OMOTEAEGE TO £VOVCHO YOl TNV TOPOVCO SUTAMUOTIKY
epyoacio. Avti 1 dovAeld, Bacilopevn oe oM Avpéva amAd TpofAnuara,
Kupiog avtd Tov Toemovpa kat cvvepyataov ( (Tsepoura, et al., 2002),)
kot IToAdblov kot ocvvepyotdv (Polyzos, et al., 2003), otoyevel va,
LOVTEAOTIOMGEL TN CLUTEPIPOPA T oLVOETOV KoTaokev®y. Tétoleg
KOTOOKEVEC AMOTEAOVVTIOL OO TEPIGOOTEPA TOV €VOG UEAN T OTOin
OAANAETIOPOVY KOl EVOEYOUEVMG £YOLV  HETAEDL TOVG OLOPOPETIKES
unyovikeég w0tntec. oo v pedétn g aAAnieniopaong twv UeA®V,
YPEWOTNKE apykd avadpoun otnv Poacikn Oewpio ko ot cvvéyela
exteTapévn PiPAoypagikn €pevva, MOTE VO EMAEYOVV Ol KOUTAAANAEC
OLVONKEC GLVEYEWNG KOl 1GOPPOTiaG HETOED TOV UEADV TOVL cLVOETOL
GMOUOTOC.

H mapovoa epyoacia yopiletar oe ovo  «oOpa  pépn.  Apyka,
Topovctaletor 1 amAomomuévn Bempio PabUmTc eA0STIKOTNTOS TOL
ADQAvVTY], TOPAAANAC LE TNV AVTIOTOLYN KAOGIKT, MOOTE £ivol S10KPLTES OL
OMOLOTNTEG KO O1 OPOPEG TOVG. LTV CLVEYELD, BpioKeTol 11 LOPPY| TOV
VTN TOIPVEL Y10 GCOUOTO CPOIPIKDOG GUUUETPIKA, GTO OO0 AGKOVVTAL
povo axtvikd eoptia. TEroleg mepurtdoelc eival avty pag Guumoyong
cQAIPOG Kol QLT LG COAPIKNG KOIAOTNTOS GE £VAV ATELPO EKTEWVOUEVO
Babumtd eAooTiKd YDOPO, VIO OAPOPOVE GUVOVOGUOVE (POPTIGEMV.
Kamoec poptioeig (cuvoprokés ocuvOnkec) éxovv 1on eEetaotel amd Tovg
[ToAvCo ko cuvepydteg (Polyzos, et al., 2003), wotdco kat avtd puetacy
GAA®V TPOPANUATOV GLVOPLOKDOV GLVONK®OV TOPOLGLALoVTal, Yo AOYOVG
TAnpotnTos. OAa To AMOTEAEGUATO GUYKPIVOVTOL TEMKA LLE TO AVTIoTOL(O
NG KAOGGIKNG EAACTIKOTNTOG.

21N cuvEYEL, VoL AETTOTOLYO COAIPIKO KEALPOG HEAETATOL, LE OQPOPUN
wo TepopaTikn epyacio tov IAvvod kot Kovtoov ( (Glynos & Koutsos,
2009)). Xe avtv mapatnpiOnke KpaTLVOTN WKPOPVOUAId®Y, 1 OToio
Oewprinke 011 iow¢ ogeiheton o @awvouevo kAipokac. Mo Bewpia
AEMTOTOYYOV  COOPIKAOV  KEALDQAOV  OVATTUGOETOL UE  OTOYO 1N
LOVTELOTOINGN QaVOUEVOY KMUOKOS OTIS UIKPOELGOAIdeS. "Eyxovtoag
HEAETNGEL TNV oA QUOOAIdD, akAovBel pia cUVOETN, amOTEAOVLEVT
amd 6VO OLPOPETIKA VAKA TOV potpdlovtal piol ETQAveLd (SIETIPAVELQ).
H ovunepripopd ¢ ovvbetne o@uocoiidog, ovykpiveton pe v
CUUTEPLPOPA TTOV TEPLYPAPETOL GTO OVTIIGTOLYO KAACIKO HOVTEAO, TO
omoio emiong mapovslaleTon .



To mopokdto cvunepdopoto €€dyovior omd TNV UEAET OVTAOV TOV
TpoPfANUATOV:

IMa ™ ovumayn ceaipa:

Otav deopeveTon N TOPAUOPPMOCT) GTO GLVOPO TNG GPAIPAC, AVTY
KPOATOVETOL, OTOTE TPOKVTTOLY UIKPOTEPES TOPAULOPPDCELG.
AveEdptnta amd To péyebog TG oeaipag Kot TG KpPodouns, 6tav
UOVO KAOGIKA QOpTiot aoKOOVTOL GE aLTH, TOTE N ATOKPIoN TNG
elvarl n KAooow.

IMo v avdrtoén eovopévov KMpoKag, TpEmel vo, acknBovv Kat
OuAEG TAoELC.

Mo pkpéc TréC Tov Adyou Tov E0MTEPIKOL UKOVE TOL VAKOD ()
TPOG TNV OKTIVO, 1) CLUTEPLPOPA TNG OPOIPOS TPAKTIKO OEV
AmOKAIVEL amd TNV avTioTOYN KAAGIKY).

Mo ™ ceapikn kothdTTO!

H pwpodoun mpokadiel kpdtvovon oOtov dgv givol mOAD pukpn,
aveEhptnta amd ™V AoKNoT SWMADV TAGE®V, OKOUO Kol [E TNV
doknon wovo mieonc.

ENUOVTIKY Eivat Kot 1) emppor| Tov Adyov Poisson.

O1 dumAég thoelg dev elval apeAntéec pOVo Kovid 610 Oplo TG
KOWLOTNTOG.

[Tavta n Avon amiomoieitonr oty KAooKn Otav 1 oaxtiva eival
TOAD UEYOADTEPT TOV UNKOLVS § TNG LKPOSOUNG.

["a to ceapd KEALEOG (PLGaAida):

Movo 10 TpdPANUA OOV 01 AGKOVUEVEG KAOGIKES KO U1 KAUCTKES
SVVALELS E0MGE YPNOLOL OTTOTEAEGLOLTOL.

Axopo kot 6tav 0ev aleKOLVTOL SUTAEG TAGELS Ol LETATOTICELS Elvat
HIKPOTEPES OO TIG KAUCIKEG,

Otav 1 pikpodoun eivat ooV, To TEdiN TOV LETAKIVIGEMY Ko
TOV TOPOLOPPAOCGEDY ATAOTOI0VVTAL 6T, KAAGIKE, Oyt OLMC Kot TO
eSO TOV KAUTVAOTATOV.

[Ma to 01tAd GPapKd KEALPOG:
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e Movo 10 TPOPANLO 6OV 01 ACKOVUEVES KAUGIKES Kot 1] KAUGIKEG
SVVALELS E0MGE YPNOILOL OTTOTEAEGLOLTOL.

e Emedr] o1 mopauetpor eivar moAAEG, dvokola  e&dyovron
amoteAéopato ov O0ev  emAexfodv MO OTOYELOUEVO KOTOLEC
TEPUTTMOGELS.

e Ortav Bsmwpnbel 611 TO SVO LAMKA OV TO AmOTEAOVV givan 1010, TO
HOVTEAO OVTO OMAOTOLEITOL GTO HOVIEAOV TOL OTAOD GOUPIKOV
KEAMDQPOLG

e Otav unodeviotel n Pkpodour TV dV0 LAIKOV, | GLUTEPIPOPA TOL
10 HOVTELO TTPOPAETEL, dev glvar 1010 e TNV KAOGTIKT).

210 0eVTEPO UEPOG TNG TOPOVCOC SUTAMUATIKNG EPYUCiG, 6TOYOC elval N
gvpeon evog alyopiBuov yia v emilvon eninedmv SIKTVOUATOV GTO
mAoiclo ¢ Pabummg ehaoctikdtTog, Yoo Kae €idog @oOptiong. Avtd
Eexkvd amd 1o amhovotepo TPOPANUE. mov upmopel vo Avbel pécm
Babummg elaoctikdTTog, ovtd NG  povooldotatng papdov, o€
HOVOOEOVIKT @OPTION. APKETA TPOPANUATE GLUVOPLOKDOY CLVONK®OV V1o,
™V pafoo mapovcsidlovtor avaALTIKO UE GTOYO TNV TANPN KATOvOno
NG EMPPONE KAOE GLVOPLIKNE GVLVONKNG GTNV CLUTEPLPOPA TNE PEPAOV.

To emdueva yevikd ocvumepacpato Umopovv vo  eEaybodv yoo
CLUTEPLPOPA TNS PAPOOV LE pIKpOodoun

e Opilovtag TIC LETAKIVAGELS KOl TIG TPOTEC TMV AKPWOV g papdov,
OTN YEVIKN TEPIMTOON €YEL GOV OMOTEAEGUO TNV U OUOYEVN
amOKPLOT ALTNG.

e Aeouebovtog TIG TPOMEC 0Ta AKpa TV PAPOI®V, LKPOTEPES OO TIC
KAMIGIKEG LETOKIVIOELS TTPOKVTTTOVV Y10, OTOLOONTTOTE POPTICT) KO
TO TESI0 TOV PETAKIVAGEMVY Elval TAVTO U OHOYEVES, aveaptntal
and to péyebog g pafoov kot T pikpodoun).

o Ortav avti va deopevBel n mapapdpemon ota dxpa ™ papoov,
aoKOOVTOL UNOEVIKEG OWTAEG OLVApElS, TOTE OveEEUPTHTOS TNG
UIKPOOOUNG, 1| CLUTEPLPOPA TNG TALTILETOL ULE TNV KAOGIKN.

e H mapdapetpoc | emnpedlet v papdo oe kabe mepintmon pe TpOTO
TOV VO, TEIVEL VO LELOOCEL TO GLVOAMKO UNKOG OVTNG.
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e Omolodmmote TPOPANLA GVVOPLOKDOV GLVONKOV umopel va avaryDel
010 avTioToro KANGIKO OTav aoknbel KaTtdAANAOG GLVOLAGLOG
GLVOPLOKAOV GLVONKOV.

e H ovumepipopd ¢ papdov vrd T mEPocdTEPES GUVONKEC
QOPTIONG TOVTICETAL PE TIC OVTIOTOLNES KAUGIKEG GULUTEPIPOPES,
OTOV TO YOPAKTNPIOTIKO UNKOG TNG UKPOOOUNG EIVOL AONLOVTO GE
oyxéomn Le To UNKog G papoov.

Yav mpoto PrAua yuo TV emiivon oOVOETOV paPomTOV KOTOUGKELDYV,
EMAVETOL U0 oEPA  amd povodidotate  mPoPAnuata, cLvhetwv
KOTOOKEV®V  OmOTEAOVUEVOY — amd  ouoalovikés  pafdove  mov
OAANAETIOPOVY, VWO  SAPOPOVE cLVOLACUOVS @opTicewv. [a va
weptypapel M aAAnAemiopacn Twv paPdmv, ypeldleTor TPOTA VA
dtepevvnBovv o1 1010TNTEC TV KOUPOV mov TIC Gvvdoéovv. Avo €idn
KopPov emdéyovrar. O évag givor TANP®G EAACTIKOC, AEITOLPYEL GOV
dtemedvela petald tov paPdwv, Kot dev £xel Kapio oK TOL AvIoxN,
aAAG amaltel GLVEYEW UETAKIVICEDV KOL TOV TOPUUOPPDOCEDY TWOV
oLVVOEOUEV®DY GE OVTOV Aakpwv papowv. O 0ebtepog elval TANP®G
ATTOPULOPPMOTOS KOl OECUEVEL TNV TAPAUOPP®OT KAOE GuVOEdEUEVOD GE
aVTOV AKPOL PAPROOV. XNV GLVEYELN, 0 Tivakog dvokouyiag e paoov,
ota mAaictlo ™G Babumg eEAaoTIKOTNTOC, EEAYETAL KOl XPTCLOTOIOVTOGC
Lo YEVIKELUEVT HEBOOO HETOKIVIIGEMY, ETAVOVTOL SAPOPO LOVOUEOVIKA
mpofAnuota. Ta oamoteAéouotd TOLVG GLYKPIVOVTIOL HE  OVOALTIKEC,
BaBumtég wor aviictoryec wAaowkég Avoels. Me avtov tov  TpOTO
amooewvieTal O0tt N papoog avtn umopel vo ypnoponombel Kol cav
TEMEPOUGLEVO GTOLYEIO TOLANYIGTOV GE LOVOOIAGTATA TPOPANLLATOL.

Koatoiryovrag, e€etaleton 1o mpoPAnua tov emimedov dwrvopatos. H
Aertovpyia Tov KOUPOL oTIC dVo dnoThoelg cvinteital kol egTdleTon TO
amAd mopAdEypo Tov TPPOP®MTOL TOE0L GLYKPITIKA HE TNV KAOGIKY|
nepintoon. Téloc, efetdletar M mepintworn €vOG OTOTIKA AOPIGTOV
SIKTVMUATOG, LLE TNV KAAGIKN £VVOl0 TOV OPOV, LE GTOYO VO GAVEL OV Ko
TOG M pkpodoun emnpedler T Aettovpyio Kol oTATIKO 00pioTOV
SIKTLOUATOV.
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3. Introduction

The classical theory of elasticity is quite sufficient for most applications,
mainly of macroscopic scale, since it’s associated with the concepts of
homogeneity and locality of stress. Experimental investigations, though,
indicate that structures of micro and nano scale, such as the beams, bars,
plates and shells used it modern technology applications, exhibit non
homogenous behavior and significant microstructure effects. The classic
theory fails to describe adequately such size dependant mechanical
behaviors of small scaled, linear elastic structures due to their dependence
of the materials microstructure. The classic theory also cannot describe
the behavior of materials with significant microstructure effects like
polymers, polycrystals, granular and textile materials. In these cases the
state of stress needs to be described in a non-local manner. This can be
achieved by using many different types of size dependent theories as
higher order strain gradient theories, or couple stress theories.

Such theories were developed by Mindlin and co-workers ( (Mindlin,
1965) (Mindlin, 1964) (Mindlin & Eshel, 1968)), Aifantis and co-
workers( (Aifantis, 1992) (Aifantis, 2003) (Altan, et al., 1996) (Altan &
Aifantis, 1992)) and Vardoulakis and co-workers( (Exadaktylos &
Vardoulakis, 2001)),in connection with higher-order strain gradient
theories, and Cosserat, Mindlin and Tiersen (Mindlin & Tiersten, 1962)
and Toupin in connection with couple-stress theories. From the above
theories, the most general and comprehensive is the one developed by
Mindlin and co-workers, but the simplest one is the one by Aifantis and

The past decades, these theories have been used, mostly in simplified
forms, to solve many boundary value problems of both static and
dynamic elasticity. One can mention static problems dealing with
dislocations, fracture mechanics, the halfspace under various surface
loads, a borehole under pressure, a bar under pressure and a beam in
bending. It has been found that when using such non local theories,
singularities and discontinuities of classical elastic theory disappear.
Also, size effects are usually captured and wave dispersion effects are
observed in cases where it was not possible in classical linear elasticity.
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3.1. Conventions

Standard notation is used through the entire paper. Boldface symbols
denote tensors whose orders are indicated by the context. All tensors
components are written with respect to a fixed Cartesian coordinate
system with base vectors &;. A superscript T after a second order tensor

indicates its’ transpose

Let a,b,c,k,I,mbe vectors and A a second order tensor. The following
products are used in the text:

Inner: a-b = a;b;
Quter: ax b = Sijkaibiék

1, if (i,],k) are cyclic
where g is the alternator, e.i. g, =1-1, if (i,jk) are anticyclic
0, if any twoof (i,],k) are equal

Dyad: a®b=ab=a-b' =a;b;g;&; =a;b&; ®%;

Dyad inner: (a®Db):(c®d)=(b-c)(a-d)
Triad inner: (a®b ®c) ; (k®l®m)=(c-k)(b-I)(a-m)
Also (a®b®c)* = (c®b®a)
the gradient operator: V =§; ai =§;0;
i
the Laplacian operator: V2 =V -V =9,
Let S be a surface and i the unit normal vector on S,
Ve=(I-A®A)-V

%:a-(V(@A)
oa

When the elements of a row vector are presented, they are either
separated by spaces or comas. The elements of a column vector are

separated by semicolons, i.e. a=[a;,a,]=[a; a,] and a’ =[a;;a,]
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3.2. Equilibrium equation and boundary conditions

In this section, the equilibrium equation and the corresponding
boundary conditions that should be satisfied by any linear elastic material
are derived. First, the case of a classical elastic material is investigated
and the classical theory of elasticity for 2D and 3D bodies is presented. It
is followed by the case of the linear elastic material with microstructure
(gradient elastic material), investigated in the framework of Mindlin’s
first strain gradient elasticity theory, using the constitutive equation
proposed by Aifantis. The latter as a special case of Mindlin’s strain
gradient theory, allows the derivation of both, the equilibrium equation
and the boundary conditions by first taking the variation of the strain
energy defined by Mindlin and then inserting the given constitutive
equation.

3.2.1. Classical Theory of Elasticity

Consider a linear elastic body of volume V surrounded by surface S. Let

A be the unit normal vector on S, and a Cartesian coordinate system with
its origin located interior to V. According to the classical theory of
elasticity the strain energy depends upon the strain, as follows:

U=[,[T:8BV = (tje;dV,

where T and € are the second order stress and strain tensors
respectively. Since'é:%(VunLuV), the variation of the bodies strain

energy can be written in terms of the displacement U as,

3U = [, [7: vaupv

After some differential calculus, using the divergence theorem, the
equation above takes the form:

8U =—[ [V-7]-8udV + [ (A-T)- SudS

Meanwhile, the variation done by external forces to V is:
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SW = [, f-8udV + [P -dudS

, T,P being respectively body forces acting to the body and external
surface tractions.

Since 8U = dWthe equations above imply that the equilibrium equation
for a classical elastic body is:

V-14+f=0

and the corresponding classical boundary conditions (BCs) are:
P(x)=A-T =P and/oru=u, where P, U denote prescribed values.

In Hooke’s Law the stress and strain have the following relation
%':2u€+k(v-u)T . S0, the equilibrium equation for an elastic
continuum can be obtained in terms of the displacement fieldu:

nVau+ M+ Vv-u+f=0

3.2.2. Gradient Theory of Elasticity

Consider a linear elastic body of volume V surrounded by surface S,
which is characterized by a microstructure modeled macroscopically by
the gradient of the deformation. Let A be the unit normal vector on S, and
a Cartesian coordinate system with its origin located interior to V.
According to Mindlin’s strain gradient theory the strain energy depends
upon both the strain and the strain’s gradient:

U= -[V ? . —é + (!])321 VE dV = IV(Tijeij + M”kalejk)dv

where T and € are the classical second order stress and strain tensors
respectively, p is the third order tensor with 27 components
representing double forces per unit area. The first subscript indicates the
normal vector of the surface the second of the forces lever and the third
the direction of the forces. It should be noted that the double stresses
contribute only to the potential energy and to the boundary conditions of

18



the problem, without giving any resultant stress of couple vector at any
surface of the studied body. Since € = %(Vu +uV), the variation of the

bodies strain energy can be written in terms of the displacement U as,

8U = || T: Vou+(@)*' : vVsu dv

Using the symmetry relation (j1)32 = i, and after some linear algebra and

differential calculus, which are presented in detail in tsepoura[], the
variation of the strain energy takes the following form:

U =—jv[v.(%—v-ﬁ)]-5udV+jS(ﬁ-ﬁ-ﬁ)-[ﬁ-V(5u)]o|s

~

s~ e A OR _
+js(n.r—(n®n):a—z—n.(vs.p) vs (u)mj sudS

+ (Vs -nfn®n): ji—(Vsn): )6ud5+z§cﬂ ®A):ji - 5uldC

where for non-smooth boundaries C, are the edge lines formed by the
intersection of two surface portions S;and S; of S,rh =§®n ,with § being
the tangential vector to C,, and the brackets [|indicate that the enclosed

guantity is the difference between the values on the surface portions S;
and S; . For smooth 3D boundaries and both smooth and non-smooth 2D
boundaries the last term is always equal to zero.

Meanwhile, the variation done by external forces to V is:

SW = [ f-8udV + [(R-[A-V(Su)HS+ [P - dudS + szca {E-8ujdC
a

, T,P,R,Ebeing respectively the classical body forces acting to the body,

the classical external surface tractions, non classical traction-like vector
of surface double stresses and non classical surface jump stresses acting
on the non smooth bodies surface.

Since 8U =38Wthe equations above imply that the equilibrium equation
for a 2D or a 3D gradient elastic body is

V-(T-V-p)+f=0
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And the corresponding classical boundary conditions are

o . — . ~\213
aﬁ—n-(Vs-u)—”'[VS'(") ]andlor U=uj,

P(X)=h-T—(A®A):

And the non-classical ones
- ou
R=A-u-A=R,and/lor — =q,,
pn 0 o do

E=|(h®n): p|=E,, where Py, Rg,dq, Egdenote prescribed values.

Mindin (Mindlin, 1965) proposed a modification of Hooke’s Law
expressed by the following relations:

=T+S

= 248+ A(V-u)l
1

= (Vu+uv)

@l 4! Ql

S =28 + Ac, I1V2(V-u)+ Ac,VV(V-u)]

o being the total stress tensor, correlated to the strains and their
gradients through five independent material constants, p,,c;,c,,C5the

first two being the Lame constants.

Aifantis (Aifantis, 1992) proposed the following modification:

=g°Vt
g° being the volumetric strain gradient energy coefficient, the unique
constant related to the material’s microstructure.

wl &=\l

The equilibrium equation for a gradient elastic continuum in terms of the
displacement field u takes the form:

LWVaU+ A+ VvV -u—g?v2(uv2u+ (A +p)Vv-u) +f =0
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4.1. PART I: SPHERICAL GEOMETRY PROBLEMS
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4.1.1. Spherical body applications

The simplest three dimensional bodies that can be considered in terms of
geometry are those of spherical symmetry. However, perfectly spherical
bodies rarely appear in everyday’s life normal scaled applications.
Especially in cases of only radial loading and no body forces, which are
addressed in this work, spherical bodies do not have many macro scale
applications.

However, when small scaled bodies are considered, the assumption of
only radial loads is not as arbitrary, while the body forces might be very
small compared to the radial loads. So, as far as small scaled application
can be considered, spherical bodies can be found and in several cases or
be used as an approximation to the true geometry of the body.

The most common spherical symmetrical body used in small scale
applications is the spherical shell. That is the case of microbubbles used
in medicine. Two primary applications of microbubbles are considered to
be in the contrast enhanced ultrasound(CEUS), which is the application
of an ultrasound contrast medium to traditional medical sonography, and
targeted drug delivery. There are several advantages to using
microbubbles instead of using alternative methods, since their use is
considered to be cost effective and safer for the patients, since no
radiation is applied and smaller drug amounts are used.

These advantages make their use very attractive, and thus their behavior
needs to be modeled and studied. Since their dimensions are very small,
scale effects should not be ignored, since they might be significant, and
that is the reason that it is attempted to medl them using gradient
elasticity.

Of course, in these applications the loading and the geometry of the
bubbles is much more complex than the ones studied in this work.
However, in order to understand the bubbles behavior, one must start
from the basics, so both geometry and loading simplifications are made.
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4.1.2. Spherical Symmetry Problems Equilibrium

In the previous section, a general theory has been presented for bodies of
any geometry, subjected to various load combinations. In order to study
spherically symmetric bodies, the equilibrium and the boundary
conditions need to be obtained, using spherical coordinates. In the
following paragraphs the equilibrium and the BCs for spherical bodies are
obtained in spherical coordinates, in both the classical and the gradient
theory of elasticity

4.1.2.1. Classical Theory

Consider any body characterized by spherical symmetry, for example a
solid sphere, a spherical cavity, a spherical shell, any number of spherical
shells the one inside the other and any combination of the above.

In spherical coordinates the displacement vector takes the form
u=u,(r,6,¢)f +Ug(r,6,0)8 +u,(p,6,0)p

The body is subjected only to radial loads and displacements of spherical
symmetry and zero body forces are assumed. Under these assumptions,
the bodies displacement vector is simplified tou=u,f, u, =u.(r)=p(r),
Ug(r,6,0) =0, u,(r,06,0)=0 where uis the radial displacement and r

the distance of the center of the body.
The classical equilibrium equation takes the following form:
uVau+(A+pVv-u=0=

u+A)Vu=0 < VZu=0 = Vzur =0,
, since 2u+ 4 is a non-zero material constant.

Even though a 3D problem is addressed, the loading chosen reduced the
equilibrium equation to an ordinary differential equation. It’s general
solution is:

N ) 1],
u= > Cpif = {Clpl + Czpz}" = {Clr +C, r_z}r
=12
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i.e, the O.D.’s fundamental solutions are: p;(f) =T and p,(r) =1/r?

In the following classical problems, the pseudo vectors p(r) = u(r)and C

are used. The first one is a vector whose elements are the O.D.s
fundamental solutions. The second is the vector of the solution’s
constants. They are used in order to optimize the display of the results.
For example, the displacement field can be written as

u(r) = (C-p(r)T)> =C;p;(f.In the same way are define the pseudo
vectors of the fundamental solutions’ v'" derivative p(v) (r) and the stress
functions pseudo vector P(r) = P(h).

p(1) =[ps (1), 3 (1)] = rriz} and

20:
P(r) =[P,(r),P5(N]=] (2u + SX),—%} P = {(Zu + k)pi oy %}

, O
Pi =5(Pi)etc-

Due to spherical symmetry the surface normal vector f can be either ¢ or
— f thus the boundary conditions take the following form

P(A)=n-T=[C-P(n]jA=C;P,(nA, A==, thus P(-F) =—P(f)
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4.1.2.1i. Non — Classical / Gradient Theory

Consider any body characterized by spherical symmetry with
considerable microstructure that can be modeled by adding an additional
length parameter g. In spherical coordinates the displacement vector takes

the form u=u,(r,0,4)F + ug(r,0,4)0 + u, (p,0,0)§

Once again, the body is subjected only to radial loads and displacements
of spherical symmetry and by the assumption of zero body forces the
displacement vector is simplified tou=u,f, u, =u,(r)=p(r) while
u,(r,0,¢)=0and u,(r,8,4) =0, u, being the radial displacement and r the
distance of the center of the body.

The equilibrium equation can be simplified to:

VU+(A+ 0)VV-u—g°V(iVu+(A+ u)VV-u)+f =0 =
Qu+A-g?V:Vu=0 < ([-g*vZN?u=0

The general solution for the displacement field is:

4
u=>Cpf ={C.p +C, p, +Cy 3 +C, py }
i=1

1 sinh(r/g) cosh(r/Qg) T .
u:{Clr+C2r—2+Cg[—g2 ” +9 . +C, me(r/g) r

1.e., the O.D.’s fundamental solutions are:

py(n)=r,
P =2,
pa(r)= ﬁKS,Z(rlg):%e‘”g[%Jrﬁ}

K,,, being the modified Bessel Function K, with n=3/2. The C; constants
are determined by the BCs.
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Due to spherical symmetry of the body the surface normal vector fican be
either f or —f thus the boundary conditions take the following form

The traction vector:

N A~ A oAl O -\ A ~ YA .
P(n)=n-r—(n®n):a—z—n-(vs-p)—n-[VS-(u)213]+(vs-n)(n®n):u—(vs®n):p

{Zcia}ﬁ,
i=1,4
P =2ﬂ{pi '—gz(pi”'+2p—i—6p—‘2+6%ﬂ
r r r
il pr 2P gl PPl g P, pf:ﬁ(p.)etc.
i r i r rz r3 I ar |

thus P(-f) =—P(f)
The surface double traction vector:

R(ﬁ)=ﬁ'~-ﬁ={ZCiRi}?,f0r both A = +#,
i=1,4

R = 92{2/4[/% "]+ ﬂ{pi'#% —%}}

r

And the normal displacement gradient

q(nh) = 2: = { ZCiqi}ﬁ, where g; =p;'. Thus, the normal displacement
i=1,4

gradient vector q(—f) =—q(F)

In the following non-classical problems the pseudo vectorsp(r) = u(r),
q(r) =q(n),P(r) # P(h)and R(r) # R(A)are used to indicate respectively
the row vectors of the O.D.s fundamental solutions, their derivatives, the

functions of the traction and double traction term of each fundamental
solution. i.e.

p(r) =p;i(NE; =[p1(r),p2(r),p3(r),p4(N],
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q(r) =p;'(NE; =[p,'(N,p2'(r),p3'(r),p4"(N],

P(r) =Pig; =[Py(r),P2(r),P3(r),Py(r)]

T 3

21+ 3A
2_p{6smh(r/59) 6 cosh(r/4g) N 2S|nh(r/3g)} N A 3
9 (r/9) (r/9) (r/9) 9 (r/9)
4u 3
—— 1+
r’ { (r/ 9)2}

{_ 5 sinh(r/Q) Lo cosh(r/g)
(r/g)?

1

3 1
+

g{z“{mgf wrof (r1gy

9

R(r) =R;& =[Ry(r),R2(r),R3(r),R4(1]

0

20l - 63|nh(r/4g) 6 cosh(r /4g) _Ssmh(rlsg) N cosh(r /Zg)
(r/9) (r/9) (r/9) (r/9)
12u 1
g® (r/g)*
6 6 3

T 1
—e

[
(r/g)’

}

(r/g)

|

cosh(r/g)

}r{_sinh(r/g) N

(r/g)?

1 1

(r/g)

|4

(r/g)

i g{z“{(r/gf “wrer gr

2

r/g)? +(r/g)}
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4.1.3. Boundary Condition Problems

In the following pages numerous problems will be addressed using both
the classical and the non -classical gradient linear elasticity, all
characterized by spherical symmetry. The first two problems have
originally been partly solved by (Polyzos, et al., 2003), but for
completeness those problems are also presented here.

4.1.3.1. The solid sphere

Consider a solid sphere of radius a, whose center O coincides with the
origin of both the Cartesian and the spherical coordinate system. The
point O is a material point and thermodynamics dictate that its
displacement cannot be infinite. In the classical problem the displacement

field takes the formu={C1p1+ C, pz}f, r being the radial coordinate.

. ) .1 .
Since lim p, = lim — >, the C, term needs to be zero in order to

r—0t r—0t" I
maintain a finite displacement at the center of the sphere. In the gradient
problem, the displacement field takes the form

U=u P ={C;p; +Cyp, +C3ps +Cypulf.

Since both lim p, >0 and Im p,=
r—0" r—0"

- TE _r/ 1 1
lim =e™"'9 + 5> | >, for g#0,
0T 2 r'g (r/g)

both terms C, and C, are zero due to the
thermodynamics, and the constants to be
determined are two .

Fig. 1x-y plane section of asolid  13)Classical theory
sphere of radius a. subjected to a

radial displacement Ua In this first problem, the sphere boundary is
subjected to a radial displacement Ua, i.e the BCis U(r=a)=U,f =

U
Claf=Uaf:>C1:ﬁzu(r):{ﬁr}?:ur(r):{—ar}
a a a
1b)Gradient theory
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In the respective gradient problem, the sphere is made of a material with

microstructure and being subjected to a radial displacement Ua (classical

BC), while the normal displacement gradient at the boundary is ga (non-
classical BC). The BCs and the displacement
field are given below in vector forms.

u(r=a)=U,r,

ou o
orl,_, ~
u=u,f ={Cyp, +Csp3}f

q(r=a)=

Carrying through with the linear algebra, the
Fig. 2 x-y plane section of a solld sphere unlq_ue exact solution of this problem is
of radius a. subjected to prescribed obtained.
radial displacement u(a) = Uaf' and

normal displacement gradient

q@) =q,rf

It order to optimize the results display, the
parameter c=a/g(radius to internal length

parameter ratio) is used.

_ ¢?sinhc—2ccoshc+ 2sinhc U,

Cl_ 2 . .
c“sinhc—3ccoshc+3sinhc a

—ccoshc+sinhc
. . a
¢? sinhc—3ccoshc +3sinh ¢

C3: 2 . . Ua
c“sinhc—3ccoshc+3sinhc

C2

+ a
c? sinhc—3ccoshc +3sinhc da

This solution can be divided into two simpler ones. In the first, the
normal displacement gradient is restrained and so it vanishes at the
boundary (g,=0) while the sphere is subjected to a radial displacement U,
In the second boundary’s displacement is restrained (U,=0) while the
normal displacement gradient on the boundary is prescribed g..
Obviously, any other problem can be addressed as a linear combination of
the two problems above, as a result of the superposition principle.
Hereupon, the solutions of these two problems are presented

29



1k _
o8t .
=
- 08¢ .
=
507 =
&
= 06 -
oy
0 0a¢ i
E
= 04r .
b
é 03r afg=1 N
alg=2
— 021 alg=10
01k afg=100 (]
~___classical
OF afg-=inf A
n 0.1 nz2 0.3 04 04a 0.8 a7 a.a (IR 1

Mormalized Radial Distance rfa

Fig. 3 Normalized radial displacement U, /U . Vversus normalized radial distance r/a of the solid sphere of radius a,
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Fig. 3 Normalized double stresses Mrrr/ EU a versus normalized radial distance r/a of the solid sphere of radius a,

for various a/g ratios. The classical boundary condition is U(a) = Uaf and the non-classical one q(a) =0

Some preliminary conclusions can be drawn at this point. By restraining
the spheres radial deformation at it’s boundary, a non classical behavior is
obtained, where the spheres displacement field along it’s radius is greater
than the one of the classical theory. Even in the cases that the c=L/g ratio
Is great (c=10, c=100), the divergence from the classical solution is
discernible. Also, the deformation field approaches the classical
deformation field as the c ratio increases. For great c ratio values, only
close to the sphere’s boundary the strain diverges from the classical,
while along the rest of it’s radius, the strains are practically those
described by the classical theory. The radial double stresses distribution
along the bars radius takes greater values for small c¢ ratios, with it’s
maximum always being at the spheres surface, and zero double stresses at
it’s center. For great ¢ values, the double stresses are significant only in a
small part of the spheres radius, close to its surface.
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Fig. 4 Normalized radial deformation €, /(qa) versus normalized radial distance r/a of the solid sphere of radius

a, for various a/g ratios. The classical boundary condition is U(a) = 0 and the non-classical one q(a) = qaf
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Fig. 6 Normalized double stresses |l / Eaq a versus normalized radial distance r/a of the solid sphere of radius

a, for various a/g ratios. The classical boundary condition is U(a) = 0 and the non-classical one q(a) = qaf'

In the figures above is clearly depicted the fact that the effect of the non
classical BC decreases for great c ratio values, and it is limited only close
to the spheres boundary.

It is noted that applying certain combinations of Ua and qga the classical

or the gradient fundamental solution can be eliminated. Hence, every

sphere even one with significant microstructure subjected to the right

combination of loads (qa=Ua/a) behaves exactly as the classical theory of

elasticity dictates. Furthermore, by applying a different set of Ua, ga,(
U, C

2
= -2 the classical term from the spheres
da a Lcothc—l }) g

displacement field is eliminated and a completely non-classical field is
acquired.
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-7 4 "~ p,  2a)Classical theory

//\ . 7 . In this second problem a non holonomic kind
! . of loading is discussed, so the sphere is
= # ™ subjected to radial tensile stress Pa (in the
'\ j . common case of a compressive pressure Pa<0).
Y 4 N The boundary condition is P(r=a)=P,f and
P }( T the displacement field is obtained as follows

Fig. 7 x-y plane section of a solid . R Pa
sphere of radius a subjecter to {C]_(zl«l + 37\.)}|’ =Pr= Cl = =
2+ 30

radial stress P(a) = P,f

Y U Pa A
PSR W u(r) = rof
‘/\,R f ;J\;f ") {2p+37» }

!~ ’ = 2b)Gradient theory
) f [
‘d\_ £ ™ In the case of the gradient elastic sphere under
I ™ a radial tensile stress Pa (classical BC), while
K i y - the surface double stresses at the boundary read
RN }_ - Ra (non-classical BC) , i.e. P(r=a)=P,l and

Fig. 8 x-y plane section of a solid R(r = a) = Raf, the unique solution obtained is
sphere of radius a, subjected to a the following
tesile stress P(a)= Paf' and

surface double stresses R {C c }A Boundary
_R} u=u,r=Cp+tCspsf =
R(@)=R.r ' 1L =3 E3T Conditions
1
C, = Pa
21+ 3\

L =2 [c3A —c6u]coshc+[c? (2 —A) + 6u]sinh ¢ R
(2u+3r)a |[c® (2w + 1) + c12u] coshc —[c? (6 + 1) + 2u]sinh ¢

C3 = OPB.

4
+ 3 ¢ 2 Ra
[c®(2n+A) +cl2u]coshc—[c “(6p + A) + 2u]sinh c
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The solution above denotes that when no double stresses are applied at
the spheres surface (R,=0), while a P, stress is applied, the sphere
behaves exactly as the classical theory describes, no matter how small it
might be or how significant it’s microstructure (g length). The following
figures present the sphere’s displacement, strain and double stress radial
distribution. In order to normalize this solution the Lame constants have
be substituted with their equivalents in terms of the Young’s modulus E

_E
S 2+v)

and the Poisson ratio v, i.e. A = dp

Vv
an
@+v)L-2v)
In the pressure problem the length g is eliminated from this solution, and
the parameters left in its normalized form are the r/a ratio and the Poisson
constant. Thus the next figures are plotted it terms of these parameters.

o
w0
T

o
[an}
T

=
~
I

o
(s3]
T

o o o
(T TS T
T T T

Mormalized Radial Displacerment U/ aiPa/E)
o]
m
I

o
p—
T

O
T

| | | | | | 1
] 0.1 oz 0.3 0.4 0.5 0.5 0.7 0.a 0.9 1
Mormalized Radial Distance rfa

Fig. 9 Normalized radial displacement Ur/( aP, | E) versus normalized radial distance r/a of the solid sphere of

radius a, for various a/g ratios. The classical boundary condition is P(a) = Paf’and the non-classical one R(a) =0
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Fig. 10 Normalized radial deformation €, /( P, / E) versus normalized radial distance I'/a of the solid sphere of

radius a, for various a/g ratios. The classical boundary condition is P(a) = Paf and the non-classical one R(a) =0

When only double stresses are applied the sphere’s behavior is size
dependent, i.e. the g parameter is not eliminated — as expected - and after
the normalization of the solution, three parameters are left, the ratios r/a,
a/g and v. The displacement, strain and double forces fields are plotted
with respect to the r/a and a/g ratios, for the values of the Poisson ratio
v=0.00 and v=0.30, which are considered to be typical.

It should be noticed that the radial double stresses affect both the
displacement and the strain field so when restraining of prescribing either
of them (the first problem) double stresses need to be applied. Also, in the
case that the poisons ratio is v=0.00, for great c=L/g values, these fields
tend to be reduced to the classical ones (zero fields, since this BC is not
takes into account it the classical elasticity). However, for other v values
the solution is not reduced to zero field for great ¢ values, meaning that
even large scale spheres will behave non classically when properly
loaded.
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Fig. 11 Normalized radial displacement U, /( R, / E) versus normalized radial distance r/a of the solid sphere of

radius a, for various a/g ratios for Poisson ratio v=0.00. The classical boundary condition is P(a) = O and the non-

classical one R(a) =R, T

Fig. 12 Normalized radial deformation €, /( R, / aE) versus normalized radial distance r/a of the solid sphere of

radius a, for various a/g ratios for Poisson ratio v=0.00. The classical boundary condition is P(a) = 0 and the non-

classical one R(8) =R,
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Fig. 13 Normalized double stresses ,um/( R a) versus normalized radial distance r/a of the solid sphere of radius

a, for various a/g ratios for Poisson ratio v=0.00. The classical boundary condition is P(a) = 0 and the non-classical

one R(a) =R,f
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Fig. 14 Normalized radial displacement U, /( R, | E) versus normalized radial distance r/a of the solid sphere of

radius a, for various a/g ratios for Poisson ratio v=0.30. The classical boundary condition is P(a) = O and the non-

classical one R(a) =R, T
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Fig. 15 Normalized radial deformation €, /( R,/ E) versus normalized radial distance I'/@ of the solid sphere of

radius a, for various a/g ratios for Poisson ratio v=0.30. The classical boundary condition is P(a) = O and the non-

classicalone R(a) =R, T
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Fig. 16 Normalized double stresses ,Um/( Ra) versus normalized radial distance r/a of the solid sphere of radius
a, for various a/g ratios for Poisson ratio v=0.30. The classical boundary condition is P(a) = 0 and the non-classical
one R(a) =R,
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There are two more possible cases of loading combinations. The first is
the one that the displacement and the double stresses at the spheres
surface are prescribed, ie. the BCs are u(r=a)=U,i and

R(r=a)=R,f, while the second one, is the case in which the stress and
the strain at the sphere’s boundary is prescribed, i.e. P(r=a)=P,f and ,
q(r=a)=oau/or \r:a =q,f. These cases can be addressed through the

ones already presented by substituting either the degree of freedom BC
with its work conjugate, or the generalized stress BC with its respective
degree of freedom BC, using the following relations:

Ul 1 (a 1P, (_)Pa _(u+3n)| K -1 U,

9, | 2u+30|1 K|R,| |R,| aK-1|-1 a]aq,

(- 4c2(u+22) +12u ke cosh(c) — (¢* (2 + 31) + ¢28% — 12y Jsinh(c)
(cz (2 +2) +12M)C cosh(c) — (cz(6u + x)+12p)sinh(c)

K =
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4.1.3.ii. The spherical cavity

Consider an infinite elastic 3D space with a

spherical cavity embedded in it at point O

which is the origin of both the spherical and

the Cartesian coordinate system used. Since

the space exceeds infinitely due to

thermodynamics the displacement of the

material point at infinity needs to be finite. . g 17 schematic representation of a
In the classical problem the displacement spherical cavity - x-y section

field takes the formu:{Clp1+ C, pz}f. Sincelim p, =limr — o, the C;

r—oo

term needs to be zero. In the gradient problem, the displacement field is
u=uf={C;p; +C,p, +Csps +Cyp,Jf. Both limits lim p, — coand

[—00

lim p; — oo, thus the terms C; and C; are both zero in this case, for a

r—o0
finite displacement at infinity.
1a)Classical theory

The spherical cavity is subjected to a radial
displacement U,. The BC isu(r =a) = U, I =

2
{cz iz}r —U,f = C, =a%U, = u(r) = {Ua a—z}r
a r

X

Fig. 18 x-y plane section of the 8.2 A K b
spherical cavitysubjected to radial —> U, (r) = Ua — /f Ni T qa;\ \\
displacement Ua r i =

. ‘\_ X i)
1b)Gradient theory L5 " L
In this case, the infinite space is made of a &7, LI
material with microstructure and the cavity is b }:, -

subjected to a radial displacement U, (classical Ffig. 19 x-y plane section of the
BC), while the normal displacement gradient at seherical cavity subjected to

the boundary is g, (non-classical BC), i.e. prescribed radial - displacement
U(&)ZUaI’ and deformation

ou N q(a) =q,f
N :qar
or|,_,

u(r=a)=U,F, q(r=a)=
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This problems exact and unique solution is found: u={C, p, + C, p,|F,

2 2 1 1

2 2

C2 = a (C—2+E+1]Ua +a (C—2+Ejaqa

C,= —ﬂe"Ua +Ee"aqa
T T

where c is the ratio of the spherical cavity radius a to the characteristic
material length g. Dividing this problem into two simpler ones, one that
the normal displacement gradient vanishes on the boundary (q,=0) while
the sphere is subjected to a radial displacement Ua, and one that one that
the boundaries’ displacement is zero (U,=0) while the normal
displacement gradient on the boundary is determined ¢, a better
understanding of the cavities behavior can be obtained. The following
figures present this behavior normalized appropriately in each case, for
various values of the problems parameters. Any other problem can be
addressed as a linear combination of the two problems above, based on
the superposition principle.

T alg=1 i
alg=2
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Fig. 20 Normalized radial displacement U, /U o versus normalized radial distance r/a of a spherical cavity of radius

a, for various ratios a/g, for any radius a. The classical boundary condition is u(a) =U af and the non classical

boundary condition is (a) = 0
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Fig. 21 Normalized radial deformation €, /(U a /a) versus normalized radial distance r/a of spherical cavity of
radius a, for various ratios a/g, for any radius a. The classical boundary condition is u(a) =U aIA’ and the non

classical boundary condition isg(a) = 0

E)

Fig. 22 Normalized double stresses LL /(Ua E) versus normalized radial distance r/a of a solid sphere of radius

a, for various ratios a/g, for any radius a. The classical boundary condition is u(a) =Uar and the non classical

boundary condition is (a) = 0



Fig. 23 Normalized radial displacement U, /(a qa) versus normalized radial distance r/a of a spherical cavity of

radius a, for various ratios a/g, for any radius a. The classical boundary condition is u(a) =0 and the non classical

boundary condition is q(a) = qaf

Fig. 24 Normalized radial deformation €, /( qa) versus normalized radial distance r/a of a spherical cavity of radius

a, for various ratios a/g, for any radius a. The classical boundary condition is U(a) =0 and the non classical

boundary condition is q(a) = qaf



E)

Fig. 25 Normalized double stresses ,um/( aan) versus normalized radial distance r/a of a spherical cavity of

radius a, for various ratios a/g, for any radius a. The classical boundary condition is U(a) =0 and the non classical

boundary condition is q(a) = qaf

When the deformation at the cavity’s boundary is determined, the
displacement distribution in the material is greater than the one described
by the classical theory. The double forces are significant only near the
boundary, and as the c ratio increases their range decreases, while the
strain at the boundary approaches the classical one. Also, the application
of certain combinations of BCs either the classical or the gradient part of
the solution can be eliminated, exactly like the case of the solid sphere.
Hence, a spherical cavity, too, may behave exactly like the classical
theory predicts even one with significant microstructure, when subjected
to the right combination of loads (gqa=-2Ua/a). If the strain is prescribed

U c? . .
asq, =—> —2| the classical part of the solution is
a | ccothc-1

eliminated and a completely non-classical behavior is described for the
spherical cavity.
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2a)Classical theory

When the spherical cavity is subjected to
radial compressive stress - pressure Pa, i.e.
the BC is P(r=a)=P,f, the analytical
displacement field acquired is:

Fig. 26 x-y plane section of the

spherical cavity with radial pressure 2b)Gradient theory
applied at the boundary P(a) = P,f

When a gradient elastic spherical cavity is
subjected to a radial compressive stress Pa
(classical BC), while the surface double
stresses at the boundary are Ra (non-
classical BC) J1.e.P(r=a)=P,fand
R(r=a) =R,f, the displacement field takes
the following form:

U=uP={C,p, +Cypylf

Fig. 27 x-y plane section of the Where c=a/g the spherical cavity radius to g
spherical cavity. The boundary length ratio and C, and C, expressions are
conditions are P(&) = P, and . )
given below:
R(a) =R,f
_a_ (2u+2)-¢® +(6u+1r)-c® +12u-c+12u P
“2 = u+2)-c3+(6u+n)-c2+9-(2u+A)-c+9-u+n)| °
a? -3+ (2u-2)-c%+6u-c+6u .
20 [ u+n)-c®+(Bu+n)-c®+9-(2u+A)-c+9-(u+n)|
a 6-c®-e° .
mlu+n)-cd+Bu+r)-c2+9-(u+i)-c+9-(u+n)| °

+_ (2-¢c*+6-c2)-e° .
ml@u+n)-c+(6Bu+r)-c2+9-(2u+A)-c+9-u+r)| °

First, the case where pressure Pa is applied and no double stresses(Ra=0).
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Fig. 28 Normalized radial displacement U, /a(Pa / E) versus normalized radial distance r/a of a spherical cavity of
radius a, for various ratios a/g, for any radius a.,for o poissons ratio v=0.00 The classical boundary condition is

P(a) = P,f and the non classical boundary condition is R(a) = 0

Fig. 29 Normalized radial deformation €, /(F’a / E) versus normalized radial distance r/a of a spherical cavity of
radius a, for various ratios a/g, for any radius a, for a materials poisson ratio v=0.00. The classical boundary condition

is P(a) = PaIA’ and the non classical boundary condition is R(a) =0

47



Fig. 30 Normalized double stresses ym/a(Pa | E) versus normalized radial distance r/a of a spherical cavity of
radius a, for various ratios a/g, for any radius a, for a materials poisson ratio v=0.00. The classical boundary condition

is P(a) = Paf' and the non classical boundary condition is R(a) =0

When normalizing the fields in this problem, exactly like in the case of
the solid sphere, the Poisson’s ratio could not be eliminated, so different
plots are been given for typical poisson ratio values. Above the cavities
behavior is presented in the case that v=0, and the case that v=0,3 is
presented next.

It should be noted that the cavilty’s behavior is stiffer, when the material
Is gradient elastic, meaning that smaller displacements and deformations
are anticipated, than the ones the classical theory describes. In the case
that the c=a/g ratio is relatively small, especially when it is close to unity,
this behavior is considerably stiffer. Furthermore, double stresses appear
to the material even when no doublestresses are applied at the cavitys
surface, which are smaller in range as the c ratio increases.
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Fig. 31 Normalized radial displacement U, /a(Pa / E) versus normalized radial distance r/a of a spherical cavity of
radius a, for various ratios a/g, for any radius a, for a materials poisson ratio n=0.30. The classical boundary condition

is P(a) = Paf' and the non classical boundary condition is R(a) =0

Fig. 32 Normalized radial strain €, /(Pa / E) versus normalized radial distance r/a of a spherical cavity of radius a, for
various ratios a/g, for any radius a, for a materials poisson ratio v=0.30. The classical boundary condition is

P(a) = Paf and the non classical boundary condition is R(a) =0



Fig. 33 Normalized double stresses ,um/aPa versus normalized radial distance r/a of a spherical cavity of radius a,
for various ratios a/g, for any radius a, for a materials poisson ratio v=0.30. The classical boundary condition is
P(a) = P,f and the non classical boundary condition is R(a) = 0

A very interesting remark on the double stresses is that in the case in
which the poisson ratio is not zero the radial double stresses at the
cavities surface are not zero, no matter the fact that the total double
stresses R are zero. This can be attributed to the fact that due to the
poisson ratio the non radial deformation and its work conjugate non radial
double stresses contribute to the total double stress, so imposing the
surface double stresses are zero does not mean that the radial ones that
are plotted above are imposed to be zero. About the diplacement and
deformation fields, the same observation as in the case can be made.

The following figures depict the cavity’s behavior when only double
stresses are applied to its surface and no pressure.

50



Fig. 34 Normalized radial displacement U, /(Ra / E) versus normalized radial distance r/a of a spherical cavity of
radius a, for various ratios a/g, for any radius a, for a materials poisson ratio n=0.00. The classical boundary condition

is P(@) =0 and the non classical boundary condition is R(a) = R,

Fig. 35 Normalized radial deformation U, /(F\)a / aE) versus normalized radial distance r/a of a spherical cavity of
radius a, for various ratios a/g, for any radius a, for a materials poisson ratio n=0.00. The classical boundary condition

is P(a) =0 and the non classical boundary condition is R(a) = Raf



Fig. 36 Normalized double stresses ,um/(Ra | E) versus normalized radial distance r/a of a spherical cavity of radius
a, for various ratios a/g, for any radius a, for a materials poisson ratio n=0.00. The classical boundary condition is
P(a) = 0 and the non classical boundary condition is R(a) = R,

As pictured above, even to this non classical BC, the materials behavior is
stiffer when the c=a/g ratio gets smaller, and when it approaches unity,
this difference is significant. Also, in the graph above, the local character
of the double stresses is depicted. It is shown that the double stresses are
present and significant only near the body’s boundary and vanish
gradually when moving away from it.

Next, the cavity’s behavior is displayed when the poisson ratio is v=0,30,
in which case the same conclusion can be drawn.

52



Fig. 37 Normalized radial displacement U, /(Ra / E) versus normalized radial distance r/a of a spherical cavity of
radius a, for various ratios a/g, for any radius a, for a materials poisson ratio n=0.30. The classical boundary condition

is P(a) = 0 and the non classical boundary condition is R(a) = Raf'

Fig. 38 Normalized radial deformation er /(R a /aE) versus normalized radial distance r/a of a spherical cavity of
radius a, for various ratios a/g, for any radius a, for a materials poisson ratio n=0.30. The classical boundary condition

is P(a) =0 and the non classical boundary condition is R(a) = Raf

fo o)



Fig. 39 Normalized radial double stresses |l /Ra versus normalized radial distance r/a of a spherical cavity of
radius a, for various ratios a/g, for any radius a, for a materials poisson ratio n=0.30. The classical boundary condition

is P(a) =0 and the non classical boundary condition is R(a) = Raf

Any other case of loading, i.e. the cases that at the boundary one degree
of freedom and one generalized force are prescribed can be addressed by
converting the one BC to the other kind using the relations that follow.
The new problem will be one of the cases above, and has already been
studied.

{Ua}_i{a-rll T ]|:Pa:|

Ja T[Ty Typla] R,

T =@u+2)cE+6u+1)c?+9(2u+1)c+9(2u+1)
Ty = (Cu+21)c® + (6p+1)c?

Typ =22 +2)c® + 2Ac?

T, = -2(2u+A)c® —2ac? =Ty,
T, =—4uc* —4(2p +1)c® —4(Bu+A)c?
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4.1.3.iii. The Spherical Shell

Consider a spherical shell consisting of a solid
sphere of radius b and a concentric spherical cavity
of radius a. Let S, be the internal and S, the outer
surface of the shell.

1a)Classical theory

In the first problem both
surfaces are subjected 1tO Fig. 40 Schematic representation
radial displacements Ua and of a spherical shell x-y section

Uy, on S, and S;, respectively (classical BCs), i.e

Fig. 41 x-y plane section of the
shell. The boundary conditions are U(I’)‘ rea U al > U(r)‘ —b — U bl

u(a) =U,fand u(b) =U,r¢
BRI e
p()] [Co] [Up] [Cof [p(B)] [Us

oL ‘p(r)U |p(0

p1(r 1| lpO) " |p@) "

_ .C= _

u, (r) =[p(n] Ls(r)} c, ‘p(a)
p(b)

a’U, —b2U, ~a’b’U, +a’b’U, | 1
- 3 3 || T 3 1.3 2
a~—b a“—b r
Note that in the equations above, the [p(r)]function denotes a horizontal

vector, with elements the two fundamental solutions of classical elasticity
spherical problem. This symbolism is used in order to optimize the
presentation of the results.

The matrix M is singular only when the two boundaries coincide, i.e. the
inner and the outer radius of the shell tend to be the same b—a, which is
the case of the thin walled spherical shell. In this case the singularity can
be eliminated by using a first order Taylor expansions of the
displacement functions, i.e. p;(b) =p;(@)+Tp'; (@), T =b—a. Since b—a
=>r—4a, so the displacement takes the form u,(a) =0, which means that
the solution collapses/crushes.
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1b)Gradient Theory

In this problem both surfaces are subjected to
radial displacements U, and U, on S, and S;
respectively (classical BCs) while the normal
displacement gradient at each boundary is
prescribed, respectively g, and g, (non-classical Fig. 42 x-y plane section of the shell. The

BCs), i.e. boundary conditions are U(a) =U T
. - 9q(a)=q,r,u(b) =U,fand
u(r),_, =U.f , Ul =Yef oy o
au(r) au(r) R ou(r)| au(r)| .
r = = = r , r = = — = r
a0l =, i a0, = e

These BCs are translated to the following equation:

-1 r —

p(@) | [Cy U, Ci| [ p@) | U,
@] |c c,| |-p

p(b) | |Cs| |Up Cs p(b) Uy
L P () J[Cal [An] [Ca) LP(b)] Qb

p(r) p(r) p(r) p(r)
p'(a) p(a) p(a) p(a)
_ T U U —
o 1TC, o) @ e 1 (@)
P CATCY N 8 DU 1 I 10 1 I O
p3(r) | | Cs p(a)
pa()] [Cy. p'(a)
o(b)
o'(b)

This time, the [p(r)]function denotes a horizontal vector, with elements
the four fundamental solutions of the spherical gradient problem.

It can be proved that this solution is reduced to the classical one when the
microstructure is insignificant compared to the shells dimensions i.e.
a/g—oorb/g— o, hence, the solutions ability of being reduced to the
classical one when the scales are great is not lost in this more complex
problem.
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The matrix M is singular only when the inner and the outer radius of the

shell are very close to one another, i.e. the case of a thin walled spherical
shell.

Let T=Db-a be the shells thickness. The singularity can be eliminated using
second order Taylor expansions of the displacement functions

p,(0)=p.(a)+Tp,(a)+T?p". (@)/2 and its derivative
P (0)=p' (@) +Tp" (@) +T°p" (a)/2.

The displacement field then takes the following form:

p(r) p(r) p(r) p(r)
1P @ U+ T p(a) U, L T7|p@) 0 _T%|p(a) 0.

p(a) p'(a) 2 1p(b) 2 p'(a)

NG p'(b) p'(b) p(b)
r p(a)
T p'(@)
12 [p"(a)
i p'"'(a)

refa,a+T]za=ur=u,= 0

So the gradient solution crushes, too, exactly the classical one does. This
may be interpreted physically as: on a thin walled spherical shell both
boundaries are practically one thus different displacement cannot be
imposed on them without the body getting destroyed/failing.
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2a) Classical Theory

In this problem the surface Sa is subjected
to radial displacements U, while on the
surface Sy, a tensile stress Py is applied, i.e.

u(r)_, =U,F, P(r)._, =R,
p(r) p(r) Fig. 43 x-y plane section of the shell. The
Ua - Pb e _ r
p(b) p(a) boundary conditions are u(a) =U al
e = p(a) and P(b) =P}
P(b)

{ 4pa’U, +b3p, } +{(2p+3k)a2b3ua —a%%ﬂi}
,

Apad + (2 +30)b3 4pad + (2u +30)b3 2

In the case of a thin walled spherical shell, of thickness T=b-a the
problem doesn’t become singular and the solution gets very simple,
u=uf=U,f ,P=RFP , this thought doesn’t mean that any
displacement U, can be subjected by applying any stress P,. The relation
between them must be prefixed and it is obtained through problem 4.
Thus, this is not a problem of great practical interest.

2b)Gradient Theory

In the respective gradient elasticity
problem the surface Sa is subjected to
radial displacements U, (classical BC)
while the normal displacement gradient
on boundary is predetermined g, (non-
classical BC) and on the surface S, a
tensile stress P, (classical BC) and
surface double stresses Ry, (non-classical
BC) are applied, i.e.

Fig. 44 x-y plane section of the shell. The
boundary conditions are U(a) =U af‘

q(a)=q,f,P(b)=Rfand R(b)=R,F

u(r)|,_, =U,#, P(r),_, =Rf

ou(r .
A, -2 -af. RO, -RE

-

The displacement field takes the following form:
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p(r) p(r) p(r) p(r)
p'(a) p(a) p(a) p(a)
_ T U P — R
oG pi) @) o) @]
|20 G|, JROL Ro) RO P
pa3(r) | | Cs p(a)
AGINE p'(a)
P(b)
R(b)

When the microstructure becomes insignificant i.e a/g—oo the solution is
reduced to the one obtained using the classical theory. This solution is
never singular not even in the case that b—a, the case of a thin walled
spherical shell. In that case the solution is simplified to:

u:urf:Uai;,q:qaf,P:Pb?,R:Rbi;

This, too, is a solution of no practical interest, thought, one can deduce
that the displacement and its normal surface gradient of a thin walled
spherical shell are approximately uniform throughout its body. Also the
external load Pa needs to be the total external load from both surfaces,
and this is a result of the small shell’s thickness, due to which we cannot
be precise about where exactly the external loads are applied. The same
remark applies on the surface double stresses. Once again, the
displacement and its normal gradient cannot be independent of the
external loads Pa and Ra, so this solution isn’t very useful, since it
doesn’t present this relation.

The next problem to be studied is the symmetrical of this one, meaning
that the BCs applied at each boundary of the shell are applied in the other
one in that problem.
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3a) Classical Theory

In this problem on the surface S, a
compressive stress-pressure P, is applied,
while the surface Sy is subjected to radial
displacement Uy, i.e.

Fig. 45 x-y plane section of the shell. The P(I’)| =Pfand
A r=a
boundary conditions are P(a) = Pal’ and

u(r) . =U,r,
u(b) =U,¢ Oy =Us
p(r) p(r)
Pa_ Ub 3 2 313 3K 2
0 () = p(b) P(a) || —a’P, +4ub“U, -, a’b’P, +(2u+3r)a’b Uy
r P(a) 4ub3 + (2u+31)a’ 4ub® + (2u+31)a3
p(b)

In the case of a thin walled spherical shell, of thickness T=b-a the
problem doesn’t become singular and the solution gets very simple
exactly like in problem 2. No new interesting conclusion about this
solution can be drawn.u =u,f =U,f, P=P,f

3b) Gradient theory

In this gradient problem on the surface S,
a compressive  stress/pressure P,
(classical BC) and surface double
stresses R, (non-classical BC) are
applied, while the surface S, is subjected
to radial displacement Uy (classical BC)
and the normal displacement gradient on
boundary is q, (BC) , i.e.

Fig. 46 x-y plane section of the shell. The
boundary conditions are P(a) = Paf,

R(a) =R,f,u(b) =U,f and

nfh —n ¢
P(r)_, =P,F ,ou(n)| , =U,p
R(| . =R o), =0 o e

B on |r:b of |r:b_ '

Thus the displacement field is:
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p(r) p(r) p(r) p(r)
R@|. P@| . [P@|  |P@
_ L — P U, — - R
MO o) TR@)| " T R@)|" [ p(o)|
P U = DU B O O TR
ps(M | | Cs PQ)
pa(r) ] [Cy R(a)
o(b)
o'(b)

and when the microstructure is insignificant i.e. a/g—oo , it is reduced to
the field obtained using the classical theory.

In the case of a thin walled spherical shell, of thickness T=b-a the
problem doesn’t become singular and the solution gets very simple, but
isn’t very useful, i.e.u=u,f =U,f,q=q,f,P=P,f, R=R,f, exactly like
the previous problem. This solution is very similar to the solution of the
second problem and the previous conclusions about the shell can be
drawn from this case too.

The following problem is the one of the most interest and practical
application.

4a)Classical theory

In this problem on the surfaces S, to a
compressive  stress-pressure P, s
applied, while the surface Sy, is
subjected to atensile stress, i.e.

Fig. 47 x-y plane section of the shell. The P(r)|r=a =R, P(r)|r=b =Rr

iti P(a)=Pr . . .
boundary conditions are P(2) = ;" and The displacement field is found to be

PO)=Rr the following:
_‘p(r) 5 _‘p(r)
0, (1) =11"® " P@"| ][ -a°P bR, (.| -ab’P —a’b’R | 1
o P(a) Tl @uranE-p%) 4@ b |r?
P(b)
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In the case of a thin walled spherical shell, of thickness T=Db-a, the system
becomes singular. Any singularity can be eliminated using first order
Taylor expansions of the functions of the external radius, i.e.
P(b)=P(a)+TP'.(a) . The displacement, deformation and curvature are:

u, = {a_ZM(Pa + Pb)}
T 4uu+34)
ur':{_i#(Pa + Pb)}
T 2u(2u+34)
11

ur"={;z(& +Pb)}

4b) Gradient theory

Fig. 48 x-y plane section of the shell. The

boundary conditions are P(a) = P;F, On the surfaces S, of the shell a

R(a) = R,f,P(b) =R,f and R(b) =R,f compressive  stress-pressure P,
(classical BC) is applied and surface double stresses R, (hon-classical
BC), while the surface S, is subjected a tensile stress Py (classical BC)
and surface double stresses R, (non-classical BC), i.e.

P(r)|r:a =P,f, P(r)|r:b =P,
R(N)|,_, =R, R(N)[,_, =Rof

The solution takes the following form.

p(r) p(r) p(r) p(r)
] L . R(a) p_ P(a) P, + P(a) R+ P(a) R,

p1(r) | | Cy P(b) R(a) P(b) R(a)

0 () = p2(N | | Cy o, ] R(b) R(b) R(b) P(b)
ps(r) | | Cs P(a)
pa(n)] [Cy R(a)
P(b)
R(b)

Note that this solution too, when the microstructure is insignificant, i.e.
a/g—oo 1s reduced to the classical one.
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In the case of the thin walled spherical shell b—a, of thickness T=b-a,
this solution becomes singular. The singularity is eliminated using first
order Taylor expansions of the functions of the external radius, i.e.
R(b)=PR(@+TP;(a) , R(b)=R;(a)+ TR (a)

So the solution finally takes the following form:

p(r) p(r)
: S GRS RS
PAGIRE R(a) P'(a)
u.(r)= P11 C U= R(@) R(@) r e[a,a+T];a

ps(r) B P(a)
p4(l’) D T P'(a)
R(a)
R'(a)

This form of the solution can be derivated and any combination of the
derivatives of u, can be easily be obtained. That isn’t the case with the
following simplified forms of it, which thought are more lucid.

u =—
" 4T Qu+32)| 3u(g/a)’ (6u+54)+ u(2u+A)

1 a —2u(g/a) (6u+54)+ A(2u+ A) (R -R)
2T Qu+32)| 3u(g/a)’(6u+54)+uu+4) | ° °

1 [4u(9/a)2(6ﬂ+5/1)+(2ﬂ+/1)2}(P+pb)

yo 1 a —2u(g/a) (6 +54)+ AQu+ )
" 2T 2u+34)| 3u(g/a)®(6u+52)+ u(Ru+A)

11 {y(g/a)2(6u+5/1)+(2/J+/1)(/~l+/1)}(Rb_Ra)

}(Pa + Pb)

T @u+34)| 3u(gla)*(6u+52)+ uu+A)
ur"=i{ N }(Pawb)
2T | 3u(g/a) (6u+51)+ u(2u+ A)
¥ S B
T a|3u(g/a) (6u+54)+u(Cu+ )

It comes with a surprise that when the ratio a/g—oo, both the
displacement and the deformation functions are reduced to the respective
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classical functions, while the higher order derivatives of the displacement
don’t.

In order to examine the effect of each BC to the displacement and
deformation fields of this solution, the same procedure as before is
followed. The problem is divided into two simpler, (i) one that the total
applied stress is non zero while the surface double stresses at both
surfaces are equal (i.e. P,+P, #0and R,—R, =0) and (ii) one that the

total applied stress is zero while the surface double stresses at both
surfaces aren’t equal (i.e. P, + P, =0 while R, —R, #0). Any problem can

be addressed as a superposition of these two problems.

It is noted that for small c=a/g values, the displacement of the shell is
considerably smaller than the respective classical one and great radial
double stresses are anticipated for such values, with the greatest ones
appearing in the materials that Poisson’s ratio is the greatest. For great c
values, both the displacement and deformation fields are reduced to the
classical ones, while the double stresses tend to disappear.

=
m
T

=
e
T

o
A
T

Uy (=000
Ug (=0,15)
Ug (=030 ||
Uy (=045
—-—--Uc (v=0,00)
—-—--Uc (=0,18) [
—-—--Uc (v=0,30)
——-Uc (w=045)

I

0 | | | | I
1] ] 10 15 20 24 30

Ratio a/g

o
B2
T

o
—
T

Marmalized Radial Displacernent U/ { (a2/T) (Pa+Ph)/E)

Fig. 49 Normalized radial displacement U r /((az/TX(Pa + Pb )/ E)) versus the ratio a/g for different
values of the poisons ratio v. The classical boundary conditions are P(a”) = P,fand P(a") = P,f and the

non classical ones R(a")=R,fand R(a") = R,f with R, =R, =0
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Fig. 50 Normalized radial deformation €, /((a/T X(Pa +P,)/ E)) versus the ratio a/g for different values of the

poisons ratio v. The classical boundary conditions are P(a™) = P,fand P(a”) = P,T and the non classical ones

R(a")=R,fand R(a") =R,F with R, =R, =0

Fig. 51 Normalized double stresses LL /((aZ/TX(Pa + Pb ))) versus the ratio a/g for different values of the
poisons ratio v. The classical boundary conditions are P(a”) = P,fand P(a”) = P,T' and the non classical ones
R(@a)=R,fand R(@a")=R,f with R, — R, =0
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Fig. 52 Normalized radial displacement U, /((a/T )((Ra +R, )/ E)) versus the ratio a/g for different values of the

poisons ratio v. The classical boundary conditions are P(a™) = P,fand P(a”) = P,T and the non classical ones

R(@a)=R,fand R(a") =R,f with P, + P, =0
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Fig. 53 Normalized radial deformation €, /((l/T )((Ra +R, )/ E)) versus the ratio a/g for different values of the

poisons ratio v. The classical boundary conditions are P(a”) =P,fand P(a") = P, and the non classical ones

R(a”)=R,fand R(a") =R, f with P, + B, =0
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Fig. 54 Normalized double stresses Ll /((&/T)((R a T R b ))) versus the ratio a/g for different values of the
poisons ratio v. The classical boundary conditions are P(a™) = P,fand P(a”) = P,T and the non classical ones

R(a")=R,fand R(a") =R, with P, + P, =0

When radial double stresses are applied to the shell’s boundary,
additional displacements and deformations and double stresses are
imposed.

In this case too, it should be noted, the classical behavior from the bubble
under pressure (P, + P,)qassica €8N be obtained then the right BCs are

2u+A

applied, .. (Py +Py) gradient = ———— (Po + Pa) classical and

2u+ A

(Rp —R,) = a-(Py +Py)aassica - HENCE, independent  of the

microstructure, in order to obtain the classical behavior, both a greater
than the classical pressure needs to be applied, and certain double
stresses. Consequently, the gradient elastic bubble is considerably stiffer.
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4.1.3.iv. The double-layer shell

Having already considered the case of a thin walled spherical shell, the
next step of this study is to consider the case of a composite thin walled
spherical shell.

The composite thin walled spherical shell is considered to be of radius d
consisting of two tangent spherical shells of thicknesses T; and T,
respectively, each one made of materials, with Lame’s constants p;,A; and
w,A, and characteristic lengths g; and g, respectively. Let S, be the
internal and S, the outer surface of the shell.

In the classical theory displacement continuity and equilibrium of the
interface ( r=d) dictate that at both its’ ends displacement and the stress
must be equal. In the gradient theory, these conditions are not sufficient.
Two more need to be chosen. Following the works of Weitsman
(Weitsman, 1965) (who addresses the problem of the interface through a
couple-stress theory) and Yueqiu Li (Li, et al., 2015) who considers a
gradient elastic interface, besides the two classical boundary conditions,
the non classical ones are chosen to be the continuity of the
displacement’s normal gradient and the surface double stresses at the
interface. These BCs represent the continuity of the second degree of
freedom of the gradient elastic shell and its work conjugate. These are
considered to be the BC that allow strain energy to be freely transmitted
through the interface, as Wetsman (Weitsman, 1965) notes in the
respective theory used in that paper.

Classical theory u(r),_y- =u)| _4+ » PO, =P

Gradient theory u(n)| _4- =u()| _4+ » P _4- =P _4+

q(r)‘r:d_ :q(r)‘r=d+ ! R(r)‘r:d_ - R(r)‘r=d+

Also, the row vectors depicted in the first and the second column of the
following expressions are functions of the first and the second material’s
parameters (ug,A, g1) and (up,A2, 02) respectively. Note that in the

classical problems, p(a)=[p,,p,] , etc while in the gradient ones

o(a) =[pl,p2,p3,p4]|r=aetc. while O is the zero vector with 2 and 4 in each
theory elements respectively. In order to obtain the solution to any
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classical double layered shell BC problem four constants need to be
determined two for each layer of the shell. These constants are named
using the following convention: Cj;, i=a,b for the first and second material
respectively, j=1,2 and are multiplied with the j™ fundamental classical

solution, p, =r,p, =1/r%. In the gradient problems, four constants are

necessary for each layer, so the total unknowns are eight. The same
convention is used for naming them: C;;, i=a,b for the first and second
layer respectively, j=1,2,3,4 and are multiplied with the j" gradient
fundamental solution

1a)Classical theory

a=d-T, In this problem both surfaces are
subjected to radial displacements U,
d and U, on S, and Sy, respectively, i.e.

a=d+T, the BCs are:

Fig. 55 x-y plane section of the double-layer

Thin

shell. The boundary conditions are a a
ufr), . =U,r, u(r) _, =U,f =
u(a) =U,fFand u(b) =U,f - =Va - walled

[ p(d) - Typ' (d) 0 1/ Ca U,
0 p(d)+Top'(d) | | Caz | _| Up Cal} [Cm}
: _ —To(d)1- —[o(d)]-
o(d) _p(d) Cyy o |7 Ur=le@] {Caz [p(d)] c.,
. P@) -P@) ] [Cp2] [ O

u=u (d) — (ZILLL +/11)UaT2 + (21u2 +2’2)UbT1
C 2w + )T, + (216 + 4)T,

In the case of a bi layered shell, the solution does not crush, as it happens
into the single layered one. The displacement field obtained is practically
a weighted mean value of the displacements of the two boundaries. The
reason for such a difference is that in this case the interface is
mathematically modeled as two different surfaces.
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a=d-T1

d

a=d+T2

1b)Gradient theory

In the respective gradient problem, both
surfaces are subjected to radial
displacements U, and U, on S, and S,
respectively (classical BCs) while the

normal displacement gradient at each
boundary are prescribed, respectively g,
and q, (non-classical BC), i.e.

Fig. 56 x-y plane section of the double-
layer shell. The boundary conditions are

u(@) =U,F,4(@) = 4,F, u(b) =U,¢
and q(b) = G,

- p(a) O Ca | [Ua] um),,=V.f, u(r)|,_, =Usf
—r'(@) O Caz Ga ou(r)| ou(r)| R
O pb) ||Cus| |Up| H0ha="507 =Top] 7%
O  p(0) | |Cas| |0y
o@ —p(@ || Cou || 0| a, -2 O gy
p'd) —p'(d)]|[Cph| | O
P(d) -P@)||Cps o | The boundary value problem takes the
R() -R(d)||cCy, 0 adjacent matrix equation form.

Using second order Taylor expansions around the radius d for the

functions of a and b, i.e.
pi(@) =p;(d)-Typ;'@)+ 0" (d)/2, T.=d-a
pi(b) =p;(d) + T,p;'(d) +T22p“i (d)/2, T,=b-d, the following

solution for the shell’s displacement is obtained.

{+ lo.2@u, + 2)T,7 + 9,7 2, +zz)Tf]-{[gf(2ﬂ1 TR, +o, 2, + 2072 D, }E
. + 2T, @, + A2ty + 2)9. 0,220, +TU, |
{ 0, (e +4)°T, +9,° (2, + 2,)°T, }
+2T,T,9,°0,° (uy + 2,) (2, + A,)[T]°T, +T,°T,2 +T,T,°]

T, [912 uy + )T, + gzz(zluz + /Iz)Tz]' {_ [912 (2 + %)Tzzha + [gzz(zluz +4, )T12 hb}

{ 914 (2 + ﬂ’l)zT24 + 924 (2, + 12)2T14 }
+21T, 912922 QCuy +4,)2p, + /lz)ﬁsz +T,T, +T1T22]
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2a)Classical problem

a=d-T, In this problem the surface S, is
subjected to radial displacements U,
d while on the surface Sy a tensile stress Py,
is applied, i.e.
a=d+T,
Fig. 57 x-y plane section of the double- u(r)‘r:a = Uaf, P(r)‘r:b = be’
layer shell. TAhe boundary cond:tlons are p(a) @) Cal Ua .
u(@)=U,f and P(b) =R,r Thin

O P(b) Caz Pb -
= walled

p(d) —p(d)||Cu| | O

od) 0 1[C,] [u,] LP@ ~POILCe] [0

0 P@) ||Cs P, Since the problem doesn’t become
‘ = singular for a=b=c, and its solution is
p(d) —p(d)||Cp | | O | M

() ~P)] [Coo) | 0] u=uf=Up

2b)Gradient theory

In the gradient problem, the surface S,

I IS subjected to radial displacements U,
d while the normal displacement gradient

on boundary is g, and on the surface S,

=T a tensile stress P, (classical boundary

conditions) and surface double stresses
layer shell. The boundary conditions Rb (non—classical boundary COﬂditiOﬂS)

are U(Q) =U,f, q(a)=q,f, are applied, i.e.

Fig. 58 x-y plane section of the double-

P(b) = Pbl’ and R(b) = Rbr u(r)|r:a :Uaf_ ’ P(r)|r:b — be
i p(a) O ] _Cal_ —Ua_
—P@ 0 [Ce| 4| g =M —qf, R, =R
0 Pb) | |Cs| |P Nl
0] R(b C R ..
) ((3) : C""“ = 0*’ Consequently, the boundary condition
P —P bt ;
roblem takes the following form:
p) —p@||c.| [0] P :
P(d) —P(d)||Ce 0 | Now, once again, this problem even with
| R(d) -R(d)] [Cw] L O] a=b=d doesn’t become singular, thus the
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solution one obtains is exactly the same obtained for the single layer
shell, i.e. u=u,f =U,f, and alsoq=q,f, P=P,F andR=R,f

3a)Classical theory

a=d-T, In this problem on the surface S, is
applied to a compressive stress-pressure
d P, while on the surface S, is subjected to a
a=d+T, displacement Uy, i.e.
Fig. 59 x-y plane section of the double- P(r)‘rza = Paf- ) u(r)‘hb = Ub? =
layer shell. The boundary conditions are
P(a) = P,# and u(b) =U, f [—P@ O ][Cyl| [P,]

The problem doesn’t become O p(0) | 1Cap | _| Uy
singular for a=b=d, and its | p(d) —p(d)||Cy 0
solution is Pd) —-P@)]|Cp] | O

u=uf=U,, while P=Pf

3b)Gradient theory

a=d-T, In this problem on the surface S, a
compressive stress-pressure P, (classical

d BC) and surface double stresses R, (non-

e classical BC) are applied, while the surface

Sp is subjected to radial displacement U,
shell. The boundary conditions are (Cl&SSiC&' BC) while  the normal
P(a)=P,f, R(@) =R,f, u(b)=U,i displacement gradient on boundary is ds

(Non-classical BC) , i.e.

Fig. 60 x-y plane section of the double-layer

—P@@ O C.1 [P
R@) O ||c,| |rR| PO =PF, u(r)|,_, =U,f
o ) ||cal |u,
0 PO ||Cu|_|%| RO =RF  q)_, =20 g
p(d)  —p(d) | |Cy| | O ol
p(A) =P (@) 1Ca | | 01 consequently, the boundary condition problem
P) -P@) ]Gy O | takes the adjacent form:
| R(d) -R(d)] [Cpy| [ O

This solution even in the case of a thin walled
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spherical shell (a=b=d) is not singular and the solution obtained is exactly
the same obtained by the single layer shell, i.e.

u=u,f=U,f, and alsoq=q,f,P=PF

and R=R,f.
a=d-T;
’ 4a)Classical theory
et In this problem on the surfaces S, is

subjected to a compressive stress-
pressure P, and the surface Sy is
Fig. 61 x-y plane section of the double-  SUbjected a tensile stress Py, i.e.

layer shell. The boundary conditions are

P(a)= PaIA’ and P(b) = be |:"(I‘)|r:a = Paf‘ , u(r)|r:b = be
[P(d)-T,P'(d) 0 17Cal [Py]
0 R(d)+T,R'(d) | |Caz | | Py
p(d) ~p(d) Co | | O]
| P(d) -P@) ] [Cp2] LO]
Cat Chs
u =[p(d)]-{ : }[p(d)]-[ }3
r Ca2 Cb2
2
ur :ur(c):C_(Pa b) (2ﬂ1+ﬂi)(2ﬂ2 +12)
4 Tt (2pny +32) (24, + Ay) + Ty 11y (20, +32,) (2441 + 4y)
4d)Gradient theory
s On the gradient elastic bilayer shell’s
surfaces S, is applied a compressive
d stress-pressure P, (classical BC) and
it surface double stresses R, (non-classical
’ BC), while the surface S, is subjected to
Fig. 62 x-y plane section of the shell. The a tensile stress P, (classical BC) and
boundary conditions are P(@) = P, F, surface double stresses Ry, (non-classical

R(a) = R,,P(b)=P,fand R(b)=R,F BC), i.e.

Pr) _, =RF , P(r)_ =RFf

a
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[—P(d)+ T,P'(d) 0 Cy P,

R(d) - T;R'(d) 0 C.o| |R4
O P(d)+T,P'(d) | | Caz | | Py
0 R(d)+T,R'(d)| [Cas| |Rp
p(d) —p(d) Cor | | O
p'(d) —p'(d) Coz| | O
P(d) —~P(d) Cps 0

. R() -R(d) | [Cps) O]

For a thin walled double-layer shell, using first order Taylor expansions
around d, this BC problem takes the form above, which finally leads to
the next solution

F Ty (2 + o) - 4G, 1)y (Buty +501) + 24y + 1) 7 |

$ T, (20 + ) [4(0 /)21, (Buyp +5h5) + (215 +15)2]

d
u, =TZ(Pb +Pa)

d
_E(Rb _Ra)

+To% (2u1 +30,) (2, +15) l3(91 1d)? 1y (B +5h) + 1y (2 + 7¥1)J
+T22(2H2 +3h2)(2uy +2q) - [3(92 /d)2H2(6H2 +5h2) + 12 (20, +23)
3(9; /d)2M1(6H1 +5h1)(21y +25)(2py +3R3)
+ T, T 3(9; /d)2M2(6M2 +5h5)(21g +2q) (20 +31q)
(2py +21)(2p, +7¥2)[(2H1 +3h)u, + (21, +37“2)H1]

F Ty + o) |- 2001 /)2y (Brty +50y) + Aq 241y +1y)]

F Ty (20 + )| 205 16) 21 By +5%5) + Ay (2415 +1p)]

+T2% (20 +30)(2up +15) l3(91 1d)? g (Bpg +501) + g (20 + 7¥1)J
+T22(2H2 +3h2)(2py +24) - [3(92 /d)2M2(6H2 +5hy) + 12 (20, +23)
3(91 /d)2M1(6M1 +5h1)(20y +25)(20y +3R3)
+ T, T 3(9, /d)2H2(6H2 +5h2)(20y +Aq)(2py + 3Rq)
(2pg +2q)(20o + M)[(ZM +3h)u, + (2u, “‘3%2)“1]

74




+ T (2py +25)- [— 2(9, /C)2M1(6M1 +5p) + A (20 + }“1)]

+ T, (21 +2q) - [— 2(9, /C)2M2(6H2 +5h,) + A, (20, +7¥2)]

u,'= Cl(P +P,)
r — A \la b
2 T2 (2ug + 300 ) (20 + hg) - [3(01 /621ty (Buty + Bhy) + bty (201 + 1))
+T22(2M2 +3%,) 21y +2q) - [3(92 /d)2M2(6H2 +5h,) + 1y (2uy +2p)
3(9, /d)2H1(6H1 +5h1)(2uy +21;5)(2u, +3R5)
+TT, 3(9, /d)2M2 (Buy +54,) (20 +Aq1)(20y +31y)

(2ug +29)(2u, + }‘2)[(2“1 +3h)Hy + (2, + 37“2)“1]

+T(2up +25)- [— 2(9, /d)2H1 (Bpy +54) + A (2uy + 7“1)]

+T,(2uy +24q)- [— 2(9, /d)2M2(6M2 +5%,) + A, (2u, +7¥2)]

d
+ E (R b — Ra) 2 2
+ T% (g +30)(21p +245) - l3(91 1d)“py (6py +5hy) + 1y (214 + 7"1)J
+ T, (2py +345)(2uy +2q) - 13(9, /d)2M2(6H2 +5%,) + 1y (2uy +1y)
3(9, /d)2H1(6H1 +5X1)(2u, +25)(2u, +30;) +
+T,T, 3(9, /d)2H2 (Buy +5A,)(2pg +Ag) (20 +3hg) +

(2ug +29)(2uy + 7\‘2)[(2“1 +3h Uy +(2u, + 37\'2)“1]

Interesting property of this solution is that if any of the of Tiand T, is
zero or the material is the same in both layers, thus the shell isn’t
composite, then the solution degenerates is reduced to the one obtain for a
single layer shell.

If both materials’ microstructures are assumed to be insignificant <
g, >0"and g, —» 0", this solution doesn’t take the form of the classical
solution. However, this does not mean that it is wrong. In the literature,
cases can be found that the solutions obtained, when the length parameter
g is assumed zero, are not reduced to the classical respective problem
solutions. In this particular case this result might also be attributed to the
fact that only the lowest order thickness orders of the solution are kept,
and the others are assumed to be insignificant combined with the
assumption that was made thatT/d <<g/d, VT,g, which is the case of

the microspheres studied by (Glynos & Koutsos, 2009)
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4.1.4. Experimental data treatment

Glynos,E. and Koutsos,V. (Glynos & Koutsos, 2009) investigated
experimentally the mechanical behavior of micro scale spherical shells,

00— they used the term MS (Micro Sphere),
5:;2 oo using nanocompression testing with
;12:5_ t‘ tipless cantilevers. The MSs used
=3 . - -
g10.0. ., consisted of a thin shell of stiff
= 75} .
e ] '1&‘.:. structural polymer polylactide,
@ 5.04 * l. ™ . )
3 251 "5-0,.1:“, surrounded by a cross linked albium
- 1 - .

O 5 30 35 4o s Outer layer and incapsulated nitrogen

Shell Thickness {nm} gas at atmospheric pressure.
Fig. 63 Young's modulus of MS structural

shell versus MS shell thickness (Glynos &

The MS’s thickness to radius ratio was
Koutsos, 2009)

considered to be constant T/a=1.5x10"
and the polymer’s Poisson’s ratio was assumed to be 0.42. The classical
theory of elasticity calculates the MS’s stiffness, k, under this type of
loading using the following equation.

2
ke % T E_573x0%aE

That indicates that bigger MS have are stiffer than smaller ones, then the
thickness to radius ratio is constant. The experiment’s findings, though,
indicate that small MSs are stiffer than larger, which comes in
contradiction with the classical theory. Relaxing the assumption for a
constant Young’s modulus , Glynos obtained the figure 63 presenting the
relation for the Young’s modulus to the MS’s thickness.

Using the spherical shell model that was developed, it is attempted to
interpret those results. There isn’t enough data available to address the
problem as a multiple layer shell as it is, so it will be treated as a single
layered one. Also the MSs’ loading is not the one studied in the model.
However, in hope that the same stiffening effects might be observed in
both loading cases, this attempt of fitting the model to the experimental
results is being made.
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The following relation can be obtained for its materials Young’s modulus
as a function of the shell’s radius a, it’s materials characteristic length g
and Poisson ratio v:

_E . (l—v)-[3(3—v)-(g/<';1)2 +(l—v)] o (1+v)-(3—v)

,Eo being the Young’s modulus computed using the classical theory for
the MS in the case that it is loaded only by pressure.

Substituting the Poisson ratio(v=0.42) and the thickness to radius ratio
(T/a=1.5x1072), the following equation
Is obtained

)

% a-2v)-(3-v)-(g/a)? + (@-v)| 0{+[2(l—2v)-(3—v)+-(a/g)2.(1—V)2J

c_ Eo{l 4.4375 }: . {1 4.4375

i 0.4075-(a/g)* +1

This does indicate that for smaller

shells the Young’s modulus does

increase. However, in the model, sole

the reduction of the shells size cannot

Fig. 64 Experimental data compared to the induce SUCh a dramatic increase Of itS

Eo=1.6GPa, g=632nm stiffness curve stiffness, as the one described by the

described by the model of a thin walled experiment’s result.
spherical shell

This does not mean necessarily that the model fails to capture these
stiffening effects. The general stiffening trend is captured, and there can
be a better fitting of the model to the experimental results if the double
stresses taken into account. However, many assumptions have already
been made, so it was chosen not to proceed to this attempt without more
data.

In figure 66 is depicted, besides the experiments result, a curve for.
Eo=1.6 while the characteristic length g is 632 nm, which is one of the
curves that predict the greatest increase for the Young’s modulus

7

+
1811.1-(T/g)? +1

}



4.1.5. Conclusions

Solid Sphere

The gradient theory does capture size effects in the spheres
behavior.

When the surface normal displacement gradient is restrained, the
sphere has a stiffer behavior.

When only classical loads are applied to the sphere, its response is
classical, no matter how significant the microstructure might be.
Double stresses need to be applied for size effects to appear and
stiffer responses to be obtained.

When the microstructure is small compared to the spheres radius,
the effect of the non classical BCs is very small and the spheres
behavior is reduced to the classical one.

Spherical Cavity

Significantly stiffer than classical behavior even when no double
stresses are applied, for great g length to radius ratios.

Significant effect of the poisson’s ratio to its behavior

The double stresses are significant only close to the boundary

The solution is always reduced to the classical one when the
microstructure is small.

Spherical Shell

Only the problem that the external loads are known provides useful
results.

Its behavior is always stiffer than the classical, even when no
double stresses are applied.

When the microstructure is small, the displacement and strain
fields are reduced to the classical ones, while the curvature field is
not.

The Poisson’s ratio affects the bars behavior, as it does in the
classical case
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Double Layer Spherical Shell

Only the problem that the external loads are known provides useful
results.

In this case too many parameters are considered, which makes the
extraction of conclusions difficult.

Generally, a stiffer than classical behavior is obtained for the shell
When the two material parameters are the same, the solution is
reduced to the simple spherical shell gradient solution

When both materials length parameters are small compared to the
shell’s radius, the solution obtained is not the classical one
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4.11. PART 11: 1D PROBLEMS & TRUSSES
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4.11.1. Truss modeling through gradient elasticity.

Trusses are a very common and useful and common kind of structure.
There are several real life applications for trusses. For starters, in
structural mechanics, they are commonly used for bridges and roofs. In
vascular surgery, the STENTs used to increase blood flow in areas
blocked by plaque are three dimensional trusses. In material science, in
research for very light materials, a microscale 3D lattice was developed,
with the intent to be possibly used as a structural material. Trusses, also,
have more theoretical use. For example, they are a very simple way of
modeling complex bodies under various kinds of loading, by discretizing
a continuum in a network of truss elements in order to solve many
elasticity problems.

From a geometrical perspective, the simplest finite elements is the one
dimensional bar element, which, in the classical elasticity framework, can
be subjected only to axial loads, either tensile or compressive. These bar
elements, though, can be used not only in one but also in two or three
spatial dimensions by transforming their local coordinate system to a
global one.

A truss elements can model satisfactorily even complex geometries and
give good stress and displacement results, using very few and simple
equations, especially when used in appropriate problems, they give a very
cost effective solution.

Truss problems are mostly solved the stiffness method. This method
starts by obtaining the truss elements’ stiffness matrices, assembling them
in a global coordinate system and obtaining the global stiffness matrix of
the structure. Then, the global load vector is defined and it’s relation to
the displacement vector is obtained for the whole structure and the chosen
boundary conditions (BCs) are imposed.
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The following part of this work addresses the behavior of a gradient
elastic bar, as a start, in order to conclude about the overall behavior of a
composite gradient bar structure- truss. First, the equilibrium equation
and the corresponding boundary conditions of a gradient elastic bar under
static loading are derived using the variation principle. Second, various
BC problems of the bar are addressed in order to obtain a good
understanding of the effect that each BC has on the bars displacement,
strain and double stresses fields, and the effect of the surface energy
parameter I, which is not considered a parameter in the general strain
gradient elasticity theory by Aifantis and is not taken into consideration
in the general 3D problem presented in the first part of this work. Third,
the function- behavior of elastic and a holonomic node is discussed in the
framework of gradient elasticity in 1D problems and the non classical
BCs that should be applied are found. The 1D stiffness matrix of the bar
element is obtained and a series of 1D problems are solved in both their
gradient and classical cases using the stiffness method and compared to
their respective analytical solutions, in order to certify that the gradient
elements can be used as 1D FEMs.

Finally, the 2D truss problem is addressed directly. The function of a
node in 2 dimensions is discussed. The Global 2D element stiffness
matrix is obtained and some 2 D examples are presented. Last, another
model for a 2D node behavior is proposed, and an example of its
application is given.
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4.11.2. The single bar behavior

4.11.2.1. Equilibrium equation and boundary conditions in 1D
problems

The problem of the gradient elastic bar in uniaxial loading is the simplest
one dimensional problem that can be addressed through first strain
gradient elasticity. It has been addressed several times in the past years,
not only as a static problem, as it will be here, but also as a dynamic one.
This is the case of the works by Aifantis (Altan, et al., 1996), Tsepoyra
(Tsepoura, et al., 2002), Polizzotto (Polizzotto, 2003), Mustapha
(Mustapha & Ruan, 2015). This problem has also been addressed though
other non local elasticity theories, as shown in Aurora Angela Pisano and
E. Benvenuti.

Following, assuming a material that obeys the linear gradient elasticity
theory of Aifantis, the equilibrium equation and the corresponding
boundary conditions are presented as obtained by Tsepoyra by
application of the variation principle.

Consider a straight prismatic slender bar, with constant cross sectional
and elastic properties along its axis subjected to uniaxial tensile stress
ox(X) resulting to an axial displacement u=u,(x), along its longitudinal
axis x. The displacements uy and u, are assumed to be zero, thus the strain
du,
dx

f|6|d e= ell =

Following the one dimensional gradient elasticity theory with surface
energy by Aifantis the strain energy U of the bar in axial loading is
defined as

L
U=lj[t-e+u-Ve]dV=lAj[r-e+u-Ve]dx
2y 2 9

. : de . . :
Where A is the area of a cross section, Ve = d—IS the strains gradient,
X

andt,pdenote the Cauchy stresses and double stresses, respectively and
are given by the following constitutive relations
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t=FEu’'+IEu”
u=IEu’+g°Eu”

Where the constants I, g represent ,material lengths related to the surface
and volumetric elastic strain energy respectively withO<l<g , E is the

Young modulus and (.)' = d(e)/dx,

The bars strain energy and its variation are given below

U= %IIEA[(U')2 +g2(u")? +2Iu'u"}ix
0

L ] L L
U =—[EA(u"-g?u™)3u dx + [EA(u'—gzu"')Su ]0 + [EA (gzu"+lu')8u']O
0

The variation of the work done by external classical forces g and P and
non-classical double forces R read

L
SW = [qdu dx + [Psu]; +[Rau'];
0
The variation equation 8(U — W) = Qtakes the following form
L -
SU = —j[EA(u"—gzu"’) + q]ﬁu dx
0

+ [{P —EA(u'—g%u™) }SU]E + [{R —EA(g%u"+lu) }Su']g

The equation above implies that each term must be equal to zero, thus the
governing equation of the bar and its boundary conditions (BCs) are
extracted.

u"(x) —g?u'(x) £ 909 _ g

And at each end

I.  Either the displacement is knownu =1
or the applied axial force is known u‘—gzu'”: %
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1.  Either the strain at each end is known u'=U"
or the applied axial double forces are known Iu'+gzu": %
Where the dashed superscript denotes prescribed values.

The O.D.s general solution is U =Upom + Upaial = CiPi + Uparial

X
u=C;x+C, +Cscosh(x/g) +C,sinh(x/g) + — j{smh( J X;}q(t)dt
O

The force vectoris: P=C;P,X, P=[1 0 0 0]

And the double force vector is R =C;R;X,

R=[1 O cosh(x/g)+ésinh(x/g) sinh(x/g)+écosh(x/g)]
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4.11.2.ii. Boundary Condition Problems

In the following section the effect in the behavior of a gradient elastic bar
of several boundary conditions will be presented in extend. The behavior
predicted will be compared to the one predicted by the respective
classical elastic bar. The effect of the extra surface energy parameter |
will be discussed separately.

Consider a bar of length L, modulus of elasticity E and cross-sectional
area A. Besides the original coordinate systemxe[0,L], two more
coordinates systems are introduced in order to simplify the results and
optimize their display. The first is the normalized axial coordinate system
¢=x/Le[0]], and the second one is a normalized coordinate system with
origin at the end of the bar i.e. x=L < &*=0and direction opposite to
previous systems, & =(L-x)/L=1-¢, &*<[0]]. In the following gradient
problems the non dimensional parameters c=L/g and »=1/gare used for
the same reason.

x=0 L x=L
el & —

&=0 &=1
g1 §=0

Fig. 65 Representation of the coordinate systems x, §, §* that are being used it order to simplify the
following problems and used the symmetry of the solutions

The fixed-fixed bar

Classical theory

In fixed-fixed bars ends are subjected to

Fig. 68 Fixed-Fixed bar subjected to axial displacements U, and U, respectively,

displacements  u(5 =0) =Ug%  and the BCs are u(§=0)=U,andu(¢=1)=U,. The

u€ =1 = Usx following displacement field is very simple,
well known and easily obtained.

U(i) = Uo +(U1_ UO)EJ = Uo&*"‘ Ulé
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Obviously the case in which the displacement of one end of the bar is
restrained and the other end is subjected to an axial displacement is
obtained by zeroing the respective displacement.

Gradient theory

For the gradient problem the bar is made of a material with
microstructure. The classical BCs are the same as in the classical theory.
Two sets of non-classical BCs need to be studied next.

In the first sub case the strain at both ends is
prescribed, g, and g; respectively, i.e. the
Fig. 69 Fixed-Fixed bar. The bar’s ends BCs are U(E":O): UO’ U(E’:l): Ul’
displacements and strains are prescribed U'(E=0)=¢, and u'g=1=g¢,. This is a
u@€=0)=Upx, uE=1)=Usx and symmetrical problem, meaning that the BCs
U(E=0)=¢, uE=1=¢, at both sides are of the same type. Thus the
' displacement field is expected to be
symmetrical too. This means that the effect of each BC on the field must
be symmetrical to the effect of its symmetrical BC, or more
mathematically, the displacement field due to one BC — while the others
are zero — can be obtained by substituting the & parameter with £*=1- &

and the BC; with BC;Y™™ i.e

If Ugei (€)=u(t=£)BC, — U1Bcpymm(a):ui(tza*)BCisymm

The displacement field of this problem takes the following form

sinhB(l—Zé) } sinh[;(l—Z&*)}
_ ST F) ) =20 Gnner2)
u(€) =U,{&—tanh(c/2) o~ 2tanh(c/2) +U, &% ~tanh(c/2) c—2tanh(c/2)
coshB (1-2@)} coshB (1—2i*)}

cosh(cg) —&cosh(c) —&* N cosh(c/2) cosh(c&*) — E*cosh(c) — & N - cosh(c/2)

+¢g,L

+gL

sinh(c)[c—2tanh(c/2)] ¢ [c—2tanh(c/2)] sinh(c)[c—2tanh(c/2)] = c[c—2tanh(c/2)]
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It is reminded that the parameter ¢ is non dimentional, and defined as
c=L/g in the bar problems. As expected the solution is symmetrical thus
the effect of only one of the symmetrical BCs - solutions will be
discussed. The A parameter does not effect the bars displacement or strain
in this case. This fact can be attributed to the use of only ‘holonomic’
BCs, no dynamic ones.

In order to fully adress every problem possible, the solution is divided in
two simpler ones, as done in the previous part of this work. In the first,
the bar is fixed at one end while the other is subjected to an axial
displacement U; and the strain at both ends is restrained, i.e. u(¢=0)=0,
u¢=1=U, and u'(¢=0)=u'(¢=1)=0. The normalized displacement and
the strain versus the normalized axial distance of the bar are given below.
Also, the normalized double stresses distributions, for A=0 and in the case
that c=4, for different A values are presented.

Fig. 70 Normalized axial displacement u/ U, versus normalized axial distance E=X/Lofa

Fixed-Fixed bar. The classical BCs are U(§ =0) =0, u(¢ =1) = Uy, and the non classical ones
uw(E€=0=0,u(E=1)=0
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Fig. 71 Normalized axial strain u'/(Uq / L) versus normalized axial distance & = X /L of a Fixed-

Fixed bar. The classical BCs are U(E=0)=0, u(¢=1)=U;, and the non classical ones
uw(E€=0=0,u(E=1)=0

Fig. 72 Normalized axial double stresses oo /(U4E) versus normalized axial distance

& = X/ L of a Fixed-Fixed bar. The classical BCs are U(§ =0) =0, u(¢ =1) = Uy, and the non
classicalonesu'(§ =0) =0, u'(§=1) =0
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Fig. 73 Normalized axial double stresses R /(U4E) versus normalized axial distance
& =x/L of a Fixed-Fixed bar, for various A values, and c=L/g=4. The classical BCs are

u(€=0)=0, u(g =1) = Uy, and the non classical onesu'(§ =0) =0, u'(( =1) =0

The following conclusions can be drawn.

Both the displacement and the strain fields depend on the L/g ratio, and as
this ratio increases the bars behavior is reduced to the classical one. Due
to the holonomic non-classical BC’s, the strain at the bars ends is zero
regardless of how great the ¢ parameter might be, but the deviation from
the classical solution decreases significantly as the ¢ parameter takes
great values and only close to the bars ends the deviation from the
classical solution is significant. In other words, as a bar gets smaller, a
greater part of its body is affected by the end effects/non classical BCs
and its behavior deviates from the classical one, both displacement-wise
and strain-wise.

The double stresses i are strongly dependent to both the ¢ and A ratios.
Increasing the c ratio induces a great reduction to both the greatest
double-stress value, and the range of the bars length that these stresses are
significant. Greater A values (surface strain energy) result to greater
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double stresses in the greater part of the bar, and at the same time
eliminate the antisymmetry from the p, distribution. The A parameter
does not affect the displacement or the strain field in this problem, since
all degrees of freedom are confined.

It should be underlined though that the applied BCs - u’=0 - are very
invasive in order to obtain a very non homogenous behavior from the bar.
However, mathematically, by applying other strains at the bars ends, i.e
u’=(U;-Uyp)/L, the solution obtained coincides with the classical one no
matter the value of the ¢ parameter.

The last conclusion is validated when studying the bars response to an
applied strain when both its’ ends are fixed, thus the BCs beingu((=0)=0
,U(€=1)=0,u'(E=0)=0andu'(¢=1) =¢,. The following figures describe this
behavior for various L/g ratios and various A parameter values in the case
that c=4, since, when the A parameter is inserted to the solution, too many
parameter are present and it is impossible to plot one single normalized
solution for every ¢ and A value.

Fig. 74 Normalized axial displacement u /(g1L)versus normalized axial distance & = x/L fora

Fixed-Fixed bar. The classical BCs are U(§=0)=0, u(§ =1) =0 and the non classical ones
uE=0)=0,u(E=1-= &
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Fig. 75 Normalized axial strain U'/¢qversus normalized axial distance & = X/ L of a Fixed-Fixed

bar. The classical BCs are U(§ =0)=0, u(§ =1) =0, and the non classical onesu'(§ = 0) =0,
u'E =1 = &

Fig. 76 Normalized axial double stresses o /(g1EL) versus normalized axial distance & = x/L
Fixed-Fixed bar. The classical BCs are U({=0)=0, u(§=1) =0, and the non classical ones
uE=0)=0,u(E=1-= &



Fig. 77 Normalized axial double stresses o /(e1EL) versus normalized axial distance & = x/L,

for c=4 and various A values. The classical BCs are U(§ =0) =0, u(§ =1) = 0, and the non classical

onesU'(£=0)=0, u'(g =1 =&

Prescribing the strain at one end of the bar, while both ends
displacements are restrained results to non uniform, non symmetrical
displacement, strain and double forces fields. For great ¢ values these
fields tend to get zeroed in the better part of the bar, and differ only at its
ends, so the effect of the non classical BC to the bar is reduced.

In order to apply these BCs, when the surface elastic strain energy is
significant (A#0) greater double forces need to be applied, but always
their maximum values appear at the bars ends.
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Next, is investigated the behavior of a
fixed-fixed bar, whose ends’ strain is not
directly prescribed, but type R BCs are
Fig. 66 Fixed-Fixed bar. Subjected to axial apphed i.e. the double forces at the ends

displacamentsu(¢ = 0) = UpgX andu(E=1)=Usx of the bar are prescribed. The BCs are
while the double forces at its ends are prescribed U(& — 0) — Uo and uE=1y)=U and
1

R(¢=0)=R,and R(¢=1) =R, R(E=0)=R,and R(¢=1)=R,. This, too,
Is a symmetrical problem. The displacement field takes the following
form in the case where the | parameter is zero

sinh(ct) §}+ R, [sinh(cg*) _ g*}

.Y
u(g) =UE+UE*+ Linh(c) EA| sinh(c)

EA
The first part of this solution is the same as the classical one. This means
that the bars behavior differs to its’ classical behavior only if double
forces R are applied at its ends. In other case, its response is classical
regardless of how small the bar or how significant (how great the c=L/g
ratio) the microstructure may be.

Hence, for a non-classical behavior from the bar, either double forces R
are applied at its’ ends, or their deformation is prescribed and different to
the strain of the respective classical solution. Prescribed end strain, of
course, means that double forces being applied, whose value depend on
the prescribed end displacements and strains, as well as on material
parameters as will be discussed.

Polizzoto (Polizzotto, 2003) made that observation too, and concluded
that the way to obtain a classical behavior from a gradient elastic bar the
non-classical BCs need to be u’’(¢=0)=u’"(,&=1)=0. This is not exactly
accurate since it appears to be an arbitrary BC, more of a mathematical
trick in order to obtain a linear solution. However, a posteriori can be said
that this BC describes the condition of zeroing the double forces at the
ends of the bar, in a case of a material of no surface strain energy (A=0),
which is the model Polizzoto used.

Since the first part of the solution is the same as the classical one,
following, only the effect of double forces at the bars ends will be
presented.
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Fig. 79 Normalized axial displacement u /(R / EA) versus normalized axial distance & = X/L ofa
Fixed-Fixed bar.. The classical BCs are U(§=0)=0, u(§=1) =0, and the non classical ones
R(£=0) =R, R(E=1)=0

Fig. 80 Normalized axial strain u' /(R / LEA) versus normalized axial distance £ = X/ L of a Fixed-
Fixed bar. The classical BCs are U(§=0)=0, u((=1) =0, and the non classical ones
R(E=0) = RO, RE=1)=0
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Fig. 81 Normalized axial double stresses oo /(Rq / A) versus normalized axial distance E=X/L ofa

Fixed-Fixed bar. The classical BCs are U(§=0)=0, u(§=1) =0, and the non classical ones
R(E=0) = RO' R(€=1)=0

In the graphs above the displacements do not approach the classical
solution as the c=L/g parameter increases. This behavior is attributed the
restriction the bar’s ends displacement. As will be shown further on, the
application of double forces at a free bars end affects its length. The bar
elongates when the double forces direction is away from the bars center,
and it shortens in the opposite case. The Ry, double forces’ direction is
towards the center of the bar so the bar tends to get shorter. By restraining
the bars’ ends movement, practically an opposite displacement to the one
that resulted from the application of the double forces, is applied, which
is a hidden classical kind of load, responsible for this seemingly odd, non
classical behavior.

In the case of R; whose direction is outwards of the bar, the double forces
effect elongates the bar, and the confined displacement of its ends
iImposes a hidden classical set of BCs, too. As a result, for great c
parameter values, the displacement field is not reduced to a zero field,
which was originally thought to be the respective classical problem’s
solution.
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When the A parameter is significant the behavior of the bar deviates
drastically from the classical one, even in the case where only classical
BCs are applied. The displacement field takes the following form:

u€) =u,, () +Au, (E)+A,u, (§),
u,_,(&) being the displacement field in the case that A=0, described above,

A 2
- , A, = —2A
' c-2*(c-2tanh(c/2)) 2 c-2*(c-2tanh(c/2)) *

and

y (&):[1_cosh((1—2§)c/2)}{ul_U R, Ro}

0 A TEN
cosh(c/2) EA EA

+ ctanh(c/2) g—%— & —ctanh(c/2) &*—M— &
cosh(c)-1 |EA cosh(c) -1 EA

. (8- tanh(c/Z){l— 2 S'”“S(I(jl;(ff;‘)” ﬂul . tanh(CIZ){l— g Sinh({L=2¢ ¥)o/ ﬂuo

sinh(c/2)
+(c—2tanh(c/2)) S ¢ 1Ry (c_ptanh(cr)) S _px| Ro
sinh(c) EA sinh(c) EA

Fig. 82 Normalized axial displasement u/Ul(cont), u/Uodashed, L/(g = 4)versus normalized axial

distance & = x/ L of a. Fixed-Fixed bar, for various A values when c=L/g=4.



Fig. 83 Normalized axial strain u'/(Uq /L) (continuous), u'/(Ug /L) (dashed) versus normalized

axial distance & = X / L of a Fixed-Fixed bar, for c=L/g=4 and various A values

Fig. 867 Normalized axial double stresses oo / UlE (continuous), Mo / UOE(dashed)

versus normalized axial distance & = X / L of a Fixed-Fixed bar, for c=L/g=4 and various A values



Fig. 85 Normalized axial displacement u/(Rq/EA) (continuous), u/(Rq/EA)(dashed) versus normalized

axial distance & = X / L of a Fixed-Fixed bar, for c=L/g=4 and various A values

Fig. 86 Normalized axial strain u'/(Rq/EAL) (continuous), u'/(Rq /EAL)(dashed) versus normalized axial

distance & = X/ L of a Fixed-Fixed bar, for c=L/g=4 and various A values
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Fig. 87 Normalized axial double stresses o /(Rq / EAL) (continuous), Hooex /(Rg /EAL) (dashed) versus

normalized axial distance & = X/ L of a Fixed-Fixed bar, for c=L/g=4 and various A values

The effect of the A parameter on the bars behavior is displayed in the
graphs above, for a bar of ¢ value of four (c=4). Since, the A parameter
eliminates any symmetry from the solution, the effect of a BC is different
on each end of the bar. In each of the graphs above, two cases are
addressed. In the first three, the effect of an imposed displacement to each
bar’s end presented. In the last three, the effect of applied double forces at
each bars end while no double forces are applied to the other is presented.

The X parameter, i.e. the presence of surface energy affects strongly the
displacement and deformation fields of a bar. When only classical BCs
are applied, the surface energy effect on these fields has a level of
symmetry. However, when non classical BCs are applied, their effect is
very strong and all symmetry is eliminated from those fields. The
presence of surface energy in this form, though, is rarely taken into
account since it rarely is observed, and, also, following the Kordolemis
(Kordolemis, et al., 2013) analogy, seems to be linked with anti
symmetric properties and behaviors that until recently were not
commonly used. In this case, too, in which surface energy is present and
the bars behavior gets very complicated, a classical behavior can be
anticipated when the double forces applied are Ro= R; = EA | (U;-Up) / L.
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Classical theory

In the case of a fixed-free bar, one end of

Fig. 88 Fixed-Free bar. The BCs are the bar is subjected to an axial displacement
u(€=0)=UgXk, P(E=1)=PX Uy while the other one is free and subjected
to a tensile force P, thus the BCs can be
expressed as u(E=0)=U,and P(&=1)=P. The solution to this problem
that follows solution is very simple, well known and easily obtained.
u(€) =U, +Pg
Gradient theory
Fig.

u(€ =0) = Ugk u(g =1) = Uk

89 Fixed-Fixed bar. The BCs are |n the gradient case, the bar is made of a
material with microstructure . The classical
BCs are the same as before. Two sets of non-classical BCs are studied
next.

In the first sub case, the strain of the both ends of the bar is prescribed, &
and g; respectively. The BCs are u(E=0)=U,and PE=1)=P, and
u'(=0)=¢,and u'(¢=1) =¢,. This is not a symmetrical problem in respect
to the BCs, so the displacement field is also not expected to be
symmetrical. The displacement field takes the following form:

sinh(c(l—zg))
u(§)=Uo+i a_tanh(c/Z) 1_ 2

EA C sinh(c/2)

L{ cosh(ct) —1} e L{ cosh(c) - cosh(c&*)}

csinh(c) csinh(c)

The field indeed is not a symmetric one, so the effect of each BC will be
presented separately. First, a bar under tension with restrained ends strain
Is considered. As shown in the following figures, the behavior of the bar
is stiffer than the classical bar behavior. However, for great ¢ values, the
solution approaches the classical one, and only at the ends of the bar the
fields deviate from their classical form. The double stresses are localized
only near the ends and their values are smaller, for greater c values.
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Fig. 90 Normalized axial displacement U/ PiL/EA versus normalized axial distance & = X/ L of a Fixed-Free bar.

The classical BCs are U(§ = 0) =0, P(§ =1) = P, and the non classical onesu'(§ = 0) =0, u'(§ =1) =0

Fig. 91 Normalized axial strain u'/ PlEA versus normalized axial distance & = X/L of a Fixed-Free bar. The

classical BCs are U(E =0) =0, P(¢ =1) = P|, and the non classical ones U’ ({ =0) = 0, u'(§ =1) =0
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Fig. 92 Normalized axial double stresses H oo /(PLL/ A) versus normalized axial distance & = X/ L of Fixed-Free

bar. The classical BCs are U(§ = 0) =0, P(& =1) = P, and the non classical onesu' (§ =0) =0, u'(§ =1) =0

Fig. 93 Normalized double stresses H oo /(PLL/ A) versus normalized axial distance & = X/ L of a Fixed-Free bar,

for c=4 and varius A values. The classical BCs are U(§=0)=0, P(E=1)= P;, and the non classical ones

uE=0)=0,uE=)=0



Fig. 94 Normalized axial displacement u/alL versus normalized axial distance £ = X/ L of a Fixed-Free bar. The

classical BCs are U(§ = 0) =0, u(§ =1) =0, and the non classical ones u' (& = 0) = Y uE=1)=0

Fig. 95 Normalized axial displacement u'/soversus normalized axial distance & = X/ L of a Fixed-Free bar. The

classical BCs are U(§ = 0) =0, u(§ =1) =0, and the non classical ones u' (& = 0) = Y uE=1=0
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Fig. 96 Normalized axial double stresses Mk /(aOEL) versus normalized axial distance & = X/ L of a Fixed-Free

bar. The classical BCs are U(§ =0) =0, u(& =1) =0, and the non classical ones u' (£ = 0) = Y uE=1)=0

Fig. 97 Normalized axial double stresses Hosex /(SOEL) versus normalized axial distance & = X/ L of a Fixed-Free

bar, for c=L/g=4 and various A values
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Fig. 98 Normalized axial displacement u/&qL versus normalized axial distance & = X I L of a Fixed-Free bar. The

classical BCs are U(§ =0) =0, u(§ =1) =0, and the non classical ones u' (£ =0) =0, u'(§ =1) = &

Fig. 99 Normalized axial strain u'/¢q versus normalized axial distance & = X/ L of a Fixed-Free bar. The classical

BCsare U(§ =0) =0, u(¢§ =1) =0, and the non classical ones U' (§ = 0) =0, u' (g =1) = &
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Fig. 100 Normalized axial double stresses s /(e1EL) versus normalized axial distance & = X/ L of a Fixed-Free

bar. The classical BCs are U(§ =0) =0, u(§ =1) =0, and the non classical onesu' (§ = 0) =0, u'(¢ =1) = &

Fig. 101 Normalized axial double stresses H o /(e1EL) versus normalized axial distance & = X/ L of a Fixed-Free

bar,for c=L/g=4 and various A values

107



As shown in the figures above, in order to restrain the strains at the bars
ends double stresses, directly related to the applied force P, are applied at
the bars ends and their value is independent of the A parameter, which
though, modifies the double stress distribution along the bar.

In the case where the strain at the ends is determined as P/EA -the value
of the bars ends in the classical problem- the solution is reduced to the
classical one, independent of the ¢ ratio. Thus, the bars’ behavior isn’t
always stiffer than the one predicted in classical theory, it can be the same
as the classical one, or ever less stiff provided that the right BCs are
applied.

Widely in the literature the assumption of restrained end strains is used as
non classical BC. That indeed dictates a stiffer behavior for the bar as it is
shown in the graphs above. This isn’t the case thought if u”>P/EA, in
which the bars’ displacement is greater than the one of the classical case.
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Another fixed-free bar is studied. It is the case that one end of the bar is
subjected to an axial displacement U,, while a tensile force P is applied to
its other end and the double forces Ry and R; at both ends of the bar are
known, i.e. the BCs are u(¢=0)=U,and P(=1)=P, and R(,=0)=R,and
R(=1)=R,. First, the case where the surface strain energy is
insignificant/parameter A=0, will be discussed and later the way the A
parameter affects the displacement field will be presented.

The displacement field takes the following form, when A=0:

u(E) = U, +£g+&{sir}h(0&*) _1} LR [siph(c@)}
EA " EA[ sinh(c) EA| sinh(c)

The function above shows that when no double forces are applied at the
ends of the bar, the bars behavior is independent for the g parameter, i.e.
no scale effects are present. Next, is displayed the effect of the double
forces to the bars’ behavior, a division of the solution that can be done
due to the superposition principle. It should be noted that the double
forces on each end of the bar affect in a different way its behavior, i.e.
they are not symmetric.

Fig. 102 Normalized axial displacement U /(R /EA) versus normalized axial distance & = X/ L of a Fixed-free

bar. The classical BCs are U(§ =0) =0, P(§ =1) =0, and the non classical ones R(& = 0) = RO' R(E=1)=0
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Fig. 103 Normalized axial strain u'/(R() / LEA) versus normalized axial distance & = X /L of a Fixed-free bar. The

classical BCs are U(=0)=0, P((=1)=0, and the non classical onesR(&=0)=R R(E=1)=0

OI

Fig. 104 Normalized axial double stresses o /(R / A)versus normalized axial distance & = X /L of a Fixed-
free bar. The classical BCs are U(§ =0) =0, P(§ =1) =0, and the non classical ones R (& = 0) = RO' RE=1)=0
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As in the case of a confined ends displacements, in this case too when
double forces are applied to an end of the bar its displacement field
cannot be reduced to the classical one when the L/g ration increases. Thus
if able to apply such double forces to the fixed bars end, its length
changes, even when no axial force is applied.

Note, though, that only the part of the bar which is near the end is
affected by the double forces. The rest of the bar may be displaced, but no
significant strain is anticipated. Hence, the variation of the bar’s length is
attributed only to the deformation of the affected by the double forces
part of the bar.

Next, the double forces effect on the free end of the bar is presented. The
main difference of this case to the one above is that the displacement and
strain fields are reduced to the classical ones for great ¢ values. The
behavior of the bar, though, is very similar in the two cases. They differ
due to a hidden imposed displacement in the first case.

Fig. 105 Normalized axial displacement u/(Rq /EA) versus normalized axial distance & = X /L of a Fixed-free bar.

The classical BCs are U(§ =0) =0, P(§ =1) =0, and the non classical onesR(£ =0) =0, R(§ =1) = R,
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Fig. 106 Normalized axial strain u'/(Rq / LEA)versus normalized axial distance & = X/ L of a Fixed-free bar. The

classical BCs are U(§ = 0) =0, P(¢ =1) =0, and the non classical ones R(§ =0) =0, R(§ =1) = Rl

Fig. 107 Normalized axial double stresses M /(R /A) versus normalized axial distance & = X /L of a Fixed-free

bar. The classical BCs are U(§ =0) =0, P(¢ =1) =0, and the non classical onesR(§ =0) =0, R(£ =1) = Rl
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In the case of non zero surface strain energy A#0, the displacement field
IS u=u,_,+u,, where u,— is the displacement field of a bar with A=0

described above and the u;, field is given below.

Ry sinh(cé’;*)_1 +& sinh(cg)
sinh(c) EA| sinh(c)

PL
U,_,(€)=U,+——&+
—0(8) = U, EAg EA

c
cosh[2 @a- 2&)}

! (é)—% 22 [ coth(c) l_l+cosh(c&_,*)—cosh(c&_,) +L11_
TUEA|L-| ¢ cosh(c) 1-2|c cosh(c/2)
R % _sinh(cg*)_l L _ coth(©) L cosh(eg®)
EA [1-%*| sinh(c) 1-2 cosh(c)
+R1{ 22 2 _si.nh(cg)} LN 2 {_siph(cg) tanh(c(l—zg)ﬂ}
EA |1-2°| sinh(c) 1-X sinh(c) 2

Due to the many parameters in this problem the effect of the | parameter
is displayed in the case where c=L/g=4

Fig. 108 Normalized axial displacement u/(P;L/EA)versus normalized axial distance & = X/ L of a Fixed-Fixed
bar, for c=L/g=4 and various A values. The classical BCs are U(§ =0)=0, P(E=1) = P, and the non classical ones

R(E=0)=0, R(¢£=1)=0
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Fig. 109 Normalized axial strain u'/(P; / EA)versus normalized axial distance & = X I L of a Fixed-Fixed bar, for

c=L/g=4 and various A values. The classical BCs are U({=0)=0, P(t=1) = P;, and the non classical ones
R(E=0)=0,R(E=1)=0

Fig. 110 Normalized axial double stresses Hosex /(P{L/ A) versus normalized axial distance & = X I L of a Fixed-

Fixed bar, for c=L/g=4 and various A values. The classical BCs are U({ =0) =0, P(¢ =1) = P, and the non classical
onesR(§E=0)=0, R(=1)=0



As in the case of the fixed fixed bar with double forces applied to its
ends, the surface energy results to non uniform / non classical behavior
from the bar even when only classical BCs are applied. Notice that
greater displacements and strains appear throughout the bar and also
double stresses appear, even though double forces are not applied at the
bars ends.

In the following figures the effect of double forces at a bar’s ends is
presented, when A#£0. When applying double forces to the fixed end of the
bar, the bar is shortened, and the greater the A parameter, the more the bar
Is shortened. When applying double forces to the free end of the bar, it
elongates. In contrast with the fixed end, for greater A values, the bar
elongates less. Thus the A parameter in any case contributes in a way that
reduces the bar’s length.

It is noted that double forces on either end, create a unique double stress
field for all A values, no matter their different effect on the displacement
and strain fields.

The next figures present the effect of double stresses to the fixed free bars
behavior. In is shown that the application of double forces triggers the |
length, in a way that it attempts to minimize the bar’s length. And for
greater A values the more the bar is shortened by the application of the
double forces.

Also, it is noted that the double stress field in this problem is independent
of the | parameter. So only the displacement and strain fields are affected
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Fig. 111 Normalized axial displacement u /(R0 / EA) versus normalized axial distance & = X/ L of a Fixed-Fixed

bar, for c=L/g=4 and various A values. The classical BCs are U(§ =0) =0, P(§ =1) =0 and the non classical ones

R(E=0)=R_, RE=1)=0

Fig. 112 Normalized axial strain u'/(R . / EAL) versus normalized axial distance & = X/ L of a Fixed-Fixed bar, for

0
c=L/g=4 and various A values. The classical BCs are U({=0)=0, P(6=1)=0 and the non classical ones

R(E=0)=R_, RE=1)=0



Fig. 113 Normalized axial double stresses Hex /(R0 / A) versus normalized axial distance & = X/ L of a Fixed-

Fixed bar, for c=L/g=4 and various A values. The classical BCs are U(§ =0) =0, P(§ =1) =0 and the non classical
onesR(§ =0) = RO, RE=1D=0

Fig. 114 Normalized axial displacement u/(RllEA) versus normalized axial distance & = X/ L of a Fixed-Fixed

bar, for c=L/g=4 and various A values. The classical BCs are U(§{ =0) =0, P(§ =1) =0 and the non classical ones
R(€=0)=0,R(E=1= Rl



Fig. 115 Normalized axial strain u'/(Rl / EAL) versus normalized axial distance & = X / L of a Fixed-Fixed bar, for

c=L/g=4 and various A values. The classical BCs are U(§=0)=0, P(6=1) =0 and the non classical ones

R(E=0)=0, R(=1) =R,

Fig. 116 Normalized axial double stresses Hsex /(RllA) versus normalized axial distance & = X/ L of a Fixed-

Fixed bar, for c=L/g=4 and various A values. The classical BCs are U(§ =0) =0, P(§ =1) =0 and the non classical
onesR({=0)=0, R(§=1) = R1



4.11.2.1ii. Conclusions

The following general conclusions can be drawn about the bars behavior.

Prescribing the bars degrees of freedom generally results to non
classical non uniform behaviors from the bar.

Restraining the bar’s ends strains does increase the bars stiffness,
especially for small L/g ratios

The bars behavior when instead of strain BCs, zero double forces
BCs are applied is the same as the respective classical one, no
matter L/g ratio.

The | parameter affects the bar in a way that minimizes its length,
by reducing its elongation, when in tension, and by additionally
shortening the bar, when in compression.

Any BC problem solution can be reduced to a classical one, when
appropriate BC combinations are applied.

The bar’s behavior, under most loading cases, for great c=L/g
values is reduced to the respective classical behavior
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4.11.3 1-D composite bar structures

4.11.3.1. Node function in composite 1D structures

Before addressing any specific problem, independent of the loading
applied, in a composite structure first one must investigate how a truss
node would function in the framework of the gradient elasticity theory.

The classical elasticity node is considered to be a rigid point body that
maintains the continuity of the bars’ ends displacement, while it allows
them to rotate independently. The node as a body only has displacement
degrees of freedom and no rotational ones and also needs to satisfy the
Newton’s first law of motion (XF=0). In the case of two collinear bars
joined with a node, the conditions above can be translated to

u_=u, and P_+P, + P

In the classical elasticity framework one BC needs to be determined at
each end of a bar. The node joins two bars thus the above BCs at the node
are sufficient for a well posed problem.

This is not the case in the gradient elasticity framework, where two BCs
need to be determined at each bars end, thus at the gradient node joining
two collinear bars four BCs need to be determined, for a well posed
problem. The classical conditions easily can be chosen to be the two BCs.
The choice of the two extra — non classical conditions is not as obvious
and needs to be discussed, since their effect to each bars behavior is
crucial. Polizzoto (Polizzotto, 2003) considered the node as an interface
between the bars. This is a fairly reasonable assumption and will be
followed in the greatest part of the present work. Polizzoto demanded that
besides the classical BCs, the strain and the curvature of the bars’
displacement to be equal at the interface, i.e.

u'_=u', and u"_=u",
Dealing with gradient elasticity and higher order differential equations, it
Is sure to use higher order BCs at nodes-interfaces as the ones discussed.
A reasonable choice thought needs to be made so that they represent the
real loading of the bar structure and provide the real bars behavior.
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Demanding that the strain of both bars at the interface is equal is a very
strict condition itself. However strain manipulation is one of the abilities
given by the variation principle and it is an acceptable BC, although
questions arise regarding the ability of the node’s body/interface’s to
Impose such a behavior.

On the other hand, demanding that both bars have the same curvature at
the interface as a BC is not as reasonable. It does not have any physical
support, and seems even more extreme than the one above. In the case of
dividing a bar in multiple bar elements and applying any BCs, using these
non classical BCs at the created interfaces, a continuous displacement
field is obtained that coincides with the displacement field of the original
bar. In other cases though where not all the bars are of the same material,
the same Young’s modulus and the same cross sectional area, it is
expected that discontinuities will appear in the composite bodies
displacement derivatives, which isn’t the case with these interface
conditions. Thus, demanding equal curvatures is not considered to be a
functional BC and other interface conditions are seeked after.

Instead of the curvature condition, demanding that the double forces R at
the interface are equal is considered more reasonable as the fourth BC.
This is not an arbitrary condition since it is obtained through the variation
principle. However, the double forces ., do not contribute neither to the
force nor the moment equilibrium of a body, and it should not be
necessary to make such a demand, based on classical elasticity concepts.
However, an assumption of a gradient version of Newton’s 3 law,
together with the assumption of an elastic interface between the bars, not
a body-node, justifies this BC in the sense that the two materials alone
interact with their boundaries, and the double forces are applied from one
another. This is the BC proposed in other interface elasticity problems, as
wave transmition by Yueqiu Li (Li, et al., 2015).

Following the Kordolemis’ (Kordolemis, et al., 2013) analog of the
pretwisted beam, it is observed that at an interface that no extra axial
stress is applied, both the axial force and the bimoment should be equal,
thus the respective R term should be equal too. This is the case of an
interface of two similar in geometry and properties structural parts.
However, besides the loading, the R term presented depends on several
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material and cross sectional parameters of the body thus the assumption
of the R equality should not be generalized. It should be noted, though,
that the analogy is not perfect since in this case there are exactly four
degrees of freedom, while, the pretwisted beam has six, and assumptions
are made for each of them.

A direct answer to this search is obtained by Weitzman in the field of
couple-stress theories. He notes that assuming an elastic interface, the
energy due to the couple-stresses (E=pwy in his case) should be fully
transmitted across the two bodies interface and thus the BCs chosen are
W+=L. and .=+ In his study. This note is translated in the present
study, in gradient elasticity, as pyxx.= Hxx+ and u’=u’, — R=R, and u’.
=u’,, Iin the case of identical cross sections that are being joined. This,
though, is considered to be the BC and in the case of an interface between
two different cross sections. As noted before, this does not come fully in
agreement with the conclusion obtained through the pretwisted beam
analogy. But that can be attributed to the imperfection of the analogy.

It is also noted by Weitzman that it is equally reasonable to assume that
no gradient strain energy is submitted through the interface, thus the BCs
can be any of the following combinations

u_=0and u', =0
R_=0and u, =0
u.=0and R, =0
R_=0and R.=0

The last one, Weitzman notes, is the physically most possible and, as
shown earlier, is a case that the bars behaves classically independent of
the microstructure. Since the behavior of trusses with such nodes is the
classical, which is known and no size effect is predicted, this case will not
be studied.

There seems to be no reason that the node’s - interface’s BCs are not
symmetrical thus the second and third BC combinations seem not to have
some practical application and they will not be used.
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The first BC combination is the one most commonly met in the literature,
and as noted before is considered to be a very ‘intrusive’ BC, that induces
very non-uniform stiffer than classical behavior of the bar. It so also
noted that this BC implies that the double stresses at the two different
adjoining bodies take different values, which, however, are linear
functions of the axial forces applied or the displacements applies at each
bars ends, Ry, =—-R; =tanh(c/2) PL/c=gtanh(L/2g) P or
R,=-R, = EAM(u1 —U,), in the case I1=0.
c—2tanh(c/2)

The node that restrains the strains of the connected bars is hereupon
referred a rigid node.
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4.11.3.1i. 1-D Stiffness Matrix

Next step to solving multiple bar problems is obtaining the bar element
stiffness and flexibility matrices of a gradient elastic bar element.

First, the stiffness matrix will be acquired. The stiffness matrix calculates
the forces applied to the bar in order to accomplish certain displacements
in the framework of the classical elasticity theory.

There are several ways to construct the stiffness matrix. Here the
analytical solutions combined with the force equilibrium are used. The
displacement field in the case of prescribed nodal displacements dxi and
dxj is u= dxi+( dxj- dxi) &

while fxj=Pj=EAu’=EA/L( dxj- dxi)=k( dxj- dxi)

and the force equilibrium demands that fxi+ fxj=0-> fx-=- fxj=- k( dxj-
dxi)

thus the local coordinate system stiffness matrix is

fxi _ K -k dxi
fi koK dy
In the gradient elasticity framework, there are two more degrees of

freedom — the stains at the bar’s ends - the respective work conjugates Ry
and R,
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The displacement field of a bar with prescribed nodal displacements and
strains is know, thus the f, ans ry generalized forces can be found. Once

again the stiffness matrix satisfies the equation f =K,d, >f=K-d, in
which case

f=[fd ni B§ ng]' =[-Pe-0 Re-0 Pe-y Re-=p]
d=[dxi exi dxj exj] =[dxi —oxi dxj gxj]’

The choice above for the fand dvector components is made based on the
assumption that the 2D — 3D gradient theory by (Polyzos, et al., 2003)
can be simplified and used to 1-D problems. Thus, the bars non classical
degrees of freedom are q=o0u/onat the ends and their work conjugates

R=nA-p-A, U being the displacement vector, A the unit normal vector
on the bodies surface, i.e. the bars ends, and p being the double stress
tensor. In 1D problems they are simplified to:

—| =U'¢=0NE=0=-U'E=0X=—€E=0X and R| =R =0X
on £=0
£=0
au 1 A 1 ' & o)
= =U'e=-pAE=1=U"E=-DX =¢g¢E =X and R|§_1 =R =K
a _
=

The relations above show that no matter which end of the bar is
considered, the double forces R positive direction is the same as the
longitudinal axis’ direction, while, the “strain” degree of freedom,
depending on the cross section has a different positive direction.

After some simplifications the local coordinate system stiffness matrix is
found to be the following
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Kll KlZ K13 K141
~ K K K
K = 22 23 24 _
K33 K34
| Symm Kas |
1 gtanh(L/2g) -1 gtanh(L/2g)
2
—g° —Ll+Lg/tanh(L/qg) 2 .
—gtanh(L/2 +9° —Lg/sinh(L/
EA { + 21Ig tanh(L/ 29) } ’ (Li29) J J (L'e)

~ L—2gtanh(L/2g) 1 _gtanh(L/2g)

2
symm —g“+LI+Lg/tanh(L/qg)
I —2lgtanh(L/2g)
- C C 7
— tanh(c/2 - tanh(c/2
5 (c/2) 3 (c/2)
1 1
“¢ tanh(o) L L
(¢ tan —gtanh(L/2g) ——=
N th hel2 ¢ sinh(c)
A A+ . anh(c/2)
c—2tanh(c/2) c —tanh(c/2)
L
1 1
"¢ tanh(e)
symm L) ¢ tan
+x—2%tanh(c/2)

where ‘symrﬁ’ refers to the symmetric nature of the stiffness matrix. In
the case that A=0 the stiffness matrix is simplified:

1 gtanh(L/2g) -1 gtanh(L/2g)
s EA —g® +Lg/tanh(L/g) —gtanh(L/2g) +g2—Lg/sinh(L/g)
L — 2g tanh(L / 29) 1 —gtanh(L/2g)
symm — g%+ Lg/tanh(L/g)
c/L tanh(c/2) —c/L tanh(c/2)
B EA —L/c+L/tanh(c) —tanh(c/2) L/c—L/sinh(c)
~ c—2tanh(c/2) c/L —tanh(c/2)
symm —L/c+L/tanh(c)

The stiffness matrices of the present work are exact, so one finite element
per physical member can be assigned and the exact solution still be
obtained. Of course, the expressions of the stiffness coefficients here are
more complicated than the ones in classical elasticity but they are in
closed form and hence the additional computational effort is relatively
small.
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4.11.3.iii. 1-D Applications

Several examples are presented that indicate how the bar elements can be
employed for solving problems of more complex loading than the simple
bar with end forces and double forces, without using complex distributed
force functions and with perfect agreement with the behavior predicted by
the theory.

The majority of the numerical values used for the different parameters of
the problem in the following examples are obtained by (Kahrobaiyan, et
al., 2013) while some geometrical parameters were chosen properly.

First, the elements’ response to a fundamental already known problem is
tested. Assume a bar of made of gradient elastic material with internal
length parameter g=11.01 pum, I=Oum, Young’s modulus E=1.44 GPa,
cross section area = 78.54um?, fixed at one end at x=0, while an axial
force P=10* uN is applied at its free end and the strains at both ends are
restrained and equal to zero, i.e. u(¢=0)=0,u'(=0)=0,u'(E=1)=0,
P(¢ =1) =10*uN

Fig. 117 FEM and analytical solutions of the axial displacement U of a bar in tension with restrained end strains
versus normalized axial distance & =X/L. The classical BCs are U({=0)=0, P(§=1)=P, and the non
classicalonesu'(§ =0) =0, u' (=1 =0
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Fig. 118 FEM and analytical solutions of the axial strain u' of a bar in tension with restrained end strains versus
normalized axial distance & = X/ L. The classical BCs are U(§ =0) =0, P(£ =1) = P, and the non classical ones
uE=0)=0,uE=)=0
In the figures above, the bars displacement and strain fields are presented
as obtain by dividing it into 2, 4, 8, 16 parts and using the same number
of bar elements connected by elastic nodes to model it. The FEM
solutions describe perfectly the bars displacement and strain fields, no
matter how big or small each element is chosen (the discretization). This
IS a very basic gradient elastic loading case, and the results are extremely
satisfactory. Next, a less simple loading case puts these bar elements to
the test.

In this, second, problem the same bar is
studied, subjected to a different load.
This time the concentrated force P is
applied at the bars middle instead of its
free end while no double forces are
applied at its ends. The analytical
solution was obtained using the
distributed load function

qx)=08(x—L/2)P, & being the dirac
Fig. 119 Schematic representation of the ]
second problem, and the four part function and P the concentrated load, and

discretization used.
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the BCsare u(¢=0)=0, R(=0)=0, R(¢=1)=0, P(=1)=0

The analytical solution obtained is:

_ PLJ, sinh(c/2) sinh(cg) CIV, Y 1. (Cco
u(a)_EA{E‘> c sinh(c) +<E’ 2>(& 2+Csmh(2(1 ZQ)B}

Where (s) denotes the Heaviside step function, £=x/L andc=L/g.

In the following figures is shown that, in this non standard case too, the
bar elements can describe perfectly both the bars longitudinal
displacement and strain, even when the discretization chosen is quite big,
I.e. the length of the elements is half the bars length.

Fig. 120 FEM and analytical solutions of the axial displacement U of a bar with a force P applied at its middle versus
normalized axial distance & = X/ L. The classical BCs are U(§{ =0) =0, P(§ =1) =0, and the non classical ones
R(=0)=0,R(E=1)=0
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Fig. 121 FEM and analytical solutions of the strain u' of a bar with a force P applied at its middle versus normalized
axial distance & = X / L. The classical BCs are U(§ =0) =0, P(¢ =1) =0, and the non classical ones R(§ =0) =0,

R(=1)=0

=0, P, Third, it is shown that these
R=0 Qo R=0 elements can be used to
s model cases of distributed
_g_ axial load. In this example,
I the second half of the

L aforementioned  bar is

B loaded with a distributed
u=0, P=AP/2 P=AP, P=AP/2, ) . .

R=0 R—0 R=0 R—0 axial tensile load, while no

0 Il A double forces are applied at

1 it’s ends. The analytical

T solution was obtained using

L the distributed load function

Fig. 122 Schematic representation of the third problem, and ((X)=<X-L/2> do, <eo>

the 21 part discretization used.

being the Heaviside step
function and o=100uN/um the distributed load. The BCs read
u€=0)=0, R(€=0)=0, R(E=1)=0, PE=1)=0

The analytical solution obtained is
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u(@:qé:z {%_ZSinhZ(cM) sihh(c§)+<&_1>(_§+§_1+%sinhz(g(é_lnj}
c sinh(c) 2 2 2 c 2 2

Where () denotes the Heaviside step function, &,=E andc=".
g

In order to model this loading there were used 21 bar elements, one for
the first half of the bar, since as noted before, they describe the bars
behavior perfectly, even when big elements are used, and twenty bar
elements of the same length AL=L/40 to model the second half of the bar.
The load was modeled as twenty one concentrated forces AP=qoAL
applied an the nodes of the bar, except for the nodes 1 ans 21, to which
half this force is applied (AP/2).

As show below, the FEM results for both the bars displacement and the
strain are in perfect agreement with the analytical solution, even in this
approximation of the external load.

Fig. 123 FEM and analytical solutions of the axial displacement U of a bar with with distributed axial load at half its
length versus normalized axial distance & = X/ L. The classical BCs are U(§{ =0) =0, P(§=1) =0, and the non
classical onesR(§ =0) =0, R(§=1) =0
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Fig. 124 FEM and analytical solutions of the axial strain U’ of a bar with with distributed axial load at half its length
versus normalized axial distance & = X/ L. The classical BCs are U(§ =0) =0, P(§ =1) =0, and the non classical
onesR(=0)=0, R((=1)=0

A this point it must be noted that using the developed bar elements allows
the application of double force loads at any point of the bar, even,
practically, distributed double forces. This is not, though, a type of load
that is directly supported by the analytical theory.

All the examples above were cases that could be addressed by the theory
using jump and other functions. That, however, results to difficult and
time consuming integrations, which sometimes may even not have closed
form integrals, so the FEM provide an alternative route to address such
problems.

The fourth and last example is one that cannot be addressed by the theory
as developed earlier due the greater complexity of its geometry, but
aspires to be solved nonetheless. It is inspired and also addressed by
Kahrobayan (Kahrobaiyan, et al., 2013) and represents the longitudinal
behavior of a micro drill subjected to an axial load.
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Fig. 125 Schematic representation of the third problem(microdrill).

The drill is assumed to be of length L=132,12um, material length
parameters g=11.01um, I=0Oum, Young’s modulus E=600GPa and
circular cross sections R;=4R,,R,=L/20. An axial force P=10* um is
applied and no external double stresses.

It is modeled using bar elements of the same characteristics except cross
sectional area, which depends on each elements position in this composite
structure, as indicated from the geometry. It is modeled by dividing it to
20, 40 and 80 parts and the same number of bar elements. The figure
below presents the drills behavior as obtained using both classical (red
color) and gradient (blue color) FEMS.

Fig. 126 FEM and analytical solutions of the axial displacement U of the microdrill versus normalized axial distance
& = x/ L. The classical BCs are U(§ =0) =0, P(§ =1) =0, and the non classical onesR(£ =0) =0, R(§ =1) =0
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Note that resulting displacements depend on the number of elements
used, which is to be expected, since an approximation of the true
geometry is chosen, and the more elements are used, the geometrical
modeling changes significantly and gets more exact. The solution with
the most elements is considered to be the most accurate. In every case,
though, the displacement calculated using the gradient FEMs is smaller
than the one obtained using classical FEMS.

The stiffness matrices used to solve the problems above are to be used
only when it is assumed that the elements interface is fully elastic. In the
case that rigid nodes are assumed instead of interfaces, thus the strain at
each elements ends is assumed to be zero, the stiffness matrix above can
be simplified to a 2 by 2 matrix

R = EA -
B L-2gtanh(L/2g)|-1 1
f=[h 4] =[-Pe-0 Pe-n]

d=[dx dq]

In this case the strains at the end are a priori known and the double forces
R applied by the node at each bar are different and not of great interest
since they also are not aggregated in this node model. Note that the

double forces R can easily be calculated as:
Ry Ry _ tanh(c/2) PL _ 1 Au
EA EA c-2tanh(c/2) EA c—2tanh(c/2) L '

=Uu; —U,

This stiffness matrix is very similar to the classical elasticity one and
when the g length is small compared to the length L is simplified to the
classical one, but when the L/g parameter is not very high then this matrix
denotes a much stiffer behavior of bar element. Dividing a gradient bar is
several elements joined by these nodes, this composite body’s behavior
will be much stiffer than the one given by the analytical solution, since
the smaller an elements length gets, the stiffer it gets, since the material
parameter g is constant and each elements ends strain is assumed zero.
The reason for such a result is that in this case is that this is not an
equivalent problem to the one of the whole bar. The strain at several
points throughout its length is determined and assumed zero, jumps of the
double stresses and curvatures are applied, which are not present in the
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original problem. A simple example of a bar that confirms the
observation above is the following, which compares the behavior of a bar
with zero end strains under axial tension.

i.e. the BCs are intended to be u'(¢=0=u(=1)=0, u(=0)=0,
PE=D)=P

The numerical values used for the different parameters of the problem in
the following example were obtained by Kahrobaiyan (Kahrobaiyan, et
al., 2013) in their majority and some were chosen properly. it is assumed
that E=1.44 GPa and ¢g=11.01 um, p,=10* uN, c=L/g=8, I=0, A=

78.54um’

Fig. 127 FEM and analytical solutions of the axial displacement U of a bar in tension with restrained end strains
versus normalized axial distance & = X/ L using rigid nodes. The classical BCs are U(§=0)=0, P(£=1) =P,

and the non classicalones U' (§ =0) =0, u'((¢=1) =0
Although, these nodes are not to be used as finite elements to model bars,

it does not mean they cannot be used in truss modeling problems.
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4.11.4. 2-D Bar Structures - Trusses

4.11.4.1. Node function in composite 2D structures

In the framework of classical elasticity, 2D trusses are made by joining
bars using nodes. These nodes are considered to be rigid bodies and their
role is maintaining the continuity of the displacements while allowing the
relative rotation of the bars. The node itself, as a point body has no
rotation degrees of freedom, and only forces can be applied to it, no
moments. Truss structures are loaded solely via their nodes, thus, no
moments can be applied to the bars, which, this way, are loaded only
axially.

However, studying the way that the bars are connected to the node in real
trusses, one will see that usually, each bar is pinned to the node using
more than one bolt. This type of connection allows moments to applied,
since the bolts’ distance can function as cantilever for forces couples. So
it needs to be investigated whether the believed to be truss functions as a
total of bars pinned together using nodes or as a total of beams fixed
together at different angles. This problem is addressed in Appendix 1 in
its most simple form, i.e. the case of two bar truss.

The following conclusion is drawn by that study: the bars’ moments can
be ignored, and the joint can be considered as a node, in the case that the
bars’ lengths are significantly greater than their other dimensions.
Always, in trusses, slender bars are used; therefore, the assumption of no
moments is acceptable.

As pointed out earlier, the node is a point body. Thus, Newton’s law of
motion it needs to be satisfied, besides the continuity of the displacements
at it. In the case of i bars pinned together to a node, the following
relations should be satisfied:

uX' :UX’ u.,. :Uy fOI‘ and ZPXI +PXeXtema| =0, ZP}/, +Pyexterna| :0

Any problem, either statically determinate or indeterminate, can be
solved if the bars’ properties and either the displacement or the external
force in the direction of each axis is known each node. The unknown
displacements can be found using the stiffness method.
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In the case of a gradient elastic truss, knowing these relations does not
suffice in order to find the trusses behavior. In contrast with the classical
bars which have two degrees of freedom, the gradient bars have four, so
at its of their ends two BCs need to be determined.

The choice of the non classical BCs depends on the kind of node that is
used. The easiest node to assume is the rigid node, who restrains the
strains of the bars’ ends, the extra BCs are already known and very
simple. The problem can be solved using a modified form of the stiffness
method, using the gradient bars’ stiffness matrix, which is presented in
the next section. This type of node has been used by (Olufemi, 2011),
who, however, did not use the stiffness method they way it is presented
here, in order to obtain the nodal displacements. As expected, stiffer than
classical behaviors were obtained for the structures considered when the
microstructure parameter g was not insignificant.

Another kind of node should be considered, one that does not restrain the
bars’ strains, but allows the application of external double forces to the
bars, following a gradient type generalization of action-reaction law.
Also, as in the case of the 1D, the strain tensor of all connected to the
node bars should be the same at the node, and its form should be the
following

exx O
0 e&yy
since, the two deformations that can be considered in this model are the
exxand eyybecause no shear loads can be applied to the bars and no
equilibrium equation of the bars involves either shear stresses or strains.

These demands are based on the assumption, that the node problem can
be addressed as a plane problem of a continuous body.

Bars are 1D objects so the assumption can be made that the 1D boundary
conditions should be satisfied. Thus, the condition ou/dn = ehshould be
satisfied for all bars joined to the node, no matter the angle they form.
Due to the form of the displacement fields, ou/dA=(V®u)-h=g-n,

which means that for any angle that the bars might be joined €-f =¢f.
Hence, the strain tensor € must be the unit tensor multiplied by a
constant.
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4.11.4.1i. 2-D stiffness matrix

All the problems addressed to this point were one dimensional, so the
stiffness matrix already presented was sufficient for their solution.
However, two dimensional composite bar structures (trusses) are widely
used in real time applications. In order to solve these problems it is
needed to obtain the global stiffness matrix of a gradient elastic bar.

First, the 2-D stiffness matrix of a classical bar element is obtained, and
next, the gradient bar element 2D stiffness matrix is presented.

fyi, dyi fyj, dyj
y
X
fxi, dxi fxj, dxj
Node 1 Node j

Fig. 128 Forces and displacement vectors expressed in the local coordinate system of a classical bar

The force and displacement components of the classical bar element are
linked by the member stiffness relations fizKijdj—>f=R~d which is

written out in full is:

The element supports only axial loads, so no perpendicular to the axis of
the bar forces are to be applied and any perpendicular displacements do
not raise the stress of the bar, so, this relation is simplified to:

_p 1 0 -1 0][d,
0| EA|0 O 0 0f|d,
P| L|-10 1 o|ld,
0 0 0 0 ofld
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These are the node force and node displacement vectors and the member
stiffness matrix in local coordinate system x,y. In order to assemble bars
that are not collinear the forces, displacements and the stiffness matrix
should be expressed in the global coordinate system X,Y (capital letters).

q fyj, dy;

fxi, dxi

Fig. 129 Forces and displacement vectors expressed in the blobal coordinate system X,Y

It is well known that a vector F when

fy k expressed in the two coordinate systems
fy fx X,y and X,Y, it’s components follow the
lationship
Y f‘{ re

ﬂ Fi | | cos(6) —sin(6) . F,
* F, | |sin(6) cos®) | |F,

X SF =T-F, _T_:{C(-)S(G) —sin(e)]

sin(0) cos(0)

Fig. 130 vector analyzed in two coordinate
systems x,y and X,Y

=1 _%1 ={ co_s(e) sm(e)} |
—sin(0) cos(6)

where the subscripts G and L denote that the vector are expressed with

respect to the global (X,Y) and the local (x,y) coordinate system

respectively.

Using this identity the relation of the node displacements and forces in
the local and global coordinate systems is
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T O T O ~ [0 0
fG=I 9~fLand d, = T 9~dL,O=
OT OT 0 0

The member stiffness relation is transformed as follows.
fL =K_-d_ QE (_:?]fL =E ?]RL d, o fg =E ;)]RL ET _Ti]de
< fg = IZG -dg, RG =E; f:l_)]IZL FE)T _.?T} which s the global stiffness matrix
Gradient global stiffness matrix

Following the same steps, first the local and the global stiffness matrix of
a gradient elastic bar is found.

f=[fk fyi i ryi & fyj g ry]' =[-Pi o Ri o Pj o Rj of

d=[dxi dyi exi eyi d§ dyj e eyj

Al
<
Il

However, no perpendicular to the bars axis force, double force,
displacement or strain does not affect the bar, so the elements of the 2",
4™ 6™ and 8" row and column are all zero. So it is simplified to
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O O O O O o o o

O O O O O o o o

O O O O O O o o

O O O O O o o o

The non zero elements of the matrix are the same as the ones of the 1D
element stiffness matrix and in the same order, i.e. this matrix can be
obtained by adding a zero row and column after each row and column
respectively to the 1d stiffness matrix.

The global stiffness matrix takes the following form

Al
®

Oi1 O Ot

O Ot O

Ot 1 O O
—41 O O O

X

Ot O Ot

—1
4

o Ot 1! O

o o O

= o1 01 O
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4.11.4.1ii. 2-D Applications

Two truss problems will be addressed for each node. One problem that is
statically determinate, in its classical meaning, and one statically
indeterminate.

In the first problem considered, a two
bar plane truss is loaded with a
horizontal force P=10"uN at its top
node. The bars are pinned rigid nodes,
and they form an angle of 40°. Each
bar is of length L=55um, Young’s
modulus E=1.44 GPa and of cross
sectional area A=78.54 pum’. For the
material length parameter g, four
values are considered, g/L=0.5, 0.25,
0.125, 0.05, while | parameter is
assumed to be zero. The trusses
response, to this loading for each
Fig. 131 the 2D truss of the first problem adressed material |ength is calculated using a

generalized stiffness method which is

2: PX:P,PY:O 5
exx=evr=0

3:ux=uv=0,
exx=¢gry=0

1:ux=uv=0,
exx=¢cyy=0

outlined further on.

There are three nodes, thus the structures degrees of freedom are 3x4=12.

The generalized force and displacement vectors are:

f=[fx, fy, o 1y fxo fy, G 1y, fxg fys rxg rys]
d=[dx, dy, exx, &yy; dx, dy, exx, eyy, dxs dy; exxs &yys]'

In order to facilitate the assembly of the total stiffness matrix, the
elements global stiffness matrix is divided into 16 2 by 2 matrices as
shown below.
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~

that form the global matrix, i.e. Kj;

~ |1
Kij = K2i—1, 2j—1'T'|:0

0

0] ~ (@
]TT =Kaig 2j—1'|:

% k,I

+€0s20)/2
sin20/2

sin26/2
(1—c0329)/2}
The global stiffness matrix of the bar with ends at the nodes k| is referred
to as I~<Gk", and the k,I superscripts are also added to the Rij matrices

Now, the assembly of the structure’s stiffness matrix can be done exactly
as the classical theory indicates.

[ X1 fyl ]
rxl;ryl
fx2;fy2
rx2;ry?2
x3;fy3

rx3;ry3

Kii K K3 Kii

Ky Ky K3 K3;

Ky Ky (K +KG Ky +Ky | KE K

Kii Ki |KE+KE KZ+KP| Ky K3}
K% Ky Ky KE
Koy Ki Ky KY

| exx 2;eyy2

[ dxLdyl |
exxl;eyyl
dx2;dy?2

dx3;dy3

| EXX2;eyYy?2 |

From the displacement vector, only the terms dx2;dy2 are unknown and

all the other terms are zero. To find the unknowns, the order of the
equations and the unknowns is changed so that all the known forces,
double forces and the unknown displacements and strains are placed as
the first terms of the respective vectors. This way a new matrix is created.

[ fx1;fyl |
rx1; ryl
P;0
rx2;ry?2
x3;fy3
| rx3;1y3 |

P;0
X1, fyl
rx1;ryl
rx2;ry2
x3;fy3

| rx3;1y3 |

Kif Ki Ky [T oo
Kyi Kz K3 ’ 0,0
Ri? R RE+RY RY+RY RY RE||oadyz|
Ki2 KL OKEZ4KZ KEZLKEE K3 KA 0;0
K3 Rz k23| 00
K3 K K| [ 00
I—ll
KE+ K | KE KE KE+KE KE K [dx2idy2]
Kif |Kif K 0,0
K35 K3 K 0,0
KiE+K5: K K K 23 K% K23 00
K3 K23 R23|| 00
K K22 R22|| 00
I—21
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The new matrix is divided in four parts and the unknowns are easily
found using the following relations, (in this specific problem)

[dx2 dy2]=L,; [P 0]+ L, -[00 00 00 00 o0

[fxifyl rxdryl rx2ry2 fx3fy3 rx3ry3] =L, [dx2dy2]+L,,-[00 00 00 00 00

The following matrices present the displacement of the top node of the
truss, as well as the external forces and double forces applied to the truss
by the nodes, for each case of the g length that was considered.

0/L=0.5 0/L=0.25 0/L=0.125 0/L=0.05 g/L—0-classical
dx2(10™m) 0.0496 0.1077 0.1559 0.1871 0.2079
dy2(10*m) 0 0 0 0 0

0/a=0.5 0/a=0.25 0/a=0.125 0/a=0.05 g/a—0-classical
fX1(N) -0.0050 -0.0050 -0.0050 -0.0050 -0.0050
fy1(N) -0.0137 -0.0137 -0.0137 -0.0137 -0.0137
x2(N) 0.0100 0.0100 0.0100 0.0100 0.0100
fy2(N) 0 0 0 0 0
x3(N) -0.0050 -0.0050 -0.0050 -0.0050 -0.0050
fy3(N) 0.0137 0.0137 0.0137 0.0137 0.0137

g/a=0.5 g/a=0.25 g/a=0.125 g/a=0.05 g/a—0-classical
rx1(10°Nm) -0.1047 -0.0663 -0.0344 -0.0137 0
ry1(10°Nm) -0.2877 -0.1821 -0.0944 -0.0378 0
rx2(10°Nm) 0 0 0 0 0
ry2(10°Nm) -0.5754 -0.3642 -0.1888 -0.0756 0
rx3(10°Nm) 0.1047 0.0663 0.0344 0.0137 0
ry3(10°Nm) -0.2877 -0.1821 -0.0944 -0.0378 0
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As expected, the use of the rigid node results to smaller displacements,
especially when the microstructure is significant. Also, no matter the
microstructure, each bar bears the same axial load, which was to be
expected, since it is determinate truss. The double forces needed to
restrain the bars’ strain are smaller for smaller microstructure lengths g.

2 :PX:P,PYZO,

4:Px:0,PY:0,

sxx—evy—0

1:ux=uy=0,

P

exx—cvy—0

Lsqrt(3)

s

3 :PXZO,UYZO,

sxx—evy—0

The second problem addressed is
the case of the statically
indeterminate truss in figure 132.
The bars are assumed to be of
length L=5mm, Young’s modulus
E and cross sectional area A. The
material parameter | is assumed
zero and six values are assumed for
the g length, g/a= 0.5, 0.25, 0.125,

0.005, 0.0001, 0.000001.

Fig. 131 2D indeterminate truss of the second problem |n the f0||0Wing matrices,

addressed

the

normalized displacement of the
nodes 2, 3 and 4 are given for the different g values that were considered.
Also the external forces and double forces applied to the bars by the
nodes are given.

g/L=0,5 9/L=0,25 9/L=0,125 [ g/L=0,005 [ g/L=0,0001 | g/L=0,000001
d2x/(PIEA) (m) 0,008745 0,013644 0,016428 0,019110 0,019219 0,019221
d2y/(P/EA) (M) -0,000873 | -0,001284 | -0,001494 | -0,001699 | -0,001707 -0,001708
d3x/(P/IEA) (M) 0,001635 0,002628 0,003215 0,003778 0,003801 0,003802
d4x/(P/EA) (M) 0,000817 0,001314 0,001607 0,001889 0,001901 0,001901
ddy/(P/EA) (m) -0,001054 | -0,001614 | -0,001924 | -0,002223 | -0,002236 -0,002236

9/L=0,5 9/L=0,25 9/L=0,125 [ g/L=0,005 [ g/L=0,0001 [ g/L=0,000001
P1x/P -1,000000 | -1,000000 | -1,000000 | -1,000000 | -1,000000 -1,000000
Ply/P -0,866025 | -0,866025 | -0,866025 | -0,866025 | -0,866025 -0,866025
P3y/P 0,866025 0,866025 0,866025 0,866025 0,866025 0,866025
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0/L=0,5 0/L=0,25 0/L=0,125 0/L=0,005 0/L=0,0001 | g/L=0,000001

-2,2899E-03 | -1,2429E-03 | -6,2496E-04 | -2,5000E-05 | -5,0000E-07 | -5,0000E-09
R1x/P (m)

-1,9999E-03 | -1,0777E-03 | -5,4124E-04 | -2,1651E-05 | -4,3301E-07 | -4,3301E-09
R1y/P (m)

2,0575E-04 | 9,1991E-05 | 4,1360E-05 | 1,5292E-06 | 3,0504E-08 3,0502E-10
R2x/P (m)

-3,7783E-03 | -2,0069E-03 | -1,0109E-03 | -4,0653E-05 | -8,1319E-07 | -8,1319E-09
R2y/P (m)

5,56886E-04 | 2,7127E-04 | 1,2404E-04 | 4,5877E-06 | 9,1511E-08 9,1506E-10
R3x/P (m)

-2,3563E-03 | -1,2370E-03 | -6,1288E-04 | -2,4299E-05 | -4,8585E-07 | -4,8584E-09
R3y/P (m)

-1,0307E-19 | -1,5441E-19 | -1,9620E-20 | -2,3816E-21 | -1,3692E-23 | -5,5050E-25
R4x/P (m)

-4,3368E-19 | 2,1684E-19 | 5,4210E-20 | 3,3881E-21 | -5,2940E-23 4,1359E-25
R4y/P (m)

1 ux=ur=9,
Rx=Ry=0

In this case too, using the classical theory, bigger displacements are
calculated. Also, when the microstructure to length ratio is big (g/L=0.5)
the smallest displacements are calculated, half of the classical ones.
However, the smaller this ratio is, the greater double stresses that the
nodes need to apply. The way the forces are distributed to the nodes is not
affected by the microstructure.

If not interested in the double forces, then instead of using the full
stiffness matrix, one may use the global transformation of the simplified
2x2 stiffness matrix for the bar with restrained end, given in last problem
of section 4.11.3.iii. . In other words, the classical stiffness method theory
may be used, using the gradient element stiffness matrix that the non
classical degrees of freedom and the
non classical ‘forces’ are eliminated.

P

2:Px=P.Pv=0
Rx=Ry=0

When attempting to address the
respective two problems using the
‘elastic’ node instead of the rigid one
with no extra double forces applied to

the nodes, the equation matrix
becomes singular. Thus, they are not
well posed and it is not possible to

146



assume such a node. The reason for this conclusion will be explained
next.

The classical properties of a node are attributed to the gradient node too,
and two non classical properties have been attributed to it:

e One, it is assumed that external double forces can be applied to it
and then be distributed to the bars.

e Two, it 1s assumed that the strain tensor at the bars’ ends connected

) 0
to the node is the same: {SXX }
0 e&yy

In any determinate problem the double forces R can be analyzed and the
R BCs of each bar can be determined, thus their displacement fields can
be found since the forces, too, in determinate trusses are easily found.
However, the strain fields that are this way calculated at the ends of the
connected bars are not of the form assumed so it is to be expected that
this method crushes. Thus, this node model is not acceptable.

Problems of determinate trusses where nodal double forces are assumed
to be applied can be solved following the next steps:

e The axial double forces applied to each bar member can be found
using the assumed generalized action-reaction law.

e These double forces elongate the bar by a length AL=(R;+R;)/EA,
where 1 and j are the end points of the bar, and the positive
direction for both R vectors is away from the bar’s main body.

e This extra length can be integrated in the classical methods the
same way that elongation due thermal strains is considered.

For indeterminate trusses to be solved this way, it first is needed to
describe how the double forces will be distributed to the connected
members, and then the same steps may be followed.

Finally it is noted that anothe types of nodes could be considered. For
example a node that the applied double forces and the axial force follow a
linear relation. This might be the result of the way that the connection of
the bodies is actualized.
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Truss problems with this type of nodes be solved by using a similar to the
classical stiffness 2x2 matrix, that is be obtained through gradient
elasticity, by substituting the relation of the double forces with the axial
force to the respective gradient problem solution. This way, the new
force displacement relation is obtained and it can be used in order to
construct the member stiffness matrix as in the classical case. The case of
the rigid node can be considered as a special case of this type of node, in
which the relation of the forces and the double forces applied at the bars’
ends is the following:

R, =-R; = tanh(c/2) L |P=kP, k=constant
c—2tanh(c/2)
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4.11.5. Conclusions

The following conclusions can be drawn about the composite bar
structures:

Two types of 1D nodes were considered, the rigid and the elastic
node.

The rigid node restrains the joined elements ends strains and the
structure is stiffer than one using elastic nodes

The elastic node functions as an interface and demands that the
strain of all joined member is the same and the double forces at the
interface follow a generalized action reaction law.

The elastic node can be used in modeling continuous 1D structures
under any loading with very satisfactory results

The 1D and 2 D stiffness matrices of a gradient bar were obtained
A generalized stiffness method for gradient elastic for 2D and 1D
problem was outlined

In 2D structures there was not found a generalized form of an
elastic node

Determinate and indeterminate structures with rigid nodes, under
simple loading were solved using the stiffness method

Another type of non holonomic 2D node was proposed.
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5.Appendices

5.1. Appendix I: Classical truss node function investigation

In this appendix, is tested the assumption that the bars of a truss when
connected to a node are subjected only to axial loads. This means that no
transverse loads or bending moments are significant, so they can be
ignored.

It is noted that in real trusses more than one bolts are used to connect
each bar a node. This connection in general may allow the development
of bending moments. For this reason, the truss with the node is modeled
as a lambda beam. A lambda beam is a continuous beam consisting of
two beams pined at one end and fixed together at an angle at the other,

Practically, by substituting the truss by a continuous beam, the worst case
scenario is being taken into account, which assumes that the choice of a
node connection is incorrect, both moments and transverse forces are
applied to the bar, which in reality are beams, and the degree of freedom
of the relative rotation of the beams is restrained.

The material and geometrical | Property Beam 1 | Beam 2
. Length Iy l2
properties  of eaF:h bearT] Are 130 ne's Modulus 3 E,
assumed to be different in the [ Shear Modulus Gy G,
general case, and are given in the |AreaMomentof Inertia | J, 12
. . Cross Sectional Area A A,
following matrix. Shear Area AL A,

The loading cases examined are the ones that can be applied to the
original truss, i.e. only forces are applied to the top of the lambda beam,
I.e. the point of the two beams connection.
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The problem of the Lambda beam is a statically indeterminate one, so the
flexibility method is used in order to calculate the support reactions.

In this method, the restrained degree of freedom of the relative rotation of
the beams is freed and two moments of equal magnitude X, are applied
so that this DOF will be indirectly restrained. In order to find the X,
value, the relative rotation of the released bars, due to the external loading
(814) @nd to a unit two moments loading (6,;) is calculated, and the X,

unknown is found using the next equation that models the no restrain of
the relative rotation of the beams

81q +811'X1:O

6qand d;are found using the unit force theory, which can be

summarized in the following equation, for classical beam structures:
Sij :.[M’i K’de+J'Q’i 'Y,st +J'N,i S,de —

ds

d d
Sij:J.M'i M,jE—j-FJ.Q,iQ,jG—;-FJ-N,iS,jE

, 8;j: the generalized displacement that is work conjugate to the i

generalized unit load applied, due to the application of the | generalized
load.(generalized loads might be moment, shear of axial forces, two
moments, constraints and other)

, (»),j: the (e)field of the bar resulting from the application of the
generalized j" generalized load.

s: an axial coordinate of the whole structure

M,Q,N the moment, shear and axial stress fields of the structure
respectively

K,Y,€ the curvature, shear strain and axial strain fields of the structure
respectively.

The following figures present the M,Q,N fields of the released structure,
due to the external load and the unit moments. Then &, and 3,;are found.

151



1!1”

lF
+1 +1
__htl
Ftand/2 2|1lzcos8
- -—
Ftan8/2 [M;CI] tF-"E [M,'_] T I1-IT;
—e ! — 2l1lzsin@

l1-1z

-
-~
(]

I
it
[ -
=
ah_
=]

L

2 l1lzsinG@

[Q.q]
1412 [1-12
21112 tan9+2|1|2 cotd
Iﬂ tan6 —lgcote
2l1l2 2112

-F/(2cosB)
-F/(2cos8)
[N,q]

=

8y =0+0- F a2
2cosO( E;A; E5A,

___F h I1Jrlztan6+7ll_|2cot6 +—|2 7I1+|2tane——|1_|2cot6

= Il + I2 + 1 + 1 + Il a2 + |2 b2

8ll

So the X; moments are obtained:
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The moments X; become insignificant as their magnitude is small. The
equation above indicates that for any given geometry of the problem, the
magnitude of the moments is determined by the a,2/@31,) term, since the

other terms can be assumed approximately equal to unity for any
structure whose members are not made of very different materials and
their cross sections do not differ dramatically. For great ratio values, the
moment’s magnitude is decreased.

For any given common cross section this A/J ratio is of order of
magnitude of 10-10°. This ratio is also multiplied with the bars length.
Thus, when the Lambda beam consists of beams of great lengths, the
moments’ at their connection magnitude is small, and they can be
ignored, so the fixed bars can be modeled as not fixed together, but as
connected by a node, i.e. as a truss. Note that in trusses the bars used are
slender, i.e. their length is greater than their other dimensions, so this
condition is satisfied, and ignoring the moments is justified.

It should be noted that the a,,?/sratio also denotes how vulnerable a
beam is to buckling. In this model no buckling effects are assumed.

In order to fully address this problem, it is needed to also investigate the
case of a horizontal nodal loading. The same method is followed, and
similar results are obtained, and the same conclusions can be drawn.
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5.11. Appendix Il: Basic Spherical Coordinate System ldentities

In the first part of this work problems of spherical symmetry, in spherical

coordinate system were addressed. The transformation from Cartesian to

spherical coordinates, as well as various identities and operator
transformations concerning the spherical
coordinate system are provided in this
appendix.

r=yx2+y2+2° X = rsin 0cos¢
G:tan‘l( X% +y? /z) y = rsin 0sin ¢
o =tan*(y/ x) Z=rcos

p=T_ XX+yy+22 =sinOcosd X+sinOsing y+cosO 2

r r

Zxr_xk+yy+22
sin® r

0] =—sing X+cosdp y+02

0=§¢xF=—cosOcosd X+cosOsing §¥—sind2

The derivation of the spherical coordinate base vectors in respect with the
coordinates themselves, i.e. the radius r, the polar ¢ and azimuth 6 angle
does not result to zero vectors, as it happens with the Cartesian coordinate

base vectors.

r 0 ¢
8/ar 0 0 0
5/38 0 e 0
0/ ¢ ¢sinO $cosd —|¢sin6+6coso
o dr=d(rt)=d(r)p+rd(F)=dre+r ﬂdr+@de+@d¢
o o0 o0
=dr +rdo0+rsin 6dp
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rsino 8_¢ or

+2 2 ()2 (v)

rlee” o0

2 0 o(. . & 1 8
=S ||+ |+ 5 5
reor or) rcsing oo o0/ r*sin-0 o

20,0 1 9 18 1 &
ror or® r?tan000 r?60% r2sin?0 o’
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5.111. Appendix I11: Hyperbolic Function Identities

Throughout this work many simplification have been made in order to
obtain manageable forms of the mathematical solutions. Since, the non
classical solutions of the differential equations are exponential ones and
hyperbolic sins and cosines many hyperbolic trigonometric identities
were used in extend. The ones used most often are presented in the
present appendix.

coshx = (ex +e‘x)/2
sinh x = (ex —e~% )/2
cosh? x —sinh? x =1

1—tanh? x =sech?x. coth? x —1 = cosech?x

sinh(x £ y) =sinh x coshy + sinh y coshx
cosh(x £ y) = coshx coshy + sinh x sinh 'y

tanhx = tanhy

tanh(x £y) =
(x£Y) 1+ tanh x tanhy
tanh(2x) = 22X tanh(x) = Zta”h(;‘/ 2)
1+ tanh® x 1+ tanh*(x/2)
sinhz(x/2):%x)_l
2
cosh?(x/2) = cosh(x)+1
2
tanh(x/2) = S9SN =1 coth(x /2) = £OSNX+1
sinh X sinh x
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_ coshic(1- 2x)}
coshc

1

_ sinh(2¢x)tanh c{l— tanh(cx)} 1 sinh(c(1 - x))+ sinh(cx)

tanhc sinh ¢
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5.1IV. Appendix 1V: The pretwisted beam analogy by
Kordolemis

This analogy has been the inspiration for a big part of the work presented
In this thesis and is quoted several times when trying to better understand
the gradient elastic problem of a bar in tension. This is the reason that the
main points that were used are summarized below, in order to facilitate
the reader. It should be noted that a different coordinate system is used
than the one introduced in the original work by (Giannakopoulos, et al.,
2013) and (Kordolemis, et al., 2013). This choise was made in order to
use the same symbolism coordinate system that were used in the second
part of this thesis for the gradient elastic bar.

The body considered is a cylindrical beam of length L, constant cross
section of area A, Young’s Modulus E and shear modulus G. A Cartesian
coordinate system Oxyz is introduced, whose x axis coincides with the
longitudinal axis of the beam and parallel to its generators. The beams
bases are taken to lie in the Oyz plane, at x=0 (¢=0 using the normalized
coordinate system) and x=L (&=1). The origin is located at the center of
the cross section at x=0, i.e. the x axis passes through the center of each
cross section. The beam is pretwisted around the x axis by a constant
amount of a0 per unit length of the beam, so that the rotation about the x
axis of each cross section is ¢,(x) =a,x . A local coordinate system n-C is

introduced at each cross section by rotating the global y-z axes around the
X axis by an angle ¢,(x) =a,x, thus

n(x.y,z) _ cosd, sing, | |y _
- . ’ ’(I)o =a,X
C(x,y,2) —-sing, cosd, ||z
The displacement field for the non-uniform torsion (‘restrained warping’)
takes the following form

u,(X,y,2) | | w,(X)+0¢'(x)- ¥(n(x,y,2), &(X,Y,2))
ux,y,z) = u,(x,y,z) |= —¢'(X)xz
u,(x,y,2) @' (X) Xy

where ¢(x) s the infinitesimal rotation of the cross section around x axis,
w,(x)a displacement component in the longitudinal (x-) direction, and

159



w(n,&) is the Saint-Venant warping function of a similar beam without
pretwist, normalized so that j\P(n,Q) nd =0
A

Using the variation principle, the variation of external works is found
L

W = [ (p, 8w, +m, 39) dz+[Now, s +[T8]; +[- BT,
0

where N is the axial load, T is the torque, Bz—jAcXX‘PdAis the

“Bimoment” applied at the ends and p,=—dN/dx and m, =-dT/dx are
respectively the distributed axial load and tortional moment per unit
length of the beam. The resulting governing equations and BCs are
(giannakopoylos!!!)

dzw1 a,Sd’¢ _ p,
dx2 A dx? EA

4 2 2 2
_Iozdi>+ 14 80 KE|d <12>+aOSEd V\;l:_&
dx J G dx J G dx GJ

An at the ends of the beam the BCs are:

I.  Either the axial displacement is knownw, =w,
dw, aOS@}_ N

dx A dx

ii.  Either the twist is known ¢ =¢

or the torque is known | -1, d<I3> W KE _‘I’ aSEdw, | T
dx J G X GJ

or the axial force is known {

iii.  Either the rate of twist is known ¢'= ¢'

2 d*¢ qu)_g
dx?  tdx |

GJ
The superscript bars e.g. ¢ denote prescribed values and following the
definition of the extra parameters used is provided:

v oo, Y (e .Y
u I[ S _C_C_nJ ”‘Ll[ac”j +(an Cj }dcdwo’

which is the usual Saint-VVenant torsional constant of the cross section

or the bimoment is known { I,
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J,=[, ¥, dedn =0,

l, = ‘%JT(D >0, l, = agR g length scales that depend on the cross

section and the material (E/G ratio)

(5[
:_j \P—d(;d -l [@:jl@é’j }dgd

_i O g [ |(OT) (2
1o o

Giannakopoulos (Giannakopoulos, et al., 2013) combined the
governing equation above in order to eliminate the w;(x) function and
obtain a closed form solution for the twist field o.

Kordolemis (Kordolemis, et al., 2013) then combined the governing
equations in order to eliminate the ¢(x) function and obtained the
governing equation of the axial displacement field w,(x) of the beam.

1" d? 4 d’w, q(x)
c? dx? dx?> EA’

1 , d? a,’K a,S
q(x)=C—2{ 0 4 J «(X)+ { ] px(X)_me(X)J}’

2 2
C(ao): 1+aLE K_S_ >=1
J G A

And at the ends of the beam the BCs are:
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2
5=%{N+|02 ap +E[a° KN—aOST]}

Note that N, T, B, py, my are the classical loads, while P and Y are the
generalized loads that depend on the classical loads and are defined
using the variation principle.

Kordolemis proposed the following analogy

variable Pretwisted beam 1-D gradient
elastic bar

Axial w, (X) u(x)

displacement

field

Volume EJ, ~ |_0

material l,=,=—=2>0 9= c
GJ

length

Surface a,R E l,

material l, = ] G I=C—2

length

Body force 1 L d? E(a,K a,S a(x)
Cz{(l_lo dxszx(x)—"_G( J px(x)_me(X)J

Traction like 5 _
boundary Clz{NJr IOZpX(X)Jr(E[aOJKN_aJOSTJ} P
force

Couple like 1 )  aSE_ y
boundary Cz{"o Py (X) +1;N +JGB}

force

Using the gradient elastic bar analogy terminology, the solution takes
the following more familiar to this thesis form.

o d? 1 d*w, _a()
dx? dx? EA

1 , d? 2 8,S( a,S B
Q(X)ZC—Z{(l—g d?} P, (X)+9 J—[ A Py (X) mx(X)j},

[}
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And at the ends of the beam the BCs are:
- 2
i w, =W, or [wl'—gzwl”']zi, 5=[1—d—jﬂ+g2 aos(aOSN—TJ
EA
a

o q _
i w,'=W," or [gzwl"+lwl']:%, Y =—g d—+| N+g
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