
Analysis and Implementation of
Analytical Placement Algorithms

for Microelectronic Circuits

Ntentos Stavros

A Thesis presented for the degree of
Electrical and Computer Engineering

Supervisors:

Dr. Stamoulis Georgios, Professor
Dr. Nestor Eumorfopoulos, Assistant Professor

Hardware Lab (by Dr. Sotiriou Christos)
Volos, Greece
May 2017

Dedicated to
Everyone who tries too much to succeed. Don’t worry, sometime it will shine bright.

Everyone who helped me, stood by me and believed in me.

Thank you so much (next time, please, believe a little less!)

Me. I failed a lot more than I succeeded.

And this was okay

Ανάλυση και Υλοποίηση Αλγορίθμων

Τοποθέτησης Αναλυτικής Μεθοδολογίας για

Μικροηλεκτρικά Κυκλώματα

Περίληψη

Στη σημερινή τεχνολογία του Electronic Design Automation (EDA), είναι

κρίσιμης σημασίας η κατασκευή νέων και εξελιγμένων Ολοκληρωμένων

Κυκλωμάτων (ICs) αποδοτικά, αυτοματοποιημένα, και κάποιες φορές με το

μικρότερο δυνατό μέγεθος. Υπάρχει πληθώρα αλγορίθμων που χρησιμοποιούνται για

να το επιτύχουν αυτό - αλλά όλοι εξυπηρετούν τον ίδιο κοινό σκοπό: Να δώσουν ζωή

σε μία φυσική οντότητα μέσω κώδικα, και να το υλοποιήσουν. Είναι σύνηθες να

διαιρούμε υψηλού επιπέδου διαδικασίες σε μικρότερες, και το EDA δεν αποτελεί

εξαίρεση.

Στο πρώτο βήμα της υλοποίησης του σχηματικού (γνωστό και ως

Τοποθέτηση), ο στόχος είναι να τοποθετηθούν τα στοιχεία με τέτοιο τρόπο έτσι

ώστε να ελαχιστοποιηθούν διάφορες μετρικές-στόχοι. Απλοί στόχοι, όπως

παραδείγματος χάριν ελάχιστο μήκος καλωδίων, αλλά και σύνθετες, όπως το να

απαγορεύεται η επικάλυψη των στοιχείων αναμεταξύ τους. Μετά την ολοκλήρωση

αυτού του σταδίου, ο σχεδιασμός του IC προετοιμάζεται για τα επόμενα στάδια της

διαδικασίας του EDA που είναι το Physical Verification and Signoff, η

Κατασκευή, και τέλος Συσκευασία και ΄Ελεγχος

Μέχρι στιγμής, Στοχαστικές μέθοδοι έχουν χρησιμοποιηθεί με τεράστια

επιτυχία στην επίλυση αυτού του προβλήματος. Μερικοί εξ΄ αυτών, ο Timberwolf

[SS85] είναι ένας από τους πρώτους αλγόριθμους που χρησιμοποιούν την τεχνική

εξομοίωσης ξεπυρώματος - μιμούμενος βιομηχανικές τεχνικές για να επιτύχει

βέλτιστα αποτελέσματα. Επιπλέον ο αλγόριθμος GORDIAN [Kle+91] είναι ένας

επαναληπτικός αλγόριθμος που αποτελείται από συνεχόμενες επιμειώσεις του μήκους

των καλωδίων και τεχνικές διχοτόμησης για να επιτύχει την βέλτιστη τοποθέτηση.

Εν τούτοις, οι Στοχαστικές αλγόριθμοι υπολείπονται σε δυνατότητα απόλυτα

βέλτιστης λύσης (δηλαδή εύρεσης του ελάχιστου μιας σύνθετης αναλυτικής

συνάρτησης κόστους) ή αρκούντως γρήγορα (η αναζήτηση στο πλήρες πεδίο των

iv

λύσεων είναι δυνατό, αλλά εξαιρετικά χρονοβόρο)

Σε αυτή την έρευνα, παρουσιάζεται η υλοποίηση, βελτιστοποίηση και κριτική ενός

αλγορίθμου Τοποθέτησης. Παρουσιάζουμε μία καινοφανή εξέλιξη του κομματιού

της Γενικής Τοποθέτησης του Αναλυτικού Αλγορίθμου Τοποθέτησης

NTUPlace3 [Che+08]. Ο αλγόριθμος NTUPlace3 επιλέχθηκε λόγω της αξιέπαινης

επίδοσής του από άποψη χρόνου, καθώς και της ελευθερίας παραμετροποίησης που

παρέχει. Παρ΄ όλα αυτά, ο εν λόγω αλγόριθμος χρησιμοποιεί αναποτελεσματικές

στρατηγικές για να φτάσει στο βέλτιστο αποτέλεσμα (εστιάζοντας μόνο στην

Γενική Τοποθέτηση). Για αυτόν τον λόγο, ο θεμελιώδης αλγόριθμος Γενικής

Τοποθέτησης έχει επεκταθεί για να υποστηρίζει έναν αλγόριθμο ταχύτερης

υπολογιστικά σύγκλισης, με δυναμικά διαμορφωμένο μήκος βήματος, με σκοπό την

επιτυχία ταχύτερης εκτέλεσης.

Επιπρόσθετα, επιχειρούμε να ενσωματώσουμε στον αλγόριθμο μια διαφορετική

συνάρτηση κόστους, με σκοπό να του δώσουμε την δυνατότητα να μεταχειρίζεται τα

στοιχεία, όχι ως μονοδιάστατα στοιχεία σε Καρτεσιανό σύστημα συντεταγμένων,

αλλά ως δισδιάστατες μονάδες. Αυτή η αλλαγή ενισχύει το επόμενο βήμα - την

διαδικασία Κανονικοποίησης με σκοπό να απαλύνει το βάρος της σύνθετης αυτής

διαδικασίας.

Εκτελέσαμε τα πειράματά μας και τις συγκρίσεις μας μεταξύ των πλεονεκτημάτων

του αλγορίθμου NTUPlace3 και του aWarePlacement. Τέλος, ο αλγόριθμός μας

ενσωματώθηκε με ένα βιομηχανικό εργαλείο EDA, λαμβάνοντας υπ΄ όψιν τις

δυνατότητες και τους περιορισμούς του.

July 5, 2017

Analysis and Implementation of Analytical
Placement Algorithms for
Microelectronic Circuits

Ntentos Stavros

Submitted for the degree of

Electrical and Computer Engineering
May 2017

Abstract

In Electronic Design Automation (EDA) technology nowadays, it is of

paramount importance to materialize new and advanced Integrated Circuits

(ICs) efficiently, automatically, and sometimes with the smallest physical footprint

possible. There is a variety of algorithms that are being used to achieve that - but

they all serve a common purpose: Give birth to a physical entity through code,

and then materialize it. It is common to break a high-level task into smaller ones,

and EDA is not an exception.

In the first step of design instantiation (also known as Placement), the

objective is to place the cells in such a way as to minimize various objectives.

Simple objectives, such as minimal wirelength, but also complex ones, such as not

to allow them to overlap each other at all. After this stage is through, the design

of IC is prepared for the next steps of the EDA process which are Physical

Verification and Signoff, Fabrication, and finally Packaging and Testing.

So far, Combinatorial methods have been used with great success to solve this

problem. To name a few, Timberwolf [SS85] is one of the first algorithms to be

using the simulated annealing technique - mimicking an industrial process to achieve

optimal results. Also, the GORDIAN [Kle+91] algorithm is an iterative placer

consisting of successive wirelength minimization process and partitioning schemes

to achieve optimal placement. However, Combinatorial algorithms lack the ability

vi

to solve this problem fully optimally (reaching a global minimum on the complex

analytical cost function) or fast enough (scanning the entire solution space is a

possibility but it is time-consuming).

In this work, implementation, optimization and the evaluation part of a

Placement algorithm are presented. We present a novel evolution of the Global

Placement part of the NTUPlace3 Analytical Placement algorithm [Che+08].

NTUPlace3 has been chosen due to its great performance in terms of timing and

the liberty of parametrization it provides. However, the algorithm in question uses

ineffective strategies in order to reach is optimal result (as far as Global

Placement is concerned). In this way, the fundamental Global Placement

algorithm has been extended to support a computationally easier convergence

algorithm, with finely-tuned step size, in order to achieve faster execution.

Moreover, we attempt to expose the minimization algorithm to a different cost-

function, in order to make it aware that the optimization points are not 1D points

in a Cartesian coordinate system but rather a 2D unit. This change assists the next

step - the Legalization process in order to ease the burden of this complex process.

We performed experiments and comparisons between the features of NTUPlace3

and aWarePlacement. Finally, the algorithm has been integrated into developing

an industrial EDA tool, taking its traits and restrictions into account.

July 5, 2017

Declaration

The work in this thesis is based on research carried out at the Hardware Lab (by

Dr. Sotiriou Christos), at the University of Thessaly, Volos, Greece. In

accordance with the requirements of the University’s Regulations and Code of

Practice for Research Degree Programmes no part of this thesis has been

submitted elsewhere for any other degree or qualification and it is all my own work

unless referenced to the contrary in the text.

SIGNED: ... DATE:

Copyright © 2016-2017 by Ntentos Stavros.

“The copyright of this thesis rests with the author. No quotations from it should be

published without the author’s prior written consent and information derived from

it should be acknowledged”.

vii

Acknowledgments

I would like to thank my professor, Dr. Sotiriou Christos for helping my and

guiding me, dozens of hours and the discussions we shared through this journey. I

am grateful for Dr. Stamoulis Georgios’ assistance in the smooth execution of

my thesis as well as his wise input on the subject For helping me with the

behind-the-scenes mathematics, I would like to thank my professor, Dr. Nestor

Eumorfopoulos and also Dr. Anders Skjäl from Åbo Akademi.

Additionally, I would like to thank all my fellow students and lab matesNikolaos

Sketopoulos, Angelina Delacura, Xanthos Vlachos, Stavros Simoglou and

Michalis Giaourtas, for their support and insight in some of the hardest points

in my research. Moreover, I’d like to thank them for the time they invested in me,

research or otherwise.

I would like to also thank my family for supporting me, both financially and

emotionally through all my academic studies, and then some.

Finally, it would be appropriate to thank Yuliya Avdyusheva for fully proof-

reading my entire thesis and presentation, Joonas Peltonen with his suggestions

and insights on some of the figures used here and, also, M. Imran from University

of Durham who prepared the template I used in my Thesis.

Last but not least, I would like to thank every single person I might have

forgotten. After all, interaction with people shapes one’s self.

viii

Contents

Περίληψη iii

Abstract v

Declaration vii

Acknowledgements viii

1 Introduction to EDA 1

1.1 Physical Design - Placement . 3

1.1.1 Placer Optimization Parameters 4

1.1.2 Decomposing Placement Step 5

1.2 Thesis Motivation and Purpose . 6

2 Implementation Background 9

2.1 Analytical Global Placement . 9

2.2 Wirelength Model . 10

2.2.1 Half-Perimeter WireLength (HPWL) 10

2.3 Density Function . 11

2.4 Analytical Global Placement Algorithmic Properties 12

2.4.1 Minimization of a piece-wise non-convex function 12

2.4.2 Overflow Ratio . 13

2.5 Conjugate Gradient Search with Dynamic Step Size 14

2.6 Review of Analytical Global Placement methods 15

2.7 Armijo-Goldstein Backtracking Line Search 15

2.7.1 Algorithm Implementation . 16
ix

x Contents

2.7.2 Algorithm Pseudo-code . 17

2.7.3 Usage of Armijo-Goldstein . 17

2.8 Thesis Motivation and Purpose . 18

3 aWarePlacement Implementation and Analysis 19

3.1 Net Model . 20

3.1.1 Wirelength Model . 20

3.2 Initial Attempts . 21

3.2.1 GNU Scientific Library . 21

3.2.2 Sparse Matrices . 22

3.3 Minimization (or Maximization) of Functions 23

3.3.1 Bracketing a Minimum . 23

3.3.2 Conjugate Gradient Method in Multidimensions 25

3.3.3 Validation Methodology . 27

3.4 Armijo-Goldstein Line Search . 29

3.4.1 Implementation - Free parameters: c and τ 29

3.5 Current Completed Work . 30

3.6 Implementation Notes . 31

4 Experimental Results 35

4.1 Usage of Minimizer with Squared Euclidean cost function 35

4.2 Armijo-Goldstein Line Search . 38

4.2.1 Notes regarding Armijo-Goldstein Monte Carlo 40

4.3 Final Notes Regarding the Implementation 40

4.3.1 Mathematical Understanding 42

4.3.2 Mathematical Operations . 42

4.3.3 Other Free Parameters of the Implementation 43

5 Conclusions and Future Work 45

Bibliography 47

List of Figures 51
July 5, 2017 Contents

Contents xi

List of Tables 53

Acronyms 54

Glossary 55

Contents July 5, 2017

Chapter 1

Introduction to EDA

EDA stands for Electronic Design Automation (EDA). EDA refers to both a

process and a toolset, which is mandatory nowadays for the design and production

of ICs. Once a process of manual labor and testing, required multiple highly-

specialized people on design, with multiple testing, failures, and large to gigantic

designs. New consumer and business demands alike nowadays (processing power,

smaller energy footprint) and new technologies (smaller physical design, production

flow automation) pushed to a change in the design process itself.

It is easier to understand the concept of the phrase, and process itself, if we

break it down to words:

Electronic refers to any object that is operating through the use of many small

electrical parts (such as microchips and transistors) [Mer17]. Anything electronic,

as small as a pacemaker or a calculator, or as big as a space station or an aircraft

contain at least one IC - simple or complex.

Design is a major factor in any production workflow - and rightfully so! It

is the step of the process that genuine ideas are merged together with previous

knowledge and experience, that result in a new revolutionary product. That product

should be ready to solve the issues we decided upon in the previous step of the

process, abiding by all and any restrictions we also carry with us. In specific, in

EDA it is also the place that the expected behavior is modeled in the IC. In

some EDA designs, it is also part of the process to ensure the correctness and the

manufacturability of the design. Very-Large-Scale Integration (VLSI) is a sub-
1

2

Figure 1.1: Design Flow [Lin12] (adapted to focus on “Placement” step)

process of EDA, where the IC is commonly defined as a fully functional electronic

device, occasionally considered as a consumer device. The logic of “build first, fix

later” does not easily apply to this process due to the fact that “updating” a printed

IC is not as straightforward as updating a computer software would be.

Automation is both a blessing and a necessity. Automation helps us cope

with the redundancy in every IC design, which saves us mindless “designing” on

redundant parts. However, the complexities of the designs and the technology

nowadays, require an automatic way of handling all the parameters needed for a

successful design. So much so that a person (or a team of people) are not able to

handle the complexity of the problem. In addition to that, automating processes

means that the computer can work (e.g. testing designs), in parallel to human

work as well (e.g. refining designs).

EDA has evolved to be a mainstream process - and a composite one indeed,

fundamental in creating complex IC designs. EDA software that has been created

aid the designer in producing high-quality designs and ease designer’s workflow.
July 5, 2017 Chapter 1. Introduction to EDA

1.1. Physical Design - Placement 3

1.1 Physical Design - Placement

IC design consists of many steps, as shown in Figure 1.1. We can roughly split all

those steps in three big groups: Front-end Design, Back-end (or Physical)

Design, Manufacturing (or Fabrication) Process. As a rule of thumb,

Front-end Design is where the functionality of the IC is decided and

programmed. Back-end Design is where the specifics of the technology come in

place and shape the circuit design into what resembles an actual chip. That’s why

it is also called as “Physical Design”. Finally, the Manufacturing (or

Fabrication) Process is where the actual chip (or, more specifically tens or

hundreds of chips) are actually created - otherwise called as “printed”.

Placement is the first step in Physical Design where our circuit begins to

exist beyond simple schematics, as opposed to being simply a circuit design. This

step is where all of IC components are assigned to technology-specific quantums for

geometric dimensions (as opposed to simple points) and placed on a 2-dimentional

chip area. With the proper materials and manufacturing process, this will ensure

properly working components that compromise the IC, and thus proper working

of the circuit. This representation, which resembles the actual top-view of the

printed chip, its called IC layout. Placement is split into several sub-steps, closely

connected to each other - but they all serve the same purpose: optimize multiple

objectives at the same time.

Placement is a crucial step in this process, in the sense that, now that the chip

is starting to be shaped, any decision made here could decide a variety of issues.

A blatantly inferior Placement will severely affect any possible optimization. In

addition to the automatic cell Placement (which is to be carried out in this step),

we also have to consider large array macros (hard or soft ones) that need to be

placed manually - for example RAM modules. This is done due to the complexity

of automating their Placement. Deciding each component’s Placement on the

IC influences, in turn, interconnection complexity and delays, further affecting the

optimization process.
Chapter 1. Introduction to EDA July 5, 2017

4 1.1. Physical Design - Placement

1.1.1 Placer Optimization Parameters

For the most part, a placer is trusted with the assignment of all components, while

typically optimizing the following objectives:

• Wirelength: Minimizing the total wirelength in an IC’s is a common and really

easy decision, considering that:

1. It minimizes IC monetary cost by minimizing wire material

2. It minimizes the complexity of the design

3. It minimizes the required energy needed to power the IC, and, in turn ...

4. It minimizes the operating temperature of the chip (thus prolonging its

life expectancy) while optimizing cooling costs.

• Signal Delay: The maximum clock cycle of an IC is a function of the Critical

path. The longer the Critical path is, the slower clock a said design is able

to achieve. Usually, we used to hold accountable the IC components for signal

delay. However, continuously shrinking the fabrication process made the wires

a considerable factor, so much so as to be comparable to component delay.

• Wire Congestion: In our attempt to place cells as close together as possible,

there is the possibility that we will fall into the caveat of bundling a lot of

cables through the same area. Since cables are created only horizontally and

vertically (comparable to Manhattan Distance drawing logic), it is even

easier to trigger such condition. It is also one of placement requirements to

meet the routing resources within all local regions of the chip’s core area, so

thatRouter can do its job. A congested region might lead to excessive routing

detours, or even make it impossible to complete all routes.

• Temperature: In addition to wirelength minimization, it is also possible to

distribute the circuit components with high Switching activity around the

chip (with some limitations). Components draw power (and thus generate

heat) whenever they are changing their status low-to-high [Ade14, eq. 17.78,

p. 1151]. However, when transistors move high-to-low, the stored electrical

energy becomes heat, which, if clustered, could potentially damage the IC.
July 5, 2017 Chapter 1. Introduction to EDA

1.1. Physical Design - Placement 5

All things considered, we would prefer if said objective is achieved in the minimal

required time. So, a secondary objective would be run-time minimization.

1.1.2 Decomposing Placement Step

Placement itself is split into 3 stages (Fig. 1.2):

• Global Placement, is the step where the circuit gets its rough, initial

schematic. Combinatorial, or usually these days Analytical method(s) are

trying to optimize the aforementioned optimization parameters, while also

removing - as much as possible - all cell overlaps. Wirelength is

approximated using one of the various models that exist (more recently the

Half-Perimeter WireLength (HPWL)). For schematics that include

more than 200.000 components, standard cells are grouped in such a way

that group-to-group connections are minimized. Afterwards, the clusters (the

pseudo-components in place of groups of cells) are minimized in place of their

components, then they are minimized instead.

• Legalization, is the step that takes the input from Global Placement,

which are placed in continuous coordinates. Each cell is moved from the

position assigned by Global Placement, and transforms them in

quantitized, discrete coordinates, according to equally-spaced, Placement

rows and columns. Typically, this is done in such way that the displacement

is kept to a minimum, so as to keep all the benefits from Global

Placement, but also to achieve a printable placement.

• Detailed Placement, is the step that takes the input from the Legalization

step, and there is an attempt to further improve it with regard to a specific

objective. Detailed Placement techniques include swapping neighboring

cells and sliding cells to one side of the row if unused space is available. Both

are used to reduce total wirelength. Other possible objectives are optimizing

routability, should route topologies can be determined.

As mentioned, Global Placement methods are split into Combinatorial and

Analytical algorithms. Starting with the oldest one, Combinatorial techniques,
Chapter 1. Introduction to EDA July 5, 2017

6 1.2. Thesis Motivation and Purpose

using logic and conditionals, attempt to arrive to an optimal solution.

Combinatorial logic uses paradigms from real life, and human-like behaviors in

an attempt to scan the whole solution space, in an optimized fashion (since the

whole solution space would be prohibitively enormous). While easier to come up

with, Combinatorial algorithms have non-deterministic behavior, so their results

cannot be replicated easily or consistently. There are also algorithms that make

options based on random input, thus totally unpredictable. Sometimes, they are

unable to result in an optimal solution, especially algorithms that are based on

random parameters. The upside of that, however, is that it’s really hard to arrive

at a worst-case scenario, thus eliminating the need to calculate the worst-case

complexity. Similarly though, there is no best-case scenario either.

Analytical techniques, on the other hand, use mathematical equations and

logic to arrive at an optimal solution. Analytical algorithms use mathematical

theorems and logic to arrive, deterministically, to the expected solution. Positive

aspects of Analytical methods include fast execution time and deterministic

behavior. Unfortunately, mathematical logic is hard to comprehend, complicated

to apply to every solution and sometimes it is not guaranteed to arrive at the

minimum solution, due to complexities of the objective function. The main

complexity of the objective function would be the way that the local minima are

dispersed in the solution space, with regard to the global minimum. The upside is

that the algorithm otherwise is predictable and theoretically easier to study. We

can visually see the classification of placing algorithms, and some example placers,

such as Dragon [YCS03], Kraftwerk++ [VM16], and NTUPlace3 [Che+08].

1.2 Thesis Motivation and Purpose

We have extensively presented the Placement problem and it is indeed a serious

issue that must be continuously addressed and optimized. After all, this much work

from such talented people couldn’t have happened in vain. Being an interesting and

complex subject, I decided to explore it further in my thesis, which I am presenting

before you.
July 5, 2017 Chapter 1. Introduction to EDA

1.2. Thesis Motivation and Purpose 7

Figure 1.2: Classification of Placement Methods

In the following pages, we will explore various scientific fields and previous work

done respectively, and afterward, we will explain how we decided to merge all these

ideas in one system. We will list the whole developing progress, including all the

attempts, libraries, and verification methods used in development. Additionally, we

will list all misconceptions and caveats in the development process as well. Apart

from the pursuit of knowledge, which is too extensive and complex to be listed here,

my thesis objectives were clear:

1. Implement a Generic, Non-Convex Analytical Cost Minimizer

(a) Asses the complexity of a minimizer, for both convex and non-convex

functions (from mathematical literature)

(b) Explore the Placement field for prior work (e.g. APlace [KW05],

NTUPlace3 [Che+08] etc)

(c) Implement and verify said Non-Convex Analytical Cost Minimizer

2. Analyze minimizer’s operation, quality of results, and enhance it:

(a) Either by minimizing execution time

(b) Or by providing better results

i. Atomically, i.e. better metrics for the Global Placement itself

ii. Or collectively, by providing better results for the Placement family

(c) Or by a balance of the two, i.e.
Chapter 1. Introduction to EDA July 5, 2017

8 1.2. Thesis Motivation and Purpose

i. Faster with optimized results “only as much as needed”

ii. Or slower with the best results

We will thoroughly go through the implementation, explaining all caveats and

difficulties in our path. We will also extensively test, and discuss regarding said

tests and various metrics - regarding both the quality of results and the method’s

itself. Usually, the developing mode of this whole thesis can be summarize below:

1. Background Study

2. Improvise

3. Pitch

4. Small Scale Build & Feasibility

5. Full Scale Build

6. An endless loop of: Test, Fix, Verify

This thesis is split into 5 chapters. We began with a general introduction to the

problem and their aspects. We will continue with some background into

NTUPlace3 Placement algorithm and some minimization background. In

Chapter 3, we will present our own novel solution, aWarePlacement, to deal

with these issues. We will also present the results of our implementation. Finally,

we will draw our conclusions and present our recommendation for future work

regarding the algorithm.

July 5, 2017 Chapter 1. Introduction to EDA

Chapter 2

Implementation Background

In this chapter, we will present the Analytical Global Placement algorithm that

is the basis of our implementation. Additionally, we will explore the mathematical

background regarding the minimization of functions. Finally, we will explore the

background of some optimization methods.

2.1 Analytical Global Placement

NTUPlace3 Algorithm is “An Analytical Placer for Large-Scale Mixed-Size

Designs with Preplaced Blocks and Density Constraints”. Paper [Che+08] explains

the solution thoroughly:

i. Uses log-sum-exp wirelength model

ii. Uses clustering to deal with large amount of components

iii. Initializes component placement by solving QP (minimum W (x, y))

iv. Solves the minimization problem using the Conjugate Gradient (CG)

method for

W (x, y) + λm
∑

(D̂b −Mb)2, λm → (0,∞) (2.1)

v. Legalization execution time is utilized in the late stages of Analytical

Global Placement instead of being a process of its own. It is used to
9

10 2.2. Wirelength Model

declare the final accepted solution (even if a future Analytical Global

Placement gives otherwise better metrics)

vi. Detailed Placement techniques are considered following Analytical

Global Placement iteration to refine the uncoarsening

For the purposes of this thesis, we will only focus on the Analytical Global

Placement part of this IEEE Transaction paper. As such, we also ignore Legalizer

and Detailed Placement solution and logic.

2.2 Wirelength Model

The main objective of the Placement problem is optimizing all parameters

mentioned in Subsection [1.1.1]: Minimize wirelength given no overlaps between

standard cells. In order to approximate that, mathematically, we have to consider

some kind of abstraction between a real Standard Cell and its representation in

our mathematical methods; however, this is only the first abstraction that we are

going to use. We also need to be able to somehow measure the wirelength between

all those points, taking also into account possibly some real world limitations.

2.2.1 Half-Perimeter WireLength (HPWL)

The most commonly used measurement of wirelength is the HPWL [Cha08,

p. 349, s. 18.2]. The placement input is modeled as a hypergraph Gh = (Vh, Eh)

with vertices Vh = {v1, v2, ..., vm+p} representing circuit cells and hyperedges

Eh = {e1, e2, ..., en} representing circuit nets. We denote m as movable cells and

p as the preplaced elements, (n,m, p ∈ N).

For any given net e ∈ Eh the HPWL can be expressed as:

HPWL(e) = max
i,j∈e,i<j

|xi − xj|+ max
i,j∈e,i<j

|yi − yj| (2.2)

And thus, the total wirelength of all net (hyperedges Eh) is ∑∀e∈Eh HPWL(e).

HPWL is neither a strictly convex function nor smooth - hence not differentiable.

This unfortunate limitation comes from the usage of absolutes in the function
July 5, 2017 Chapter 2. Implementation Background

2.3. Density Function 11

definition and as such cannot be easily minimized. Nevertheless, HPWL is a

reasonably close approximation to routed wirelength.

In the place of the initial HPWL implementation, the log-sum-exp

approximation is used instead:

HPWLe∈Eh(e) = γ
∑((

log
∑
uκ∈e

exp(xk/γ)
)

+
(
log

∑
uκ∈e

exp(−xk/γ)
)

+

(
log

∑
uκ∈e

exp(yk/γ)
)

+
(
log

∑
uκ∈e

exp(−yk/γ)
) (2.3)

Let us break down the equation. First of all, for input e, the expression

log
∑
uκ∈e

exp(xk) + log
∑
uκ∈e

exp(−xk), uk : (xk, yk) approximates max
i,j∈e,i<j

|xi − xj|

This expression has all the properties we want to streamline its minimization,

however, it is subject to arithmetic underflow/overflow. So, we introduce a

normalization factor γ comparable to the input values.

γ
∑
∀e∈Eh

(
log

∑
uκ∈e

exp(xk/γ) + log
∑
uκ∈e

exp(−xk/γ)
)
, uk : (xk, yk) (2.4)

Likewise, we append y values to calculate the expression. According to the

authors of [Che+08], γ values that are 1% of chip width (“reasonably small”) remedy

both arithmetic issues and provide an accurate representation of Equation 2.3. For

reasons we will explain further, the implementation we will use is the simpleHPWL

implementation.

2.3 Density Function

For reasons comparable to the HPWL transformation (convexability, systemic

minimization), authors decided to express the density function Db

Db =
∑
∀v∈V

Px(b, v)Py(b, v) (2.5)

Chapter 2. Implementation Background July 5, 2017

12 2.4. Analytical Global Placement Algorithmic Properties

where P# is the overlap function for b : bin and v : block in both

x−, y− directions (unified under hash (#) symbol). However, since the overlap

function is non-smooth, authors adopt the bell-shaped function p# in place of P#,

defined as:

p#(b, v) =

1− ad#
2, 0 ≤ d# ≤ wv

2 + wb

b(d# − wv
2 − 2wb)2, wv

2 + wb ≤ d# ≤ wv
2 + 2wb

0, wv
2 + 2wb ≤ d#

(2.6)

where

a = 4
(wv+2wb)(wv+4wb)

,

b = 2
wb(wv+4wb)

,

w# width (b : bin and v : block),

d# center-to-center distance in # direction

Using cv as a normalization factor (to match the block potential and its area),

final density function is:

D̂b =
∑
∀v∈V

cvpx(b, v)py(b, v) (2.7)

2.4 Analytical Global Placement Algorithmic

Properties

2.4.1 Minimization of a piece-wise non-convex function

The NTUPlace3 cost function, shown at the beginning of this chapter as Equation

[2.1], compromises of two parts: First, we have the wirelength part and then we have

the density part. Wirelength is a convex function and density function presented,

is a non-convex one; hence the sum is a non-convex function. In order to solve this

non-convex function Analytically, the authors decided to first solve the convex

part of the equation, and then proceed with the non-convex part. By doing so, the

authors gain a significant advantage: They have a somewhat-optimal solution, and
July 5, 2017 Chapter 2. Implementation Background

2.4. Analytical Global Placement Algorithmic Properties 13

then proceed to further optimize it. Just what most of us try to do in real life.

Non-convex functions have a significant drawback: By computing their entire

solution domain, we can see that there is no direct correlation between the global

minimum of the function and its computed derivative. Derivatives can help to

pinpoint (and then block any subsequent optimization) to local minima only.

Advanced methods are required in order to quickly arrive at the global minima -

that is, if the minimizer would actually be able to do so.

In order to circumvent such issue, authors of the paper mimicked a human

approach in the algorithm: What do we usually do when we have to satisfy a

complex task with increased coupling over its dependents? We start by satisfying

known / easy tasks, and then move forward to most complex ones, attempting to

overlap all individual steps. So this is what they did: They started by solving the

easily solvable issue of minimal wirelength, by solving the Quadratic Placement

problem. In further iterations, bit by bit, they introduce an increasing dependency

to the density minimization function that is attached to the density of the placed

components in a given bin. This weight factor is computed by the mathematical

expression in Equation [2.8].

λ0 =
∑
∀e∈Eh |∂W (e)|∑
∀b∈Bins |∂D̂b|

, λi+1 = 2λi, i ∈ N (2.8)

2.4.2 Overflow Ratio

A lot of algorithms decisions are taken on the basis of a metric, that authors call

overflow_ratio. overflow_ratio is defined as

overflow_ratio =
∑
∀b∈Binsmax(Db −Mb, 0)∑ total movable area (2.9)

overflow_ratio is explained as an overall chip metric, as opposed to a more

localized approach. Intuitively, this metric shows the % available moving space

across the IC. Theoretically, this metric shouldn’t be negative, otherwise, the

Placement would be unable to happen (less available space than the sum of the

component area).
Chapter 2. Implementation Background July 5, 2017

14 2.5. Conjugate Gradient Search with Dynamic Step Size

2.5 Conjugate Gradient Search with Dynamic

Step Size

The NTUPlace3 Algorithm, instead of simply applying the proposed gradient

solution, attempts to take it one step further. It is possible that minimization

towards the chosen current direction could be much bigger, thus arriving at the

expected solution much faster. Similarly, proposed direction may need to be

applied to a minimized extend, and then take a different direction.

Their predecessor, APlace [KW05], is using Golden Section Line Search to find

the proposed step size. NTUPlace3 authors claim that Golden Section Line Search

algorithm takes most of the optimization time, hence delaying the process more

than needed. In its place, they propose “a more efficient method”. Their step size

is calculated through:

αk = s · wb
‖dk‖2

(2.10)

where s is a user-specified scaling factor, whereas wb is the bin width. Their

selection is defended by the fact that it limits the spreading of blocks, since the

total quadratic Euclidean movement is fixed as

∑
vi∈Vh

(∆x2
i + ∆y2

i) = ‖αkdk‖2
2 = s2w2

b (2.11)

where ∆xi and ∆yi are the amount of movement along the #-direction for the

block vi in each iteration. s user-specified scaling factor determines the precision of

the returned solution. Smaller s values lead to better results; however, increases run

time and vice-versa. The authors presented a complex figure of s’s correlation with

CPU time and HPWL metric and concluded that the optimal point lies in [0.2, 0.3]

bracket.
July 5, 2017 Chapter 2. Implementation Background

2.6. Review of Analytical Global Placement methods 15

2.6 Review of Analytical Global Placement

methods

After an extensive reviewing of the available Analytical Global Placement

methods, it is clear that mathematics, play a major role in hardware placement. In

general, mathematics is deeply embedded into software, in encryption and formal

verification methods, and as we see now, in hardware as well. What is more

important is that mathematics are greatly benefited from computer engineering, as

well. Representing problems in the real world, especially in the brink of the

continuous and discrete world is not achievable without its own set of problems.

However, it is of great significance, and also mandatory to be done Analytically

to ensure predictability in execution. Apart from the already sped up execution, we

are also able to introduce additional mathematical methods to further accelerate

execution, as such issues have already been solved from a mathematical aspect. We

just point and click!

2.7 Armijo-Goldstein Backtracking Line Search

Given a starting position x and a search direction #»p , the task of a line search is to

determine a step size α that adequately reduces the objective function f : Rn → R

(assumed smooth), i.e., to find a value of α that reduces f(x + αp) relative to

f(x). However, it is usually undesirable to devote substantial resources to finding a

value of α to precisely minimize f . This is because the computing resources needed

to find a more precise minimum along one particular direction could instead be

employed to identify a better search direction. Once an improved starting point has

been identified by the line search, another subsequent line search will ordinarily be

performed in a new direction. The goal, then, is just to identify a value of α that

provides a reasonable amount of improvement in the objective function, rather than

to find the actual minimizing value of α.
Chapter 2. Implementation Background July 5, 2017

16 2.7. Armijo-Goldstein Backtracking Line Search

2.7.1 Algorithm Implementation

The backtracking line search starts with a large estimate of α and iteratively shrinks

it. The shrinking continues until a value is found that is small enough to provide

a decrease in the objective function that adequately matches the decrease that is

expected to be achieved, based on the local function gradient ∇f(x).

Based on a control parameter c, which lies within the (0, 1) interval, the Armijo-

Goldstein condition tests whether a stepwise movement from the current point x,

to (x + αp) achieves a significant decrease in the objective function, where α is

the step and is to be determined, and #»p is the vector direction which presents some

decrease, and is typically a unit vector. The Armijo-Goldstein condition is satisfied

if the following inequality holds.

(2.12)f(x+ αp) ≤ f(x) + αcm

Equation 1: Armijo-Goldstein Condition Inequality

This condition, when used appropriately as part of a line search, can ensure that

the step size is not excessively large. However, this condition is not sufficient on its

own to ensure that the step size is nearly optimal. Any value of α that is sufficiently

small will satisfy the condition.

Thus, the backtracking line search strategy starts with a relatively large step

size, and repeatedly shrinks it by a factor τ ∈ (0, 1) until the Armijo-Goldstein

condition is fulfilled. The search will terminate after a finite number of steps for any

positive values of c and τ that are less than 1. For example, Armijo used 1
2 for both

c and τ in a paper he published in 1966.

Based on this condition, an algorithm may be devised, presented in [Wik17a],

which incrementally computes the step, until the above condition is indeed satisfied.

The outcome of the algorithm will be a new position x′ = (x+αp), in the direction

of the specified gradient #»p .
July 5, 2017 Chapter 2. Implementation Background

2.7. Armijo-Goldstein Backtracking Line Search 17

Algorithm 2.7.1: Armijo-Goldstein backtracking line search algorithm
Data: Maximum Candidate Step Size Value: α0 > 0

Search Control Parameters: τ ∈ (0, 1) and c ∈ (0, 1)
Minimization Function: f(x)

Result: αj as solution

1 t = −cm;
2 j = 0;
3 while f(x)− f(x + αjp) < αjt do
4 Increment j;
5 Set αj = ταj−1;
6 end while

/* In other words, reduce α0 by a factor of τ in each iteration
until the Armijo-Goldstein condition is fulfilled */

2.7.2 Algorithm Pseudo-code

Starting with a maximum candidate step size value α0 > 0, using search control

parameters τ ∈ (0, 1) and c ∈ (0, 1), the backtracking line search algorithm can be

expressed as follows:

1. Set t = −cm and iteration counter j = 0.

2. Until the condition is satisfied that f(x) − f(x + αjp) ≥ αjt, repeatedly

increment j and set αj = ταj−1.

3. Return αj as the solution.

2.7.3 Usage of Armijo-Goldstein

Usage of Armijo-Goldstein is easier shown that explained in writing for the rest

of us. Let random function f(x) that we want to minimize (shown annotated at

Figure [2.1]). If we were to use any conventional CG minimizer, we would make

the movements shown by the orange arrow, and then we would move shown by the

purple arrow on the function plane. While minimizer would be minimized, but that

wouldn’t reach the best available option.
Chapter 2. Implementation Background July 5, 2017

18 2.8. Thesis Motivation and Purpose

Figure 2.1: Random function, with minimization annotations

Alternatively, we would like to be able to do the 3rd red/green option when

minimizing. The issue is that when minimizing towards a direction, d~x is a

predetermined vector. What Armijo-Goldstein does is, considers the minimization

vector as a unit vector, and uses a scaling methodology: starts off with a big step

size, that iteratively scales it down until the Equation [2.7.1] is satisfied. This is a

fancy way of questioning whether minimization if indeed minimizes the function, is

actually a worthy one.

2.8 Thesis Motivation and Purpose

Concluding our analysis, we can see that NTUPlace3 is indeed an interesting

algorithm for Analytical Analytical Global Placement. Traits that make it

appealing to further improvements are fast execution times, quality of results, and

the ability to be parametrized in a handful of aspects.

In addition to the degrees of freedom given by the algorithm, we also considered

various other ways to further optimize the solution. We implement and extend the

algorithm by using a more mathematical approach to the CG multidimensional

minimization, and the dynamic step-size control.

July 5, 2017 Chapter 2. Implementation Background

Chapter 3

aWarePlacement Implementation

and Analysis

In this chapter, a detailed analysis of the implementation of our aWarePlacement

algorithm is presented - which is the main concept of this thesis. We will also go

through a detailed technical analysis of every step of the algorithm. Furthermore,

we will report the implementation and the difficulties - along with their resolutions.

Someone would expect that an analytical algorithm, like NTUPlace3 [Che+08],

which contains easy-to-understand mathematical techniques is easy to implement.

However, this is not always the case - and this case is not different. Even with some

mathematical background, which would be necessary / recommended, there are real

challenges in implementation. Thus, it was decided to split the developing process

in two parts. Proof-of-concept and integration to the industrial EDA tool.

Initially, development was done using a separate code base, with a really small

example. It was deemed that this would help focus on the implementation itself,

rather than being disturbed from the complexities of a fully-featured EDA tool.

That also helped to decouple the solution from the actual implementation platform,

thus making it more modular. Afterward, moving from proof-of-concept to actual

implementation was not without facing a fair share of troubles as well. Nevertheless,

the coding effort was mostly straightforward after being acquainted with the tool’s

coding logic and data structures. All coding attempts (unless otherwise specified)

are completed in C89 language.
19

20 3.1. Net Model

3.1 Net Model

In order to approximate the IC’s wirelength mathematically, we consider the

Point-to-Point Net Model: every connectable object is represented by a point in

the X,Y Cartesian Axes, hence the name of the model. Both Standard Cells and

I/O Pins are approximated as points, regardless of the fact that Standard Cells

actually have 2-dimensional representation in the physical world. Depending on

the implementation, a point would be either in the center or on the top left of the

actual cell – or anywhere for that matter. In our implementation, that point can

be considered to be both in the center and on the top left of the actual cell,

something we can actually select beforehand.

Usually, from the Point-to-Point model, only Cell-to-Cell and Cell-to-Pin

connections are actually seen in usage. This is due to the fact that Pin-to-Pin

connections make the IC work slower; however such connections - in theory - do

exist. For instance, in hierarchical design, sub-circuits communicate with each

other by connecting their Input/Output pins to provide data to each other. This

connection, however, it is not strictly considered Pin-to-Pin, since “Pins” connect

an IC to the outer world, whereas, both sub-circuits are part of the same IC - and

thus are not considered “outer”.

Connections between Cell-to-Cell and Cell-to-Pin elements are approximated

with a line connecting to using Manhattan Distance logic. This is because of

limitations on the routing stage: Connections inside an IC can only exist as a sum

of vertical and horizontal lines - never diagonal.

3.1.1 Wirelength Model

In comparison with our previous chapter, we should also reference our wirelength

model of choice. Our minimization cost function minimizes the Square Euclidean

Distance, which also succeeds in minimizing the HPWL cost. In our

implementation, we use the original HPWL approximation (i.e. using absolutes

and max function), but we are not using this metric directly for the minimization.

While we discussed the log-sum-exp HPWL has some advantages over the original
July 5, 2017Chapter 3. aWarePlacement Implementation and Analysis

3.2. Initial Attempts 21

HPWL model, since we are not using this metric directly for minimization, we are

not interested in the properties that this approximation provides us.

3.2 Initial Attempts

We started to build the algorithm - logic and data structures - for both my algorithm

and other, closely related methods as well. As soon as we started looking at the

input data, we decided it was not going to be appropriate for the mathematical

representation of our problem’s data. It is required that we hold in memory a

matrix that contains the entirety of Cell-to-Cell connections, along with connection

logic for Cell-to-Pin components. While our EDA tool covers on that end pretty

neatly, Cell-to-Cell connections need to be in a more appropriate form. We have

already mentioned that placement input is given as a hypergraph Gh = (Vh, Eh), and

such it is appropriate to be illustrated using the Laplacian Matrix.

3.2.1 GNU Scientific Library

For the first stage of my building, we decided to go for the GNU Scientific Library

(or GSL for short). This option offered us a kick-start on tackling some mundane

tasks regarding vector/matrix handling operations, without much hassle on our side.

We also did not have to a) write, and most importantly b) validate the written code

for either correctness or performance. It is a common practice to rely on code other

people wrote to do what you are trying to achieve. This helps by not wasting man-

hours in conception, coding, and verification of functions and algorithms handling

your data - let alone a fully featured API. Moreover, we can argue that, for some

functions, it is required that you also have a diverse academic background, for

example, superb command of mathematical ways to solve problems efficiently. It is

not realistic for everyone to be on that advanced level, but if one writes good code,

then it is not expected to have extensive knowledge about everything.

Laplacian Matrix is a good option that provides all the needed information

to redraw the graph to its full extent, or more importantly, being able to solve

it mathematically. However, all is not good yet: due to the nature of the input
Chapter 3. aWarePlacement Implementation and AnalysisJuly 5, 2017

https://www.gnu.org/software/gsl/

22 3.2. Initial Attempts

data and the Laplacian Matrix representation, we will soon end up with matrices

unable to be represented in memory. Laplacian Matrix requires O(n2) storage,

as it is a n× n matrix. While many circuits exist with no more than one thousand

(1.000) components, which does not require a big amount of RAM to be stored in (8

MB for a circuit that has exactly 1.024 components). However, 1.000 components is

sometimes a laughable number of components in our days for real IC, for example

an FFT IC has 32.281 components. Storing the Laplacian Matrix for this one

requires, more or less 7,76 GB of memory! Maybe that is not a limit for our current

technology, as we can have way more RAM than that available, especially using

virtualization, but there are also much bigger circuits - sometimes going up as much

as one million (1.000.000) components. So this is clearly not the way to go.

3.2.2 Sparse Matrices

If you remember the definition of the Laplacian Matrix, and the specifics of a

circuit, that matrix is bound to be filled with zeros. That means, we are spending

so much memory and resources to actually map ... zeros. It’s not a small feat: even

in a simple adder circuit, that has 17 components, 224 out of 289 (172) matrix cells

will be empty. In other words, we are wasting 77.5 % of our allocated memory - which

is bound to become even more inefficient as time goes on. Enter sparse matrices:

the most efficient way to store matrices that contain a lot of zero elements. There

are various methods to achieve that, but we are going to focus on a few to give you

the idea what is it about. What all of them have in common, is that if something

is not there, it is considered to be zero.

One common form of storing entries is a Coordinate List. That includes storing

a list of tuples that contain the (row, column, value) triplet. This form facilitates

incremental matrix construction. Ideally if kept sorted, it would decrease random

access time. Adjacent to this method is Dictionary of Keys, that uses a dictionary to

map (row, column) pairs to the value of the elements - it lacks however in iterating

the structure in proper order. Also, closely related is the List of Lists method, that

keeps a list of rows and (column, value) pairs in a list. For sorted lists, this method

offers fast lookup access.
July 5, 2017Chapter 3. aWarePlacement Implementation and Analysis

3.3. Minimization (or Maximization) of Functions 23

On the other hand, methods that facilitate arithmetic operations, column

slicing, and matrix-vector products would be Compressed Row Storage and

Compressed Column Storage. These two methods are closely related to each other,

as they operate using the same logic. Their only difference is that, respectively,

one compresses rows and the other one compresses columns. They also rotate over

the matrix in the same direction (i.e. row-wise or column-wise). Finally, there are

other kinds of sparse matrices that solve specific matrices. Examples are Banded

(storing band matrices), Diagonal (storing diagonal matrices), and Symmetric

(stored as adjacency list since they are derived from adjacency matrices). [Wik17f]

In our EDA tool, we use Coordinate List and Compressed Column Storage,

interchangeably depending on algorithmic and implementation needs. We can use

interchangeably Intel Math Kernel Library and CXSparse libraries for sparse

matrices and operations. We also are able to use GNU Scientific Library for simple

circuits. In my implementation, I used GNU Scientific Library as a first building

block but quickly amended the code to extract data from sparse matrices. In my

function, sparse matrices are in Coordinate List form.

3.3 Minimization (or Maximization) of Functions

Minimizing (or Maximizing) of a (cost) function is one of the oldest problems, and

one problem we are actually taught in school to solve in various ways, usually using

a graph of the quadratic function: x2 + ax + b. To begin with, let us describe the

process to mathematically discover a function minimum, which is not so different

from finding the root of a single-dimension function. Also, for the simplicity of

this text, we will only reference to this method solely as minimization. However,

conceptually, we could have referenced the maximization as well, as these processes

look very much alike.

3.3.1 Bracketing a Minimum

“Bracketing” could be otherwise described as “finding the area” where (a) minimum

lies. We will draw a parallel from bracketing the root. As we learned in school, a
Chapter 3. aWarePlacement Implementation and AnalysisJuly 5, 2017

24 3.3. Minimization (or Maximization) of Functions

smooth and differentiable’s function root is bracketed by a pair of points a, b, if the

f(a) and f(b) results bear opposite signs (+/− or −/+). We could also say that

a < b, but that constraint is rudimentary because the same holds true for a > b.

Figure 3.1: Roots of cos(x) function
[Pbr08]

Figure 3.2: Function with single minima

We can understand why if the f(a) and f(b) results bear opposite signs, then

a and b bracket the solution by looking at Figure 3.1. By selecting two opposite

points around any red point, we can deduce that f(a) and f(b) will always have

opposite signs if they bracket any of the roots of cos(x) function. Note that this

constraint only tells us that iff f(a) and f(b) results bear opposite signs (+/− or

−/+), then there is at least one function root laying in-between. It could be that

a root lies between f(a) and f(b) results that bear same signs (+/+ or +/+), for

example, in x2. Along the same lines, multiple minimums can lie between results

that bear opposite signs (+/− or −/+), which we can verify by picking |a|, |b|> 2

and opposite signed in Figure [3.1].

Minimum can be a little more complex: a smooth and differentiable’s function

minima is bracketed by a triplet of points a < b < c (likewise for a > b > c), if the

f(b) result is less than both f(a), f(c) results (f(b) < f(a), f(c)). This is actually

the same condition as the one we have for bracketing function roots. Looking at

Figure 3.2, we can see that, conceptually, those two algorithms look-alike. However,

since there is no lower point than the function minimum, we cannot test for result

signage - this is why we require 3 points instead of two.
July 5, 2017Chapter 3. aWarePlacement Implementation and Analysis

3.3. Minimization (or Maximization) of Functions 25

3.3.2 Conjugate Gradient Method in Multidimensions

We have described, in a nutshell, how bracketing a minimum in one-dimensional

functions works. In order to actually find a minimum, we continue to shrink the

bracketing area, until “reasonably” small. It is hard to pinpoint the exact number, as

sometimes the discrete nature of floating-point arithmetic (and any kind of computer

arithmetic for that matter) makes that impossible to uniquely identify such point.

We could argue right here that we have a good rough estimate (and an algorithm)

of one-dimensional minimization. We could delve into more detail about bracketing

patterns and methods, but it is not necessary at this point in order to move up to

multidimensional minimization.

Our first guess would be to consider the exact same logic we used on

one-dimensional minimization, only we will have to do it N times, where N is the

number of dimensions in our function. While this method works quite well and

really intuitively for the test cases we have in our head (ax2 + bx + c with a > 1,

and x2

a2 + y2

a2 with a < 1), it doesn’t work quite well in long, narrow valleys (i.e. the

reverse from the described test cases). In the worse cases, what we will do, instead

of targeting the minimum directly, we will take small steps moving sideways

towards the center of the valley. We are always moving in small steps towards each

dimension’s minima, until some point we actually reach that, instead of targeting

directly for the valley.

A much smarter approach would be to compute, instead of just computing the

value of a function f(p) at an arbitrary point p, also compute the vector of first

(partial) derivatives, also known as gradient ∇f(p).

Assuming that we approximate the function f as a quadratic function

f(x) ≈ c− b · x + 1
2

x ·A · x (3.1)

Then the number of parameters in f function equal the number of independent

parameters in A and b, which is 1
2N(N + 1). Therefore, we expect to find the

function’s minimum to be in Ω(N2) iterations. Calculating function’s gradient,

however, brings us N new information quantums. Used wisely, we could instead
Chapter 3. aWarePlacement Implementation and AnalysisJuly 5, 2017

26 3.3. Minimization (or Maximization) of Functions

make only N line minimizations in order to reach the function minima.

We could argue here that there is nothing to be gained actually: N2 line

minimizations are needed in the intuitive minimization method, N line

minimizations and N function gradients (vector of N first derivatives) are needed.

We can more or less assume (initially) that each first derivative requires about the

same time as a function computation. That would mean also N2 iterations, and as

such comparable time.

While we are not achieving optimization ofN order, we have to take into account:

1. Each vector component will save, more than a function evaluation, also all the

extra costs incurred by initiating a new line minimization.

2. There is often a high degree of redundancy in the formulas for the various

components of a function’s gradient. When this is so, especially when there

is also redundancy with the calculation of the function, the calculation of the

gradient may actually cost significantly less than N function evaluations.

Before we rush into implementation, however, we must not make hasty

decisions. Methods that utilize gradient information are not “equally good”

amongst themselves. Intuitively, probably we would arrive at the Steepest Descend

method: “From arbitrary point P0, move to the point Pi+1 along the direction of

−∇f(Pi)”. Unfortunately, while more optimal than using no gradients at all, still

fails to efficiently solve long narrow, otherwise perfect quadratic valleys.

We are looking for a way that will allow as to minimize the function, not

towards the gradient vector, but somehow conjugate to the gradient and all

previous methods, insofar as possible. We can easily deduct that methods that

accomplish this construction are called conjugate gradient methods.

Starting from an arbitary g0, which usually is g0 = ∇f(P0) for arbitary P0 (in

our case, usually (0, 0)∀ cell) we set h0 = g0 and then:

~gi+1 = ~gi + λA · ~hi, where λi = ~gi · ~gi
~hi · A · ~hi

(3.2)

~hi+1 = gi+1 + γi~hi, where γi = (~gi+1 − ~gi) · ~gi+1

~gi · ~gi
(3.3)

July 5, 2017Chapter 3. aWarePlacement Implementation and Analysis

3.3. Minimization (or Maximization) of Functions 27

which, in turn, satisfy the orthogonality and conjugacy conditions:

~gi · ~gj = 0, ~hi · A · ~hj = 0, ~gi · ~hj = 0, ∀j < i (3.4)

The algorithm described so far is the original Fletcher-Reeves version of the

conjugate gradient algorithm. Later, Polak and Ribiere introduced one tiny, but

sometimes significant, change. They proposed using the form

γi = (~gi+1 − ~gi) · ~gi+1

~gi · ~gi
(3.5)

instead of Equation 3.3. While both γi definitions are equal by orthogonality

conditions 3.4 for exact quadratic forms, usually our function will not be a quadratic

form. Even if we arrive at the minimum of the approximated quadratic form, we

may still need to proceed to another set of iterations. “There is some evidence that

the Polak-Ribiere formula accomplishes the transition to further iterations more

gracefully: when it runs out of steam, it tends to reset ~h to be down the local

gradient, which is equivalent to beginning the conjugate gradient procedure anew”

[Pre+07].

3.3.3 Validation Methodology

Non-convex Analytical Minimizer

In our initial approach, I decided to use a simple function for testing: x2 + y2.

This enabled me to verify that my novel implementation of literature minimization

references was indeed successful. After that, before I moved on to implement the

solution on an industrial EDA tool, I wanted to test more complex functions. One

of those functions, is the Beale’s Function [JY13].

f(x, y) = (1.5− x+ xy)2 +
(
2.25− x+ xy2

)2
+
(
2.625− x+ xy3

)2
(3.6)

There are many functions to select from, testing various minimization

parameters. I selected the one that is closer to test our worst-case scenario: A long
Chapter 3. aWarePlacement Implementation and AnalysisJuly 5, 2017

28 3.3. Minimization (or Maximization) of Functions

valley, that would otherwise delay / inhibit minimization. It was also the logical

step, moving up from a simple two-dimensional function, to a more complex

two-dimensional function. It would also facilitate to solve out some logic bugs in

the implementation, before moving on to actual IC designs.

It should be noted, that all the provided minimization functions used for

verification are convex (or concave) functions. The mathematical complexity

involved in verifying so early such complicated methods would defeat the purpose

of this verification. It is paramount to verify the capability of the minimizer to

perform its own job, rather than having to deal with the complexities of any given

benchmarking non-convex function.

Minimized Cost Function

Of course, we cannot stop our validation simply at the minimizer. We also have

to extend our tests to the correctness of the cost function in question, preferably

optimize it - as well as the function’s derivative computation. This was done in

accordance with our previous methodology (e.g. manual verification). However, at

this point, we decided to also utilize the power of Matlab’s Matlab EXcecutable

(MEX for short) files. An MEX-file is a way to execute specially-written C functions

as if they were functions written in Matlab.

The function we attempt to minimize is the squared Euclidean distance:

i,j∈N∑
i=1,j=1

c(i, j)((xi − xj)2 + (yi − yj)2 (3.7)

and c(i, j) is declared as:

c(i, j) =

1 · ${ConnectionCost}, if ci, cj are connected

0, otherwise
(3.8)

The terms (xi − xj)2 and (yi − yj)2 respectively give the squared horizontal and

vertical distances between the selected of i and j. This formulation implicitly

decomposes all nets into two-pin subnets. The quadratic form emphasizes the
July 5, 2017Chapter 3. aWarePlacement Implementation and Analysis

3.4. Armijo-Goldstein Line Search 29

minimization of long connections, which tend to have negative impacts on timing.

Formulating a simple version of our problem, compiling it with the help of

Matlab and Microsoft Visual Studio gave us some interesting results that helped

us uncover some important issues with the implementation. One of the most

important problems lied in the mathematical representation of the data structures.

When solving the Placement problem with the Quadratic Placement method

[Kah+11, p. 110], then the matrix (both the definition and visually) look very

much alike the Laplacian Matrix. We wanted to respect the convention that

code should be split into functions and that each function’s execution should result

in unique results and not overlap with functions or even partial code.

In our initial approach, we were using a slightly (or largely, depending on the

IC size) different version of the Laplacian Matrix. However, since the matrix

looked alike with the Laplacian Matrix, the function managed to arrive results

that looked (both visually and in metrics) not quite there. It took the combined

effort of manpower, re-reading the mathematical formulation and extensive testing

methodologies to uncover the implementation flaw, and quickly amend it.

The Matlab suite also enabled us to test the cost function (and it’s derivative)

using tested, verified, high quality, and a variety of minimizers. The derivative,

due to the high complexity of the cost function, resulted in being a numerical one

(using the limit theorem) instead of an Analytical one. This approach enabled to

generate the derivative, regardless of the implemented function - hence decreasing

the complexity of the solution by far.

3.4 Armijo-Goldstein Line Search

3.4.1 Implementation - Free parameters: c and τ

We could argue that implementation of the algorithm presented in Section [2.7] is

an easy-to-implement algorithm and it’s too straightforward to have any degree of

freedom. We have to select, however, the algorithm’s parameters: c and τ .

Initially, by looking at the algorithm implementation, completed code and small

examples, we could argue that we would like to use a small c value, in order to
Chapter 3. aWarePlacement Implementation and AnalysisJuly 5, 2017

30 3.5. Current Completed Work

push the expression α · t to a small value, thus making the algorithm more strict in

solution accepting. For the same reasons, we would select a low-to-medium τ value:

that would further decrease the α parameter, thus making the algorithm even more

strict in solution accepting.

3.5 Current Completed Work

So far, this is what I have completed:

• void loHiPassFilter: A filtering function that simply pushes outlying cells back

inside the core area

• void advancedCellLoHiPassFilter: An advanced filtering function that moves

all cells towards the center by the max violation amount, instead of simply

pushing one inside. Helps to keep the layout of the cells consistent with their

placement instead of stacking the outliers with themselves and/or the cells

that lie in the perimeter.

• double NTUPlace3: The main minimizer function. The minimizer is

programmed according to Armijo-Goldstein CG proposed function

(as per 3.3.2 [Pre+07])

• void set/getCellsXY: setter / getter function to communicate with the tool that

the code is implemented into

• double quadraticCostFunction: the quadratic minimization method, expressed

in a mathematical function. The function is also optimized Analytically (i.e.

factoring the matrix multiplication with the vectors); however, this is not used

as current sparse matrix implementation does not allow for such optimizations.

The sparse matrix, although stored in ascending i, j key order, is currently an

undefined behavior and as such factorization is not able to be used. Computes

n∑
∀i,j∈cells

c(i, j)
(
(xi − xj)2 + (yi − yj)2

)
, c(i, j) =

c, i, j connection cost

0, if i, j unconnected
(3.9)

July 5, 2017Chapter 3. aWarePlacement Implementation and Analysis

3.6. Implementation Notes 31

Figure 3.3: High-Level Meta-algorithm

and returns the Squared Euclidean Distance as cost.

• void quadraticCostFunctionDF: the derivative of the function is currently

computed arithmetically. It is possible that analytical computation is

achievable but, further down the road where density function’s arithmetic

derivative is used, it is probably not gonna make a difference. h-factor is set

to half of the chip’s respective quantum dimension (so that it may jump back

and forth at maximum by one row/column).

• int main_NTUPlace3Minimization: Preparatory function for all the previously

mentioned functions

Two flow charts describing the execution path are presented in Figures [3.3, 3.4].

3.6 Implementation Notes

Connecting all steps of the algorithm flowcharts to appropriate sections is no hard

task - but we would like to shed some light on “Compute” box, function and

derivative computation in general. As noted in Subsection [3.2.2], we are using
Chapter 3. aWarePlacement Implementation and AnalysisJuly 5, 2017

32 3.6. Implementation Notes

Figure 3.4: Minimization Logic

July 5, 2017Chapter 3. aWarePlacement Implementation and Analysis

3.6. Implementation Notes 33

Sparse Matrices in order to handle the quadratic relationship of required RAM

space and IC components to be minimized. In our novel solution, in order to keep

the implementation as transparent as possible, and decoupled from external

dependencies (to a logical extent), we refrained from using external libraries for

our Basic Linear Algebra Subprograms (BLAS) Level 1 & 2 Operations.

Additionally, our library providing the sparse matrices functionality (CXSparse),

did not clearly list in its documentation the possibility to do a BLAS Level 2

Operation (sparse-matrix dense-vector multiplication).

Sparse-matrix dense-vector multiplication is an essential operation of our

implementation since we operate on a sparse matrix and the coordinates of IC’s

cells rest in a dense-vector. Moreover, since we continuously compute the function,

the importance of its computation is increasingly paramount. Additionally, the

provider of our “optimized” matrix (i.e. sparse matrix), should provide us said

BLAS Operation. However, none of the aforementioned clauses happen - so

everything is done manually, and it is not much optimized (mathematically or

CPU architecture-wise).

Further intensifying the lack of optimal operations is the fact that instead of

calculating the function’s derivative analytically, we calculate it numerically, using

the limit theorem. Instead of streamlining computation of all derivatives, and

simplifying computations, we calculate the function twice, with really small

differences in input parameters. Additionally, Armijo-Goldstein also continuously

computes the input function, thus making function computation a critical

performance factor in our proposed solution.

We could circumvent the majority of these problems (along with half of our

thesis too), by moving our attempts to a mathematical software tool, for example,

Matlab. Apart from an easier-to-use language, Matlab has years of experience

handling mathematical and optimization problems, an asset that would heavily

assist us. Our development efforts could be focused single-handedly only in the

logic of the placement algorithm, disregarding all other parameters. Regrettably,

this wasn’t a plausible solution either, as there is comparable, if not more

experience regarding all stages of IC design in our industrial EDA tool.

Chapter 3. aWarePlacement Implementation and AnalysisJuly 5, 2017

Chapter 4

Experimental Results

After describing our implementation, in detail, in this chapter, we will showcase our

experimental results. We will provide all relevant minimization results and quality

metrics - we will also discuss and give our personal view of the achieved results,

objectively and with possible extensions.

4.1 Usage of Minimizer with Squared Euclidean

cost function

Due to the issues described in the previous chapter, we were unable to benchmark

any serious quantity of tests, or even attempt to run real benchmarking suites. We

limited our testing only to small industrial ICs. Results can be seen on Table [4.1].

Note that negative “% QP Error” means that Solution provided is actually better

than the QP HPWL. An example placement comparison between

aWarePlacement and QP can be seen in Figures [4.1, 4.2].
35

36 4.1. Usage of Minimizer with Squared Euclidean cost function

Bench #1 Bench #2 Bench #3 Bench #4
Components 17 382 545 717
QP HPWL 47,664 1028,401 5524,569 9234,852

Armijo-Goldstein Parameters

c 0,9 0,4 0,1 0,9
τ 0,5 0,8 0,8 0,5

Results

Iterations 2159 15730 29028 13264
Total HPWL 46,016364 1027,910306 5524,726508 9232,987364

Quadratic Wirelength Cost 115,57196 5672,332454 64747,01338 130297,0628
CPU Time (s) 0,08 76,71 2250,63 153,9

QP Error -3,4568% -0,0477% +0,0029% -0,0202%

Table 4.1: Experimental results on benchmarks

Figure 4.1: Example placement of
aWarePlacement (Benchmark #4)
(c = 0.9, τ = 0.5)

Figure 4.2: Example placement
of Quadratic Placement
(Benchmark #4)

The selection of our results was done using the minimum % QP Error. Although,

using different metrics, or a weighted version of them which would be multiple

times more profitable. Another option would be to attempt to unify the Armijo-

Goldstein parameters, which has a vague pattern depending on selection and sorting

parameters. However, it is being discussed in the next section.
July 5, 2017 Chapter 4. Experimental Results

4.1. Usage of Minimizer with Squared Euclidean cost function 37

Figure 4.3: Example placement of Benchmark #2

It is fascinating to note that, this approach gives us a variety of input

parameters for the Armijo-Goldstein algorithm (more on that in the next section),

and also variety in the executed minimization iterations (and as such, time as

well). Execution time is indeed not something to be proud of, but we have already

addressed such concerns in the previous chapter. In Figure [4.3] we see a graph of

execution of Benchmark #2 for various selected parameters: Best and Worst in

Iterations, % QP Error and Execution Time. As we can see, apart from the Worst

% QP Error, all other executions unravel about the same way. Although those

cases are too close to call by simply watching a stationary, non-interactive image.

It is also possible that, if we accept less accuracy from the expected solution,

then it is easier for us to save precious execution time. If we take a look at Figure

[4.4], we can clearly see that the more tolerant on less accuracy we are, the returns

on execution time are much greater. It should be noted that in a real application,

we will not be able to have the solution to compare a result, so the loss of accuracy

and execution time benefit are only for reference. Also, this change was done by

solely tinkering with the Armijo-Goldstein c, τ parameters - not some innate error
Chapter 4. Experimental Results July 5, 2017

38 4.2. Armijo-Goldstein Line Search

Figure 4.4: Metric vs % QP Error - Benchmark #4

tolerance parameter. We can clearly see that Armijo-Goldstein is a major factor

in our algorithm that can save or crush any execution, depending on what your

definition of “salvation” might be at the time. And that is exactly our field of focus

in the next section.

4.2 Armijo-Goldstein Line Search

As Table 4.2 shows, our thoughts back in 2.7 actually hold true for the simple cases

- a combination of a high τ and a low-to-medium c value indeed give us the best

results. For clarity reasons, we state that the results are sorted in ascending %

QP Error. Note that, while all presented set of values have reached their optimal

solution (to the extent that we can objectively define what “optimal” means), this

is not at all enforced. Some combinations gave good estimates, but they could have

stopped preemptively, without a possibility to continue. We duly note that this

hasn’t happened in any of the results presented here (nor in their full matrix from

where this excerpt was taken), but it has emerged on some conducted experiments.
July 5, 2017 Chapter 4. Experimental Results

4.2. Armijo-Goldstein Line Search 39

Looking at the upper end of Table [4.2], we can see that this is also verified for

larger and more complicated designs. However, this time, the optimized parameter

in question rather than being the accuracy of the given results, now is the

minimization of execution time. Specifically, the differences in the best solution

and the worst is between 1 - 3 units, regardless of the actual returned result.

Whether the results are in order of magnitude 1 or 4, the results are still within

that area - in-correlatable with any parameter of the design (number of

components, wirelength etc).

It might be that the results are close in returned cost, that is not the case with

required iterations: the slowest with the fastest round are different by a factor of x4

to x8! That comes though, without an actual gain for solution quality. It is, again,

in-correlatable the iteration cost of the various minimization parameters, and the

returned quality of the results.

Although that the specifics of this pattern may not replicate in bigger test cases,

we believe that it is a pattern that somehow will exist. Someone could devise a

weighting metric that would take into account loss of accuracy from a predicted cost

function, and CPU time / iteration count, and come up with a sorting method that

would allow him / her to decipher the best Armijo-Goldstein parameters. Another

course of action would be to blacklist parameters and then apply any logic to the

results, should they are not straightforward to the eye.

Coming back to the point were we talked about emerging patterns in Armijo-

Goldstein parameters, we have also plotted this matrix ascending in resulting

function cost (and / or HPWL) and then ascending in iterations count. The

matrix does look alike - specifically, values of c 0.1, τ [0.7 - 0.9] and c [0.7 - 0.9], τ

[0.1 - 0.3] emerge as the most common to be higher up on our list. If someone were

to be tolerant to a high-error sensitivity, no questions asked, then these are the

values / patterns that emerge to the naked eye. As an adjacent pattern, we also

see that in the pool of the top 10% of iterations, there is bound to be at least one

of the top 10% cost metric (HPWL) results. Although not directly linked to the

c, τ parameters, deciphering the reasoning behind low-iteration parameters, can

subsequently lead to one of the best solutions
Chapter 4. Experimental Results July 5, 2017

40 4.3. Final Notes Regarding the Implementation

However, this is doesn’t appear to be accurate enough or sufficiently answer all

the questions asked. Given that the optimized function is indeed a convex function,

even if Armijo-Goldstein performs differently per cost function, it doesn’t explain

why it performs differently with the same cost function. Of course, one explaination

is that each IC has a different Laplacian Matrix and as such, shapes a wildly

different function plane, and as such requires different descent parameters. However,

I must note that this is just an impression, not a scientifically verified fact.

In finalizing this part of our research, it is worth noting that, results for any else

than the aforementioned outliers, are about the same between the same group of

results. The output is comparable, final cost and iterations. We couldn’t identify

a sophisticated pattern emerging from the raw data that we produced. We leave

that as a point of a future study to discover the correlation between parameters and

output data. It would also be interesting to study, given the parameter’s correlation

to the results, how a mix of those parameters would alter the actual algorithm in

results and in time consumption.

4.2.1 Notes regarding Armijo-Goldstein Monte Carlo

To our knowledge, the provided results give little-to-no understanding in order to

assist us in systematically leveraging the Armijo-Goldstein algorithm presented.

There are combinations that can give best results, but our limited testing set

(limited by the execution time caveats described before, not by lack of testing

cases), prohibits us from doing any meaningful statistical analysis - or even

machine learning analysis on the data. The only meaningful results we could see is

the aforementioned. However, if it was possible to dynamically alter c, τ , we could

see different or more concluding results.

4.3 Final Notes Regarding the Implementation

It was a challenging task to undergo, that had a lot of caveats, and needed bold

moves to arrive at today’s result. The most challenging topic of this thesis for me

was, by far, the mathematical models, theories, and data structures. It was required
July 5, 2017 Chapter 4. Experimental Results

4.3.
F
inal

N
otes

R
egarding

the
Im

plem
entation

41

x^2 + y^2 Beale Bench #1 (17) Bench #2 (382) Bench #3 (545) Bench #4 (717)

c τ c τ c τ % QP Error c τ % QP Error c τ % QP c τ % QP Error

0,6 0,1 0,7 0,1 0,9 0,5 -3,45677% 0,4 0,8 -0,04771% 0,1 0,8 0,00285% 0,9 0,5 -0,02019%

0,9 0,1 0,8 0,1 0,9 0,9 -2,92956% 0,8 0,5 -0,04186% 0,1 0,9 0,00298% 0,8 0,9 -0,01870%

0,8 0,1 0,8 0,2 0,9 0,4 -2,86846% 0,7 0,7 -0,04009% 0,1 0,6 0,00299% 0,7 0,8 -0,01773%

0,3 0,1 0,7 0,2 0,9 0,2 -2,83465% 0,6 0,3 -0,03574% 0,1 0,5 0,00300% 0,9 0,2 -0,01689%

0,4 0,1 0,4 0,1 0,8 0,4 -2,31704% 0,5 0,1 -0,03423% 0,1 0,2 0,00302% 0,6 0,9 -0,01548%

0,5 0,1 0,6 0,1 0,9 0,6 -2,26148% 0,5 0,4 -0,03085% 0,1 0,7 0,00304% 0,9 0,3 -0,01464%

0,3 0,2 0,5 0,1 0,9 0,7 -2,21055% 0,4 0,9 -0,03047% 0,1 0,3 0,00304% 0,7 0,2 -0,01368%

0,7 0,1 0,6 0,2 0,9 0,8 -2,16833% 0,5 0,2 -0,02968% 0,1 0,4 0,00305% 0,8 0,8 -0,01304%

0,7 0,2 0,9 0,2 0,7 0,5 -2,10207% 0,5 0,8 -0,02945% 0,1 0,1 0,00306% 0,8 0,1 -0,01265%

0,9 0,2 0,5 0,2 0,6 0,5 -2,08489% 0,9 0,1 -0,02891% 0,2 0,6 0,00563% 0,6 0,6 -0,01262%

0,9 0,4 0,9 0,1 0,5 0,7 -2,01954% 0,8 0,1 -0,02863% 0,2 0,4 0,00575% 0,5 0,3 -0,01261%

0,8 0,2 0,1 0,2 0,8 0,9 -1,95616% 0,9 0,3 -0,02812% 0,2 0,8 0,00586% 0,7 0,9 -0,01175%

Table 4.2: Monte Carlo: Armijo-Goldstein c, τ parameters (clipped)

C
hapter

4.
Experim

entalR
esults

July
5,

2017

42 4.3. Final Notes Regarding the Implementation

to delve deep and familiarize with them in a great deal in order to utilize them in a

consortium to achieve a solution in reasonable execution time.

4.3.1 Mathematical Understanding

There were a lot of misunderstandings and wrong assumptions that were made

during the development process. The replication of the mathematical aspect in

the code was extremely hard, and, to my understanding, it is not yet quite done.

According to literature, we would need O(N) calculations of the function in the

worst case, but that is by far different from what our implementation does. I can

only assume that the issue lies with the implementation not being optimal, or also

it could be that our problem is much too complex to be solved as such with this

implementation. Finally, one major factor could also be that I personally lack

complete understanding of the involved methods

4.3.2 Mathematical Operations

Another issue with my implementation, regarding computation time, is that function

computation is expensive with regard to what computations are made. Apart from

the necessary iteration of the I/O pins, all operations are BLAS Operations - so

that would be a perfect candidate for optimization, which is also already studied

and optimized even per-architecture. However, our library providing the sparse

matrices (CXSparse) does not have enough documentation - and we haven’t found

a method to optimize sparse-matrix dense-vector multiplication, which is a major

component of the function, for a lot of iterations (more than those reported) in

the results. As such, we have to manually iterate the whole sparse matrix and

compute the multiplication as normal. We have an optimization in-place, making

the multiplication only based on the Coordinate List, instead of iterating the sparse

matrix as normal. Unfortunately, this is not enough to help us support high cell

count and benchmarking suites.

In addition to not having optimal function computation, we have to face the

fact that instead of an optimal derivative computation, i.e. analytically, we
July 5, 2017 Chapter 4. Experimental Results

4.3. Final Notes Regarding the Implementation 43

calculate the numerical derivative. This also introduces a slow down in execution,

as every dimension needs 2 function computation invocations with almost similar

parameters. Additionally, it introduces an error by an order of h2, according to

literature. Although the error can be minimized by selecting h as the quantum of

each dimension - which is also verified by Matlab’s gradient computations - the hit

on execution time is really significant. It is a good thing that we do not call the

gradient computation too much - which is the only alternative “optimization”

other than optimizing the function itself.

4.3.3 Other Free Parameters of the Implementation

Inner Iteration Limit

In our flawed implementation, after testing, we verified that the execution time can

vary greatly depending on the limit of inner iterations we allow our algorithm to

execute. Allowing a smaller number of iterations usually results in smaller execution

time. Tests show that after a number of iterations, the inner algorithm, rather than

determining approximate positions for all the components, it fine-tunes the current

solution. This is a good quality to have in the later stages of the algorithm - although

it could be argued that it is not completely necessary for 2 reasons:

• Fine-tuning at the beginning of the algorithm, at the point where algorithm

is most volatile, is of no use, since the solution will be quickly overwritten

• Fine-tuning the solution with changes that do not accumulate to more than
1
2
th

of the dimension’s quantum will not affect at all any stage of the EDA

flow; Legalization, Placement or otherwise

While finely-tuned solutions are a good quality to have, we can argue that we are

way too early in the Physical Design stage for any accuracy to matter - especially

when accuracy is quantized!

Of course, there is a limit on how small that limit should be because otherwise,

we are not allowing the algorithm to execute its minimization process correctly.

However, there is no apparent correlation between any of the problem’s parameters:
Chapter 4. Experimental Results July 5, 2017

44 4.3. Final Notes Regarding the Implementation

We discovered through testing that a good number for a small limit lies within the

[150, 250] span.

Outer Iteration Limit

In a similar manner to the “Inner Iteration Limit”, “Outer Iteration Limit” is

behaving in a recognizable pattern. In this case, luckily, early iterations are mostly

volatile and not so much fine. However, the algorithm, in the end, can (and will)

spend extra time fine-tuning the solution. This is getting delayed further by

continuous outer invocations, which are more expensive than inner ones. That is

further augmented by the fact that inner iterations tend to be a lot fewer on the

final stages of the solution, thus creating even more outer invocations. We haven’t

tested this feature at all, since our developing attempts in this thesis appear to be

closely related to “proof of concept”, rather than “optimization / breakthrough”.

July 5, 2017 Chapter 4. Experimental Results

Chapter 5

Conclusions and Future Work

In this work, we proposed an evolution of the Analytical Global Placement part

of the well-known NTUPlace3 [Che+08] algorithm and its aim was to propose a fully

autonomous minimizing implementation, with an arbitrary cost function as input.

Here is the summary of my whole thesis.

Global Placement is the first one of the three tasks of standard cell

Placement. Global Placement, which aims to generate a “rough” placement

solution that completely disregards all IC rules for Placement - most importantly

cell overlap and cell alignment to Placement rows and columns. This was our

focus. The second placement task, Legalization, is the process that takes into

account all previously skipped IC regulations (overlap and alignment). The last

task, Detailed Placement, further improves the Legalization Placement

solution.

Global Placement’s target is to initialize the positions of the cells, as optimally

as possible, attempting to adhere to as many rules as possible, and, preferably not

monopolize execution time. There is an entire flow waiting to execute after Global

Placement, which are not a subset of this algorithm.

There are multiple ways to do this: using Combinatorial or Analytical

optimization. The latter is used in this case, and it means we are using a

mathematical cost function to achieve superb placement, taking into account as

much restrictions as possible. What this also means is that, after formulating said

function, then accelerating its minimization is problem-agnostic - so we can freely
45

46

apply any and all mathematical tools at our disposal. This is where

Armijo-Goldstein Line Search comes into play to speed up the minimization.

To sum up, aWarePlacement was successful in optimizing our set goals. The

strength of the solution is mainly on the part that it is really modular with respect

to input arguments. It is compromised of mathematical methods that ensure

deterministic behavior, rapid convergence, isolation between algorithm’s

components. Moreover, cluster support is included in order to sustain designs of

arbitrary size. Its greatest weakness is, however the execution time for the reasons

we have already discussed: we are doing multiple unoptimized operations at the

code level and we are missing the mathematical background to leverage all the

computationally-faster methods than the ones we are using.

aWarePlacement can be easily extended and optimized in the future, using

the following guidelines:

• Accompany Armijo-Goldstein with Golden-Section and Quadratic Euclidean

Movement Bound and compare them

• Analytical Function Derivative

• Clean, documented, and tested sparse matrix API

• Discover the logic of Armijo-Goldstein’s optimal parameters (c, τ)

• Accompanied in Timing Driven Placement

• Since we plan to use the minimizer with non-convex functions, it would be

appropriate to extend the minimizer with hill-climbing methodologies.

• Expanded to be used in 3D Placement

• Implement Clusters Support

• Combination with a Legalizer, like Abacus2, to achieve iteratively better

quality results

July 5, 2017 Chapter 5. Conclusions and Future Work

Bibliography

[SS85] Carl Sechen and Alberto Sangiovanni-Vincentelli. “The TimberWolf

placement and routing package”. In: IEEE Journal of Solid-State

Circuits 20.2 (1985), pp. 510–522.

[Kle+91] Jürgen M Kleinhans et al. “GORDIAN: VLSI placement by quadratic

programming and slicing optimization”. In: IEEE Transactions on

Computer-Aided Design of Integrated Circuits and Systems 10.3

(1991), pp. 356–365.

[YCS03] Xiaojian Yang, Bo-Kyung Choi, and M. Sarrafzadeh.

“Routability-driven white space allocation for fixed-die standard-cell

placement”. In: IEEE Transactions on Computer-Aided Design of

Integrated Circuits and Systems 22.4 (Apr. 2003), pp. 410–419. issn:

0278-0070. doi: 10.1109/TCAD.2003.809660.

[KW05] Andrew B Kahng and Qinke Wang. “Implementation and extensibility of

an analytic placer”. In: IEEE Transactions on Computer-Aided Design

of Integrated Circuits and Systems 24.5 (2005), pp. 734–747.

[Luc06] Grant Martin Luciano Lavagno Louis Scheffer. EDA for IC

implementation, circuit design, and process technology. 1st ed.

Electronic design automation for integrated circuits handbook. CRC

Taylor & Francis, 2006. isbn: 0849379245, 9780849379246, 0849330963.

47

https://doi.org/10.1109/TCAD.2003.809660

48 Bibliography

[Pre+07] William H. Press et al. Numerical Recipes 3rd Edition: The Art of

Scientific Computing. 3rd ed. New York, NY, USA: Cambridge

University Press, 2007. isbn: 0521880688, 9780521880688.

[Cha08] Sachin S. Sapatnekar Charles J. Alpert Dinesh P. Mehta. Handbook of

Algorithms for Physical Design Automation. 1st ed. 2008. isbn:

0849372429,9780849372421,9781420013481.

[Che+08] Tung-Chieh Chen et al. “NTUplace3: An analytical placer for large-scale

mixed-size designs with preplaced blocks and density constraints”. In:

IEEE Transactions on Computer-Aided Design of Integrated Circuits

and Systems 27.7 (2008), pp. 1228–1240. url: http://ieeexplore.

ieee.org/document/4544855/.

[Pbr08] Pbroks13. File:X-intercepts.svg — Wikimedia Commons. SVG redraw

of [[:Image:X-intercepts.PNG]] | Source= http://en.wikipedia.org/

wiki / Image : X - intercepts . PNG; accessed 26-Apr-2017. 2008. url:

https://commons.wikimedia.org/wiki/File:X-intercepts.svg.

[Kah+11] Andrew B Kahng et al. VLSI physical design: from graph partitioning

to timing closure. Springer Science & Business Media, 2011.

[Lin12] Linear77. File:PhysicalDesign.png — Wikimedia Commons. [English:

VLSI circuit design flow with a focus on physical design, Deutsch:

Schritte des Layoutentwurfs innerhalb des Chipentwurfs. Online;

accessed 06-Jan-2017]. 2012. url:

https://commons.wikimedia.org/wiki/File:PhysicalDesign.png.

[JY13] Momin Jamil and Xin-She Yang. “A literature survey of benchmark

functions for global optimisation problems”. In: International Journal

of Mathematical Modelling and Numerical Optimisation 4.2 (2013),

pp. 150–194. url: https://arxiv.org/pdf/1308.4008.pdf.

[Ade14] Kenneth C. Smith Adel S. Sedra. Microelectronic Circuits. 7th ed. The

Oxford Series in Electrical and Computer Engineering. Oxford

University Press, 2014. isbn: 0199339139,9780199339136.

July 5, 2017
Bibliography

http://ieeexplore.ieee.org/document/4544855/
http://ieeexplore.ieee.org/document/4544855/
http://en.wikipedia.org/wiki/Image:X-intercepts.PNG
http://en.wikipedia.org/wiki/Image:X-intercepts.PNG
https://commons.wikimedia.org/wiki/File:X-intercepts.svg
https://commons.wikimedia.org/wiki/File:PhysicalDesign.png
https://arxiv.org/pdf/1308.4008.pdf

Bibliography 49

[VM16] Xanthos Vlachos and Giaourtas Mixalis. “Implementation and

Analysis of Placement Algorithms based on methods of Mechanics

(Force Directed) for Microelectronic Circuits”. In: (Oct. 2016).

[Mer17] Merriam-Webster, ed. Define Electrical for English Language Learners.

Jan. 2, 2017. url: https://www.merriam-webster.com/dictionary/

electronic.

[Wik17a] Wikipedia. Backtracking line search — Wikipedia, The Free

Encyclopedia. [Online; accessed 13-January-2017]. 2017. url:

https://en.wikipedia.org/w/index.php?title=Backtracking_

line_search&oldid=759866180.

[Wik17b] Wikipedia. Basic Linear Algebra Subprograms — Wikipedia, The Free

Encyclopedia. [Online; accessed 4-June-2017]. 2017. url:

https://en.wikipedia.org/w/index.php?title=Basic_Linear_

Algebra_Subprograms&oldid=777442365.

[Wik17c] Wikipedia. Combinatorial optimization — Wikipedia, The Free

Encyclopedia. [Online; accessed 5-April-2017]. 2017. url:

https://en.wikipedia.org/w/index.php?title=Combinatorial_

optimization&oldid=770375802.

[Wik17d] Wikipedia. Laplacian matrix — Wikipedia, The Free Encyclopedia.

[Online; accessed 16-May-2017]. 2017. url: https://en.wikipedia.

org/w/index.php?title=Laplacian_matrix&oldid=777613302.

[Wik17e] Wikipedia. Mathematical optimization — Wikipedia, The Free

Encyclopedia. [Online; accessed 5-April-2017]. 2017. url:

https://en.wikipedia.org/w/index.php?title=Mathematical_

optimization&oldid=771950307.

[Wik17f] Wikipedia. Sparse matrix — Wikipedia, The Free Encyclopedia. [Online;

accessed 17-May-2017]. 2017. url: https://en.wikipedia.org/w/

index.php?title=Sparse_matrix&oldid=777209696.

Bibliography
July 5, 2017

https://www.merriam-webster.com/dictionary/electronic
https://www.merriam-webster.com/dictionary/electronic
https://en.wikipedia.org/w/index.php?title=Backtracking_line_search&oldid=759866180
https://en.wikipedia.org/w/index.php?title=Backtracking_line_search&oldid=759866180
https://en.wikipedia.org/w/index.php?title=Basic_Linear_Algebra_Subprograms&oldid=777442365
https://en.wikipedia.org/w/index.php?title=Basic_Linear_Algebra_Subprograms&oldid=777442365
https://en.wikipedia.org/w/index.php?title=Combinatorial_optimization&oldid=770375802
https://en.wikipedia.org/w/index.php?title=Combinatorial_optimization&oldid=770375802
https://en.wikipedia.org/w/index.php?title=Laplacian_matrix&oldid=777613302
https://en.wikipedia.org/w/index.php?title=Laplacian_matrix&oldid=777613302
https://en.wikipedia.org/w/index.php?title=Mathematical_optimization&oldid=771950307
https://en.wikipedia.org/w/index.php?title=Mathematical_optimization&oldid=771950307
https://en.wikipedia.org/w/index.php?title=Sparse_matrix&oldid=777209696
https://en.wikipedia.org/w/index.php?title=Sparse_matrix&oldid=777209696

50 Bibliography

[Wik17g] Wiktionary. Manhattan distance — Wiktionary, The Free Dictionary.

[Online; accessed 7-April-2017]. 2017. url: https://en.wiktionary.

org/w/index.php?title=Manhattan_distance&oldid=42263941.

July 5, 2017
Bibliography

https://en.wiktionary.org/w/index.php?title=Manhattan_distance&oldid=42263941
https://en.wiktionary.org/w/index.php?title=Manhattan_distance&oldid=42263941

List of Figures

1.1 Design Flow [Lin12] (adapted to focus on “Placement” step) 2

1.2 Classification of Placement Methods 7

2.1 Random function, with minimization annotations 18

3.1 Roots of cos(x) function [Pbr08] . 24

3.2 Function with single minima . 24

3.3 High-Level Meta-algorithm . 31

3.4 Minimization Logic . 32

4.1 Example placement of aWarePlacement (Benchmark #4)

(c = 0.9, τ = 0.5) . 36

4.2 Example placement of Quadratic Placement (Benchmark #4) . . 36

4.3 Example placement of Benchmark #2 37

4.4 Metric vs % QP Error - Benchmark #4 38

51

List of Tables

4.1 Experimental results on benchmarks 36

4.2 Monte Carlo: Armijo-Goldstein c, τ parameters (clipped) 41

53

Acronyms

BLAS Basic Linear Algebra Subprograms. (Pages 33, 42, Glossary: Basic Linear

Algebra Subprograms)

CG Conjugate Gradient. (Pages 9, 14, 17, 18, Glossary: Conjugate Gradient)

EDA Electronic Design Automation. (Pages 1, 2, 19, 21, 23, 27, 33, 43, Glossary:

Electronic Design Automation)

HPWL Half-Perimeter WireLength. (Pages 5, 10, 11, 14, 20, 21, 35, 36, 39,

Glossary: Half-Perimeter WireLength)

IC Integrated Circuit. (Pages 1–4, 13, 20, 22, 28, 29, 33, 35, 40, 45, 59, Glossary:

Integrated Circuit)

VLSI Very-Large-Scale Integration. (Pages 1, Glossary: Very-Large-Scale

Integration)

54

Glossary

Analytical (optimization) see: Mathematical (Pages 5–7, 9, 10, 12, 15, 18, 29,

30, 45)

Basic Linear Algebra Subprograms (BLAS) is a specification that prescribes

a set of low-level routines for performing common linear algebra operations

such as vector addition, scalar multiplication, dot products, linear

combinations, and matrix multiplication. They are the de facto standard

low-level routines for linear algebra libraries; the routines have bindings for

both C and Fortran. Although the BLAS specification is general, BLAS

implementations are often optimized for speed on a particular machine, so

using them can bring substantial performance benefits. BLAS

implementations will take advantage of special floating point hardware such

as vector registers or SIMD instructions.

[...]

Functionality

BLAS functionality is categorized into three sets of routines called “levels”,

which correspond to both the chronological order of definition and

publication, as well as the degree of the polynomial in the complexities of

algorithms; Level 1 BLAS operations typically take linear time O(n), Level 2

operations quadratic time and Level 3 operations cubic time. Modern BLAS

implementations typically provide all three levels.
55

56 Glossary

Level 1

This level consists of all the routines described in the original presentation

of BLAS (1979), which defined only vector operations on strided arrays: dot

products, vector norms, a generalized vector addition of the form y ← αx+y

(called “axpy”) and several other operations.

Level 2

This level contains matrix-vector operations including, among other things, a

generalized matrix-vector multiplication (gemv): y ← αAx + βy as well as a

solver for x in the linear equation Tx = y with T being triangular. Design of

the Level 2 BLAS started in 1984, with results published in 1988. The Level 2

subroutines are especially intended to improve performance of programs using

BLAS on vector processors, where Level 1 BLAS are suboptimal “because they

hide the matrix-vector nature of the operations from the compiler”.

Level 3

This level, formally published in 1990, contains matrix-matrix operations,

including a “general matrix multiplication” (gemm), of the form

C ← αAB + βC where A and B can optionally be transposed or

hermitian-conjugated inside the routine and all three matrices may be

strided. The ordinary matrix multiplication AB can be performed by setting

α to one and C to an all-zeros matrix of the appropriate size.

Also included in Level 3 are routines for solving B ← αT−1B where T is a

triangular matrix, among other functionality. [Wik17b] (Page 33)

Combinatorial (optimization) is a topic that consists of finding an optimal

object from a finite set of objects. In many such problems, exhaustive search

is not feasible. It operates on the domain of those optimization problems, in

which the set of feasible solutions is discrete or can be reduced to discrete,

and in which the goal is to find the best solution. Some common problems

involving combinatorial optimization are the Traveling Salesman Problem

(“TSP”) and the Minimum Spanning Tree (“MST”) problem. [Wik17c]

(Pages 5, 6, 45)
July 5, 2017

Glossary

https://en.wikipedia.org/wiki/Travelling_salesman_problem
https://en.wikipedia.org/wiki/Travelling_salesman_problem
https://en.wikipedia.org/wiki/Minimum_spanning_tree

Glossary 57

Conjugate Gradient (method) is an algorithm for the numerical solution of

particular systems of linear equations, namely those whose matrix is

symmetric and positive-definite. The conjugate gradient method is often

implemented as an iterative algorithm, applicable to sparse systems that are

too large to be handled by a direct implementation or other direct methods

such as the Cholesky decomposition (Page 9)

Critical path is defined as the path between an input and an output with the

maximum delay. (Page 4)

Electronic Design Automation (EDA), also referred to as Electronic

Computer-Aided Design (ECAD), is a category of software tools for

designing electronic systems such as integrated circuits and printed circuit

boards. The tools work together in a design flow that chip designers use to

design and analyze entire semiconductor chips. Since a modern

semiconductor chip can have billions of components, EDA tools are essential

for their design (Page 1)

Half-Perimeter WireLength The half-perimeter wirelength model is commonly

used because it is reasonably accurate and efficiently calculated. The

bounding box of a net with p pins is the smallest rectangle that encloses the

pin locations. The wirelength is estimated as half the perimeter of the

bounding box. For two- and three-pin nets (70-80% of all nets in most

modern designs), this is exactly the same as the rectilinear Steiner minimum

tree (RSMT) cost (discussed later in [Kah+11]). When p > 4, HPWL

underestimates the RSMT cost by an average factor that grows

asymptotically as √p. [Kah+11, p. 97, s. 4.2] (Pages 5, 10)

Laplacian Matrix In the mathematical field of graph theory, the Laplacian

matrix (sometimes called admittance matrix, Kirchhoff matrix or

discrete Laplacian) is a matrix representation of a graph. Given a simple

graph G with n vertices, its Laplacian matrix Ln×n is defined as:

Glossary
July 5, 2017

https://en.wikipedia.org/wiki/Graph_(discrete_mathematics)#Simple_graph
https://en.wikipedia.org/wiki/Graph_(discrete_mathematics)#Simple_graph

58 Glossary

L = D − A

where D is the degree matrix and A is the adjacency matrix of the graph.

Since G is a simple graph, A only contains 1s or 0s and its diagonal elements

are all 0s. In the case of directed graphs, either the in-degree or out-degree

might be used, depending on the application. The elements of L are given by

Li,j :=

deg(vi), i = j where deg(vi) is the degree of vertex i

−1, i 6= j, and vi is adjacent to vj

0, otherwise

[Wik17d] (Pages 21, 22, 29, 40)

Legalizer A Placement legalizer snaps cells to the sites of rows such that no cells

overlap. This has to be done with minimum adverse impact on the quality of

the placement. [Luc06] (Pages 5, 9, 10, 43, 45, 46, 59)

Manhattan Distance The distance between two points in a grid based on a

strictly horizontal and/or vertical path (that is, along the grid lines), as

opposed to the diagonal or “as the crow flies” distance. The Manhattan

distance is the simple sum of the horizontal and vertical components,

whereas the diagonal distance might be computed by applying the

Pythagorean theorem. [Wik17g] (Pages 4, 20)

Mathematical (optimization) (alternatively named mathematical

programming or simply optimization or optimisation), is the selecstion

of a best element (with regard to some criterion) from some set of available

alternatives.

In the simplest case, an optimization problem consists of maximizing or

minimizing a real function by systematically choosing input values from

within an allowed set and computing the value of the function. [Wik17e]

(Page 55)
July 5, 2017

Glossary

Glossary 59

Placement is an essential step in electronic design automation - the portion of the

physical design flow that assigns exact locations for various circuit components

within the chip’s core area. An inferior placement assignment will not only

affect the chip’s performance but might also make it nonmanufacturable by

producing excessive wirelength. Currently, placement is usually separated into

Global Placement, Legalizer and Detailed Placement (Pages 2, 3, 5–10,

12, 13, 15, 18, 29, 43, 45, 46, 51, 58)

Switching activity is the measurement of changes of signal values. It has two

parts: probability - the likelihood that a signal will have the logic value of ‘1’

- and toggle density - the number of switches per unit time. (Page 4)

Very-Large-Scale Integration is the process of creating an IC by combining

thousands of transistors into a single chip. The microprocessor is a VLSI

device. Before the introduction of VLSI technology most ICs had a limited

set of functions they could perform. An electronic circuit might consist of a

CPU, ROM, RAM and other glue logic. VLSI lets IC designers add all of

these into one chip. (Page 1)

Glossary
July 5, 2017

	Analysis and Implementation of Analytical Placement Algorithms for Microelectronic Circuits
	Περίληψη
	Abstract
	Declaration
	Acknowledgements
	Table of Contents
	Introduction to EDA
	Physical Design - glos:placement
	Placer Optimization Parameters
	Decomposing glos:placement Step

	Thesis Motivation and Purpose

	Implementation Background
	Analytical Global Placement
	Wirelength Model
	Half-Perimeter WireLength (HPWL)

	Density Function
	Analytical Global Placement Algorithmic Properties
	Minimization of a piece-wise non-convex function
	Overflow Ratio

	acro:cg Search with Dynamic Step Size
	Review of Analytical Global Placement methods
	Armijo-Goldstein Backtracking Line Search
	Algorithm Implementation
	Algorithm Pseudo-code
	Usage of Armijo-Goldstein

	Thesis Motivation and Purpose

	aWarePlacement Implementation and Analysis
	Net Model
	Wirelength Model

	Initial Attempts
	GNU Scientific Library
	Sparse Matrices

	Minimization (or Maximization) of Functions
	Bracketing a Minimum
	Conjugate Gradient Method in Multidimensions
	Validation Methodology

	Armijo-Goldstein Line Search
	Implementation - Free parameters: c and τ

	Current Completed Work
	Implementation Notes

	Experimental Results
	Usage of Minimizer with Squared Euclidean cost function
	Armijo-Goldstein Line Search
	Notes regarding Armijo-Goldstein Monte Carlo

	Final Notes Regarding the Implementation
	Mathematical Understanding
	Mathematical Operations
	Other Free Parameters of the Implementation

	Conclusions and Future Work
	Bibliography
	List of Figures
	List of Tables
	Acronyms
	Glossary

