[MavetmoTuio @ecoaAiag
[MOAUTEXVIKI] 2XO0AN
TuAua HAekTpoASdywv Mnxavikwv kai Mnxavikwy YTToAoyIoTwV

YAIKO kai Aoyiopiko framework yia eTTe¢epyaaia eIKOvag

Hardware and Software framework for image processing

ArrAwpaTtiki Epyacia

'kapag ABavdoiog

EmiBAérovTeg KaOnynTég : NikOAaog MTTEAAAG
AvatrAnpwtng Kabnyntng

XpnoTtog AVTWVOTTIOUAOG
Emrikoupog KaBnyntig

BoAog, lavoudpiog 2018

[MavetmoTuio @ecoaAiag
[MOAUTEXVIKI] 2XO0AN
TuAua HAekTpoASdywv Mnxavikwyv kai Mnxavikwv YTToAoyIoTwV

YAIKO kai Aoyiouiko framework yia TTe¢epyaaia eIKOvag

Hardware and Software framework for image processing

ArrAwpaTtiki Epyacia

'kapag ABavaaoiog
EmiBAérovTeg KaOnynTéG . NikOAaog MTTEAAAG
AvatAnpwtn¢ Kabnyntg

Xprotog AVTwVvOTTOUAOG
Emikoupog KaBnynTrig

Eykpibnke atrd tnv diyeAn EEETAOTIKN ETITPOTIA TV

NikdAaog MTTEAAaG XprnoT1og AvTwvOTTOUAOG
AvattAnpwTthg Kabnyntig Emikoupog KaBnyntig

BoAog, lavoudpiog 2018

ArrAwpaTikr) Epyacia yia Tnv atréktnon tou AImAwpaTtog Tou HAekTpoAdyou Mnxavikou Kai
MnxavikoU YTroAoyioTwyv, Tou MNMavetmoTtnuiou @soocaliag, ota TAaiola Tou MNpoypduuarog
MpotrTuxiokwy Zmoudwyv Tou TuAPaTog HAekTpoAdywv Mnxavikwy kal Mnxavikwyv
YTmroAoyioTwy Tou lNavetmoTnuiou @ecoaliag.

kapag ABavdoiog
ArmAwpatouxog HAekTpoAdyog Mnxavikdg kal Mnxavikdg YroAoyioTwy MavemoTtnuiou
Oeooaliag

Copyright © Gkaras Athanasios, 2014 Me €1mi@UAagn Tavtog dikaiwpatog. All rights
reserved. ATTayopeUeTal N avTiypa®r, atroBikeuon Kai diavoun TG TTapoloag epyaaciag,
OAOKAAPOU A TUMMATOC AUTHG, VIO EUTTOPIKO OKOTIO. ETITPETTETAN N AvaTUTTWOT, ATTOBRKEUCN
Kl SIAVOWN YIo OKOTTO N KEPOOOKOTTIKG, EKTTAIOEUTIKAG A £pEUVNTIKAG PUONG, UTTO TNV
TTPOoUTTO0eaN va ava@EéPETal N TNy TTPOEAEUONG Kal va dlaTnPEITal TO TTapdV HAVUMA.
EpwTtAuaTa TOU a@opouv TN XPHoN TNG Epyaciag yia KEPOOOKOTTIKO OKOTTO TTPETTEI Va
aTTEUBUVOVTAI TTPOG TOV CUYYPOPEQ.

2ThV OIKOYEVEIQ [IOU Kal TOUS QIAoUC LIoU

EuxapioTieg

Me Tnv TTEPATWON TNG CUYKEKPIPEVNG EpYaTiag, Ba nBeAa va euxapioTAOW TOUG
eMPBAETTOVTEG TNG OITTAWMATIKAG Epyacias , Tov Kupio MTTéEAAa NIKOAao kal Tov KUPIO
XpAoT1o AVTWVOTTOUAO YIO TRV EUTTIOTOOUVN TTOU £QEIEAV QTTEVAVTI JOU JE TNV
avaBeon Tou O@EPATOC TNG EPYOTIAG , TNV CUVEPYATia Kal TNV ouvexr kaBodriynon
TOUG , TTOU XWpPIiG auTA n ekttévnon TnG dITTAWUATIKAS Ba rTav TTOAU TTI0 SUCKOAN , av
oxI aduvarn.

Etriong Ba ABeAa va euxapioTACW TNV OIKOYEVEIQ UOU KOl TOUG QPIAOUG OU TTOU JE
BoriBnoav , o kaBévag pe Tov dIkd Tou TPOTTO 0€ OAA TA XPOVIA TWV OTTOUdWV HOU,
OAAG Kal KATA TNV EKTTOVNON TNG DITTAWUATIKAG EPYATiag .

Contents

(0] 01 =] 01 £ TP PP %
IS o 1T V(=PSRRI Vi
I FoA 7, 3 V1 o USSP viii
AADSIIACT. ...t e e e e et e e e e e viii
N [11 (0o [Tox 1 o o PP PP PPPPPPPPPPP 1
1.1 ProbIlem deSCrIPLIONuiiiiiiii e 1
1.2 Background on Gaussian and Laplacian Pyramids............ccccooooieiiiiiiiiii e, 2
2. AlGOTtNM AESCIIPION. ... 3
P R (=T o] £ 1ot T 71 o TSP 3
2.2 The algorithm ... 4
2.2.1 Remapping fUNCHONuuiii e e e et e e e e e eannes 5
2.2.2 Determine the sub-region of the input image needed to evaluate the Laplacian
PYramid COETICIENTuuee e e e e e e e e e 6
2.3 POSE PIrOCESSING ...cceiieiiieeee ettt 7
2.4 PArAIEIISITI.....eeieieee ettt e e e e e e e 8
3. IMIPIEMENTALION ... 9
TR (T 11 o] L PP 9
.11 TRE FUNTIMIE .o e et e e e e e e s e e e e e e e e nnnenees 9
R 700 02 I o = 1 L PP 9
B LB TNE GPU . 10
B B P G A ettt aeraann 11
I O [10 o1 (=] 0]=T] ¢= L1 (0] o NPT 12
The Gaussian pyramid KEIMelo 12
THE remMap KEINEL e e e e e e e et e e e e e e eeeenees 13
The local Gaussian bIur KEMMEI(S).....cooooeeeeeeeeeeeee e 13
The local downsample KErNEl...... ..o e e e 13
The local upsample Kernel 13
The local SUDLIACT KEIMEI 14
The kernel for collapsing the output Laplacian pyramid............cccoooieeeiiiiiiiiinieeeeeeeees 14
3.2 CPU and GPU runtime Implementations..............couvviiiiiiiiiiiiiiiiiiieeeeeeeeeeeeeeeeeeeeee 15
I J02 R o 01111 o USSR 16
3.3 The first OPtIMIZAtIONccciiiiiiiie e e 19
G S {=To (U o] [T =Yoo = Tox SR 21

3.4, 1 EffECT ON BCCUIBCY ... i 22

3.5 FPGA IMPIEMENTALIONcceiiiiiiiiiee et e e e e e e e e e e e e e e e e e 26
3.5.1 The accelerator arChiteCUIE.........cccooieieeeeeeee e 27
3.5.2 The dataflow optimization...............oiiiii i 28
B0 3 A i e e e e e e ennne 30
IR Y oT o] U] = o} PP PP SPPPPPPRPN 30
3.5.5 Execution time and COMPAriSONS.......cciiieeiiiieiiiiee e eee e e eetie e e e e e e e eeaaa e e e e eeaaanes 31

4.1 CONCIUSION ... 33
B2 FULUNE WOTK ...ttt ettt e ettt e e e e et r e e e e e e e e 34
5. BIDIOGIAPNY .. 35

List of figures

Figure 1 Example of the Local Laplacian filtering for a gray scale image input (left) and the

ProCeSSEd OULPUL (M)uueeiiiiiiiiittiiete ettt 1
Figure 2 Example of a Gaussian {G} and a Laplacian {L} pyramid.cccccovieeiniieerrinnnnn. 3
Figure 3 The algorithm, as described by [(PARIS, HASINOFF, & KAUTZ, 2011)]................ 4
Figure 4 Example of a Laplacian pyramid produced with the Local Laplacian filtering method
(top) versus a typical Laplacian pyramid (DOttom)ccoooeeeiiiiiiiiiiii e 5
Figure 5 Block diagram of the algorithm. ... 8
Figure 6 Virtex 7 specifications by (Xilinx, 7 Series OVEIrVIEW)cccoeveeeriieeiiiiiiiieeeeeeeeenens 12
Figure 7 Example of the downsample and the upsample operations............ccccccceiiieeeernenns 14
Figure 8 Total execution time per device for a 1024x768 iMage.............ceuuveeeiiiiiiieiiieeenennnn. 16
Figure 9 GPU kernel's execution mix for the first implementation.............cc..ccoois 18
Figure 10 GPU memory transfers and kernel overhead vs pure kernel execution 18
Figure 11 Total execution time per device for a 1024x768 image on the optimized version. 19
Figure 12 Total kernel execution mix for the GPU after the first optimization....................... 20
Figure 13 Initial implementations (v1) versus optimized (V2)ccevvveieieiiiieiiiiiieiiiiiiiieeeee, 21
Figure 14 Total execution time per device for a 1024x768 image for the floats version. 22
Figure 15 Speedup of the optimized versions, compared to the initial implementation

(comparison between single thread VEIrSIONS)uuuiuiuiiiiiiiiiiiiiiiiiiiiiiieieieieiieeeeeees 23
Figure 16 Speedup of the optimized versions, compared to the initial implementation

(comparison between MUItICOre VEISIONS)cciiiciiiieiiiicie et e e e 24

vi

Figure 17 Speedup of the optimized versions, compared to the initial implementation

(comparison DEtWEEN GPU VEISIONS)uuuuuuiiiiiiiiiiiiiiiiiiiiiiinnassesseenssssessssessnesnesesenennnnnennnne 25
Figure 18 Block diagram of the system, provided by Vivado HLS................cccccoeeeiiieiinnnnnnn, 26
Figure 19 Block diagram of the FPGA accelerator implementation..............cccccceeeeeieeeeeeennnns 27

Figure 20 Example of Dataflow pipelining by the Vivado Design Suite User Guide for High-
Level Synthesis (Xilinx, Xilinx. Vivado Design Suite User Guide, High-Level Synthesis.) 29
Figure 21 Utilization % of the Virtex 7‘s resources for a 1024*768 image (left) and a

4096*4096 IMAGE (FGNT) . ..cee e 30
Figure 22 Execution time for a 1024x768 image, for the faster implementations................. 31
Figure 23 Execution times for a 1024X768 IMAJE.........cuvuiiriiiiiiiiiiiiiiiiiiiiieeeeee e 32
Figure 24 Comparison between FPGA and GPU for a small imagecccccceeeeeieeeennnnnnns 32
Figure 25 Comparison between GPU and FPGA for a big image.........cccccvvvvvvvviiiiiiiiiiinnnnn. 33

Vii

MepiAnyn

To @iATpo Local Laplacian , gival yia epapuoyn eTTe¢epyaoiag IkOvag , TTou
ETTECEPYALETAI TIG AETITOUEPEIEG KAI TIG OKPEG Hiag €IKOVOG Kal TTAPAYEl Eva JEYAAO
€UPOG ATTO £VTOVA £QE , XWPIGC OPWGS va aANoiwvel TNV €IKOVA. To QIATPO TTapayel
TTOAANEG , WIKPEG Laplacian TTupapideg atrd eTTeepyaoEVES EKOOXES TNG EIKOVAG
€10000U. AUOTUXWG QUTO £XEI WG ATTOTEAEOUO UWPNAOUG XpOVOoUG EKTEAEONG. ZTNV
apxIkn C uhotroinon n emegepyacia piag eikovag 1024x768 xpeiaotnke 70
OeUTEPOAETTTA .2€ AQUTH TN OITTAWMATIKA £YIVE PIO TTPOCTTIABEIO VO PEIWBEI 0 XpOVOg
EKTEAEONG , ACIOTTOIWVTAG TOV TTAPAAANAIOUS TTOU UTTAPXEI OTOV OAYOPIOPO , YE TV
xprion yiag multi thread CPU ,piag GPU kai piag FPGA o1 otroieg eAéyxovtal atrd
¢va Heterogeneous-aware Runtime System, to Centaurus runtime. Mg tnv xpAion
NG YAwooag OpenCl €yivav o1 ekddoeig yia Tnv multithreaded CPU kai Tnv GPU ,
€VW yia TV uAotroinon oe FPGA xpnoipoTtroiii®nke 1o Vivado HLS |, yéow Tou
oTroiou Trapd&ape évav accelerator oe Verilog. Mevika TTIKEVTPWONKANE
mePIoodTEPO 0TNV FPGA uloTtroinon TeAIKG KaTa@EPAPE VA TTAPOUME TTOAU KOAG
atmroteAéopata yia Tnv GPU kai Tnv FPGA peiwvovtag Tov Xpdévo ekTéAeong o€ 2.9
oeutepOAeTTTa Via TNV FPGA kai 3.6 deutepdAettta yia Tnv GPU.

Abstract

The Local Laplacian Filter, is an edge aware image processing application that
produces a wide range of strong effects for both detail manipulation and tone
mapping of an image without corrupting the image. The filter constructs many small
Laplacian pyramids of processed versions of the input image. Unfortunately this
results in high execution times. In our first C implementation processing one
1024x768 image was done in about 70 seconds .In this thesis we tried to reduce the
execution time of the application by exploiting the parallelism of the algorithm , with
the use of a multi thread CPU a GPU and an FPGA device controlled by a
Heterogeneous-aware Runtime System, the Centaurus runtime. For the multi thread
CPU and the GPU we used OpenCL and for the FPGA the Vivado HLS tool was
used to produce an accelerator in Verilog. We focused on the FPGA implementation
and both the FPGA and the GPU implementations gave a very good speedup
reducing the execution time to 2.9 seconds for the FPGA and 3.6 seconds for the
GPU.

viii

1 Introduction

Figure 1 Example of the Local Laplacian filtering for a gray scale image input (left)
and the processed output (right)

The local Laplacian filters, introduce a method for edge aware image processing,
using Laplacian pyramids. The algorithm can produce results for detail enhancement
or detail smoothing (edge manipulation), and for tone mapping or inverse tone
mapping (tone manipulation) of an image. «The output is calculated as the
construction of the Laplacian pyramid of the filtered output. For each output pyramid
coefficient, we render a filtered version of the full-resolution image, processed to
have the desired properties according to the corresponding local image value at the
same scale, build a new Laplacian pyramid from the filtered image, and then copy
the corresponding coefficient to the output pyramid. The advantage of this approach
is that while it may be non-trivial to produce an image with the desired property
everywhere, it is often easier to obtain the property locally” [(PARIS, HASINOFF, &
KAUTZ, 2011)]

Methods like anisotropic diffusion [(Perona & Malik, 1990); (Aubert & Kornprobst,
2002)], neighborhood filtering [(Tomasi & Maduchi, 1998); (Kass & Solomon, 2010)],
edge-preserving optimization [(Bhat, Zitnick, Cohen, & Curless, 2010); (Farbman,
Fattal, Lischinski, & Szeliski, 2008)] and edge-aware wavelets [(Fattal, 2009)], are
considered to be more suitable than Laplacian pyramids for detail manipulation.
Unfortunately, some of them have difficult parameters to set or they suffer from edge
artifacts like haloes in large decreases on the details.

1.1 Problem description

The local Laplacian filters method does not generate edge artifacts even for large
increases in details, performs well on all cases and produce a wide range of effects.
The basic shortcoming of this approach is the high running time (1 min in a 1MP

image) of the algorithm. In this thesis we tried to minimize the running times of the
local Laplacian filter, using the Centaurus runtime (Vassiliadis, et al., 2015), a
Heterogeneous-aware Runtime System that runs on top of OpenCL and supports
kernel execution on multicore CPU, GPU and FPGA. In this approach C and
OpenCL code was produced, for the CPU and the GPU and C++ code as input for
the Vivado HLS in order to generate Verilog and finally a bitstream for the FPGA
thought Vivado. We tried different implementations in different devices in order to
decide which one was the best in terms of accuracy and performance. The
implementations will be presented and explained later along with the profiling
numbers.

1.2 Background on Gaussian and Laplacian Pyramids.

In order to explain the algorithm an introduction to the Gaussian and Laplacian
pyramids [(Burt & Adelson)] is necessary. The Gaussian pyramid is a set of images
that derive from one input image. Each of these images (called levels) represent a
version of the input image (which is also the level 0 image) at a lower resolution. In
this approach each level has half the width and height of its parent level. Every level,
is produced by its previous level by applying a Gaussian blur, and a downsample
kernel. In this implementation the Gaussian blur is a 2D convolution filter (with
zeroes for padding) with the 5 length kernel w={.05, .25, .4, .25, .05}.Then
downsample is applied by copying half the pixels(in width and height) from the
output (t0) of the Gaussian filter (g1(i,j)=t0(2*i,2%))). As a result of these operations (
g,) = Y2 _ .32 _,w(m,n)g,_,(2i + m,2j + n)) the higher frequency details of
the image progressively disappear from one level to another.

The Laplacian pyramid on the other hand uses the same concept of pyramids but in
each level, only the higher frequency details are preserved. Every level of the
Laplacian pyramid derives from the Gaussian pyramid by expanding the next level
(smaller version) and subtracting it from the current level L'= G™- expand (G +1).

Figure 2 Example of a Gaussian {G} and a Laplacian {L} pyramid.

The expand() operation consists of an upsample operation and a Gaussian blur. The
upsample doubles the dimensions of the image in width and height. More specific if
t0 is the upsample output and g1 the input then tO(i,j) = 4*g1(i/2,j/2) if(1%2=]%2 ==
0) ,0 else .The Gaussian blur will then smooth the upsample output using the same
kernel as with the Gaussian pyramid. The smaller image (top level) of the Laplacian
pyramid, called the residual, is always the same as the smaller image (top level) of
the Gaussian Pyramid.

An interesting property of the Laplacian pyramid is that starting from the residual, we
can collapse the pyramid, in order to get the image of the desired Gaussian pyramid
level, or in the case where we fully collapse the pyramid, get the input image. Given
that the residual contains all the low frequencies, we can expand it and add the
Laplacian image of the previous level (same as add the high frequencies that we
subtracted when we constructed the level) in order to get the Gaussian image of
that level. Recursively if we consider the output of this procedure as the new
“residual” we can continue to collapse until we get the input image.

2. Algorithm description

2.1 Preprocessing

The Local Laplacian algorithm, operates by filtering the luminance of an image, as
well as the RGB channels, by processing each channel separately. The first

3

preserves the original colors while the latter will also modifies the color contrast. The
input image must also be scaled from [0,255] to [0, 1] floating point numbers (the
Matlab code given uses double precision, but float is enough).In this work only the
luminance filtering is supported. So as a preprocessing we convert the RGB values
to grayscale (and save the ratios, to reintroduce colors after the processing) and
scale them to [0, 1].

2.2 The algorithm

Figure 3 The algorithm, as described by [(PARIS, HASINOFF, & KAUTZ, 2011)]

First we need to construct the Gaussian pyramid of the input image. On every level
the value of the Gaussian image in a specific position will represent a global value of
one window in the input image. If the absolute difference of a pixel value and the
global value in such a window is bigger than a user defined parameter (sigma) then it
will be considered an edge , if it is smaller a detail.

In Local Laplacian Filtering we want to calculate a Laplacian pyramid that when it is
collapsed, it will give us the output image with the desired properties. In order to
achieve that, each coefficient of each level, is calculated separately, one at a time
taking into account only its local properties.

For every coefficient a different version of the input image is produced through the
remapping function (which will be explained later).Since this coefficient is affected

only by local values , we only need a small region around it and therefore we
process a window of the input image with the remapping function each time.

From the output image of the remapping function we construct a temporary
Laplacian pyramid and we copy the corresponding coefficient, from the
corresponding level of this pyramid to the output Laplacian pyramid. The procedure
is repeated for every pixel of every level (apart from the residual which is copied from
the Gaussian pyramid).

When the output Laplacian pyramid is completed, it is collapsed, producing the
output image.

Figure 4 Example of a Laplacian pyramid produced with the Local Laplacian filtering
method (top) versus a typical Laplacian pyramid (bottom)

2.2.1 Remapping function

The remapping function, is the function responsible for detecting (locally) edges and
details in small windows and amplifying, or smoothing them. The inputs to the
remapping function is a global value from the Gaussian pyramid and a pixel value
from the window that is to be remapped .The global value g0= GIO(x0, y0) is copied

from the position and scale/level that we calculate the coefficient. If we try to
calculate the pixel (4, 5) position, on the third level of the Laplacian pyramid, then g0
should be the pixel at (4, 5) position on the third level of the Gaussian pyramid. This
value, is global in a sense that it represents the intensities of all the pixels in the
window that is currently remapped. Given a user defined parameter sigma, all values
closer to g0 than sigma are considered edges and all those further than sigma are
considered edges.
Edges and details are processed in a different way, which is defined from the user
defined parameters alpha and beta .Alpha controls the details, and beta the edges
throughout the functions Rd (), Re ().More specific:
r(i) =rg(D) if i — gol < 0, and r(i) = r,(i) otherwise
. . . li — gol
0= o +stani— g 1221

r

7.(1) = go + sign(i — go) (fe(Ii = gol — 77) + 07)

where r(i) is the output of the remapping function and i is the windows input pixel
value.

f40 is an S-shaped pointwise function where f,;(A)=A*?"@ For O<alpha<1 details
are increased and for alpha > 1 details are smoothed. Finally f,(x) = beta * x
O<beta<1, for tone mapping and beta>1, for inverse tone mapping. In this
implementation, and especially for the FPGA the beta is fixed at 1 so it does not
process edges. Choosing a different parameter, will still work in most cases, but the
results have not been tested thoroughly.

2.2.2 Determine the sub-region of the input image needed to
evaluate the Laplacian pyramid coefficient

Since the window corresponds to one coefficient of the Laplacian output every time,
we must decide the position and size of that window, in the input image. According to
the algorithm, from the remapped version of that window we will have to construct an
intermediate Laplacian pyramid, with level depth the same as the level of the output
Laplacian pyramid that we try to evaluate. To calculate the level O for the output
Laplacian pyramid for example we need to construct the Laplacian level O of the
remapped window. For this , a 8x8 sized window would suffice , as only two levels of
Gaussian pyramid will be constructed (The level O is of size 8x8 and the level 1 with
size 4x4) and only one (8x8 sized) level of Laplacian pyramid .To determine the
position of the window we must consider that the centermost pixels of this window
will have bigger impact on the value of the coefficient .For the level O for example the
pixel at (4,4) of the intermediate Laplacian pyramid , will be copied to the output
Laplacian pyramid. This means that when we try to calculate the pixel (10,10) of the
level O output Laplacian pyramid for example, the window must have column range

(6-14) and row range (6-14) on the input image. The center of the window, will now
be the pixel (10,10) of the input image. To calculate the pixel (11,10) the window
must be (6-15,6-14) and so on. For the next levels we must consider that one pixel of
the Gaussian pyramid level 1 for example has a global value for a bigger window in
the image (basically, it stores information about 4 pixels of the input image).The size
of the level 1 window is 20x20 .Also the g0 must map to the center most pixel of the
window when upsampled. This means that for g0 at (40,40) of the level 1 , we get a
window centered at (80,80) of the input image which means that it has range (70-
90,70-90).We could simply say that the stride of the windows for level 1 is 2.The next
windows for the next levels are produced in the same fashion.

Level Windows size Stride
0 8x8 1
1 20x20 2
2 44x44 4
3 92x92 8

Remapped widow size and stride per level

2.3 Post processing

Finally we rescale the filtered output from [0, 1] to [0,255] and reintroduce colors
using the ratios saved during the preprocessing.

2.4 Parallelism

Figure 5 Block diagram of the algorithm.

The rectangles represent kernels, while the rounded rectangles represent stored
data. The arrows show both the order of execution, and the data flow between
kernels (these data only pass from one kernel to the next).

As we can see (from the block diagram image) the Gaussian pyramid construction ,
does not support so much parallelism between kernels, as every level requires its
previous level completion,(unless a steaming like parallelism is allowed).The same
is true for the Laplacian pyramid reconstruction , and for the local Laplacian pyramid
construction as well.

However the bottleneck of this algorithm lies in the construction of the output
Laplacian pyramid. In each iteration of this triple nested loop a small image is
remapped and its (local) Laplacian pyramid is computed. Assuming that the
Gaussian pyramid is complete, every one of these iterations is completely data
independent from one another and therefore could execute in parallel if there were
enough resources. The next bottleneck, is the “latency” of each loop. Fortunately
more parallelism is supported inside every kernel in order to reduce it.

The kernel for the construction of the intermediate remapped image/window can
produce each pixel of the image in parallel since every output pixel depends from
one global value g0, the same for every pixel in the same window, and one pixel
value, from the input image.

The Gaussian blur requires one column convolution, and one row convolution. In
each of these kernels, parallelism is available since there is no accumulation like
process, in any of them and each output purely depends on the inputs. Unfortunately
in every pyramid construction, (unless a steaming like parallelism is allowed), every
kernel has data dependencies from the one executed before it.

3. Implementation

3.1 Resources

3.1.1 The runtime

The runtime, uses the LLVM 3.7 compiler and the kernels run on top of OpenCL-1.2-
4.5.0.8

All of the kernels were implemented in OpenCL and are invoked from a C program,
using the Centaurus runtime. Using the runtime, data transfer and kernel invocations
become quite simple

E.g.

#pragma acl task in(A) out(B) workers(numW) groups(numG)

label (“kernel”) device (0)

kernel (A,B,params);

#fpragma acl taskwait label (“kernel”)

In this example the OpenCL kernel is executed in the device 0 (device 0 is the GPU
and device 1 is CPU in out installation of the runtime) with numW as the number of
workers-threads per block and numG as the total number (global) of workers in the
device. The data transfer is automatically handled by the runtime and any data
dependency is resolved before the kernel execution. For the data transfers in() and
out() can be used to declare the direction of the data (in() means transfer data to the
kernel, and out(), from the kernel).In the case above the data will only be transferred
once to and from the device, meaning that in the next kernel invocation that will use
the data A for example, the A data will not be updated, in the case that they will be
changed from another device. In order to force the data to update we can use
device_in(A)/device_out(B) instead. Finally when we don’t need to transfer data from
one device to another we can use buffer(), to deny any transfer.

With the use of the taskwait pragma, we force synchronization on the execution flow.

3.1.2 The CPU

The system used for developing and testing has an i7-4820K @ 3.70GHz Intel CPU
with 4 cores and 2 threads per core. Ideally this should give us at least 6x speedup,
provided there is a good memory access pattern.

9

3.1.3 The GPU

The use of GPGPU (General Purpose GPU) computing is on the rise the last years.
Thanks to the massive parallelism that GPU’s natively offer, many applications
including image processing can get a significant increase to performance if they can
exploit this parallelism. In our system we use a GeForce GTX 770 GPU by NVidia.
This GPU offers 8 multiprocessors and each multiprocessor can have up to 192
threads (called CUDA cores).The multiprocessors execute the threads in groups of
32 threads (called warps) that execute the same operations but with different data
.The threads in each warp run completely concurrently.

From the side of the OpenCL programmer, the threads correspond to OpenCL work-
items and they can be organized to work groups. All the threads inside a work group
, can have synchronization points declared by the programmer .1t is important for the
overall performance that in each group every 32 of the work items , have the same
execution flow , otherwise there will be divergence and less than 32 threads will run
concurrently , resulting in larger execution times.

Of course every application needs data to process. Apart from divergence the
bottleneck of an execution on a GPU is the high data transfer times to and from the
memory. There are 3 basic types of memory in an NVidia CPU. The local memory of
a thread, which is very fast and can only be accessed by the same thread. The
shared memory of a group which can be accessed by all the threads inside a group,
but not from threads of a different group and finally the global memory. The global
memory is a slow but large memory that can be accessed by any thread of any
group and also by the CPU. However it can perform very well if there is a coalesced
access pattern. Before an application’s execution starts, the CPU or a previous
executed GPU kernel loads data to the global memory. During the application’s
execution the threads use that memory to load and store data. It is important to avoid
unnecessary global loads and stores, and try to use the shared memory when the
same data are needed by many threads inside a group.

As a GPU, the system uses a GeForce GTX 770.
The deviceQuery for this GPU returned the results below:

CUDA Diriver Version / Runtime Version 75175

CUDA Capability Major/Minor version number: 3.0

Total amount of global memory: 2047 MBytes (2146762752 bytes)
(8) Multiprocessors, (192) CUDA Cores/MP: 1536 CUDA Cores

GPU Max Clock rate: 1110 MHz (1.11 GHz)

Memory Clock rate: 3505 Mhz

Memory Bus Width: 256-bit

L2 Cache Size: 524288 bytes

10

Maximum Texture Dimension Size (x,y,z)

Maximum Layered 1D Texture Size, (num) layers
Maximum Layered 2D Texture Size, (num) layers

Total amount of constant memory:

Total amount of shared memory per block:
Total number of registers available per block:
Warp size:

Maximum number of threads per multiprocessor:

Maximum number of threads per block:

Max dimension size of a thread block (x,y,2):
Max dimension size of a grid size (X,y,2):
Maximum memory pitch:

Texture alignment:

Concurrent copy and kernel execution:

Run time limit on kernels:

Integrated GPU sharing Host Memory:
Support host page-locked memory mapping:
Alignment requirement for Surfaces:

Device has ECC support:

Device supports Unified Addressing (UVA):
Device PCI Domain ID / Bus ID / location ID:

1D=(65536), 2D=(65536, 65536),
3D=(4096, 4096, 4096)
1D=(16384), 2048 layers
2D=(16384, 16384), 2048 layers
65536 bytes
49152 bytes
65536
32
2048
1024
(1024, 1024, 64)
(2147483647, 65535, 65535)
2147483647 bytes
512 bytes
Yes with 1 copy engine(s)
Yes
No
Yes
Yes
Disabled
Yes
0/4/0

3.1.4 FPGA

FPGAs are also used in high performance computing and they also allow high
parallelism in a different way than GPUs. An FPGA (Field Programmable Gate
Arrays) is a device that consists of: an array of configurable logic blocks (CLB), ram
blocks and a hierarchy of reconfigurable blocks .All these components can be
programmed (and programmed) by a bitstream file, with the use of a hardware
description language and a bitstream synthesis tool, to produce custom hardware
applications. The advantage of FPGAs over GPU’s and CPU’s is its low energy
consumption , and the fact that the programmer can define most of the system’s
architecture and therefore exploit furthermore the parallelism of an application, much
like creating an ASIC. The basic disadvantages are, that there must be enough
resources in the FPGA for the application and that there are timing constraints that
must be met, in order for the design to be functional. Unfortunately developing an
FPGA application in HDL is very time consuming because it requires much more
analysis of the application in order to achieve the minimum possible latency of a
design and mostly because hardware descriptions language are hard to use ,
compared to software languages. The development of high level synthesis tools
comes to solve this problem by transforming code written in a higher level language
to an HLD. In this implementation and since there is an FPGA by Xilinx on the

11

system, | used the Vivado HLS 14.4 tool with the help of the Vivado documentation |
(Xilinx, Xilinx. Vivado Design Suite User Guide, High-Level Synthesis.)] to transform
C code to Verilog and the Vivado 14.4 tool to produce the bitstream from the Verilog
files. In order for the Vivado HLS to produce Verilog code, some coding conventions
must be followed and in order for this code to be efficient, some pragmas and
directives provided by the tool are used. Their use and the impact to the results will
be explained along with the implementation.

The system has a VC707 FPGA board connected via PCle. The FPGA on the board

is a XC7VX485T virtex-7 FPGA and it has more than enough resources. The
resources of the FPGA are presented below.

Figure 6 Virtex 7 specifications by (Xilinx, 7 Series Overview)

For the implementation, | also used the 1 GB DDR3 ram of the board.

3.2 C Implementation

The first step of the implementation, was to translate the code from Matlab, where
the filter is originally implemented, to C. In this implementation | set the level of
pyramids to 5 .1 noticed that more than 5 levels do not contribute so much to the
result , especially for smaller images. After that the following kernels were
distinguished:

The Gaussian pyramid kernel

As described above, the first step of the algorithm is to construct the Gaussian
pyramid of the input image and for that a Gaussian blur followed by a downsample
kernel were used, for each level. The construction of the Gaussian pyramid is very
fast compared to the construction of the Laplacian pyramid so | did not tried to
optimize this step of the algorithm.

12

The remap kernel

This kernel has as inputs, the input image, the location and size of the window, and
one value from the Gaussian pyramid. It uses the remapping function to produce the
intermediate remapped window.

The local Gaussian blur kernel(s)

Applies the Gaussian blur, as explained, to a window. In C it is the same kernel,
used to construct the Gaussian pyramid. The Gaussian blur consists of two kernels
(convolution row and convolution column) executed in series

The local downsample kernel

The local downsampling kernels halves a sub-image in both width, and height. To
achieve that it copies one pixel from a 2x2 window of the input to the output sub-
image. It is interesting here that the kernel must choose to copy the one pixel from
the 2x2 window that would appear in the input Gaussian pyramid as well and
decimate the others.

For example if the remap kernel , remaps from the location (0-8,0-8) of the input
image then the local downsample kernel would copy the pixels (0,0),(2,0),(4,0),(6,0)
of its input to create the first line of the downsampled output. But if the remap kernel ,
remaps from the location (1-9,0-8) of the input image , then the kernel would have to
copy the pixels (1,0),(3,0),(5,0),(7,0) of its input because the pixel (0,0) of the input
sub-image which corresponds to the pixel (1,0) of the input image would never
appear to the global Gaussian pyramid.

The local upsample kernel

Doubles the size of an image by matching one pixel value (multiplied by 4) of the
input image to a 2x2 window on the output image .Same as the downsample kernel,
the upsample much match this value to the correct location in that 2x2 window in
order to match the Gaussian image that it will be subtracted from. All the other
values in that window must be zero (the ones decimated by the downsample kernel).

13

Figure 7 Example of the downsample and the upsample operations

As an example if the downsample kernel chooses the x from the 2x2 widow (a,b,c,x)
they must return to their original positions from the upsample kernel

The local subtract kernel

Subtracts 2 images, to produce the Laplacian level

The kernel for collapsing the output Laplacian pyramid

The last step of the algorithm expands the residual, adds the expanded image with
its previous level and repeats this process with the output image, as the new
residual. For this a Gaussian blur was used, followed by an upsample kernel, and a
kernel that adds the values of two images.

The first and the last kernels were not given much attention because they are not the
bottleneck of the execution time and their implementation is trivial.

14

3.2 CPU and GPU runtime Implementations

In order to use the massive parallelism that the GPU offers, | tried to produce a
whole line of an output Laplacian pyramid level, in parallel. Therefore, the loop that
goes across the columns of the output Laplacian pyramid is now embedded inside
the kernels and the triple nested loop became a double nested loop (one loop for
each pyramid level and one loop for each row output).

Because each value of the Gaussian pyramid corresponds to a window, the memory
requirements grow after the execution of the remap kernel. It is only reasonable that
the data should stay in the device that executes the kernels as buffers (using the
buffer() pragma) until the intermediate windows and pyramids are no longer needed
in order to avoid data transfer costs .For this reason heterogeneous kernel execution
was not preferred.

The inputs to the device are the input image (only once) and the Gaussian level
(again once for each level) that we need, in order to produce the output Laplacian
level. The output is the Laplacian output level, but produced and transferred from the
device one line at a time.

After this short analysis, | implemented all the local kernels in OpenCL, to assign
their execution to the CPU and GPU devices.

The remap kernel is the most interesting kernel here. Because the windows are
overlapping, | used the shared memory of the GPU to cache the input image and
reduce the access to the global memory, which is very slow compared to the shared
memory. Since the size and the number of the windows changes from level to level.
The number of threads in each group changes dynamically from level to level, to
match the number and the size of the windows, but it is always bigger than 132.The
principal of the kernel stays the same. Every time, the creation of a number of
windows is assigned to a thread group.

The first stage of the kernel is to load from the global memory , the input image
pixels required to create one line of the windows , as well as the g0 value (stored in a
register).At this stage, every thread loads and each of the loads from the global , and
the stores to the shared memory , are coalesced. At the next stage a number N of
threads , is responsible to create one line of the output window through an iteration
with stride N and send the output data , back to the .Then , the control flow of the
kernel returns to stage 1 and creates the next line of the remapped windows. The
total number of thread groups is the total number of windows divided by the number
of windows per group.

The Gaussian blur , is composed of a vertical(column) convolution , and a horizontal
(row) convolution , with the filter {.05, .25, .4, .25, .05}.Basically , the implementation
of these kernels and especially of the column convolution , is an adaptation of the 2D
convolution , that is offered as an example by NVIDIA (NVIDIA, n.d.) , to the concept

15

of windows that we use. More specific, in the column convolution every thread group
will process one line of the window. Every thread will store from the global memory
or the zero padding, to the shared memory. Then every thread, but the four
responsible to store the padding, will calculate, one output pixel, of the convolution
operation. The memory stores and loads are coalesced in the column convolution.
The row convolution has the same principals, but it loads/stores rows of the input
image. Because of this, the accesses are not coalesced and there is a loss in
performance.

The upsample, and downsample, kernels are mostly data transfers and logistics in
order to decide the locations, of the reads and writes. Because there is no data
reusability, the shared memory is not used.

The subtract kernel consists of two loads (one from the Gaussian, and one from the
expanded image) from the centers of two sub-images, one subtraction, and the
coalesced store of the result. It is a small kernel in terms of operations, but it has
increased execution time, because in that point the data, are transferred from the
device memory, back to the system memory.

3.2.1 Profiling

In this chapter | present the performance numbers for the implementations so far,
along with the observations that led to the optimizations.

singlecore, multicore and gpu total execution times(ms)
without any optimizations

80000 B subtract
B downsample
upsample
60000 B conv2D
B remap
40000
20000

singlecore multicore apu

Figure 8 Total execution time per device for a 1024x768 image

16

Time in ms

Single core

multicore

GPU

remap 32270,31336| 21246,20368| 3129,932547
conv2D 34438,03265| 3627,996718| 2349,585979
upsample 1887,202613 437,333315 263,075615
downsample 444,220504 407,834407 252,746314
subtract 1277,633131 466,213931| 9327,063624
total 70531,79294| 26211,11913 15357,10428
Pure kernel

execution 4.898

As we can see in the diagram and the spreadsheet above in the naive
implementation the remap kernel is the bottleneck in the CPU. This is reasonable,
even though it is executed only once per window, because there are many floating
point operations in double precision.The blur kernel (Conv2D) is the second most
computational intense kernel and it is executed multiple times per window. Therefore
in the single core version of the code, where there is no parallelism to make up to the
floating point operations, it occupies a significant percentage of the execution time.

In the GPU the subtract takes up to 60% of the execution time as we can also see on
the diagram below. This happens because at that point the data are also transferred

back to the CPU.

17

Figure 9 GPU kernel’s execution mix for the first implementation

By measuring only the kernel execution time, and not data transfers or kernel
overheads we can see that the above are the basic problem in this implementation,
since the kernel execution is only 32% of the total execution time.

Figure 10 GPU memory transfers and kernel overhead vs pure kernel execution

18

3.3 The first optimization

The first optimization was to decimate unnecessary operations that came up from
the Matlab code. Since in the construction of the output Laplacian pyramid only one
level of the intermediate Laplacian pyramid is required, the calculations of all the
other levels is redundant. The most extreme example is the case of the level 3.In the
Matlab code (and in the c code that came up).An intermediate Laplacian pyramid of
3 levels is constructed, and only one pixel from the third level is used. Also, the lower
levels of the output pyramid are the most time and memory consuming to create and
store. After the optimization only one level of the intermediate Laplacian pyramid is
produced. Another optimization in the same concept is in the local subtract kernel.
The local subtract kernel produces a Laplacian level by subtracting a Gaussian level
and an expanded image. From this Laplacian level, only the center most pixel will be
used/stored to the output Laplacian pyramid. The unnecessary subtractions were
decimated.

So far, in the implementation all the windows of a level, have the same size. The
windows on the sides of the image used a padding to cover the missing pixels, and
the results of that were noticeable in the output image. In order to correct this |
decimated any remapping or blurring operation at those pixels, reducing the size of
the window.

singlecore, singlecore -03, multicore and gpu in ms

60000 B subtract
B downsample
upsample
B conv2D
40000 B remap

20000

singlecore singlecore -03 multicore gpu

Figure 11 Total execution time per device for a 1024x768 image on the optimized
version

19

Single core

Single core -0O3

Multicore

GPU

remap 31424,67386| 23450,23936 19933,63111| 3369,512597
conv2D 18415,64916| 2704,891878 2661,9427| 1261,508697
upsample 380,474309 90,235924 209,893086 175,603085
downsample 442,000749 155,411974 444,714919 250,618178
subtract 172,292132
total 50879,76709| 26576,69183| 23289,38039| 5237,937497
clean kernel

execution 4063,442976

In this experiment | also added the single core version, compiled with the -O3 flag
the compiler gave very good results and this was expected mostly because this flag
enables vectorization which is another form of parallelism.

As we can see the GPU benefits the most from the optimization. The clean kernel
execution has stayed almost the same , but the kernel overhead and the data
transfers have been reduced from 10.459ms to 1175 ms .As result the percentage of
the subtract on the execution time has dropped significantly , and now the GPU
execution mix looks as expected , with the remap kernel being the bottleneck of the
implementation

Figure 12 Total kernel execution mix for the GPU after the first optimization

20

Comparison between the naive, and the optimized version

80000 B subtract
B downsample
Upsample
60000 B conv2D
B remap

40000

20000

singlecore singlecore muiticore mulkticore gpu v1 gpu v2
vl V2 vl v2

Figure 13 Initial implementations (v1) versus optimized (v2)

Comparing the execution times before and after the optimization, we can see that
the real bottleneck of the implementation, the remap kernel, remains almost the
same. In the CPU version there is a slight reduction on its execution time because
some windows are now smaller, but on the GPU for the same reason we have a
slight increase in this kernels execution time. The smaller windows simply add more
logistics in the kernel's execution and cause some of the threads to be inactive when
the GPU processes the edges of the image. On the other hand we can notice a
decrease in the execution times of every other kernel, and this happens because
they are not executed so many times unnecessarily.

3.4 Reducing accuracy

The final optimization I tried was to reduce the accuracy of the values and the
operations from doubles to floats. In terms of performance the only the GPU had
some noticeable speedup, while the difference in the results accuracy was not
visually observable in any of the devices.

21

singlecore, singlecore -03, multicore and GPU in ms for a
1024x768 image

50000

40000

30000

20000

10000

singlecore

singlecore -03

multicore

GPU

B subtract

B downsample
upsample

B conv2D

B remap

Figure 14 Total execution time per device for a 1024x768 image for the floats

version.
Single core Single core -O3 [multicore GPU

remap 30624,03055| 23731,19522| 16647,40052| 1758,865629
conv2D 18362,20489| 2858,628081| 2486,355789| 1064,223982
upsample 387,392409 99,398928 213,78107 176,418784
downsample 435,827845 197,734728 425,542343 249,138234
subtract 165,97846
total 50025,41502| 27065,71838| 19808,04367| 3673,615492
clean kernel

execution 2.325

As we can see here this optimization was also more beneficial for the GPU
implementation, mostly in terms of clean execution time. The GPU has almost 2x
speedup in the execution just by decreasing the accuracy from doubles to floats.

3.4.1 Effect on accuracy

With the result of the single core of the first optimization as the golden output, we
notice that the multicore and the GPU outputs present a drop in psnr, even though
the results are not visually noticeable. This is probably caused by the changes in the

22

order of operations, induced by the parallelism. In the floats version, the psnr
decreases only in the single core implementation, since the multithreaded and the
GPU already produced not so accurate results probably due to the differences
between the LLVM - OpenCL compilers.

Single core Single core -O3 |Multicore GPU

doubles inf inf 76 76

floats 144 144 76 76

Psnr of the different versions for doubles and floats after the first optimizations, with
respect to the single core output for doubles (golden).

Speedup

Speedup for the single threaded implementation

1,5

0,5

optimized doubles optimized floats

Figure 15 Speedup of the optimized versions, compared to the initial implementation
(comparison between single thread versions)

23

Speedup for the multicore implementation

1,5

0,5

optimized doubles optimized floats

Figure 16 Speedup of the optimized versions, compared to the initial implementation
(comparison between multicore versions)

As expected, the speedup in the single core version was very little (x1,38 for the
doubles and x1,4 for the floats), since the bottleneck was the remap kernel, that was
not optimized. The same and even worse occurs in the multicore version with
x1,125453692 for doubles and x1,323256328 for floats.

24

Speedup for the GPU implementation

5

optimized doubles optimized floats

Figure 17 Speedup of the optimized versions, compared to the initial implementation
(comparison between GPU versions)

For the GPU on the other hand there is enough parallelism to make up to the time
consuming floating point operations in the remap kernel , we notice a 3x speedup for
the doubles and a 4x speedup for the floats implementation making the GPU
significantly faster than the CPU. The GPU has a 19x speedup versus the single
core faster version, and 5x versus the multicore version.

25

3.5 FPGA Implementation

Figure 18 Block diagram of the system, provided by Vivado HLS.

The VC707Gen2x8If128_0 is actually the RIFFA that is responsible for the PCle
transfers and the start of the accelerator. The his_kernel_0 is the accelerator for the
local Laplacian filter.

For the FPGA implementation , | used a RIFFA framework provided by the runtime
and | built the accelerator using Vivado HLS .RIFFA (Reusable Integration
Framework for FPGA Accelerators) is a simple framework by USCD for
communicating data from a host CPU to a FPGA via a PCI Express bus (Jacobsen &
Kastner, 2013). Through the RIFFA, | sent the required data from the host to the
FPGA'’s ddr via PCle .When the data are sent the accelerator starts and stores the
output data to the ddr as well. By the end of the accelerators execution, the output
data, are sent back to the host thought the RIFFA. In this implementation the
accelerator is executing the whole flow of the construction of the output Laplacian
pyramid. That said, the input is the Gaussian pyramid of the input image and the
output the Laplacian pyramid. The whole design runs on the same clock with 4ns
period.

26

3.5.1 The accelerator architecture

Figure 19 Block diagram of the FPGA accelerator implementation.

The basic hardware kernels, produce one output coefficient of the Laplacian image.
Therefore there are 4 hardware kernels on the design (one for every level) executing
iteratively , each time with different coordinates on the image as input .Basically ,
each hardware kernel consists of the body of the triple nested loop in the ¢ code for
the various levels. The smaller software kernels described in the previous
implementations still exist, but are inlined in the hardware kernels. Since every one
of the software kernels does not need the previous to finish its execution and it can
start as long as the previous kernel produces some results, the dataflow pipeline
type was preferred, implemented using the pragma #pragma HLS dataflow .For
example the first column blur kernel can start its execution as long as the remap
kernel produces its first remapped output pixel. The row blur kernel can start as long
as the first 3 lines of the column blur kernel are produced, and the downsample and
upsample can start when the first output pixel of every previous kernel is produced.
Since there is little data reuse inside this triple nested loop , the whole flow of the

27

kernels is implemented with FIFOs and the data are streaming for kernel to kernel
using the “HLS_stream.h” library and the class hls::stream<> , provided by Vivado.
Some buffers were used though, most of them in the Gaussian blur kernel, to store
the 4 lines required by the row blur kernel and others to store the center most pixel of
the temporary Gaussian pyramid level required to calculate the Laplacian coefficient.
The four kernels that produce the Laplacian coefficient for each level, could execute
in parallel, if it wasn't for the timing restrictions that the memory accesses set.
Because all of these kernels load most of their data from the input image, and
because the access to the ddr is expensive | decided to cache some data to a block
ram. The cache stores all the data of the input image required by the kernel that
produces the level 3 of the output pyramid for a whole output line. Therefore, the size
of the cache is 92*image_width. This cache is also used by the other three kernels
and provides the data required to produce 8 lines of the level O Laplacian output, 4
lines of level 1 and 2 lines of level 2.After the above outputs are produced the cache
is refreshed by shifting its values by 8 lines (line 8 becomes line 0) and the 8 next
lines load from the input image in the ddr, to the cache to fill the “empty” indexes
.This process is repeated until the whole output Laplacian pyramid is constructed.

For the optimization of the software kernels | used the #pragma HLS pipeline
optimization pragma. Each of these kernels achieved an 11=1 (Iteration Interval)
which means that it can process new data in every clock cycle. The latency of the
software kernels however, adds a bottleneck to the accelerator.

3.5.2 The dataflow optimization

The use of the optimization directive #pragma HLS dataflow greatly improved the
performance of the accelerator. According to Xilinx the dataflow directive ensures
that each function will start its operation, as soon as input data are ready and it will
not wait until the previous function finishes its execution.

28

Figure 20 Example of Dataflow pipelining by the Vivado Design Suite User Guide for
High-Level Synthesis (Xilinx, Xilinx. Vivado Design Suite User Guide, High-Level
Synthesis.)

The Dataflow pragma optimization improved the latency of the hardware kernels by
far:

Dataflow No Dataflow
Level O 205 938
Level 1 546 2820
Level 2 2082 10803
Level 3 8663 44528

Kernel latency and iteration interval for dataflow and non-dataflow design.

The transfer times to and from the FPGA are relatively small 20ms for a 1028*768
image and 452 ms for a 4096x4096 image.

29

3.5.3 Area

FF 4 L% FF 1 17%
LLIT 26% LUT ~ 27%
MeTory LUT 0 6% Memory LUT 40 6%
IfC 1 17% 1£0 17%
BRAM - £ 2% BRAM A
DEPAE A 1l%s DSP48 1 11%a
BUFZ A 28% BUFG 28%
WMWCH 14% MIACHM 1436
PLLym 7% PLLn 7%
&7 7 23% GT 23%
6 25 50 75 10C 0 25 S0 75 100

Figure 21 Utilization % of the Virtex 7°s resources for a 1024*768 image (left) and a
4096*4096 image (right)

As we can see from the post-Implementation utilization results of the Vivado tool,
there is about 30% utilization for a small image and a 65% utilization for a big image.
The image cache in the accelerator results in more Bram usage, the for bigger image
row sizes.

3.5.4 Accuracy

The FPGA performed well in terms of accuracy with not visible differences from a
1024x768 image processed from the CPU

Single core |Multicore GPU FPGA
doubles Inf 76 76 -
floats 144 76 76 77

The remapping function uses the pow(x, alpha) function to process details.
Unfortunately this function is not supported for synthesis from the Vivado HLS. To
overcome this problem we set the alpha parameter to 0.5 and swapped from pow, to
sqrt . This is possibly one of the reasons for this insignificant drop in psnr.

30

3.5.5 Execution time and comparisons

The execution time of the FPGA was 2943,289219 ms for a 1024x768 image which
gave a 24x speedup compared to the initial C implementation. For this and similar
sized images the FPGA had the lower execution time.

Execution time for the faster versions of FPGA and GPU in ms

4000 B total
B subtract
B downsample
3000 B upsample
W conviD
B remap
2000
1000

GPU floats FPGA

Figure 22 Execution time for a 1024x768 image, for the faster implementations

Finally | present a graph of all the implemented versions for the execution times of
the same 1024x768 image

31

Comparison between the different implementations execution
times inms

80000 B total
W subtract
60000 B downsample
B upsample
B conv2D
40000 B remap
20000
0
d? @ib Qﬂ? éﬁ dﬂf dﬁ& dﬂ Qﬁb Q@’ éj?
\Q,d‘} \ep& @% {_\Q& @9\ e § & N <
I AR S
& &

Figure 23 Execution times for a 1024x768 image

For smaller images, the FPGA performs even better compared to the GPU

execution time (ms) 800x534

3.000 B execution time (ms)

2.000

execution time (ms)

1.000

GPU FPGA

Figure 24 Comparison between FPGA and GPU for a small image

32

But for bigger images the GPU is faster

Execution time for 2000x2000 in ms

20000 B execution time (ms)

15000

10000

2000

GPU FPGA

Figure 25 Comparison between GPU and FPGA for a big image

4.1 Conclusion

In this thesis we made an attempt to accelerate the execution time of the Local
Laplacian Filter application. The first step was to write the C code. After that we
implemented an OpenCL version, to target the GPU and the same code was also
used for the multicore execution for the CPU. For this purpose the Centaurus
runtime was used and helped the developing process, mostly by providing a level of
abstraction for the data transfer and the kernel execution in the different devices
After achieving a satisfying execution time for the GPU, we implemented the FPGA
version and we tried to surpass the GPU speedup.

The results of the profiling show that the FPGA and the GPU implementations are by
far faster than the CPU .The FPGA and the GPU have similar execution times, with
the FPGA being faster for small images, and the GPU faster for large images.

Execution time in ms | Multicore GPU FPGA
800x534 8827.707 2.754 1.637
1024x786 19.808,04367 3.673,615492 2.943
2000x2000 81.868 12.291,6601 15.031,570192

33

4.2.Future work

There is a lot of room for implementations for all devices but this thesis showed that
the CPU (both single threaded and multithreaded) will not achieve better results than
the GPU and the FPGA.

Porting the GPU version to CUDA would give access to better profiling tools, in order
to improve the occupancy of the GPU.A simple way to achieve this, is to allow the
GPU to process more windows in every kernel execution. Also, some of the kernels
could execute asynchronous in order to overlap data transfers, with kernel
executions.

For the FPGA, the first step would be an upgrade of the tools from 2014.4, to a
newer version .Besides the better results in performance that could come up, the
newer versions, support the synthesis of the pow() function .The use of fixed point
arithmetic and user defined data types in general would increase the performance,
and the utilization of the accelerator. A lookup table for the remapping function would
also yield better results, as the remap kernel is one of the implementation
bottlenecks. A better partitioning of the image cache to smaller caches, would allow
many of the hardware kernels to execute completely in parallel. Finally two or more
accelerators, could be instantiated in the block design, and process different parts of
the image in parallel.

Another way to improve the execution time in every device, is to use the features
that the Centaurus runtime provides for approximate computing and implement an
approximate version of the filter with less levels, or smaller windows in each level.

34

5. Bibliography

Aubert, G., & Kornprobst, P. (2002). Mathematical problems in image processing: Patrtial
Differential Equations and the Calculus of Variations. Applied Mathematical
Sciences, 147.

Bhat, P., Zitnick, C. L., Cohen, M., & Curless, B. (2010). Gradientshop: A gradient-domain
optimization framework for image and video filtering. ACM Transactions on Graphics,
29(2).

Burt, P. J., & Adelson, E. H. (n.d.). The Laplacian pyramid as a compact image code. |[EEE
Transactions on Communication, (pp. 532-540).

Farbman, Z., Fattal, R., Lischinski, D., & Szeliski, R. (2008). Edge-preserving
decompositions for multi-scale tone and detail manipulation. Proc. SIGGRAPH No
67.

Fattal, R. (2009). Edge-avoiding wavelets and their applications. ACM Transactions on
Graphics, 8(3).

Jacobsen, M., & Kastner, R. (2013). RIFFA 2.0: A reusable intergration Framework for
FPGA accelerators. In 23rd International Conference on Field programmable Logic
and Aplications FPL '13, (pp. 1-8).

Kass, M., & Solomon, J. (2010). Smoothed local histogram filters. ACM Transactions in
Graphics, 29(3).

NVIDIA. Code Samples. Retrieved from http://docs.nvidia.com/cuda/cuda-
samples/index.html#cuda-separable-convolution.

PARIS, S., HASINOFF, S. W., & KAUTZ, J. (2011). Local Laplacian Filters: Edge-aware
image processing with a Laplacian pyramid. ACM Transactions on Graphic. Proc.
SIGGRAPH.

Perona, P., & Malik, J. (1990). Scale-space and edge detection using anisotropic diffusion.
IEEE Transactions on Pattern Analysis and Machine Intelligence, 12(7).

Tomasi, C., & Maduchi, R. (1998). Bilateral fitering for gray and color images. In
Proceedings of the IEE International Conference on Computer Vision.
(Bombay,india).

Vassiliadis, V., Parasyris, K., Chalios, C., Antonopoulos, C. D., Lalis, S., Bellas, N., . . .
Nikolopoulos, D. S. (2015). A Programming Model and Runtime System for
Significance-aware Energy-effient Computing. In 20th ACM Symposium on Principles
and Practice of Parallel Programming , PPoPP 2015.

Xilinx. 7 Series Overview. Retrieved from
https://www.xilinx.com/support/documentation/data_sheets/ds180_7Series_Overview
.pdf.

Xilinx. Xilinx. Vivado Design Suite User Guide, High-Level Synthesis. Retrieved from
https://www.xilinx.com/support/documentation/sw_manuals/xilinx2014_4/ug902-
vivado-high-level-synthesis.pdf .

35

