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Περίληψη 
 

Το φίλτρο Local Laplacian , είναι μια εφαρμογή επεξεργασίας εικόνας , που 

επεξεργάζεται τις λεπτομέρειες και τις ακμές μίας εικόνας και παράγει ένα μεγάλο 

εύρος από έντονα εφέ , χωρίς όμως να αλλοιώνει την εικόνα. Το φίλτρο παράγει 

πολλές , μικρές Laplacian πυραμίδες από επεξεργασμένες εκδοχές της εικόνας 

εισόδου. Δυστυχώς αυτό έχει ως αποτέλεσμα υψηλούς χρόνους εκτέλεσης. Στην 

αρχική C υλοποίηση η επεξεργασία μιας εικόνας 1024x768 χρειάστηκε 70 

δευτερόλεπτα .Σε αυτή τη διπλωματική έγινε μια προσπάθεια να μειωθεί ο χρόνος 

εκτέλεσης , αξιοποιώντας τον παραλληλισμό που υπάρχει στον αλγόριθμο , με την 

χρήση μιας multi thread CPU ,μιας  GPU και μιας FPGA οι οποίες ελέγχονται από 

ένα Heterogeneous-aware Runtime System, το Centaurus runtime. Με την χρήση 

της γλώσσας OpenCl έγιναν οι εκδόσεις για την multithreaded CPU και την GPU , 

ενώ για την υλοποίηση σε FPGA χρησιμοποιήθηκε το Vivado HLS , μέσω του 

οποίου παράξαμε έναν accelerator  σε Verilog. Γενικά επικεντρωθήκαμε 

περισσότερο στην FPGA υλοποίηση Τελικά καταφέραμε να πάρουμε πολύ καλά 

αποτελέσματα για την GPU και την FPGA μειώνοντας τον χρόνο εκτέλεσης σε 2.9 

δευτερόλεπτα για την FPGA και 3.6 δευτερόλεπτα για την GPU. 

 

 

Abstract 
 

The Local Laplacian Filter, is an edge aware image processing application that 

produces a wide range of strong effects for both detail manipulation and tone 

mapping of an image without corrupting the image. The filter constructs many small 

Laplacian pyramids of processed versions of the input image. Unfortunately this 

results in high execution times. In our first C implementation processing one 

1024x768 image was done in about 70 seconds .In this thesis we tried to reduce the 

execution time of the application by exploiting the parallelism of the algorithm , with 

the use of a multi thread CPU a GPU and an FPGA device controlled by a 

Heterogeneous-aware Runtime System, the Centaurus runtime. For the multi thread 

CPU and the GPU we used OpenCL and for the FPGA the Vivado HLS tool was 

used to produce an accelerator in Verilog. We focused on the FPGA implementation 

and both the FPGA and the GPU implementations gave a very good speedup 

reducing the execution time to 2.9 seconds for the FPGA and 3.6 seconds for the 

GPU. 
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1 Introduction 
 

 

Figure 1 Example of the Local Laplacian filtering for a gray scale image input (left) 
and the processed output (right) 

The local Laplacian filters, introduce a method for edge aware image processing, 

using Laplacian pyramids. The algorithm can produce results for detail enhancement 

or detail smoothing (edge manipulation), and for tone mapping or inverse tone 

mapping (tone manipulation) of an image. «The output is calculated as the 

construction of the Laplacian pyramid of the filtered output. For each output pyramid 

coefficient, we render a filtered version of the full-resolution image, processed to 

have the desired properties according to the corresponding local image value at the 

same scale, build a new Laplacian pyramid from the filtered image, and then copy 

the corresponding coefficient to the output pyramid. The advantage of this approach 

is that while it may be non-trivial to produce an image with the desired property 

everywhere, it is often easier to obtain the property locally” [ (PARIS, HASINOFF, & 

KAUTZ, 2011)] 

 

Methods like anisotropic diffusion [ (Perona & Malik, 1990); (Aubert & Kornprobst, 

2002)], neighborhood filtering [ (Tomasi & Maduchi, 1998); (Kass & Solomon, 2010)], 

edge-preserving optimization [ (Bhat, Zitnick, Cohen, & Curless, 2010); (Farbman, 

Fattal, Lischinski, & Szeliski, 2008)] and edge-aware wavelets [ (Fattal, 2009)], are 

considered to be more suitable than Laplacian pyramids for detail manipulation. 

Unfortunately, some of them have difficult parameters to set or they suffer from edge 

artifacts like haloes in large decreases on the details. 

 

1.1 Problem description  

 

The local Laplacian filters method does not generate edge artifacts even for large 

increases in details, performs well on all cases and produce a wide range of effects. 

The basic shortcoming of this approach is the high running time (1 min in a 1MP 
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image) of the algorithm. In this thesis we tried to minimize the running times of the 

local Laplacian filter, using the Centaurus runtime (Vassiliadis, et al., 2015), a 

Heterogeneous-aware Runtime System that runs on top of OpenCL and supports 

kernel execution on multicore CPU, GPU and FPGA. In this approach C and 

OpenCL code was produced, for the CPU and the GPU and C++ code as input for 

the Vivado HLS in order to generate Verilog and finally a bitstream for the FPGA 

thought Vivado. We tried different implementations in different devices in order to 

decide which one was the best in terms of accuracy and performance. The 

implementations will be presented and explained later along with the profiling 

numbers. 

 

 

 

 

1.2 Background on Gaussian and Laplacian Pyramids. 

 

In order to explain the algorithm an introduction to the Gaussian and Laplacian 

pyramids [ (Burt & Adelson)] is necessary. The Gaussian pyramid is a set of images 

that derive from one input image. Each of these images (called levels) represent a 

version of the input image (which is also the level 0 image) at a lower resolution. In 

this approach each level has half the width and height of its parent level. Every level, 

is produced by its previous level by applying a Gaussian blur, and a downsample 

kernel. In this implementation the Gaussian blur is a 2D convolution filter (with 

zeroes for padding) with the 5 length kernel w= {.05, .25, .4, .25, .05}.Then 

downsample is applied by copying half the pixels(in width and height ) from the 

output (t0) of the Gaussian filter (g1(i,j)=t0(2*i,2*j)). As a result of these operations ( 

𝑔𝑙(𝑖, 𝑗) =  ∑ ∑ 𝑤(𝑚, 𝑛)𝑔𝑙−1(2𝑖 + 𝑚, 2𝑗 + 𝑛)2
𝑛=−2

2
𝑚=−2 ) the higher frequency details of 

the image progressively disappear from one level to another. 

The Laplacian pyramid on the other hand uses the same concept of pyramids but in 

each level, only the higher frequency details are preserved. Every level of the 

Laplacian pyramid derives from the Gaussian pyramid by expanding the next level 

(smaller version) and subtracting it from the current level L`= G`- expand (G`+1). 
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Figure 2 Example of a Gaussian {G} and a Laplacian {L} pyramid. 

The expand() operation consists of an upsample operation and a Gaussian blur. The 

upsample doubles the dimensions of the image in width and height. More specific if 

t0 is the upsample output and g1 the input then  t0(i,j) = 4*g1(i/2,j/2)  if( i%2=j%2 == 

0 ) ,0 else .The Gaussian blur will then smooth the upsample output using the same 

kernel as with the Gaussian pyramid. The smaller image (top level) of the Laplacian 

pyramid, called the residual, is always the same as the smaller image (top level) of 

the Gaussian Pyramid. 

 An interesting property of the Laplacian pyramid is that starting from the residual, we 

can collapse the pyramid, in order to get the image of the desired Gaussian pyramid 

level, or in the case where we fully collapse the pyramid, get the input image. Given 

that the residual contains all the low frequencies, we can expand it and add the 

Laplacian image of the previous level (same as add the high frequencies that we 

subtracted when we constructed the level )  in order to get the Gaussian image of 

that level. Recursively if we consider the output of this procedure as the new 

“residual” we can continue to collapse until we get the input image. 

 

 

 

 

2. Algorithm description 

2.1 Preprocessing 

The Local Laplacian algorithm, operates by filtering the luminance of an image, as 

well as the RGB channels, by processing each channel separately. The first 
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preserves the original colors while the latter will also modifies the color contrast. The 

input image must also be scaled from [0,255] to [0, 1] floating point numbers (the 

Matlab code given uses double precision, but float is enough).In this work only the 

luminance filtering is supported. So as a preprocessing we convert the RGB values 

to grayscale (and save the ratios, to reintroduce colors after the processing) and 

scale them to [0, 1]. 

 

 

2.2 The algorithm 

 

 

Figure 3 The algorithm, as described by [ (PARIS, HASINOFF, & KAUTZ, 2011)] 

 

 

First we need to construct the Gaussian pyramid of the input image. On every level 

the value of the Gaussian image in a specific position will represent a global value of 

one window in the input image. If the absolute difference of a pixel value and the 

global value in such a window is bigger than a user defined parameter (sigma) then it 

will be considered an edge , if it is smaller a detail. 

In Local Laplacian Filtering we want to calculate a Laplacian pyramid that when it is 

collapsed, it will give us the output image with the desired properties. In order to 

achieve that, each coefficient of each level, is calculated separately, one at a time 

taking into account only its local properties. 

For every coefficient a different version of the input image is produced through the 

remapping function (which will be explained later).Since this coefficient is affected 
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only by local values ,  we only need a small region around it and therefore we 

process a window of the input image with the remapping function each time. 

From the output image of the remapping function we construct a temporary 

Laplacian pyramid and we copy the corresponding coefficient, from the 

corresponding level of this pyramid to the output Laplacian pyramid. The procedure 

is repeated for every pixel of every level (apart from the residual which is copied from 

the Gaussian pyramid). 

When the output Laplacian pyramid is completed, it is collapsed, producing the 

output image. 

 

 

Figure 4 Example of a Laplacian pyramid produced with the Local Laplacian filtering 
method (top) versus a typical Laplacian pyramid (bottom) 

2.2.1 Remapping function 

The remapping function, is the function responsible for detecting (locally) edges and 

details in small windows and amplifying, or smoothing them. The inputs to the 

remapping function is a global value from the Gaussian pyramid and a pixel value 

from the window that is to be remapped .The global value g0= Gl0(x0, y0) is copied 
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from the position and scale/level that we calculate the coefficient. If we try to 

calculate the pixel (4, 5) position, on the third level of the Laplacian pyramid, then g0 

should be the pixel at (4, 5) position on the third level of the Gaussian pyramid. This 

value, is global in a sense that it represents the intensities of all the pixels in the 

window that is currently remapped. Given a user defined parameter sigma, all values 

closer to g0 than sigma are considered edges and all those further than sigma are 

considered edges. 

Edges and details are processed in a different way, which is defined from the user 

defined parameters alpha and beta .Alpha controls the details, and beta the edges 

throughout the functions Rd (), Re ().More specific: 

𝑟(𝑖) = 𝑟𝑑(𝑖) 𝑖𝑓 |𝑖 − 𝑔0| < 𝜎𝑟 𝑎𝑛𝑑 𝑟(𝑖) =  𝑟𝑒(𝑖) 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒 

𝑟𝑑(𝑖) =  𝑔0 + 𝑠𝑖𝑔𝑛(𝑖 − 𝑔0)𝜎𝑟𝑓𝑑 (
|𝑖 − 𝑔0|

𝜎𝑟
) 

𝑟𝑒(𝑖) =  𝑔0 + 𝑠𝑖𝑔𝑛(𝑖 − 𝑔0)(𝑓𝑒(|𝑖 − 𝑔0| − 𝜎𝑟) + 𝜎𝑟) 

 

where r(i) is the output of the remapping function and i is the windows input pixel 

value. 

𝑓𝑑()  is an S-shaped pointwise function where 𝑓𝑑(∆)=∆𝑎𝑙𝑝ℎ𝑎 .For 0<alpha<1 details 

are increased and for alpha > 1 details are smoothed. Finally 𝑓𝑒(𝑥) = 𝑏𝑒𝑡𝑎 ∗ 𝑥 

0<beta<1, for tone mapping and beta>1, for inverse tone mapping. In this 

implementation, and especially for the FPGA the beta is fixed at 1 so it does not 

process edges. Choosing a different parameter, will still work in most cases, but the 

results have not been tested thoroughly. 

 

2.2.2 Determine the sub-region of the input image needed to 

evaluate the Laplacian pyramid coefficient 

 

Since the window corresponds to one coefficient of the Laplacian output every time, 

we must decide the position and size of that window, in the input image. According to 

the algorithm, from the remapped version of that window we will have to construct an 

intermediate Laplacian pyramid, with level depth the same as the level of the output 

Laplacian pyramid that we try to evaluate. To calculate the level 0 for the output 

Laplacian pyramid for example we need to construct the Laplacian level 0 of the 

remapped window. For this , a 8x8 sized window would suffice , as only two levels of 

Gaussian pyramid will be constructed  (The level 0 is of size 8x8  and the level 1 with 

size 4x4)  and only one ( 8x8 sized) level of Laplacian pyramid .To determine the 

position of the window we must consider that the centermost pixels of this window 

will have bigger impact on the value of the coefficient .For the level 0 for example the 

pixel at (4,4) of the intermediate Laplacian pyramid , will be copied to the output 

Laplacian pyramid. This means that when we try to calculate the pixel (10,10) of the 

level 0 output Laplacian pyramid for example, the window must have column range 
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(6-14) and row range (6-14) on the input image. The center of the window, will now 

be the pixel (10,10) of the input image. To calculate the pixel (11,10) the window 

must be (6-15,6-14) and so on. For the next levels we must consider that one pixel of 

the Gaussian pyramid level 1 for example has a global value for a bigger window in 

the image (basically, it stores information about 4 pixels of the input image).The size 

of the level 1 window is 20x20 .Also the g0 must map to the center most pixel of the 

window when upsampled. This means that for g0 at (40,40) of the level 1 , we get a 

window centered at (80,80) of the input image which means  that it has range (70-

90,70-90).We could simply say that the stride of the windows for level 1 is 2.The next 

windows for the next levels are produced in the same fashion. 

 

Level Windows size Stride 

0 8x8 1 

1 20x20 2 

2 44x44 4 

3 92x92 8 

Remapped widow size and stride per level 

 

 

2.3 Post processing 

Finally we rescale the filtered output from [0, 1] to [0,255] and reintroduce colors 

using the ratios saved during the preprocessing. 
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2.4 Parallelism 

 

 

 

Figure 5 Block diagram of the algorithm. 

The rectangles represent kernels, while the rounded rectangles represent stored 
data. The arrows show both the order of execution, and the data flow between 
kernels (these data only pass from one kernel to the next). 

 

 

As we can see (from the block diagram image) the Gaussian pyramid construction , 

does not support so much parallelism between kernels, as every level requires its 

previous level completion,( unless a steaming like parallelism is allowed).The same 

is true for the Laplacian pyramid reconstruction , and for the local Laplacian pyramid 

construction as well. 

However the bottleneck of this algorithm lies in the construction of the output 

Laplacian pyramid. In each iteration of this triple nested loop a small image is 

remapped and its (local) Laplacian pyramid is computed. Assuming that the 

Gaussian pyramid is complete, every one of these iterations is completely data 

independent from one another and therefore could execute in parallel if there were 

enough resources. The next bottleneck, is the “latency” of each loop. Fortunately 

more parallelism is supported inside every kernel in order to reduce it. 

The kernel for the construction of the intermediate remapped image/window can 

produce each pixel of the image in parallel since every output pixel depends from 

one global value g0, the same for every pixel in the same window, and one pixel 

value, from the input image. 
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The Gaussian blur requires one column convolution, and one row convolution. In 

each of these kernels, parallelism is available since there is no accumulation like 

process, in any of them and each output purely depends on the inputs. Unfortunately 

in every pyramid construction, (unless a steaming like parallelism is allowed), every 

kernel has data dependencies from the one executed before it. 

 

 

3. Implementation 

3.1 Resources 

3.1.1 The runtime 

The runtime, uses the LLVM 3.7 compiler and the kernels run on top of OpenCL-1.2-

4.5.0.8 

All of the kernels were implemented in OpenCL and are invoked from a C program, 

using the Centaurus runtime. Using the runtime, data transfer and kernel invocations 

become quite simple  

E.g.  

#pragma acl task in(A) out(B) workers(numW) groups(numG) 

label(“kernel”) device(0) 

kernel(A,B,params); 

#pragma acl taskwait label(“kernel”) 

 

In this example the OpenCL kernel is executed in the device 0 (device 0 is the GPU 

and device 1 is CPU in out installation of the runtime) with numW as the number of 

workers-threads per block and numG as the total number (global) of workers in the 

device. The data transfer is automatically handled by the runtime and any data 

dependency is resolved before the kernel execution. For the data transfers in() and 

out() can be used to declare the direction of the data (in() means transfer data to the 

kernel, and out(), from the kernel).In the case above the data will only be transferred 

once to and from the device, meaning that in the next kernel invocation that will use 

the data A for example, the A data will not be updated, in the case that they will be 

changed from another device. In order to force the data to update we can use 

device_in(A)/device_out(B) instead. Finally when we don’t need to transfer data from 

one device to another we can use buffer(), to deny any transfer. 

With the use of the taskwait pragma, we force synchronization on the execution flow. 

 

3.1.2 The CPU 

The system used for developing and testing has an i7-4820K @ 3.70GHz Intel CPU 

with 4 cores and 2 threads per core. Ideally this should give us at least 6x speedup, 

provided there is a good memory access pattern. 
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3.1.3 The GPU 

The use of GPGPU (General Purpose GPU) computing is on the rise the last years. 

Thanks to the massive parallelism that GPU’s natively offer, many applications 

including image processing can get a significant increase to performance if they can 

exploit this parallelism. In our system we use a GeForce GTX 770 GPU by NVidia. 

This GPU offers 8 multiprocessors and each multiprocessor can have up to 192 

threads (called CUDA cores).The multiprocessors execute the threads in groups of 

32 threads (called warps) that execute the same operations but with different data 

.The threads in each warp run completely concurrently. 

From the side of the OpenCL programmer, the threads correspond to OpenCL work-

items and they can be organized to work groups. All the threads inside a work group 

, can have synchronization points declared by the programmer  .It is important for the 

overall performance that in each group every 32 of the work items , have the same 

execution flow , otherwise there will be divergence and less than 32 threads will run 

concurrently , resulting in larger execution times. 

Of course every application needs data to process. Apart from divergence the 

bottleneck of an execution on a GPU is the high data transfer times to and from the 

memory. There are 3 basic types of memory in an NVidia CPU. The local memory of 

a thread, which is very fast and can only be accessed by the same thread. The 

shared memory of a group which can be accessed by all the threads inside a group, 

but not from threads of a different group and finally the global memory. The global 

memory is a slow but large memory that can be accessed by any thread of any 

group and also by the CPU. However it can perform very well if there is a coalesced 

access pattern. Before an application’s execution starts, the CPU or a previous 

executed GPU kernel loads data to the global memory. During the application’s 

execution the threads use that memory to load and store data. It is important to avoid 

unnecessary global loads and stores, and try to use the shared memory when the 

same data are needed by many threads inside a group.  

  

 

As a GPU, the system uses a GeForce GTX 770. 

The deviceQuery for this GPU returned the results below: 

 

  CUDA Driver Version / Runtime Version        7.5 / 7.5 

  CUDA Capability Major/Minor version number: 3.0 

  Total amount of global memory:               2047 MBytes (2146762752 bytes) 

  ( 8) Multiprocessors, (192) CUDA Cores/MP:  1536 CUDA Cores 

  GPU Max Clock rate:                           1110 MHz (1.11 GHz) 

  Memory Clock rate:                            3505 Mhz 

  Memory Bus Width:                            256-bit 

  L2 Cache Size:                                524288 bytes 
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  Maximum Texture Dimension Size (x,y,z)      1D=(65536), 2D=(65536, 65536), 

       3D=(4096, 4096, 4096) 

  Maximum Layered 1D Texture Size, (num) layers   1D=(16384), 2048 layers 

  Maximum Layered 2D Texture Size, (num) layers   2D=(16384, 16384), 2048 layers 

  Total amount of constant memory:             65536 bytes 

  Total amount of shared memory per block:    49152 bytes 

  Total number of registers available per block:  65536 

  Warp size:                                    32 

  Maximum number of threads per multiprocessor:  2048 

  Maximum number of threads per block:        1024 

  Max dimension size of a thread block (x,y,z):  (1024, 1024, 64) 

  Max dimension size of a grid size (x,y,z):   (2147483647, 65535, 65535) 

  Maximum memory pitch:                        2147483647 bytes 

  Texture alignment:                            512 bytes 

  Concurrent copy and kernel execution:        Yes with 1 copy engine(s) 

  Run time limit on kernels:                   Yes 

  Integrated GPU sharing Host Memory:          No 

  Support host page-locked memory mapping:    Yes 

  Alignment requirement for Surfaces:          Yes 

  Device has ECC support:                      Disabled 

  Device supports Unified Addressing (UVA):   Yes 

  Device PCI Domain ID / Bus ID / location ID:    0 / 4 / 0 

 

 

3.1.4 FPGA 

 

FPGAs are also used in high performance computing and they also allow high 

parallelism in a different way than GPUs. An FPGA (Field Programmable Gate 

Arrays) is a device that consists of: an array of configurable logic blocks (CLB), ram 

blocks and a hierarchy of reconfigurable blocks .All these components can be 

programmed (and programmed) by a bitstream file, with the use of a hardware 

description language and a bitstream synthesis tool, to produce custom hardware 

applications. The advantage of FPGAs over GPU’s and CPU’s is its low energy 

consumption , and the fact that the programmer can define most of the system’s 

architecture and therefore exploit furthermore the parallelism of an application, much 

like creating an ASIC. The basic disadvantages are, that there must be enough 

resources in the FPGA for the application and that there are timing constraints that 

must be met, in order for the design to be functional. Unfortunately developing an 

FPGA application in HDL is very time consuming because it requires much more 

analysis of the application in order to achieve the minimum possible latency of a 

design and mostly because hardware descriptions language are hard to use , 

compared to software languages. The development of high level synthesis tools 

comes to solve this problem by transforming code written in a higher level language 

to an HLD. In this implementation and since there is an FPGA by Xilinx on the 
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system, I used the Vivado HLS 14.4 tool with the help of the Vivado documentation [ 

(Xilinx, Xilinx. Vivado Design Suite User Guide, High-Level Synthesis.)] to transform 

C code to Verilog and the Vivado 14.4 tool to produce the bitstream from the Verilog 

files. In order for the Vivado HLS to produce Verilog code, some coding conventions 

must be followed and in order for this code to be efficient, some pragmas and 

directives provided by the tool are used. Their use and the impact to the results will 

be explained along with the implementation. 

 

The system has a VC707 FPGA board connected via PCIe. The FPGA on the board 

is a XC7VX485T virtex-7 FPGA and it has more than enough resources. The 

resources of the FPGA are presented below. 

 

Figure 6 Virtex 7 specifications by (Xilinx, 7 Series Overview) 

 

For the implementation, I also used the 1 GB DDR3 ram of the board. 

 

 

 

3.2 C Implementation 

 

 

The first step of the implementation, was to translate the code from Matlab, where 

the filter is originally implemented, to C. In this implementation I set the level of 

pyramids to 5 .I noticed that more than 5 levels do not contribute so much to the 

result , especially for smaller images.  After that the following kernels were 

distinguished: 

 

The Gaussian pyramid kernel 

As described above, the first step of the algorithm is to construct the Gaussian 

pyramid of the input image and for that a Gaussian blur followed by a downsample 

kernel were used, for each level. The construction of the Gaussian pyramid is very 

fast compared to the construction of the Laplacian pyramid so I did not tried to 

optimize this step of the algorithm. 
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The remap kernel 

This kernel has as inputs, the input image, the location and size of the window, and 

one value from the Gaussian pyramid. It uses the remapping function to produce the 

intermediate remapped window. 

 

The local Gaussian blur kernel(s) 

Applies the Gaussian blur, as explained, to a window. In C it is the same kernel, 

used to construct the Gaussian pyramid. The Gaussian blur consists of two kernels 

(convolution row and convolution column) executed in series 

 

The local downsample kernel 

The local downsampling kernels halves a sub-image in both width, and height. To 

achieve that it copies one pixel from a 2x2 window of the input to the output sub-

image. It is interesting here that the kernel must choose to copy the one pixel from 

the 2x2 window that would appear in the input Gaussian pyramid as well and 

decimate the others. 

For example if the remap kernel , remaps from the location (0-8,0-8) of the input 

image then the local downsample kernel would copy the pixels (0,0),(2,0),(4,0),(6,0) 

of its input to create the first line of the downsampled output. But if the remap kernel , 

remaps from the location (1-9,0-8) of the input image , then the kernel would have to 

copy the pixels (1,0),(3,0),(5,0),(7,0) of its input because the pixel (0,0) of the input 

sub-image which corresponds to the pixel (1,0) of the input image would never 

appear to the global Gaussian pyramid. 

 

The local upsample kernel 

 

Doubles the size of an image by matching one pixel value (multiplied by 4) of the 

input image to a 2x2 window on the output image .Same as the downsample kernel, 

the upsample much match this value to the correct location in that 2x2 window in 

order to match the Gaussian image that it will be subtracted from. All the other 

values in that window must be zero (the ones decimated by the downsample kernel). 



 

14 
 

 

Figure 7 Example of the downsample and the upsample operations 

As an example if the downsample kernel chooses the x from the 2x2 widow (a,b,c,x) 

they must return to their original positions from the upsample kernel 

The local subtract kernel 

Subtracts 2 images, to produce the Laplacian level 

 

 

The kernel for collapsing the output Laplacian pyramid 

The last step of the algorithm expands the residual, adds the expanded image with 

its previous level and repeats this process with the output image, as the new 

residual. For this a Gaussian blur was used, followed by an upsample kernel, and a 

kernel that adds the values of two images. 

The first and the last kernels were not given much attention because they are not the 

bottleneck of the execution time and their implementation is trivial. 
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3.2 CPU and GPU runtime Implementations 

 

In order to use the massive parallelism that the GPU offers, I tried to produce a 

whole line of an output Laplacian pyramid level, in parallel. Therefore, the loop that 

goes across the columns of the output Laplacian pyramid is now embedded inside 

the kernels and the triple nested loop became a double nested loop (one loop for 

each pyramid level and one loop for each row output). 

Because each value of the Gaussian pyramid corresponds to a window, the memory 

requirements grow after the execution of the remap kernel. It is only reasonable that 

the data should stay in the device that executes the kernels as buffers (using the 

buffer() pragma ) until the intermediate windows and pyramids are no longer needed 

in order to avoid data transfer costs .For this reason heterogeneous kernel execution 

was not preferred. 

The inputs to the device are the input image (only once) and the Gaussian level 

(again once for each level) that we need, in order to produce the output Laplacian 

level. The output is the Laplacian output level, but produced and transferred from the 

device one line at a time. 

 

After this short analysis, I implemented all the local kernels in OpenCL, to assign 

their execution to the CPU and GPU devices. 

 

The remap kernel is the most interesting kernel here. Because the windows are 

overlapping, I used the shared memory of the GPU to cache the input image and 

reduce the access to the global memory, which is very slow compared to the shared 

memory. Since the size and the number of the windows changes from level to level. 

The number of threads in each group changes dynamically from level to level, to 

match the number and the size of the windows, but it is always bigger than 132.The 

principal of the kernel stays the same. Every time, the creation of a number of 

windows is assigned to a thread group. 

The first stage of the kernel is to load from the global memory , the input image 

pixels required to create one line of the windows , as well as the g0 value (stored in a 

register).At this stage, every thread loads and each of the loads from the global , and 

the stores to the shared memory , are coalesced. At the next stage a number N of 

threads  , is responsible to create one line of the output window through an iteration 

with stride N and send the output data , back to the .Then , the control flow of the 

kernel returns to stage 1 and creates the next line of the remapped windows. The 

total number of thread groups is the total number of windows divided by the number 

of windows per group. 

 

The Gaussian blur , is composed of a vertical(column) convolution , and a horizontal 

(row) convolution , with the filter {.05, .25, .4, .25, .05}.Basically , the implementation 

of these kernels and especially of the column convolution , is an adaptation of the 2D 

convolution , that is offered as an example by NVIDIA (NVIDIA, n.d.) , to the concept 
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of windows that we use. More specific, in the column convolution every thread group 

will process one line of the window. Every thread will store from the global memory 

or the zero padding, to the shared memory. Then every thread, but the four 

responsible to store the padding, will calculate, one output pixel, of the convolution 

operation. The memory stores and loads are coalesced in the column convolution. 

The row convolution has the same principals, but it loads/stores rows of the input 

image. Because of this, the accesses are not coalesced and there is a loss in 

performance. 

 

The upsample, and downsample, kernels are mostly data transfers and logistics in 

order to decide the locations, of the reads and writes. Because there is no data 

reusability, the shared memory is not used. 

 

The subtract kernel consists of two loads (one from the Gaussian, and one from the 

expanded image) from the centers of two sub-images, one subtraction, and the 

coalesced store of the result. It is a small kernel in terms of operations, but it has 

increased execution time, because in that point the data, are transferred from the 

device memory, back to the system memory. 

 

3.2.1 Profiling 

In this chapter I present the performance numbers for the implementations so far, 

along with the observations that led to the optimizations. 

 
Figure 8 Total execution time per device for a 1024x768 image 
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Time in ms Single core multicore GPU 

remap 32270,31336 21246,20368 3129,932547 

conv2D 34438,03265 3627,996718 2349,585979 

upsample 1887,202613 437,333315 263,075615 

downsample 444,220504 407,834407 252,746314 

subtract 1277,633131 466,213931 9327,063624 

    

total 70531,79294 26211,11913 15357,10428 

Pure kernel 

execution   4.898 

 

As we can see in the diagram and the spreadsheet above in the naive 

implementation the remap kernel is the bottleneck in the CPU. This is reasonable, 

even though it is executed only once per window, because there are many floating 

point operations in double precision.The blur kernel (Conv2D) is the second most 

computational intense kernel and it is executed multiple times per window. Therefore 

in the single core version of the code, where there is no parallelism to make up to the 

floating point operations, it occupies a significant percentage of the execution time. 

In the GPU the subtract takes up to 60% of the execution time as we can also see on 

the diagram below. This happens because at that point the data are also transferred 

back to the CPU. 
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Figure 9 GPU kernel’s execution mix for the first implementation 

By measuring only the kernel execution time, and not data transfers or kernel 

overheads we can see that the above are the basic problem in this implementation, 

since the kernel execution is only 32% of the total execution time.

 

Figure 10 GPU memory transfers and kernel overhead vs pure kernel execution 
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3.3 The first optimization 

The first optimization was to decimate unnecessary operations that came up from 

the Matlab code. Since in the construction of the output Laplacian pyramid only one 

level of the intermediate Laplacian pyramid is required, the calculations of all the 

other levels is redundant. The most extreme example is the case of the level 3.In the 

Matlab code (and in the c code that came up).An intermediate Laplacian pyramid of 

3 levels is constructed, and only one pixel from the third level is used. Also, the lower 

levels of the output pyramid are the most time and memory consuming to create and 

store. After the optimization only one level of the intermediate Laplacian pyramid is 

produced. Another optimization in the same concept is in the local subtract kernel. 

The local subtract kernel produces a Laplacian level by subtracting a Gaussian level 

and an expanded image. From this Laplacian level, only the center most pixel will be 

used/stored to the output Laplacian pyramid. The unnecessary subtractions were 

decimated. 

So far, in the implementation all the windows of a level, have the same size. The 

windows on the sides of the image used a padding to cover the missing pixels, and 

the results of that were noticeable in the output image. In order to correct this I 

decimated any remapping or blurring operation at those pixels, reducing the size of 

the window. 

 

 

 

 

Figure 11 Total execution time per device for a 1024x768 image on the optimized 
version 
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 Single core Single core -O3 Multicore GPU 

remap 31424,67386 23450,23936 19933,63111 3369,512597 

conv2D 18415,64916 2704,891878 2661,9427 1261,508697 

upsample 380,474309 90,235924 209,893086 175,603085 

downsample 442,000749 155,411974 444,714919 250,618178 

subtract    172,292132 

     

total 50879,76709 26576,69183 23289,38039 5237,937497 

clean kernel 

execution    4063,442976 

 

In this experiment I also added the single core version, compiled with the -O3 flag 

the compiler gave very good results and this was expected mostly because this flag 

enables vectorization which is another form of parallelism. 

As we can see the GPU benefits the most from the optimization. The clean kernel 

execution has stayed almost the same , but the kernel overhead and the data 

transfers have been reduced from 10.459ms to 1175 ms .As result the percentage of 

the subtract on the execution time has dropped significantly , and now the GPU 

execution mix looks as expected , with the remap kernel being the bottleneck of the 

implementation 

 

 

Figure 12 Total kernel execution mix for the GPU after the first optimization 
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Figure 13 Initial implementations (v1) versus optimized (v2) 

Comparing the execution times before and after the optimization, we can see that 

the real bottleneck of the implementation, the remap kernel, remains almost the 

same. In the CPU version there is a slight reduction on its execution time because 

some windows are now smaller, but on the GPU for the same reason we have a 

slight increase in this kernels execution time. The smaller windows simply add more 

logistics in the kernel’s execution and cause some of the threads to be inactive when 

the GPU processes the edges of the image. On the other hand we can notice a 

decrease in the execution times of every other kernel, and this happens because 

they are not executed so many times unnecessarily. 

 

3.4 Reducing accuracy  

 

The final optimization I tried was to reduce the accuracy of the values and the 

operations from doubles to floats. In terms of performance the only the GPU had 

some noticeable speedup, while the difference in the results accuracy was not 

visually observable in any of the devices. 
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Figure 14 Total execution time per device for a 1024x768 image for the floats 
version. 

 

 Single core Single core -O3 multicore GPU 

remap 30624,03055 23731,19522 16647,40052 1758,865629 

conv2D 18362,20489 2858,628081 2486,355789 1064,223982 

upsample 387,392409 99,398928 213,78107 176,418784 

downsample 435,827845 197,734728 425,542343 249,138234 

subtract    165,97846 

     

total 50025,41502 27065,71838 19808,04367 3673,615492 

clean kernel 

execution    2.325 

 

As we can see here this optimization was also more beneficial for the GPU 

implementation, mostly in terms of clean execution time. The GPU has almost 2x 

speedup in the execution just by decreasing the accuracy from doubles to floats. 

 

3.4.1 Effect on accuracy 

With the result of the single core of the first optimization as the golden output, we 

notice that the multicore and the GPU outputs present a drop in psnr, even though 

the results are not visually noticeable. This is probably caused by the changes in the 
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order of operations, induced by the parallelism. In the floats version, the psnr 

decreases only in the single core implementation, since the multithreaded and the 

GPU already produced not so accurate results probably due to the differences 

between the LLVM - OpenCL compilers. 

 

 

 Single core Single core -O3 Multicore GPU 

doubles inf inf 76 76 

floats 144 144 76 76 

 

Psnr of the different versions for doubles and floats after the first optimizations, with 

respect to the single core output for doubles (golden). 

 

Speedup 

 

 

Figure 15 Speedup of the optimized versions, compared to the initial implementation 
(comparison between single thread versions) 
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Figure 16 Speedup of the optimized versions, compared to the initial implementation 
(comparison between multicore versions) 

 

As expected, the speedup in the single core version was very little (x1,38 for the 

doubles and x1,4 for the floats), since the bottleneck was the remap kernel, that was 

not optimized. The same and even worse occurs in the multicore version with 

x1,125453692 for doubles and x1,323256328 for floats. 
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Figure 17 Speedup of the optimized versions, compared to the initial implementation 
(comparison between GPU versions) 

 

 

For the GPU on the other hand there is enough parallelism to make up to the time 

consuming floating point operations in the remap kernel , we notice a 3x speedup for 

the doubles and a 4x speedup for the floats implementation making the GPU 

significantly faster than the CPU. The GPU has a 19x speedup versus the single 

core faster version, and 5x versus the multicore version. 
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3.5 FPGA Implementation 

 

Figure 18 Block diagram of the system, provided by Vivado HLS. 

 

 The VC707Gen2x8lf128_0 is actually the RIFFA that is responsible for the PCIe 
transfers and the start of the accelerator. The hls_kernel_0 is the accelerator for the 
local Laplacian filter. 

 

For the FPGA implementation , I used a RIFFA framework provided by the runtime 

and I built the accelerator using Vivado HLS .RIFFA (Reusable Integration 

Framework for FPGA Accelerators) is a simple framework by USCD for 

communicating data from a host CPU to a FPGA via a PCI Express bus (Jacobsen & 

Kastner, 2013). Through the RIFFA, I sent the required data from the host to the 

FPGA’s ddr via PCIe .When the data are sent the accelerator starts and stores the 

output data to the ddr as well. By the end of the accelerators execution, the output 

data, are sent back to the host thought the RIFFA. In this implementation the 

accelerator is executing the whole flow of the construction of the output Laplacian 

pyramid. That said, the input is the Gaussian pyramid of the input image and the 

output the Laplacian pyramid. The whole design runs on the same clock with 4ns 

period. 
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3.5.1 The accelerator architecture  

 

Figure 19 Block diagram of the FPGA accelerator implementation. 

 

The basic hardware kernels, produce one output coefficient of the Laplacian image. 

Therefore there are 4 hardware kernels on the design (one for every level) executing 

iteratively , each time with different coordinates on the image as input .Basically , 

each hardware kernel consists of the body of the triple nested loop in the c code for 

the various levels. The smaller software kernels described in the previous 

implementations still exist, but are inlined in the hardware kernels. Since every one 

of the software kernels does not need the previous to finish its execution and it can 

start as long as the previous kernel produces some results, the dataflow pipeline 

type was preferred, implemented using the pragma #pragma HLS dataflow .For 

example the first column blur kernel can start its execution as long as the remap 

kernel produces its first remapped output pixel. The row blur kernel can start as long 

as the first 3 lines of the column blur kernel are produced, and the downsample and 

upsample can start when the first output pixel of every previous kernel is produced. 

Since there is little data reuse inside this triple nested loop , the whole flow of the 
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kernels is implemented with FIFOs and the data are streaming for kernel to kernel 

using the “HLS_stream.h” library and the class hls::stream<> , provided by Vivado. 

Some buffers were used though, most of them in the Gaussian blur kernel, to store 

the 4 lines required by the row blur kernel and others to store the center most pixel of 

the temporary Gaussian pyramid level required to calculate the Laplacian coefficient. 

The four kernels that produce the Laplacian coefficient for each level, could execute 

in parallel, if it wasn't for the timing restrictions that the memory accesses set. 

Because all of these kernels load most of their data from the input image, and 

because the access to the ddr is expensive I decided to cache some data to a block 

ram. The cache stores all the data of the input image required by the kernel that 

produces the level 3 of the output pyramid for a whole output line. Therefore, the size 

of the cache is 92*image_width. This cache is also used by the other three kernels 

and provides the data required to produce 8 lines of the level 0 Laplacian output, 4 

lines of level 1 and 2 lines of level 2.After the above outputs are produced the cache 

is refreshed by shifting its values by 8 lines (line 8 becomes line 0) and the 8 next 

lines load from the input image in the ddr, to the cache to fill the “empty” indexes 

.This process is repeated until the whole output Laplacian pyramid is constructed. 

 

For the optimization of the software kernels I used the #pragma HLS pipeline 

optimization pragma. Each of these kernels achieved an II=1 (Iteration Interval) 

which means that it can process new data in every clock cycle. The latency of the 

software kernels however, adds a bottleneck to the accelerator. 

 

3.5.2 The dataflow optimization 

The use of the optimization directive #pragma HLS dataflow greatly improved the 

performance of the accelerator. According to Xilinx the dataflow directive ensures 

that each function will start its operation, as soon as input data are ready and it will 

not wait until the previous function finishes its execution. 
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Figure 20 Example of Dataflow pipelining by the Vivado Design Suite User Guide for 
High-Level Synthesis (Xilinx, Xilinx. Vivado Design Suite User Guide, High-Level 
Synthesis.) 

 

The Dataflow pragma optimization improved the latency of the hardware kernels by 

far: 

 

 Dataflow No Dataflow 

Level 0 205 938 

Level 1 546 2820 

Level 2 2082 10803 

Level 3 8663 44528 

 

Kernel latency and iteration interval for dataflow and non-dataflow design. 

 

The transfer times to and from the FPGA are relatively small 20ms for a 1028*768 

image and 452 ms for a 4096x4096 image. 
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3.5.3 Area 

 

Figure 21 Utilization % of the Virtex 7‘s resources for a 1024*768 image (left) and a 
4096*4096 image (right) 

 

As we can see from the post-Implementation utilization results of the Vivado tool, 

there is about 30% utilization for a small image and a 65% utilization for a big image. 

The image cache in the accelerator results in more Bram usage, the for bigger image 

row sizes. 

 

 

3.5.4 Accuracy  

The FPGA performed well in terms of accuracy with not visible differences from a 

1024x768 image processed from the CPU 

 

 Single core Multicore GPU FPGA 

doubles Inf 76 76 -- 

floats 144 76 76 77 

 

The remapping function uses the pow(x, alpha) function to process details. 

Unfortunately this function is not supported for synthesis from the Vivado HLS. To 

overcome this problem we set the alpha parameter to 0.5 and swapped from pow, to 

sqrt .This is possibly one of the reasons for this insignificant drop in psnr. 
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3.5.5 Execution time and comparisons 

The execution time of the FPGA was 2943,289219 ms for a 1024x768 image which 

gave a 24x speedup compared to the initial C implementation. For this and similar 

sized images the FPGA had the lower execution time. 

 

Figure 22 Execution time for a 1024x768 image, for the faster implementations 

 

Finally I present a graph of all the implemented versions for the execution times of 

the same 1024x768 image  
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Figure 23 Execution times for a 1024x768 image  

 

For smaller images, the FPGA performs even better compared to the GPU  

 

 

 

 

Figure 24 Comparison between FPGA and GPU for a small image 
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But for bigger images the GPU is faster 

 

Figure 25 Comparison between GPU and FPGA for a big image 

 

 

4.1 Conclusion 
In this thesis we made an attempt to accelerate the execution time of the Local 

Laplacian Filter application. The first step was to write the C code. After that we 

implemented an OpenCL version, to target the GPU and the same code was also 

used for the multicore execution for the CPU. For this purpose the Centaurus 

runtime was used and helped the developing process, mostly by providing a level of 

abstraction for the data transfer and the kernel execution in the different devices 

After achieving a satisfying execution time for the GPU, we implemented the FPGA 

version and we tried to surpass the GPU speedup. 

The results of the profiling show that the FPGA and the GPU implementations are by 

far faster than the CPU .The FPGA and the GPU have similar execution times, with 

the FPGA being faster for small images, and the GPU faster for large images. 

 

Execution time in ms Multicore  GPU FPGA 

800x534 8827.707 2.754 1.637 

1024x786 19.808,04367 3.673,615492 2.943 

2000x2000 81.868 12.291,6601 15.031,570192 
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4.2.Future work 
There is a lot of room for implementations for all devices but this thesis showed that 

the CPU (both single threaded and multithreaded) will not achieve better results than 

the GPU and the FPGA. 

Porting the GPU version to CUDA would give access to better profiling tools, in order 

to improve the occupancy of the GPU.A simple way to achieve this, is to allow the 

GPU to process more windows in every kernel execution. Also, some of the kernels 

could execute asynchronous in order to overlap data transfers, with kernel 

executions. 

For the FPGA, the first step would be an upgrade of the tools from 2014.4, to a 

newer version .Besides the better results in performance that could come up, the 

newer versions, support the synthesis of the pow() function .The use of fixed point 

arithmetic and user defined data types in general would increase the performance, 

and the utilization of the accelerator. A lookup table for the remapping function would 

also yield better results, as the remap kernel is one of the implementation 

bottlenecks. A better partitioning of the image cache to smaller caches, would allow 

many of the hardware kernels to execute completely in parallel. Finally two or more 

accelerators, could be instantiated in the block design, and process different parts of 

the image in parallel. 

Another way to improve the execution time in every device, is to use the features 

that the Centaurus runtime provides for approximate computing and implement an 

approximate version of the filter with less levels, or smaller windows in each level. 
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