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Supervisor: Dr. Antonios. E. Giannakopoulos, Professor 

 

1.a. Abstract 

In today’s technology applications in most scientific branches, structures 

of micro and nano scale are often used in attempt to minimize the volume 

of the objects, the material use and to optimize the material’s properties. 

Experimental studies, though, indicate that the behavior of structures of 

such scale cannot always be described using the classical theory of 

elasticity. Scale effect appear resulting to significantly stiffer behaviors in 

many cases. That directed research to approach small scale problems 

using non classical non local theories with extra length parameters in 

order to model scale effects. Various such theories have been developed, 

and one of the simplest ones is the Aifantis’ ( (Aifantis, 1992) (Altan & 

Aifantis, 1992)) modification of Mindlins ( (Mindlin & Tiersen, 1964) 

(Mindlin, 1964) ) strain gradient theory of elasticity, which is used in this 

work. 

Several boundary condition (BC) problems have been addressed and 

solved the past decades using strain gradient elasticity and other non local 

theories. However, due to the complexity of resulting fourth order 

differential equations, only problems of simple geometry have been 

solved. This fact was the inspiration for the present thesis. This thesis is 

based on gradient problems already solved, especially those by 

(Tsepoura, et al., 2002) and (Polyzos, et al., 2003), and attempts to model 

the behavior of structures of more complex geometry. Such are structures 

consisting of multiple structural elements, possibly of different 

mechanical properties. Following this, a need emerged to return to the 
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fundamental theory and then make an extensive research in the available 

literature in order to investigate the continuity and boundary conditions 

between the different members of the composite bodies that are being 

studied. 

Τhe present work is divided in two main parts. First, is presented the 

simplified strain gradient theory for two and three dimensional (2D and 

3D) problems suggested by Aifantis along with the respective classical 

one. Then, its form is obtained for bodies of spherical geometry, 

subjected to radial loads only. Such are the cases of a solid sphere and a 

spherical cavity in an infinite gradient elastic space under various loading 

cases. Although, some loading cases have already been addressed by 

(Tsepoura, et al., 2002), they are also presented in the present work, along 

with some new boundary value problems, for completeness. All results 

are compared to the results of respective classical elasticity problems.  

Next, thin walled spherical shell problems are being studied, triggered by 

an experimental investigation by (Glynos & Koutsos, 2009). It suggests 

stiffening of microbubbles which may be attributed to scale effects. A 

thin walled spherical shell theory is developed that aspires to model the 

scale effects in microbubbles -or microspheres which is the term used in 

the article-. Having modeled the single gradient elastic bubble, a 

composite bubble is modeled. It is the case of a composite thin walled 

spherical shell, consisting of two gradient elastic materials that share a 

fully elastic interface (a double-layered microbubble). The shell’s 

behavior is found and compared with behavior described by the 

respective classical problems.  

In the second part of this thesis, the goal is to form an algorithm for 

solving gradient elastic 2D truss structures. This part begins by 

addressing the simplest problem in gradient elasticity. That is the case of 

a one dimensional bar subjected to uniaxial loading. Several boundary 

value problems for the bar are presented in order to obtain a good 

understanding of each BC’s effect on the bar’s behavior.  

As a first step to solving 2D structures, 1D composite structures of 

multiple collinear bars under various load case are solved. In order to 

investigate the interaction of different collinear bar elements, the 

connecting nodes’ properties needed to be determined. Two types of node 
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where considered; the fully elastic node, which works as an interface 

between the elements, has no stiffness of its own and imposes a 

continuous strain to the bars’ ends, and the rigid node that restrains the 

strain at the bar’s ends. The appropriate 1D stiffness matrix is obtained, 

and using the stiffness method, multiple bar problems of non standard 

loading and geometry are solved and compared to the respective 

analytical gradient solutions and , both analytical and numerical, classical 

solutions. In this way, it is show that the bar elements can be used as 

finite elements, too, in 1D problems and describe the bar’s scale effects. 

Finally, the 2D truss problem is addressed. The function of the node is 

discussed in the 2D case, and the case of a two bar truss is presented as a 

simplest example of 2D structure. Also, α simple indeterminate bar 

structure with classical loading is solved, in order to find how 

indeterminate gradient trusses behave.  
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Μοντελοποίηση φαινομένων κλίμακας σε φυσαλίδες 

και δικτυώματα μέσω βαθμωτής ελαστικότητας 

 

Απόστολος Νασίκας 

Πανεπιστήμιο Θεσσαλίας, Τμήμα Πολιτικών Μηχανικών, 2015 

 

Επιβλέπων: Δρ. Αντώνιος. Ε. Γιαννακόπουλος, Καθηγητής 

 

1.b. Περίληψη 

Στις σύγχρονες τεχνολογικές εφαρμογές, στους περισσότερους 

επιστημονικούς κλάδους, συχνά χρησιμοποιούνται κατασκευές μικρό ή 

νάνο κλίμακας στην προσπάθεια να ελαχιστοποιηθεί ο όγκος και η μάζα 

των τελικών αντικειμένων, να βελτιστοποιηθούν η χρήση υλικών και οι 

ιδιότητες αυτών. Πειραματικές μελέτες δείχνουν ότι η συμπεριφορά μιας 

κατασκευής  τέτοιας κλίμακας δε μπορεί πάντα να περιγραφεί μέσω της 

κλασσικής θεωρίας ελαστικότητας, διότι φαινόμενα κλίμακας 

παρουσιάζονται, προκαλώντας συχνά κράτυνση  αυτών των μελών. Αυτό 

οδήγησε την επιστημονική έρευνα στο να προσεγγίσει μικρής κλίμακας 

προβλήματα μέσω μη κλασικών, μη τοπικών (non local) θεωριών 

ελαστικότητας με επιπλέον παραμέτρους μήκους, οι οποίες μπορούν να 

μοντελοποιήσουν φαινόμενα κλίμακας. Διάφορες non local θεωρίες 

έχουν αναπτυχθεί. Μια από τι απλούστερες, η οποία χρησιμοποιείται 

στην παρούσα εργασία είναι η θεωρία της βαθμωτής ελαστικότητας του 

Mindlin( (Mindlin & Tiersen, 1964) (Mindlin, 1964)) που στην 

απλοποιημένη της μορφή προτάθηκε από τον Αϋφαντή ( (Aifantis, 1992) 

(Altan & Aifantis, 1992)). 

Τις τελευταίες δεκαετίες, αρκετά προβλήματα συνοριακών συνθηκών 

έχουν επιλυθεί αναλυτικά χρησιμοποιώντας βαθμωτή ελαστικότητα. 

Λόγω, όμως, της πολυπλοκότητας που επιφέρει η αύξηση της τάξης των 

διαφορικών εξισώσεων, και η αβεβαιότητα γύρω από την φυσική 

σημασία των μη κλασικών συνοριακών συνθηκών, αυτά περιορίζονται σε 

σώματα πολύ απλής γεωμετρίας και περιορισμένα είδη φορτίσεων. Αυτή 
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η παρατήρηση αποτέλεσε το έναυσμα για την παρούσα διπλωματική 

εργασία. Αυτή η δουλειά, βασιζόμενη σε ήδη λυμένα απλά προβλήματα, 

κυρίως αυτά των Τσεπούρα και συνεργάτών ( (Tsepoura, et al., 2002),) 

και Πολύζου και συνεργατών (Polyzos, et al., 2003), στοχεύει να 

μοντελοποιήσει τη συμπεριφορά πιο σύνθετων κατασκευών. Τέτοιες 

κατασκευές αποτελούνται από περισσότερα του ενός μέλη τα οποία 

αλληλεπιδρούν και ενδεχομένως έχουν μεταξύ τους διαφορετικές 

μηχανικές ιδιότητες. Για την μελέτη της αλληλεπίδρασης των μελών, 

χρειάστηκε αρχικά αναδρομή στην βασική θεωρία και στη συνέχεια 

εκτεταμένη βιβλιογραφική έρευνα, ώστε να επιλεγούν οι κατάλληλες 

συνθήκες συνέχειας και ισορροπίας μεταξύ των μελών του σύνθετου 

σώματος. 

Η παρούσα εργασία χωρίζεται σε δυο κύρια μέρη. Αρχικά, 

παρουσιάζεται η απλοποιημένη θεωρία βαθμωτής ελαστικότητας του 

Αϋφαντή, παράλληλα με την αντίστοιχη κλασική, ώστε είναι διακριτές οι 

ομοιότητες και οι διαφορές τους. Στην συνέχεια, βρίσκεται η μορφή που 

αυτή παίρνει για σώματα σφαιρικώς συμμετρικά, στα οποία ασκούνται 

μόνο ακτινικά φορτία. Τέτοιες περιπτώσεις είναι αυτή μίας συμπαγούς 

σφαίρας και αυτή μιας σφαιρικής κοιλότητας σε έναν άπειρα εκτεινόμενο 

βαθμωτά ελαστικό χώρο, υπό διάφορους συνδυασμούς φορτίσεων. 

Κάποιες φορτίσεις (συνοριακές συνθήκες) έχουν ήδη εξεταστεί από τους 

Πολύζο και συνεργάτες (Polyzos, et al., 2003), ωστόσο και αυτά μεταξύ 

άλλων προβλημάτων συνοριακών συνθηκών παρουσιάζονται, για λόγους 

πληρότητας. Όλα τα αποτελέσματα συγκρίνονται τελικά με τα αντίστοιχα 

της κλασσικής ελαστικότητας.  

Στη συνέχεια, ένα λεπτότοιχο σφαιρικό κέλυφος μελετάται, με αφορμή 

μια πειραματική εργασία των Γλυνού και Κουτσού ( (Glynos & Koutsos, 

2009)). Σε αυτήν παρατηρήθηκε κράτυνση μικροφυσαλίδων, η οποία 

θεωρήθηκε ότι ίσως οφείλεται σε φαινόμενα κλίμακας. Μια θεωρία 

λεπτότοιχων σφαιρικών κελυφών αναπτύσσεται με στόχο τη 

μοντελοποίηση φαινομένων κλίμακας στις μικροφυσαλίδες. Έχοντας 

μελετήσει την απλή φυσαλίδα, ακλουθεί  μια σύνθετη, αποτελούμενη 

από δυο διαφορετικά υλικά που μοιράζονται μια επιφάνεια (διεπιφάνεια). 

Η συμπεριφορά της σύνθετης φυσαλίδας, συγκρίνεται με την 

συμπεριφορά που περιγράφεται στο αντίστοιχο κλασικό μοντέλο, το 

οποίο επίσης παρουσιάζεται . 
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Τα παρακάτω συμπεράσματα εξάγονται από την μελέτη αυτών των 

προβλημάτων: 

 

Για τη συμπαγή σφαίρα: 

 Όταν δεσμεύεται η παραμόρφωση στο σύνορο της σφαίρας, αυτή 

κρατύνεται, οπότε προκύπτουν μικρότερες παραμορφώσεις. 

 Ανεξάρτητα από το μέγεθος της σφαίρας και της μικροδομής, όταν 

μόνο κλασικά φορτία ασκούνται σε αυτή, τότε η απόκριση της 

είναι η κλασσική. 

 Για την ανάπτυξη φαινομένων κλίμακας, πρέπει να ασκηθούν και 

διπλές τάσεις. 

 Για μικρές τιμές του λόγου του εσωτερικού μήκους του υλικού (g) 

προς την ακτίνα, η συμπεριφορά της σφαίρας πρακτικά δεν 

αποκλίνει από την αντίστοιχη κλασική.  

Για τη σφαιρική κοιλότητα: 

 Η μικροδομή προκαλεί κράτυνση όταν δεν είναι πολύ μικρή, 

ανεξάρτητα από την άσκηση διπλών τάσεων, ακόμα και με την 

άσκηση μόνο πίεσης. 

 Σημαντική είναι και η επιρροή του λόγου Poisson. 

 Οι διπλές τάσεις δεν είναι αμελητέες μόνο κοντά στο όριο της 

κοιλότητας. 

 Πάντα η λύση απλοποιείται στην κλασική όταν η ακτίνα είναι 

πολύ μεγαλύτερη του μήκους g της μικροδομής. 

Για το σφαιρικό κέλυφος (φυσαλίδα): 

 Μόνο το πρόβλημα όπου οι ασκούμενες κλασικές και μη κλασικές 

δυνάμεις έδωσε χρήσιμα αποτελέσματα. 

 Ακόμα και όταν δεν ασκούνται διπλές τάσεις οι μετατοπίσεις είναι 

μικρότερες από τις κλασικές. 

 Όταν η μικροδομή είναι ασήμαντη, τα πεδία των μετακινήσεων και 

των παραμορφώσεων απλοποιούνται στα κλασικά, όχι όμως και το 

πεδίο των καμπυλοτήτων. 

Για το διπλό σφαιρικό κέλυφος: 
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 Μόνο το πρόβλημα όπου οι ασκούμενες κλασικές και μη κλασικές 

δυνάμεις έδωσε χρήσιμα αποτελέσματα. 

 Επειδή οι παράμετροι είναι πολλές, δύσκολα εξάγονται 

αποτελέσματα αν δεν επιλεχθούν πιο στοχευόμενα κάποιες 

περιπτώσεις. 

 Όταν θεωρηθεί ότι τα δυο υλικά που το αποτελούν είναι ίδια, το 

μοντέλο αυτό απλοποιείται στο μοντέλου του απλού σφαιρικού 

κελύφους 

 Όταν μηδενιστεί η μικροδομή των δυο υλικών, η συμπεριφορά που 

το μοντέλο προβλέπει, δεν είναι ίδια με την κλασική. 

 

Στο δεύτερο μέρος της παρούσας διπλωματικής εργασίας, στόχος είναι η 

εύρεση ενός αλγορίθμου για την επίλυση επίπεδων δικτυωμάτων στα 

πλαίσια της βαθμωτής ελαστικότητας, για κάθε είδος φόρτισης. Αυτό 

ξεκινά από το απλούστερο πρόβλημα που μπορεί να λυθεί μέσω 

βαθμωτής ελαστικότητας, αυτό της μονοδιάστατης ράβδου, σε 

μονοαξονική φόρτιση. Αρκετά προβλήματα συνοριακών συνθηκών για 

την ράβδο παρουσιάζονται αναλυτικά με στόχο την πλήρη κατανόηση 

της επιρροής κάθε συνοριακής συνθήκης στην συμπεριφορά της ράβδου.  

Τα επόμενα γενικά συμπεράσματα μπορούν να εξαχθούν για τη 

συμπεριφορά της ράβδου με μικροδομή 

 Ορίζοντας τις μετακινήσεις και τις τροπές των άκρων μιας ράβδου, 

στη γενική περίπτωση έχει σαν αποτέλεσμα την μη ομογενή 

απόκριση αυτής.  

 Δεσμεύοντας τις τροπές στα άκρα των ράβδων, μικρότερες από τις 

κλασικές μετακινήσεις προκύπτουν για οποιαδήποτε φόρτιση και 

το πεδίο των μετακινήσεων είναι πάντα μη ομογενές, ανεξάρτητα 

από το μέγεθος της ράβδου και τη μικροδομή. 

 Όταν αντί να δεσμευθεί η παραμόρφωση στα άκρα της ράβδου, 

ασκούνται μηδενικές διπλές δυνάμεις, τότε ανεξαρτήτως της 

μικροδομής, η συμπεριφορά της ταυτίζεται με την κλασική. 

 Η παράμετρος l επηρεάζει την ράβδο σε κάθε περίπτωση με τρόπο 

που να τείνει να μειώσει το συνολικό μήκος αυτής. 
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 Οποιοδήποτε πρόβλημα συνοριακών συνθηκών μπορεί να αναχθεί 

στο αντίστοιχο κλασικό όταν ασκηθεί κατάλληλος συνδυασμός 

συνοριακών συνθηκών. 

 Η συμπεριφορά της ράβδου υπό τις περισσότερες συνθήκες 

φόρτισης ταυτίζεται με τις αντίστοιχες κλασικές συμπεριφορές, 

όταν το χαρακτηριστικό μήκος της μικροδομής είναι ασήμαντο σε 

σχέση με το μήκος της ράβδου.  

Σαν πρώτο βήμα για την επίλυση σύνθετων ραβδωτών κατασκευών, 

επιλύεται μια σειρά από μονοδιάστατα προβλήματα, σύνθετων 

κατασκευών αποτελούμενων από ομοαξονικές ράβδους που 

αλληλεπιδρούν, υπό διάφορους συνδυασμούς φορτίσεων. Για να 

περιγραφεί η αλληλεπίδραση των ράβδων, χρειάζεται πρώτα να 

διερευνηθούν οι ιδιότητες των κόμβων που τις συνδέουν. Δυο είδη 

κόμβων επιλέγονται. Ο ένας είναι πλήρως ελαστικός, λειτουργεί σαν 

διεπιφάνεια μεταξύ των ράβδων, και δεν έχει καμία δική του αντοχή, 

αλλά απαιτεί συνέχεια μετακινήσεων και των παραμορφώσεων των 

συνδεόμενων σε αυτόν άκρων ράβδων. Ο δεύτερος είναι πλήρως 

απαραμόρφωτος και δεσμεύει την παραμόρφωση  κάθε συνδεδεμένου σε 

αυτόν άκρου ράβδου. Στην συνέχεια, ο πίνακας δυσκαμψίας της ράβδου, 

στα πλαίσια της βαθμωτής ελαστικότητας, εξάγεται και χρησιμοποιώντας 

μια γενικευμένη μέθοδο μετακινήσεων, επιλύονται διάφορα μονοαξονικά 

προβλήματα. Τα αποτελέσματά τους συγκρίνονται με αναλυτικές, 

βαθμωτές και αντίστοιχες κλασικές λύσεις. Με αυτόν τον τρόπο 

αποδεικνύεται ότι η ράβδος αυτή μπορεί να χρησιμοποιηθεί και σαν 

πεπερασμένο στοιχείο τουλάχιστον σε μονοδιάστατα προβλήματα. 

Καταλήγοντας, εξετάζεται το πρόβλημα του επίπεδου δικτυώματος. Η 

λειτουργία του κόμβου στις δύο διαστάσεις συζητείται και εξετάζεται το 

απλό παράδειγμα του τριαρθρωτού τόξου συγκριτικά με την κλασική 

περίπτωση. Τέλος, εξετάζεται η περίπτωση ενός στατικά αόριστου 

δικτυώματος, με την κλασική έννοια του όρου, με στόχο να φανεί αν και 

πώς η μικροδομή επηρεάζει τη λειτουργία και στατικά αορίστων 

δικτυωμάτων. 

  



13 

 

2. Table of Contents 

1.a. Abstract ................................................................................................ 5 

1.b. Περίληψη ............................................................................................. 8 

2. Table of Contents .................................................................................. 13 

3. Introduction ........................................................................................... 15 

3.1. Conventions .................................................................................... 16 

3.2. Equilibrium equation and boundary conditions ............................. 17 

3.2.1. Classical Theory of Elasticity .................................................. 17 

3.2.2. Gradient Theory of Elasticity .................................................. 18 

4.I. PART I: SPHERICAL GEOMETRY PROBLEMS .......................... 21 

4.I.1. Spherical body applications ......................................................... 22 

4.I.2. Spherical Symmetry Problems Equilibrium ................................ 23 

4.I.2.i. Classical Theory ..................................................................... 23 

4.I.2.ii. Non – Classical / Gradient Theory ........................................ 25 

4.I.3. Boundary Condition Problems ..................................................... 28 

4.I.3.1. The solid sphere ..................................................................... 28 

4.I.3.ii. The spherical cavity............................................................... 41 

4.I.3.iii. The Spherical Shell .............................................................. 55 

4.I.3.iv. The double-layer shell .......................................................... 68 

1a)Classical theory ............................................................................. 69 

4a)Classical theory ............................................................................. 73 

4.I.4. Experimental data treatment ........................................................ 76 

4.I.5. Conclusions .................................................................................. 78 

4.II. PART II: 1D PROBLEMS & TRUSSES ......................................... 80 

4.II.1. Truss modeling through gradient elasticity. ............................... 81 

4.II.2. The single bar behavior .............................................................. 83 



14 

 

4.II.2.i. Equilibrium equation and boundary conditions in 1D 

problems ............................................................................................. 83 

4.II.2.ii. Boundary Condition Problems ............................................. 86 

4.II.2.iii. Conclusions ....................................................................... 119 

4.II.3 1-D composite bar structures ..................................................... 120 

4.II.3.i. Node function in composite 1D structures.......................... 120 

4.II.3.ii. 1-D Stiffness Matrix .......................................................... 124 

4.II.3.iii. 1-D Applications ............................................................... 127 

4.II.4. 2-D Bar Structures - Trusses .................................................... 136 

4.II.4.i. Node function in composite 2D structures.......................... 136 

4.II.4.ii. 2-D stiffness matrix ............................................................ 138 

4.II.4.iii. 2-D Applications ............................................................... 142 

4.II.5. Conclusions ............................................................................... 149 

5.Appendices ........................................................................................... 150 

5.I. Appendix I: Classical truss node function investigation .............. 150 

5.II. Appendix II: Basic Spherical Coordinate System Identities ....... 155 

5.III. Appendix III: Hyperbolic Function Identities ............................ 157 

5.IV. Appendix IV: The pretwisted beam analogy by Kordolemis .... 159 

6.References ............................................................................................ 164 

 

  



15 

 

3. Introduction 

The classical theory of elasticity is quite sufficient for most applications, 

mainly of macroscopic scale, since it’s associated with the concepts of 

homogeneity and locality of stress. Experimental investigations, though, 

indicate that structures of micro and nano scale, such as the beams, bars, 

plates and shells used it modern technology applications, exhibit non 

homogenous behavior and significant microstructure effects. The classic 

theory fails to describe adequately such size dependant mechanical 

behaviors of small scaled, linear elastic structures due to their dependence 

of the materials microstructure. The classic theory also cannot describe 

the behavior of materials with significant microstructure effects like 

polymers, polycrystals, granular and textile materials. In these cases the 

state of stress needs to be described in a non-local manner. This can be 

achieved by using many different types of size dependent theories as 

higher order strain gradient theories, or couple stress theories. 

Such theories were developed by Mindlin and co-workers ( (Mindlin, 

1965) (Mindlin, 1964) (Mindlin & Eshel, 1968)), Aifantis and co-

workers( (Aifantis, 1992) (Aifantis, 2003) (Altan, et al., 1996) (Altan & 

Aifantis, 1992)) and Vardoulakis and co-workers( (Exadaktylos & 

Vardoulakis, 2001)),in connection with higher-order strain gradient 

theories, and Cosserat, Mindlin and Tiersen (Mindlin & Tiersten, 1962) 

and Toupin in connection with couple-stress theories. From the above 

theories, the most general and comprehensive is the one developed by 

Mindlin and co-workers, but the simplest one is the one by Aifantis and 

co-workers, according to Tsepoura []!!!!! 

The past decades, these theories have been used, mostly in simplified 

forms, to solve many boundary value problems of both static and 

dynamic elasticity. One can mention static problems dealing with 

dislocations, fracture mechanics, the halfspace under various surface 

loads, a borehole under pressure, a bar under pressure and a beam in 

bending. It has been found that when using such non local theories, 

singularities and discontinuities of classical elastic theory disappear. 

Also, size effects are usually captured and wave dispersion effects are 

observed in cases where it was not possible in classical linear elasticity. 
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3.1. Conventions 

 Standard notation is used through the entire paper. Boldface symbols 

denote tensors whose orders are indicated by the context. All tensors 

components are written with respect to a fixed Cartesian coordinate 

system with base vectors iε̂ . A superscript T after a second order tensor 

indicates its’ transpose 

Let mlkcba ,,,,, be vectors and A
~

 a second order tensor. The following 

products are used in the text: 

Inner: iibaba  

Outer: kiiijk ˆba εba   

where εijk is the alternator, e.i. 








 

equalare)k,j,i(oftwoanyif,0

anticyclicare)k,j,i(if,1

cyclicare)k,j,i(if,1

ijk  

Dyad: jijijiji ˆˆbaˆˆba εεεεbaabba    

Dyad inner: )()()(:)( dacbdcba   

Triad inner: )()()()(
.

)( : malbkcmlkcba   

Also )()( 321
abccba   

the gradient operator: ii
i

i ˆ
x

ˆ 



 εε  

the Laplacian operator: ii
2   

Let S be a surface and n̂  the unit normal vector on S, 

 )ˆˆ
~

(S nnI  

)
~

(

~

Aa
a

A





 

 

When the elements of a row vector are presented, they are either 

separated by spaces or comas. The elements of a column vector are 

separated by semicolons, i.e. ]aa[]aa[ 212,1 a  and ]aa[ 2;1
T a   
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3.2. Equilibrium equation and boundary conditions 

In this section, the equilibrium equation and the corresponding 

boundary conditions that should be satisfied by any linear elastic material 

are derived. First, the case of a classical elastic material is investigated 

and the classical theory of elasticity for 2D and 3D bodies is presented. It 

is followed by the case of the linear elastic material with microstructure 

(gradient elastic material), investigated in the framework of Mindlin’s 

first strain gradient elasticity theory, using the constitutive equation 

proposed by Aifantis. The latter as a special case of Mindlin’s strain 

gradient theory, allows the derivation of both, the equilibrium equation 

and the boundary conditions by first taking the variation of the strain 

energy defined by Mindlin and then inserting the given constitutive 

equation.  

3.2.1. Classical Theory of Elasticity 

Consider a linear elastic body of volume V surrounded by surface S. Let 

n̂  be the unit normal vector on S, and a Cartesian coordinate system with 

its origin located interior to V. According to the classical theory of 

elasticity the strain energy depends upon the strain, as follows:  

  dV)e(dV~:~U
V ijijV   eτ , 

 where τ~  and e~  are the second order stress and strain tensors 

respectively. Since )(~
2

1
 uue , the variation of the bodies strain 

energy can be written in terms of the displacement u  as, 

 dV:~U
V  uτ  

After some differential calculus, using the divergence theorem, the 

equation above takes the form:  

    dS~ˆdV~U
SV

uτnuτ    

Meanwhile, the variation done by external forces to V is: 
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dSdVW
SV   uPuf  

, Pf ,  being respectively body forces acting to the body and external 

surface tractions. 

Since WU  the equations above imply that the equilibrium equation 

for a classical elastic body is: 

0fτ  ~  

and the corresponding classical boundary conditions (BCs) are: 

PτnxP  ~ˆ)(  and/or ,uu   where uP,  denote prescribed values. 

In Hooke’s Law the stress and strain have the following relation

 Iueτ
~~2~   . So, the equilibrium equation for an elastic 

continuum can be obtained in terms of the displacement fieldu : 

0fuu  )λ(2  

 

3.2.2. Gradient Theory of Elasticity 

Consider a linear elastic body of volume V surrounded by surface S, 

which is characterized by a microstructure modeled macroscopically by 

the gradient of the deformation. Let n̂  be the unit normal vector on S, and 

a Cartesian coordinate system with its origin located interior to V. 

According to Mindlin’s strain gradient theory the strain energy depends 

upon both the strain and the strain’s gradient:  

dV)ee(dV~:)~(~:~U
V jkiijkijijV

321
 

















 eμeτ
.

 

,where τ~  and e~  are the classical second order stress and strain tensors 

respectively, μ~  is the third order tensor with 27 components μijk 

representing double forces per unit area. The first subscript indicates the 

normal vector of the surface the second of the forces lever and the third 

the direction of the forces. It should be noted that the double stresses 

contribute only to the potential energy and to the boundary conditions of 
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the problem, without giving any resultant stress of couple vector at any 

surface of the studied body. Since )(~
2

1
 uue , the variation of the 

bodies strain energy can be written in terms of the displacement u  as, 

dV
.
:)~(:~U

V

321


















 uμuτ  

Using the symmetry relation μμ ~)~( 132  , and after some linear algebra and 

differential calculus, which are presented in detail in tsepoura[], the 

variation of the strain energy takes the following form: 

      dS)(ˆˆ~ˆdV~~U
SV   unnμnuμτ  

               dS)~(Sˆ~ˆ
ˆ

~
:)ˆˆ(~ˆ

S

213
S uμnμn

n

μ
nnτn 













   

                    

aC
aCS SS dC~:ˆˆdS~:ˆ~:ˆˆˆ uμnmuμnμnnn  

where for non-smooth boundaries Ca are the edge lines formed by the 

intersection of two surface portions Si and Sj of S, nsm ˆˆˆ  ,with ŝ  being 

the tangential vector to Ca, and the brackets  indicate that the enclosed 

quantity is the difference between the values on the surface portions Si 

and Sj . For smooth 3D boundaries and both smooth and non-smooth 2D 

boundaries the last term is always equal to zero. 

Meanwhile, the variation done by external forces to V is: 

    

aC
aCSSV

dCdSdS)(ˆdVW uEuPunRuf  

, ERPf ,,, being respectively the classical body forces acting to the body, 

the classical external surface tractions, non classical traction-like vector 

of surface double stresses and non classical surface jump stresses acting 

on the non smooth bodies surface. 

Since WU  the equations above imply that the equilibrium equation 

for a 2D or a 3D gradient elastic body is 

  0fμτ  ~~  
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And the corresponding classical boundary conditions are 

   
     0SS

213
SS

~:ˆ~:ˆˆˆ

)~(ˆ~ˆ
ˆ

~
:)ˆˆ(~ˆ)(

Pμnμnnn

μnμn
n

μ
nnτnxP









  and/or       ,0uu   

And the non-classical ones 

0ˆ~ˆ RnμnR   and/or 0
ˆ

q
n

u





, 

  0
~:ˆˆ EμnmE  , where 0000 ,,, EqRP denote prescribed values. 

Mindin (Mindlin, 1965) proposed a modification of Hooke’s Law 

expressed by the following relations: 

 

)(~

~~2~

~~~

2

1






uue

Iueτ

sτσ


 

   ]
~~2[~

2

2

13 uuIes  ccc    

σ~  being the total stress tensor, correlated to the strains and their 

gradients through five independent material constants, 321 c,c,c,, the 

first two being the Lame constants. 

Aifantis (Aifantis, 1992) proposed the following modification: 

τμs

τμ

~g~~

~g~

22

2




 

g
2 

being the volumetric strain gradient energy coefficient, the unique 

constant related to the material’s microstructure. 

The equilibrium equation for a gradient elastic continuum in terms of the 

displacement field u takes the form: 

0fuuuu  ))((g)λ( 2222  
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4.I. PART I: SPHERICAL GEOMETRY PROBLEMS 
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4.I.1. Spherical body applications 

The simplest three dimensional bodies that can be considered in terms of 

geometry are those of spherical symmetry. However, perfectly spherical 

bodies rarely appear in everyday’s life normal scaled applications. 

Especially in cases of only radial loading and no body forces, which are 

addressed in this work, spherical bodies do not have many macro scale 

applications. 

However, when small scaled bodies are considered, the assumption of 

only radial loads is not as arbitrary, while the body forces might be very 

small compared to the radial loads. So, as far as small scaled application 

can be considered, spherical bodies can be found and in several cases or 

be used as an approximation to the true geometry of the body. 

The most common spherical symmetrical body used in small scale 

applications is the spherical shell. That is the case of microbubbles used 

in medicine. Two primary applications of microbubbles are considered to 

be in the contrast enhanced ultrasound(CEUS), which is the application 

of an ultrasound contrast medium to traditional medical sonography, and 

targeted drug delivery. There are several advantages to using 

microbubbles instead of using alternative methods, since their use is 

considered to be cost effective and safer for the patients, since no 

radiation is applied and smaller drug amounts are used. 

These advantages make their use very attractive, and thus their behavior 

needs to be modeled and studied. Since their dimensions are very small, 

scale effects should not be ignored, since they might be significant, and 

that is the reason that it is attempted to medl them using gradient 

elasticity.  

Of course, in these applications the loading and the geometry of the 

bubbles is much more complex than the ones studied in this work. 

However, in order to understand the bubbles behavior, one must start 

from the basics, so both geometry and loading simplifications are made. 
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4.I.2. Spherical Symmetry Problems Equilibrium 

In the previous section, a general theory has been presented for bodies of 

any geometry, subjected to various load combinations. In order to study 

spherically symmetric bodies, the equilibrium and the boundary 

conditions need to be obtained, using spherical coordinates. In the 

following paragraphs the equilibrium and the BCs for spherical bodies are 

obtained in spherical coordinates, in both the classical and the gradient 

theory of elasticity  

4.I.2.i. Classical Theory 

Consider any body characterized by spherical symmetry, for example a 

solid sphere, a spherical cavity, a spherical shell, any number of spherical 

shells the one inside the other and any combination of the above.  

In spherical coordinates the displacement vector takes the form 

φθru ˆ),,(uˆ),,r(uˆ),,r(u r    

The body is subjected only to radial loads and displacements of spherical 

symmetry and zero body forces are assumed. Under these assumptions, 

the bodies displacement vector is simplified to ru ˆu r , )()( rruu rr  , 

0),,r(u  , 0),,r(u   where ru is the radial displacement and r 

the distance of the center of the body. 

The classical equilibrium equation takes the following form: 

 0uu )λ(2  

0u)λ2( r
222  0u0u ,               . 

 , since λ2  is a non-zero material constant. 

Even though a 3D problem is addressed, the loading chosen reduced the 

equilibrium equation to an ordinary differential equation. It’s general 

solution is: 

   r̂
r

1
CrCˆCCˆC

2212211
2,1i

ii








 


rru  
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i.e, the O.D.’s fundamental solutions are: r)r(1   and 2
2 r/1)r(   

In the following classical problems, the pseudo vectors )r()r( uρ  and C 

are used. The first one is a vector whose elements are the O.D.s 

fundamental solutions. The second is the vector of the solution’s 

constants. They are used in order to optimize the display of the results. 

For example, the displacement field can be written as 

  rrρCu ˆ)r(Cˆ)r()r( ii
T  .In the same way are define the pseudo 

vectors of the fundamental solutions’ ν
th

 derivative )r()(
ρ  and the stress 

functions pseudo vector )ˆ()( nPP r . 











231
r

1
,r)]r(),r([)r(ρ  and 

  






 


331
r

4
,32)]r(P),r(P[)r(P ,   







 


r

2
'2P i

ii

 ii
r

' 



 etc. 

Due to spherical symmetry the surface normal vector n̂  can be either r̂ or 

r̂  thus the boundary conditions take the following form 

  ,ˆ)r(PCˆ)r(~ˆ)ˆ( ii nnPCτnnP   rn ˆˆ  , thus )ˆ()ˆ( rPrP   
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4.I.2.ii. Non – Classical / Gradient Theory 

Consider any body characterized by spherical symmetry with 

considerable microstructure that can be modeled by adding an additional 

length parameter g. In spherical coordinates the displacement vector takes 

the form φθru ˆ),,(uˆ),,r(uˆ),,r(u r    

Once again, the body is subjected only to radial loads and displacements 

of spherical symmetry and by the assumption of zero body forces the 

displacement vector is simplified to ru ˆu r ,  )r()r(uu rr    while 

0),,(  ru and 0),,(  ru , ru being the radial displacement and r the 

distance of the center of the body. 

 The equilibrium equation can be simplified to: 

 0fuuuu ))(()( 2222  gλ   

    0u0u  222222 11)2( ggλ   

The general solution for the displacement field is: 

 44332211

4

1

ˆ  CCCCC
i

ii 


ru  

ru ˆ)/(
)/(2

)/cosh()/sinh(1
2/34

2

3221
2

















 gr

gr
C

r

gr
g

r

gr
gC

r
CrC



i.e., the O.D.’s fundamental solutions are:  

r)r(1  , 

    










































22

2

2
/

1

/

1

/

1

/

1

2

1)/cosh()/sinh(
)(

//

2 grgrgrgrr

gr
g

r

gr
gr

grgr ee

23

1
)(

r
r  , 

  















22/34

/

1

/

1

2
)/(

)/(2
)(

/

grgr
gr

gr
r

gre


 ,  

2/3  being the modified Bessel Function Kn with n=3/2. The Ci constants 

are determined by the BCs. 
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Due to spherical symmetry of the body the surface normal vector n̂ can be 

either r̂ or r̂  thus the boundary conditions take the following form 

The traction vector: 

        

,ˆ

~:ˆ~:ˆˆˆ)~(ˆ~ˆ
ˆ

~
:)ˆˆ(~ˆ)ˆ(

4,1

213

n

μnμnnnμnμn
n

μ
nnτnnP






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

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


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
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SSSS
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
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
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' 



 etc. 

thus )ˆ()ˆ( rPrP   

The surface double traction vector: 

rnμnnR ˆRCˆ~ˆ)ˆ(
4,1i

ii 







 



, for both rn ˆˆ  , 

 









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And the normal displacement gradient 
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, where 'q ii  . Thus, the normal displacement 

gradient vector )ˆ()ˆ( rqrq   

 

In the following non-classical problems the pseudo vectors )r()r( uρ  ,

)ˆ()r( nqq  , )ˆ()r( nPP  and )ˆ()r( nRR  are used to indicate respectively 

the row vectors of the O.D.s fundamental solutions, their derivatives, the 

functions of the traction and double traction term of each fundamental 

solution. i.e. 

)]r(),r(),r(),r([ˆ)r()r( 4321ii  ερ ,  
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)]r('),r('),r('),r('[ˆ)r(')r( 4321ii  εq , 
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4.I.3. Boundary Condition Problems 

In the following pages numerous problems will be addressed using both 

the classical and the non -classical gradient linear elasticity, all 

characterized by spherical symmetry. The first two problems have 

originally been partly solved by (Polyzos, et al., 2003), but for 

completeness those problems are also presented here. 

4.I.3.1. The solid sphere 

Consider a solid sphere of radius a, whose center O coincides with the 

origin of both the Cartesian and the spherical coordinate system. The 

point 0 is a material point and thermodynamics dictate that its 

displacement cannot be infinite. In the classical problem the displacement 

field takes the form  ru ˆCC 2211  , r being the radial coordinate. 

Since 


2
0r

2
0r r

1
limlim , the C2 term needs to be zero in order to 

maintain a finite displacement at the center of the sphere. In the gradient 

problem, the displacement field takes the form

 rru ˆCCCCˆu 44332211r  . 
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, for g≠0, 

both terms C2 and C4 are zero due to the 

thermodynamics, and the constants to be 

determined are two . 

1a)Classical theory 

In this first problem, the sphere boundary is 

subjected to a radial displacement Ua, i.e the BC is  ru ˆU)ar( a  

rurr ˆr
a

U
)r(
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U
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U
)r(u a
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1b)Gradient theory 

Fig.  1 x-y plane section of a solid 

sphere of radius a. subjected to a 

radial displacement Ua 
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In the respective gradient problem, the sphere is made of a material with 

microstructure and being subjected to a radial displacement Ua (classical 

BC), while the normal displacement gradient at the boundary is qa (non-

classical BC). The BCs and the displacement 

field are given below in vector forms. 

ru ˆU)ar( a , 

 r
r

u
q ˆq

ˆ
)ar( a

ar









 

 rru ˆCCˆu 3311r   

Carrying through with the linear algebra, the 

unique exact solution of this problem is 

obtained. 

It order to optimize the results display, the 

parameter g/ac  (radius to internal length 

parameter ratio) is used. 
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
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                                 a2

2

aq
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c
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  

This solution can be divided into two simpler ones. In the first, the 

normal displacement gradient is restrained and so it vanishes at the 

boundary (qa=0) while the sphere is subjected to a radial displacement Ua. 

In the second boundary’s displacement is restrained (Ua=0) while the 

normal displacement gradient on the boundary is prescribed qa. 

Obviously, any other problem can be addressed as a linear combination of 

the two problems above, as a result of the superposition principle. 

Hereupon, the solutions of these two problems are presented  

Fig.  2 x-y plane section of a solid sphere 

of radius a. subjected to prescribed 

radial displacement ru ˆU)a( a and 

normal displacement gradient

rq ˆ)( aqa   
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Fig.  3 Normalized radial displacement ar Uu  versus normalized radial distance ar of the solid sphere of radius a, 

for various ga ratios. The classical boundary condition is ru ˆaU)a(  and the non-classical one 0q )(a
 

Fig.  4 Normalized radial deformation )/( aUe ar  versus normalized radial distance ar of the solid sphere of 

radius a, for various ga ratios. The classical boundary condition is ru ˆ)( aUa  and the non-classical one 0q )(a  
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Some preliminary conclusions can be drawn at this point. By restraining 

the spheres radial deformation at it’s boundary, a non classical behavior is 

obtained, where the spheres displacement field along it’s radius is greater 

than the one of the classical theory. Even in the cases that the c=L/g ratio 

is great (c=10, c=100), the divergence from the classical solution is 

discernible. Also, the deformation field approaches the classical 

deformation field as the c ratio increases. For great c ratio values, only 

close to the sphere’s boundary the strain diverges from the classical, 

while along the rest of it’s radius, the strains are practically those 

described by the classical theory. The radial double stresses distribution 

along the bars radius takes greater values for small c ratios, with it’s 

maximum always being at the spheres surface, and zero double stresses at 

it’s center. For great c values, the double stresses are significant only in a 

small part of the spheres radius, close to its surface. 

  

Fig.  3 Normalized double stresses arrr EU/  versus normalized radial distance ar of the solid sphere of radius a, 

for various ga ratios. The classical boundary condition is ru ˆ)( aUa  and the non-classical one 0q )(a  
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Fig.  5 Normalized radial displacement (ru a )aq  versus normalized radial distance ar of the solid sphere of 

radius a, for various ga ratios. The classical boundary condition is 0u )(a and the non-classical one rq ˆ)( aqa   

Fig.  4 Normalized radial deformation )q(e ar  versus normalized radial distance ar of the solid sphere of radius 

a, for various ga ratios. The classical boundary condition is 0u )(a and the non-classical one rq ˆ)( aqa   
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In the figures above is clearly depicted the fact that the effect of the non 

classical BC decreases for great c ratio values, and it is limited only close 

to the spheres boundary.  

It is noted that applying certain combinations of Ua and qa the classical 

or the gradient fundamental solution can be eliminated. Hence, every 

sphere even one with significant microstructure subjected to the right 

combination of loads (qa=Ua/a) behaves exactly as the classical theory of 

elasticity dictates. Furthermore, by applying a different set of Ua, qa,(












 2

1ccothc

c

a

U
q

2
a

a ) the classical term from the spheres 

displacement field is eliminated and a completely non-classical field is 

acquired.  

 

 

  

Fig.  6 Normalized double stresses arrr Eaq/  versus normalized radial distance ar of the solid sphere of radius 

a, for various ga ratios. The classical boundary condition is 0u )(a and the non-classical one rq ˆ)( aqa   
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2a)Classical theory 

In this second problem a non holonomic kind 

of loading is discussed, so the sphere is 

subjected to radial tensile stress Pa (in the 

common case of a compressive pressure Pa<0). 

The boundary condition is rP ˆP)ar( a  and 

the displacement field is obtained as follows 
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


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2b)Gradient theory 

In the case of the gradient elastic sphere under  

a radial tensile stress Pa (classical BC), while 

the surface double stresses at the boundary read 

Ra (non-classical BC) , i.e. rP ˆP)ar( a  and 

rR ˆR)ar( a , the unique solution obtained is 

the following 
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Fig.  8 x-y plane section of a solid 

sphere of radius a, subjected to a 

tesile stress rP ˆ)( aPa   and 

surface double stresses

rR ˆ)( aRa   

Fig.  7 x-y plane section of a solid 

sphere of radius a subjecter to 

radial stress rP ˆ)( aPa   



35 

 

The solution above denotes that when no double stresses are applied at 

the spheres surface (Ra=0), while a Pa stress is applied, the sphere 

behaves exactly as the classical theory describes, no matter how small it 

might be or how significant it’s microstructure (g length). The following 

figures present the sphere’s displacement, strain and double stress radial 

distribution. In order to normalize this solution the Lame constants have 

be substituted with their equivalents in terms of the Young’s modulus E 

and the Poisson ratio ν, i.e.
)21)(1(

E




  and 

)1(2

E


 . 

In the pressure problem the length g is eliminated from this solution, and 

the parameters left in its normalized form are the r/a ratio and the Poisson 

constant. Thus the next figures are plotted it terms of these parameters.  

Fig.  9 Normalized radial displacement (ru a )/ EPa  versus normalized radial distance ar of the solid sphere of 

radius a, for various ga ratios. The classical boundary condition is rP ˆ)( aPa  and the non-classical one 0R )(a  
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When only double stresses are applied the sphere’s behavior is size 

dependent, i.e. the g parameter is not eliminated – as expected - and after 

the normalization of the solution, three parameters are left, the ratios r/a, 

a/g and ν. The displacement, strain and double forces fields are plotted 

with respect to the r/a and a/g ratios, for the values of the Poisson ratio 

ν=0.00 and ν=0.30, which are considered to be typical. 

It should be noticed that the radial double stresses affect both the 

displacement and the strain field so when restraining of prescribing either 

of them (the first problem) double stresses need to be applied. Also, in the 

case that the poisons ratio is ν=0.00, for great c=L/g values, these fields 

tend to be reduced to the classical ones (zero fields, since this BC is not 

takes into account it the classical elasticity). However, for other ν values 

the solution is not reduced to zero field for great c values, meaning that 

even large scale spheres will behave non classically when properly 

loaded. 

  

Fig.  10 Normalized radial deformation (re )/ EPa  versus normalized radial distance ar of the solid sphere of 

radius a, for various ga ratios. The classical boundary condition is rP ˆ)( aPa  and the non-classical one 0R )(a  
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Fig.  11 Normalized radial displacement (ru )/ ERa  versus normalized radial distance ar of the solid sphere of 

radius a, for various ga ratios for Poisson ratio ν=0.00. The classical boundary condition is 0P )(a and the non-

classical one rR ˆ)( aRa   

Fig.  12 Normalized radial deformation (re )/ aERa  versus normalized radial distance ar of the solid sphere of 

radius a, for various ga ratios for Poisson ratio ν=0.00. The classical boundary condition is 0P )(a and the non-

classical one rR ˆ)( aRa   
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Fig.  13 Normalized double stresses (rrr )R a  versus normalized radial distance ar of the solid sphere of radius 

a, for various ga ratios for Poisson ratio ν=0.00. The classical boundary condition is 0P )(a and the non-classical 

one rR ˆ)( aRa   

Fig.  14 Normalized radial displacement (ru )/ ERa  versus normalized radial distance ar of the solid sphere of 

radius a, for various ga ratios for Poisson ratio ν=0.30. The classical boundary condition is 0P )(a and the non-

classical one rR ˆ)( aRa   
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Fig.  15 Normalized radial deformation (re )/ ERa  versus normalized radial distance ar of the solid sphere of 

radius a, for various ga ratios for Poisson ratio ν=0.30. The classical boundary condition is 0P )(a and the non-

classical one rR ˆ)( aRa   

Fig.  16 Normalized double stresses (rrr )Ra  versus normalized radial distance ar of the solid sphere of radius 

a, for various ga ratios for Poisson ratio ν=0.30. The classical boundary condition is 0P )(a and the non-classical 

one rR ˆ)( aRa   
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There are two more possible cases of loading combinations. The first is 

the one that the displacement and the double stresses at the spheres 

surface are prescribed, i.e. the BCs are ru ˆU)ar( a  and

rR ˆR)ar( a , while the second one, is the case in which the stress and 

the strain at the sphere’s boundary is prescribed, i.e. rP ˆP)ar( a  and , 

rruq ˆqˆ)ar( aar



. These cases can be addressed through the 

ones already presented by substituting either the degree of freedom BC 

with its work conjugate, or the generalized stress BC with its respective 

degree of freedom BC, using the following relations: 
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4.I.3.ii. The spherical cavity 

Consider an infinite elastic 3D space with a 

spherical cavity embedded in it at point 0 

which is the origin of both the spherical and 

the Cartesian coordinate system used. Since 

the space exceeds infinitely due to 

thermodynamics the displacement of the 

material point at infinity needs to be finite. . 

In the classical problem the displacement 

field takes the form  ru ˆCC 2211  . Since 

r

rr
limlim 1 , the C1 

term needs to be zero. In the gradient problem, the displacement field is

 rru ˆCCCCˆu 44332211r  . Both limits 


1
r
lim and




3
r
lim , thus the terms C1 and C3 are both zero in this case, for a 

finite displacement at infinity. 

1a)Classical theory 

The spherical cavity is subjected to a radial 

displacement Ua. The BC is  ru ˆU)ar( a
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1b)Gradient theory 

In this case, the infinite space is made of a 

material with microstructure and the cavity is 

subjected to a radial displacement Ua (classical 

BC), while the normal displacement gradient at 

the boundary is qa (non-classical BC), i.e. 

ru ˆU)ar( a ,      r
r

u
q ˆq

ˆ
)ar( a
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
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

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Fig.  18 x-y plane section of the 

spherical cavitysubjected to radial 

displacement aU  

Fig.  19 x-y plane section of the 

spherical cavity subjected to 

prescribed radial displacement

ru ˆ)( aUa   and deformation 

rq ˆ)( aqa   

Fig.  17 Schematic representation of a 

spherical cavity – x-y section 
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This problems exact and unique solution is found:  ru ˆCC 4422  , 
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where c is the ratio of the spherical cavity radius a to the characteristic 

material length g. Dividing this problem into two simpler ones, one that 

the normal displacement gradient vanishes on the boundary (qa=0) while 

the sphere is subjected to a radial displacement Ua, and one that one that 

the boundaries’ displacement is zero (Ua=0) while the normal 

displacement gradient on the boundary is determined qa, a better 

understanding of the cavities behavior can be obtained. The following 

figures present this behavior normalized appropriately in each case, for 

various values of the problems parameters. Any other problem can be 

addressed as a linear combination of the two problems above, based on 

the superposition principle. 

  Fig.  20 Normalized radial displacement ar Uu versus normalized radial distance r/a of a spherical cavity of radius 

a, for various ratios a/g, for any radius a. The classical boundary condition is ru ˆ)( aUa   and the non classical 

boundary condition is 0q )(a  
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Fig.  22 Normalized double stresses )EU( arrr  versus normalized radial distance r/a of a solid sphere of radius 

a, for various ratios a/g, for any radius a. The classical boundary condition is ru ˆ)( Uaa   and the non classical 

boundary condition is 0q )(a  

Fig.  21 Normalized radial deformation )/( aUe ar  versus normalized radial distance r/a of spherical cavity of 

radius a, for various ratios a/g, for any radius a. The classical boundary condition is ru ˆ)( aUa   and the non 

classical boundary condition is 0q )(a  
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Fig.  23 Normalized radial displacement aur ( )aq versus normalized radial distance r/a of a spherical cavity of 

radius a, for various ratios a/g, for any radius a. The classical boundary condition is 0u )(a  and the non classical 

boundary condition is rq ˆ)( aqa   

Fig.  24 Normalized radial deformation (re )aq versus normalized radial distance r/a of a spherical cavity of radius 

a, for various ratios a/g, for any radius a. The classical boundary condition is 0u )(a  and the non classical 

boundary condition is rq ˆ)( aqa   
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When the deformation at the cavity’s boundary is determined, the 

displacement distribution in the material is greater than the one described 

by the classical theory. The double forces are significant only near the 

boundary, and as the c ratio increases their range decreases, while the 

strain at the boundary approaches the classical one.  Also, the application 

of certain combinations of BCs either the classical or the gradient part of 

the solution can be eliminated, exactly like the case of the solid sphere. 

Hence, a spherical cavity, too, may behave exactly like the classical 

theory predicts even one with significant microstructure, when subjected 

to the right combination of loads (qa=-2Ua/a). If the strain is prescribed 

as 










 2

1ccothc

c

a

U
q

2
a

a  the classical part of the solution is 

eliminated and a completely non-classical behavior is described for the 

spherical cavity. 

Fig.  25 Normalized double stresses (rrr )Eaqa versus normalized radial distance r/a of a spherical cavity of 

radius a, for various ratios a/g, for any radius a. The classical boundary condition is 0u )(a  and the non classical 

boundary condition is rq ˆ)( aqa   
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2a)Classical theory 

When the spherical cavity is subjected to 

radial compressive stress - pressure Pa, i.e. 

the BC is rP ˆP)ar( a , the analytical 

displacement field acquired is: 

ru ˆ
r

a

4

P
)r(

2

3
a










  

2b)Gradient theory 

When a gradient elastic spherical cavity is 

subjected to a radial compressive stress Pa 

(classical BC), while the surface double 

stresses at the boundary are Ra (non-

classical BC) ,i.e. rP ˆP)ar( a and

rR ˆR)ar( a , the displacement field takes 

the following form:                         .

 rru ˆCCˆu 4422r    

Where c=a/g the spherical cavity radius to g 

length ratio and C2 and C4 expressions are 

given below:  
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First, the case where pressure Pa is applied and no double stresses(Ra=0).   

Fig.  26 x-y plane section of the 

spherical cavity with radial pressure 

applied at the boundary rP ˆ)( aPa   

Fig.  27 x-y plane section of the 

spherical cavity. The boundary 

conditions are rP ˆ)( aPa   and 

rR ˆ)( aRa   
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Fig.  28 Normalized radial displacement )/( EPau ar versus normalized radial distance r/a of a spherical cavity of 

radius a, for various ratios a/g, for any radius a.,for o poissons ratio ν=0.00 The classical boundary condition is 

rP ˆ)( aPa   and the non classical boundary condition is 0R )(a  

Fig.  29 Normalized radial deformation )/( EPe ar versus normalized radial distance r/a of a spherical cavity of 

radius a, for various ratios a/g, for any radius a, for a materials poisson ratio ν=0.00. The classical boundary condition 

is rP ˆ)( aPa   and the non classical boundary condition is 0R )(a  
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When normalizing the fields in this problem, exactly like in the case of 

the solid sphere, the Poisson’s ratio could not be eliminated, so different 

plots are been given for typical poisson ratio values. Above the cavities 

behavior is presented in the case that ν=0, and the case that ν=0,3 is 

presented next. 

It should be noted that the cavilty’s behavior is stiffer, when the material 

is gradient elastic, meaning that smaller displacements and deformations 

are anticipated, than the ones the classical theory describes. In the case 

that the c=a/g ratio is relatively small, especially when it is close to unity, 

this behavior is considerably stiffer. Furthermore, double stresses appear 

to the material even when no doublestresses are applied at the cavitys 

surface, which are smaller in range as the c ratio increases. 

  

Fig.  30 Normalized double stresses )/( EPa arrr versus normalized radial distance r/a of a spherical cavity of 

radius a, for various ratios a/g, for any radius a, for a materials poisson ratio ν=0.00. The classical boundary condition 

is rP ˆ)( aPa   and the non classical boundary condition is 0R )(a  
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Fig.  31 Normalized radial displacement )/( EPau ar versus normalized radial distance r/a of a spherical cavity of 

radius a, for various ratios a/g, for any radius a, for a materials poisson ratio n=0.30. The classical boundary condition 

is rP ˆ)( aPa   and the non classical boundary condition is 0R )(a  

Fig.  32 Normalized radial strain )/( EPe ar versus normalized radial distance r/a of a spherical cavity of radius a, for 

various ratios a/g, for any radius a, for a materials poisson ratio ν=0.30. The classical boundary condition is 

rP ˆ)( aPa   and the non classical boundary condition is 0R )(a  
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A very interesting remark on the double stresses is that in the case in 

which the poisson ratio is not zero the radial double stresses at the 

cavities surface are not zero, no matter the fact that the total double 

stresses R are zero. This can be attributed to the fact that due to the 

poisson ratio the non radial deformation and its work conjugate non radial 

double stresses contribute to the total double stress, so imposing the 

surface double stresses are zero does not mean that the radial ones that 

are plotted above are imposed to be zero. About the diplacement and 

deformation fields, the same observation as in the case can be made. 

The following figures depict the cavity’s behavior when only double 

stresses are applied to its surface and no pressure. 

  

Fig.  33 Normalized double stresses arrr aP versus normalized radial distance r/a of a spherical cavity of radius a, 

for various ratios a/g, for any radius a, for a materials poisson ratio ν=0.30. The classical boundary condition is 

rP ˆ)( aPa   and the non classical boundary condition is 0R )(a  
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Fig.  34 Normalized radial displacement )/( ERu ar versus normalized radial distance r/a of a spherical cavity of 

radius a, for various ratios a/g, for any radius a, for a materials poisson ratio n=0.00. The classical boundary condition 

is 0P )(a  and the non classical boundary condition is rR ˆ)( aRa   

Fig.  35 Normalized radial deformation )/( aERu ar versus normalized radial distance r/a of a spherical cavity of 

radius a, for various ratios a/g, for any radius a, for a materials poisson ratio n=0.00. The classical boundary condition 

is 0P )(a  and the non classical boundary condition is rR ˆ)( aRa   
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As pictured above, even to this non classical BC, the materials behavior is 

stiffer when the c=a/g ratio gets smaller, and when it approaches unity, 

this difference is significant. Also, in the graph above, the local character 

of the double stresses is depicted. It is shown that the double stresses are 

present and significant only near the body’s boundary and vanish 

gradually when moving away from it. 

Next, the cavity’s behavior is displayed when the poisson ratio is ν=0,30, 

in which case the same conclusion can be drawn. 

  

Fig.  36 Normalized double stresses )/( ERarrr versus normalized radial distance r/a of a spherical cavity of radius 

a, for various ratios a/g, for any radius a, for a materials poisson ratio n=0.00. The classical boundary condition is 

0P )(a  and the non classical boundary condition is rR ˆ)( aRa   
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Fig.  37 Normalized radial displacement )/( ERu ar versus normalized radial distance r/a of a spherical cavity of 

radius a, for various ratios a/g, for any radius a, for a materials poisson ratio n=0.30. The classical boundary condition 

is 0P )(a  and the non classical boundary condition is rR ˆ)( aRa   

Fig.  38 Normalized radial deformation )aE/R(e ar versus normalized radial distance r/a of a spherical cavity of 

radius a, for various ratios a/g, for any radius a, for a materials poisson ratio n=0.30. The classical boundary condition 

is 0P )(a  and the non classical boundary condition is rR ˆ)( aRa   
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Any other case of loading, i.e. the cases that at the boundary one degree 

of freedom and one generalized force are prescribed can be addressed by 

converting the one BC to the other kind using the relations that follow. 

The new problem will be one of the cases above, and has already been 

studied. 
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Fig.  39 Normalized radial double stresses arrr R versus normalized radial distance r/a of a spherical cavity of 

radius a, for various ratios a/g, for any radius a, for a materials poisson ratio n=0.30. The classical boundary condition 

is 0P )(a  and the non classical boundary condition is rR ˆ)( aRa   
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4.I.3.iii. The Spherical Shell 

Consider a spherical shell consisting of a solid 

sphere of radius b and a concentric spherical cavity 

of radius a. Let Sa be the internal and Sb the outer 

surface of the shell. 

1a)Classical theory 

In the first problem both 

surfaces are subjected to 

radial displacements Ua and 

Ub on Sa and Sb respectively (classical BCs), i.e 
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Note that in the equations above, the )]r([ function denotes a horizontal 

vector, with elements the two fundamental solutions of classical elasticity 

spherical problem. This symbolism is used in order to optimize the 

presentation of the results. 

The matrix M  is singular only when the two boundaries coincide, i.e. the 

inner and the outer radius of the shell tend to be the same b→a, which is 

the case of the thin walled spherical shell. In this case the singularity can 

be eliminated by using a first order Taylor expansions of the 

displacement functions, i.e. )a('T)a()b( iii  , abT  . Since b→a 

=>r→a, so the displacement takes the form 0)( aur , which means that 

the solution collapses/crushes.  

Fig.  40 Schematic representation 

of a spherical shell x-y section 

Fig.  41 x-y plane section of the 

shell. The boundary conditions are 

ru ˆ)( aUa  and ru ˆ)( bUb   
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1b)Gradient Theory 

In this problem both surfaces are subjected to 

radial displacements Ua and Ub on Sa and Sb 

respectively (classical BCs) while the normal 

displacement gradient at each boundary is 

prescribed, respectively qa and qb (non-classical 

BCs), i.e. 
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These BCs are translated to the following equation: 
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This time, the )]r([ function denotes a horizontal vector, with elements 

the four fundamental solutions of the spherical gradient problem.  

It can be proved that this solution is reduced to the classical one when the 

microstructure is insignificant compared to the shells dimensions i.e.

 g/borg/a , hence, the solutions ability of being reduced to the 

classical one when the scales are great is not lost in this more complex 

problem.  

Fig.  42 x-y plane section of the shell. The 

boundary conditions are ru ˆ)( aUa 

rq ˆ)( aqa  , ru ˆ)( bUb  and 

rq ˆ)( bqb   



57 

 

The matrix M  is singular only when the inner and the outer radius of the 

shell are very close to one another, i.e. the case of a thin walled spherical 

shell.  

Let T=b-a be the shells thickness. The singularity can be eliminated using 

second order Taylor expansions of the displacement functions 

2/)('')()()( 2

' aTaTab iiii    and its derivative          . 
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The displacement field then takes the following form:
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So the gradient solution crushes, too, exactly the classical one does. This 

may be interpreted physically as: on a thin walled spherical shell both 

boundaries are practically one thus different displacement cannot be 

imposed on them without the body getting destroyed/failing.  
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Fig.  43 x-y plane section of the shell. The 

boundary conditions are ru ˆ)( aUa   

and rP ˆ)( bPb   

2a)  Classical Theory 

In this problem the surface Sa is subjected 

to radial displacements Ua while on the 

surface Sb a tensile stress Pb is applied, i.e. 
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In the case of a thin walled spherical shell, of thickness T=b-a the 

problem doesn’t become singular and the solution gets very simple, 

rru ˆUˆu ar   , rP ˆ
bP  , this thought doesn’t mean that any 

displacement Ua can be subjected by applying any stress Pa. The relation 

between them must be prefixed and it is obtained through problem 4. 

Thus, this is not a problem of great practical interest. 

2b)Gradient Theory  

In the respective gradient elasticity  

problem the surface Sa is subjected to 

radial displacements Ua (classical BC) 

while the normal displacement gradient 

on boundary is predetermined qa (non-

classical BC)  and on the surface Sb a 

tensile stress Pb (classical BC)  and 

surface double stresses Rb (non-classical 

BC) are applied, i.e. 
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The displacement field takes the following form: 

Fig.  44 x-y plane section of the shell. The 

boundary conditions are ru ˆ)( aUa 

rq ˆ)( aqa  , rP ˆ)( bPb  and rR ˆ)( bRb   
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When the microstructure becomes insignificant i.e a/g→∞ the solution is 

reduced to the one obtained using the classical theory. This solution is 

never singular not even in the case that b→a, the case of a thin walled 

spherical shell. In that case the solution is simplified to: 

rru ˆUˆu ar  , rq ˆqa , rP ˆPb , rR ˆR b  

This, too, is a solution of no practical interest, thought, one can deduce 

that the displacement and its normal surface gradient of a thin walled 

spherical shell are approximately uniform throughout its body. Also the 

external load Pa needs to be the total external load from both surfaces, 

and this is a result of the small shell’s thickness, due to which we cannot 

be precise about where exactly the external loads are applied. The same 

remark applies on the surface double stresses. Once again, the 

displacement and its normal gradient cannot be independent of the 

external loads Pa and Ra, so this solution isn’t very useful, since it 

doesn’t present this relation. 

The next problem to be studied is the symmetrical of this one, meaning 

that the BCs applied at each boundary of the shell are applied in the other 

one in that problem. 
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3a) Classical Theory 

In this problem on the surface Sa a 

compressive stress-pressure Pa is applied, 

while the surface Sb is subjected to radial 

displacement Ub, i.e. 

rP ˆ)( aar
Pr 


and  

ru ˆ)( bbr
Ur 


, 
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In the case of a thin walled spherical shell, of thickness T=b-a the 

problem doesn’t become singular and the solution gets very simple 

exactly like in problem 2. No new interesting conclusion about this 

solution can be drawn. rru ˆUˆu br  , rP ˆPa   

3b) Gradient theory 

In this gradient problem on the surface Sa 

a compressive stress/pressure Pa 

(classical BC) and surface double 

stresses Ra (non-classical BC) are 

applied, while the surface Sb is subjected 

to radial displacement Ub (classical BC)  

and the normal displacement gradient on 

boundary is qb (BC)  , i.e. 
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
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Thus the displacement field is: 

 

Fig.  45 x-y plane section of the shell. The 

boundary conditions are rP ˆ)( aPa   and 

ru ˆ)( bUb   

Fig.  46  x-y plane section of the shell. The 

boundary conditions are rP ˆ)( aPa  , 

rR ˆ)( aRa  , ru ˆ)( bUb  and 

rq ˆ)( bqb   
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and when the microstructure is insignificant i.e. a/g→∞  , it is reduced to 

the field obtained using the classical theory.  

In the case of a thin walled spherical shell, of thickness T=b-a the 

problem doesn’t become singular and the solution gets very simple, but 

isn’t very useful, i.e. rru ˆUˆu br  , rq ˆ
bq , rP ˆ

aP , rR ˆ
aR , exactly like 

the previous problem. This solution is very similar to the solution of the 

second problem and the previous conclusions about the shell can be 

drawn from this case too.  

The following problem is the one of the most interest and practical 

application. 

4a)Classical theory 

In this problem on the surfaces Sa  to a 

compressive stress-pressure Pa is 

applied, while the surface Sb is 

subjected  to a tensile stress, i.e. 

rP ˆ)( aar
Pr 


,  rP ˆ)( bbr

Pr 


 

The displacement field is found to be 

the following: 
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Fig.  47  x-y plane section of the shell. The 

boundary conditions are rP ˆ)( aPa   and 

rP ˆ)( bPb   
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In the case of a thin walled spherical shell, of thickness T=b-a, the system 

becomes singular. Any singularity can be eliminated using first order 

Taylor expansions of the functions of the external radius, i.e. 

)(')()( ' aTPaPbP iii   . The displacement, deformation and curvature are: 
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4b) Gradient theory 

On the surfaces Sa of the shell a 

compressive stress-pressure Pa 

(classical BC) is applied and surface double stresses Ra (non-classical 

BC), while the surface Sb is subjected a tensile stress Pb (classical BC) 

and surface double stresses Rb (non-classical BC), i.e. 
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The solution takes the following form. 
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Note that this solution too, when the microstructure is insignificant, i.e. 

a/g→∞ is reduced to the classical one. 

Fig.  48  x-y plane section of the shell. The 

boundary conditions are rP ˆ)( aPa  , 

rR ˆ)( aRa  , rP ˆ)( bPb  and rR ˆ)( bRb   
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In the case of the thin walled spherical shell b→a, of thickness T=b-a, 

this solution becomes singular. The singularity is eliminated using first 

order Taylor expansions of the functions of the external radius, i.e. 

)(')()( ' aTPaPbP iii   , )(')()( ' aTRaRbR iii   

So the solution finally takes the following form: 
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This form of the solution can be derivated and any combination of the 

derivatives of ur can be easily be obtained. That isn’t the case with the 

following simplified forms of it, which thought are more lucid. 
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It comes with a surprise that when the ratio a/g→∞, both the 

displacement and the deformation functions are reduced to the respective 
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classical functions, while the higher order derivatives of the displacement 

don’t.  

In order to examine the effect of each BC to the displacement and 

deformation fields of this solution, the same procedure as before is 

followed. The problem is divided into two simpler, (i) one that the total 

applied stress is non zero while the surface double stresses at both 

surfaces are equal (i.e. 0 ba PP and 0 ab RR ) and (ii) one that the 

total applied stress is zero while the surface double stresses at both 

surfaces aren’t equal (i.e. 0 ba PP  while 0 ab RR ). Any problem can 

be addressed as a superposition of these two problems.  

It is noted that for small c=a/g values, the displacement of the shell is 

considerably smaller than the respective classical one and great radial 

double stresses are anticipated for such values, with the greatest ones 

appearing in the materials that Poisson’s ratio is the greatest. For great c 

values, both the displacement and deformation fields are reduced to the 

classical ones, while the double stresses tend to disappear. 

 

  

Fig.  49 Normalized radial displacement      E/PPTau ba
2

r   versus the ratio a/g for different 

values of the poisons ratio ν. The classical boundary conditions are rP ˆ)( aPa  and rP ˆ)( bPa 
 and the 

non classical ones rR ˆ)( aRa 
and rR ˆ)( bRa 

 with 0 ab RR  
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Fig.  50 Normalized radial deformation      EPPTae bar /   versus the ratio a/g for different values of the 

poisons ratio ν. The classical boundary conditions are rP ˆ)( aPa  and rP ˆ)( bPa 
 and the non classical ones 

rR ˆ)( aRa 
and rR ˆ)( bRa 

 with 0 ab RR  

Fig.  51 Normalized double stresses      ba
2

rrr PPTa    versus the ratio a/g for different values of the 

poisons ratio ν. The classical boundary conditions are rP ˆ)( aPa  and rP ˆ)( bPa 
 and the non classical ones 

rR ˆ)( aRa 
and rR ˆ)( bRa 

 with 0 ab RR  
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Fig.  52 Normalized radial displacement      ERRTau bar /  versus the ratio a/g for different values of the 

poisons ratio ν. The classical boundary conditions are rP ˆ)( aPa  and rP ˆ)( bPa 
 and the non classical ones 

rR ˆ)( aRa 
and rR ˆ)( bRa 

 with 0 ba PP  

Fig.  53 Normalized radial deformation      ERRTe bar /1   versus the ratio a/g for different values of the 

poisons ratio ν. The classical boundary conditions are rP ˆ)( aPa  and rP ˆ)( bPa 
 and the non classical ones 

rR ˆ)( aRa 
and rR ˆ)( bRa 

 with 0 ba PP  
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When radial double stresses are applied to the shell’s boundary, 

additional displacements and deformations and double stresses are 

imposed.  

In this case too, it should be noted, the classical behavior from the bubble 

under pressure classicalab )PP(   can be obtained then the right BCs are 

applied, i.e. classicalabgradientab )PP(
2

)PP( 



  and 

classicalbaab )PP(a
4

2
)RR( 




 . Hence, independent of the 

microstructure, in order to obtain the classical behavior, both a greater 

than the classical pressure needs to be applied, and certain double 

stresses. Consequently, the gradient elastic bubble is considerably stiffer. 

  

Fig.  54 Normalized double stresses      barrr RRTa   versus the ratio a/g for different values of the 

poisons ratio ν. The classical boundary conditions are rP ˆ)( aPa  and rP ˆ)( bPa 
 and the non classical ones 

rR ˆ)( aRa 
and rR ˆ)( bRa 

 with 0 ba PP  
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4.I.3.iv. The double-layer shell 

Having already considered the case of a thin walled spherical shell, the 

next step of this study is to consider the case of a composite thin walled 

spherical shell. 

The composite thin walled spherical shell is considered to be of radius d 

consisting of two tangent spherical shells of thicknesses T1 and T2 

respectively, each one made of materials, with Lame’s constants μ1,λ1 and 

μ2,λ2 and characteristic lengths g1 and g2 respectively. Let Sa be the 

internal and Sb the outer surface of the shell.  

In the classical theory displacement continuity and equilibrium of the 

interface ( r=d) dictate that at both its’ ends displacement and the stress 

must be equal. In the gradient theory, these conditions are not sufficient. 

Two more need to be chosen. Following the works of Weitsman 

(Weitsman, 1965) (who addresses the problem of the interface through a 

couple-stress theory) and Yueqiu Li (Li, et al., 2015) who considers a 

gradient elastic interface, besides the two classical boundary conditions, 

the non classical ones are chosen to be the continuity of the 

displacement’s normal gradient and the surface double stresses at the 

interface. These BCs represent the continuity of the second degree of 

freedom of the gradient elastic shell and its work conjugate. These are 

considered to be the BC that allow strain energy to be freely transmitted 

through the interface, as Wetsman (Weitsman, 1965) notes in the 

respective theory used in that paper.  
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Also, the row vectors depicted in the first and the second column of the 

following expressions are functions of the first and the second material’s 

parameters (μ1,λ1, g1) and (μ2,λ2, g2) respectively. Note that in the 

classical problems, 
ar

a


 ],[)( 31   etc while in the gradient ones 

ar
a


 ],,,[)( 4321  etc. while O is the zero vector with 2 and 4 in each 

theory elements respectively. In order to obtain the solution to any 
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classical double layered shell BC problem four constants need to be 

determined two for each layer of the shell. These constants are named 

using the following convention: Cij, i=a,b for the first and second material 

respectively, j=1,2 and are multiplied with the j
th

 fundamental classical 

solution, 2
21 r/1,r  . In the gradient problems, four constants are 

necessary for each layer, so the total unknowns are eight. The same 

convention is used for naming them: Cij, i=a,b for the first and second 

layer respectively, j=1,2,3,4 and are multiplied with the j
th
 gradient 

fundamental solution 

1a)Classical theory 

In this problem both surfaces are 

subjected to radial displacements Ua 

and Ub on Sa and Sb respectively, i.e. 

the BCs are: 
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In the case of a bi layered shell, the solution does not crush, as it happens 

into the single layered one. The displacement field obtained is practically 

a weighted mean value of the displacements of the two boundaries. The 

reason for such a difference is that in this case the interface is 

mathematically modeled as two different surfaces.  

d 

a=d-T1 

a=d+T2 a=d+T2 

Fig.  55 x-y plane section of the double-layer 

shell. The boundary conditions are 

ru ˆ)( aUa  and ru ˆ)( bUb   
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1b)Gradient theory  

In the respective gradient problem, both 

surfaces are subjected to radial 

displacements Ua and Ub on Sa and Sb 

respectively (classical BCs) while the 

normal displacement gradient at each 

boundary are prescribed, respectively qa 

and qb (non-classical BC), i.e. 

ru ˆ)( aar
Ur 


 , ru ˆ)( bbr

Ur 


 

r
r

u

n

u
q ˆ

ˆ

)()(
)( a

arar
ar

q
rr

r 













 

r
r

u

n

u
q ˆ

ˆ

)()(
)( b

brbr
br

q
rr

r 













 

The boundary value problem takes the 

adjacent matrix equation form. 

Using second order Taylor expansions around the radius d for the 

functions of a and b, i.e.  

2/)d(''T)d('T)d()a( i
2

1i1ii  ,    T1= d-a                      . 

2/)d(''T)d('T)d()b( i
2

2i2ii  ,    T2= b-d,         the following 

solution for the shell’s displacement is obtained. 
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Fig. 56 x-y plane section of the double-

layer shell. The boundary conditions are 

ru ˆ)( aUa  , rq ˆ)( aqa  , ru ˆ)( bUb 

and rq ˆ)( bqb   
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2a)Classical problem  

In this problem the surface Sa is 

subjected to radial displacements Ua 

while on the surface Sb a tensile stress Pb  

is applied, i.e. 

ru ˆU)r( aar



,   rP ˆP)r( bbr




 

                                                            
Thin

walled
  

 

Since the problem doesn’t become 

singular for a=b=c, and its solution is  

rru ˆUˆu ar  , 

2b)Gradient theory 

 In the gradient problem, the surface Sa 

is subjected to radial displacements Ua 

while the normal displacement gradient 

on boundary is qa and on the surface Sb 

a tensile stress Pb (classical boundary 

conditions)  and surface double stresses 

Rb (non-classical boundary conditions) 

are applied, i.e. 
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Consequently, the boundary condition 

problem takes the following form: 

Now, once again, this problem even with 

a=b=d doesn’t become singular, thus the 
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Fig.  58 x-y plane section of the double-

layer shell. The boundary conditions 

are ru ˆ)( aUa  , rq ˆ)( aqa  ,

rP ˆ)( bPb  and rR ˆ)( bRb   

Fig.  57 x-y plane section of the double-

layer shell. The boundary conditions are 

ru ˆ)( aUa   and rP ˆ)( bPb   
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solution one obtains is exactly the same obtained for the single layer 

shell, i.e. rru ˆUˆu ar  , and also rq ˆ
aq , rP ˆ

bP  and rR ˆ
bR  

3a)Classical theory 

In this problem on the surface Sa is 

applied to a compressive stress-pressure 

Pa while on the surface Sb is subjected to a 

displacement Ub, i.e. 

rP ˆP)r( aar



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The problem doesn’t become 

singular for a=b=d, and its 

solution is  

rru ˆˆ
ar Uu  , while rP ˆ

bP  

3b)Gradient theory 

In this problem on the surface Sa a 

compressive stress-pressure Pa (classical 

BC) and surface double stresses Ra (non-

classical BC) are applied, while the surface 

Sb is subjected to radial displacement Ub 

(classical BC)  while the normal 

displacement gradient on boundary is qb  

(Non-classical BC)  , i.e. 
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Consequently, the boundary condition problem 

takes the adjacent form: 

This solution even in the case of a thin walled 
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Fig.  59 x-y plane section of the double-

layer shell. The boundary conditions are 

rP ˆ)( aPa   and ru ˆ)( bUb   

Fig.  60 x-y plane section of the double-layer 

shell. The boundary conditions are 

rP ˆ)( aPa  , rR ˆ)( aRa  , ru ˆ)( bUb 

and rq ˆ)( bqb   
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spherical shell (a=b=d) is not singular and the solution obtained is exactly 

the same obtained by the single layer shell, i.e.  

rru ˆUˆu br  , and also rq ˆ
bq , rP ˆ

aP  

and rR ˆ
aR . 

4a)Classical theory 

In this problem on the surfaces Sa  is 

subjected to a compressive stress-

pressure Pa and the surface Sb is 

subjected a tensile stress Pb, i.e. 
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4d)Gradient theory 

On the gradient elastic bilayer shell’s 

surfaces Sa is applied a compressive 

stress-pressure Pa (classical BC) and 

surface double stresses Ra (non-classical 

BC), while the surface Sb is subjected to 

a tensile stress Pb (classical BC) and 

surface double stresses Rb (non-classical 

BC) , i.e. 
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Fig.  61 x-y plane section of the double-

layer shell. The boundary conditions are 

rP ˆ)( aPa   and rP ˆ)( bPb   

Fig.  62 x-y plane section of the shell. The 

boundary conditions are rP ˆ)( aPa  , 

rR ˆ)( aRa  , rP ˆ)( bPb  and rR ˆ)( bRb   
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For a thin walled double-layer shell, using first order Taylor expansions 

around d, this BC problem takes the form above, which finally leads to 

the next solution  
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Interesting property of this solution is that if any of the of T1and T2 is 

zero or the material is the same in both layers, thus the shell isn’t 

composite, then the solution degenerates is reduced to the one obtain for a 

single layer shell.  

If both materials’ microstructures are assumed to be insignificant 
 01g and  02g , this solution doesn’t take the form of the classical 

solution. However, this does not mean that it is wrong. In the literature, 

cases can be found that the solutions obtained, when the length parameter 

g is assumed zero, are not reduced to the classical respective problem 

solutions. In this particular case this result might also be attributed to the 

fact that only the lowest order thickness orders of the solution are kept, 

and the others are assumed to be insignificant combined with the 

assumption that was made that g,T,d/gd/T  , which is the case of 

the microspheres studied by (Glynos & Koutsos, 2009)  
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4.I.4. Experimental data treatment 

Glynos,E. and Koutsos,V. (Glynos & Koutsos, 2009) investigated 

experimentally the mechanical behavior of micro scale spherical shells, 

they used the term MS (Micro Sphere), 

using nanocompression testing with 

tipless cantilevers. The MSs used 

consisted of a thin shell of stiff 

structural polymer polylactide, 

surrounded by a cross linked albium 

outer layer and incapsulated nitrogen 

gas at atmospheric pressure. 

The MS’s thickness to radius ratio was 

considered to be constant T/a=1.5x10
-2

 

and the polymer’s Poisson’s ratio was assumed to be 0.42. The classical 

theory of elasticity calculates the MS’s stiffness, k, under this type of 

loading using the following equation. 

aE10x73.5E
a

T

)1(3

4
k 4

2

2




  

That indicates that bigger MS have are stiffer than smaller ones, then the 

thickness to radius ratio is constant. The experiment’s findings, though, 

indicate that small MSs are stiffer than larger, which comes in 

contradiction with the classical theory. Relaxing the assumption for a 

constant Young’s modulus , Glynos obtained the figure 63 presenting the 

relation for the Young’s modulus to the MS’s thickness. 

Using the spherical shell model that was developed, it is attempted to 

interpret those results. There isn’t enough data available to address the 

problem as a multiple layer shell as it is, so it will be treated as a single 

layered one. Also the MSs’ loading is not the one studied in the model. 

However, in hope that the same stiffening effects might be observed in 

both loading cases, this attempt of fitting the model to the experimental 

results is being made. 

Fig.  63 Young's modulus of MS structural 

shell versus MS shell thickness (Glynos & 

Koutsos, 2009) 
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The following relation can be obtained for its materials Young’s modulus 

as a function of the shell’s radius a, it’s materials characteristic length g 

and Poisson ratio ν: 
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,Eo being the Young’s modulus computed using the classical theory for 

the MS in the case that it is loaded only by pressure.  

Substituting the Poisson ratio(ν=0.42) and the thickness to radius ratio 

(T/a=1.5x10
-2

,), the following equation 

is obtained 
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This does indicate that for smaller 

shells the Young’s modulus does 

increase. However, in the model, sole 

the reduction of the shells size cannot 

induce such a dramatic increase of its 

stiffness, as the one described by the 

experiment’s result.  

This does not mean necessarily that the model fails to capture these 

stiffening effects. The general stiffening trend is captured, and there can 

be a better fitting of the model to the experimental results if the double 

stresses taken into account. However, many assumptions have already 

been made, so it was chosen not to proceed to this attempt without more 

data.  

In figure 66 is depicted, besides the experiments result, a curve for. 

E0=1.6 while the characteristic length g is 632 nm, which is one of the 

curves that predict the greatest increase for the Young’s modulus 

  

Fig.  64 Experimental data compared to the 

Eo=1.6GPa, g=632nm stiffness curve 

described by the model of a thin walled 

spherical shell 
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4.I.5. Conclusions 

Solid Sphere 

 The gradient theory does capture size effects in the spheres 

behavior. 

 When the surface normal displacement gradient is restrained, the 

sphere has a stiffer behavior. 

 When only classical loads are applied to the sphere, its response is 

classical, no matter how significant the microstructure might be. 

 Double stresses need to be applied for size effects to appear and 

stiffer responses to be obtained. 

 When the microstructure is small compared to the spheres radius, 

the effect of the non classical BCs is very small and the spheres 

behavior is reduced to the classical one.  

Spherical Cavity 

 Significantly stiffer than classical behavior even when no double 

stresses are applied, for great g length to radius ratios. 

 Significant effect of the poisson’s ratio to its behavior 

 The double stresses are significant only close to the boundary 

 The solution is always reduced to the classical one when the 

microstructure is small. 

Spherical Shell 

 Only the problem that the external loads are known provides useful 

results. 

 Its behavior is always stiffer than the classical, even when no 

double stresses are applied. 

 When the microstructure is small, the displacement and strain 

fields are reduced to the classical ones, while the curvature field is 

not. 

 The Poisson’s ratio affects the bars behavior, as it does in the 

classical case 
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Double Layer Spherical Shell 

 Only the problem that the external loads are known provides useful 

results. 

 In this case too many parameters are considered, which makes the 

extraction of conclusions difficult. 

 Generally, a stiffer than classical behavior is obtained for the shell 

 When the two material parameters are the same, the solution is 

reduced to the simple spherical shell gradient solution 

 When both materials length parameters are small compared to the 

shell’s radius, the solution obtained is not the classical one 
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4.II. PART II: 1D PROBLEMS & TRUSSES 

 

  



81 

 

4.II.1. Truss modeling through gradient elasticity. 

Trusses are a very common and useful and common kind of structure. 

There are several real life applications for trusses. For starters, in 

structural mechanics, they are commonly used for bridges and roofs. In 

vascular surgery, the STENTs used to increase blood flow in areas 

blocked by plaque are three dimensional trusses. In material science, in 

research for very light materials, a microscale 3D lattice was developed, 

with the intent to be possibly used as a structural material. Trusses, also, 

have more theoretical use. For example, they are a very simple way of 

modeling complex bodies under various kinds of loading, by discretizing 

a continuum in a network of truss elements in order to solve many 

elasticity problems. 

From a geometrical perspective, the simplest finite elements is the one 

dimensional bar element, which, in the classical elasticity framework, can 

be subjected only to axial loads, either tensile or compressive. These bar 

elements, though, can be used not only in one but also in two or three 

spatial dimensions by transforming their local coordinate system to a 

global one.  

A truss elements can model satisfactorily even complex geometries and 

give good stress and displacement results, using very few and simple 

equations, especially when used in appropriate problems, they give a very 

cost effective solution.   

Truss problems are mostly solved the stiffness method. This method 

starts by obtaining the truss elements’ stiffness matrices, assembling them 

in a global coordinate system and obtaining the global stiffness matrix of 

the structure. Then, the global load vector is defined and it’s relation to 

the displacement vector is obtained for the whole structure and the chosen 

boundary conditions (BCs) are imposed. 
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The following part of this work addresses the behavior of a gradient 

elastic bar, as a start, in order to conclude about the overall behavior of a 

composite gradient bar structure- truss. First, the equilibrium equation 

and the corresponding boundary conditions of a gradient elastic bar under 

static loading are derived using the variation principle. Second, various 

BC problems of the bar are addressed in order to obtain a good 

understanding of the effect that each BC has on the bars displacement, 

strain and double stresses fields, and the effect of the surface energy 

parameter l, which is not considered a parameter in the general strain 

gradient elasticity theory by Aifantis and is not taken into consideration 

in the general 3D problem presented in the first part of this work. Third, 

the function- behavior of elastic and a holonomic node is discussed in the 

framework of gradient elasticity in 1D problems and the non classical 

BCs that should be applied are found. The 1D stiffness matrix of the bar 

element is obtained and a series of 1D problems are solved in both their 

gradient and classical cases using the stiffness method and compared to 

their respective analytical solutions, in order to certify that the gradient 

elements can be used as 1D FEMs.  

Finally, the 2D truss problem is addressed directly. The function of a 

node in 2 dimensions is discussed. The Global 2D element stiffness 

matrix is obtained and some 2 D examples are presented. Last, another 

model for a 2D node behavior is proposed, and an example of its 

application is given.  
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4.II.2. The single bar behavior 

4.II.2.i. Equilibrium equation and boundary conditions in 1D 

problems 

The problem of the gradient elastic bar in uniaxial loading is the simplest 

one dimensional problem that can be addressed through first strain 

gradient elasticity. It has been addressed several times in the past years, 

not only as a static problem, as it will be here, but also as a dynamic one. 

This is the case of the works by Aifantis (Altan, et al., 1996), Tsepoyra 

(Tsepoura, et al., 2002), Polizzotto (Polizzotto, 2003), Mustapha 

(Mustapha & Ruan, 2015). This problem has also been addressed though 

other non local elasticity theories, as shown in Aurora Angela Pisano and 

E. Benvenuti.  

Following, assuming a material that obeys the linear gradient elasticity 

theory of Aifantis, the equilibrium equation and the corresponding 

boundary conditions are presented as obtained by Tsepoyra by 

application of the variation principle. 

Consider a straight prismatic slender bar, with constant cross sectional 

and elastic properties along its axis subjected to uniaxial tensile stress 

σx(x) resulting to an axial displacement u=ux(x), along its longitudinal 

axis x. The displacements uy and uz are assumed to be zero, thus the strain 

field 
dx

du
ee x

11   

Following the one dimensional gradient elasticity theory with surface 

energy by Aifantis the strain energy U of the bar in axial loading is 

defined as 

    
L

0V

dxeeA
2

1
dVee

2

1
U  

Where A is the area of a cross section, 
dx

de
e  is the strains gradient, 

and , denote the Cauchy stresses and double stresses, respectively and 

are given by the following constitutive relations 
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ulu   

ugul 2   

Where the constants l, g represent ,material lengths related to the surface 

and volumetric elastic strain energy respectively with gl0   , E is the 

Young modulus and dx)(d)(  ,  

The bars strain energy and its variation are given below 
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The variation of the work done by external classical forces q and P and 

non-classical double forces R read 

   L
0

L
0

L

0

'uRuPdxuqW    

The variation equation 0)WU(  takes the following form 

 
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2L

0
2

L
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iv2
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The equation above implies that each term must be equal to zero, thus the 

governing equation of the bar and its boundary conditions (BCs) are 

extracted. 

0
EA

)x(q
)x(ug)x("u iv2   

And at each end  

i. Either the displacement is known uu   

 or the applied axial force is known  
EA

P
'''ug'u 2   
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ii. Either the strain at each end is known 'u'u    

or the applied axial double forces are known 
EA

R
"ug'ul 2   

Where the dashed superscript denotes prescribed values. 

 

The O.D.s general solution is partialiipartialhom uCuuu   
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EA
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)g/xsinh(C)g/xcosh(CCxCu

 

The force vector is: xP ˆPC ii , ]0001[P   

And the double force vector is xR ˆRC ii , 

])g/xcosh(
g

l
)g/xsinh()g/xsinh(

g

l
)g/xcosh(01[R   
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4.II.2.ii. Boundary Condition Problems 

In the following section the effect in the behavior of a gradient elastic bar 

of several boundary conditions will be presented in extend. The behavior 

predicted will be compared to the one predicted by the respective 

classical elastic bar. The effect of the extra surface energy parameter l 

will be discussed separately.  

Consider a bar of length L, modulus of elasticity E and cross-sectional 

area A. Besides the original coordinate system  L,0x , two more 

coordinates systems are introduced in order to simplify the results and 

optimize their display. The first is the normalized axial coordinate system

 1,0L/x  , and the second one is a normalized coordinate system with 

origin at the end of the bar i.e. 0*Lx  and direction opposite to 

previous systems,  1,0*,1L/)xL(*  . In the following gradient 

problems the non dimensional parameters g/Lc   and g/l are used for 

the same reason.                                                                      .

 

Fig.  65 Representation of the coordinate systems x, ξ, ξ* that are being used it order to simplify the 

following problems and used the symmetry of the solutions 

The fixed-fixed bar 

Classical theory 

In fixed-fixed bars ends are subjected to 

axial displacements U0 and U1 respectively, 

the BCs are 0U)0(u  and 1U)1(u  . The 

following displacement field is very simple, 

well known and easily obtained. 

 10010 U*U)UU(U)(u  

Fig.  68 Fixed-Fixed bar subjected to 

displacements xu ˆ0U)0(   and  

xu ˆ1U)1(   
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Fig.  69 Fixed-Fixed bar. The bar’s ends 

displacements and strains are prescribed 

xu ˆ0U)0(  , xu ˆ1U)1(   and 

0)0('u 
, 1)1('u   

respactively 

 

Obviously the case in which the displacement of one end of the bar is 

restrained and the other end is subjected to an axial displacement is 

obtained by zeroing the respective displacement.  

Gradient theory 

For the gradient problem the bar is made of a material with 

microstructure. The classical BCs are the same as in the classical theory. 

Two sets of non-classical BCs need to be studied next. 

In the first sub case the strain at both ends is 

prescribed, ε0 and ε1 respectively, i.e. the 

BCs are 0U)0(u  , 1U)1(u  , 

0)0('u   and 1)1('u  . This is a 

symmetrical problem, meaning that the BCs 

at both sides are of the same type. Thus the 

displacement field is expected to be 

symmetrical too. This means that the effect of each BC on the field must 

be symmetrical to the effect of its symmetrical BC, or more 

mathematically, the displacement field due to one BC – while the others 

are zero – can be obtained by substituting the ξ parameter with ξ*=1- ξ 

and the BCi with BCi
symm, 

i.e 

If 
symm

iiBCiiiBCi BC*)t(u)(,uBC)t(u)(,u symm   

The displacement field of this problem takes the following form 
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Fig.  70 Normalized axial displacement 1U/u versus normalized axial distance L/x of a 

Fixed-Fixed bar. The classical BCs are 0)0(u  , ,1U)1(u   and the non classical ones

0)0('u  , 0)1('u   

 

It is reminded that the parameter c is non dimentional, and defined as 

c=L/g in the bar problems. As expected the solution is symmetrical thus 

the effect of only one of the symmetrical BCs - solutions will be 

discussed. The λ parameter does not effect the bars displacement or strain 

in this case. This fact can be attributed to the use of only ‘holonomic’ 

BCs, no dynamic ones. 

In order to fully adress every problem possible, the solution is divided in 

two simpler ones, as done in the previous part of this work. In the first, 

the bar is fixed at one end while the other is subjected to an axial 

displacement U1 and the strain at both ends is restrained, i.e. 0)0(u  , 

1U)1(u   and 0)1('u)0('u  . The normalized displacement and 

the strain versus the normalized axial distance of the bar are given below. 

Also, the normalized double stresses distributions, for λ=0 and in the case 

that c=4, for different λ values are presented.   
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Fig.  71 Normalized axial strain )L/1U/('u versus normalized axial distance L/x  of a Fixed-

Fixed bar. The classical BCs are 0)0(u  , ,1U)1(u   and the non classical ones

0)0('u  , 0)1('u   

 

Fig.  72 Normalized axial double stresses )E1U/(
xxx

 versus normalized axial distance 

L/x  of a Fixed-Fixed bar. The classical BCs are 0)0(u  , ,1U)1(u   and the non 

classical ones 0)0('u  , 0)1('u   
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Fig.  73 Normalized axial double stresses )E1U/(
xxx

 versus normalized axial distance 

L/x  of a Fixed-Fixed bar, for various λ values, and c=L/g=4. The classical BCs are 

0)0(u  , ,1U)1(u   and the non classical ones 0)0('u  , 0)1('u   

  

The following conclusions can be drawn. 

Both the displacement and the strain fields depend on the L/g ratio, and as 

this ratio increases the bars behavior is reduced to the classical one. Due 

to the holonomic non-classical BC’s, the strain at the bars ends is zero 

regardless of how great the c parameter might be, but the deviation from 

the classical solution decreases significantly as the c parameter takes 

great values and only close to the bars ends the deviation from the 

classical solution is significant. In other words, as a bar gets smaller, a 

greater part of its body is affected by the end effects/non classical BCs 

and its behavior deviates from the classical one, both displacement-wise 

and strain-wise. 

The double stresses μxxx are strongly dependent to both the c and λ ratios. 

Increasing the c ratio induces a great reduction to both the greatest 

double-stress value, and the range of the bars length that these stresses are 

significant. Greater λ values (surface strain energy) result to greater 
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Fig.  74 Normalized axial displacement )L1/(u  versus normalized axial distance L/x  for a 

Fixed-Fixed bar. The classical BCs are 0)0(u  , 0)1(u   and the non classical ones

0)0('u  , 
1

)1('u   

 

double stresses in the greater part of the bar, and at the same time 

eliminate the antisymmetry from the μxx distribution. The λ parameter 

does not affect the displacement or the strain field in this problem, since 

all degrees of freedom are confined. 

It should be underlined though that the applied BCs - u’=0 - are very 

invasive in order to obtain a very non homogenous behavior from the bar. 

However, mathematically, by applying other strains at the bars ends, i.e 

u’=(U1-U0)/L, the solution obtained coincides with the classical one no 

matter the value of the c parameter. 

The last conclusion is validated when studying the bars response to an 

applied strain when both its’ ends are fixed, thus the BCs being 0)0(u 

, 0)1(u  , 0)0('u  and 1)1('u  . The following figures describe this 

behavior for various L/g ratios and various λ parameter values in the case 

that c=4, since, when the λ parameter is inserted to the solution, too many 

parameter are present and it is impossible to plot one single normalized 

solution for every c and λ value. 
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Fig.  75 Normalized axial strain 1/'u  versus normalized axial distance L/x of a Fixed-Fixed 

bar. The classical BCs are 0)0(u  , ,0)1(u   and the non classical ones 0)0('u  , 

1
)1('u   

 

Fig.  76 Normalized axial double stresses )EL1/(
xxx

 versus normalized axial distance L/x  

Fixed-Fixed bar. The classical BCs are 0)0(u  , ,0)1(u   and the non classical ones

0)0('u  , 
1

)1('u   
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Fig.  77 Normalized axial double stresses )EL1/(
xxx

 versus normalized axial distance L/x , 

for c=4 and various λ values. The classical BCs are 0)0(u  , ,0)1(u   and the non classical 

ones 0)0('u  , 
1

)1('u   

 
Prescribing the strain at one end of the bar, while both ends 

displacements are restrained results to non uniform, non symmetrical 

displacement, strain and double forces fields. For great c values these 

fields tend to get zeroed in the better part of the bar, and differ only at its 

ends, so the effect of the non classical BC to the bar is reduced.  

In order to apply these BCs, when the surface elastic strain energy is 

significant (λ≠0) greater double forces need to be applied, but always 

their maximum values appear at the bars ends. 
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Fig.  66 Fixed-Fixed bar. Subjected to axial 

displacaments xu ˆ0U)0(   and xu ˆ1U)1( 

while the double forces at its ends are prescribed 

0R)0(R  and 
1R)1(R   

Next, is investigated the behavior of a 

fixed-fixed bar, whose ends’ strain is not 

directly prescribed, but type R BCs are 

applied i.e. the double forces at the ends 

of the bar are prescribed. The BCs are 

0U)0(u   and 
1U)1(u   and 

0R)0(R  and 1R)1(R  . This, too, 

is a symmetrical problem. The displacement field takes the following 

form in the case where the l parameter is zero 
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The first part of this solution is the same as the classical one. This means 

that the bars behavior differs to its’ classical behavior only if double 

forces R are applied at its ends. In other case, its response is classical 

regardless of how small the bar or how significant (how great the c=L/g 

ratio) the microstructure may be. 

Hence, for a non-classical behavior from the bar, either double forces R 

are applied at its’ ends, or their deformation is prescribed and different to 

the strain of the respective classical solution. Prescribed end strain, of 

course, means that double forces being applied, whose value depend on 

the prescribed end displacements and strains, as well as on material 

parameters as will be discussed. 

Polizzoto (Polizzotto, 2003) made that observation too, and concluded 

that the way to obtain a classical behavior from a gradient elastic bar the 

non-classical BCs need to be u΄΄(ξ=0)=u΄΄(ξ=1)=0. This is not exactly 

accurate since it appears to be an arbitrary BC, more of a mathematical 

trick in order to obtain a linear solution. However, a posteriori can be said 

that this BC describes the condition of zeroing the double forces at the 

ends of the bar, in a case of a material of no surface strain energy (λ=0), 

which is the model Polizzoto used.  

Since the first part of the solution is the same as the classical one, 

following, only the effect of double forces at the bars ends will be 

presented.  
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Fig.  79 Normalized axial displacement )EA/0R/(u versus normalized axial distance L/x  of a 

Fixed-Fixed bar.. The classical BCs are 0)0(u  , ,0)1(u   and the non classical ones

0
R)0(R  , 0)1(R   

Fig.  80 Normalized axial strain )LEA/0R/('u versus normalized axial distance L/x  of a Fixed-

Fixed bar. The classical BCs are 0)0(u  , ,0)1(u   and the non classical ones

0
R)0(R  , 0)1(R   
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Fig.  81 Normalized axial double stresses )A/0R/(
xxx

 versus normalized axial distance L/x  of a 

Fixed-Fixed bar. The classical BCs are 0)0(u  , ,0)1(u   and the non classical ones

0
R)0(R  , 0)1(R   

 

In the graphs above the displacements do not approach the classical 

solution as the c=L/g parameter increases. This behavior is attributed the 

restriction the bar’s ends displacement. As will be shown further on, the 

application of double forces at a free bars end affects its length. The bar 

elongates when the double forces direction is away from the bars center, 

and it shortens in the opposite case. The R0 double forces’ direction is 

towards the center of the bar so the bar tends to get shorter. By restraining 

the bars’ ends movement, practically an opposite displacement to the one 

that resulted from the application of the double forces, is applied, which 

is a hidden classical kind of load, responsible for this seemingly odd, non 

classical behavior. 

In the case of R1 whose direction is outwards of the bar, the double forces 

effect elongates the bar, and the confined displacement of its ends 

imposes a hidden classical set of BCs, too. As a result, for great c 

parameter values, the displacement field is not reduced to a zero field, 

which was originally thought to be the respective classical problem’s 

solution.  
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When the λ parameter is significant the behavior of the bar deviates 

drastically from the classical one, even in the case where only classical 

BCs are applied. The displacement field takes the following form:  

)(u)(u)(u)(u
21 210   ,  

)(u 0  being the displacement field in the case that λ=0, described above, 
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Fig. 82 Normalized axial displasement 

1
/Uu (cont), 0/Uu dashed, )4/( gL versus normalized axial 

distance Lx / of a. Fixed-Fixed bar, for various λ values when c=L/g=4.  
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Fig.  83 Normalized axial strain )L/1U/('u (continuous), )L/0U/('u (dashed) versus normalized 

axial distance L/x of a Fixed-Fixed bar, for c=L/g=4 and various λ values 

Fig.  867 Normalized axial double stresses EU1/
xxx

 (continuous), EU0/
xxx

 (dashed) 

versus normalized axial distance L/x of a Fixed-Fixed bar, for c=L/g=4 and various λ values 
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Fig.  85 Normalized axial displacement )EA/1R/(u (continuous), )EA/0R/(u (dashed) versus normalized 

axial distance L/x of a Fixed-Fixed bar, for c=L/g=4 and various λ values 

 

Fig.  86 Normalized axial strain )EAL/1R/('u (continuous), )EAL/0R/('u (dashed) versus normalized axial 

distance L/x of a Fixed-Fixed bar, for c=L/g=4 and various λ values 
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Fig.  87 Normalized axial double stresses )EAL/1R/(
xxx

 (continuous), )EAL/0R/(
xxx

  (dashed) versus 

normalized axial distance L/x of a Fixed-Fixed bar, for c=L/g=4 and various λ values 

The effect of the λ parameter on the bars behavior is displayed in the 

graphs above, for a bar of c value of four (c=4). Since, the λ parameter 

eliminates any symmetry from the solution, the effect of a BC is different 

on each end of the bar. In each of the graphs above, two cases are 

addressed. In the first three, the effect of an imposed displacement to each 

bar’s end presented. In the last three, the effect of applied double forces at 

each bars end while no double forces are applied to the other is presented.  

The λ parameter, i.e. the presence of surface energy affects strongly the 

displacement and deformation fields of a bar. When only classical BCs 

are applied, the surface energy effect on these fields has a level of 

symmetry. However, when non classical BCs are applied, their effect is 

very strong and all symmetry is eliminated from those fields. The 

presence of surface energy in this form, though, is rarely taken into 

account since it rarely is observed, and, also, following the Kordolemis 

(Kordolemis, et al., 2013) analogy, seems to be linked with anti 

symmetric properties and behaviors that until recently were not 

commonly used. In this case, too, in which surface energy is present and 

the bars behavior gets very complicated, a classical behavior can be 

anticipated when the double forces applied are R0 = R1 = EA l (U1-U0) / L.  
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Fig.  88 Fixed-Free bar. The BCs are 

xu ˆ0U)0(  ,   xP ˆ1P)1(   

 

Fig.  89 Fixed-Fixed bar. The BCs are 

xu ˆ0U)0( 
, 

xu ˆ1U)1( 
 

 

Classical theory 

In the case of a fixed-free bar, one end of 

the bar is subjected to an axial displacement 

U0 while the other one is free and subjected 

to a tensile force P, thus the BCs can be 

expressed as 0U)0(u  and 1P)1(P  . The solution to this problem 

that follows solution is very simple, well known and easily obtained. 

 10 PU)(u  

Gradient theory 

In the gradient case, the bar is made of a 

material with microstructure . The classical 

BCs are the same as before. Two sets of non-classical BCs are studied 

next. 

In the first sub case, the strain of the both ends of the bar is prescribed, ε0 

and ε1 respectively. The BCs are 0U)0(u  and 1P)1(P   and 

0)0('u  and 1)1('u  . This is not a symmetrical problem in respect 

to the BCs, so the displacement field is also not expected to be 

symmetrical. The displacement field takes the following form: 
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The field indeed is not a symmetric one, so the effect of each BC will be 

presented separately. First, a bar under tension with restrained ends strain 

is considered. As shown in the following figures, the behavior of the bar 

is stiffer than the classical bar behavior. However, for great c values, the 

solution approaches the classical one, and only at the ends of the bar the 

fields deviate from their classical form. The double stresses are localized 

only near the ends and their values are smaller, for greater c values.  
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Fig.  91 Normalized axial strain EAPu 1/'  versus normalized axial distance L/x of a Fixed-Free bar. The 

classical BCs are 0)0(u  , ,1P)1(P   and the non classical ones 0)0('u  , 0)1('u   

 

Fig.  90 Normalized axial displacement EALPu // 1 versus normalized axial distance L/x of a Fixed-Free bar. 

The classical BCs are 0)0(u  , ,1P)1(P   and the non classical ones 0)0('u  , 0)1('u   
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Fig.  92 Normalized axial double stresses )A/L1P/(
xxx

  versus normalized axial distance L/x  of Fixed-Free 

bar. The classical BCs are 0)0(u  , ,1P)1(P   and the non classical ones 0)0('u  , 0)1('u   

  

  
Fig.  93 Normalized double stresses )A/L1P/(

xxx
 versus normalized axial distance L/x of a Fixed-Free bar, 

for c=4 and varius λ values. The classical BCs are 0)0(u  , ,1P)1(P   and the non classical ones

0)0('u  , 0)1('u   
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Fig.  94 Normalized axial displacement L1/u  versus normalized axial distance L/x of a  Fixed-Free bar. The 

classical BCs are 0)0(u  , ,0)1(u   and the non classical ones
0

)0('u  , 0)1('u   

 

Fig.  95 Normalized axial displacement 
0

/'u  versus normalized axial distance L/x of a  Fixed-Free bar. The 

classical BCs are 0)0(u  , ,0)1(u   and the non classical ones
0

)0('u  , 0)1('u   

 

 



105 

 

Fig.  96 Normalized axial double stresses )EL
0

/(
xxx

 versus normalized axial distance L/x of a  Fixed-Free 

bar. The classical BCs are 0)0(u  , ,0)1(u   and the non classical ones
0

)0('u  , 0)1('u   

   

Fig.  97 Normalized axial double stresses )EL
0

/(
xxx

 versus normalized axial distance L/x of a Fixed-Free 

bar, for c=L/g=4 and various λ values 
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Fig.  98 Normalized axial displacement L1/u  versus normalized axial distance L/x of a Fixed-Free bar. The 

classical BCs are 0)0(u  , ,0)1(u   and the non classical ones 0)0('u  , 
1

)1('u   

 

Fig.  99 Normalized axial strain 1/'u  versus normalized axial distance L/x of a Fixed-Free bar. The classical 

BCs are 0)0(u  , ,0)1(u   and the non classical ones 0)0('u  , 
1

)1('u   
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Fig.  101 Normalized axial double stresses )EL1/(
xxx

 versus normalized axial distance L/x of a Fixed-Free 

bar,for c=L/g=4 and various λ values  

 

 

  

Fig.  100 Normalized axial double stresses )EL1/(
xxx

 versus normalized axial distance L/x of a Fixed-Free 

bar. The classical BCs are 0)0(u  , ,0)1(u   and the non classical ones 0)0('u  , 
1

)1('u   
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As shown in the figures above, in order to restrain the strains at the bars 

ends double stresses, directly related to the applied force P, are applied at 

the bars ends and their value is independent of the λ parameter, which 

though, modifies the double stress distribution along the bar. 

In the case where the strain at the ends is determined as P/EA -the value 

of the bars ends in the classical problem- the solution is reduced to the 

classical one, independent of the c ratio. Thus, the bars’ behavior isn’t 

always stiffer than the one predicted in classical theory, it can be the same 

as the classical one, or ever less stiff provided that the right BCs are 

applied. 

Widely in the literature the assumption of restrained end strains is used as 

non classical BC. That indeed dictates a stiffer behavior for the bar as it is 

shown in the graphs above. This isn’t the case thought if u’>P/EA, in 

which the bars’ displacement is greater than the one of the classical case. 
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Fig.  102 Normalized axial displacement )EA/0R/(u versus normalized axial distance L/x  of a Fixed-free 

bar. The classical BCs are 0)0(u  , ,0)1(P   and the non classical ones
0

R)0(R  , 0)1(R   

 

Another fixed-free bar is studied. It is the case that one end of the bar is 

subjected to an axial displacement Uo, while a tensile force P is applied to 

its other end and the double forces R0 and R1 at both ends of the bar are 

known, i.e. the BCs are 0U)0(u  and 
1P)1(P   and 0R)0(R  and 

1R)1(R  . First, the case where the surface strain energy is 

insignificant/parameter λ=0, will be discussed and later the way the λ 

parameter affects the displacement field will be presented. 

The displacement field takes the following form, when λ=0: 








 














)csinh(

)csinh(

EA

R
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)csinh(

*)csinh(

EA

R

EA

LP
U)(u 101

0  

The function above shows that when no double forces are applied at the 

ends of the bar, the bars behavior is independent for the g parameter, i.e. 

no scale effects are present. Next, is displayed the effect of the double 

forces to the bars’ behavior, a division of the solution that can be done 

due to the superposition principle. It should be noted that the double 

forces on each end of the bar affect in a different way its behavior, i.e. 

they are not symmetric. 
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Fig.  103 Normalized axial strain )LEA/0R/('u versus normalized axial distance L/x  of a Fixed-free bar. The 

classical BCs are 0)0(u  , ,0)1(P   and the non classical ones
0

R)0(R  , 0)1(R 

)LEA/0R/('u  

 

Fig.  104 Normalized axial double stresses )A/0R/(
xxx

 versus normalized axial distance L/x  of a Fixed-

free bar. The classical BCs are 0)0(u  , ,0)1(P   and the non classical ones
0

R)0(R  , 0)1(R   

 

  



111 

 

Fig.  105 Normalized axial displacement )EA/1R/(u versus normalized axial distance L/x  of a Fixed-free bar. 

The classical BCs are 0)0(u  , ,0)1(P   and the non classical ones 0)0(R  , 
1

R)1(R   

 

As in the case of a confined ends displacements, in this case too when 

double forces are applied to an end of the bar its displacement field 

cannot be reduced to the classical one when the L/g ration increases. Thus 

if able to apply such double forces to the fixed bars end, its length 

changes, even when no axial force is applied.  

Note, though, that only the part of the bar which is near the end is 

affected by the double forces. The rest of the bar may be displaced, but no 

significant strain is anticipated. Hence, the variation of the bar’s length is 

attributed only to the deformation of the affected by the double forces 

part of the bar. 

Next, the double forces effect on the free end of the bar is presented. The 

main difference of this case to the one above is that the displacement and 

strain fields are reduced to the classical ones for great c values. The 

behavior of the bar, though, is very similar in the two cases. They differ 

due to a hidden imposed displacement in the first case. 
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Fig.  107 Normalized axial double stresses )A/1R/(
xxx

 versus normalized axial distance L/x  of a Fixed-free 

bar. The classical BCs are 0)0(u  , ,0)1(P   and the non classical ones 0)0(R  , 
1

R)1(R   

 

Fig.  106 Normalized axial strain )LEA/1R/('u versus normalized axial distance L/x  of a Fixed-free bar. The 

classical BCs are 0)0(u  , ,0)1(P   and the non classical ones 0)0(R  , 
1

R)1(R   
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In the case of non zero surface strain energy λ≠0, the displacement field 

is   uuu 0 , where uλ=0 is the displacement field of a bar with λ=0 

described above and the uλ  field is given below.  
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Due to the many parameters in this problem the effect of the l parameter 

is displayed in the case where c=L/g=4 

  
Fig.  108 Normalized axial displacement )EA/L1P/(u versus normalized axial distance L/x of a Fixed-Fixed 

bar, for c=L/g=4 and various λ values. The classical BCs are 0)0(u  , ,1P)1(P   and the non classical ones

0)0(R  , 0)1(R   
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Fig.  109 Normalized axial strain )EA/1P/('u versus normalized axial distance L/x of a Fixed-Fixed bar, for 

c=L/g=4 and various λ values. The classical BCs are 0)0(u  , ,1P)1(P   and the non classical ones

0)0(R  , 0)1(R   

 

Fig.  110 Normalized axial double stresses )A/L1P/(
xxx

 versus normalized axial distance L/x of a Fixed-

Fixed bar, for c=L/g=4 and various λ values. The classical BCs are 0)0(u  , ,1P)1(P   and the non classical 

ones 0)0(R  , 0)1(R   
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As in the case of the fixed fixed bar with double forces applied to its 

ends, the surface energy results to non uniform / non classical behavior 

from the bar even when only classical BCs are applied. Notice that 

greater displacements and strains appear throughout the bar and also 

double stresses appear, even though double forces are not applied at the 

bars ends. 

In the following figures the effect of double forces at a bar’s ends is 

presented, when λ≠0. When applying double forces to the fixed end of the 

bar, the bar is shortened, and the greater the λ parameter, the more the bar 

is shortened. When applying double forces to the free end of the bar, it 

elongates. In contrast with the fixed end, for greater λ values, the bar 

elongates less. Thus the λ parameter in any case contributes in a way that 

reduces the bar’s length.  

It is noted that double forces on either end, create a unique double stress 

field for all λ values, no matter their different effect on the displacement 

and strain fields. 

The next figures present the effect of double stresses to the fixed free bars 

behavior. In is shown that the application of double forces triggers the l 

length, in a way that it attempts to minimize the bar’s length. And for 

greater λ values the more the bar is shortened by the application of the 

double forces. 

Also, it is noted that the double stress field in this problem is independent 

of the l parameter. So only the displacement and strain fields are affected   
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Fig.  111 Normalized axial displacement )EA/
0

R/(u versus normalized axial distance L/x of a Fixed-Fixed 

bar, for c=L/g=4 and various λ values. The classical BCs are 0)0(u  , 0)1(P   and the non classical ones

0
R)0(R  , 0)1(R   

 

Fig.  112 Normalized axial strain )EAL/
0

R/('u versus normalized axial distance L/x of a Fixed-Fixed bar, for 

c=L/g=4 and various λ values. The classical BCs are 0)0(u  , 0)1(P   and the non classical ones

0
R)0(R  , 0)1(R   
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Fig.  113 Normalized axial double stresses )A/
0

R/(
xxx

 versus normalized axial distance L/x of a Fixed-

Fixed bar, for c=L/g=4 and various λ values. The classical BCs are 0)0(u  , 0)1(P   and the non classical 

ones
0

R)0(R  , 0)1(R   

 

Fig.  114 Normalized axial displacement )EA/
1

R/(u versus normalized axial distance L/x of a Fixed-Fixed 

bar, for c=L/g=4 and various λ values. The classical BCs are 0)0(u  , 0)1(P   and the non classical ones

0)0(R  , 
1

R)1(R   
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Fig.  115 Normalized axial strain )EAL/
1

R/('u versus normalized axial distance L/x of a Fixed-Fixed bar, for 

c=L/g=4 and various λ values. The classical BCs are 0)0(u  , 0)1(P   and the non classical ones

0)0(R  , 
1

R)1(R   

 

 

 

 

  

Fig.  116 Normalized axial double stresses )A/
1

R/(
xxx

 versus normalized axial distance L/x of a Fixed-

Fixed bar, for c=L/g=4 and various λ values. The classical BCs are 0)0(u  , 0)1(P   and the non classical 

ones 0)0(R  , 
1

R)1(R   
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4.II.2.iii. Conclusions 

The following general conclusions can be drawn about the bars behavior. 

 Prescribing the bars degrees of freedom generally results to non 

classical non uniform behaviors from the bar.  

 Restraining the bar’s ends strains does increase the bars stiffness, 

especially for small L/g ratios 

 The bars behavior when instead of strain BCs, zero double forces 

BCs are applied is the same as the respective classical one, no 

matter L/g ratio. 

 The l parameter affects the bar in a way that minimizes its length, 

by reducing its elongation, when in tension, and by additionally 

shortening the bar, when in compression. 

 Any BC problem solution can be reduced to a classical one, when 

appropriate BC combinations are applied. 

 The bar’s behavior, under most loading cases, for great c=L/g 

values is reduced to the respective classical behavior  
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4.II.3 1-D composite bar structures 

4.II.3.i. Node function in composite 1D structures 

Before addressing any specific problem, independent of the loading 

applied, in a composite structure first one must investigate how a truss 

node would function in the framework of the gradient elasticity theory.  

The classical elasticity node is considered to be a rigid point body that 

maintains the continuity of the bars’ ends displacement, while it allows 

them to rotate independently. The node as a body only has displacement 

degrees of freedom and no rotational ones and also needs to satisfy the 

Newton’s first law of motion (ΣF=0). In the case of two collinear bars 

joined with a node, the conditions above can be translated to  

  uu   and 0PPP external    

In the classical elasticity framework one BC needs to be determined at 

each end of a bar. The node joins two bars thus the above BCs at the node 

are sufficient for a well posed problem.  

This is not the case in the gradient elasticity framework, where two BCs 

need to be determined at each bars end, thus at the gradient node joining 

two collinear bars four BCs need to be determined, for a well posed 

problem. The classical conditions easily can be chosen to be the two BCs. 

The choice of the two extra – non classical conditions is not as obvious 

and needs to be discussed, since their effect to each bars behavior is 

crucial. Polizzoto (Polizzotto, 2003) considered the node as an interface 

between the bars. This is a fairly reasonable assumption and will be 

followed in the greatest part of the present work. Polizzoto demanded that 

besides the classical BCs, the strain and the curvature of the bars’ 

displacement to be equal at the interface, i.e. 

  'u'u   and   "u"u  

Dealing with gradient elasticity and higher order differential equations, it 

is sure to use higher order BCs at nodes-interfaces as the ones discussed. 

A reasonable choice thought needs to be made so that they represent the 

real loading of the bar structure and provide the real bars behavior. 
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Demanding that the strain of both bars at the interface is equal is a very 

strict condition itself. However strain manipulation is one of the abilities 

given by the variation principle and it is an acceptable BC, although 

questions arise regarding the ability of the node’s body/interface’s to 

impose such a behavior. 

On the other hand, demanding that both bars have the same curvature at 

the interface as a BC is not as reasonable. It does not have any physical 

support, and seems even more extreme than the one above. In the case of 

dividing a bar in multiple bar elements and applying any BCs, using these 

non classical BCs at the created interfaces, a continuous displacement 

field is obtained that coincides with the displacement field of the original 

bar. In other cases though where not all the bars are of the same material, 

the same Young’s modulus and the same cross sectional area, it is 

expected that discontinuities will appear in the composite bodies 

displacement derivatives, which isn’t the case with these interface 

conditions. Thus, demanding equal curvatures is not considered to be a 

functional BC and other interface conditions are seeked after. 

Instead of the curvature condition, demanding that the double forces R at 

the interface are equal is considered more reasonable as the fourth BC. 

This is not an arbitrary condition since it is obtained through the variation 

principle. However, the double forces μxxx do not contribute neither to the 

force nor the moment equilibrium of a body, and it should not be 

necessary to make such a demand, based on classical elasticity concepts. 

However, an assumption of a gradient version of Newton’s 3
rd

 law, 

together with the assumption of an elastic interface between the bars, not 

a body-node, justifies this BC in the sense that the two materials alone 

interact with their boundaries, and the double forces are applied from one 

another. This is the BC proposed in other interface elasticity problems, as 

wave transmition by Yueqiu Li (Li, et al., 2015). 

Following the Κordolemis’ (Kordolemis, et al., 2013) analog of the 

pretwisted beam, it is observed that at an interface that no extra axial 

stress is applied, both the axial force and the bimoment should be equal, 

thus the respective R term should be equal too. This is the case of an 

interface of two similar in geometry and properties structural parts. 

However, besides the loading, the R term presented depends on several 
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material and cross sectional parameters of the body thus the assumption 

of the R equality should not be generalized. It should be noted, though, 

that the analogy is not perfect since in this case there are exactly four 

degrees of freedom, while, the pretwisted beam has six, and assumptions 

are made for each of them. 

A direct answer to this search is obtained by Weitzman in the field of 

couple-stress theories. He notes that assuming an elastic interface, the 

energy due to the couple-stresses (E=μrωrθ in his case) should be fully 

transmitted across the two bodies interface and thus the BCs chosen are 

μr+=μr- and ωrθ-=ωrθ+ in his study. This note is translated in the present 

study, in gradient elasticity, as μxxx-= μxxx+ and u’-=u’+ → R-=R+ and u’-

=u’+, in the case of identical cross sections that are being joined. This, 

though, is considered to be the BC and in the case of an interface between 

two different cross sections. As noted before, this does not come fully in 

agreement with the conclusion obtained through the pretwisted beam 

analogy. But that can be attributed to the imperfection of the analogy. 

It is also noted by Weitzman that it is equally reasonable to assume that 

no gradient strain energy is submitted through the interface, thus the BCs 

can be any of the following combinations 

0'u   and 0'u   

0R   and 0'u   

0'u   and 0R   

0R   and 0R   

The last one, Weitzman notes, is the physically most possible and, as 

shown earlier, is a case that the bars behaves classically independent of 

the microstructure. Since the behavior of trusses with such nodes is the 

classical, which is known and no size effect is predicted, this case will not 

be studied. 

There seems to be no reason that the node’s - interface’s BCs are not 

symmetrical thus the second and third BC combinations seem not to have 

some practical application and they will not be used. 
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The first BC combination is the one most commonly met in the literature, 

and as noted before is considered to be a very ‘intrusive’ BC, that induces 

very non-uniform stiffer than classical behavior of the bar. It so also 

noted that this BC implies that the double stresses at the two different 

adjoining bodies take different values, which, however, are linear 

functions of the axial forces applied or the displacements applies at each 

bars ends, P)g2/Ltanh(gc/PL)2/ctanh(RR 10   or 

)uu(
)2/ctanh(2c

)2/ctanh(
EARR 0110 


 , in the case l=0. 

The node that restrains the strains of the connected bars is hereupon 

referred a rigid node. 
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4.II.3.ii. 1-D Stiffness Matrix 

Next step to solving multiple bar problems is obtaining the bar element 

stiffness and flexibility matrices of a gradient elastic bar element. 

First, the stiffness matrix will be acquired. The stiffness matrix calculates 

the forces applied to the bar in order to accomplish certain displacements 

in the framework of the classical elasticity theory.  

 

There are several ways to construct the stiffness matrix. Here the 

analytical solutions combined with the force equilibrium are used. The 

displacement field in the case of prescribed nodal displacements dxi and 

dxj is u= dxi+( dxj- dxi) ξ  

while fxj=Pj=EAu’=EA/L( dxj- dxi)=k( dxj- dxi) 

and the force equilibrium demands that fxi+ fxj=0-> fx-=- fxj=- k( dxj- 

dxi) 

thus the local coordinate system stiffness matrix is 
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In the gradient elasticity framework, there are two more degrees of 

freedom – the stains at the bar’s ends - the respective work conjugates R0 

and R1 
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The displacement field of a bar with prescribed nodal displacements and 

strains is know, thus the fxk ans rxk generalized forces can be found. Once 

again the stiffness matrix satisfies the equation dKf 
~

dKf jiji , in 

which case  

   TT
)1()1()0()0( RPRPrxjfxjrxifxi f  

   TT
qxjdxjqxidxixjdxjxidxi d  

The choice above for the f and d vector components is made based on the 

assumption that the 2D – 3D gradient theory by (Polyzos, et al., 2003) 

can be simplified and used to 1-D problems. Thus, the bars non classical 

degrees of freedom are nuq ˆ at the ends and their work conjugates 

nμnR ˆ~ˆ  , u  being the displacement vector, n̂  the unit normal vector 

on the bodies surface, i.e. the bars ends, and μ~  being the double stress 

tensor. In 1D problems they are simplified to: 
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The relations above show that no matter which end of the bar is 

considered, the double forces R positive direction is the same as the 

longitudinal axis’ direction, while, the “strain” degree of freedom, 

depending on the cross section has a different positive direction.  

After some simplifications the local coordinate system stiffness matrix is 

found to be the following 
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where ‘symm’ refers to the symmetric nature of the stiffness matrix. In 

the case that λ=0 the stiffness matrix is simplified:  
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The stiffness matrices of the present work are exact, so one finite element 

per physical member can be assigned and the exact solution still be 

obtained. Of course, the expressions of the stiffness coefficients here are 

more complicated than the ones in classical elasticity but they are in 

closed form and hence the additional computational effort is relatively 

small. 
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Fig.  117 FEM and analytical solutions of the axial displacement u  of a bar in tension with restrained end strains 

versus normalized axial distance L/x . The classical BCs are 0)0(u  , ,1P)1(P   and the non 

classical ones 0)0('u  , 0)1('u   

 

4.II.3.iii. 1-D Applications 

Several examples are presented that indicate how the bar elements can be 

employed for solving problems of more complex loading than the simple 

bar with end forces and double forces, without using complex distributed 

force functions and with perfect agreement with the behavior predicted by 

the theory.  

The majority of the numerical values used for the different parameters of 

the problem in the following examples are obtained by (Kahrobaiyan, et 

al., 2013) while some geometrical parameters were chosen properly.  

First, the elements’ response to a fundamental already known problem is 

tested. Assume a bar of made of gradient elastic material with internal 

length parameter g=11.01 μm, l=0μm, Young’s modulus E=1.44 GPa, 

cross section area = 78.54μm
2
, fixed at one end at x=0, while an axial 

force P=10
4
 μN is applied at its free end and the strains at both ends are 

restrained and equal to zero, i.e. ,0)0(u  ,0)0('u  ,0)1('u   

N10)1(P 4  
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Fig.  118 FEM and analytical solutions of the axial strain 'u  of a bar in tension with restrained end strains versus 

normalized axial distance L/x . The classical BCs are 0)0(u  , ,1P)1(P   and the non classical ones

0)0('u  , 0)1('u   

 

Fig.  119 Schematic representation of the 
second problem, and the four part 
discretization used. 

 

InIn the figures above, the bars displacement and strain fields are presented 

as obtain by dividing it into 2, 4, 8, 16 parts and using the same number 

of bar elements connected by elastic nodes to model it. The FEM 

solutions describe perfectly the bars displacement and strain fields, no 

matter how big or small each element is chosen (the discretization). This 

is a very basic gradient elastic loading case, and the results are extremely 

satisfactory. Next, a less simple loading case puts these bar elements to 

the test. 

In this, second, problem the same bar is 

studied, subjected to a different load. 

This time the concentrated force P is 

applied at the bars middle instead of its 

free end while no double forces are 

applied at its ends. The analytical 

solution was obtained using the 

distributed load function 

P)2/Lx()x(q  , δ being the dirac 

function and P the concentrated load, and 
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Fig.  120 FEM and analytical solutions of the axial displacement u  of a bar with a force P applied at its middle versus 

normalized axial distance L/x . The classical BCs are 0)0(u  , ,0)1(P   and the non classical ones

0)0(R  , 0)1(R   

 

the BCs are ,0)0(u   ,0)0(R   ,0)1(R   0)1(P   

The analytical solution obtained is: 
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Where  denotes the Heaviside step function, L/x  and g/Lc  . 

In the following figures is shown that, in this non standard case too, the 

bar elements can describe perfectly both the bars longitudinal 

displacement and strain, even when the discretization chosen is quite big, 

i.e. the length of the elements is half the bars length. 
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Fig.  121 FEM and analytical solutions of the  strain 'u  of a bar with a force P applied at its middle versus normalized 

axial distance L/x . The classical BCs are 0)0(u  , ,0)1(P   and the non classical ones 0)0(R  , 

0)1(R   

 

Fig.  122 Schematic representation of the third problem, and 
the 21 part discretization used. 

Third, it is shown that these 

elements can be used to 

model cases of distributed 

axial load. In this example, 

the second half of the 

aforementioned bar is 

loaded with a distributed 

axial tensile load, while no 

double forces are applied at 

it’s ends. The analytical 

solution was obtained using 

the distributed load function 

0q2/Lx)x(q  ,   

being the Heaviside step 

function and q0=100μN/μm the distributed load. The BCs read 

,0)0(u   ,0)0(R   ,0)1(R   0)1(P   

The analytical solution obtained is  
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Fig.  123 FEM and analytical solutions of the axial displacement u  of a bar with with distributed axial load at half its 

length versus normalized axial distance L/x . The classical BCs are 0)0(u  , ,0)1(P   and the non 

classical ones 0)0(R  , 0)1(R   
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Where  denotes the Heaviside step function, 
L

x
  and

g

L
c  . 

In order to model this loading there were used 21 bar elements, one for 

the first half of the bar, since as noted before, they describe the bars 

behavior perfectly, even when big elements are used, and twenty bar 

elements of the same length ΔL=L/40 to model the second half of the bar. 

The load was modeled as twenty one concentrated forces ΔP=q0ΔL 

applied an the nodes of the bar, except for the nodes 1 ans 21, to which 

half this force is applied (ΔP/2).  

As show below, the FEM results for both the bars displacement and the 

strain are in perfect agreement with the analytical solution, even in this 

approximation of the external load. 
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Fig.  124 FEM and analytical solutions of the axial strain u ’ of a bar with with distributed axial load at half its length 

versus normalized axial distance L/x . The classical BCs are 0)0(u  , ,0)1(P   and the non classical 

ones 0)0(R  , 0)1(R   

 

  

A this point it must be noted that using the developed bar elements allows 

the application of double force loads at any point of the bar, even, 

practically, distributed double forces. This is not, though, a type of load 

that is directly supported by the analytical theory. 

All the examples above were cases that could be addressed by the theory 

using jump and other functions. That, however, results to difficult and 

time consuming integrations, which sometimes may even not have closed 

form integrals, so the FEM provide an alternative route to address such 

problems.  

The fourth and last example is one that cannot be addressed by the theory 

as developed earlier due the greater complexity of its geometry, but 

aspires to be solved nonetheless. It is inspired and also addressed by 

Kahrobayan (Kahrobaiyan, et al., 2013) and represents the longitudinal 

behavior of a micro drill subjected to an axial load.  
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Fig.  126 FEM and analytical solutions of the axial displacement u  of the microdrill versus normalized axial distance 

L/x . The classical BCs are 0)0(u  , ,0)1(P   and the non classical ones 0)0(R  , 0)1(R   

 

 

 

The drill is assumed to be of length L=132,12μm, material length 

parameters g=11.01μm, l=0μm, Young’s modulus E=600GPa and 

circular cross sections R1=4R2,R2=L/20. An axial force P=10
4
 μm is 

applied and no external double stresses. 

It is modeled using bar elements of the same characteristics except cross 

sectional area, which depends on each elements position in this composite 

structure, as indicated from the geometry. It is modeled by dividing it to 

20, 40 and 80 parts and the same number of bar elements. The figure 

below presents the drills behavior as obtained using both classical (red 

color) and gradient (blue color) FEMS.  

Fig.  125 Schematic representation of the third problem(microdrill). 
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Note that resulting displacements depend on the number of elements 

used, which is to be expected, since an approximation of the true 

geometry is chosen, and the more elements are used, the geometrical 

modeling changes significantly and gets more exact. The solution with 

the most elements is considered to be the most accurate. In every case, 

though, the displacement calculated using the gradient FEMs is smaller 

than the one obtained using classical FEMS. 

 

The stiffness matrices used to solve the problems above are to be used 

only when it is assumed that the elements interface is fully elastic. In the 

case that rigid nodes are assumed instead of interfaces, thus the strain at 

each elements ends is assumed to be zero, the stiffness matrix above can 

be simplified to a 2 by 2 matrix  

















11

11

)g2/Ltanh(g2L

EA~
K  

   TT
)1()0( PPfxjfxi f  

 Tdxjdxid  

In this case the strains at the end are a priori known and the double forces 

R applied by the node at each bar are different and not of great interest 

since they also are not aggregated in this node model. Note that the 

double forces R can easily be calculated as:
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This stiffness matrix is very similar to the classical elasticity one and 

when the g length is small compared to the length L is simplified to the 

classical one, but when the L/g parameter is not very high then this matrix 

denotes a much stiffer behavior of bar element. Dividing a gradient bar is 

several elements joined by these nodes, this composite body’s behavior 

will be much stiffer than the one given by the analytical solution, since 

the smaller an elements length gets, the stiffer it gets, since the material 

parameter g is constant and each elements ends strain is assumed zero. 

The reason for such a result is that in this case is that this is not an 

equivalent problem to the one of the whole bar. The strain at several 

points throughout its length is determined and assumed zero, jumps of the 

double stresses and curvatures are applied, which are not present in the 
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Fig.  127 FEM and analytical solutions of the axial displacement u  of a bar in tension with restrained end strains 

versus normalized axial distance L/x  using rigid nodes. The classical BCs are 0)0(u  , ,1P)1(P   

and the non classical ones 0)0('u  , 0)1('u   

 

original problem. A simple example of a bar that confirms the 

observation above is the following, which compares the behavior of a bar 

with zero end strains under axial tension. 

i.e. the BCs are intended to be 0)1('u)0('u  , 0)0(u  ,

1P)1(P   

The numerical values used for the different parameters of the problem in 

the following example were obtained by Kahrobaiyan (Kahrobaiyan, et 

al., 2013) in their majority and some were chosen properly. it is assumed 

that E=1.44 GPa and g=11.01 μm, P1=10
4
 μN, c=L/g=8, l=0, A= 

78.54μm
2
  

Although, these nodes are not to be used as finite elements to model bars, 

it does not mean they cannot be used in truss modeling problems. 
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4.II.4. 2-D Bar Structures - Trusses 

4.II.4.i. Node function in composite 2D structures 

In the framework of classical elasticity, 2D trusses are made by joining 

bars using nodes. These nodes are considered to be rigid bodies and their 

role is maintaining the continuity of the displacements while allowing the 

relative rotation of the bars. The node itself, as a point body has no 

rotation degrees of freedom, and only forces can be applied to it, no 

moments. Truss structures are loaded solely via their nodes, thus, no 

moments can be applied to the bars, which, this way, are loaded only 

axially. 

However, studying the way that the bars are connected to the node in real 

trusses, one will see that usually, each bar is pinned to the node using 

more than one bolt. This type of connection allows moments to applied, 

since the bolts’ distance can function as cantilever for forces couples. So 

it needs to be investigated whether the believed to be truss functions as a 

total of bars pinned together using nodes or as a total of beams fixed 

together at different angles. This problem is addressed in Appendix 1 in 

its most simple form, i.e. the case of two bar truss. 

The following conclusion is drawn by that study: the bars’ moments can 

be ignored, and the joint can be considered as a node, in the case that the 

bars’ lengths are significantly greater than their other dimensions. 

Always, in trusses, slender bars are used; therefore, the assumption of no 

moments is acceptable. 

As pointed out earlier, the node is a point body. Thus, Newton’s law of 

motion it needs to be satisfied, besides the continuity of the displacements 

at it. In the case of i bars pinned together to a node, the following 

relations should be satisfied: 

xix uu  , yiy uu   for and 0PP externalxix  , 0PP externalyiy   

Any problem, either statically determinate or indeterminate, can be 

solved if the bars’ properties and either the displacement or the external 

force in the direction of each axis is known each node. The unknown 

displacements can be found using the stiffness method. 
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In the case of a gradient elastic truss, knowing these relations does not 

suffice in order to find the trusses behavior. In contrast with the classical 

bars which have two degrees of freedom, the gradient bars have four, so 

at its of their ends two BCs need to be determined.  

The choice of the non classical BCs depends on the kind of node that is 

used. The easiest node to assume is the rigid node, who restrains the 

strains of the bars’ ends, the extra BCs are already known and very 

simple. The problem can be solved using a modified form of the stiffness 

method, using the gradient bars’ stiffness matrix, which is presented in 

the next section. This type of node has been used by (Olufemi, 2011), 

who, however, did not use the stiffness method they way it is presented 

here, in order to obtain the nodal displacements. As expected, stiffer than 

classical behaviors were obtained for the structures considered when the 

microstructure parameter g was not insignificant. 

Another kind of node should be considered, one that does not restrain the 

bars’ strains, but allows the application of external double forces to the 

bars, following a gradient type generalization of action-reaction law. 

Also, as in the case of the 1D, the strain tensor of all connected to the 

node bars should be the same at the node, and its form should be the 

following 
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yy0

0xx
 

since, the two deformations that can be considered in this model are the 

xx and yy because no shear loads can be applied to the bars and no 

equilibrium equation of the bars involves either shear stresses or strains. 

These demands are based on the assumption, that the node problem can 

be addressed as a plane problem of a continuous body.  

Bars are 1D objects so the assumption can be made that the 1D boundary 

conditions should be satisfied. Thus, the condition nnu ˆˆd/  should be 

satisfied for all bars joined to the node, no matter the angle they form. 

Due to the form of the displacement fields,  nenunu ˆ~ˆ)(ˆd/  , 

which means that for any angle that the bars might be joined nne ˆˆ~  . 

Hence, the strain tensor e~ must be the unit tensor multiplied by a 

constant.   
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Fig.  128 Forces and displacement vectors expressed in the local coordinate system of a classical bar 

 

4.II.4.ii. 2-D stiffness matrix 

All the problems addressed to this point were one dimensional, so the 

stiffness matrix already presented was sufficient for their solution. 

However, two dimensional composite bar structures (trusses) are widely 

used in real time applications. In order to solve these problems it is 

needed to obtain the global stiffness matrix of a gradient elastic bar.  

First, the 2-D stiffness matrix of a classical bar element is obtained, and 

next, the gradient bar element 2D stiffness matrix is presented. 

 

The force and displacement components of the classical bar element are 

linked by the member stiffness relations dKf 
~

dKf jiji  which is 

written out in full is: 
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The element supports only axial loads, so no perpendicular to the axis of 

the bar forces are to be applied and any perpendicular displacements do 

not raise the stress of the bar, so, this relation is simplified to: 
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Fig.  129 Forces and displacement vectors expressed in the blobal coordinate system X,Y 

 

Fig.  130 vector analyzed in two coordinate 
systems x,y and X,Y 

 

 

These are the node force and node displacement vectors and the member 

stiffness matrix in local coordinate system x,y. In order to assemble bars 

that are not collinear the forces, displacements and the stiffness matrix 

should be expressed in the global coordinate system X,Y (capital letters). 

 

It is well known that a vector F when 

expressed in the two coordinate systems 

x,y and X,Y, it’s components follow the 

relationship 
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TT ,  

where the subscripts G and L denote that the vector are expressed with 

respect to the global (X,Y) and the local (x,y) coordinate system 

respectively. 

Using this identity the relation of the node displacements and forces in 

the local and global coordinate systems is 
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The member stiffness relation is transformed as follows. 

matrix stiffness global  theiswhich ,~~

~~
~

~~

~~
~

,
~

~~

~~
~

~~

~~
~

~~

~~

~~

~~
~

T

T

LGGGG

GT

T

LGLLLLLL

























































TO

OT
K

TO

OT
KdKf

d
TO

OT
K

TO

OT
fdK

TO

OT
f

TO

OT
dKf

 

Gradient global stiffness matrix 

Following the same steps, first the local and the global stiffness matrix of 

a gradient elastic bar is found. 

   TT
0000 RjPjRiPiryjrxjfyjfxjryirxifyifxi f  

 Tyjxjdyjdxjyixidyidxi d  
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However, no perpendicular to the bars axis force, double force, 

displacement or strain does not affect the bar, so the elements of the 2
rd

, 

4
th

 , 6
th

 and 8
th
 row and column are all zero. So it is simplified to  
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The non zero elements of the matrix are the same as the ones of the 1D 

element stiffness matrix and in the same order, i.e. this matrix can be 

obtained by adding a zero row and column after each row and column 

respectively to the 1d stiffness matrix. 

The global stiffness matrix takes the following form 
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Fig.  131 the 2D truss of the first problem adressed  

 

4.II.4.iii. 2-D Applications 

Two truss problems will be addressed for each node. One problem that is 

statically determinate, in its classical meaning, and one statically 

indeterminate. 

In the first problem considered, a two 

bar plane truss is loaded with a 

horizontal force P=10
4
μΝ at its top 

node. The bars are pinned rigid nodes, 

and they form an angle of 40
o
. Each 

bar is of length L=55μm, Young’s 

modulus E=1.44 GPa and of cross 

sectional area A=78.54 μm
2
. For the 

material length parameter g, four 

values are considered, g/L=0.5, 0.25, 

0.125, 0.05, while l parameter is 

assumed to be zero. The trusses 

response, to this loading for each 

material length is calculated using a 

generalized stiffness method which is 

outlined further on. 

There are three nodes, thus the structures degrees of freedom are 3x4=12. 

The generalized force and displacement vectors are: 

 T333322221111 ryrxfyfxryrxfyfxryrxfyfxf  

 T333322221111 yyxxdydxyyxxdydxyyxxdydx d
 

In order to facilitate the assembly of the total stiffness matrix, the 

elements global stiffness matrix is divided into 16 2 by 2 matrices as 

shown below. 

,

~~~~

~~~~

~~~~

~~~~

~

44434241

34333231

24232221

14131211

G























KKKK

KKKK

KKKK

KKKK

K  



143 

 



















































































0;0

0;0

0;0

0;0

0;0

2dy;2dx

~~~~

~~~~

~~~~~~~~

~~~~

~~~~

~~~~~~~~

3ry;3rx

3fy;3fx

2ry;2rx

1ry;1rx

1fy;1fx

0;P

3,2
44

3,2
43

3,2
42

3,2
41

3,2
34

3,2
33

3,2
32

3,2
31

3,2
24

3,2
23

3,2
22

2,1
44

2,1
42

2,1
41

3,2
21

2,1
43

2,1
24

2,1
22

2,1
21

2,1
23

2,1
14

2,1
12

2,1
11

2,1
13

3,2
14

3,2
13

3,2
12

2,1
34

2,1
32

2,1
31

3,2
11

2,1
33

KKKK

KKKK

KKKKKKKK

KKKK

KKKK

KKKKKKKK

 

  




















 

2/2cos12/2sin

2/2sin2/2cos1
K

~

00

01~
K

~
1j2,1i2

T
1j2,1i2ij TTK

The global stiffness matrix of the bar with ends at the nodes k,l is referred 

to as 
l,k

G

~
K , and the k,l superscripts are also added to the ij

~
K matrices 

that form the global matrix, i.e. 
l,k

ij

~
K . 

Now, the assembly of the structure’s stiffness matrix can be done exactly 

as the classical theory indicates. 
























































































2yy;2xx

3dy;3dx

2yy;2xx

2dy;2dx

1yy;1xx

1dy;1dx

~~~~

~~~~

~~~~~~~~

~~~~~~~~

~~~~

~~~~

3ry;3rx

3fy;3fx

2ry;2rx

2fy;2fx

1ry;1rx

1fy;1fx

3,2
44

3,2
43

3,2
42

3,2
41

3,2
34

3,2
33

3,2
32

3,2
31

3,2
24

3,2
23

3,2
22

2,1
44

3,2
21

2,1
43

2,1
42

2,1
41

3,2
14

3,2
13

3,2
12

2,1
34

3,2
11

2,1
33

2,1
32

2,1
31

2,1
24

2,1
23

2,1
22

2,1
21

2,1
14

2,1
13

2,1
12

2,1
11

KKKK

KKKK

KKKKKKKK

KKKKKKKK

KKKK

KKKK

From the displacement vector, only the terms 2dy;2dx  are unknown and 

all the other terms are zero. To find the unknowns, the order of the 

equations and the unknowns is changed so that all the known forces, 

double forces and the unknown displacements and strains are placed as 

the first terms of the respective vectors. This way a new matrix is created. 
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The new matrix is divided in four parts and the unknowns are easily 

found using the following relations, (in this specific problem) 

     

     T2221
T

T1
12

1
11

0000000000
~

2dy2dx
~

3ry3rx3fy3fx2ry2rx1ry1rx1fy1fx

0000000000
~

0P
~

2dy2dx






LL

LL

 

The following matrices present the displacement of the top node of the 

truss, as well as the external forces and double forces applied to the truss 

by the nodes, for each case of the g length that was considered. 

 g/L=0.5 g/L=0.25 g/L=0.125 g/L=0.05 g/L→0-classical 

dx2(10
-4

m) 0.0496 0.1077 0.1559 0.1871 0.2079 

dy2(10
-4

m) 0 0 0 0 0 

 

 g/a=0.5 g/a=0.25 g/a=0.125 g/a=0.05 g/a→0-classical 

fx1(N) -0.0050 -0.0050 -0.0050 -0.0050 -0.0050 

fy1(N) -0.0137 -0.0137 -0.0137 -0.0137 -0.0137 

fx2(N) 0.0100 0.0100 0.0100 0.0100 0.0100 

fy2(N) 0 0 0 0 0 

fx3(N) -0.0050 -0.0050 -0.0050 -0.0050 -0.0050 

fy3(N) 0.0137 0.0137 0.0137 0.0137 0.0137 

 

 g/a=0.5 g/a=0.25 g/a=0.125 g/a=0.05 g/a→0-classical 

rx1(10
-6

Nm) -0.1047 -0.0663 -0.0344 -0.0137 0 

ry1(10
-6

Nm) -0.2877 -0.1821 -0.0944 -0.0378 0 

rx2(10
-6

Nm) 0 0 0 0 0 

ry2(10
-6

Nm) -0.5754 -0.3642 -0.1888  -0.0756 0 

rx3(10
-6

Nm) 0.1047 0.0663 0.0344 0.0137 0 

ry3(10
-6

Nm) -0.2877 -0.1821 -0.0944 -0.0378 0 
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Fig.  131 2D indeterminate truss of the second problem 
addressed 

 

As expected, the use of the rigid node results to smaller displacements, 

especially when the microstructure is significant. Also, no matter the 

microstructure, each bar bears the same axial load, which was to be 

expected, since it is determinate truss. The double forces needed to 

restrain the bars’ strain are smaller for smaller microstructure lengths g.  

The second problem addressed is 

the case of the statically 

indeterminate truss in figure 132. 

The bars are assumed to be of 

length L=5mm, Young’s modulus 

E and cross sectional area A. The 

material parameter l is assumed 

zero and six values are assumed for 

the g length, g/a= 0.5, 0.25, 0.125, 

0.005, 0.0001, 0.000001. 

In the following matrices, the 

normalized displacement of the 

nodes 2, 3 and 4 are given for the different g values that were considered. 

Also the external forces and double forces applied to the bars by the 

nodes are given. 

 

g/L=0,5 g/L=0,25 g/L=0,125 g/L=0,005 g/L=0,0001 g/L=0,000001 

d2x/(P/EA) (m) 0,008745 0,013644 0,016428 0,019110 0,019219 0,019221 

d2y/(P/EA) (m) -0,000873 -0,001284 -0,001494 -0,001699 -0,001707 -0,001708 

d3x/(P/EA) (m) 0,001635 0,002628 0,003215 0,003778 0,003801 0,003802 

d4x/(P/EA) (m) 0,000817 0,001314 0,001607 0,001889 0,001901 0,001901 

d4y/(P/EA) (m) -0,001054 -0,001614 -0,001924 -0,002223 -0,002236 -0,002236 

 

 

g/L=0,5 g/L=0,25 g/L=0,125 g/L=0,005 g/L=0,0001 g/L=0,000001 

P1x/P -1,000000 -1,000000 -1,000000 -1,000000 -1,000000 -1,000000 

P1y/P -0,866025 -0,866025 -0,866025 -0,866025 -0,866025 -0,866025 

P3y/P 0,866025 0,866025 0,866025 0,866025 0,866025 0,866025 
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g/L=0,5 g/L=0,25 g/L=0,125 g/L=0,005 g/L=0,0001 g/L=0,000001 

R1x/P  (m) 
-2,2899E-03 -1,2429E-03 -6,2496E-04 -2,5000E-05 -5,0000E-07 -5,0000E-09 

R1y/P  (m) 
-1,9999E-03 -1,0777E-03 -5,4124E-04 -2,1651E-05 -4,3301E-07 -4,3301E-09 

R2x/P  (m) 
2,0575E-04 9,1991E-05 4,1360E-05 1,5292E-06 3,0504E-08 3,0502E-10 

R2y/P  (m) 
-3,7783E-03 -2,0069E-03 -1,0109E-03 -4,0653E-05 -8,1319E-07 -8,1319E-09 

R3x/P  (m) 
5,5886E-04 2,7127E-04 1,2404E-04 4,5877E-06 9,1511E-08 9,1506E-10 

R3y/P  (m) 
-2,3563E-03 -1,2370E-03 -6,1288E-04 -2,4299E-05 -4,8585E-07 -4,8584E-09 

R4x/P  (m) 
-1,0307E-19 -1,5441E-19 -1,9620E-20 -2,3816E-21 -1,3692E-23 -5,5050E-25 

R4y/P  (m) 
-4,3368E-19 2,1684E-19 5,4210E-20 3,3881E-21 -5,2940E-23 4,1359E-25 

 

In this case too, using the classical theory, bigger displacements are 

calculated. Also, when the microstructure to length ratio is big (g/L=0.5) 

the smallest displacements are calculated, half of the classical ones. 

However,   the smaller this ratio is, the greater double stresses that the 

nodes need to apply. The way the forces are distributed to the nodes is not 

affected by the microstructure. 

If not interested in the double forces, then instead of using the full 

stiffness matrix, one may use the global transformation of the simplified 

2x2 stiffness matrix for the bar with restrained end, given in last problem 

of section 4.II.3.iii. . In other words, the classical stiffness method theory 

may be used, using the gradient element stiffness matrix that the non 

classical degrees of freedom and the 

non classical ‘forces’ are eliminated. 

 

When attempting to address the 

respective two problems using the 

‘elastic’ node instead of the rigid one 

with no extra double forces applied to 

the nodes, the equation matrix 

becomes singular. Thus, they are not 

well posed and it is not possible to 
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assume such a node. The reason for this conclusion will be explained 

next. 

The classical properties of a node are attributed to the gradient node too, 

and two non classical properties have been attributed to it: 

 One, it is assumed that external double forces can be applied to it 

and then be distributed to the bars.  

 Two, it is assumed that the strain tensor at the bars’ ends connected 

to the node is the same: 












yy0

0xx
 

In any determinate problem the double forces R can be analyzed and the 

R BCs of each bar can be determined, thus their displacement fields can 

be found since the forces, too, in determinate trusses are easily found. 

However, the strain fields that are this way calculated at the ends of the 

connected bars are not of the form assumed so it is to be expected that 

this method crushes. Thus, this node model is not acceptable. 

Problems of determinate trusses where nodal double forces are assumed 

to be applied can be solved following the next steps: 

 The axial double forces applied to each bar member can be found 

using the assumed generalized action-reaction law. 

 These double forces elongate the bar by a length ΔL=(Rj+Ri)/EA, 

where i and j are the end points of the bar, and the positive 

direction for both R vectors is away from the bar’s main body. 

 This extra length can be integrated in the classical methods the 

same way that elongation due thermal strains is considered. 

For indeterminate trusses to be solved this way, it first is needed to 

describe how the double forces will be distributed to the connected 

members, and then the same steps may be followed. 

Finally it is noted that anothe types of nodes could be considered. For 

example a node that the applied double forces and the axial force follow a 

linear relation. This might be the result of the way that the connection of 

the bodies is actualized.   
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Truss problems with this type of nodes be solved by using a similar to the 

classical stiffness 2x2 matrix, that is be obtained through gradient 

elasticity, by substituting the relation of the double forces with the axial 

force to the respective  gradient problem solution. This way, the new 

force displacement relation is obtained and it can be used in order to 

construct the member stiffness matrix as in the classical case. The case of 

the rigid node can be considered as a special case of this type of node, in 

which the relation of the forces and the double forces applied at the bars’ 

ends is the following:  

ttanconsk,kPPL
)2/ctanh(2c

)2/ctanh(
RR 1i 










  
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4.II.5. Conclusions 

The following conclusions can be drawn about the composite bar 

structures: 

 Two types of 1D nodes were considered, the rigid and the elastic 

node. 

 The rigid node restrains the joined elements ends strains and the 

structure is stiffer than one using elastic nodes 

 The elastic node functions as an interface and demands that the 

strain of all joined member is the same and the double forces at the 

interface follow a generalized action reaction law. 

 The elastic node can be used in modeling continuous 1D structures 

under any loading with very satisfactory results 

 The 1D and 2 D stiffness matrices of a gradient bar were obtained 

 A generalized stiffness method for gradient elastic for 2D and 1D 

problem was outlined  

 In 2D structures there was not found a generalized form of an 

elastic node 

 Determinate and indeterminate structures with rigid nodes, under 

simple loading were solved using the stiffness method 

 Another type of non holonomic 2D node was proposed.  
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5.Appendices 

5.I. Appendix I: Classical truss node function investigation 

In this appendix, is tested the assumption that the bars of a truss when 

connected to a node are subjected only to axial loads. This means that no 

transverse loads or bending moments are significant, so they can be 

ignored.  

It is noted that in real trusses more than one bolts are used to connect 

each bar a node. This connection in general may allow the development 

of bending moments. For this reason, the truss with the node is modeled 

as a lambda beam. A lambda beam is a continuous beam consisting of 

two beams pined at one end and fixed together at an angle at the other.  

Practically, by substituting the truss by a continuous beam, the worst case 

scenario is being taken into account, which assumes that the choice of a 

node connection is incorrect, both moments and transverse forces are 

applied to the bar, which in reality are beams, and the degree of freedom 

of the relative rotation of the beams is restrained. 

The material and geometrical 

properties of each beam are 

assumed to be different in the 

general case, and are given in the 

following matrix.  

The loading cases examined are the ones that can be applied to the 

original truss, i.e. only forces are applied to the top of the lambda beam, 

i.e. the point of the two beams connection.  

 

 

 

 

 

Property Beam 1 Beam 2 

Length l1 l2 

Young’s Modulus E1 E2 

Shear Modulus G1 G2 

Area Moment of Inertia J1 J2 

Cross Sectional Area A1 A2 

Shear Area A’1 A’2 



151 

 

The problem of the Lambda beam is a statically indeterminate one, so the 

flexibility method is used in order to calculate the support reactions. 

In this method, the restrained degree of freedom of the relative rotation of 

the beams is freed and two moments of equal magnitude X1 are applied 

so that this DOF will be indirectly restrained. In order to find the X1 

value, the relative rotation of the released bars, due to the external loading 

( q1 ) and to a unit two moments loading ( 11 ) is calculated, and the X1 

unknown is found using the next equation that models the no restrain of 

the relative rotation of the beams 

0X111q1   

q1 and 11 are found using the unit force theory, which can be 

summarized in the following equation, for classical beam structures: 

  ds,,Nds,,Qds,,M jijijiij  → 

 
EA

ds
,,N

'GA

ds
,Q,Q

EJ

ds
,M,M jijijiij  

, ij : the generalized displacement that is work conjugate to the i
th 

generalized unit load applied, due to the application of the j
th
 generalized 

load.(generalized loads might be moment, shear of axial forces, two 

moments, constraints and other) 

,   j, : the   field of the bar resulting from the application of the 

generalized j
th

 generalized load. 

s: an axial coordinate of the whole structure 

M,Q,N the moment, shear and axial stress fields of the structure 

respectively 

κ,γ,ε the curvature, shear strain and axial strain fields of the structure 

respectively. 

The following figures present the M,Q,N fields of the released structure, 

due to the external load and the unit moments. Then q1 and 11 are found. 
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So the X1 moments are obtained: 
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The moments X1 become insignificant as their magnitude is small. The 

equation above indicates that for any given geometry of the problem, the 

magnitude of the moments is determined by the )J3/(lA 1
2

11
 term, since the 

other terms can be assumed approximately equal to unity for any 

structure whose members are not made of very different materials and 

their cross sections do not differ dramatically. For great ratio values, the 

moment’s magnitude is decreased.  

For any given common cross section this A/J ratio is of order of 

magnitude of 10-10
2
. This ratio is also multiplied with the bars length. 

Thus, when the Lambda beam consists of beams of great lengths, the 

moments’ at their connection magnitude is small, and they can be 

ignored, so the fixed bars can be modeled as not fixed together, but as 

connected by a node, i.e. as a truss. Note that in trusses the bars used are 

slender, i.e. their length is greater than their other dimensions, so this 

condition is satisfied, and ignoring the moments is justified. 

It should be noted that the 
1

2
11 J/lA ratio also denotes how vulnerable a 

beam is to buckling. In this model no buckling effects are assumed. 

In order to fully address this problem, it is needed to also investigate the 

case of a horizontal nodal loading. The same method is followed, and 

similar results are obtained, and the same conclusions can be drawn. 
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5.II. Appendix II: Basic Spherical Coordinate System Identities 

In the first part of this work problems of spherical symmetry, in spherical 

coordinate system were addressed. The transformation from Cartesian to 

spherical coordinates, as well as various identities and operator 

transformations concerning the spherical 

coordinate system are provided in this 

appendix. 

222 zyxr     cossinrx  

 z/yxtan 221  
  sinsinry  

 x/ytan 1    cosrz  

zyx
zyxr

r ˆcosˆsinsinˆcossin
r

ˆzˆyˆx

r
ˆ 


  

zyx
zyxrz

φ ˆ0ˆcosˆsin
r

ˆzˆyˆx

sin

ˆ
ˆ 







  

zyxrφθ ˆsinˆsincosˆcoscosˆˆˆ   

The derivation of the spherical coordinate base vectors in respect with the 

coordinates themselves, i.e. the radius r, the polar φ and azimuth θ angle 

does not result to zero vectors, as it happens with the Cartesian coordinate 

base vectors.  

 r̂  θ̂  φ̂  

r  0  0  0  

  θ̂  r̂  0  

  sinφ̂  cosφ̂    cosˆsinˆ θr  

 

       






















 d

ˆ
d

ˆ
dr

r

ˆ
rˆdrˆdrˆrdˆrdd

rrr
rrrrr  

                                                           φθr ˆdsinrˆrdˆdr   
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5.III. Appendix III: Hyperbolic Function Identities 

Throughout this work many simplification have been made in order to 

obtain manageable forms of the mathematical solutions. Since, the non 

classical solutions of the differential equations are exponential ones and 

hyperbolic sins and cosines many hyperbolic trigonometric identities 

were used in extend. The ones used most often are presented in the 

present appendix. 

  2/eexcosh xx   

  2/eexsinh xx   

1xsinhxcosh 22   

xhsecxtanh1 22  ,     xechcos1xcoth 22   

_______ 

xcoshysinhycoshxsinh)yxsinh(   

ysinhxsinhycoshxcosh)yxcosh(   

ytanhxtanh1

ytanhxtanh
)yxtanh(




  

xtanh1

xtanh2
)x2tanh(

2
 ,  

 

 2/xtanh1

2/xtanh2
)xtanh(

2
  

_______ 

 
2

1xcosh
)2/x(sinh2 
  

 
2

1xcosh
)2/x(cosh2 
  

xsinh

1xcosh
)2/xtanh(


 ,   

xsinh

1xcosh
)2/xcoth(


  

_______ 
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 
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cxsinh)x1(csinh
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ctanh
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1ctanhcx2sinh

ccosh

x21ccosh
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
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




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
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5.IV. Appendix IV: The pretwisted beam analogy by 

Kordolemis 

This analogy has been the inspiration for a big part of the work presented 

in this thesis and is quoted several times when trying to better understand 

the gradient elastic problem of a bar in tension. This is the reason that the 

main points that were used are summarized below, in order to facilitate 

the reader. It should be noted that a different coordinate system is used 

than the one introduced in the original work by (Giannakopoulos, et al., 

2013) and (Kordolemis, et al., 2013).  This choise was made in order to 

use the same symbolism coordinate system that were used in the second 

part of this thesis for the gradient elastic bar. 

The body considered is a cylindrical beam of length L, constant cross 

section of area A, Young’s Modulus E and shear modulus G. A Cartesian 

coordinate system Oxyz is introduced, whose x axis coincides with the 

longitudinal axis of the beam and parallel to its generators. The beams 

bases are taken to lie in the Oyz plane, at x=0 (ξ=0 using the normalized 

coordinate system) and x=L (ξ=1). The origin is located at the center of 

the cross section at x=0, i.e. the x axis passes through the center of each 

cross section. The beam is pretwisted around the x axis by a constant 

amount of a0 per unit length of the beam, so that the rotation about the x 

axis of each cross section is xa)x( 00  . A local coordinate system η-ζ is 

introduced at each cross section by rotating the global y-z axes around the 

x axis by an angle xa)x( 00  , thus 

xa,
z

y

cossin

sincos

)z,y,x(

)z,y,x(
00

00

00


































 

The displacement field for the non-uniform torsion (‘restrained warping’) 

takes the following form 











































xy)x('

xz)x('

))z,y,x(),z,y,x(()x(')x(w

)z,y,x(u

)z,y,x(u

)z,y,x(u

)z,y,x(

1

z

y

x

u  

where )x( is the infinitesimal rotation of the cross section around x axis, 

)x(w1 a displacement component in the longitudinal (x-) direction, and 
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),(   is the Saint-Venant warping function of a similar beam without 

pretwist, normalized so that 0dd),(
A

  

Using the variation principle, the variation of external works is found 

     L
0

L

0

L

01

L

0

x1x 'BTwNdz)mwp(W   , 

where N is the axial load, T is the torque,  
A

xx dAB is the 

“Bimoment” applied at the ends and dx/dNpx   and dx/dTmx   are 

respectively the distributed axial load and tortional moment per unit 

length of the beam. The resulting governing equations and BCs are 

(giannakopoylos!!!) 

EA

p

dx

d

A

Sa

dx

wd x

2

2

0

2

1

2




  

GJ

m

dx

wd
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E

J

Sa

dx

d

G

E

J

Ka
1

dx

d
l x
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1

2

0

2

22

0

4

4
2

0 


















  

An at the ends of the beam the BCs are: 

i. Either the axial displacement is known 11 ww   

or the axial force is known 
EA

N

dx

d

A

Sa

dx

dw 01 






 
  

ii. Either the twist is known   

or the torque is known 
GJ

T

dx

dw

G

E

J

Sa

dx

d

G

E

J

Ka
1

dx

d
l 10

2

0

3

3
2

0 






























  

iii. Either the rate of twist is known ''   

or the bimoment is known 
GJ

B

dx

d
l

dx

d
l 12

2
2

0 






 



  

The superscript bars e.g. denote prescribed values and following the 

definition of the extra parameters used is provided: 

0ddddJ
A

22

A

22 



























































  , 

which is the usual Saint-Venant torsional constant of the cross section 
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0dd),(J
A

2   ,   

0
J

J

G

E
l0   ,     

G

E

J

Ra
l 0
1  , length scales that depend on the cross 

section and the material (E/G ratio) 

0dddd
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
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Giannakopoulos (Giannakopoulos, et al., 2013) combined the 

governing equation above in order to eliminate the w1(x) function and 

obtain a closed form solution for the twist field φ. 

Kordolemis (Kordolemis, et al., 2013) then combined the governing 

equations in order to eliminate the φ(x) function and obtained the 

governing equation of the axial displacement field w1(x) of the beam. 
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And at the ends of the beam the BCs are: 
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Note that N, T, B, px, mx are the classical loads,  while P and Y are the 

generalized loads that depend on the classical loads and are defined 

using the variation principle. 

Kordolemis proposed the following analogy 
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Using the gradient elastic bar analogy terminology, the solution takes 

the following more familiar to this thesis form. 
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And at the ends of the beam the BCs are: 
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