
U niversity of Thessaly

Di p l o m a Th e s is

Deep learning for audio-visual speech
recognition

Βαθιά μάθηση για οπτικο-ακουστική
αναγνώριση ομιλίας

Author:
Alexandras KOUMPAROULIS

Supervisor: Assoc. Prof. Gerasimos POTAMIANOS
2nd committee member: Assist. Prof. Antonios ARGYRIOU

A Thesis submitted in fulfillment of the requirements
for the degree of Diploma Thesis

in the

Department of Electrical and Computer Engineering

March 4,2017

http://www.uth.gr
http://127.0.0.1/
http://inf-server.inf.uth.gr/~gpotamianos/
http://antoniosargyriou.net/
http://www.e-ce.uth.gr/

1

Declaration of Authorship
I, Alexandros KOUMPAROULIS, declare that this Thesis titled, "Deep learning for
audio-visual speech recognition" and the work presented in it are my own. I con­
firm that:

• This work was done wholly or mainly while in candidature for a Diploma
degree at this University.

• Where any part of this thesis has previously been submitted for a degree or
any other qualification at this University or any other institution, this has
been clearly stated.

• Where I have consulted the published work of others, this is always clearly
attributed.

• Where I have quoted from the work of others, the source is always given.
With the exception of such quotations, this Thesis is entirely my own work.

• I have acknowledged all main sources of help.

• Where the Thesis is based on work done by myself jointly with others, I have
made clear exactly what was done by others and what I have contributed my­
self.

Signed:

Date:

ii

ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΙΑΣ

Περίληψη
Τμήμα Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών

Διπλωματική Εργασία

Βαθιά μάθηση για οπτικο-ακουστική αναγνώριση ομιλίας
Αλέξανδρος Κουμπαρούλης

Η αυτόματη αναγνώριση ομιλίας είναι ένα θεμελιώδες πρόβλημα που πρέπει να λυθεί για
να καταστεί δυνατή η φυσική επικοινωνία μεταξύ των υπολογιστών και των ανθρώπων.
Οι πρόσφατες εξελίξεις στους τομείς της υπολογιστικής όρασης και της βαθιάς μάθησης
προσφέρουν στους επαγγελματίες και ερευνητές της μηχανικής μάθησης νέα εργαλεία
για να πειραματιστούν, και το σημαντικότερο επιτρέπει την απόκτηση state-of-the-art
αποτελεσμάτων σε σχετικά σύντομο χρονικό διάστημα. Αυτή η εργασία είναι μια εξ­
ερεύνηση των τεχνικών αυτών στο πλαίσιο της οπτικο-ακουστικης αυτόματης αναγ­
νώρισης ομιλίας. Με τον όρο οπτικο-ακουστική εννοούμε πως για την επιλυση του
προβλήματος χρησιμοποιούμε δύο κανάλια πληροφορίας, το οπτικό και το ακουστικό.
Χτίζουμε ένα σύστημα βάσης χρησιμοποιώντας κλασικές μεθόδους, και το συγκρίνουμε
με ένα σύστημα που βασίζεται σε τεχνικές βαθιάς μάθησης.

iii

University of Thessaly

Abstract
Department of Electrical and Computer Engineering

Diploma Thesis

Deep learning for audio-visual speech recognition
Alexandros KOUMPAROULIS

Automatic speech recognition is a fundamental problem that must be solved to
enable natural communication between computers and humans. Recent advances
in the fields of computer vision and deep learning provide machine learning re­
searchers and practitioners new tools to experiment with, and most importantly
obtain state-of-the-art results in relatively short time. This Thesis is an exploration
of such techniques in the framework of audio-visual automatic speech recognition
(AVASR). With the term audio-visual we imply the fact that, in order to solve this
problem, we exploit information from both channels, namely the auditory and vi­
sual channel. We build a baseline system based on classic methods, and compare
it against a deep learning based system. We apply traditional methods and deep
learning approaches in multiple stages of the AVASR pipeline.

http://www.uth.gr
http://www.e-ce.uth.gr/

iv

Acknowledgements
First and foremost, I would like to extend my deepest appreciation to my advisor,
Gerasimos Potamianos, for his invaluable support and guidance, which has been
instrumental in the development of this thesis.
I am grateful to Argyrios Vartholomaios for our collaboration, while working on
our dissertations, Adonis Gialamas, for donating his GPU in the summer of 2016
where the VFE was developed, and of course my friends (and fellow students) in
Volos.
I would like to thank my family, for their support and patience throughout the last
5 years.
Last but not least, I would like to thank Ioanna I. for her patience, love and for
making Volos a far more interesting place than I could ever imagine.

v

Contents

Declaration of Authorship i

Abstract iii

Acknowledgements iv

1 Introduction 1
1.1 Audio-visual speech re c o g n itio n .. 1
1.2 Literature r e v ie w ... 2
1.3 Thesis con tribu tio n .. 3
1.4 Thesis Organization.. 3

2 Audio-Visual Databases 4
2.1 Datasets in the literature .. 4
2.2 IBM c o rp o ra ... 6
2.3 The studio-DIGITS d ataset... 6

3 Visual Front-End Processing 7
3.1 In trod u ction ... 7
3.2 Baseline face and mouth region track in g .. 7
3.3 Deep learning for face and mouth region tracking 7

3.3.1 Perceptron... 8
Linear l a y e r .. 8
Transfer fu n c tio n .. 9

3.3.2 Convolutional neural netw orks.. 9
Convolutional layer ... 9
Pooling layer .. 11

3.3.3 VGG-Face ... 12
3.3.4 CNN from s c r a t c h ... 12

3.4 ROI post-processing .. 12
3.5 Feature extraction ... 12
3.6 Experimental tracking r e s u lt s .. 15

3.6.1 Evaluation m etric .. 15
3.6.2 Experimental fra m e w o rk .. 16

VGG-Face based models ... 17
CNN from s c r a t c h ... 17
Dropout layer .. 19
Batch normalization la y e r .. 20

3.6.3 R e su lts .. 20

vi

4 HMM/GMM Approach for AVASR 23
4.1 HMM/GMM presentation... 23

4.1.1 H M M ... 23
4.1.2 GMM ... 24

4.2 The audio-only ASR b a s e l in e .. 24
4.2.1 Audio features ... 24
4.2.2 A rchitecture.. 28
4.2.3 System tra in in g ... 30

Flat start m onop hon es.. 30
Silence model .. 31
Forced alignment .. 32
Transcription conversion .. 32
Monophone HMMs to triphone HMMs 33
Tied-state triphones ... 33
Multiple mixture component HMMs .. 34

4.2.4 Decoding ... 34
4.3 Extensions for AVASR ... 34

4.3.1 Visual feature post-processing - interpolation 34
4.3.2 Feature fu sio n .. 35
4.3.3 Multi-stream architecture for decision fu s io n 35

4.4 R e s u lts ... 35
4.4.1 Error m e tr ic .. 35
4.4.2 Experimental fra m e w o rk .. 35
4.4.3 R e su lts .. 36

Result n o t e s .. 36

5 LSTM Approach for AVASR 38
5.1 Recurrent neural netw orks... 38

5.1.1 Vanishing gradients ... 39
5.2 Long short term memory - L S T M .. 39

5.2.1 Forward pass .. 39
5.2.2 Bidirectional recurrent neural n e tw o rk s 40

5.3 CTC loss fu n ctio n ... 40
5.4 Decoding ... 40
5.5 RNN for A S R .. 41

5.5.1 Basic block ... 41
5.6 Results ... 43

5.6.1 Error metric .. 43
5.6.2 Experimental framework .. 43
5.6.3 Results .. 43

Result notes .. 43

6 Conclusion 45
6.1 Summary ... 45
6.2 Future work ... 45

vii

List of Figures

1.1 AV-ASR system diagram.. 1

2.1 Sample images from the office-DIGIT and automobile-DIGIT datasets. 6
2.2 Sample images from the studio-DIGITS dataset... 6

3.1 Visual front end block diagram.. 7
3.2 Perceptron diagram... 8
3.3 Convolutional layer.. 9
3.4 Example of feature maps in two CNN layers.. 10
3.5 Max and mean pooling layers.. 11
3.6 Example CNN - Lenet-5... 11
3.7 Original vs DCT reconstructed image.. 13
3.8 PSNR of the inverse D C T 13
3.9 Reconstructed images using the inverse D C T .. 14
3.10 Ground-truth, prediction and intersection mouth bounding boxes. . 15
3.11 Plot of the L1, L2, and smoothL1 loss functions.. 17

4.1 Schematic of an HMM... 23
4.2 The acoustic front-end... 24
4.3 Hamming window for 400 samples.. 25
4.4 Example Mel-scale filterbank.. 26
4.5 HMM prototype for every phone.. 31
4.6 Video-only accuracy w.r.t. number of passes... 36
4.7 Audio only accuracy w.r.t. number of passes.. 37
4.8 HV ITE parameter search for audio-only ASR.. 37

5.1 Unrolled RNN... 38
5.2 An LSTM layer... 39
5.3 The resLSTM basic block.. 42
5.4 An LSTM network.. 42
5.5 CNN-LSTM network for visual-only ASR.. 44

viii

List of Tables

2.1 List of databases for AVASR.. 5

3.1 Database splits for face and mouth detection experiments..................... 16
3.2 Characteristics of the VGG and VGG1 networks.. 17
3.3 Characteristics of the CNN1-5 architecture.. 18
3.4 Hyperparameters for batched CNN... 19
3.5 Face and mouth tracking results using the AdaBoost approach. . . . 21
3.6 Face and mouth tracking results using CNNs... 21
3.7 Face and mouth tracking results using the batched CNN....................... 22

4.1 HMM definition.. 23
4.2 Dataset splits.. 35
4.3 HMM-GMM results... 36

5.1 LSTM-based results... 43

ix

List of Abbreviations

AVASR
ASR
BPTT
CNN
CTC
GMM
GRU
HMM
LSTM

Audio-Visual Automatic Speech Recognition
Automatic Speech Recognition
Back Propagation Through Time
Convolutional Neural Network
Connectionist Temporal Classification
Gaussian Mixture Model
Gated Recurrent Unit
Hidden Markov Model
Long Short Term Memory

x

to my dear iacovaki.

1

Chapter 1

Introduction

1.1 Audio-visual speech recognition

Over the years, we have experienced the enormous growth of computer capabili­
ties. Computers have only become faster, smaller, and much power-efficient. Cray-
1, a famous supercomputer from the 1975 is (and by a great margin) less powerful
and less power efficient than a smartphone device in 2017. And yet, to communi­
cate with a computer device we keep working with the same keyboard and mouse.
So the question is, what is hindering us from replacing all these communication
devices with a (more natural) to us, interface, speech? The answer to that is the
limitations in automatic speech recognition performance. No one would replace
a fully working keyboard with one that works 90% percent of the time. To date,
continuous speech recognition remains a challenging problem, especially in noisy
acoustic environments. Speech recognition systems usually rely only on the audi­
tory channel. To tackle this problem however, there is no reason why one should
not also exploit the visual channel. Without a doubt, the nature of human speech
production and perception is bimodal. In audio-visual speech recognition we seek
to use information that is present in both the auditory and the visual channels, in
order to remove ambiguities introduced by noise, overlapped speech sources, etc.

From a conceptual point of view, an automatic speech recognition (ASR) system
is composed of three major modules. First, the front-end module is responsible
for extracting features from the input signals. Then, from those features a speech
model assigns probabilities to a set of labels. The last part, the decoder acts as a
transducer of a sequence of label set probabilities to a word sequence.

In an audio-visual automatic speech recognition (AVASR) system the above
structure is shared, apart from the front-end module which is further partitioned
into an auditory, a visual, and a feature fusion submodule. The first two submod­
ules handle information from their respective channel, while the fusion submodule
prepares the two feature streams into the final feature stream.

FIGURE 1.1: AVASR system diagram k

1 Please do note that most textbooks refer to Speech Model as Acoustic Model, but we prefer the
term Speech because of the audio-visual context.

Chapter 1. Introduction 2

While the promise of AVASR is of great importance, helping us communicate
even in the presence of acoustic noise, several challenges must be first addressed.
The visual submodule, before generating the required features, must reliably local­
ize the region-of-interest (i.e., the speaker's mouth). This requires robust face de­
tection, facial landmark localization, and tracking. In an ideal-case scenario (e.g.,
studio-like with controlled lighting conditions), face detection might be considered
a trivial problem, but that is not the case in an unconstrained environment, with
variations in lighting, background, human pose, etc. Furthermore, the two streams
of features must be combined, without negatively affecting the system overall per­
formance. Possible asynchrony of the two streams might also become a problem, if
later in the ASR pipeline we assume that the two streams are synchronized.

1.2 Literature review

Most attempts to solve AVASR have focused on how to extract and represent visual
information, as well as how and when to fuse the two information streams. While
a complete literature review is out of the scope of this Thesis, we present some
relevant work in this area.

Visual Information Extraction

• Geometric features
Geometric information of the speaker's mouth, e.g., width,height,area, and
perimeter;Lip image moments;Deformable templates, etc.

• Video pixel features
An image transform (DCT, PCA, DWT, whole ROI) trained from the data to
obtain a compressed representation of the ROI images. Lately convolutional
neural network applied on the ROI frames have also been used to obtain a
compact representation.

• Model-based features
A model of the visible articulators is built, and the model parameters are
used as visual features. Example of this approach include active appearance
models and active shape models.

Fusion

• Feature fusion
The simplest solution to represent the two channels of information is to con­
catenate the two feature streams. If the two have different sampling rates,
interpolation is commonly used. For example, the auditory feature vectors
are typically extracted at 100Hz rate, while the visual feature vectors at the
videoframe rate, typically 25 or 30 fps. In this case the visual features are in­
terpolated at 100fps. Afterward a single classifier (e.g., single-steam HMM) is
used.

• Decision fusion
A combination of two separate classifiers is used. In this case, each infor­
mation stream has its own classifier. An example of this, is the multi-stream
HMM.

For a more in depth review, the interested reader might consult [1], [2].

Chapter 1. Introduction 3

1.3 Thesis contribution

The main contribution of this thesis is the exploration of deep learning solutions for
several steps in the AVASR pipeline. More specifically, we create a new deep learn­
ing based visual front-end based on raw images and facial feature points, which
outperforms its classic counterpart, an AdaBoost solution more details are given in
Chapter 3. Apart from the visual front end, we develop an auditory-only ASR and a
visual-only ASR based on the HMM/GMM framework. We compare the auditory-
only and visual-only ASR systems against a recurrent neural network based system
(Chapter 5) and find that the later outperform the former.

1.4 Thesis Organization

The present Thesis is divided into six chapters, each of them focusing on a specific
aspect of an AVASR system.

• Chapter 2 provides an overview of the databases used for AVASR in the liter­
ature, as well as details about the database used in this work.

• Chapter 3 presents the visual front-end. Emphasis is given on a comparison
between a traditional method and a new deep learning based approach.

• Chapter 4 presents the baseline systems (system details, results, metrics) de­
veloped for audio-only and video-only speech recognition using HMM/GMMs.

• Chapter 5 presents a deep learning approach for AVASR, using CNN and
LSTM models. Analysis on the experimental results is also provided for
audio-only, video-only, and audio-visual systems.

• Finally, Chapter 6 summarizes and concludes the Thesis.

4

Chapter 2

Audio-Visual Databases

In this chapter, we provide a brief overview of the datasets used for audio-visual
speech recognition in the literature, as well as detailed information about the dataset
mainly used in this work.

2.1 Datasets in the literature

While several small and large-scale audio-only corpora exist, for example the freely
available LibriSpeech corpora (1k hours) [3], or the well known TIMIT and SWITCH­
BOARD by the LDC [4], [5], this is not the case for audio-visual corpora, since suit­
able databases for AVSR research are very limited (in terms of number of subjects
or size of vocabulary). The reasons for the lack of suitable AV corpora are several.
First, compared to the audio-only speech recognition, AVASR is a relatively new
field. More importantly, the time and resources it takes to record a multi-modal
data corpus can be significant. Storage and distribution of a high-quality AV cor­
pus has also been cited as issue [1], but with the high-speed internet available today
and terabyte-sized hard disks, this may not remain an issue. In the following table,
we summarize most of the AV datasets that have been used in the literature.

Name / Inst. ASR Task Details NotesVowel Consonant Digit Letter Word Phrase C/I Subj Lang RGB-D
ICP [6] x 1 FR
ICP [7] x x 1 FR

DAVID [8] x x x x x 124 UK
Tulips1 [9] x I 12 US 1

M2VTS [10] x I 37 FR
UIUC [11] x C 100 US

CUAVE [12] x C/I 36 US
IBM-Digits x C 50 US 16

AVICAR [13] x C 10 US
QuLips [14] x C 2 UK 11
BAVCD [15] x C 15 GR+UK x 15

IBM-CHIL [16] x C 38 US 23
IBM-IH [17] x C 79 US x

XM2VTSDB [18] x x C 295 UK 2
OuluVS2 [19] x x C 52 US

MIRACL-VC1 [20] x x C/I 15 UK x
GRiD [21] x x x x C 34 UK

WAPUSK20 [22] x x x x C 20 DE-UK 14
U.Karlsruhe [23] x C 6 DE
U.LeMans [24] x I 2 FR 3
U.Sheffield [25] x C 4 UK 4

AT&T [26] x C 49 US
AVLetters1-2 [27] x I 10 US

UT.Austin [28] x I 1 US 5
AMP-CMU [29] x I 10 US 6

ATR [30] x I 1 JP
LRW [31] x I 1000+ UK

Chapter 2. Audio-Visual Databases 5

CMU-AVPFV [32]
DUTAVSC [33]

HIT-AVDB-II [34]
AusTalk [35]

AGH AV Corpus [36]

x
x

x
x

x
x
x
x
x

x

I 10
8

30

20

US
DU
CN
AU
PL

12
10
13

18
AV-TIMIT [37] x 1 US 7

AV-TIMIT (2) [38] x 223 US
Rockwell [39] x 1 US
VidTIMIT [40] x 43 AU
OuluVS1 [41] x C 20 US
PKUVS [42] x 30 CN

MC-WSJ-AV [43] x 45 UK
LiLiR [44] x 12 UK 8

TCD-TIMIT [45] x 62 IE 9
AVOZES [46] x 20 AU

MODALITY [47] x 35 UK 17
MOBIO [48] x 150 UK 19

UNMC-VIER [49] x x 123 UK 20
BL-Database [50] x 17 FR 21

IV2 [51] x 300 FR 22
IBM-IH [17] x 113 US x

UWB-05-HSAVC [52]
IBM-AV-ViaVoice [53]

x
x

100
290

CZ
US LVCSR

TABLE 2.1: List of databases for AVASR (some information taken
from table in [1], [54], [45], [47])

Notes:

1. Only 4 digits
2. 2 digit phrases + 1 word phrases, same for all subjects.
3. 200 utterances
4. "Each talker repeated each of the letters A to Z three times, a total of 312 utterances"
5. 500 words
6. 78 words
7. Captured at 60 frames-per-second, containts 450 TIMIT sntences (TIMIT 1988)
8. Each speaker reciting 200 sentences from Resource Management Corpus (vocabulary size 1000 words)
9. 6913 total sentences

10. Includes Variations in speech rate, spelling and a small amount of prompts whispering.
11. Multiview dataset. "The resulting dataset allows for controlled comparisons between angles despite

using only two cameras. 180 digits are available for each of the 10 angles and each speaker, giving a total
of 3600 digits"

12. "Our vocabulary consists of 150 words from the Modified Rhyme Test (M RT)". Subjects repeat the
150-word list 10 times.

13. "The corpus of HIT-AVDB-II includes digits, Chinese poems, tongue twisters of Chinese and English,
Greek alphabets, music notes, mandarin vow el.". Simultaneously recorded in 4 different views.

14. English pronounced by German natives.
15. Bilingual with depth information.
16. 10 digits. Zero has two pronunciations (i.e., zero and oh).
17. 168 commands (isolated), recorded at 100 fps, stereo camera, microphone array
18. 25/50 fps, Isolated words and numerals, Polish Language.
19. 32 questions, recorded on mobile devices, varying head pose and illumination. Composed of over 61h of

recordings of 150 speakers.
20. 12 XM2VTS sentences, varying quality, speech rate, expressions, ullumination, head poses.
21. 238 French sentences, depth camera, highlighted lips.
22. 15 French sentences, stereo frontal and profile views, iris images, 3D scanner data, head pose and

illumination variations.
23. Recorded using two microphones (one head-mounted and the other mounted on a wall near the

recorded subject) and three PTZ cameras (one frontal and two side views of the subject).

As observed in [1], one of the effects of the limited number of AV datasets is the
difficulty to compare many algorithms that have been suggested in the AVASR
literature, as they are "rarely tested on a common audio-visual database". The lack
of common ground (point of reference) for AVASR databases is a commonly-cited
issue in AVASR research [1], [46], [54] .

Chapter 2. Audio-Visual Databases 6

2.2 IBM corpora

Three datasets were considered for training the visual front-end (VFE), namely, the
office-DIGIT, the automobile-DIGIT, and the studio-DIGIT. The office-DIGIT and
the automobile-DIGIT datasets were collected especially with the goal of bench­
marking the capabilities of VFE under noisy visual conditions. The office-DIGIT
[1] dataset was collected in typical offices using a cheap camera (frame rate: 30Hz,
resolution: 320x240 pixels). Sample frames from this dataset are shown in Figure
2.1 (first row). We can clearly see that capturing with a cheap camera resulted in
color distortion. The automobile-DIGIT was recorded inside moving automobiles,
and is especially challenging because of changing poses, extreme lighting changes,
and shadowing [55].

FIGURE 2.1: Sample images from the office-DIGIT (first row) and
automobile-DIGIT (second row) datasets.

2.3 The studio-DIGITS dataset

Most of the work described in the rest of this Thesis, is based upon the studio-
DIGITS dataset. The studio-DIGITS dataset can be classified into the small-vocabulary
ASR category, since there are only 10 words/digits (the zero digit has two pro­
nunciations "zero" and "oh") in the vocabulary. It consists of 50 subjects uttering
connected digits (usually 7 or 10 digits strings), and contains about 6.7k utterances
(10h). The data was collected in a quiet studio environment, with low background
computer noise. The video resolution is 704x480 pixels and the frame rate is 30Hz.

FIGURE 2.2: Sample images from the studio-DIGITS dataset.

7

Chapter 3

Visual Front-End Processing

3.1 Introduction

The visual front-end (VFE) is an integral part of any AVASR system. The VFE is
tasked with generating feature vectors from the visual channel. In this chapter we
describe the visual front-end used in Chapters 4 and 5. The main parts of a VFE are
depicted in Figure 3.1. As we can see, the basic blocks have been grouped into two
categories, tracking and post-processing. As the names imply, the tracking basic
blocks are concerned with the face and facial landmarks localization. In Sections
3.2 and 3.3 we provide a comparison between two approaches for the tracking part.
In the post-processing module, we apply consecutive data transforms on the frame
pixels to obtain feature vectors. Further details are given in Sections 3.4 and 3.5.
In Section 3.6 we provide the results for the two approaches for three datasets, as
described in sections 2.2 and 2.3.

FIGURE 3.1: Visual front end block diagram.

3.2 Baseline face and mouth region tracking

An Adaboost based face and mouth detection system is developed in [56] . Es­
sentially, this system performs a face detection step, and then it performs a mouth
detection step on the returned lower half of the resulting face box. The interested
reader is advised to refer to Chapter 3 in [56] for a more detailed presentation.

3.3 Deep learning for face and mouth region tracking

Recently, deep learning approaches have obtained very high performance across
many different fields e.g., computer vision, speech recognition and natural lan­
guage processing, among others. For the computer vision community, the tipping

Chapter 3. Visual Front-End Processing 8

point to abandon classic methods and use deep learning approaches was a sub­
mission [57] in the ImageNet LSVRC-2012 Challenge. Krizhevsky et al. achieved
15.3% (top-5 test error), while the second-best entry achieved 26.2%. The model
used there was a convolutional neural network (CNN) with five convolutional lay­
ers and three hilly connected layers. Since then, CNNs (or variants) have been
used for object recognition/localization, image segnementation, style transfer, etc.
In this work, we follow a similar approach. From a dataset of hill-face frontal an­
notated images, we train a CNN to localize facial keypoints. This CNN is later
applied on individual video frames, as part of the VFE. In the following sections,
we provide an introduction from perceptons to neural networks to deep learning.
The term "deep" refers to the fact that the models are composed of several (stacked)
layers. For a review on facial feature point detection please see [58].

3.3.1 P erceptron

In 1957, Rosenblatt invented the perceptron algorithm [59]. The perceptron is an
algorithm for learning a binary linear classifier, followed by a non-linearity / to

yield the class labels: f{x) = j J < q

LIN EAR TRANSFER
LAYER FUNCTION

FIGURE 3.2: Perceptron diagram.

In more detail, a dot product between an extended input vector x and the weights
of the perceptron w is first calculated. Then the transfer function maps the result
of the previous operation to 0 or 1. Multiple perceptrons stacked in layers form a
multilayer perceptron (MLP) or neural network. By using a differentiable transfer
function (such as those presented in the following section), we can learn the
network parameters by using the backpropagation algorithm [60]. For simplicity
we omit the backward pass in the layers presented.

Linear layer

The linear layer, simply put, is a matrix-vector multiplication, where the matrix
holds the model parameters. When M = 1, the layer is equivalent to the linear layer
of a single-layer perceptron.

Input: x, size N xl

Output: y, size M xl

X
Operation: y = A

Parameters: A =

" « ’ 11 « ’12 ' • w i n h

« ’21 « ’22 ■ W ‘2N b ‘2

. « ’M l « ’M 2 ' ■ W M N bM

, size Mx(N+l)

Chapter 3. Visual Front-End Processing 9

Transfer function

The transfer function (also called activation function) applies (element-wise) a non­
linear function to the input vector. Usual choices are the sigmoid, tanh and ReLU
functions. We only present here the ReLU function.
Input: x, size N xl

Output: y, size N xl

Operation: y = ReLU(x)

Parameters: None

3.3.2 C on v o lu tion al neu ral netw orks

Convolutional neural networks (CNNs) are biologically-inspired variants of MLPs.
In a CNN, there is at least one convolutional layer, where the discrete convolution
operation is applied. CNNs were first introduced (as a network architecture) in
1969 [61], but it wasn't until 1998 [62] when backpropagation was used to learn the
parameters of the convolutional layers.

Convolutional layer

For the purposes of this presentation, and without loss of generality, we assume
an M-by-N RGB image input (L=3 planes), a 3x3 convolution kernel, and a single
output plane (i.e., there is only one convolution kernel), as shown in Figure 3.3. The
output of a convolutional layer is usually referred to as a feature map.

Input: I , size LxMxN

Output: S, size MxN

Parameters: Ki m n

Operation:

1=Iq-\- 1 m=mo-\-l n = n o + l

CONVOLUTION
KERNEL

M
RED

S

N

INPUT RGB IMAGE OUTPUT PLANE

FIGURE 3.3: Convolutional layer.

Chapter 3. Visual Front-End Processing 10

INPUT RGB IMAGE GRAYSCALE INPUT

FIRST LAYER
FEATURE
MAPS

H im
m m m

m m m

SECOND LAYER
FEATURE MAPS

FIGURE 3.4: Example of feature maps in two CNN layers.1 2 3

1 Please do note the spatial downsampling due to the presence of non unity stride in the convolu­
tion operation (even in the feature maps of the first layer, before any pooling operation) - unlike the
simplified presentation of the convolutional layer.

2 The input image to the first convolutional layer is grayscale, i.e. there is only one plane (L=l), in
comparison to an RGB image, where there are three planes (L=3).

3Only the positive part is shown in the feature map images.

Chapter 3. Visual Front-End Processing 11

In figure 3.4 we present feature maps from two CNN layers. First the RGB input
image is convert to grayscale, then the grayscale image is zero-mean centered (zero-
mean centering results in pixels with negative values which can not be displayed,
for this reason we present two images, one with the positive pixels and one with
the inverted negative pixels). The zero-mean image, is fed into the CNN generating
the shown features maps, in the first two CNN layers. We can clearly in see in the
first layer, that some convolutional kernels perform edge detection.

Pooling layer

A pooling layer replaces a region of features (of a feature map) by a single feature
value. The objective is to down-sample an input representation and to provide a
form of translation invariance to the model. Common pooling layers are the mean
Pooling, max Pooling, L2 Pooling, etc. We show in Figure 3.5 the result of mean
and max pooling layers. Please do note that in this example, the regions of features
are of size 2x2, and there is no overlap.

M A X P O O LIN G
5 8

1 2 1 4

4 5 7 8
9 7

9 8 7 6
3 46 5 3 4

M EA N P O O LIN G
IN P U T F E A T U R E M AP 7 5

FIGURE 3.5: Max and mean pooling layers.

To summarize, we present a very early [62] CNN (namely, LeNet-5) used for
digit classification. As we can see from the network structure, there are two con­
volutional layers, two pooling layers, and 3 fully connected layers. LeNet-5 is the
earliest documented case of a CNN obtaining a very high performance (>99.3%
accuracy) on an image classification task.

INPUT
32x32

C3: f. maps 16@10x10
C1: feature maps S4: f. maps 16@5x5
6@ 28x28

S2: f. maps C 5.|ayer F6: |ayer OUTPUT
\120 αΛ ’ ίο

Convolutions
Full connection | Gaussian connections

Subsampling Convolutions Subsampling Full connection

FIGURE 3.6: Example CNN LeNet-5 - Figure from [62],

Chapter 3. Visual Front-End Processing 12

3.3.3 VGG-Face

The first model we trained is based on [63]. Due to lack of computational resources
at the time, we choose to take a transfer learning approach. More specifically, we
use an already trained model (the VGG-Face model) as a fixed feature extractor. By
that we mean that we remove the (last) fully connected layer of the VGG network,
and we use the output of the last convolutional/pooling layer as a feature vector
for a new classifier that we train to localize the points of interest. The results were
satisfactory as will become apparent in Section 3.6.2.

3.3.4 CNN from scratch

We also experimented with training a CNN from scratch, as discussed in more
detail in section 3.6.3.

3.4 ROI post-processing

When every frame of the input video has been passed through our CNN, we on-
tain for each frame a set of points - the predictions of the network. To go from
those predictions to the final feature vectors used by the speech model, we need to
perform few post-processing steps. We first apply a smoothing function on the net­
work predictions - to absorb any noisy predictions - and then from the corrected
predictions we extract a rectangle from every frame. This way, we create a new
video that only contains the Region-Of-Interest (i.e., the speaker mouth).

For the smoothing function we used a median filter [64]. Median filtering is a
nonlinear digital filtering technique, often used to remove noise. Typical scenarios
involving median filtering can be found in a pre-processing steps in many digital
image processing applications.

After obtaining the smoothed coordinates of each facial keypoint for every frame,
we calculate from those points the mean mouth height and width. We also
calculate the center point of the mouth. Based on these values, we extract a
rectangle and then resize it to 64x64 pixels. The final ROI consists of 64x64 sized
frames.

3.5 Feature extraction

At this stage, we need to convert the ROI images into feature vectors. For this
reason we follow the approach described in [65]. More specifically, for each input
frame we calculate the 2D-DCT transform. We then select 15 coefficients from the
even columns. The selection of the coefficient indices is achieved by first calculating
the 2D-DCT tranform of multiple frames, then raising each DCT coefficient to the
power of 2, and then summing all DCT coefficients across all frames. Afterwards
we select the top-15 (based on value) DCT coefficients that are located in the even
columns. We store those top-15 indices in a separate file for later use.

If we apply the above transform and then only from the selected coefficients
apply the inverse DCT we reconstruct (to some degree) the original signal. In Fig­
ure 3.7 we observe the original image (left) and the reconstructed image (right).
Clearly, we can see symmetrical mouth in the right image, while the mouth in the
original image are slightly asymmetrical. The 2D-DCT equation (eq. 3.1) and the

Chapter 3. Visual Front-End Processing 13

ORIGINAL RECONSTRUCTED
IMAGE IMAGE

FIGURE 3.7: Original vs DCT reconstructed image (upsampled).

2D-IDCT (eq. 3.3) are given below:

D (iJ)

C (u)

p{x,y)

M - l N - 1

^ = = c (- i) C (j) Σ ^ p (-^ y) c o s (
(2x + 1)?'7T (2y + l) jn

x = 0 y = 0 2 M
cos(-

2 N

7 2 i fw = 0

1 if u > 0
^ M —l N —l (2x + 1)?'7T (2 y + 1)_)π

ί= 0 j= 0
2 M

cos(-
2iV

(3.1)

(3.2)

(3.3)

To gain some intuitive understanding of how the above transform works with
respect to the number of coefficients, we've reconstructed the input signal with 1 to
64 DCT coefficients. We calculate the PSNR (Figure 3.8) and present the resulting
images on the next page (Figure 3.9). Given two MxN grayscale images I\ and
PSNR is defined as: . .Ί m -ln -1

M SR = J m T . E t W · - · ') - « i , J)]2 (3-4)
i =0 j =0

93fi2
P SN R = 1 0 lO g jI^ (3-5)

FIGURE 3.8: PSNR of the inverse DCT.

Chapter 3. Visual Front-End Processing 14

FIGURE 3.9: Reconstructed images using the inverse DCT and a
variable number of DCT coefficients (1-64).

Chapter 3. Visual Front-End Processing 15

Having the DCT coefficients, we calculate the delta, and acceleration for each
coefficient, resulting in 45-dim feature vectors.

3.6 Experimental tracking results

We now present the tracking results for the baseline system and all CNN architec­
tures that we experimented with. First we introduce the evaluation metric that we
used, the experimental framework, and then our results.

3.6.1 Evaluation metric

In order to evaluate performance, we use the evaluation metric specified in [66].
More specifically, for each bounding box (face, mouth) we calculate the precision
and recall according to:

Precision(G i, Pi)
Area(Gi) n Area(Pi)

Area(Pi)
Intersection(G i , Pi)

A rea(Pi)

Recall(G i , Pi)
A rea(G i) n Area(Pi)

Area(Gi)
Intersection(G i , Pi)

A rea(G i)

(3.6)

(3.7)

where Gi denotes the groundtruth and Pi the predicted bounded box (see Figure
3.10). Then, the F1 score is calculated as:

F 1 i(Gi, Pi)
Precision(G i , Pi) * Recall(G i , Pi)

2
P recision(G i , Pi) + Recall(G i , Pi)

(3.8)

We only report the average F1 score, defined as:

F1 score — E[F1 score (Gi, Pi)] (3.9)
i

PREDICTION P, INTERSECTION ,̂,?,) GROUNDTRUTH G,

FIGURE 3.10: Ground-truth, prediction and intersection mouth
bounding boxes.

Chapter 3. Visual Front-End Processing 16

3.6.2 Experimental framework

We split all the datasets into training and test sets as shown in table 3.1. We then
merge the studio-DIGIT and studio-LVCSR training and test sets and train on those
new sets. From those splits, we further create two version of the files. The first is
a grayscale, mean zero normalized version (transformation suggested in [67]) and
the second is an RGB mean-zero normalized according to the channel mean and
standard deviation values given with the VGG-face model. In the next tables we
refer to the dataset with their corresponding codenames for brevity. We down­
sample every 704x480 pixels image (of AVD/AV31/AVA) to 224x224 pixels. Before
downsampling, we crop 16 pixels from left and right of the image. The AVR dataset
images are of size 320x240, in this case we do not downsample, we only crop 16 pix­
els from left and right to obtain a 288x240 pixels image.

Dataset Codename Total Train Test

pct. # pct.

studio-DIGIT AVD 600 200 33 400 67

studio-LVCSR AV31 3703 2960 80 743 20

automobile-DIGIT AVA 2575 2060 80 515 20

office-DIGIT AVR 2620 2096 80 524 20

TABLE 3.1: Database splits for face and mouth detection experi­
ments.

All networks were trained with the smoothL1 loss function [68], which is less
sensitive to outliers than the L2 loss. The smoothL1 is defined as (see also Figure
3.11):

smoothLU x) = { 0 5 f β < J <310)

Please note the use of a shifted version of the L1 function (if |x| > 1, in eq. 3.10), in
order to avoid forming a discontinuous function. Our objective is to predict the
location (x and y coordinates) of 18 facial landmarks and 2 points for the face
bounding box, thus we apply the smoothL1 function to the difference the network
prediction and the labeled value. In total, the network predicts 20 points, i.e. 40
values (x and y coordinates). Figure 3.11 shows the difference between the L1,L2
and smoothL1 loss functions. Near zero smoothL1 behaves more like L2 while for
greater x values it behaves like L1.

(XU

Chapter 3. Visual Front-End Processing 17

-2 -1 .5 -1 -0 .5 0 0 .5 1 1 .5 2 -20 -15 -10 -5 0 5 10 15 20

x x

FIGURE 3.11: Plot of the L1, L2, and smoothLl loss functions.

We now describe the CNN model architectures that we trained. These are ref­
erenced in the results section using the codenames introduced in this section.

VGG-Face based models

As we described in Section 3.3.3, initially we used the VGG-Face model as a fixed
feature extractor. From 224x224 pixel images we obtain 25088-dimensional feature
vectors. From those we train two networks (VGG and VGG1). VGG does not pre­
dict a face bounding box - only facial landmarks.

VGG VGG1
id Layer Input Size Output Size id Layer Input Size Output Size
1 Linear 25088 600 1 Linear 25088 530
2 PReLU 600 600 2 PReLU 530 530
3 Dropout [69] 600 600 3 Dropout 530 530
4 Linear 600 600 4 Linear 530 530
5 HardTanh 600 600 5 HardTanh 530 530
6 Linear 600 100 6 Linear 530 100
7 Dropout 100 100 7 PReLU 100 100
8 ReLU 100 100 8 Dropout 100 100
9 Linear 100 36 9 Linear 100 40

TABLE 3.2: Characteristics of the VGG and VGG1 networks.

CNN from scratch

CNN1-5 were trained using online training. We call these models CNN1, CNN2,...,
CNN5 differing in the number of training steps. More specifically, from one train­
ing session, we choose 5 networks with different epoch numbers. Later we also
experimented with batched training with the following architecture:

Chapter 3. Visual Front-End Processing 18

id Layer Input Size Output Size H-parm
1 Spatial Convolution 1 x 224 x 224 30 x 74 x 74 11 x 11 filter, 3 x 3 stride
2 ReLU 30 x 74 x 74 30 x 74 x 74
3 Spatial Max Pooling 30 x 74 x 74 30 x 36 x 36 3 x 3, 2 x 2 stride
4 Spatial Convolution 30 x 36 x 36 156 x 36 x 36 5 x 5 filter
5 ReLU 156 x 36 x 36 156 x 36 x 36
6 Spatial Max Pooling 156 x 36 x 36 156 x 17 x 17 3 x 3, 2 x 2 stride
7 Spatial Convolution 156 x 17 x 17 100 x 17 x 17 3 x 3 filter
8 ReLU 100 x 17 x 17 100 x 17 x 17
9 Spatial Convolution 100 x 17 x 17 64 x 17 x 17 3 x 3 filter
10 ReLU 64 x 17 x 17 64 x 17 x 17
11 Spatial Max Pooling 64 x 17 x 17 64 x 8 x 8 3 x 3, 2 x 2 stride
12 Linear 4096 512
13 ReLU 512 512
14 Dropout 512 512
15 Linear 512 512
16 ReLU 512 512
17 Dropout 512 512
18 Linear 512 40

TABLE 3.3: Characteristics of the CNN1-5 architecture.

Chapter 3. Visual Front-End Processing 19

id Layer Input Size Output Size H-parm
1 SpatialConvolution 1 x 224 x 224 30 x 113 x 113 5x5F, 2,2P, 3,3S
2 ReLU 30 x 113 x 113 30 x 113 x 113
3 SpatialMaxPooling 30 x 113 x 113 30 x 56 x 56 (3x3, 2,2)
4 SpatialDropout 30 x 56 x 56 30 x 56 x 56
5 SpatialBatchNormalization 30 x 56 x 56 30 x 56 x 56
6 SpatialConvolution 30 x 56 x 56 60 x 56 x 56 (30 -> 60,5x5,1,1, 2,2)
7 ReLU 60 x 56 x 56 60 x 56 x 56
8 SpatialMaxPooling 60 x 56 x 56 60 x 27 x 27 (3x3, 2,2)
90 SpatialDropout 60 x 27 x 27 60 x 27 x 27
11 SpatialBatchNormalization 60 x 27 x 27 60 x 27 x 27
12 SpatialConvolution 60 x 27 x 27 100 x 27 x 27 (60 -> 100, 3x3,1,1,1,1)
13 ReLU 60 x 27 x 27 60 x 27 x 27
14 SpatialMaxPooling 60 x 27 x 27 100 x 13 x 13 (2x2, 2,2)
15 SpatialDropout [70] 100 x 13 x 13 100 x 13 x 13
16 SpatialBatchNormalization 100 x 13 x 13 100 x 13 x 13
17 SpatialConvolution 100 x 13 x 13 100 x 13 x 13 (100 -> 100, 3x3,1,1,1,1)
18 ReLU 100 x 13 x 13 100 x 13 x 13
19 SpatialMaxPooling 100 x 13 x 13 100 x 6 x 6 (3x3, 2,2)
20 BatchNormalization [71] 3600 3600
21 Linear 3600 512
22 ReLU 512 512
23 Dropout 512 512
24 BatchNormalization 512 512
25 Linear 512 512
26 ReLU 512 512
27 Dropout 512 512
28 BatchNormalization 512 512
29 Linear 512 40

TABLE 3.4: Hyperparameters for batched CNN.

Dropout layer

Dropout [69] is a regularization technique for the overfitting in neural networks, by
preventing complex co-adaptations on training set. A dropout layer, applied after
a linear layer (or the activation layer following the linear layer) acts as a mask of
zero and one on the input values. All mask positions containing zero result in zero
output, otherwise the initial value is kept. The mask is sampled from a Bernoulli
distribution. More specifically, if x is the input tensor, y the output, and p the mask
probability:

Dropout Layer

1: m ask = tensor():resizeAs(x)
2: mask:fill(Bernoulli(p))
3: y = x 0 m ask

Chapter 3. Visual Front-End Processing 20

In the above presentation and pseudo-code, we've avoided to make any as­
sumption about the dimensions of the input x. This is a deliberately choice, since
the dropout formulation does not pose any dimensionality restrictions. Of course,
in some cases dimensionality restrictions might be beneficial. For example, a 2D
convolutional layer with multiple convolution kernels, returns a 3D plane tensor.
In this case, we would like to drop a whole plane rather than random pixel posi­
tions across all planes. Spatial dropout [70] does exactly this.

Batch normalization layer

Batch normalization [71] is a training acceleration method, enabling the use of
higher learning rates. It has been long known [62] that the network training con­
verges faster if its inputs are whitened - i.e., linearly transformed to have zero
means, unit variances, and decorrelated. By whitening the data to have zero mean
and unit variance, we fix the input distribution to the network. In the batch normal­
ization term, the authors coin the term Internal Covariate Shift and further comment:
"as the change in the distribution of network activations due to the change in net­
work parameters during training", which practically means that the distribution of
data between layers changes during training. The authors of batch normalization
claim that the internal covariate shift is the major reason why deep architectures
have been notoriously slow to train. This stems from the fact that deep networks
do not only have to learn a new representation at each layer, but also have to ac­
count for the change in their distribution. Batch normalization is a layer that applies
zero mean and unit variance at its inputs. A decorrelation transform would be too
expensive (computationally) to perform.

Input: Values of x over a mini-batch: B = x 1...xm;
Output: yi = ΒΝγ,β (xi)
Parameters: γ, β (learned with backprogation)

(mini-batch mean) (3.11)

(mini-batch variance) (3.12)

(normalize) (3.13)

(scale and shift) (3.14)

xi
i=1

xi

1
m

xi μΒ

σΒ ^ - ^ Σ (χί - μ)2
i= 1

σΒ + e

yi ^ γxi + β = ΒΝ 7,β(χ.)

3.6.3 Results

All reported numbers concern the respective test set only. All numbers are the
average across all test samples, for the given metric. First we present the results
obtained from the AdaBoost-based [56] method and then from the CNN approach.

Chapter 3. Visual Front-End Processing 21

Dataset Face Mouth

Precision (%) Recall (%) F1 score (%) Precision (%) Recall (%) F1 score (%)

AV31 73.57 91.84 81.69 40.05 87.32 54.91

AVD 79.39 89.07 83.95 64.58 68.28 66.38

AVA 76.84 59.11 66.81 51.29 44.03 47.38

AVR 74.43 81.50 77.80 54.27 62.03 57.89

TABLE 3.5: Face and mouth tracking results using the AdaBoost ap­
proach [56].

Dataset Model
Face Mouth

Precision (%) Recall (%) F1 score (%) Precision (%) Recall (%) F1 score (%)

AV31

VGG - - - 86.34 85.97 85.23

VGG2 76.55 81.49 76.32 80.94 82.65 80.09

ENS1 96.25 94.74 95.36 85.44 86.14 84.84

ENS2 95.11 94.51 94.64 87.05 86.95 86.10

CNN1 95.43 94.75 94.93 86.53 85.55 85.09

CNN2 96.82 95.22 95.86 86.59 85.46 85.07

CNN3 96.04 95.19 95.46 86.15 86.36 85.32

CNN4 97.10 93.35 95.03 82.84 81.14 81.05

CNN5 95.20 94.89 94.89 86.29 85.54 84.98

AVD

VGG - - - 85.68 85.53 84.68

VGG2 83.04 75.37 77.22 78.80 80.36 77.88

ENS1 95.83 92.51 93.62 84.01 83.78 82.74

ENS2 95.37 91.39 92.76 85.02 82.24 82.42

CNN1 95.24 91.57 92.84 84.14 81.34 81.54

CNN2 96.54 91.33 93.29 83.57 80.66 80.63

CNN3 95.85 91.61 93.16 83.61 81.04 81.06

CNN4 97.02 89.85 92.72 82.62 79.19 79.39

CNN5 95.06 91.57 92.74 84.00 81.17 81.38

AVA CNN 93.09 92.42 92.44 73.18 72.69 71.95

AVR CNN 96.95 96.43 96.62 81.41 82.97 81.32

TABLE 3.6: Face and mouth tracking results using CNNs.

Chapter 3. Visual Front-End Processing 22

Dataset Face Mouth

Precision (%) Recall (%) F1 score (%) Precision (%) Recall (%) F1 score (%)

AV31 96.49 97.15 96.75 85.55 87.17 85.37

AVD 97.16 96.88 96.97 85.81 83.66 83.81

AVA 93.43 93.91 93.39 80.82 79.98 79.36

AVR 96.85 97.09 96.90 83.46 83.01 82.47

TA B L E 3.7: Face and mouth tracking results using the batched CNN.

23

Chapter 4

HMM/GMM Approach for AVASR

4.1 HMM/GMM presentation

Hidden Markov Models (HMMs) have been used for speech recognition since the
mid-1970s [73]. For this reason, the first ASR systems we built are based on the
traditional HMM/GMM approach.

4.1.1 HMM

FIGURE 4.1: Schematic of an HMM.

Formally, a HMM can be described as a 5-tuple Ω = (A, y, T , Μ . π), where :

X : set finite set of hidden states

y : set finite set of observations

r ; 1X1-) IR+ transition probabilities

M : T x } M IR+ observation probabilities

7Γ : X —>· IR+ prior probability distribution on the initial state

TABLE 4.1: HMM definition.

There are three basic problems associated with HMM, that must be solved be­
fore the model can be applied to practical problems [74],

°For this chapter we used the HTK toolbox [72]

Chapter 4. HMM/GMM Approach for AVASR 24

The first problem can be stated as follows: given some observation sequence
y = Τι T 2 - - - TV and a model Λ = (X, y, T. M . t t) how do we efficiently compute
the probability of the observation sequence P(y\X)? The second problem can be
stated as: given some observation sequence y Τ ι3T ' ' ' TV and a model
Λ = (X, y , T. M .7t), which is the most likely state sequence that produced the
corresponding observation sequence Finally, how do we adjust the model
parameters Λ = (T , Λ4, π) to maximize P{y\X)?

4.1.2 GMM

A Gaussian mixture model (GMM) is a probabilistic model, which consists of a
finite number of Gaussian distributions. It models the data observations as the lin­
ear combination of several generative Gaussians. The probability density function
(pdf) of a GMM is given by:

k

f (x) = Wi Af(x, μί, Σι) (4.1)
i = 1

where k is the number of Gaussian components and w their respective weights.
Finally, the function Af(x, pi, represents the pdf of the normal distribution:

■Λ/’(Ά AFi ^ί)
ν/(27Γ)Ν|Σ

exp - ^ (x ~ P i) TS i 1 2(x - p i) (4.2)

4.2 The audio-only ASR baseline

4.2.1 Audio features

In this section, the basic steps involved in transforming a speech waveform into a
sequence of feature vectors is described. Figure 4.2 depicts the basic blocks of the
acoustic front-end.

INPUT
SPEECH -

SAMPLES
► FRAMING -

DC
*■ MEAN

REMOVAL
RAW

ENERGY
PRE-

EMPHASIS
WINDOWING
(HAMMING)

DISCRETE
* · FOURIER

TRANSFORM
MEL

FILTERBANK LOGO DCT
CEPSTRAL

► MEAN -r
NORMALIZATION

DELTAS
-► ACCELERATION —

COEFFICIENTS
CONCAT

__ 1
MFCC

VECTORS

FIG U RE 4.2: The acoustic front-end.

1. Framing

The input signal is first split into frames, which translates into bucketing samples
into their respective frames. For an input signal sampled at 16kHz (1ms o 16 sam­
ples), a window length of 25ms and a frame shift of 10ms, each frame has 25*16
= 400 samples. The first frame has coefficient indices in the range [0,399], the sec­
ond [159,558], the third [319,718], etc. Note the partial overlap in the indices of
successive frame.

2. DC removal

The next step involves calculating the mean value of the input frame and subse­
quently subtracting the mean value from each sample. For a frame stored in a

Chapter 4. HMM/GMM Approach for AVASR 25

vector x:
μ = E [x], mean of the elements of x

x[i] = x[i] — μ, substract mean from every element

3. Raw log energy

This step calculates the raw energy of the input signal (zero mean):

399
raw_energy = ^ x[n] * x[n]

n=0

(4.3)

(4.4)

(4.5)

(indices of the above sum are relative to thecurrent frame). Next, the log of the raw
energy is calculated:

raw_energy ^ log (raw_energy) (4.6)

4. Pre-emphasis

It is common practice to pre-emphasize the signal by applying the first order dif­
ference equation

x'[n] = x[n] — 0.97 * x[n — 1] (4.7)

Care must be taken to apply the above equation with descending indices to avoid
calculations with overwritten values.

5. Windowing

Next the input frame is windowed. We use the Hamming window defined by:

w[n] 0.54 — 0.46 cos(), 0 < n < K

0 , otherwise
(4.8)

As stated before, the input signal is sampled at 16kHz, thus each frame contains
400 samples. In this case the Hamming window is shown in Figure 4.3.

Sample

FIGURE 4.3: Hamming window for 400 samples.

In this case the output signal can be written as:

x[n] = w[n] * x[n], 0 < n < 400 (4.9)

(indices are relative to the current frame).

Chapter 4. HMM/GMM Approach for AVASR 26

6. Discrete Fourier Transform

The Discrete Fourier Transform is applied to the input signal or [??.]:

399 - ' 2 k
x [k] = Σ exP \ q q ' k = ° ’ ^ · · · ’ 399

ra= 0

(4.10)

7. Mel filterbank

The magnitude of the Fourier transform is passed through a Mel filterbank. The
Mel Filterbank consists of triangular filter, equally spaced along the Mel-scale (the
Mel-scale is defined by (4.11)). The triangular filters are spread over the whole
frequency range form zero upto the Nyquist frequency (8 kHz):

M d { f) = im \ n { l + J -) (4.11)

To go from Mels back to frequency:
MC '·!///) = 700(exp - 1) (4.12)

1 iZo

Each one of the triangular filters is defined by:

Hi[k]

0 k <
k~fbi- 1 forhi ~hi~i ’
h i+i~k for

fbi+i~hi ’
0 for

h i -1

fbi-1 < k < h i

fa < k < f bi+1

k > fbi+i

(4.13)

The boundary points f bi of the filters are defined by:

N ,
fin = -F rM er1 M el (fiow) + i

Melifhigh) - M< lift,
Μ + 1

(4.14)

where N is the number of points in the DFT, Fs is the sampling frequency, M is
the number of filters, fimv and are respectively the low and high boundary
frequency for the entire filter bank (i.e., 0 Hz and 8000 Hz). From 4.11 we convert
the lower and upper frequencies of the filterbank to Mels. In this case, 0 Hz is
0 Mels and 8000 Hz is 2834.99 Mels. We use 26 filters (NUMCHANS=26), which
means we need 26 points spaced linearly between 0 Mels and 2834.99 Mels. From
this list and equation 4.12 we obtain a new set of frequencies /. From this set and
(4.13) we obtain the final filterbank (see also Figure 4.4).

FIGURE 4.4: Example Mel-scale filterbank.

Chapter 4. HMM/GMM Approach for AVASR 27

After the application of the Mel filterbank on the squared magnitude of (4.10), we
obtain a vector of size 26 x 1 (for each frame).

8. Log

The log function is applied on every element of the output of the filterbank.

9. DCT

The next step is the calculation of the Mel-frequency cepstral coefficients (MFCCs),
which is achieved by using the DCT:

Γ 2 N π
c = χ Σ mj cos (N r - 0-5)) (4.15)

V j= 1

where N is the number of the filterbank channels (26) and mj is the output of the
previous step. We use 12 cepstral coefficients, thus 1 < i < 12. Note that this for­
mula differs from those found in most textbooks. More specifically, it's augmented

with a normalization factor However this exact formula (with the normal­
ization factor) is used in HTK version 3.5 as can found in file HSigP.c, in function
FBank2MFCC and lines 610-624.

10. Cepstral mean normalization

Next, cepstral mean normalization is performed on the resulting coefficients.

11. Delta and delta delta coefficients

The modified DCT coefficients and the log(raw_energy) are augmented with the
first and second order temporal derivatives, defined by:

Θ
Σ d(Ct+e - Ct-θ)

dt = — Θ (4.16)
2 θ2

θ=1

Σ θ ^ + θ - dt-θ)
at = — Θ (4.17)

2 θ2
θ=1

For the delta coefficients we use θ = 3 and for the delta delta coefficients we use
θ = 2.

12. Concatenation

The DCT coefficients, the log(raw_energy) as well as, the first and second deriva­
tives are all concatenated to form a 39-dimensional feature vector for each frame of
the input speech signal.

13. Feature extraction with HTK

The described feature extraction process can be achieved with the HCopy tool. More
specifically we use the following hcopy_configuration file:

Chapter 4. HMM/GMM Approach for AVASR 28

TARGETKIND = MFCC_E_D_A_Z # MFCC+ENERGY+DELTAS+ACCEL
SOURCERATE = 625 # 625->sampling freq == 16k
TARGETRATE = 100000.0
LOFREQ = 0
HIFREQ = 8000
SAVECOMPRESSED = T
SAVEWITHCRC = T
WINDOWSIZE = 250000.0
USEHAMMING = T
PREEMCOEF = 0.97
NUMCHANS = 26
CEPLIFTER = 22
NUMCEPS = 12
ENORMALISE = T
ZMEANSOURCE = T
SOURCEFORMAT = WAV

and the command:

HCopy -A -D -V -T 1 -C ../configs/hcopy -S filelist

where filelist, is the list of files to be converted. Each line contains two columns,
the input file location and the output file location.

4.2.2 Architecture

After coding the data, we define the task grammar and dictionary. We define the
task grammar as follows:

$digit = one | two | three | four | five | six |
seven | eight | nine | zero | oh ;
({sil} < $digit {sil} >)

As we can see, there are 11 words, since both "zero" and "oh" are used. We also
allow silence at the start and end of the utterance, as well as between digits. We
use the HParse tool from the HTK toolbox to compile the above grammar into a
wordnet, with the following command:

HParse gram wdnet
The pronunciation dictionary is a text file with the pronunciation for each word of
the vocabulary, for this step we used the CMU dictionary [75].

Chapter 4. HMM/GMM Approach for AVASR 29

eight ey t
five f ay v
four f ow r
nine n ay n
oh ow
one w ah n
seven s eh v ih
six s ih k s
three th r iy
two t uw
zero z iy r ow
sil [] sil

To generate the above file we use the HDMan tool and the following command:

HDMan -A -m -w wordlist -n monophonesl -g configs/global.ded
-l dlog dict orig/cmudict
This command, will generate the above dict file, the monophones1 (which is just
a list of unique monophones present in the dict file), plus the dlog file which the
log of the process. The wordlist is the list of words in the vocabulary, so essentially
for our task contains 11 words (one-nine,zero,oh). The files configs/global.ded
contain the configuration for HDMan, describing any transformation needed by the
user.

AS sp
RS cmu
MP sil sp sil
MP sil sil sp

The AS sp directive inserts a short-pause (sp) at the end of every pronuncia­
tion. The RS cmu directive removes any stress marks and the MP directives replace
any sequence of sil and sp phones into a single sil.

We also need to convert the transcription files from word sequences into phoneme
sequences. The HLEd tool is able to do this. We provide the following configuration
file:

EX
IS sil sil
ME sil sil sil

Chapter 4. HMM/GMM Approach for AVASR 30

ME sil sil sil sil
DE sp

and run the following command (only the command for the train set transcriptions
is shown):

HLEd -A -l -d diet -i phonesO.mlf configs/mkphonesO.led
labels/train.mlf

Next we start from flat start monophone HMMs, then based on those trained mono­
phones we realign the training data and train triphone HMMs. At last, since the
previously mentioned HMMs involve a single Gaussian model, we experiment
with splitting the single Gaussian into more mixtures.

4.2.3 System training

Flat start monophones

We start by defining an HMM prototype, as follows:

~o <VecSiz e> 39 <MFCC_ E_ D_A__Z>
~h "proto"
<BeginHMM>
<NumStates > 5
<State> 2
<Mean> 39Oo 0.0 0. 0 0.0 0. 0 0. 0 0. 0 0. 0 0. 0 0. 0 0. 0 0. 0 0. 0oo 0.0 0. 0 0.0 0. 0 0. 0 0. 0 0. 0 0. 0 0. 0 0. 0 0. 0 0. 0oo 0.0 0. 0 0.0 0. 0 0. 0 0. 0 0. 0 0. 0 0. 0 0. 0 0. 0 0. 0
<Variance> 39
1.0 1.0 1. 0 1.0 1. 0 1. 0 1. 0 1. 0 1. 0 1. 0 1. 0 1. 0 1. 0
1.0 1.0 1. 0 1.0 1. 0 1. 0 1. 0 1. 0 1. 0 1. 0 1. 0 1. 0 1. 0
1.0 1.0 1. 0 1.0 1. 0 1. 0 1. 0 1. 0 1. 0 1. 0 1. 0 1. 0 1. 0
<State> 3
<Mean> 39Oo 0.0 0. 0 0.0 0. 0 0. 0 0. 0 0. 0 0. 0 0. 0 0. 0 0. 0 0. 0oo 0.0 0. 0 0.0 0. 0 0. 0 0. 0 0. 0 0. 0 0. 0 0. 0 0. 0 0. 0oo 0.0 0. 0 0.0 0. 0 0. 0 0. 0 0. 0 0. 0 0. 0 0. 0 0. 0 0. 0
<Variance> 39
1.0 1.0 1. 0 1.0 1. 0 1. 0 1. 0 1. 0 1. 0 1. 0 1. 0 1. 0 1. 0
1.0 1.0 1. 0 1.0 1. 0 1. 0 1. 0 1. 0 1. 0 1. 0 1. 0 1. 0 1. 0
1.0 1.0 1. 0 1.0 1. 0 1. 0 1. 0 1. 0 1. 0 1. 0 1. 0 1. 0 1. 0
<State> 4
<Mean> 39Oo 0.0 0. 0 0.0 0. 0 0. 0 0. 0 0. 0 0. 0 0. 0 0. 0 0. 0 0. 0oo 0.0 0. 0 0.0 0. 0 0. 0 0. 0 0. 0 0. 0 0. 0 0. 0 0. 0 0. 0

Chapter 4. HMM/GMM Approach for AVASR 31

0 .. 0 0 .. 0 0 . 0 0 .. 0 0 .. 0 0 .. 0
< V a r i a n c e > 3 9
1. . 0 1 . . 0 1 . 0 1 . . 0 1 . . 0 1 . . 0
1 . . 0 1 . . 0 1 . 0 1 . . 0 1 . . 0 1 . . 0
1 . . 0 1 . . 0 1 . 0 1 . . 0 1 . . 0 1 . . 0
< T r a n s P > 5
0 .. 0 1 . . 0 0 . 0 0 .. 0 0 .. 0
0 .. 0 0 .. 6 0 . 4 0 .. 0 0 .. 0
0 .. 0 0 .. 0 0 . 6 0 .. 4 0 .. 0
0 .. 0 0 .. 0 0 . 0 0 .. 7 0 .. 3
0 .. 0 0 .. 0 0 . 0 0 .. 0 0 .. 0
<EndHMM>

0 .. 0 0 .. 0 0 .. 0 0 .. 0 0 .. 0 0 .. 0 0 .. 0

1 .. 0 1 .. 0 1 .. 0 1 .. 0 1 .. 0 1 .. 0 1 .. 0
1 .. 0 1 .. 0 1 .. 0 1 .. 0 1 .. 0 1 .. 0 1 .. 0
1 .. 0 1 .. 0 1 .. 0 1 .. 0 1 .. 0 1 .. 0 1 .. 0

0.6 0.6 0.7

• A A A -ao.4

FIGURE 4.5: HMM prototype for every phone.

Next we use the HCompV tool to scan a set of data files, in order to compute the
global mean and variance and set all of the Gaussians in a given HMM to have the
same mean and variance, the command:

HCompV -C config -f 0.01 -m -S train_list -M hmmO proto
Now, the hmmO folder contains the above prototype but with different values

- those estimated from the data. Next we create a Master Macro File (MMF) called
hmmde f s containing a copy for each of the required monophone HMMs. This is
constructed with the help of a bash script by copying the prototype and relabeling
it (i.e., changing the first line: ~h "proto" — > ~h "phoneme") for each required
monophone plus "sil". Now we invoke the HERest tool and re-estimate the param­
eters of the HMMs.

HERest -A -D -C configs/herest -I phonesO.mlf -t 250.0 150.0
30000.0 -S filemaps/train_mfcc -H models/hmm(i)/macros
-H models/hmm(i)/hmmdefs -M models/hmm((i+1)) monophonesO
The command is executed for i=0,l,2.

Silence model

Next we add extra transitions from states 2 to 4 and from states 4 to 2 in the silence
model. The idea behind this decision is to make the model robust to noisy data.
We manually create the folder hmm4. We copy the hmmdefs file from hmm3 into
hmm4 and copy the center state of the sil model to make a new sp model, the
new hmmdefs file (in hmm4) has both an sp and a sil model. Next we run the
following HHEd command to add the extra state transitions and tie the sp state to
the center sil state.

Chapter 4. HMM/GMM Approach for AVASR 32

HHEd -A -H models/hmm4/macros -H models/hmm4/hmmdefs
-M models/hmm5 configs/hhed monophonesl

File configs/hhed contains the aforementioned directives:

AT 2 4 0.2 {sil.transP}
AT 4 2 0.2 {sil.transP}
AT 1 3 0.3 {sp.transP}
TI silst {sil.state[3],sp.state[2]}

We re-estimate the parameters (for the modified model) with HERest:

HERest -A -D -C configs/herest -I phones0.mlf_sp -t 250.0
150.0 30000.0 -S filemaps/train_mfcc -H models/hmm(i)/macros
-H models/hmm(i)/hmmdefs -M models/hmm((i+1)) monophones1

for i=5,6. Note the difference with the previous HERest command, since we now
use phones0.mlf_sp (which is the same as phones0.mlf with the difference
that there is a sp between words).

Forced alignment

The phone models created so far can be used to realign the training data and create
new transcriptions. HVite is the tool that can create a forced align transcription
from the original:

HVite -A -l '*' -o SWT -b sil -a -H hmm7/macros -H hmm7/hmmdefs
-i aligned.mlf -m -t 250.0 150.0 1000.0 -p -100 -s 10.0 -y lab
-I labels/train.mlf -S filemaps/train_mfcc dict monophones1

This command uses the hmm7 models to transform the input word level transcrip­
tion (labels/train.mlf) to a new phone level transcription (aligned.mlf).
The -b flag inserts a silence ^aodel at the start and end of each utterance. V̂e re­
estimate (based on the new aligned.mlf) the HMM set parameters two more
times:

HERest -A -D -C configs/herest -I aligned.mlf -t 250.0 150.0
30000.0 -S filemaps/train_mfcc -H hmm(i)/macros -H hmm(i)/hmmdefs
-M hmm((i+1)) monophones1

for i=7,8.
Given the available monophone HMMs (from the last model trained), the next step
is to build a context-dependent triphone HMM. First we create triphone transcrip­
tions based on the monophone transcriptions.

Transcription conversion

To convert the monophone transcriptions into triphone transcriptions we use the
HLEd tool:

HLEd -n triphones! -l '*' -i wintri.mlf mktri.led aligned.mlf

Chapter 4. HMM/GMM Approach for AVASR 33

where aligned.mlf is the forced alignment file we created before, and mktri.led
is a configuration file with the following options:

WB sp
WB sil
TC

The two WB directives define sp and sil as Word Boundary symbols, while the
TC directive (Triphone Conversion) will instruct the actual conversion. As an exam­
ple, applying the TC directive to a sequence sil s eh v ih n ... will return
the transformed sequence sil + s sil-s+eh s-eh+v eh-v+ih v-ih+n
This style of triphone transcription is referred to as word internal.

Monophone HMMs to triphone HMMs

Next we use the HMM editor HHEd to convert the monophone models into triphone
models.

HHEd -B -H hmm9/macros -H hmm9/hmmdefs -M hmm10 mktri.hed
monophones1
where mktri.hed is a script that contains a clone command CL and tie command
TI to tie all of the transition matrices in each triphone set. We re-estimate the tri­
phone HMM parameters twice (for i=10,11):

HERest -A -D -C configs/herest -I wintri.mlf -t 250.0 150.0
30000.0 -S filemaps/train_mfcc -H hmm(i)/macros -H
hmm(i)/hmmdefs -s stats -M models/hmm((i+1)) triphones1
The estimated triphone HHMs share the same transition matrix.

Tied-state triphones

The next step is to tie states within triphone sets in order to share data and thus be
able to obtain robust parameter estimates. We use again the HMM editor HHEd tool
to modify the latest HMM model (hmm12):

HHEd -A -H hmm12/macros -H hmm12/hmmdefs -M hmm13
configs/tree.hed triphones1

where config/tree.hed contains the instructions regarding which contexts to
examine for possible clustering. HTK provides a script for automatically generating
this file (mkclscript). The resulting file is rather long, thus it has been omitted.
One important option of the tree.hed file is the CO directive, which is used to
compact the model set by finding all identical models and tying them together,
producing a new list of models placed in dictionary/tiedlist.list - this file
is later used in place of triphones1/monophones1 in HERest. We re-estimate
the paratemers for the new models (for i=13,14):

HERest -A -D -C configs/herest -I wintri.mlf -t 250.0 150.0
30000.0 -S filemaps/train_mfcc -H hmm(i)/macros -H hmm(i)/hmmdefs
-s stats -M hmm(i+1) dictionary/tiedlist.list

Chapter 4. HMM/GMM Approach for AVASR 34

M ultiple mixture component HMMs

Up until now we've only considered a single Gaussian for each state. Next, we con­
sider mixture GMMs. From our experiments, multiple Gaussians seem to improve
system performance. In HTK mixture increasing can be achieved with the help of
the HMM editor tool (HHEd). More specifically:

HHEd -H ${OLDDIR}/hmmdefs -H ${OLDDIR}/macros -M ${NEWDIR}
tmp.hed dictionary/tiedlist.list

where in our experiments we use \${OLDDIR} = hmm15 (the last tied-triphone
model we trained). Also, tmp.hed contains the split directives, for example:

MU 4 {sil.state[2-4].mix}
MU 2 {*.state[2-4].mix}

This could split the sil GMM into 4 components and the rest of the phone set
into two components. We experiment with 2,4,8,16,32 components. Each time we
reestimate the parameters 3-5 times.

4.2.4 Decoding

Decoding is performed with the help of the Viterbi algorithm, which is imple­
mented in the HVite tool of the HTK toolbox. Furthermore, we evaluate our results
with the HResults utility. We provide here two sample commands for both tools:

HVite -A -H hmm(i)/macros -H hmm(i)/hmmdefs -p $PENALTY
-S filemaps/test_mfcc -l '*' -i results/res_(i).mlf -w wdnet
-s 5.0 dict triphones1

HResults -I labels/test.mlf triphones1 results/res_(i).mlf

$PENANLTY corresponds to the insertion penalty at the phone level, in same cases
we tune this value to get optimal values (typical value: -110). HVite returns a mlf
file containing the transcription for each entry in the filemaps/test_mfcc. The
returned mlf file is compared against the reference (labels/test.mlf) and the
results are output on standard output.

4.3 Extensions for AVASR

4.3.1 Visual feature post-processing - interpolation

As we've already mentioned, the acoustic front-end generates features at a 100Hz
rate. The visual front-end on the other hand generates features at 25Hz or 30Hz,
which is usually the frame rate of camera recorders. In some cases, we require (in
later steps) the two streams to be synchronized, for this reason, we interpolate the
visual stream to 100Hz, in order to match its audio counterpart.

Chapter 4. HMM/GMM Approach for AVASR 35

4.3.2 Feature fusion

Feature fusion is one of the approaches followed for audio-visual integration in
AVASR systems. Essentially, the audio and visual modalities are handled as one.
There are several ways this can be done, for example a simple feature concatena­
tion at each timestep (the approach we follow on this thesis), or feature weighting
(selectively increase or decrease the influence of each data stream). More sophisti­
cated methods also exist, as discussed in [1]. Since there is only one (final) stream of
information, a single classifier is trained on the combined feature stream (audio and
video features). This requires the two streams to be synchronized, thus if the two
feature streams have different rates, the interpolation step previously described is
necessary.

4.3.3 Multi-stream architecture for decision fusion

Multi-stream architectures were first introduced in single-channel audio-only ASR,
for modeling each acoustic band separately [76]. In the theory of computation,
"product construction" is a standard construction for finite-state automata. Multi­
stream HMMs can be considered as the stochastic equivalent. In the AVASR con­
text, two HMMs are used to model the acoustic and visual channels.

4.4 Results

4.4.1 Error metric

The error metric we used to evaluate our models is the word error rate (WER). WER
corresponds to the amount of insertions (I), deletions (D) and substitutions (S) that
we must apply to a test sequence in order to obtain a reference sequence. More
specifically:

W ER = S + ^ + D 100% (4.18)

where N is the number of words in the reference.

4.4.2 Experimental framework

In the following table, we present the three data splits that were used in experi­
ments with HTK. Please note that all splits contain overlapped speakers, i.e. one
speaker might be present in both sets (training and test), but on different utterances.
The split names are used to present the experiments in the next section.

SplitName # Train % # Test %

ftk_split 5688 85.1 1000 14.9

ftk_split_remap 5887 88.1 800 11.9

ftk_split_remap2 5173 77.4 1514 22.6

ftk_split_remap3 4674 69.9 2013 30.1

TABLE 4.2: Dataset splits.

Chapter 4. HMM/GMM Approach for AVASR 36

4.4.3 Results

id SplitName WER (%) Feature GMM Mixtutes # passes

MFCC MFCC13 DCT

1 ftk_split 3.85 x 64_32 3

2 ftk_split_remap 3.86 x 64_32 3

3 ftk_split_remap2 1.49 x 8 8

4 ftk_split_remap3 3.39 x 8 5

5 ftk_split_remap2 2.04 x 32 5

6 ftk_split_remap2 33.08 x 32_16 61

TABLE 4.3: HMM-GMM results.

Result notes

In Table 4.3 we present the results for five audio-only and one video-only ASR sys­
tems. All systems are triphone HMM-GMMs with multiple GMM components,
as described previously. With MFCC we denote 39-dim features (12 MFCC coeffi­
cients + energy, deltas, and delta deltas) generated as we described in Section 4.2.1.
MFCC13 is the same as MFCC, but there are 13 MFCCs instead of 12. DCT are 45-
dim features (15 DCT coefficients, deltas, and delta deltas) as described in 3.5. In
the GMM mixture column, we use the notation NUMA_NUMB meaning, NUMA
GMM mixtures for silence and NUMB GMM mixtures for the rest of the speech
units. The last column (# pass), is the number of passes to reestimate the model pa­
rameters. In Figure 4.6, we plot the visual-only model accuracy with respect to the
number of passes. The model starts from 52% accuracy and after multiple passes it
reaches 66.92 % accuracy.

0 10 20 30 40 50 60

Passes N u m b e r

FIGURE 4.6: Video-only accuracy w.r.t. number of passes.

In Figure 4.7, we plot the best model (audio-only) accuracy with respect to the
number of passes. In this case, we don't see a great benefit from re-estimating
model parameters (as was the case in the video-only model), but the accuracy is

Chapter 4. HMM/GMM Approach for AVASR

0 2 4 6 8 10

Passes N u m b e r

FIGURE 4.7: Audio only accuracy w.r.t. number of passes.

already high. To further increase the accuracy we tune the -p parameter in
HV ITE tool. Up until now we've used a fixed value (-110), but as shown in
tuning this penalty parameter results in performance gains. For Figure 4.8, we
the model resulting from the 8th pass in Figure 4.7.

-10 0 -9 0 -8 0 -7 0 -6 0 -50

H V ite -p p a ra m e te r

37

the
4.8,
use

FIGURE 4.8: HV ite parameter search for audio-only ASR.

38

Chapter 5

LSTM Approach for AVASR

5.1 Recurrent neural networks

Deep neural networks (DNN) have been used as acoustic models and proved very-
successful in representing the relationship between an audio signal and the phonemes
or other linguistic units that make up speech. One drawback of DNNs is the re­
quirement of fixed input size, and therefore lack the ability to model temporal re­
lationships present in the input signal. Recurrent neural networks (RNNs) are a
family of neural nets designed for processing sequential data. A recurrent layer is
defined by the following equations:

ht = o(W hxx t + Whh ht-i + b/i), 0 < t < T (5.1)

ho = C, C usually contains learned parameters or zero (5.2)

Simply put, the output of the RNN layer at timestep t is fed into the same RNN
layer at timestep t+1, along with the input xq+q · In Figure 5.1 an RNN is depicted,
along with the unrolled version for a number of timesteps. The attentive reader
might have already noted that the weights are shared across all timesteps.

F ig u r e 5.1: Unrolled RNN.

Several methods have been proposed for training recurrent neural networks,
such as real time recurrent learning (RTRL) [77] and backpropagation through time
(BPTT) [78]. BPTT can be considered as a generalization to the backpropagation
algorithm. In BPTT, we unroll the RNN for as many steps as required by the input
sequence, perform the forward pass (with shared weights across all timesteps), and
in the backward pass we perform backpropagation on the unrolled network. The
weight updates do not use some timestep specific gradient, but the average (or the
sum) of all timestep gradients.

Chapter 5. LSTM Approach for AVASR 39

5.1.1 Vanishing gradients

The vanishing gradient problem is a difficulty found in training RNNs after several
timesteps (and also very deep neural networks) with gradient-based backpropaga-
tion. Backpropagation essentially calculates for every parameter of the model Wi
the error with respect to some error function O. For this purpose it calculates: ,
and to do so, the product of several partial derivatives is used. If all partial deriva­
tives are less than one, the gradient corresponding to weights in the first timesteps
decreases exponentially with time, and for this reason becomes difficult to train
RNNs for many timesteps. If all partial derivatives are greater than one, then the
gradient at the first time steps increases exponentially with time, usually leading to
overflow (exploding gradient). Hochreiter was the first to document this problem
in his Diploma Thesis [79].

5.2 Long short term memory - LSTM

Long short term memory is a recurrent layer [80], specifically designed to deal with
the vanishing gradients problem. A diagram of an LSTM layer is depicted in Figure
5.2.

FIG U RE 5.2: An LSTM layer.

5.2.1 Forward pass

The forward pass of an LSTM layer is defined in equations 5.3 through 5.7.

it = <7i{Wxixt + Whiht- i + WciCt-i + bi), input gate (5.3)

ft = a f (Wxfxt + Whfh t - i + WcfCt-i + 6/), forget gate (5.4)

ct = ft Θ ct- 1 + it Θ tanhc(Wxcxt + Whcht- i + bc), cell state (5.5)

ot = a 0(WX0xt + Whoht-i + Wcoct + b0), output gate (5.6)

ht = Ot Θ tanhh(ct), layer output at timestep t (5.7)

Chapter 5. LSTM Approach for AVASR 40

Since we opted to use the highly optimized cuDNN library for the LSTM layer,
there are no peephole connections (the connections from the cell to the gates), so
the figure and equations are a bit different from those used in practice.

5.2.2 Bidirectional recurrent neural networks

For the RNNs as presented until now, we assumed that the input sequence is fed
at increasing timesteps into the model. This means that a forward RNN predicts
timestep t given timesteps t — 1 ,t — 2,...,1. This presentation comes naturally and an
approach that works for online systems. But the problem we are concerned with
here is not online speech recognition, but offline. That means that at timestep t we
have available all the input signal (present and past). A backward RNN [81] is able
to predict timestep t given timesteps t + 1,t + 2,...,T. A bidirectional recurrent neural
network is a recurrent network with two separate recurrent networks (backward
and forward), where the training sequence is presented backwards and forwards.
Both RNNs are connected to the same output layer. As a matter of fact, on the
models we used in this work, we sum the (output) activations of the two networks
at each timestep.

5.3 CTC loss function

In the context of ASR, an RNN is trained to predict the probability distribution of
all speech units (e.g., phonemes) w.r.t. the current feature vector. So an RNN es­
sentially is a mapping between two sequences, the input (feature vector) and the
output (phoneme probabilities). This requires to know for every timestep the prob­
ability distribution of the speech units. To satisfy such a requirement we should
either manually segment the audio and frame-align the transcriptions or use a pre­
trained model to obtain such alignment. The first approach is time-consuming
and requires significant human effort, while the second is prune to errors by the
pre-trained model. An alternative solution is to question the initial requirement.
Connectionist temporal classification (CTC) [82] is a loss function, enabling us to
train an RNN based on unsegmented sequence data. Internally, CTC computes the
probability of a sequence of phonemes for a sequence of audio frames, accounting
for all possible alignments. Then we can define an objective function to maximize
the probability of the phoneme sequence given the audio frame sequence, without
knowing an explicit alignment between the two.

5.4 Decoding

Decoding an RNN output to words can be achieved through several approaches.
One choice is to use an HMM on top of the RNN to convert phonemes into words,
using the Viterbi algorithm. Another choice is the use of composition of weighed
finite state transducers. Staying in an all-neural paradigm is also possible with
sequence-to-sequence models, or simply performing a beam search on top of the
RNN. We opt for the latter. First, for every timestep we select the most probable
phoneme, obtaining a sequence of phoneme of the same length as the input se­
quence. Next, from this sequence we obtain a new shorter phoneme sequence, by
removing consecutive same phonemes. At last, we use a reverse pronunciation
dictionary to convert the phoneme sequence to a word sequence. This approach is
referred to as best path decoding in the CTC paper.

Chapter 5. LSTM Approach for AVASR 41

5.5 RNN for ASR

Throughout the years, several ASR systems involving RNNs have been proposed.
We focus on the different decoding approaches and present some relevant work,
for comparison.

1. RNN-HMM hybrid
One of the first RNN based ASR systems [83] was a RNN-HMM hybrid. One
can consider such systems as similar to those presented in Chapter 4, with
exception that the GMM part is replaced by an RNN, predicting posteriors
from input feature vectors.

2. Single RNN only
Such systems are usually composed of a single RNN (the acoustic model).
The RNN output is used directly in conjunction with a heuristic search algo­
rithm (e.g., beamsearch) for decoding. Language model rescoring can also be
used, improving performance in practice. Examples of such systems can be
found in [84], [85].

3. RNN sequence-to-sequence (Encoder - Decoder)
RNNs can be used both as discriminative but also as generative models. This
approach combines the double nature of RNNs into a single model. One im­
portant aspect of this class of systems is that they jointly learn spelling, lan­
guage model, and the acoustic model. One of the first systems of this class
can be found in [86].

4. RNN-WFST
This approach uses an RNN for the acoustic model, and the decoding is
achieved with the help of weighted finite state transducers (WFST). The gram­
mar, language, and dictionary are represented as finite state transducers, and
since FSTs support the composition operator, decoding is done in the search
space formed from the composition of the three. EESEN [87] is a software
package that supports LSTMs,CTC, and WFSTs.

5.5.1 Basic block

In this work, we've mostly used a 4-layer RNN. We present here Figure 5.3, the
basic block (a single layer), which is shared among many variations of this archi­
tecture. As we can see, the input signal is applied on two (parallel) LSTM networks
(a forward and backward). The activations of the two networks are summed (blue
arrows). Batch normalization is applied on the summed activation (note that batch
normalization was first proposed for sequential models). Batch normalization has
also been applied between timesteps in recurrent networks, but we've chosen not
to employ it, because that would require to use a Torch (LUA-based) LSTM imple­
mentation, and not the highly optimized CUDNN library that NVIDIA provides).
The batch normalized summation of the activations is then also summed with the
input signal. While the LSTM layer was designed to deal with vanishing gradients
in the time domain, it was not designed to deal with this problem when multi­
ple are stacked. We've found from our experiments that the residual connection
(red arrow) reduces the training time required for the networks to converge. Use
of residual connections was motivated in [88], but have also been used in speech
recognition problems [89].

Chapter 5. LSTM Approach for AVASR 42

FIGURE 5.3: The resLSTM basic block.

time

time

FIGURE 5.4: An LSTM network.

Figure 5.4 shows the LSTM network that we used in our experiments. It con­
sists of four recurrent layers (with forward and backward layers, 350 nodes each,
of the basic block that we presented in Figure 5.3). All recurrent layers (except from
the first) have residual connections. After the last recurrent layer, we have a pro­
jection layer. Due to the use of the CTC loss function, the output labels have been
augmented with the blank label addition.

Chapter 5. LSTM Approach for AVASR 43

5.6 Results

5.6.1 Error metric

We use the same error metric (WER) as in Chapter 4 . Please refer to Section 4.4.1
for more details.

5.6.2 Experimental framework

The ftk_split_remap2 data split from Section 4.4.2 is used in all experiments pre­
sented on this section. We train models with audio features only, audio and DCT
features (as discussed in Chapter 3), DCT features only and a CNN+LSTM for the
visual front-end.

5.6.3 Results

In the following table we present the best WER for various network and input fea­
ture combinations. We describe the feature and network details for each entry in
the text bellow the table.

ID WER(%) MFCC DCT MEL RawVideo

net1 0.37 x x

net2 0.42 x

net3 9.34 x

net4 8.90 x

net5 0.31 x

TABLE 5.1: LSTM-based results.
Result notes

net1
The network architecture is the one presented in Figure 5.4. We use the concatena­
tion of the features presented in Chapter 3 (DCT features) and Chapter 4 (MFCC
features). Of course, the DCT features have been interpolated at 100Hz before con­
catenation with the audio counterpart.

net2
The network is the same as net1, with the only difference found in the features. We
only use MFCC features as described in Chapter 4.

net3
We use the same network as net1, but we only use the DCT features of the visual
front-end.

net4
The network architecture is shown in Figure 5.5, essentially being a CNN followed
by 3 resLSTM layers. The input is a 60x60 pixel (ROI) video.

net5
We use the same network as in net1. The log of the Mel-Filterbank is used as feature
vectors, we concatenate 11 consecutive feature vectors and use the result as the
input for each timestep.

Chapter 5. LSTM Approach for AVASR 44

time

time

FIG U RE 5.5: CNN-LSTM network for visual-only ASR.

45

Chapter 6

Conclusion

6.1 Summary

We have investigated the topic of audio-visual speech recognition using deep learn­
ing methodologies. This Thesis presents some of the many ways to attack this prob­
lem.

More specifically, in Chapter 3 we presented our deep learning based visual
front-end and compared against an image processing based alternative. The results
clearly show the advantage of a deep learning based approach. Facial keypoint
recognition is a well studied problem in the literature, so future solutions in this
step might be influenced by progress in the literature. A pose, lighting, and back­
ground invariant visual front-end is crucial in the development of a robust AVASR
system. Chapter refChapter4 presented a traditional HMM-GMM based AVASR.
We developed two systems, an audio-only and a video-only. Chapter 5 presented
our deep learning based solution to the AVASR problem. One major decision was
not to use a full-fledged decoder. Our systems achieved good results, surpassing
those obtained in Chapter 4.

6.2 Future work

Our belief is that audio-visual speech recognition technology has prorgressed sub­
stantially to be taken out of the lab/studio environment, and be tested in the wild.
Unconstrained and noisy environments is the target in AVASR applications, yet
(in this work) we haven't experimented on any such dataset. Datasets originating
from such conditions are crucial to the further development of robust AVASR. In
the context of deep learning, large scale datasets are needed for this purpose.

In our conversation so far we haven't discussed the computational needs of a
deep learning based system. The truth is that such systems are rather computa­
tionally expensive (to train and to infer), constituting one of the reasons that high
performance GPUs have been crucial to the development of deep learning. In a
smartphone or a tablet device with a 5-10 Watt power-fold, such a power-"hungry"
hardware is out of the question. Specialized hardware such as System-On-Chip
(SoC) or FPGAs and further theoretical development to decrease the computational
needs (i.e., model compression) could help AVASR systems become mainstream.

46

Bibliography

[1] G. Potamianos, C. Neti, G. Gravier, A. Garg, and A. W. Senior, "Recent ad­
vances in the automatic recognition of audiovisual speech", Proceedings o f the
IEEE, vol. 91, no. 9, pp. 1306-1326,2003.

[2] Z. Zhou, G. Zhao, X. Hong, and M. Pietikainen, "A review of recent advances
in visual speech decoding", Image and vision computing, vol. 32, no. 9, pp. 590­
605,2014.

[3] V. Panayotov, G. Chen, D. Povey, and S. Khudanpur, "Librispeech: An ASR
corpus based on public domain audio books", in IEEE International Conference
on Acoustics, Speech and Signal Processing (ICASSP), IEEE, 2015, pp. 5206-5210.

[4] J. J. Godfrey, E. C. Holliman, and J. McDaniel, "SWITCHBOARD: Telephone
speech corpus for research and development", in IEEE International Confer­
ence on Acoustics, Speech, and Signal Processing (ICASSP), IEEE, vol. 1, 1992,
pp. 517-520.

[5] J. S. Garofolo, L. F. Lamel, W. M. Fisher, J. G. Fiscus, and D. S. Pallett, "DARPA
TIMIT acoustic-phonetic continous speech corpus CD-ROM. NIST speech
disc 1-1.1", NASA STI/Recon technical report n, vol. 93,1993.

[6] J. Robert-Ribes, M. Piquemal, J.-L. Schwartz, and P. Escudier, "Exploiting sen­
sor fusion architectures and stimuli complementarity in av speech recogni­
tion", in Speechreading by humans and machines, Springer, 1996, pp. 193-210.

[7] A. Adjoudani and C. Benoit, "On the integration of auditory and visual pa­
rameters in an hmm-based asr", in Speechreading by humans and machines,
Springer, 1996, pp. 461-471.

[8] C. Chibelushi, S. Gandon, J. Mason, F. Deravi, and R. Johnston, "Design is­
sues for a digital audio-visual integrated database", 1996.

[9] J. R. Movellan and G. Chadderdon, "Channel separability in the audio-visual
integration of speech: A bayesian approach", in Speechreading by Humans and
Machines, Springer, 1996, pp. 473-487.

[10] S. Pigeon and L. Vandendorpe, "The M2VTS multimodal face database (re­
lease 1.00)", in International Conference on Audio-and Video-Based Biometric Per­
son Authentication, Springer, 1997, pp. 403-409.

[11] S. M. Chu and T. S. Huang, "Bimodal speech recognition using coupled hid­
den markov models.", in International Conference on Spoken Language Process­
ing (ICSLP), 2000, pp. 747-750.

[12] E. K. Patterson, S. Gurbuz, Z. Tufekci, and J. N. Gowdy, "CUAVE: A new
audio-visual database for multimodal human-computer interface research",
in IEEE International Conference on Acoustics, Speech, and Signal Processing (ICASSP),
IEEE, vol. 2, 2002, pp. 2017-2020.

BIBLIOGRAPHY 47

[13] B. Lee, M. Hasegawa-Johnson, C. Goudeseune, S. Kamdar, S. Borys, M. Liu,
and T. S. Huang, "AVICAR: Audio-visual speech corpus in a car environ­
ment.", in International Conference on Spoken Language Processing (ICSLP), 2004,
pp. 2489-2492.

[14] A. Pass, J. Zhang, and D. Stewart, "An investigation into features for multi­
view lipreading", in IEEE International Conference on Image Processing (ICIP),
IEEE, 2010, pp. 2417-2420.

[15] G. Galatas, G. Potamianos, and F. Makedon, "Audio-visual speech recogni­
tion incorporating facial depth information captured by the kinect", in Signal
Processing Conference (EUSIPCO), IEEE, 2012, pp. 2714-2717.

[16] P. J. Lucey, G. Potamianos, and S. Sridharan, "Patch-based analysis of visual
speech from multiple views", 2008.

[17] J. Huang, G. Potamianos, J. Connell, and C. Neti, "Audio-visual speech recog­
nition using an infrared headset", Speech Communication, vol. 44, no. 1, pp. 83­
96, 2004.

[18] K. Messer, J. Matas, J. Kittler, J. Luettin, and G. Maitre, "XM2VTSDB: The
extended M2VTS database", in International conference on audio and video-based
biometric person authentication, vol. 964,1999, pp. 965-966.

[19] I. Anina, Z. Zhou, G. Zhao, and M. Pietikainen, "OuluVS2: A multi-view au­
diovisual database for non-rigid mouth motion analysis", in IEEE Interna­
tional Conference and Workshops on Automatic Face and Gesture Recognition (FG),
IEEE, vol. 1, 2015, pp. 1-5.

[20] A. Rekik, A. Ben-Hamadou, and W. Mahdi, "A new visual speech recogni­
tion approach for RGB-D cameras", in 11th International Conference on Image
Analysis and Recognition ICIAR, 2014, pp. 21-28.

[21] M. Cooke, J. Barker, S. Cunningham, and X. Shao, "An audio-visual corpus
for speech perception and automatic speech recognition", The Journal o f the
Acoustical Society o f America, vol. 120, no. 5, pp. 2421-2424, 2006.

[22] A. Vorwerk, X. Wang, D. Kolossa, S. Zeiler, and R. Orglmeister, "WAPUSK20
- a database for robust audiovisual speech recognition", in International Con­
ference on Language Resources and Evaluation (LREC), Valletta, Malta: European
Language Resources Association (ELRA), Mar. 2010, ISBN: 2-9517408-6-7.

[23] C. Bregler and Y. Konig, "Eigenlips for robust speech recognition", in Inter­
national Conference o Acoustics, Speech, and Signal Processing (ICASSP), IEEE,
vol. 2,1994, pp. 669-672.

[24] D. Alissali, P. Deleglise, and A. Rogozan, "Asynchronous integration of vi­
sual information in an automatic speech recognition system", in International
Conference on Spoken Language (ICSLP), IEEE, vol. 1,1996, pp. 34-37.

[25] I. Matthews, J. A. Bangham, and S. Cox, "Audiovisual speech recognition
using multiscale nonlinear image decomposition", in International Conference
on Spoken Language (ICSLP), IEEE, vol. 1,1996, pp. 38-41.

[26] G. Potamianos and H. P. Graf, "Discriminative training of HMM stream expo­
nents for audio-visual speech recognition", in IEEE International Conference on
Acoustics, Speech and Signal Processing (ICASSP), IEEE, vol. 6,1998, pp. 3733­
3736.

BIBLIOGRAPHY 48

[27] I. Matthews, T. F. Cootes, J. A. Bangham, S. Cox, and R. Harvey, "Extraction
of visual features for lipreading", IEEE Transactions on Pattern Analysis and
Machine Intelligence, vol. 24, no. 2, pp. 198-213, 2002.

[28] P. L. Silsbee and A. C. Bovik, "Computer lipreading for improved accuracy
in automatic speech recognition", IEEE Transactions on Speech and Audio Pro­
cessing, vol. 4, no. 5, pp. 337-351,1996.

[29] F. J. Huang, Advanced multimedia processing lab. [Online]. Available: http :
//amp.ece.cmu.edu/projects/AudioVisualSpeechProcessing.

[30] S. Nakamura, H. Ito, and K. Shikano, "Stream weight optimization of speech
and lip image sequence for audio-visual speech recognition", 2000.

[31] J. S. Chung and A. Zisserman, "Lip reading in the wild", in Asian Conference
on Computer Vision (ACCV), 2016.

[32] K. Kumar, T. Chen, and R. M. Stern, "Profile view lip reading", in International
Conference on Acoustics, Speech and Signal Processing (ICASSP), IEEE, vol. 4,
2007, pp. 429-432.

[33] J. C. Wojdel, P. Wiggers, and L. J. Rothkrantz, "An audio-visual corpus for
multimodal speech recognition in dutch language", in Proceedings o f the In­
ternational Conference on Spoken Language Processing (ICSLP), 2002, pp. 1917­
1920.

[34] X. L. H. Yao and X. H. Q. Wang, "HIT-AVDB-II: A new multi-view and ex­
treme feature cases contained audio-visual database for biometrics", 2008.

[35] S. Alghowinem, M. Wagner, and R. Goecke, "AusTalk—the australian speech
database: Design framework, recording experience and localisation", in Inter­
national Conference on Information Technology in Asia (CITA), IEEE, 2013, pp. 1­
7.

[36] "Agh university of science and technology (2014). audiovisual polish speech
corpus",

[37] A. J. Goldschen, O. N. Garcia, and E. D. Petajan, "Rationale for phoneme-
viseme mapping and feature selection in visual speech recognition", in Speechread­
ing by Humans and Machines, Springer, 1996, pp. 505-515.

[38] T. J. Hazen, K. Saenko, C.-H. La, and J. R. Glass, "A segment-based audio­
visual speech recognizer: Data collection, development, and initial experi­
ments", in International conference on Multimodal interfaces, ACM, 2004, pp. 235­
242.

[39] M. T. Chan, Y. Zhang, and T. S. Huang, "Real-time lip tracking and bimodal
continuous speech recognition", in IEEE Second Workshop on Multimedia Sig­
nal Processing, IEEE, 1998, pp. 65-70.

[40] C. Sanderson and K. K. Paliwal, "Noise compensation in a person verification
system using face and multiple speech features", Pattern Recognition, vol. 36,
no. 2, pp. 293-302, 2003.

[41] G. Zhao, M. Barnard, and M. Pietikainen, "Lipreading with local spatiotem-
poral descriptors", IEEE Transactions on Multimedia, vol. 11, no. 7, pp. 1254­
1265, 2009.

[42] H. Liu, X. Zhang, and P. Wu, "Regression based landmark estimation and
multi-feature fusion for visual speech recognition", in IEEE International Con­
ference on Image Processing (ICIP), IEEE, 2015, pp. 808-812.

http://amp.ece.cmu.edu/projects/AudioVisualSpeechProcessing
http://amp.ece.cmu.edu/projects/AudioVisualSpeechProcessing

BIBLIOGRAPHY 49

[43] M. Lincoln, I. McCowan, J. Vepa, and H. K. Maganti, "The multi-channel wall
street journal audio visual corpus (mc-wsj-av): Specification and initial exper­
iments", in IEEE Workshop on Automatic Speech Recognition and Understanding
(ASRU), IEEE, 2005, pp. 357-362.

[44] Y. Lan, B.-J. Theobald, R. W. Harvey, E.-J. Ong, and R. Bowden, "Improving
visual features for lip-reading.", in Auditory-Visual Speech Processing (AVSP),
2010, pp. 3-7.

[45] N. Harte and E. Gillen, "TCD-TIMIT: An audio-visual corpus of continuous
speech", IEEE Transactions on Multimedia, vol. 17, no. 5, pp. 603-615, 2015.

[46] R. Goecke, J. B. Millar, A. Zelinsky, and J. Robert-Ribes, "A detailed descrip­
tion of the AVOZES data corpus", in Australasian Conference on Speech Science
& Technology (SST), 2004, pp. 486-491.

[47] A. Czyzewski, B. Kostek, P. Bratoszewski, J. Kotus, and M. Szykulski, "An
audio-visual corpus for multimodal automatic speech recognition", Journal
of Intelligent Information Systems, pp. 1-26,

[48] C. McCool, S. Marcel, A. Hadid, M. Pietikainen, P. Matejka, J. Cernocky, N.
Poh, J. Kittler, A. Larcher, C. Levy, et al., "Bi-modal person recognition on a
mobile phone: Using mobile phone data", in IEEE International Conference on
Multimedia and Expo Workshops (ICMEW), IEEE, 2012, pp. 635-640.

[49] Y. W. Wong, S. I. Ch'ng, K. P. Seng, L.-M. Ang, S. W. Chin, W. J. Chew, and
K. H. Lim, "A new multi-purpose audio-visual UNMC-VIER database with
multiple variabilities", Pattern Recognition Letters, vol. 32, no. 13, pp. 1503­
1510, 2011.

[50] Y. Benezeth, G. Bachman, G. Le-Jan, N. Souviraa-Labastie, and F. Bimbot, "Bl-
database: A french audiovisual database for speech driven lip animation sys­
tems", PhD thesis, INRIA, 2011.

[51] D. Petrovska-Delacretaz, S. Lelandais, J. Colineau, L. Chen, B. Dorizzi, M.
Ardabilian, E. Krichen, M.-A. Mellakh, A. Chaari, S. Guerfi, et al., "The IV 2
multimodal biometric database (including iris, 2d, 3d, stereoscopic, and talk­
ing face data), and the iv 2-2007 evaluation campaign", in IEEE International
Conference on Biometrics: Theory, Applications and Systems (BTAS), IEEE, 2008,
pp. 1-7.

[52] J. Trojanova, M. Hrfiz, P. Campr, and M. Zelezny, "Design and recording of
Czech audio-visual database with impaired conditions for continuous speech
recognition", in Proceedings o f the Sixth International Conference on Language
Resources and Evaluation (LREC), 2008.

[53] C. Neti, G. Potamianos, J. Luettin, I. Matthews, H. Glotin, D. Vergyri, J. Sison,
and A. Mashari, "Audio visual speech recognition", Johns Hopkins University-
CLSP, 2000.

[54] A. G. ChiNu and L. J. Rothkrantz, "Building a data corpus for audio-visual
speech recognition", Proceedings o f Euromedia2007, vol. 91, no. 9, pp. 1306­
1326, 2003.

[55] G. Iyengar and C. Neti, "Detection of faces under shadows and lighting vari­
ations", in IEEE Fourth Workshop on Multimedia Signal Processing, IEEE, 2001,
pp. 15-20.

[56] A. Vartholomeos, "Deep learning for audio visual speaker diarization", 2017.

BIBLIOGRAPHY 50

[57] A. Krizhevsky, I. Sutskever, and G. E. Hinton, "Imagenet classification with
deep convolutional neural networks", in Advances in neural information pro­
cessing systems (NIPS), 2012, pp. 1097-1105.

[58] N. Wang, X. Gao, D. Tao, and X. Li, "Facial feature point detection: A com­
prehensive survey", ArXiv preprint arXiv:1410.1037, 2014.

[59] F. Rosenblatt, The perceptron, a perceiving and recognizing automaton project para.
Cornell Aeronautical Laboratory, 1957.

[60] D. E. Rumelhart, G. E. Hinton, and R. J. Williams, "Learning representations
by back-propagating errors", Cognitive modeling, vol. 5, no. 3, p. 1,1988.

[61] K. Fukushima, "Visual feature extraction by a multilayered network of ana­
log threshold elements", IEEE Transactions on Systems Science and Cybernetics,
vol. 5, no. 4, pp. 322-333, 1969.

[62] Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner, "Gradient-based learning
applied to document recognition", Proceedings o f the IEEE, vol. 86, no. 11,
pp. 2278-2324,1998.

[63] O. M. Parkhi, A. Vedaldi, and A. Zisserman, "Deep face recognition.", in
BMVC, vol. 1, 2015, p. 6.

[64] N. Gallagher and G. Wise, "A theoretical analysis of the properties of median
filters", IEEE Transactions on Acoustics, Speech, and Signal Processing, vol. 29,
no. 6, pp. 1136-1141,1981.

[65] G. Potamianos and P. Scanlon, "Exploiting lower face symmetry in appearance-
based automatic speechreading", in Proceedings o f the International Conference
on Audio-Visual Speech Processing (AVSP), 2005, pp. 79-84.

[66] C. Wolf and J.-M. Jolion, "Object count/area graphs for the evaluation of ob­
ject detection and segmentation algorithms", International Journal o f Document
Analysis and Recognition (IJDAR), vol. 8, no. 4, pp. 280-296,2006.

[67] Y. LeCun, L. Bottou, G. B. Orr, and K. .-.-R. Muller, "Efficient backprop", in
Neural Networks: Tricks o f the Trade, G. B. Orr and K.-R. Muller, Eds. Berlin,
Heidelberg: Springer Berlin Heidelberg, 1998, pp. 9-50.

[68] R. Girshick, "Fast R-CNN", in International Conference on Computer Vision (ICCV),
2015, pp. 1440-1448.

[69] N. Srivastava, G. E. Hinton, A. Krizhevsky, I. Sutskever, and R. Salakhutdi-
nov, "Dropout: A simple way to prevent neural networks from overfitting.",
Journal o f Machine Learning Research (JMLR), vol. 15, no. 1, pp. 1929-1958,2014.

[70] J. Tompson, R. Goroshin, A. Jain, Y. LeCun, and C. Bregler, "Efficient object
localization using convolutional networks", in IEEE Conference on Computer
Vision and Pattern Recognition (CVPR), 2015, pp. 648-656.

[71] S. Ioffe and C. Szegedy, "Batch normalization: Accelerating deep network
training by reducing internal covariate shift", in Proceedings o f The 32nd Inter­
national Conference on Machine Learning (ICML), 2015, pp. 448-456.

[72] S. Young, D. Kershaw, J. Odell, D. Ollason, V. Valtchev, and P. Woodland,
"The HTK book version 3.0", 2000.

[73] J. Baker, "The DRAGON system-an overview", IEEE Transactions on Acous­
tics, Speech, and Signal Processing, vol. 23, no. 1, pp. 24-29,1975.

BIBLIOGRAPHY 51

[74] L. R. Rabiner, "A tutorial on hidden markov models and selected applica­
tions in speech recognition", Proceedings o f the IEEE, vol. 77, no. 2, pp. 257­
2 8 6 ,1989.

[75] R. Weide, "The Carnegie Mellon pronouncing dictionary", 2005. [Online].
Available: http://www.speech.cs.cmu.edu/cgi-bin/cmudict.

[76] H. Bourlard and S. Dupont, "A new ASR approach based on independent
processing and recombination of partial frequency bands", in International
Conference on Spoken Language (ICSLP), IEEE, vol. 1,1996, pp. 426-429.

[77] A. Robinson and F. Fallside, The utility driven dynamic error propagation net­
work. University of Cambridge Department of Engineering, 1987.

[78] R. J. Williams and D. Zipser, "Gradient-based learning algorithms for recur­
rent networks and their computational complexity", Backpropagation: Theory,
architectures, and applications, vol. 1, pp. 433-486,1995.

[79] S. Hochreiter, "Untersuchungen zu dynamischen neuronalen netzen", PhD
thesis, diploma thesis, institut fur informatik, lehrstuhl prof. brauer, technis-
che universitat munchen, 1991.

[80] S. Hochreiter and J. Schmidhuber, "Long short-term memory", Neural compu­
tation, vol. 9, no. 8, pp. 1735-1780,1997.

[81] M. Schuster and K. K. Paliwal, "Bidirectional recurrent neural networks",
IEEE Transactions on Signal Processing, vol. 45, no. 11, pp. 2673-2681,1997.

[82] A. Graves, S. Fernandez, F. Gomez, and J. Schmidhuber, "Connectionist tem­
poral classification: Labelling unsegmented sequence data with recurrent neu­
ral networks", in Proceedings o f the 23rd international conference on Machine
learning (ICML), ACM, 2006, pp. 369-376.

[83] D. K. T. R. M. Hochberg, "Context-dependent classes in a hybrid recurrent
network-hmm speech recognition system", 1995.

[84] A. Graves and N. Jaitly, "Towards end-to-end speech recognition with recur­
rent neural networks", in Proceedings o f The 31st International Conference on
Machine Learning (ICML), vol. 14, 2014, pp. 1764-1772.

[85] A. L. Maas, Z. Xie, D. Jurafsky, and A. Y. Ng, "Lexicon-free conversational
speech recognition with neural networks", in Proceedings o f the North Ameri­
can Chapter o f the Association for Computational Linguistics (NAACL), 2015.

[86] J. Chorowski, D. Bahdanau, K. Cho, and Y. Bengio, "End-to-end continuous
speech recognition using attention-based recurrent nn: First results", ArXiv
preprint arXiv:1412.1602, 2014.

[87] Y. Miao, M. Gowayyed, and F. Metze, "EESEN: End-to-end speech recog­
nition using deep RNN models and WFST-based decoding", in IEEE Work­
shop on Automatic Speech Recognition and Understanding (ASRU), IEEE, 2015,
pp. 167-174.

[88] K. He, X. Zhang, S. Ren, and J. Sun, "Deep residual learning for image recog­
nition", in IEEE Conference on Computer Vision and Pattern Recognition (CVPR),
2016, pp. 770-778.

[89] Y. Zhang, W. Chan, and N. Jaitly, "Very deep convolutional networks for
end-to-end speech recognition", ArXiv preprint arXiv:1610.03022, 2016.

http://www.speech.cs.cmu.edu/cgi-bin/cmudict

