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Abstract

Deep recurrent neural networks have recently proved to be very powerful
machine learning algorithms. They can have a very large number of trainable
parameters which makes them very good at modeling long sequences of in-
formation in a very natural way. Recurrent neural networks are now widely
used in many machine learning applications and have shown great potential
in complicated and difficult tasks.

The recognition of long sequences of gestures in a continuous way have
long been a point of interest in the literature. Different approaches include
probabilistic models, convolutional neural networks, as well as recurrent neural
networks

The aim of this Thesis is to create a state-of-the-art, end-to-end model that
uses multiple modalities to detect gestures in a continuous sequence of speech
and hand movements performed by the user. In this approach we examine
the possibility of recognizing continuous sequences without any segmentation
or preprocessing. We also focused on integrating multiple modalities in order
to make them work in a cooperative way and produce better results than any
unimodal approach. This way we are able to make use of multiple streams of
information that might be complementary to each other and combine them
without over-fitting the training set. Our work includes experiments on the
ChaLearn human gestures dataset. The main focus lies on the audio and skele-
tal modalities, but this approach can easily be extended to integrate other
modalities as well. We also want to demonstrate the advantages of deep re-
current neural network architectures over other sequential algorithms, such as
hidden Markov models.



Περίληψη

Τα βαθιά νευρωνικά δίκτυα αποτελούν σήμερα τον πιο διαδεδομένο αλγόριθμο

μηχανικής μάθησης. Ο μεγάλος αριθμός παραμέτρων τους δίνει την δυνατότητα

να μοντελοποιούν περίπλοκες ακολουθίες δεδομένων με πολύ φυσικό τρόπο. Αυ-

τό έχει ως αποτέλεσμα να χρησιμοποιούνται κατα κόρον για την επίλυση ενός

αριθμού προβλημάτων μηχανικής μάθησης.

Η αναγνώριση ακολουθιών από χειρονομίες με συνεχή τρόπο είναι ένα σημείο

ενδιαφέροντος για τη βιβλιογραφία. Οι διαφορετικές προσεγγίσεις περιλαμβάνουν

πιθανοτικά μοντέλα, συνελικτικά νευρωνικά δίκτυα, καθώς και επαναλαμβανόμενα

νευρωνικά δίκτυα.

Σκοπός αυτής της εργασίας είναι η δημιουργία ενός μοντέλου που χρησιμο-

ποιεί έναν συνδυασμό μεθόδων βαθιάς μάθησης για την ανίχνευση χειρονομιών

σε μια συνεχή ακολουθία βίντεο. Σε αυτή την προσέγγιση εξετάζουμε τη δυνα-

τότητα αναγνώρισης συνεχών ακολουθιών χωρίς οποιαδήποτε τμηματοποίηση ή

προεπεξεργασία. ΄Εχουμε επίσης εστιάσει στην πολυτροπική αναγνώριση ούτως

ώστε να πάρουμε όσο το δυνατόν καλύτερα αποτελέσματα. Με τον τρόπο αυτό

μπορούμε να χρησιμοποιήσουμε πολλαπλές ροές πληροφοριών που θα μπορούσαν

να είναι συμπληρωματικές μεταξύ τους και να τις συνδυάσουμε με αποτελεσματι-

κό τρόπο. Το έργο μας περιλαμβάνει πειράματα σχετικά με την βάση δεδομένων

ChaLearn 2013. Σε αυτή την εργασία χρησιμοποιήσαμε κατά κύριο λόγο σκελε-
τική πληροφορία και ομιλία αλλά αυτή η προσέγγιση μπορεί εύκολα να επεκταθεί

για να ενσωματώσει και άλλες μορφές πληροφορίας. Θέλουμε επίσης να τονίσου-

με τα πλεονεκτήματα των νευρωνικών δικτύων σε σχέση με άλλους αλγόριθμους

μηχανικής μάθησης, όπως τα κρυφά Μαρκοβιανά μοντέλα.
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Chapter 1

Introduction

In machine learning we often wish to turn a sequence of data into a sequence of
classes. Well known examples include handwriting recognition, part-of-speech
tagging, keyword spotting, and semantic analysis. What all of this examples
have in common is that they take as input a sequence of data, for example
a waveform or a sequence of frames, and try to predict a sequence of classes
that model the input data. One approach that has been widely used is to
segment the input sequence into logical pieces and try to classify each piece
into a certain class. Another way to do this is to try and predict a sequence of
classes that best models the input data. That is a very natural way to solve
the problem. In fact this is probably the way that the human brain actually
solves this kind of problems.

Both approaches have previously been studied with a variety of methods
being proposed and they both have shown reasonable results. The second
approach though seems to be a lot more promising in the long run. When
we deal with the problem of Natural Language Processing (NLP) or video
processing, the events occurring in the data sequence are rarely independent
from one another. This means that if we are able to capture this correlation
we are more likely to make accurate predictions on the sequential input. This
is a big win in most real-world cases.

In previous years probabilistic models like Hidden Markov Models (HMMs)
have given very good results in many problems and they were indeed the most
widely used method in many tasks like NLP and keyword spotting. They are
able to model inputs that have sequential structure and produce very interest-
ing results using probability distributions and hidden states. The model can
go from one hidden state to the next with a transition probability and each
state has a probability to produce output.

Recurrent Neural Networks (RNNs) are similar to HMMs in the way that
they are able to model data with sequential structure. They also have a hidden
state and are able to go from one hidden state to another as well as produce
outputs. Although at first they seem to be very similar in the way they model
data, they are indeed very different. For example, at each time step the current
state of the network may depend on both the input and the previous hidden
state which allows it to develop very complex dynamics. The purpose of this

5



CHAPTER 1. INTRODUCTION 6

thesis is to develop a model that uses RNNs for a task that was previously
solved with HMMs and explore the advantages of these more powerful models.

While RNNs are in theory very good at modeling sequences, in practice
they face some limitations. Long Short-Term Memory (LSTM) is an RNN
architecture designed to overcome such limitations. LSTM networks are very
good at remembering information for a very long time. This property makes
them capable of bridging very long time lags between relevant input and target
events. In many real-applications LSTM networks have proven to be superior
to simple RNNs. For that reason we are going to use LSTMs instead of simple
RNNs throughout this thesis.

In this thesis we will be using deep LSTM networks to address the problem
of gesture recognition. In order to more effectively solve the problem of gesture
recognition we will be utilizing multiple input modalities that will be able to
cooperate with one another and produce good classification results. The focus
of this thesis is the implementation and training of multiple LSTM networks,
one for each modality, and finally the integration of the different networks in
one more powerful model. This model is going to take as input unsegmented
sequences of data and try to spot the different gestures performed.

In our experiments we will be using the proposed model in order to solve
the problem of multimodal gesture recognition on the especially challenging
ChaLearn 2013 data set [7]. This particular data set includes a large number
of labeled training and evaluation examples of different users performing a
number of athropological gestures. The data set comes with a number of dif-
ferent streams including audio, video and skeletal information and is especially
suitable for multimodal recognition tasks.

1.1 Contributions

We are going to use LSTM units with memory cells to build our networks
[16]. This units have the nice property that they remember information for
a long time. We combine LSTM with bidirectional RNNs [26] resulting in
bidirectional LSTMs (BLSTMs), which process the input data both forward
and backwards. This makes it easier to train powerful LSTM models with
relatively few data without over-fitting. In order to make training even easier
we add residual connections between layers [14] that are known to speed up the
training procedure by propagating the full gradient many layers deep. This
combination of residual bidirectional LSTM blocks has given us very promising
results in a variety of tasks.

In order to train the networks directly for the sequence labeling tasks with
unknown input-label alignments we employed Connectionist Temporal Clas-
sification (CTC) [11]. We approach the task with an end-to-end machine
learning model. The trained model is able to perform alignment and recog-
nition at the same time. That way we can get rid of the long pipelines of
different models that perform these tasks separately. Our model is able to
take as input raw data sequences and produce a sequence of class predictions.

These properties make the training of the network much simpler as well.
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We can simply just train the model with long sequences of unsegmented
data and provide only loosely aligned label sequences without any informa-
tion about the precise timings of the events. Also no background model was
necessary in order to model out-of-vocabulary events.

Also in order to make full use of the multiple modalities available, such as
audio, skeletal information, RGB and depth, we propose an architecture that
integrates previously trained unimodal networks and forces them to cooperate
in order to improve gesture spotting results. The multi-modal recognition of
gestures has previously been proposed both for neural network architectures
and HMMs and has given much better results than unimodal approaches. In
this thesis we propose a way of combining multiple BLSTM networks in an
effective way. This is done by another network that takes as input the out-
puts of the unimodal networks, merges them and uses them to make the final
predictions. We worked with audio and skeletal data in our experiments but
the proposed method can also be used to integrate other different modalities.
The proposed architecture demonstrates the power of RNNs and their ability
to learn to perform complicated tasks with very little hand-engineering.

Another advantage that the proposed integration method has is that the
different modalities can also have different alignments. For example, when
a gesture is performed, the alignment of the gesture itself is different from
the alignment of speech. The single modality sub-networks are trained to
model the data in a way that fits each specific modality. Then the high level
network takes the different outputs and combines them in order to make the
final predictions in a multi-modal way.

Finally, a big part of our work was regularizing the models proposed.
BLSTM networks with millions of trainable parameters can very easily over-
fit the training set and thus generalize very poorly. As a result they tend to
perform very well on the training set but very poorly with unseen data. We
used dropout [27] along with weight constraints and Gaussian noise as a way
to better regularize the different networks and avoid over-fitting.

1.2 Overview of Thesis

The chapters in this thesis are grouped into roughly two parts. Chapters 2-6,
include background material about the methods used in the thesis. In chapters
7-9 we discuss the experimental setup and the proposed model.

Chapter 2 is a brief introduction to supervised learning and particularly
sequence modeling. Probabilistic methods that were widely used in the past
are briefly presented here in order to compare them to the deep learning meth-
ods that are used in this thesis. In chapter 3 we provide background material
for feed-forward and recurrent neural networks. Neural networks are the main
focus of the thesis and here we present the basic concepts of neural network
architectures and training. Chapter 4 describes LSTM networks and especially
the bidirectional LSTM (BLSTM) networks that we will be using in our ex-
periments. Chapter 5 introduces connectionist temporal classification (CTC)
and the equations behind it as well as the forward-backward algorithm that is



CHAPTER 1. INTRODUCTION 8

used for the training of networks with CTC.
In Chapter 6 we describe the methodology proposed in the thesis. This

chapter includes the details about feature extraction, network architectures
as well as the method used for the integration of the different modalities.
In this chapter we also present the ChaLearn dataset that was used in our
experiments.

Chapter 7 includes the training of the model along with the optimizations
and hyper-parameters we have been using. Here we evaluate the performance
of the proposed method and compare it with the results from different proba-
bilistic methods. Concluding remarks and directions for future work are given
in chapter 8.



Chapter 2

Learning Sequences

This chapter provides the background for supervised sequence learning. Sec-
tion 2.1 introduces briefly the basic concepts of supervised learning in general.
Section 2.2 covers the basics of sequence modeling and recognition while sec-
tion 2.3 presents various machine learning tasks that involve the modeling of
data sequences. Section 2.4 presents basic probabilistic algorithms that have
been used to solve this kind of problems. This algorithms do not involve
deep learning and are presented here in order to contrast them with the deep
learning approach of this thesis.

2.1 Supervised Learning

Machine learning problems are generally split into three categories. Supervised
learning refers to the problems where a set of input-target pairs is provided for
training. Reinforcement learning refers to problems where no specific target is
given for each input but instead a positive or a negative reward is provided for
training. Finally unsupervised learning includes problems where no training
signal is provided at all and the algorithm attempts to find the structure of
the data by observing them.

The problem of sequence recognition that we are studying in this thesis
falls into the first category and thus we will briefly present the basic concepts
here. A standard supervised learning task consists of a training set S that
includes input-target pairs (x, y) where x is an element of the input space X
and y is the ground truth corresponding to this input element. A machine
learning algorithm learns to predict the target y when given the input x.
In order to achieve this the algorithm uses the training set to minimize some
task specific error metric. An error metric is usually a metric the measures the
distance between the algorithm outputs given an input and the target value.
The process of minimizing the error metric on the training set is generally
referred to as learning. Once a machine learning algorithm has successfully
learned from the training data, it can correctly predict targets when given
other similar inputs.

Different algorithms use different ways of minimizing the error metric. For
example, for most regression tasks we use the squared Euclidean distance be-

9



CHAPTER 2. LEARNING SEQUENCES 10

tween the algorithm outputs and the target vectors as an error metric and
regression algorithms minimize this metric by iteratively adjusting their pa-
rameters based on the training inputs. Neural networks use the derivatives of
the error to incrementally adjust the algorithm parameters in order to optimize
some objective function on the training set.

The ability of an algorithm to transfer performance from the training set
to unseen data is usually referred to as generalization. Generalization is a key
concept of machine learning in general and will be discussed in more detail
later on in this thesis.

2.2 Modeling Data Sequences

In many real world tasks we find that the data exhibit some temporal struc-
ture. This means that events occur in a sequence and there is usually some
dependence between them. Also many times the order in which the events
occur is important for the task at hand. We often want to turn one sequence
into another. For example we might want to take English words and translate
them into words in Greek. Or we might want to turn a waveform into a se-
quence of phonemes and words, which is what happens in speech recognition.
Sometimes we want to take a sequence of inputs and try to predict the next
term. Take for example a sequence of nucleotides and try to predict the next
one.

When dealing with these tasks we need models that can capture the se-
quential structure of the data and make use of it in order to produce outputs.
Often the outputs at one time-step depend not only on the inputs at that
particular time-step but also on inputs at previous time-steps. So we need
algorithms that are able to maintain a state, visible or hidden, and remember
events that happened in the past.

Since the problem we are studying in this thesis is strictly supervised we
are going to focus on sequence recognition tasks. Of course these are not the
only kind of problems that have sequential structure but they cover quite a
lot of tasks. Because we are focusing on supervised recognition we are going
to assume that there is always a training set of data sequence-target pairs.
The classes that we want to recognize are part of an alphabet of symbols
{E1, E2, ..., En} which is a-priori specified and finite.

The labeling of the training data may also differ from one task to another.
Some tasks require precise alignment of the labels while for others this might
be unimportant. In this thesis we focus on labels that are loosely aligned and
the approach proposed here outputs only the final sequence of labels and not
the precise time when they occurred.

The type of label sequence required can also depend on the task at hand.
Based on the task we can have three different types of sequence labeling. The
type of sequence labeling can affect both the training algorithm and the error
metrics it minimizes.

The most restrictive case is sequence classification. In this case we assign
a single class to a sequence of inputs and so the length of the label sequence
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is strictly one. Examples of sequence classification are the recognition of an
individual keyword in a part of speech or the recognition of an action performed
in a video part.

The second type of sequence labeling is segment classification. This applies
to the cases where we need to predict multiple classes for a single input se-
quence. For example we might require to classify each phoneme in a sequence
of spoken words. If we know in advance the exact positions where the different
phonemes occur then we can run a classification algorithm for each segment.
This approach is referred to as segment classification and has shown very good
results in a number of tasks. The downside of this approach is that it requires
the input to be pre-segmented, which is not always an easy thing to do.

The third and most general case is called temporal classification. Here no
assumptions can be made about the label sequences except that their length
is less than or equal to the length of the input sequences. These tasks re-
quire an algorithm that is able to decide where in the input sequences the
classifications should be made. Temporal classification is very useful in cases
where the alignment between inputs and label sequences is unknown. The
learning procedure of these algorithms is slower and much more difficult than
segment classification. On the other hand these methods are applicable in
many more real world cases where we only know the classes that occur in an
input sequence and we have no information about their exact timings.

2.3 Applications of Sequence Recognition

Here we are going to present briefly some machine learning tasks which require
specific algorithms that can model sequential structures and in the next section
we are going to introduce some algorithms besides neural networks that were
used to address them.

One of the most obvious tasks where the data have temporal structure
is natural language processing (NLP). NLP tasks include keyword spotting,
understanding speech, machine translation and speaker diarization. In all of
these tasks the inputs are usually sequences of sound pressures. For different
tasks we expect the algorithms to produce different outputs. For example,
in keyword spotting we want to know if certain keywords from a pre-defined
vocabulary of keywords occur in a sequence of speech. We do not really care
about the other out-of-vocabulary words that might occur and so we need to
ignore them. Discriminative algorithms are better suited for keyword spotting
as the keywords are usually a small proportion of the speech sequence. Natural
language understanding is slightly different from keyword spotting. Here we
want to recognize a sequence of phonemes and turn them into word entities.
This means that the algorithms cannot ignore anything because in speech
the meaning of a word entity greatly depends on the previous and following
words. Generative models are very good at modeling long sequences of speech
and can capture long term dependences. In machine translation we want to
turn a sequence of words from one language to another. Of course this is
easier said than done because different languages may have much different
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structure. Speaker diarization is the process of partitioning an input audio
sequence into homogeneous segments according to the speaker identity. This
requires algorithms that are able to learn general information about speech
and can discriminate between different speakers.

Handwriting recognition is quite similar to NLP. In this task though the
inputs are images and frames instead of sound pressures. Again we might need
to spot specific keywords and characters from a pre-defined vocabulary or we
might want to understand unconstrained sequences in order to perform some
other task. What makes things slightly different is that frames and videos
have spatial as well as temporal structure which may require a combination of
different machine learning algorithms in order to get sufficiently good results.

DNA sequencing and analysis is another field where sequential machine
learning algorithms are proving to be quite effective. Here the inputs lie in
a different domain than speech and handwriting. Instead we need to order,
analyze and decode sequences of nucleotides drawn from a very small set of four
bases {A,G, T,C}. These bases form very long chains that encode genes. This
task has numerous applications in molecular biology, medicine and forensics.
Because DNA strands are huge we need algorithms that are able to capture
extremely long term dependences in an efficient way.

2.4 Probabilistic Methods and Hidden Markov Mod-
els

Here we are going to present different models, that are not neural networks,
which have been used in the past in order to solve the problem of sequence
modeling. These include memoryless models, like autoregressive models, and
models that are able to remember information using a hidden state. We are
going to focus on the latter because they are significantly more complicated
and much more interesting. A model with a hidden state can store information
in its hidden state for a long time. Usually in this kind of models a probability
distribution is inferred and we are able to predict the hidden state by observing
outputs that follow this probability distribution. Because we assume that the
outputs follow a probability distribution, these models are called probabilistic.
There are mainly two different models that have these properties. The first is
a Linear Dynamical System (LDS) and the other is a hidden Markov Model
(HMM).

A Linear Dynamical System is a generative model that has a linear hidden
state and is able to produce observations. The LDS may also have driving
inputs that affect the hidden state. The outputs of the LDS depend on the
current hidden state and the next hidden state depends on the current hidden
state and the inputs. A nice property of this model is that the distribution over
the hidden state given the observations is Gaussian which can be computed
efficiently.

A hidden Markov Model is another hidden state, probabilistic model that
uses a discrete distribution rather than a Gaussian one. The HMM can be in
exactly one hidden state each time. The transition from one hidden state to
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the next is probabilistic and controlled by a transition matrix and we assume
that the observed outputs follow a probability distribution which is usually a
mixture of Gaussians.

Given a data set D = {x1, ..., xN} and assuming that xn ∈ Rd we can define
a Gaussian mixture model (GMM) by making each of the K components of
a mixture a Gaussian with parameters µk and Σk. Each component is a
multivariate Gaussian with its own parameters θk = {µk,Σk}.

pk(x|θk) =
1

(2π)d/2 | Σk |1/2
exp−

1
2

(x−µk)tΣ−1
k (x−µk) (2.1)

When using HMMs to model data sequences we generally have to deal with
three distinct problems. These are the evaluation, the decoding and the learn-
ing problem. With the evaluation problem we are given an observed sequence
O = O1O2...Ot and a model λ = (A,B, π) and try to find the probability that
the model produced this sequence P (O | λ).

P (O | λ) =
∑
Q

P (O | Q,λ)P (Q | λ) (2.2)

In the decoding problem we are trying, given an observed sequence and a
model, to find the most probable sequence of hidden states that produced the
observed sequence. This is done with dynamic programming and the Viterbi
algorithm.

Q∗ = q1q2q3..qt : Q∗ = argmaxQP (Q | O, λ) (2.3)

Finally we have the learning problem. In the learning problem we need to
find the model parameters that give the model a high probability of producing
the observed sequence. For HMMs these parameters can be estimated with the
Baum-Welch algorithm. The algorithm uses the Expectation Maximization
algorithm (EM) in order to find the maximum likelihood estimation of the
model parameters given the set of observed feature vectors.

λ∗ = argmaxλP (O | λ) (2.4)

It was because of these algorithms that HMMs took over the sequence
recognition field and they were the mainline in most applications from speech
recognition to keyword spotting, diarization and bioinformatics. In this thesis
we are mainly going to use HMMs as a benchmark in order to see how well
our approach performs versus the standard HMM approaches. We actually
have implemented a model that uses HMMs and we are going to compare it
with the model proposed in this thesis.

One of the fundamental limitation of HMMs is that the model can only
be at one hidden state at each time. This means that in order to remember
information it generated a long time a go, an HMM needs exponentially as
many states. For example if an HMM needs to convey 100 bits of information
from the first half of an utterance to the second it will require as many as
2100 hidden states. That limitation is what brings us to Recurrent Neural
Networks. We are going to describe them in more detail in the next chapter.



Chapter 3

Neural Networks

This chapter provides background material for neural networks. We are going
to focus on neural networks that are used for supervised classification tasks
and especialy RNNs as we are going to use them in this thesis. Section 3.1
introduces the basic concepts of simple feed-forward neural networks. We
are going to discuss different feed-forward architectures used for classification
tasks. We will also describe hidden unit activations, the optimization function
and back-propagation training. In section 3.2 we will review RNNs and their
application to sequence labeling. Also we are going to extend back-propagation
training to work with RNNs. Here we present simple RNN networks and in the
next chapter we are going to introduce LSTM networks. In section 3.3 we are
going to discuss various topics that are essential for training neural networks.
These topics include generalization and optimization as well as other issues
like vanishing and exploding gradients.

3.1 Feed-forward Neural Networks

Artificial Neural Networks (ANNs) are mathematical models that are able to
process information in a non linear way. When neural networks were first
introduced, researchers believed that this was the way that the human brain
worked. Of course now we know that they bear little resemblance to real
biological neurons.

An ANN consists of small processing units, which are called neurons (Fig-
ure 3.1), that are able to take inputs and apply some function on them.

Here we present the basic function of a neuron that takes N inputs and a
bias term b and produces an output v. With wn we denote the weights of the
incoming connections.

v =

N∑
n=1

wnxn + b (3.1)

14
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Figure 3.1: Basic Neuron

3.1.1 Activation Functions

If we want the output of the neuron to be non-linear we can apply a different
activation function to the output v. The most common activation function
for hidden neurons is the logistic sigmoid. With z we denote the output of a
single hidden neuron.

σ(z) =
1

1 + e−z
(3.2)

Other common activation functions are the hyperbolic tangent (tanh) and
the rectified linear (ReLU).

tanh(z) =
e2z − 1

e2z + 1
(3.3)

relu(z) =

{
z z > 0

0 z ≤ 0
(3.4)

All of these activations are used in practice. Usually the choice of activation
function is architecture specific and has to be decided when designing a new
model. For example ReLUs are usually preferred for feed-forward networks
over sigmoids because they are much faster to compute. On the other hand
sigmoids and hyperbolic tangents are usually a good choice for RNNs. Also
there are other activation functions that are basically variations of the ones
presented here. In Figure 3.2 are presented some commonly used activation
functions.

3.1.2 Forward Pass

A deep feed-forward network is usually constructed from many layers of neu-
rons and is able to learn complicated functions. The layers of neurons in a
neural network are called hidden layers. A simple feed-forward network usually
has an input layer, an output layer and one or more hidden layers (Figure 3.3).
The neurons of each hidden layer are also called hidden units. The weights
connecting the hidden units of a layer with the previous and the next layer
are the networks’ learnable parameters. A network with many hidden units
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Figure 3.2: Activation functions [10]

has a lot of learnable parameters and is able to learn more complicated pat-
terns. Experiments have shown that deeper networks with less hidden units
per layer have a larger capacity and are able to learn better features than
shallow networks with more hidden units per layer.

Figure 3.3: Feed-forward neural network

Once a network is trained we can get outputs by forward-propagating the
inputs through the network. For the network shown in Figure 3.3 the forward
pass includes the following steps. Here with zj,i we denote the output of the
ith hidden unit of the jth layer and with xn the nth input. Let us assume the
hidden units also have sigmoid activations. With aj,i we denote the output of
the ith unit of the jth layer after the sigmoid activation. With wj,i,n is denoted
the incoming weight connection of the ith unit of the jth layer with the nth
unit of the j − 1th layer and bj,i is the bias of the ith unit of the jth layer.

z1,i =
N∑
n=1

w1,i,nxn + b1,i (3.5)

a1,i = σ(z1,i) (3.6)
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z2,i =

N∑
n=1

w2,i,na1,n + b2,i (3.7)

a2,i = σ(z2,i) (3.8)

z3,i =
N∑
n=1

w3,i,na2,n + b3,i (3.9)

3.1.3 Optimization Objective

The most common use of neural networks is for multi-class classification. We
usually want the network to take an input vector and predict one of L discrete
classes. In order to do this we add an L-way softmax after the final layer. The
softmax will turn the outputs into a probability distribution over the L classes
where the most probable class is predicted. With softmax(z)i is denoted the
ith element of the L-way softmax. The softmax turns an L-dimensional vector
of arbitrary real values and turns it into a probability distribution where all
values sum up to one.

softmax(z)i =
ezi∑L
l=1 e

zl
(3.10)

Because the output of the network is a softmax unit, we need an appropri-
ate error metric also called a cost function. The cost function measures how
different is the current output from the desired output of the network. When
the output of the network is a probability distribution, the appropriate cost
function is the negative log probability of the right answer. This function is
called cross-entropy. With tj we denote the jth target value while yj is the
current output for the jth training example.

E = −
J∑
j=1

tjlog(yj) (3.11)

When training a neural network, what we do is optimize the cross-entropy
cost function. The way that we do this is by using the gradient of the cost-
function to iteratively adjust the parameters of the network in order to mini-
mize the cross-entropy. Minimizing the cross-entropy is exactly equivalent to
maximizing the probability of getting the correct answer. An important detail
in order to use the cross-entropy cost function is to have an appropriate target
value.

The target value is an L dimensional vector that has one at the position
of the right answer and zeros at the positions of all the wrong answers. This
way we can very easily compute the cross-entropy of every output-target pair.



CHAPTER 3. NEURAL NETWORKS 18

3.1.4 Back-propagation

The cross-entropy cost function is differentiable and has a very simple deriva-
tive. The optimization of the cost function can be efficiently done with gra-
dient descent methods. The cross-entropy term defined above is a sum over
all input-target pairs in the training set. As a result the derivatives of the
objective function is also a sum of derivative terms. When referring to the
derivatives of the objective function in our equations, we implicitly mean the
derivatives of a single input-target pair.

Back-propagation [24][31] is a method used to efficiently calculate the gra-
dient. This is often referred to as the backward pass of the network. Back-
propagation is simply a repeated application of the chain rule for partial deriva-
tives. We first calculate the derivative of the objective function with respect
to the output unit and the derivative of the softmax output with respect to
the input of the softmax unit. Then we apply the chain rule in order to cal-
culate the derivative of the objective function with respect to the input of the
softmax unit. Here yj is the output of the jth unit while zj is the input of the
jth unit.

∂E

∂yj
=

yj − t
yj(1− yj)

(3.12)

∂yj
∂zj

= yj(1− yj) (3.13)

∂E

∂zj
=
∂E

∂yj

∂yj
∂zj

= yj − t (3.14)

We now continue to apply the chain rule, going backwards through the
hidden layers. When we want to back-propagate the derivative of the jth
unit to the ith unit, which belongs to the previous layer, we get the following
equations. By repeatedly applying the chain rule we can back-propagate the
error derivatives all the way through the network.

∂E

∂yj
=
∂E

∂zj

∂zj
∂yi

=
∑
j

wi,j
∂E

∂zj
(3.15)

∂E

∂wi,j
=
∂E

∂zj

∂zj
∂wi,j

= yi
∂E

∂zj
(3.16)

Now that we have a good way of computing the error derivatives for every
weight, we can specify a learning procedure that adjusts the weights based on
these derivatives. The learning procedure simply adjusts each weight towards
the direction where the derivative of that weight is the steepest.

There are also two issues one needs to take into account when training a
neural network. The first is how often to update the weights and the second is
how much to update. A number of different optimizers have been developed
that optimize all these hyper-parameters and apply the learning rule for the
whole training set. We are going to briefly present some of these optimizers
in section 3.3.
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3.2 Recurrent Neural Networks

In the previous section we have discussed feed-forward neural networks that
only have connections from one layer to the next. Recurrent neural networks
(RNNs) also have recurrent connections between units of the same layer. This
architecture allows RNNs to have a hidden state which makes them very good
for modeling data sequences. An RNN is able to change its hidden state based
on the inputs and produce outputs based on the current hidden state as well
as the inputs.

In the previous chapter we presented HMMs that are able to model se-
quences of data. We have also shown that a key weakness of HMMs is that
they can only be at one, out of a finite number, state at each particular time
step. On the other hand RNNs have a distributed hidden state which allows
them to store a lot of information efficiently. This means that several different
units are active at once, and as a result the network can remember several
different things at once. Also RNNs are non-linear models that are able to de-
velop very complicated dynamics and change state in a non-linear way. Neural
networks in contrast to HMMs are not stochastic models. RNNs are deter-
ministic models which means that if you know the current hidden state and
the input you can predict the next hidden state.

RNNs can exhibit many different behaviors. They can oscillate in a certain
state or settle to point attractors. They can also behave chaotically. These
different behaviors make RNNs good at performing many different tasks. In
this thesis we are going to focus on their ability to recognize very long data
sequences in a more efficient way than HMMs. We are going to briefly describe
the way RNNs are able to model sequences and we are going to present a
variation of standard back-propagation that can effectively compute the error
derivatives with respect to weights for a recurrent neural network. Finally we
will present a different version of RNN that can process data both in a forward
and a backward order. These are called bidirectional RNNs and have proved
to be really effective at many machine learning tasks.

3.2.1 Forward Pass

Here we are going to focus on a simple RNN that has only one hidden layer
with recurrent connections. We can think of this RNN as an extension of
a feed-forward network with one hidden layer for every time step. We will
assume that there is a time delay of one time step in using each connection.
Now we can see the recurrent net as a layered net that uses the same weights
at every time step.

The RNN begins at an initial state at time zero. Then it uses the inputs
and the weights of its recurrent connection, for each time step, to get to a new
state. The inputs are forward propagated through the network at each time
step and the previous state is propagated using the recurrent connections. This
way the current hidden state depends on both the inputs at that particular
time step and the previous hidden state.

It is also possible for the network to produce outputs at each time step.
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Figure 3.4: RNN unfolded through time [19]

Sometimes we may want to have an output at every time step, for example
when tracking a missile or driving a car, or we may want to get an output
at the end of a specific sequence. In the networks that we are using for our
experiments we want the latter as we would like for the network to produce
an output class every time it recognizes a gesture.

3.2.2 Back-propagation Through Time

Because of the weight constraints of recurrent connections, we can effectively
use back-propagation to find the error derivatives with respect to the hidden
weights for each time step and go all the way back to the initial state.

Back-propagation through time (BPTT) [31] is a well known algorithm
that can efficiently calculate the error derivatives with respect to the hid-
den weights for RNNs. BPTT is both conceptually simple and efficient in
computation time (though not in memory). Like standard back-propagation,
BPTT repeatedly applies the chain rule. The difference with standard back-
propagation is that, for recurrent networks, the objective function depends on
the activation of the hidden layer not only through its influence on the output
layer, but also through its influence on the hidden layer at the next time-step.

∂E

∂wi,j
=

T∑
t=1

∂E

∂ztj

∂ztj
∂wi,j

=

T∑
t=1

yti
∂E

∂ztj
(3.17)

3.2.3 Bidirectional RNNs

Often in sequential modeling tasks, we want to have access to future context as
well as past. For example when we are trying to recognize a certain phoneme,
we would like to know the phonemes coming at the next time steps as well
as the previous ones. Bidirectional RNNs [26][1][13] offer an elegant way to
do this. The basic idea is to process the data sequence both forwards and
backwards. This is done by two separate hidden layers that are connected to
the same output. This way the network has access to both future and past
context when processing each time step of the input sequence. BRNNs have
given promising results in a number of problems including speech processing.

In the forward pass both hidden layers are presented the same sequence but
in opposite orders. The output is updated once both networks have finished
processing the whole sequence. For the backward pass we use again BPTT.
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Figure 3.5: RNN and BRNN

We compute the derivatives for the output and then back-propagate them,
using the chain rule, to calculate the error derivatives with respect to hidden
weights for both networks in the layer.

Although BRNNs at first glance violate causality there are many temporal
tasks where the model is expected to produce outputs after processing the
whole sequence. This means that BRNNs are a feasible solution for all of
these tasks and have been widely used.

Another aspect of BRNNs is that since the network processes the data both
ways, this acts as a strong regularizer for the network. Indeed BRNNs have
shown improved generalization with new data and they do so with significantly
less training data than simple RNNs. Bidirectional networks are a little less
prone to over-fitting the training set than simple RNNs which, as we are going
to see in the next section, is a useful property to have when training a neural
network.

3.3 Training Neural Networks

Until this point we have discussed the back-propagation algorithm for feed-
forward and recurrent neural networks as an efficient way to compute the error
derivatives with respect to the weights for each hidden unit. However in order
to train a neural network effectively and efficiently, several issues have to be
resolved.

3.3.1 Optimizers

Once the error derivatives have been computed for all weight connections,
we need to update these connections towards the direction of the steepest
gradient descent. Before we can update the weights though we need to answer
two questions. How often to update the weights and how much to update
them.
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Usually when we are dealing with large amounts of data we cannot simply
go through all the examples and then update the weights. We usually process
the data in mini-batches of some size. The size of the mini-batch is an impor-
tant hyper-parameter that we need to carefully choose before the training. A
very large batch size is more robust but it can be quite expensive to compute
the error derivatives. On the other hand if the batch size is very small we can
end up updating the weights in the wrong direction. A careful selection of the
batch size is key to an efficient training.

Also we have to decide how much to update the weights every time. This
is largely controlled by the learning rate. A number of different optimizers
have been developed that are able to use complicated weight update rules and
use a number of hyper-parameters in order to optimize the learning process.
Some of the most widely used optimizers are SGD, RMSprop, adadelta, adam
and nadam.

SGD

Stochastic gradient descent is the simplest optimizer that performs gradient
descent learning on mini-batches. The learning procedure is mainly controlled
by the learning rate and can also use more advanced methods like momentum,
that uses the gradient to change the velocity of the weight update instead of
the position, and learning the rate decay over time.

RMSprop

RMSprop [30] is a learning algorithm that keeps a moving average of the
squared gradient for each weight.

MeanSquare(w, t) = 0.9MeanSquare(w, t− 1) + 0.1

(
∂E

∂w(t)

)2

Then it divides the gradient by
√
MeanSquare(w, t). RMSprop can also be

combined with momentum [15] and adaptive learning rates.

Adadelta

Adadelta [36] is another method that dynamically adapts over time and uses
a pre-defined set of hyper-parameters to make the training more efficient.

Adam

Adam [18] is another optimizer that is based on the idea of RMSprop and
uses adaptive estimates to find the learning step. Adam also pre-defines the
hyper-parameters for efficient training.

Nadam

Nadam [5] is essentially a version of Adam that uses the Nesterov momentum.
For this purpose we first take a step towards the direction of the steepest
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gradient and then estimate the error and then re-adjust the weights towards
the correct direction. The Nesterov momentum is known for accelerating the
training process.

3.3.2 Regularization and Generalization

Although the learning of the parameters of a neural network is performed
on the training set, the real objective is to achieve a good performance on
previously unseen data. The issue of whether training set performance carries
over to the test set is referred to as generalization, and is of fundamental
importance to machine learning.

Neural networks usually have a large number of learnable parameters which
allows them to capture complicated dynamics. At the same time a neural
network with many learnable parameters is very good at learning the sampling
error of the training set as well. This is usually called over-fitting and leads to
a model that performs very well on the training set but very poorly on unseen
data. In order to address this problem we can either try to design a neural
network that does not have too many trainable parameters or use a number of
different techniques to regularize a large network. Generally very deep neural
networks with many learnable parameters are preferred as they can learn a lot
more complicated dynamics. Here we are going to discuss some of the many
ways to regularize large neural networks and prevent over-fitting.

Dropout

Dropout [27] is an effective way to prevent the hidden units of a network
from co-adapting too much. The key idea is to randomly set a number of
hidden connections to zero during each iteration over the training set. This
significantly reduces the ability of the network to learn the sampling error and
greatly reduces over-fitting.

When properly applied, dropout allows us to use much larger networks
that are able to learn complicated patterns without over-fitting the training
set. When choosing the dropout percentage for each layer one must be careful
though. A large percentage of dropout can be a great regularizer but can also
lead to under-fitting and result to networks that are untrainable.

Dropout can also be applied to RNNs in order to reduce over-fitting. It is
particularly helpful because RNNs tend to overfit the training set quite easily.
With RNNs we can also choose to apply dropout to either the feed-forward
or the recurrent connections. It is usually preferable though to apply dropout
only to the feed-forward connections and not the recurrent connections [35].
Dropout effectively corrupts the information we want to carry from one time
step to the next and this makes the training very hard.

Weight Constraints

Another way that we can regularize a neural network is to constrain the weights
to lie in a circle. We set an upper bound on the L2 norm of the weights
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Figure 3.6: Dropout thinned neural network

and we normalize the weights when a weight update violates this constraint.
This forces the network to learn weights that have reasonable values and thus
generalize better. Because we do not penalize the weight update it is possible
to train the network with a reasonable learning rate without under-fitting.

In most of our experiments we constrained the norm of the weights to to
have a maximum value of 10. The weight constraints work especially well
when combined with dropout [9].

Early Stopping

One of the simplest yet most effective ways to address over-fitting is to use
early stopping along with a validation set. The validation set is not used
for training but instead for validating the performance of the model on un-
seen data during the training and choosing the hyper-parameters that better
optimize the network.

We monitor the validation at the end of every epoch. At the beginning of
the training both the training and the validation loss will steadily decrease.
When we observe that the validation loss stops decreasing for a number of
epochs while the training loss continues to decrease this usually means that
the network starts over-fitting the training set. At this point we stop the
training and we keep the set of weights that performs best on the validation
set. Early stopping is an effective way to prevent over-fitting and it has the
advantage of adding no overhead to the training process.

Gaussian Noise

Adding Gaussian noise to the inputs of the network during training works
as a strong regularizer for the network. It can artificially increase the size
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of the training set with new examples that are similar but not identical to
each other. This forces the network to try and learn to denoise the inputs by
learning useful patterns.

The added noise, like most regularization techniques, tends to decrease
performance on the training set, but increase it on the validation and test
set where no input noise is added. The effect of the noise is controlled by
the variance of the noise. The variance is a hyper-parameter that is data set
specific and needs to be determined using the validation set. Larger values of
noise have a stronger effect on the inputs, but may halve the networks ability
to learn. In our experiments we used the validation set in order to determine
the best possible value for the Gaussian noise. In some of our models we used
noise with variance between 0.5 and 0.6 the variance of the original data, while
for others we did not use any noise.



Chapter 4

Long Short-Term Memory

In the previous chapter we discussed how recurrent neural networks are good
at modeling time series and mapping sequences of inputs into outputs. Un-
fortunately standard RNNs are pretty bad at remembering things for a long
time and thus their ability to model data sequences is limited to very short
sequences. The reason for that is the fact that the influence of a given input of
a hidden layer can either vanish or explode when it is propagated many time
steps in the network. In practice this problem, that is often referred to as the
“vanishing gradients” problem [16][3], makes it difficult for standard RNNs to
deal with delays of more than a dozen time steps between the input and the
target.

Many methods have been proposed that deal with the “vanishing gradi-
ents” problem. Some of these methods include non-gradient training [3], while
others propose careful initialization of the hidden weights in order to create
a pool of loosely coupled oscillators that are able to “echo” inputs over long
time delays [17][25].

By far the most effective method so far is the Long Short-Term Memory
(LSTM) architecture [16]. In this chapter we review the background material
of LSTM architectures and training, which is the main RNN architecture that
we are using throughout this thesis. Section 4.1 introduces the basic LSTM
unit and how this architecture overcomes the “vanishing gradient” problem. In
section 4.2 we will introduce the bidirectional LSTM (BLSTM) architecture
which further improves the LSTM architecture. Finally in section 4.3 we
present the residual bidirectional LSTM block which is the basic building
block we are using in all of our networks presented in this thesis.

4.1 LSTM architecture

The LSTM architecture consists of layers of recurrent memory blocks called
LSTM units. The basic LSTM unit contains one or more linear, self-connected
memory cells and three multiplicative units, the input, output and forget gates,
that provide read, write and reset operations for the cells.

The memory cells have the ability to remember information for a long time
and they are controlled by binary control signals. This allows LSTM networks

26
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to overcome the “vanishing gradient” problem. As long as the input gate
remains closed the memory cell continues to remember its current value and
the activation cannot be overwritten by current inputs. When the output gate
opens, the network can access the value that was stored inside the memory
cell, even after a very long time.

Figure 4.1 shows a typical LSTM unit with one linear, self-connected unit
called the “error carousel”. The LSTM networks are constructed just like
simple RNNs with LSTM blocks instead of recurrent units. The LSTM layers
can be combined with other types of layers such as convolutional and dense
layers. An LSTM network can be effectively trained with back-propagation
through time as described in chapter 3.

Figure 4.1: Typical LSTM unit

Ever since LSTM units were introduced, back in 1997, they have been
successfully applied to various problems from speech recognition [12], protein
structure prediction [29] and sequence to sequence learning[28].

Currently LSTM architectures are widely used for various machine learning
tasks where there is a need to model long range contextual dependencies. On
the other hand, if a data sequence is preprocessed and segmented into a num-
ber of shorter sequences, the use of LSTM architectures becomes redundant.
When dealing with the problem of gesture recognition, if a video sequence is
preprocessed and segmented into a series of distinct sequences, then it might
be possible to use simple RNNs in order to recognize these short sequences. In
this thesis though we are proposing an end-to-end approach where we do not
pre-process or segment our sequences. As a result the proposed model needs
to be able to deal with very long sequences of data and this makes the use of
an LSTM architecture necessary.
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4.1.1 LSTM equations

Here we provide the equations for the forward pass and the gradient calculation
of an LSTM hidden layer. The exact error derivatives with respect to the
hidden weights can be efficiently calculated with back-propagation through
time (BPTT) [13]. As previously, wi,j is the weight of the connection from
unit i to unit j. The input to unit j at time t is denoted αtj and the value of the
same unit after applying the activation function ztj . The equations presented
here refer to a simple memory block. The subscripts ι, φ and o refer to the
input gate, forget gate and output gate respectively. With stc we denote the
state of cell c at time t. With f , g and h we denote the activations of the
gates, input and output functions respectively. Also I is the number of inputs,
H is the number of cells in the hidden layer and K is the number of outputs.

Forward Pass

Input Gates

αtι =
∑
ι

wi,ιx
t
i +
∑
h

wh,ιz
t−1
h +

∑
c

wc,ιs
t−1
c (4.1)

ztι = f(αtι) (4.2)

Forget Gates

αtφ =
∑
φ

wi,φx
t
i +
∑
h

wh,φz
t−1
h +

∑
c

wc,φs
t−1
c (4.3)

ztφ = f(αtφ) (4.4)

Cells
αtc =

∑
c

wi,cx
t
i +
∑
h

wh,cz
t−1
h (4.5)

stc = ztφs
t−1
c + ztιg(atc) (4.6)

Output Gates

αto =
∑
o

wi,ox
t
i +
∑
h

wh,oz
t−1
h +

∑
c

wc,os
t
c (4.7)

zto = f(αto) (4.8)

Backward Pass

εtc =
∂C

∂ztc
(4.9)

εts =
∂C

∂zts
(4.10)

Cell Outputs

εtc =
∑
k

wc,kδ
t
k +

∑
h

wc,hδ
t+1
h (4.11)
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Forget Gates

δto = f ′(αto
∑
c

h(stc)ε
t
c (4.12)

States

εts = ztoh
′(stc)ε

t
c + zt+1

φ εt+1
s + wc,ιδ

t+1
ι + wc,φδ

t+1
φ + wc,oδ

t
o (4.13)

Cells
δtc = ztιg

′(αtc)ε
t
s (4.14)

Forget Gates

δtφ = f ′(αtφ)
∑
c

st−1
c εts (4.15)

Input Gates

δtι = f ′(αtι)
∑
c

g(αtc)ε
t
s (4.16)

4.2 Bidirectional LSTM

In order to enhance the performance of simple LSTMs, the bidirectional LSTM
(BLSTM) was proposed [13]. Much like the bidirectional RNN, the bidirec-
tional LSTM layer consists of LSTM units that have the ability to process the
data sequence both forward and backwards. The bidirectional layer assumes
that the input data can be divided into finite segments and performs a forward
and a backward pass before producing an output. This process introduces a
small delay between the input event and the output produced by the network
and seems to violate causality, but in fact human listeners do exactly the same
thing. Words that mean nothing at the first place start making sense when
combined with future context.

In a bidirectional network the forward and the backward pass are combined
in order to produce results. As a result the complete network is able to make
more accurate predictions. For example the forward sub-network is usually
more accurate than the backward one but there are some cases where the
backward sub-net corrects mistakes made by the forward one. Also because
the weights in both directions are tied together, the bidirectional network is
better regularized than a unidirectional one and can be effectively trained
with a lot less data. BLSTMs consistently outperform LSTMs on sequence
classification tasks and are less prone to over-fitting the training set.

4.3 Residual Connections for the Enhancemet of
BLSTMs

Deeper neural networks are more powerful than shallow ones. Increasing the
number of hidden layers leads to networks with more complicated dynamics
that can learn complicated features. Nevertheless, increasing the depth of a
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neural network is not as easy as stacking many layers. Very deep feed for-
ward networks start exhibiting “vanishing gradients”. This makes the learn-
ing procedure of the network very difficult from the beginning of the training.
With RNNs the problem only becomes worse due to the nature of recurrent
networks. As mentioned earlier, LSTM networks deal with the “vanishing
gradient” problem by remembering information over long time lags but if the
architecture becomes deeper, LSTM networks also have difficulty converging.

Residual learning [14] was first proposed to deal with the “vanishing gradi-
ents” problem on very deep convolutional networks. The deep residual frame-
work introduced shortcut connections skipping one or more stacked layers.
Residual connections effectively deal with the “degradation” problem and al-
low very deep networks to converge. The shortcut connections simply perform
identity mapping, and their outputs are added to the outputs of the stacked
layers. Identity connections are not counted as trainable parameters and do
not increase the computational complexity of the network. The network can
still be trained with back-propagation using the same optimizers described in
the previous chapter. Figure 4.2 shows a simple feed-forward residual block.

Figure 4.2: Residual block

In this thesis we effectively combine BLSTM layers with residual connec-
tions. The use of residual BLSTM blocks allowed us to effectively train deep
BLSTM networks that have a greater capacity than shallow ones without run-
ning into degradation problems.



Chapter 5

Connectionist Temporal
Classification

The recurrent neural networks that we described in the previous chapters have
one major weakness. In order to train them to perform sequence recognition
and classification we need to provide them with sequence, label pairs. To
do this we need to pre-process our input sequences and segment them into
finite sequences that include only one class instance each. In the task of
gesture recognition this means that we need a pre-processing step where all
gesture sequences are carefully segmented into parts where only one gesture is
performed. Of course this task is not trivial and requires a lot of effort in order
to correctly pre-segment all the input data. If the segmentation of the data
is not correct this can cause problems to the whole recognition process. In
addition, the preprocessing step increases the overall complexity of the model
at run time. For all these reasons we decided that it is preferable to explore a
different end-to-end approach that does not require pre-segmented data and
allows us to train our models using sequences of labels instead.

Connectionist temporal classification (CTC) [11] is basically an output
layer that allows the neural network to perform temporal classification. RNNs
with CTC are able to learn both the alignment and the recognition task at
once while being trained with sequences of labels. We have found that BLSTM
networks with CTC are able to outperform models based on HMMs on the
task of temporal classification of gesture sequences.

Section 5.1 introduces the basic concepts behind connectionist temporal
classification. Section 5.2 briefly describes the forward-backward algorithm
which is an efficient way of computing the conditional probabilities of label
sequences. In section 5.3 we describe the CTC cost function and in section
5.4 we present a method for decoding CTC outputs.

5.1 Temporal Classification

As it was mentioned earlier, neural networks trained to minimize the standard
objective functions require data, target pairs for the training. In other words
we require separate targets for every segment in the input sequence. This
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creates a couple of problems. First of all, the input sequence needs to be
pre-segmented in order to provide the targets. Second, the network only sees
the one segment when performing classification and as a result the long term
aspects of the sequence must be modeled externally. In order to predict a
sequence of labells, a number of pre-processing and post-processing steps is
required.

Motivated by these problems, in this thesis we propose a different method
that can be used for end-to-end temporal classification. Connectionist tempo-
ral classification (CTC) allows the network to make predictions at any point in
the input sequence, as long as the overall sequence predicted is correct. This
way the network itself learns the alignment of the labels and removes the need
for pre-segmented data. Moreover, CTC learns the total output probability of
the complete sequence thus eliminating the need for external post-processing.

In the early stages of our work in this thesis we experimented with frame-
wise classification neural networks. In order to perform frame-wise classifica-
tion we pre-segmented the input data with the help of an activity detector and
then trained our model to classify each segment separately. As a result the
network was unable to discriminate between real gesture instances and out-of-
vocabulary instances and thus resulted in a lot of “false positives” and poor
accuracy. In order to deal with this problem we would need to explicitly model
out-of-vocabulary instances along with a post-processing step to combine the
predictions into sequences. On the other hand CTC just solves these problems
and makes it easier to implement a well-performing model. A CTC network
outputs a series of high probability spikes at any time in a given sequence it
recognizes a gesture instance. As a result the rate of false positives is much
lower in a CTC network than a frame-wise classification network. Figure 5.1
shows the difference between frame-wise classification and CTC for the same
speech signal.

5.1.1 Mapping outputs to labels

In practice for a sequence labeling task where we have to recognize N classes,
CTC consists of a softmax layer that has N + 1 units. The first N units
output the probability of each class while the last unit is responsible for the
probability of the “blank” label. In more detail the activation ytl of unit l
at time step t is the probability of observing class l at time t given an input
sequence of length T . If we put together all of these probabilities we get
a probability distribution over all possible sequences of length T . Then the
probability of observing a particular sequence π given an input sequence x of
length T and a training set S is given by the following equation.

p(π|x, S) =
T∏
t=1

ytπt (5.1)

The elements π are also referred to as paths which are then mapped into
a set of possible label sequences.
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Figure 5.1: Frame-wise classification and CTC applied to a speech
signal

Here we need to stress the importance of the blank label. Without the
blank label the network would keep predicting the same label until the next
appeared which is generally not desirable in most situations. Most of the time
the network outputs blank labels with short “spikes” of high probability every
time a certain class is recognized. This way the network outputs a specific class
only if it is really confident for this specific class. As a result CTC networks
are more prone to predicting a lot of “false negatives” than “false positives”
in contrast to frame-wise networks.

5.2 The Forward-Backward Algorithm

In order to efficiently calculate the conditional probabilities p(π|x) of different
label sequences we are going to use dynamic programming. The CTC forward-
backward algorithm is similar to the forward-backward algorithm for HMMs
[23]. The idea behind this algorithm is that in order to compute the sum over
paths that correspond to a labeling, we can iteratively compute and sum over
paths corresponding to prefixes of that labeling.

For some labeling l, we will define a forward variable αt(s) which is the
sum of all paths with prefixes of length t that are mapped into the length s/2
prefix of l.

αt(s) =
∑
π

t∏
t′=1

yt
′
πt′

(5.2)
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Now the probability of l can be expressed as the sum of the forward vari-
ables with and without the final blank at time T .

p(l|x) = αT (|l′|) + αT (|l′| − 1) (5.3)

All paths start with either the first symbol in l or a blank. We can then
get the following initial rules.

αl(1) = ylb (5.4)

αl(2) = yll1 (5.5)

αl(s) = 0, ∀s > 2 (5.6)

Then we can apply the following recursion rules to find the other forward
variables.

αt(s) = ytl′s

{∑s
i=s−1 αt−1(i) if l′s = b or l′s−2 = l′s∑s
i=s−1 αt−1(i) otherwise

(5.7)

where

αt(s) = 0 ∀s < |l′| − 2(T − t)− 1 (5.8)

αt(0) = 0 ∀t (5.9)

We can also define a backward variable βt(s) as the summed probability
of all paths with suffixes that start at t can be mapped into the suffix of l
starting at label s/2.

βt(s) =
∑
π

t∏
t′=t+1

yt
′
πt′

(5.10)

Now we can get the following rules for initialization and recursion of the
backward variables.

βT (|1′|) = 1 (5.11)

βT (|l′| − 1) = 1 (5.12)

βT (s) = 0, ∀s < |l′| − 1 (5.13)

βt(s) =

{∑s+1
i=s βt+1(i)ytl′i

if l′s = b or l′s+2 = l′s∑s+2
i=s βt+1(i)ytl′i

otherwise
(5.14)

where

βt(s) = 0 ∀s > 2t (5.15)

βt(|l′|+ 1) = 0 ∀t (5.16)
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5.3 The CTC Cost Function

In the previous section we described how CTC recurrent neural networks per-
form temporal classification of data sequences. In order to train the neural
network to perform some task we need a cost function, or objective function as
it is usually referred to, that we will train it to minimize. Once we have that
cost function we are ready to train the neural network using back propagation
and one of the optimizers described previously (see section 3.3.1).

Just like other neural network cost functions, like cross entropy, the CTC
cost function is defined as the negative log probability of getting all the labels
correctly. The cost function C for the entire training set is given by the
following equation.

C = −ln

( ∏
(x,z)∈S

p(z|x)

)
= −

∑
(x,z)∈S

lnp(z|x) (5.17)

Now if we differentiate we will get the derivative of the cost function with
respect to the output ytk for some training example (x, z).

∂C

∂ytk
= −∂lnp(x|z)

∂ytk
= − 1

p(z|x)

∂p(z|x)

∂ytk
(5.18)

In order to calculate this derivative we can use the forward-backward algo-
rithm described in the previous section. The summed probability of all paths
mapped into z that go through symbol s at time t is the product of the forward
and backward variables defined earlier. If we replace z with l in equations 5.2
and 5.10 we get the following

αt(s)βt(s) =
∑
π

T∏
t=1

ytπt (5.19)

If we take this one step further and substitute from equation 5.1 we get

αt(s)βt(s) =
∑
π

p(π|x) (5.20)

Finally if for any t we sum over all s we get

p(z|x) =

|z′|∑
s=1

αt(s)βt(s) (5.21)

This equation is obviously differentiable and if we differentiate with respect
to the output, for the paths that go through label k at time t to get

∂p(z|x)

∂ytk
=

1

ytk

∑
s∈lab(z,k)

αt(s)βt(s) (5.22)

At this point we can apply the chain rule in order to get the derivatives with
respect to the unit activation ztk for unit k before the CTC output function is
applied.
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∂C

∂ztk
= −

∑
k′

∂C

∂ytk′

∂ytk′

∂ztk
(5.23)

It should be noted that k′ ranges over all the output units including the
unit corresponding to the blank label. At this point we can recall that ytk
is actually the output of a softmax unit that has the following nice, simple
derivative where δkk′ is the derivative of the hidden activation.

∂ytk′

∂ztk
= ytk′δkk

′ − ytk′ytk (5.24)

This derivative along with equation 5.22 can then be substituted into equa-
tion 5.23

∂C

∂ztk
= ytk −

1

ytk

∑
s∈lab(z,k)

αt(s)βt(s) (5.25)

This is the error signal received by the network during training. This signal
can then be propagated back through time, each time applying the chain rule,
to calculate the derivatives with respect to the hidden weights for every hidden
layer.

5.4 Decoding the CTC Outputs

In every machine learning task our ultimate goal is to use the trained model to
make predictions on previously unseen data. We want to use a trained CTC
network to classify an unseen input sequence into a sequence of class labels. In
order to do this we want to choose the labeling l∗ that maximizes the posterior
probability p(l|x) of observing labeling l given input sequence x.

l∗ = argmax
l

p(l|x) (5.26)

In terms of HMMs the task of finding the most probable labeling is called
decoding. Here we are going to present an approximate method that can be
used for decoding the outputs of a CTC network.

5.4.1 Best path decoding

Best path decoding [11] is a straight-forward method and it assumes that the
most probable labeling also corresponds to the most probable path. In order
to compute the best path decoding we take the most active (probable) outputs
at every time step and concatenate them into a sequence of labels.

l = B(π∗)
where π∗ = argmax

π
p(π|x)
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Best path decoding is very fast to compute since it is just the concatenation
of the most probable classes. In some cases though it can lead to errors since
best path decoding struggles in cases where a label is weakly predicted for
several consecutive time-steps. The following figure illustrates this kind of
situation.

Figure 5.2: Best path decoding error.

The best path decoding outputs “blank” because this is the single most
probable class. However if we combine the paths corresponding to the labeling
”BS” the probability is actually higher.

When running our experiments for this thesis we found that despite its
weaknesses, best path decoding gives us very good results for the task of
gesture sequence recognition. As a result it was preferred over other, more
sophisticated methods, because of its simplicity and fast implementation.



Chapter 6

Multimodal Gesture
Recognition

The term gesture is used for any non verbal action that is performed in order
to communicate a message or express a feeling. Gestures can be static, dy-
namic or a combination of both. They are usually performed using the hands
and arms but can also be performed with the head, the face and the rest of
the body. Moreover gestures are often language and culture-specific. Some
examples of gestures are the cultural and anthropological signs that usually
accompany speech and sign language which is generally a visual language.

Gesture recognition unlike speech recognition, is not performed using a
single sensory input but rather a combination of different inputs coming from
different sensors. In fact human communication and interaction takes advan-
tage of multiple sensory inputs. We are extremely good at receiving inputs
from many different sensors and using all of them in order to perceive the
world around us. For example when watching a video, a sound is perceived as
coming from the speakers lips. In addition our perception may be affected by
whether the lips of the speaker are visible or not. At a higher level, gestures
that accompany speech usually affect the meaning of the spoken words.

A lot of different gesture recognition tasks have been studied over the
previous years, including sign language recognition [4] and human computer
interaction [33]. Also a variety of methods have been proposed over the years
using both HMMs [22] and deep learning [21]. Based on the formulation of
the task at hand, different methods can be best suited for different tasks and
most of them have their advantages and disadvantages.

As mentioned previously the purpose of this thesis is to propose a method-
ology that uses deep learning in order to perform temporal gesture recognition.
This methodology incorporates multiple input streams in order to produce an
output sequence of labels. This is done by breaking down the problem into
multiple uni-modal problems and solving them independently using RNNs.
The first RNN is based on speech input while the second one uses skeletal
input from a KINECT camera. Once we have well-performing models for each
modality we combine the RNNs using a higher level RNN that outputs the
final label sequence. At this point it should be noted that although we used
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these two modalities in our model, the proposed methodology can easily be
extended to combine more and different modalities like RGB and depth video.

In this chapter we present in detail the proposed model. In section 6.1
we described the outlines of the method we used and in section 6.2 there is a
presentation of the ChaLearn dataset that was used in our experiments along
with all the challenges we had to overcome working with this dataset. In
sections 6.3 and 6.4 we go into the details of the different modules that were
used for the speech and skeletal modalities respectively. Finally section 6.5
goes through the multi-modal fusion method that was used to integrate the
individual modules.

6.1 Temporal Classification of Gesture Sequences

In this thesis our task was to build a model that classifies hand gestures that
are performed in a continuous input stream and are accompanied by spoken
words. This kind of task is similar to keyword spotting as the gestures we
want to recognize come from a small vocabulary and are usually mixed with
other out of vocabulary ones.

We decided that in order to build a successful gesture recognition system
we would have to incorporate multiple modalities. In this case we chose to use
an audio stream along with a skeletal stream. We were confident that an audio
keyword spotter would do a very good job at classifying the different keywords
but these kinds of systems tend to be very sensitive to background noise and
out of vocabulary words. On the other hand we expected that a classifier
that uses only skeletal features would not be able to accurately classify all
the different gestures but would be less sensitive to distractions. The basic
idea was that when these two modalities were forced to work together, they
would be complementary to each other and the accuracy of the model would
improve.

A number of other methods proposed for the task of gesture recognition
[22][32] would segment an input sequence using some activity detector and
then train a model that maps each segment into a gesture. This approach
is similar to the frame-wise classification task that we described in previous
chapters and as a result it has the same disadvantages.

On the other hand our method is a temporal classification model that
takes as input whole sequences of input data and maps them into a sequence
of labels. The main idea was that a single neural network with CTC output
and enough trainable parameters should be able to learn to align and classify
the input sequences through training.

The basic framework consists of two RNN sub-networks, one for each
modality, that are able to learn temporal representations of the two input se-
quences. Then these representations are concatenated and propagated through
a higher level RNN, with CTC output, that combines them and predicts the
most probable labeling. Figure 6.1 illustrates the basic framework.

There is one problem that occurs when we try to implement a multi-modal
architecture like this. In most cases the modalities combined will not have the
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Figure 6.1: The basic framework

same alignment. For example a simple hand gesture might be accompanied
by a small phrase of speech. As a result the two input sequences will have
a much different alignment. This makes it very difficult for a single CTC
network to figure out what is the suitable alignment for both inputs. There
could be an argument here that a neural network with enough parameters and
enough training data could actually figure out, after a lot of training, how to
align both sequences. However, in practice we found out that this is not an
efficient way to train such a model as it would take a very long time for it to
converge and it is very likely to get stuck into local optima unable to progress
any further. There is one simple trick that we used in order to overcome this
obstacle.

Instead of training one big recurrent network at once, we trained each of
the two individual networks separately. We took each of the two sub-networks
and using a CTC output we trained each one of them to perform temporal
gesture classification. Once each unimodal network has converged we removed
the CTC output layers, concatenated their outputs and used them as input
for the high level RNN which was then trained using CTC output.
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(a) RGB (b) Depth (c) User Mask (d) Skeletal Model

Figure 6.2: The different modalities of the ChaLearn dataset.

6.2 The ChaLearn Dataset

At this point we will describe the dataset that we used for our experiments.
The ChaLearn Multi-modal Gesture Recognition challenge was organized in
2013. This competition focused on spotting gestures drawn from a certain
gesture vocabulary, based on multiple gesture instances performed by different
people.

6.2.1 The data

The dataset is split into gesture sequences. In each sequence a single user is
recorded in front of a KINECT camera, performing natural communicative
gestures and speaking in fluent Italian. Each sequence includes audio, skele-
tal model, user mask, RGB, and depth streams. In figure 6.2 the different
modalities of the dataset are shown.

The skeletal model includes the coordinates of 20 joints of the human
body as captured by the KINECT camera. These joints accurately describe
the users’ pose and movements. The joints can be seen in Figure 6.3

Figure 6.3: The skeletal joints captured by KINECT [8]
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A total number of 27 users (male and female) perform a total number of
13.858 gestures. The data are split into three sets. The training set contains
393 sequences with a total of 7.754 gestures. The validation set contains 287
sequences with a total of 2.742 gestures and the test set 276 with a total of
2.742 gestures. Each sequence lasts between 1 and 2 minutes and contains
between 8 and 20 gesture samples.

When training our models the training signals we used were simple se-
quences of labels for the gestures performed in each video sequence without
any additional information about the specific timing of each event.

6.2.2 Gesture vocabulary

The vocabulary of gestures included 20 Italian cultural gestures each of them
corresponding to a specific word or phrase in Italian. While performing a
gesture with his or her body movement, the performer also speaks out the
corresponding Italian word or phrase. The table bellow shows the 20 ges-
tures along with the corresponding phrases. Figure 6.4 illustrates the different
gestures.

Table 6.1: The different class labels. We also present the spoken phrases
that correspond to these classes.

VA Vattene
VQ Vieni qui
PF Perfetto
FU E’ un furbo
CP Che due palle
CV Che vuoi
DC Vanno d’accordo
SP Sei pazzo
CM Cos hai combinato
FN Non me ne frega niente
OK Ok
CF Cosa ti farei
BS Basta
PR Le vuoi prendere
NU Non ce ne piu
FM Ho fame
TT Tanto tempo fa
BN Buonissimo
MC Si sono messi d’accordo
ST Sono stufo

6.2.3 The challenges of the task

The ChaLearn taks is especially challenging for multiple reasons. The gestures
within each sequence are performed continuously and without a resting pose.
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Figure 6.4: Examples of all gesture classes

This makes it very difficult to decide when one gesture ends and the next
begins. Also many different gesture instances are present in each sequence
and there are distracter gestures out of the vocabulary present in terms of
both gesture and audio.

There are high inter and intra-class variabilities of gestures in terms of both
gesture and audio in the dataset. Moreover the different sequences are recorded
in different backgrounds while the users may wear different clothes and have
different skin color. There are also variations in the lighting, temperature and
resolution of the recorded sequences. To make the task even more challenging
some body parts of the users may be occluded and users may speak in different
Italian dialects.
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6.3 The Speech Model

Building the speech component of the gesture recognition model was very
similar to building a keyword spotter network. It is essentially an RNN that
takes as input an acoustic signal and outputs the correct label sequence. In
most speech recognition and NLP tasks phoneme level models are used but we
decided that in our task that wouldn’t be necessary. A simple word level model
would be sufficient for our task because we only have to recognize keywords
from a very small vocabulary.

6.3.1 Feature extraction

The first step in building any machine learning model is feature extraction.
Proper input features are key to building a good model. In our speech model
we used a standard feature extraction method in speech recognition [34]. The
input acoustic data was characterized as a sequence of vectors of 39 coef-
ficients. These coefficients consist of 13 Mel-frequency cepstral coefficients
(MFCC) plus energy and their first and second derivatives. The coefficients
were computed every 50ms over 25ms long windows. Then a Hamming win-
dow was applied, a Mel-frequency filter bank of 26 channels was computed
and, finally, the MFCC coefficients were calculated. The sampling period we
used is five times longer than the normal period used for frame-wise classifica-
tion tasks for two reasons. The first reason is that CTC makes it possible to
use features extracted with much lower sampling frequency. The other reason
is that we were ultimately going to combine the speech model with a skeletal
model where the inputs were recorded at 20 frames per second so we wanted
the two input streams to have approximately the same length.

6.3.2 Network architecture

The speech that accompanies gestures can either be a single word or a small
phrase. The words and phrases can be found in many variations and speeds.
There can also be small pauses between words. As we mentioned previously
(chapter 4) simple RNNs are having difficulties with dependencies over long
time lags so it was essential that we used LSTM units in our networks.

The basic speech network consists of two hidden BLSTM layers both con-
taining 500 memory blocks (in each direction). The memory blocks at each
layer are fully connected to themselves as well as the previous and next layer.
There are also residual connections that make the training of the network eas-
ier. The number of hidden units was selected after experimenting with the
validation set. The activations of the memory cells are hyperbolic tangents
while for the recurrent connections we used hard sigmoids.

On top of the BLSTM layers we have a dense layer with as many hidden
units as the number of different words we need to recognize (44 in our case).
These units make up the CTC output layer which is essentially one big softmax
at each time step. Also the network has 39 input units (one for each MFCC
coefficient).
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Due to the challenges of the ChaLearn task we needed to build a network
that has enough capacity to model all the different variations of the words
in our dataset. For that reason our complete network has approximately 8
million trainable parameters. Figure 6.2 illustrates the network architecture.

Figure 6.5: The speech word level BLSTM network

6.3.3 Regularization

A large neural network with many trainable parameters can very easily learn
the sampling error and over-fit the training set. The network that we used is
quite large in order to deal with the task at hand but this means that it would
very easily over-fit the training set without proper regularization techniques.

In order to address this problem we used a combination of different tech-
niques. We applied dropout on the inputs of the LSTM units in order to
corrupt the inputs of each cell. Dropout forces the hidden units in the layer
to stop cooperating and learn individually useful features. The dropout value
is a hyper parameter that was also chosen after trying different values on the
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validation set. We did not apply any dropout in the recurrent connections be-
cause we wanted to preserve the signals carried through time. A dropout layer
was also added after the second BLSTM layer. This dropout layer corrupts
the inputs going into the dense layer.

A large network like the one we are using here needs to be trained with
a lot of data in order to generalize properly. The ChaLearn dataset however
is not a very large one. A good way to artificially enhance the training set
is to add noise to the input data. We applied additive Gaussian noise on the
network inputs during training in order to augment the training set. The effect
that Gaussian noise has on the training inputs is controlled by the variance of
the additive noise which was again decided based o results on the validation
set. Like dropout, Gaussian noise is only used during training and is turned
off at test time allowing the network to use its full capacity.

The combination of these methods allowed our network to really learn use-
ful features and generalize well on unseen data. Because these techniques are
only applied during training, we sometimes observe the strange phenomenon
that the validation error is actually smaller than the training error. The spe-
cific values of the hyper parameters used during training are provided in the
next chapter.

One interesting property of our model is that when training the network
we did not use any out of vocabulary examples. The training data included
only instances of the gestures we wanted to recognize. When evaluating the
model though we used gesture instances mixed up with a lot of out of vocab-
ulary words. Although the network made some insertion errors, we found out
that it was successfully ignoring a great deal of out of vocabulary instances
without being explicitly trained to do so. Also we found out that the network
had learned a lot about phrases and proper syntax just by observing a lot of
training examples.

6.4 The Skeletal Model

As we said earlier a neural network that is able to understand speech, although
powerful, would have some limitations in the task that we are trying to solve.
Using a neural network that is able to understand another modality as well
that is complementary to speech would help us deal with such limitations.
The biggest problem we had to solve is the many out-of-vocabulary words and
gestures that occur along with the gestures and keywords that we want to
recognize. In fact the speech model by itself is powerful enough to sufficiently
model the different variations of speech in our dataset and predict the correct
class in almost 97% of the examples. The biggest weakness it has is that it
predicts a large number of false positives along with the correct classes.

The skeletal neural network was designed to help our model deal with that
problem. We wanted a skeletal model that is able to understand the basic
movements and help our model decide whether a specific event corresponds
to a real gesture or an out of vocabulary one. When both modalities agree in
their predictions then there is probability that the event is an actual gesture.
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When the two models make very different predictions then we most likely have
an out of vocabulary event.

6.4.1 Skeletal features

Building a neural network that is able to recognize gestures just by observing
the movements of some skeleton joints is by itself a non-trivial task. In contrast
to the speech model where there are widely used features that are proven to
give very good results, for the skeletal model we had to engineer the features
that would help us classify the gestures.

These features needed to be descriptive enough to allow our network to
model all the gestures and generalize properly. If we wanted to use the exact
position of the joints then the network would very easily learn the sampling
error and over-fit the training set. As a result it would generalize very badly to
unseen data. Instead we engineered new features that would more accurately
model the different gestures but also be invariant enough to allow for good
generalization. We wanted the features to be invariant to a number of trans-
lations. For example certain gestures might be performed with either hand
and at different speeds. Moreover the distances between the joints and the
position of the user would differ from user to user and in some cases certain
body parts were not visible. All these variations add extra difficulties to the
task of modeling skeletal movements.

We focused on features that could fully describe the user’s body pose and
movements. The distances and angles of the different joints of both hands from
the hip center and the shoulder center were measured in order to describe the
body pose. In addition to the pose descriptors we wanted to use dynamic
features that described the movements of the user. In order to do this we
computed the velocity of the hand joints for each frame. The velocity was
computed by taking the Euclidean distance between the position of the joint
for two consecutive frames. This velocity was given by the following formula.
Where xi and yi denote the coordinates of joint i while x′i and y′i denote the
coordinates of the same joint at the next time step.

vi(x, y) =
√

(x′i − xi)2 + (y′i − yi)2

We also approximated the rest position of the hands for each gesture and
measured the distance of the hands from the rest position for each frame. The
rest position was approximated by averaging the position of the hands for the
frames where the user was not moving. We assumed that the hands of the
user would usually have low velocity near the rest position.

The skeletal feature vector we used in our experiments consists of 22 fea-
tures that we found to yield the best performing model. These features are the
input for the LSTM network at each time step of the sequence. We knew that
the skeletal model by itself would have difficulties when trying to accurately
predict some gestures but we found that it was good enough for our method
as it would ultimately be combined with the speech model.
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6.4.2 Network architecture

The architecture of the skeletal network is quite similar to the one we used
for speech. The main difference with this network is that it has much fewer
LSTM units per layer which means that it has less trainable parameters and
thus smaller learning capacity. When designing the skeletal model we didn’t
want it to have as many parameters as the speech model which is going to
do most of the classification work. Figure 6.6 illustrates the skeletal model.
The structure of this network is similar to the speech network but this time
we have fewer hidden units per layer and lower input dimensionality.

Figure 6.6: The skeletal BLSTM network

Each of the two bidirectional LSTM layers has 300 LSTM units in each
direction. These units have hyperbolic tangent activations and hard sigmoid
recurrent activations. Just like the speech network all BLSTM layers are fully
connected to themselves as well as the previous and the next layer and we also
have skip connections from the first BLSTM layer to the output of the second
BLSTM layer.

On top of the BLSTM layers we again use a fully connected layer with
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as many hidden units as the number of different that we have in our dataset
(20 for this network). These units make up the CTC output layer which is
essentially one big softmax at each time step. The input units for this network
are 22 because this is the dimensionality of the skeletal feature vectors we are
using.

The total number of trainable parameters for this network is approximately
3 million parameters which is significantly less than the speech model. As we
mentioned earlier this network should work as a complementary to the speech
network and not as a stand alone model and so it does not require to have as
many learnable parameters.

6.4.3 Regularizing the skeletal model

Although this network is significantly smaller than the one used for speech
recognition, there is still a need to regularize it in order to prevent it from over-
fitting. We used dropout in order to prevent the LSTM units from co-adapting
too much combined with weight constraints that prevented the weights from
becoming too large. We also added Gaussian noise to the inputs of the network
in order to artificially augment the training set. The values used for dropout,
max-norm constraints and the variance of the Gaussian noise were selected
after experimenting with the validation set.

6.5 Multimodal fusion

Once we have trained both unimodal networks we had to find an efficient way
to combine the two models and make them work together. Combining two
different models in a single neural network that will yield increased perfor-
mance is not always an easy task. In order for a multi-modal network to have
better performance than the unimodal networks we need to make sure that
the two individual networks are in some way complementary to each other.
A good indicator for this is when the different networks make very different
errors when used to predict the test set.

In our case we experimented with both unimodal networks and found out
that they exhibit very different behaviors and make different errors. In fact
the neural network that was used for the audio modality was having very good
classification results but was also outputting a lot of false positives. On the
other hand the skeletal network was suffering from a lot of false negatives due
to the fact that the skeletal stream cannot adequately model certain gestures
from our vocabulary. These are usually the gestures that involve very small
hand movements.

It was obvious that these two models could be combined in a way that can
boost the overall performance. The main idea was that these two networks
could be used as feature extractors that will output a vector representation
for each modality. Then these vector representations would be used as input
for a higher level LSTM network with CTC output that would combine them
in order to make the final temporal classification. We expected that a high
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level network with enough capacity would be able to exploit the strengths of
both networks and produce improved results.

Although this approach seemed very promising we knew from the beginning
that the proposed architecture would have quite a lot of trainable parameters.
On the other hand the ChaLearn data set is not a very large one and it
was obvious that the training data were not enough in order to train such a
large network without severely over-fitting the training set. That is the main
reason we decided to train the two networks individually and then combine the
converged networks. This way we make sure that each individual network has
already learned useful parameters before fusing them into one large network.

There is one last trick that we used in order to efficiently train the combined
model. Before training the combined network we froze the weights of the two
sub-networks and trained only the parameters of the high level, fusion network.

Figure 6.7: The complete BLSTM network
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6.5.1 Fusion network architecture

The architecture that we used for the fusion network is quite simple. We first
removed the CTC output layer from the two trained sub-networks, froze the
trainable weights and concatenated the outputs of the top BLSTM layers into
a large merge layer. The merge layer had the same sequence length that both
sub-networks have. At each time step we get a feature vector which is the
concatenation of the output vectors of the two sub-networks.

The merge layer was used as input for another BLSTM layer with 100
LSTM cells in each direction. The activations of these cells were hyperbolic
tangents while the recurrent activations were hard sigmoids. This is the layer
that is responsible for combining the features extracted from the two sub-
networks.

On top of the BLSTM layer we added a dense output layer with a 22-way
softmax that implements the CTC output. The complete network has approx-
imately 13 million parameters although only 2 million of them are trainable
at this stage. The rest of the parameters were learned at the previous stages
and are no longer trainable. Figure 6.7 illustrates the complete network ar-
chitecture.

6.5.2 Regularization

In order to further regularize the complete model we used the same combi-
nation of techniques that were proposed for the two sub-networks. We used
dropout at the input of the BLSTM units while leaving the recurrent con-
nections without dropout. We also constrain the BLSTM weights to have a
max-norm of 10 in order to stop them from becoming too large. Another
dropout layer was added before the final dense layer in order to corrupt the
inputs of that layer.

The dropout values and max-norm parameters were chosen after experi-
menting with the validation set in order to get the best performing model pos-
sible. One might notice that we used a combination of regularization methods
at all components of the network. This was key in order to get good results
because the network architecture we implemented has quite a lot of trainable
parameters and the ChaLearn data set is not that large. It is always preferable
to get more data if it is possible in order to train large models that are able
to generalize well without over-fitting.



Chapter 7

Training and Experiments

In chapter 6 we described in detail the architecture and implementation of the
different components of our model. Training our model was a long and difficult
process that required many months of fine-tuning. LSTM networks that are
trained over long, high dimensional time sequences usually require quite a lot
of training and a number of different techniques to converge effectively. In this
chapter we are going to present the training process as well as the experimental
results.

In section 7.1 we present in detail the hyper parameters of our implemen-
tation. These hyper parameters include batch size, optimizers, learning rate
and dropout. Section 7.2 describes the training procedure along with all the
challenges that had to be overcome. Finally in section 7.3 we provide results
from the performance of our model on the ChaLearn Challenge data set.

7.1 Training hyper parameters

When training a neural network one must select values for a number of hyper
parameters. The tuning of this hyper parameters usually takes a lot of ex-
perimenting through trial and error and requires some degree of experience.
All of these hyper parameters are crucial in order to train a successful neural
network. In our work we selected the values for these hyper parameters after
running a lot of experiments with the training and validation set. This process
took quite a lot of time as we had to train three large recurrent networks many
times in order to decide which was the best set of hyper parameters.

7.1.1 Sequence length

The first value that we had to select is the length of the input sequences.
LSTM networks are capable of processing sequences of different lengths but in
our case we decided that it would be much easier if we used sequences of fixed
size. The maximum sequence length in our data set was approximately 1800
frames so we set the sequence length to be that long. Sequences that were
shorter than the maximum length were padded with zeros while sequences
that happened to be longer were truncated to maximum length.

52
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It is obvious that the sequence length greatly affects the complexity of the
model. An LSTM network takes a lot of time to process very long sequences
which means that our approach would take significantly longer to train on
much longer sequences. A different approach would be to keep all sequences
at their initial length and just add a termination symbol at the end in order
for the network to start predicting values.

7.1.2 Batch size

One other important hyper parameter is the batch size used for the training.
Batch size is the number of examples the network needs to process before
updating the hidden weights. This value affects the training in two ways. The
most obvious effect is that larger batch sizes greatly accelerate training but
also require a lot of memory.

One less obvious effect of the batch size has to do with the training algo-
rithm itself. When the error derivatives are computed over large batches we
get a better approximation of the error derivative over the full set and thus
the weight updates are more efficient. On the other hand computing the error
derivatives over small batches can often lead to less accurate weight updates
and make convergence very difficult. In our implementation we were forced to
use a batch size of two examples because we were limited by the GPU memory.

7.1.3 Optimizer

In chapter 3 we presented the standard method of training neural networks
that uses back-propagation to compute the error derivatives and then itera-
tively updates the hidden weights in order to minimize some loss function. The
optimization problem is usually solved in practice using Stochastic Gradient
Descent or some more advanced optimization algorithm. The optimization
algorithm used is also a training parameter and needs to be carefully selected
and parameterized in order to efficiently solve the optimization problem.

Our implementation uses the Adam (adaptive moment estimation) is a
method for efficient stochastic optimization that uses the first-order deriva-
tives. The algorithm computes adaptive learning rates for different parame-
ters from estimates of the first and second moments of the gradients. Adam
is closely related to AdaGrad [6] and RMSProp and has proved to be very
efficient for many optimization problems including recurrent neural networks.

The optimization process is controlled by four parameters. These param-
eters are namely the learning rate α, the two exponential decay rates for the
moment estimates, β1 and β2 and a fixed bias term ε. In our experiments we
used the values proposed by the original paper for all parameters except for
the learning rate which we fine tuned. The values used for these parameters
were β1 = 0.9, β2 = 0.999 and ε = 10−8.
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Learning rate

Learning rate is usually one of the most important parameters when training
any neural network. It needs to be sufficiently small in order for the opti-
mization to converge but not too small as it would take a very long time until
convergence. We found that the optimal value for the learning rate was 10−3

for both the unimodal sub-networks and the multi modal network. We did
not use any learning rate decay because we did not find it necessary.

Gradient clipping

Although the LSTM networks with hyperbolic tangent activations that we
used usually eliminate the exploding gradients problem we found out that we
can accelerate the convergence of the models by clipping the gradients to a
small value. We clipped all gradients forcing them to have a a maximum value
of 0.5 and a minimum value of -0.5. By doing so we avoid very large gradient
values that can cause the training loss to fluctuate and slow down the training
procedure.

7.1.4 Initialization

When recurrent neural networks were first proposed they were found to be
really hard to train because of the vanishing gradients problem. Early studies
showed that careful initialization is key to solving this problem. LSTM net-
works along with advanced optimization algorithms solved this problem and
reduced the need for advanced initialization techniques.

Nevertheless recent studies have shown that proper initialization can still
be advantageous for LSTM networks. Large LSTM networks where the hidden
weights are initialized with reasonable values can be trained much more effi-
ciently and usually outperform randomly initialized networks. We initialized
all the hidden weights of our models with a random distribution in the range
[−0.05, 0.05]. The small initial weights allow the neural networks to converge
faster with gradient descent.

7.1.5 Normalized inputs

Input normalization is a well studied method that has proved to be advanta-
geous for any gradient based optimization method including neural networks.
The main idea is that by normalizing the input features to have zero mean
and unit variance over the training set we help the algorithm converge. This
procedure does not alter the information in the training set, but it improves
performance by putting the input values in a range more suitable for the stan-
dard activation functions [20].

In order to normalize the training set we first calculate the mean

mi =
1

|S|
∑
x∈S

xi (7.1)
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and standard deviation

σi =

√
1

|S| − 1

∑
x∈S

(mi − xi)2 (7.2)

for every component of the input vector. Then the normalized input vec-
tors x′ are computed as follows

x′i =
xi −mi

σi
(7.3)

Here we should note that test and validation sets should be normalized
with the mean and standard deviation of the training set.

7.1.6 Regularization

As it was mentioned in the previous chapter regularization is such a crucial
part off the implementation of a neural network that it is necessary to spend
a lot of time experimenting and trying to choose the appropriate parameters
for each regularization method that was used.

Dropout

Dropout was used at all parts of the model in order to prevent over-fitting.
More specifically we applied dropout at the inputs of each LSTM layer and
the inputs of the dense layers. We did not use any dropout on the recurrent
connections of the LSTM layers because this would reduce their ability to
remember values for many time-steps.

We dropped 60% of the LSTM units and 60% of the dense units of each
network in order to get the best performing model. One can see that the
dropout percentage is rather large in order to successfully prevent the networks
from over-fitting.

Gaussian noise

Gaussian additive noise was applied to the inputs of both the skeletal and
the speech model in order to enhance the training set. By adding random
Gaussian noise to the data we create noisy training examples that prevent
the network from learning the sampling error. It is especially useful for large
networks that can very easily learn the sampling error and over-fit. Noisy data
are definitely less effective than real data but it is not always easy to find more
real training data.

The additive Gaussian noise is sampled from a Gaussian distribution with
unit mean and its effect on the data is controlled by the variance of the dis-
tribution. In our experiments we used Gaussian noise with a variance of 0.5.
One must be careful when choosing a value for the variance of the noise. If
the variance is too low then the noise has very little effect on the data. A very
high variance can corrupt the data and make the network untrainable.
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Max-norm constraints

Max-norm regularization has been found to be very effective when combined
with other regularization methods and especially with dropout [27]. By con-
straining the norm of the incoming weight vector at each hidden unit to have
a fixed constant upper bound we prevent the weights from becoming too large.
The constant that we used was 3 which is usually a reasonable value for most
neural networks. Max-norm regularization was used in every layer except for
the output CTC layer.

7.2 Training process

In this section we will present the complete training process of our model.
Training the complete model is a long process and it can be split into three
parts which are the training of the speech network, the training of the skeletal
network and the training of the combined network. Because this process can
usually take days to converge, before we start training the networks we need
to set up some check-points.

7.2.1 Checkpoints

Check-points are an essential part for the training of very large neural net-
works. Especially when it comes to large recurrent networks, the training
procedure can take a very long time. For this reason we need to be able to
save the process, ideally at the end of each epoch, so that we can easily resume
the training from that point in case something goes wrong.

For our model we decided that we wanted to save the best parameters at
the end of each epoch in order to be able to easily roll back to the last stable
state. More specifically we check at the end of every epoch to see if our training
metrics have improved. In case this is true we save the weights to an external
file and proceed with the next epoch. If the metrics have not improved then
we keep the previous best set of weights. This checkpoints allowed us to roll
back to the most recent stable state in a number of occasions.

7.2.2 Early stopping

Early stopping is a very easy but really useful mechanism that greatly increases
training efficiency. It allows us to prevent a model from severely over-fitting
without any additional overhead. We monitor the validation metrics every 5
epochs and we stop the training process when we find that the validation loss
did not decrease for more the 10 iterations. This way we are able to stop the
learning when we see that the model starts over-fitting the training set.
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7.2.3 Training the models

Speech model

The training as we said earlier was performed in three parts. We started by
training the speech network first. First we extracted the input features from
the raw waveforms and split the training videos using 80% of the training
videos for the training set and the rest 20% for the development validation
(dev-validation) set. The validation videos were kept out of the training pro-
cedure and were just used to evaluate the trained models. We split both the
training and the dev-validation set into mini-batches of 2 sample sequences
each along with the corresponding label sequences.

The speech network was trained on mini-batches using the Adam optimizer
for approximately 150 iterations while evaluating with the dev-validation set
every 5 iterations. The training was stopped when the validation loss hadn’t
decreased for more than 50 epochs. The training of the speech network took
approximately 2 days to converge on an Nvidia 1060 gtx. When the training
was finished we evaluated the model on the validation set of the challenge that
was kept unseen up to this point.

Skeletal model

Similar to the speech model was the training of the skeletal model. Again
the first step was to extract the 22 skeletal features that were described in the
previous chapter. Once the features were extracted from the data files for each
video we split the training set again using 80% for the training set and the
rest 20% for the development validation (dev-validation) set. The validation
videos of the challenge were used in order to evaluate the trained network
while the test videos were not used at this part of the training. Once again
the training and dev-validation set were split into mini-batches of 2 sequences
along with the corresponding targets.

The training procedure was exactly the same that was used for the speech
network and was described in the previous section. This model took more
than two days of training in order to converge on the gpu. Once the model
was trained the validation sequences were used in order to evaluate the per-
formance.

In Table 7.1 are presented the training and validation set metrics for both
the skeletal and the speech networks. As we can see the speech network
significantly outperforms the skeletal network while both networks make a lot
of insertion errors and have poor accuracy. We observed the output predictions
of both models and found out that they were making different errors which
means that when combined they are likely to improve the overall performance.
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Table 7.1: Speech and skeletal model performance. The validation set
of the challenge was used in order to test the different networks. We used 20
distinct classes for the skeletal model while for the speech model we used 42
distinct words.

Model Accuracy Correct Deletions Insertions Substitutions

Speech 35.7% 98% 22 4894 133
Skeletal -7.36% 62% 96 2342 1150

As it was mentioned previously the skeletal model uses 20 distinct classes
while the speech model uses 42 different keywords. In table 7.2 the words
corresponding to the different class labels.

Table 7.2: Class labels and corresponding keywords.

Class label Words

VA Vattene
VQ Vieni qui
PF Perfetto
FU E’ un furbo
CP Che due palle
CV Che vuoi
DC Vanno d’accordo
SP Sei Pazzo
CN Cos’hai combinato
FN Non me ne frega niente
OK Ok
CF Cosa ti farei
BS Basta
PR Le vuoi prendere
NU Non ce n’e piu
FM Ho fame
TT Tanto tempo fa
BN Buonissimo
MC Si sono messi d’accordo
ST Sono stufo

Combining the models

After both models have reached convergence we proceeded on combining them.
We removed the dense output layers from both models in order to use them
as feature extractors for the larger network and we added the top LSTM layer
along with a CTC output layer on top of them. We had decided that it would
be easier to just train the final LSTM layer since the previous layers have
already learned reasonable parameters. For that reason the weights of the
LSTM layers for both models were frozen and were not updated any further.
Then we started training the top layer.
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Much like the training of the two sub-networks, the complete network
was trained using the Adam optimizer on mini-batches of two multimodal
sequences each for approximately 50 epochs. The multimodal input sequences
included both the audio feature vector and the skeletal feature vector and the
training targets were the same sequences of class labels that were used for the
skeletal network. The performance of the model was evaluated every 5 epochs
on the validation set and the training was stopped when the validation loss
did not decrease for 5 iterations.

The training of the complete network was much quicker than the two sub-
networks and it only took 20 hours to converge. The reason for this is that the
trainable parameters at this step are much fewer than the previous models.
Also the feature extractors have already learned good parameters and thus
make it easier for the model to find the optimal region of the weight space.

7.3 Evaluating the model

In order to evaluate the model we used the same setup that was used for the
ChaLearn Challenge. The validation set of the challenge was kept separate
and was used to evaluate different trained models in order to optimize the
different hyper-parameters. The validation set consisted of approximately 280
video sequences with a total of 2700 gestures performed. The video sequences
in this set were performed by different users than the training set and also
included out-of-vocabulary gestures and speech mixed in among with the ges-
tures and keywords. The test set of the challenge consisted of approximately
270 sequences that were similar to the validation set.

When evaluating the model we gave it as input multimodal sequences of
features extracted from the validation sequences and let the model predict
the correct label sequence. Then the model predicted the most probable class
at each time step. We used a probability threshold of 0.88 on these predic-
tions in order to remove the predictions with low probability and grouped the
remaining predictions into the final output sequence. Finally we compared
the predicted sequences with the target sequences and measured the overall
performance of the model. For all experiments, the basic measures used to
evaluate performance were the label accuracy and the label error rate (LER).
The probability threshold was determined using experiments on the valida-
tion set. We wanted to have a nice balance between the insertion and deletion
errors in order to get the best possible accuracy.

This process was repeated every time we trained a complete model. One
can imagine that this iterative procedure took quite a long time in order to
get the best possible set of hyper-parameters. Once all the hyper-parameters
were determined we proceeded on evaluating the final model on the test set
of the challenge that was unseen up to this point. Once again we repeated
the above procedure and compared the predicted sequences with the target
sequences and measured the performance.

The complete model clearly outperformed both the speech and the skeletal
models by quite a large margin. The model is able to successfully combine
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the two streams and make them cooperate in order to greatly improve the
classification accuracy. When observing the output sequences it is clear that
the two networks are doing quite a good job at cooperating with one another.
The insertion errors that were affecting the performance of the two uni-modal
networks were drastically reduced and as a result the classification accuracy
greatly improved.

In table 7.3 we present the validation set performance of the complete
model as well as the error counts. These are compared with the performance
of the two uni-modal networks in order to measure the overall improvement.

Table 7.3: Multimodal results compared with the uni-modal results.
These are the results on the validation set with the same 20 distinct classes
used by the skeletal model.

Model Accuracy LER Correct Deletions Insertions Substitutions

Speech 35.7% 64.3% 98% 22 4894 133
Skeletal -7.36% -107.36% 62% 96 2342 1150
Multimodal 79.1% 20.9 % 92.9% 155 593 83

In table 7.4 we present the overall accuracy and label error rate on both
the validation and the test set. As we can see there is a slight improvement
on the test set which means that our model does not over-fit at all and is able
to generalize properly.

Table 7.4: Multimodal accuracy and label error rate (LER) on the
validation and test set.

Set Number of sequences Accuracy LER Correct

Validation set 286 79.1% 20.9 % 92.9%
Test set 274 81.2% 18.8 % 93.3%

7.4 Comparisons with different approaches

In this section we are going to compare our model with other approaches on
the same problem. Most of the top performing approaches on the ChaLearn
Challenge were utilizing a combination of multimodal features with HMM or
random forest frameworks over previously segmented gesture intervals.

The first-ranked team (IV AMM) [32] uses a feature vector of combined au-
dio and skeletal features. A simple algorithm that detects end-points based on
joint coordinates is applied to segment continuous data sequences into candi-
date gesture intervals. A Hidden Markov Model is trained with 39-dimensional
MFCC features processes the audio features and generates prediction scores
for each gesture class. A skeletal feature classifier that is based on Dynamic
Time Warping is used to provide complementary information. The predictions
generated by the two classifiers are combined to produce a weighted sum for
late fusion. Finally a single threshold is employed to discriminate between
meaningful gestures and out-of-vocabulary (OOV) instances.
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The second-ranked team (WWEIGHT) [7] combines audio and skeletal in-
formation, using both joint spatial distribution and joint orientation. They
find potential gestures using a high audio-energy detection method and use a
log-spaced audio spectrogram as well as the joint positions and orientations
above the hips as their input features. For the training of the models they em-
ployed a random forest (RF) and a k-nearest neighbor (KNN) model. Finally
they average the posteriors from these models and convert them to predicted
sequences with simple heuristics.

The third-ranked team (ET) [2] combine the output decisions of two mod-
els. The features used are based on the skeleton information and the audio
signal. They perform an unsupervised search for possible gestures and extract
MFCC features from these intervals. Using these features, they train a random
forest (RF) and a gradient boosting classifier. The second model uses simple
statistics (median, var, min, max) on the first 40 frames for each gesture to
build the training samples. The predictions are made using a sliding window.
The outputs of the two models were fused using a weighted average of the
outputs.

Table 7.5: Our approach in comparison with the top performing ap-
proaches of the ChaLearn challenge. We include recognition accuracy,
label error rate as well as the type of model used in each approach and the
modalities utilized.

Approach Rank Modalities Type of model Accuracy LER

Our - Audio, Skeletal LSTM, CTC 81.2% 18.8%
iva.mm 1 Audio, Skeletal HMM, DTW 87.2% 12.8%
wweight 2 Audio, Skeletal RF, KNN 84.6% 15.4%
E.T. 3 Audio, Skeletal RF, Boosting 82.9% 17.1%

In table 7.5 we provide the accuracy and label error rate (LRE) of these
approaches in comparison with our approach. As one can see our own model
fared quite well compared to the top performing teams although our approach
is drastically different. Every single one of the top performing approaches used
pre-processing and some segmentation method in order to split the sequences
into possible gesture intervals. Our approach on the other hand has no need of
these pre-processing steps because the classification is performed in a temporal
way. Another difference is that our approach uses LSTM networks that are
far more scalable than random forests and KNN methods. Especially in real
world applications LSTM networks can make better use of large amounts of
training data. Although the ChaLearn data set is not that large we were still
able to effectively train deep LSTM networks without overfitting.



Chapter 8

Conclusions and Future Work

The aim of this thesis was to investigate state-of-the-art machine learning
methods for the problem of multimodal gesture recognition. In particular
we focused on applying LSTM architectures with CTC for temporal model-
ing of gesture sequences. LSTM networks are currently the state-of-the-art
approach in most sequence classification tasks and have demonstrated great
performance in various problems. They are exceptionally good at modeling
long time sequences and can scale much better than traditional machine learn-
ing methods like HMMs, especially when large amounts of training data are
available. We showed that an approach that is based on LSTM networks can
solve the problem of gesture recognition in a very efficient way.

Another main aspect of our work in this thesis was the use of connection-
ist temporal classification (CTC) that allowed us to train our LSTM networks
directly for sequence labeling tasks with unknown input-output alignments.
This approach is much more efficient than training using pre-segmented se-
quences and offers a number of advantages over the methods proposed in other
approaches. CTC in general helped us solve the problem of gesture recognition
in a very elegant way avoiding the use of long pipelines of different models.
This is especially useful in real world applications, where there is a need for
an end-to-end modeling approach.

Finally, we demonstrated how multiple modalities combined in a single
model can greatly outperform uni-modal approaches and produce excellent
results. We also proposed an efficient way of combining LSTM networks that
use different modalities in one single end-to-end model. Our mutimodal results
were comparable to the top teams that participated in the ChaLearn Chal-
lenge, while our approach was much different than most others. We believe
that LSTM networks with CTC will be able to produce even better results
when given a lot more training examples. Deep LSTM networks with millions
of trainable parameters will be able to scale better and outperform HMM
models and random forest classifiers in real world applications where there is
an abundance of labeled data.

In the future we would like to scale our approach in a much larger data
set in order to further improve classification results. Also, we would like to
incorporate more than two modalities in order to further improve performance.

62
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RGB and depth video can be very promising, and we believe that an approach
that incorporates these streams will be beneficial.

Another direction that we would like to pursue is the use of unsuper-
vised learning. As we mentioned previously, the ChaLearn data set is not
particularly large, and this hinders our ability to train even more powerful
models. This is the kind of scenario where unsupervised pre-training with
large amounts of unlabeled data can be very beneficial. A model that is pre-
trained on large amounts of unlabeled data will be able to learn reasonable
initial values for the different parameters. Then the labeled data can be used
to fine-tune the pre-trained model in a discriminative way for classification.
The pre-trained weights will have values that lie in a reasonable area of the
parameter space, and, as a result, they will converge quickly to their optimal
values without over-fitting.



Bibliography

[1] P. Baldi, S. Brunak, P. Frasconi, G. Soda, and G. Pollastri, “Exploit-
ing the past and the future in protein secondary structure prediction,”
Bioinformatics, vol. 15, no. 11, pp. 937–946, 1999.

[2] I. Bayer and T. Silbermann, “A multi modal approach to gesture recog-
nition from audio and video data,” in Proceedings of the 15th ACM on
International Conference on Multimodal Interaction. ACM, 2013, pp.
461–466.

[3] Y. Bengio, P. Simard, and P. Frasconi, “Learning long-term dependen-
cies with gradient descent is difficult,” IEEE Transactions on Neural Net-
works, vol. 5, no. 2, pp. 157–166, 1994.

[4] H. Cooper and R. Bowden, “Large lexicon detection of sign language,”
Lecture Notes in Computer Science, vol. 4796, pp. 88–97, 2007.

[5] T. Dozat, “Incorporating nesterov momentum into adam,” 2016.

[6] J. Duchi, E. Hazan, and Y. Singer, “Adaptive subgradient methods for
online learning and stochastic optimization,” Journal of Machine Learn-
ing Research, vol. 12, no. Jul, pp. 2121–2159, 2011.
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