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Π λέζβοβ 
 

 

 

π  αυ   π υχ α  α  α π      
 ω  stock options ω  Black-Scholes-Merton ω  ω  Black-Scholes. 

Γ α  π  α α   formula πα υ α  α α υα  
χ α α  φα   Java  π α χ   υ α α α π α α π  
αυ χ α downloading α  parsing  χ  απ   ύoogle όinanceέ  
υ χ α   αυ    π  α υ  ω  φα  
α option α π α π  χ έ  θ  φ α  α  α  πα α 

πα υ α  α π  π  α υ  α  ω α  φα   π  
 α α  α υ  π ω   α  φα  α  πω  αυ  α  

implemented. Η formula α  α   ω  ω  Black-Scholes απ   α 
α α   α ω   α α , α     αυ   

α α α  α ω  χω   α α    π ω απ  αυ   
ω έ  α  π α α   υπ  α  πα α υ  
ω , αυ   α α  (Volatility)  π α  α  α 

πα α   α έ To π α αυ  α ωπ α   β αφ  
υ μ 1    α α α  β   α  α α 

π υ α  πα α ωέ π π  α πα α  π  ω  υ α υ 
 ω  υ υ χ υ parsing α  downloading. 
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Abstract 
 

 

 

 
The purpose of this thesis is primarily to study the Black-Scholes-Merton formula or 
just Black-Scholes in a detailed and comprehensible way and then to simulate a stock 
application by presenting an online Java application able of downloading and parsing 
concurrently in real time, stock prices from Google Finance using threads. In order to 
fully understand the Black-Scholes formula there is a Black-Scholes calculator 
implemented also in Java for pricing options. In both chapter 6 and the appendix there 
is a detailed report about the application, which will guide the reader step by step in 
order to fully conceive the whole concept of the application and how is implemented. 
Black-Scholes formula is a hallmark of mathematical finance and any study of this 
field would be incomplete without having understood the logic behind this equation. 
The main problem is estimating the only parameter, which is not directly observable 
in the market, the volatility. However this problem is tackled through two different 
methods: historical volatility and implied volatility. Moreover due to the fact that the 
concurrent parsing algorithm has a lot of room of improvement, there will be 
introduced some ways in order to decrease the average parsing time. 
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Thesis Structure 
 

 

 

Section I offers a quick introduction to the Black-Scholes formula by describing it’s 
parameters and the reason for it’s existenceέ      

 Section II introduces the definition of the derivative and then what exactly is a 

stock option, which basically is another type of derivative. Moreover there will be a 

detailed description of each of the five parameters of the formula in order for the 

reader to fully understand them.       

 In Section III there will be introduced some of the basic strategies involving 

options in a detailed way especially a complex strategy known as iron condor.  

 Section IV will offer a detailed description of the Greeks, which are essential 

and crucial in strategies involving options.     Section V will 

present the application and how it is implemented. Moreover in order for the reader to 

fully understand concurrent programming we offer a comprehensive description of the 

Executors class.         

 In section VI conclusions and future work of this thesis are being quoted. 

 Last but not least on the appendix some screenshots and a further description 

of the application will be quoted. 

  



  

 11 

Chapter 1 
 

 

Introduction 
 

 

 

The Black-Scholes-Merton formula was first presented in [1]. Only Scholes and 
Merton received the Nobel Prize in 1997 (Black had passed away two years ago, in 
1995). The problem that was presented in [1] was finding the “fair” value of a stock 
option, what a stock option really is and what exactly “fair” means in this context. 
The equation basically gave birth to the field of financial engineering, which is 
concerned with the design of financial contracts and the pricing of derivatives. The 
value of a call option for a non dividend-paying stock is shown below: 

 

C(S, K, T, r, σ) = N(d1)S – N(d2)K
−� �−  (1) 

 

  = �� � + (� + � ) ��√�  

 

 = − �√� (3) 
  

 

where: 
 
N: cumulative standard normal distribution 
 
S: current stock Price 
 
Κμ strike price 
 

-t : the time until expiration in years with t = 0 
 
r: current  risk-free rate of return 
 

μ is the (annualized) volatility of the stock 
 
for a put option it would be: 
 

P(S, K, T, r, σ) = N(-d2)K
−� �−  – N(-d1)S = K −� �−  – S + C(S, K, T, r, σ) (4) 
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The above pricing formula for a put option reveals the so called the Put-Call parity 
which will allow us to determine the value of the call, given the value of the put, 
requiring that they both are options on the same stock, with the same strike price and 
expiration date. Put-Call parity will be discussed in the section V in a more detailed 
way. 
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Chapter 2 

 
 

Definitions and basic terminology 
 

 

 

In this section, we describe the concepts and terminology used in finance considering 
this paper. A derivative is a financial instrument whose value depends on the value of 
some underlying variable. Specifically a financial instrument is a monetary contract 
between two parties, which can be traded, created, modified and settled. It can be cash 
(currency), evidence of an ownership interest in a entity (share), or a contractual right 
to receive or deliver cash (bond). In most cases this is the price of a stock on a certain 
date, but it could also depend on some interest rate, or even on something more 
unusual like the amount of rainfall in a certain week. The important feature is that its 
value is well defined [7], given the value of the underlying variable. Among all these 
derivatives the stock option is the one presented here in detail. An option gives the 
holder the right, but not the obligation to sell or buy a stock at a certain price, the 
strike price, on a pre-specified date, the expiration date. If the right to buy the stock is 
bestowed upon the holder, then this is called a call option, or simply call, while if the 
right to sell is conferred, it is called a put option, or put. Another distinction is made 
between European and American options, where the first one only allows the option 
to be exercised on the expiration date, while the latter allows the holder to exercise the 
option any time up to the expiration date. Exercising the put here refers to the act of 
buying the stock and using the option to sell the stock at a higher price. On the other 
hand, exercising the call consists of using the option to buy the stock at a lower price 
than the current market price, and then sell it at the market price, which will be 
higher. 

 

2.1 Value of an Option 
 

The value of an option is the amount of money, which will receive the holder of a put 
or a call option on the expiration date, if he decides to exercise the option. If on the 
expiration date the price of the stock is S, and the strike price is K, then the value of 
the option is max(ί, S − K), or max(ί, K − S), for the case of a call and put, 
respectively. To see this for the case of the put, suppose that K > S on the expiration 
date. Then, if the holder of a put option,  can buy the stock for S, and then exercise the 
option to sell it for K, in which case he/she will have realized a profit of K−S. 
Similarly for a call option he/she will have realized a profit of S-K, of course if S<K 
he/she would not exercise the call option because it would be unprofitable. Although 
K-S and S-K are the profits for the case of a call and put respectively, the above are 
the maximum theoretical profits because in K-S and S-K we have to also subtract the 
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price of the premium, which is calculated by the Black-Scholes formula. So the real 
profits would be K-S-P(S, K, T, r, ) and S-K-C(S, K, T, r, ) of a call and put option 
respectively.  

 

2.2 Time Value and Intrinsic Value 
 

Option premiums feature two basic components, the intrinsic value and the time 

value. The intrinsic value is the difference between the underlying and the strike price 
of a stock. Specifically, the intrinsic value for a call option is equal to the underlying 
price minus the strike price; for a put option the intrinsic value is the strike price 
minus the underlying price. 

Intrinsic Value(Call) = Underlying price – Strike Price (5) 

Intrinsic Value(Put) = Strike Price – Underlying Price (6) 

By definition the only options that have intrinsic are those that are in-the-money. For 
call options, in-the-money refers to options where the strike price is less than the 
current underlying stock price. A put option is in-the-money if the strike price is 
greater than the underlying price of the stock. To recap an option is also said to be at-

the-money if the intrinsic value is zero, in-the-money if the intrinsic value is greater 
than zero, and out-of-the-money if the intrinsic value is less than zero. Time value 
explains why an out of the money option still is traded before expiration date, because 
the further out-of-the-money an option is, the lower its market price(option premium).  

In-the-money(Call) = Strike Price < Underlying Price (7) 

In-the-money(Put) = Strike Price > Underlying Price (8) 

Any premium that is in excess of the option’s intrinsic value is referred to as time 

value. όor example, let’s assume a call option has a total premium of $λέίίέ If the 
option has an intrinsic value of $7.00, its time value would be equal to $2.00($9.00 – 
$7.00 = $2.00). 

Time Value = Option premium  – Intrinsic Value (9) 

In general, the more time to expiration, the greater the time value of the option. It 
represents the amount of time that the option position has to become more profitable 
due to favorable move in the underlying price. Usually, investors are willing to pay a 
higher premium for more time, since time increases the likelihood that the position 
can become more profitable. Time value decreases over time and decays to zero at 
expiration. This phenomenon is known as time decay. Because the market price of at-
the-money and out-of-the-money options is made up from time value only, we can 
conclude that time value of options declines the further out of-the-money they are 
(with other parameters being equal). This is valid for both Call and Put options. 
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2.3 Risk-Free Rate 

The risk-free rate of return is the theoretical rate of return of an investment with zero 
risk. The risk-free rate represents the interest an investor would expect from an 
absolutely risk-free investment over a specified period of time. In theory, the risk-free 

rate is the minimum return an investor expects [10][5] for any investment because he 
will not accept additional risk unless the potential rate of return is greater than the 
risk-free rate. In practice, however, the risk-free rate does not exist because even the 
safest investments carry a very small amount of risk. Thus, the interest rate on a three-
month U.S. Treasury Bill is often used as the risk-free rate for U.S.-based investors. 

 

2.4 Historical Volatility 

Volatility of a stock is defined to be the standard deviation of log-returns of the stock. 
The log-returns are the logarithms of the ratio of successive prices. The Black-Scholes 
model assumes a constant volatility, and one way to estimate this is to use historical 
volatility as an estimator. If we have price data from n + 1 periods (in our case days), 
then the estimate for historical volatility [7] is given by: 

�̂ = √�−  ∑ �− ̅��=√�    (10) 

where: 

� =  �� ( ��− )   

̅: The sample average of all � 
�: The stock price in period i �: The total length of each period in years. 

The problem with determining , is that there are only 252 days in the year on which 
trades actually take place (since there are weekends and holidays), but 365 days in a 

typical yearέ We could let  equal  or . The second assumption is more elegant, 

especially considering the fact that another term in the Black-Scholes formula, the 
term which represents time discounting at the risk-free rate of interest, r, is at work 
continuously, even the weekends. 
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2.5 Implied Volatility 
 

Opposed to the historical volatility which is backwards-looking implied volatility is 

forward-looking. It is a parameter part of an option pricing model, such as the Black-

Scholes model, that gives the market price of an option. Implied volatility is a 

measure of the estimation of future variability [15] for the asset underlying the option 

contract. Since implied volatility is forward-looking, it helps to gauge the sentiment 

about the volatility of a stock or the market. However, it does not forecast the 

direction in which an option will be headed. Implied volatility is not directly 

observable, so it needs to be solved [4] using five other inputs of the model: the 

market price of the option, the underlying stock price S, the strike price K, the time to 

expiration  and the risk-free rate. The implied volatility is calculated by taking the 

market price of the option also known as market’s belief, entering it into the B-S 

formula and back solving [6] for the value of volatility.      

The Black-Scholes model makes a number of assumptions that may not 

always be correct. The model assumes volatility is constant, when in reality it is often 

moving. The model further assumes efficient markets are based on a random walk of 

asset prices. The Black-Scholes model is limited to European style options that can 

only be exercised on the last day as opposed to American style options that can be 

exercised at any time before expiration. The shortcomings of the Black-Scholes 

method have led some to place more importance on historical volatility as opposed to 

implied volatility. Historical volatility is the realized volatility of the underlying asset 

over a previous time period. It is determined by measuring the standard deviation of 

the underlying asset from the mean during that time period. The standard deviation is 

a statistical measure of the variability of price changes from the mean price change. 

This differs from the implied volatility determined by the Black-Scholes method, as it 

is based on the actual volatility of the underlying asset. However, using historical 

volatility also has some drawbacks. Volatility shifts as markets go through different 

regimes. Thus, historical volatility may not be an accurate measure of future 

volatility. One way to use implied volatility is to compare it with historical volatility. 

όor example let’s assume that the implied volatility of a stock was ηζέ1Σ on June βλ, 
2016 at 12:13 p.m. Looking back over the past 30 days, the historical volatility is 

calculated let’s say to be 19.35%. Comparing this to the current implied volatility, it 

should alert a trader that there might be an event that can affect the stock price 

significantly. This could be a news event significant enough to elevate the historical 

volatility relative to the historical volatility for the past 30 days. The equation below 

represents a way to calculate implied volatility. 
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� =  √��(�⁄ ) − �  −  − ��  +     

 

The parameters S, K, r ,T have been already mentioned above. The parameter �� is 

given by the equation:  
 ��  =  �� −    

 

where:  

 �� = − � �� − ��� + �    

 � ≡ �√� −     
 � ≡  −  ��    

 
 

2.6 Options vs Stocks 

 
Investors and traders undertake option trading either to hedge open positions (for 
example, buying puts to hedge a long position or buying calls to hedge a short 
position), or to speculate on likely price movements of an underlying asset. The 
biggest benefit of using options is that of leverage. For example, let’s say an investor 
has $1200 to invest. The investor is very bullish in the short term on, for example, 
Apple which we assume is trading at $100 and can buy a maximum of 12 shares of 
Apple (excluding commissions for simplicity). Apple has also three-month calls with 
a strike price $105 available for $3. Instead the investor buys four call option 
contracts (again ignoring commissions) where, each contract is equal to 100 shares. 
Shortly before the call options expire, suppose Apple is trading at $113 and the calls 
are trading at $8. The investor decides to exercise the callsέ ώere’s how the return on 
investment stacks up in each case: 
 

 Outright purchase of Apple shares: Profit  = (113 – 100) x 12 shares  = $156. 

The return will be 
− ∗ = % 

 Purchase of 4 call option contracts. Profit  = 8 x 100 x 4 – (3 x 100 x 4) = 

$2000. The return will be 
− ∗ = , % 

 
The risk with buying the calls rather than the shares is that if Apple had not traded 
above $105, the calls would have expired worthless and we would experience a loss 
of $1200 (option premiums). In fact Apple would have had to trade at $108 ($105 
strike price + $3 premium paid), or about 9% higher from its price when the calls 
were purchased, in order for the trade to break even. 
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Chapter 3 

 
 

Strategies involving options 
 

 

 

3.1 Married Put 
 

An option can be seen as an insurance contract, where one party wants to insure, or 
hedge, a certain position in the market up to some expiration date in the future. One 
possible strategy is to insure against downward losses on a stock by buying a put on 
the stock at a certain strike price, so that if the price of the stock went below the strike 
price one can always recover the losses by exercising the put. Obviously this strategy 
functions like an insurance policy, and is known as married put. The monthly return 
can be calculated as in [8]. 

 

3.2 Equity Collar 
 

In order to understand the Equity collar properly we have to introduce what a covered 
call is. Writing an option refers to the act of selling an option. When someone writes 
(“sells”) an option heήshe must deliver to the buyer a specified number of shares if the 
option is exercised. The writer has an obligation to perform a duty while the buyer has 
the option to take action. There are two general types of option writing: covered and 
naked.  

 

3.2.1 Covered Call 
 

In a covered call, the option writer (“seller”) already owns the underlying trading 
instrument and wishes to make extra money from the position. He/she can write 
(“sell”) an option based on the expectation that the underlying’s price will move in a 
particular way. The buyer pays the writer a premium in exchange for writing an 
option. If the option trades at a value that benefits the buyer the seller is obligated to 
hand over the shares. If the option expires at a value that does not benefit the buyer, 
the seller retains the original shares. If the option writer does not own the underlying 
instrument, it is said to be naked option. This is more risky than writing a covered call 
since the writer is still obligated to produce the specified number of shares of the 
particular contract (without owning them already). The example below offers a great 
understanding of how an Equity collar works. 



  

 19 

δet’s consider an investor who owns one hundred shares of a stock with underlying 
price of $5. An investor could construct a collar by buying one put with a strike price 
of $3 and selling one call with a strike price of $7. The collar would ensure that the 
gain on the portfolio will be no higher than $2 and the loss will be no worse that $2. 
There are three possible scenarios when the option expire: 

 Scenario 1: If the stock price is above the $7, then the person who bought the 
call from the investor will exercise the purchased call; the investor effectively 
sells the shares at the $7 strike price. This would lock in a $2/share profit for 
the investor. He only makes a $2 profit(minus fees), no matter high the share 
price goes. For example, if the stock price goes up to $11, the buyer of the call 
will exercise the option and the investor will sell the shares that he bought at 
$5 for $11, for a $6 profit, but must then pay out $11 – $7 = $4, making his 
profit only $2/share ($6 - $4). The premium paid for the put must then be 
subtracted from this $2 profit to calculate the total return [8] on this 
investment. 

 Scenario 2: If the stock price drops below the $3 strike price on the put then 
the investor may exercise the put and the person who sold it is forced to buy 
the investor’s 1ίί shares at $γέ The investor loses $βήshare but can lose only 
$2 (plus fees) now matter how low the price of the stock goes. For example, if 
the stock price falls to $1 then the investor exercises the put and has $2 
profitήshareέ The value of the investor’s stock has fallen by $η – $1 = $4. The 
call expires worthless (since the buyer does not exercise it) and the total net 
loss is $2 – $4 = -$2/share. The premium received for the call must then be 
added to reduce this $2 loss to calculate the total return on this investment. 

 Scenario 3: If the stock price is between the two strike prices for example at 
$4, on the expiry date both options expire unexercised and the investor is left 
with 100 shares whose value is stock price (x100), plus the cash gained from 
selling the call option, minus the price paid to buy the put option, minus fees. 
     

One source of risk is counterparty risk. If the stock price expires below the $3 
floor then the counterparty may default on the put contract, thus creating the 
potential for losses up to the full value of the stock (plus fees). 

 

3.3 Long Straddle 
 

A long straddle options strategy as in [16] is when an investor purchases both a call 
and put option with the same strike price, underlying asset and expiration date 
simultaneously. An investor will often use this strategy when he or she believes the 
price of the underlying asset will move significantly, but is unsure of which direction 
the move will take. This strategy allows the investor to maintain unlimited gains, 
while the loss is limited to the cost of both options contracts.  

 

3.4 Long Strangle 

 
A strangle is an options strategy [13] where the investor holds a position in both a call 
and put with different strike prices, but with the same maturity and underlying asset. 
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This options strategy is profitable only if there are large movements in the price of the 
underlying asset, but we are unsure of which way that price movement will be. A 
strangle is generally less expensive than a straddle as in the latter the contracts are 
purchased out-of-the-money. For example let’s say that a stock is trading at $ηί a 
share. To employ the strangle option strategy a trader enters into two options 
positions, one call and one put. Say a $55 call trades at $3 and a $45 put trades at 
$βέκηέ δet’s assume that we buy one call contract of $γίί ($γ per option x 1ίί shares) 
and one put contract of $285 for a total cost of $585. If the price of the stock stays 
between $45 and $55 until expiration the loss will be $585. The trader will make 
money if the price of the stock starts to move outside of the range. Say that the price 
of the stock ends up at $35. The call option will expire worthless and the loss will be 
$300. The put option however, has gained considerable value, it is worth $715 ($1000 
- $285). So the total gain we have made is $415 ($715 - $300). 

 

3.5 Iron Condor 
 
Most investments are made with the expectation that the price will go up. Some are 
made with the expectation that the price will move down. Unfortunately, it is often the 
case that the price doesn't do a whole lot of moving at all. Wouldn't it be nice if you 
could make money when the markets didn't move? Well, you can. This is the beauty 
of options, and more specifically of the strategy known as the iron condor. Iron 
condors sound complicated, and they do take some time to learn, but they are a good 
way to make consistent profits. In fact, some very profitable traders exclusively use 
iron condors. There are two ways of looking at it. The first is as a pair of strangles one 
short and one long, at outer strikes. The other way of looking at it is as two credit 
spreads: a call credit spread above the market and a put credit spread below the 
market. It is these two "wings" that give the iron condor its name. These can be placed 
quite far from where the market is now, but the strict definition involves consecutive 
strike prices.  

 

3.5.1 What is a credit spread 

 
A credit spread is the difference in yield between a U.S. Treasury bond and a debt 
security with the same maturity but of lesser quality. A credit spread can also refer to 
an options strategy where a high premium option is sold and a low premium option is 
bought on the same underlying security like in [12]. This creates the credit, with the 
hope that both options expire worthless, allowing you to keep that credit. As long as 
the underlying does not cross over the strike price of the closer option, we get to keep 
the full credit. Credit spreads between U.S. Treasuries and other bond issuances are 
measured in basis points, with a 1% difference in yield equal to a spread of 100 basis 
points. For example with S&P500 at $2150, one might buy the August $2220 call 
option (black dot below point 4 on the chart below) for $2.20 and sell the August 
2205 call (black dot above point 3) for $4.20. This would produce a credit of $2 in our 
account. This transaction does require a maintenance margin. The broker will only ask 
that we have cash or securities in our account equal to the difference between the two 
strikes minus the credit we received. The margin requirement for 1 SNP short call and 
1 SNP long call will be found by taking the difference of the short and the long call 
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and multiply by the number of contracts and the multiplier (100) because every 
contract is equal to 100 options. So $2220 – $2150 = $15, thus the maintenance 
margin = (15-2)*1*1*100 = $1300 for each spread. If the marker closes below $2205, 
we keep the $200 for a 15% return.  

To create a full iron condor all we need to do is add the credit put spread in a 
similar manner. Buy the August $2065 put (black dot below point 1) for $5.50 and 
sell the September the September $2080 (black dot above point 2) for $6.50, for 
another $1 of credit. Here the maintenance margin is $1400 with $100 credit (for each 
spread). Now we have a full iron condor. If the market stays between $2080 and 
$2205 we will keep the full credit, which is now $300. The requirement will be 
$2,700. Our potential return is 11.1% for less than two months. Because this does not 
presently meet the Securities and Exchange Commission’s strict definition of an iron 
condor, we will be required to have the margin on both sides. 
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Figure 1: Iron condor chart.  
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Chapter 4 

 
 

The Greeks 
 

 

 
 

The Greeks measure the sensitivity of the value of a derivative or a portfolio to 
changes in parameter value(s) [11] while holding the other parameters fixed. They are 
partial derivatives of the price with respect to the parameter values. One Greek, 
“gamma” (as well as others not listed here) is a partial derivative of another ύreek, 
"delta" in this case. The Greeks are important not only in the mathematical theory of 
finance, but also for those actively trading. Financial institutions will typically set 
(risk) limit values for each of the Greeks that their traders must not exceed. Delta is 
the most important Greek since this usually confers the largest risk. Many traders will 
zero their delta at the end of the day if they are speculating and following a delta-
neutral hedging approach as defined by Black–Scholes.     
The Greeks for Black–Scholes are given in closed form below. They can be obtained 
by differentiation of the Black–Scholes formula above: 

 

 
 

Table 1: Black-Scholes Greeks Calculation 

   Calls Puts 

Delta  

( ) 

��  �  � −  

Gamma 

(γ) 

�
 

�′�√� −  

Vega 
��� �′ √ −  

Theta 

(γ) 

��  − �′ �√� − − �� −� �− �  − �′ �√� − + �� −� �− � −  

Rho    

(λ) 

���  � − −� �− �  −� − −� �− � −  
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4.1 Delta: 
 

It is the percentage an option will increase or decrease in value in relation to the 
underlying stock. For example a delta of .60 or 60% means the option will move or 
change in value equal to 60% of the underlying stock’s price change, which means a 
$1.00 rise in the stock should a 60-cent rise in the option premium. If the stock fell by 
$1.00, the option should decrease by 60-cents. Moreover the delta will change (either 
increase or decrease), in general based on how in-the-money or out-of-the-money your 
option becomes.          
 For example if a stock is trading at $85 and you had a $95 out-of-the-money 

call option with 4 months of time on it; that option might have a delta of .41 or 41%. 
δet’s also say that the call option was priced $6. If the stock increased by $10, this 
means that the out-of-the-money call option with a delta of 41Σ would’ve increased 
by $4.1. So as our options gets further in-the-money the delta will increase up to 
100%, likewise the option gets further out-of-the-money the delta will decrease. Delta 
values can also be negative. Put options deltas always range from -1 to 0. For example 
if a put option has a delta of -0.23, then if the price of the underlying asset will 
increase by $1, the price of the put option will decrease by 23-cents. 

 

4.2 Gamma 
 

Gamma is one of the most obscure Greeks. Delta, Vega and Theta get the most 
attention, but Gamma has important implications for risk, in options strategies. First, 
though let’s review what gamma represents. Gamma represents the rate of change of 
Delta. But since Delta is not fixed and will increase or decrease as mentioned above, 
it needs its own measure, which is Gamma. When we incorporate a Gamma risk 
analysis into our trading we learn that two deltas of equal size may not be equal in 
outcome. The Delta with the higher Gamma will have a higher risk (and potential 
reward of course) because given an unfavorable move of the underlying; the Delta 

with the higher Gamma will exhibit a larger adverse change.   
 Figure 1 reveals that the highest Gammas are always found on at-the-money 
options with the January 110 call showing a Gamma of 5.58. The same can be seen 
for the 110 puts. The risk/reward resulting from changed in Delta are highest at this 
point. In terms of position a seller of put options would face a negative Gamma (all 
selling strategies have negative Gammas) and the buyer of puts would acquire a 
negative Gamma (all buying strategies have negative Gammas). But all Gamma 
values are positive because the values change in the same direction as Delta. Signs 
change with positions or strategies because higher Gammas mean greater potential 
loss for sellers and for buyers greater potential gain. 
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Figure 2: IBM options Gamma Values. Values taken on Dec. 29, 2007. 

 

4.3 Vega 
 

Vega is a measure of the impact of changes in the underlying volatility on the option 
price. Specifically, the Vega of an option expresses the change in the price of the 
option for every 1% change in the volatility. Options tend to be more expensive when 
volatility is higher. Thus, whenever volatility goes up, the price of the option goes up 
and vice versa. Therefore, when calculating the new option price due to volatility 
changes we, add the Vega when the volatility goes up but subtract it when volatility 
drops. For example a stock is trading at $46 in July and an August $50 call is selling 
for $βέ δet’s assume that the Vega of the option is $0.15 and that the underlying 
volatility is 25%. If the underlying volatility increased by 1% to 26%, then the price 
of the option should rise to $2 + $0.15 = $2.15. However if the volatility had gone to 
down by 3% to 22% then option price should be $2 – (3 x 0,15) = $1,55.  The more 
time remaining to time expiration, the higher the Vega. This makes sense as time 

value makes up a larger proportion of the for longer term options and it is the time 

value that is sensitive to changes in volatility. 
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Figure 3: The behavior of the Vega of options at various strikes expiring in 3, 6 and 9 
months time when the stock is currently trading at $50 

 

 

4.4 Theta 

 

The Theta is a measurement of the option’s time decayέ The theta measures the rate at 
which options lose their value, specifically the time value, as the expiration date 
draws nearer. Generally expressed as a negative number, the theta of an option 
reflects the amount by which the option’s value will decrease every dayέ όor example 
a call option with a current price of $3 and a theta of -0.05 will experience a drop in 
price of $0.05 per day. So in two days time, the price of the option should fall to 
$2.90. Longer-term options have theta of almost 0 as they do not have lose value on 
daily basis. Theta is higher for shorter-term options, especially at-the-money options. 
This is pretty obvious as such options have the highest time value and thus have more 
premium to lose each day. In contrast, theta goes up dramatically as options near 
expiration as time decay is at its greatest during that period. In general options of 
volatility stocks have higher Theta than low volatility stocks. This is because time 
value premium on these options are higher and so they have more to lose per day. 
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Figure 4: High volatility options have higher Theta than low volatility options. 

 

4.5 Rho 
 

Rho is the rate at which the price of an option changes relative to a change in the risk-
free rate of interest. Rho measures the sensitivity of an option or options portfolio to a 
change in interest rate. For example, if an option or option portfolio has a rho of 1, 
then for every percentage-point increase in interest-rates the value of the option 
increases 1%. So let’s assume that a call option is priced at $ζ and has a rho of ίέβηέ If 
the risk-free rate rises let’s say from γΣ to Σζ, the value of the call option would rise 
from $4 to $4.25. 
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Chapter 5 

 
 

Pricing Boundaries 
 

 

 

We will now discuss rational pricing boundaries for European option prices. These 
are upper and lower bounds for the price of an option, and they represent the range of 
values the option price can assume if we require there to be no arbitrage opportunities. 
The reason we discuss this for European, and not for American options, is because 
European options can only be exercised on expiration date, and not before. American 
options additionally contain the problem of optimal time of exercise, although in the 
absence of dividends this will be the expiration date due to the possibility of favorable 
developments in the stock in the future. In the case of a dividend it might be more 
profitable to exercise a call option early, since then the dividend can be earned with 
the stock in possession. A second reason for discussing European options is that the 
Black-Scholes equation actually is a model for European options only. 
 Arbitrage is the possibility to realize risk-less profits without any initial 
investment. These are mostly possible if there is a discrepancy in value between two 
identical investments, in which case the arbitrageur can buy the cheaper one, and sell 
it for the higher price. It is assumed for the analysis that this is not possible for a 
longer period of time. The standard argument for this is that investors will quickly 
notice these opportunities and take advantage of them, in which case they will 
disappear quickly. Competition crowds out arbitrage opportunities so that in most 
cases equilibrium prices should prevail. The no- arbitrage arguments involved in the 
following paragraph will nicely illustrate the nature of economic reasoning useful for 
understanding the arguments later on in the derivation of Black-Scholes.  

The first such rational pricing considerations is given by the upper bound on the value 
of a call, namely     (17) 

where C is the price of the call option and S the price of the stock as mentioned 
above. To understand this, suppose C was greater than S. Then the holder of the call 
could realize a risk- less profit by buying the stock for S, and then selling the option 
for C. Another way of seeing this is that it should not be more expensive to buy the 
right to buy a stock than it is to buy the stock itself. On the other hand, we have  � �  (18) 

where P is the price of the put and K is the strike price. If it were the case that K is 
less than P, then an arbitrageur could easily realize a profit by writing a put, and 
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investing the profit at the risk-free rateέ ώe would then have max(P − K, P ) −�� , 
where T is the time until expiration since the only thing he committed to is possibly 
buying the stock for K at some future time, and even that only if the option holder 
would actually exercise the call. By requiring that there are no such arbitrage 
opportunities, we actually arrive at the slightly stronger condition,  � � −��  (19) 

since in the absence of arbitrage opportunities, the present discounted value of the 
strike price should exceed the price of the put. The present discounted value in this 
case is the amount necessary to invest in bonds at the present time that would yield K 
at expiration date, T years from now, if continuously compounded with annual rate r.
 Now, to prove what the lower pricing bound for a European call is, let us 
assume that there are two portfolios, one containing a call with strike price K and � −�� in cash, the other containing one share of the stock. Assume we are T years 
away from expiration date. Then, at expiration date, if the stock price is greater than 
the strike price, then we exercise our call and realize a profit of S − K, where S is the 
stock price on the expiration day. Our cash has however changed to K in the 
meanwhile, because of the interest accumulated, and our portfolio leaves us with S. 
On the other hand, if the stock price is less than the strike price, we do not exercise 
the option, and we are left with the cash. We see that the first portfolio hence yields 
max(S, K). The second portfolio just yield S, the price of the stock at expiration date. 
We hence see that the first portfolio is always at least as large as the second, so that in 

the absence of arbitrage,  + � −��  . Putting this fact together with the last 
inequality yields   max − � −�� ,   (21) 

Similarly, the lower pricing bound for a European put will be  � max � −�� − ,   (22),  

remembering that the value of an option is always nonnegative. 

 

5.1 Put-Call Parity 
 

In this section we will derive the so called put-call parity, which will allow us to 
determine the value of the call, given the value of the put and vice versa, requiring 
that they both are options on the same stock, with the same strike price and expiration 
date. It will prove very useful in the derivation of the Black-Scholes equation, since 
we will only have to derive it for one option type, and can then use the put-call parity 
to make a couple of algebraic manipulations and arrive at the formula for the second 
option type. In addition, we can focus on one specific type of option in our empirical 
analysis later on, since we could get essentially the same results for the other type by 
using the parity relationship. Suppose again that we have two portfolios, the first one 

containing a European call option and cash worth � −��  and the second one 
containing a put and a share. The same logic from before applied here will yield that 
on expiration date, both portfolios are worth max(S, K). Since these options are both 
European, they can only be exercised on this date anyways, so that both portfolios 
actually have the same value on any day during which they exist. So, the formula of 
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the put-call parity is given below: + � −�� = � +   (23) 
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Chapter 6 

 
 

Black-Scholes implementation 
 

 

 

6.1 Application description 

6.1.1 Needs and Solutions 
 

The basic need of an application that broadcasts stock prices is primarily how fast is 
able of transmitting them. High frequency trading firms also known as HTFs need the 
price changes of a stock extremely fast. One way to achieve this some HFTs firms are 
placed very close the exchanges in order to receive the stock prices faster than the 
others. These prices are travelling with the speed of light, so it is all about distance. 
But since it is impossible all the hedge funds and HTFs to be placed near the 
exchanges, another way of receiving stock price changes very fast is through smart 
parallel algorithms and huge distributed systems. In our case, since we can’t have an 
immediate access to an exchange, the stock prices are parsed concurrently from 
Google Finance using threads. 

 

6.1.2 User interface  
 

After studying the Black-Scholes formula and some of the strategies that can be 
applied with options, we are going to offer a detailed description of the Java network 
application. Basically, simulates an environment of a multithreaded stock application 
that helps us to implement the Black-Scholes formula. The application features two 
windows: 

 The first window simulates an environment of a stock application by showing 
the stock prices of ten different stocks (we can add as many stocks as we want 
due to scalability of the application). The stocks prices are being downloaded 
and parsed concurrently from Google Finance using the ExecutorsService 

which is described below. This window has meaning from 4:30 pm to 11:00 
pm EEST due to the seven hour difference that Athens is ahead of New York. 
At 9:30 am EDT the New York stock exchange also known as NYSE, opens 
and stock prices are being downloaded, parsed and printed randomly in the 
JTextfields due to the fact that threads are executed in a different order every 
time. The prices printed in the JTextfield are in complete synchronization with 
the ones in Google Finance, actually in most of the time this parsing algorithm 
which will be given in the appendix, downloads the prices faster than they 
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change in Google Finance. Therefore in this window we see the stock prices 
move faster than they do in ύoogle όinance, but this has it’s drawbacks alsoέ 
Because in this application we create a URL connection every time that we 
download a stock price, in the end we send hundreds of requests in a very 
short period of time. As result if our application runs for a large period of time 
we get a 504 connection error. Ten out of nine stocks are some of the largest 
and most established companies in the S&P100. The tenth stock is the index 
S&P100. 

 The second window is a Black-Scholes calculator in order to price an option 
premium (call or put) for these ten stocks or for any option we would wish. In 
this window we enter the five parameters of the Black-Scholes formula (stock 
price S, strike price K, time to expiration T, volatility , and the risk-free rate 
r) and can we calculate the option premium of our preferred stockέ If we don’t 
choose any of the existing stocks or the selection “Any” and press the call or 
put button the application is going to throw an exception. The main advantage 
of this application is that we can watch a stock price directly from the first 
window and then use it as input in the Black-Scholes formula.  Both risk-free 
rate and volatility fields are auto filled, the first with the value of 4% and the 
latter with the implied volatility taken from iVolatility.com. Of course we can 
enter any value we wish in both fields. Along with the option premium (call or 
put) the Greeks are also being calculated, which are key elements as 
mentioned above for planning our option strategy. 

 

6.1.3 UML class diagrams 
 

The application consists of two classes. The first class is responsible for the number 
of threads that we would like to create but mainly for the assignment of each thread to 
the task of downloading and parsing a stock price. The second class puts in place the 
parsing algorithm and also creates the two windows that were mentioned above. The 
figure below offers a detailed representation of both classes. 
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Figure 5: UML class diagram of the application. Due to the big amount of instance 
variables that each class features, only some of them are presented in above. Both 
classes have over one hundred instance variables. 

 

6.2.1 Executors 
 

The Concurrency API [14] introduces the concept of an ExecutorService as a higher 
level replacement for working with threads directly. Executors are capable of running 
asynchronous tasks and typically manage a pool of threads, so we don't have to create 
new threads manually. All threads of the internal pool will be reused under the hood 
for revenant tasks, so we can run as many concurrent tasks as we want throughout the 
life-cycle of our application with a single executor service. The class Executors 
provides convenient factory methods for creating different kinds of executor services. 
Due to the fact that the Java process never stops, Executors have to be stopped 
explicitly; otherwise they keep listening for new tasks. An ExecutorService provides 
two methods for that purpose: shutdown() waits for currently running tasks to finish 
while shutdowNow() interrupts all running tasks and shut the executor down 
immediately.  
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6.2.2 Implementing Executors 
 

In our simulator we use an executor with a thread pool of size ten (as mentioned 
above we can add as many stocks as we want). Every thread is assigned with the task 
of downloading and parsing the price of each stock. Therefore there is a 1:1 
assignment between stocks and threads in this application. Due to the fact that our 
application sends a great amount of requests in the Google Finance site as mentioned 
above, a constant must be used as a time limit which is being assigned with the 
milliseconds that our application will parse and download the stock prices in order to 
avoid getting a 504 connection error. As a result the executor shuts down softly by 
waiting a certain amount of time for termination of currently running tasks. After a 
maximum of our time limit(parsing time) the executor finally shuts down by 
interrupting all running tasks. 

 

 

Figure 5: Executors thread pool. In our example there is a 1:1 assignment between 
threads and stocks, which means each thread is responsible for parsing one stock 
price. 

 

6.2.3 Parsing Algorithm 
 

In order to parse and download a stock price from the html source code of the Google 
Finance site we need three identifiers.  

 Name of the stock, 
 spanid of the stock 
 and the URL link of the stock 

The name of the stock let’s assume for Apple is necessary in order to save in a text 
file the whole html code of a stock from Google Finance. The spanid of the stock is an 
identifier, which is essential in locating the stock price in the html code. Id is actually 
an attribute of the html that provides a unique identifier for an element within the 
document. Therefore the value of the stock is something unique in the html code of 
each stock. Last but not least the URL link of the stock is the key element in order to 
initiate a URL connection for each stock. The parsing algorithm is given in the 
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following code.  

 

6.3.1 Parsing Time 
 

Next we quote a figure that describes the relation between the parsing time of all ten 
stocks and the time of the day when the stock market of the New York is open. We 
notice that half an hour after and half an hour before, the market opens and closes 
respectively, the algorithm spends the most time in paring the stock prices, because in 
both the first and the latter hours of the day there is a lot of traffic in the Google 
Finance site due to the fact that there is a lot of price movement. Thus the busier the 
site is the more time to parse the stock prices. This figure is a result from a four day 
testing with over 12 hours of parsing. In that four day period the parsing was taking 
place different hours of the day in order to have a proper calculation of the average 
parsing throughout the day. The characteristics of the MacBook Pro that the tests were 
taken place are: 

 CPU: 2.3 GHz Intel core i5 with 3MB shared L3 cache 

 4 threads (two real two virtual) 

 RAM: 4 GB 1333 MHz DDR3 

 HDD: 320GB 5400 rpm Serial ATA 

 Internet connection: 4 Mbps  

and runs OSX Yosemite 10.10.5 
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Figure 6: Average parsing time of ten stock prices from 16:30 to 23:00 EEST (from 
the time the NYSE opens till it closes). 

 

6.3.2 Concurrent vs Iterative 
 

Along with the concurrent parsing algorithm we have also implemented the iterative 
in order to compare the results and calculate the percentage of how faster the 
concurrent parsing algorithm but mainly the speedup. After repeated tests on a four-
day of testing as mentioned above, the average parsing time is 5578 milliseconds. In 

this case the concurrent parsing algorithm is faster by: 
| − | � = . %. In 

addition the speedup is 
��� =  = 1.68 
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Figure 7: Average parsing time of ten stocks using iterative and concurrent parsing 
algorithm. As seen on the chart the concurrent algorithm is 68.4% faster than the 
iterative. 
 
 

 

6.3.3 Scalability and results 

 
In order to test the algorithm in a larger scale a Virtual Machine has been set up. The 
VM features: 
 

 24 vCPUs Intel Xeon E5-2630 0 @ 2.30 GHz 

 4 cores each CPU 

 8 threads each vCPU 
 

The algorithm has been tested for parsing 10, 20, 40, 50 and 100 stock prices. The 
results are shown below. 
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Figure 8: Average parsing time of 10 stocks of iterative and concurrent parsing 
algorithm using VM (virtual machine). The parallel algorithm is 133% faster than the 

iterative. Speedup  = 
��� = 

..  = 2.33 

 
 
 

 
 
Figure 9: Average parsing time of 20 stocks of iterative and concurrent parsing 
algorithm using VM. The parallel algorithm is 400.4% faster than the iterative. 

Speedup  = 
��� =  = 4.98 
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Figure 10: Average parsing time of 40 stocks of iterative and concurrent parsing 
algorithm using VM. The parallel algorithm is 663.16% faster than the iterative. 

Speedup  = 
��� = .  = 7.63 

 
 

 

 
 
Figure 11: Average parsing time of 50 stocks of iterative and concurrent parsing 
algorithm using VM (virtual machine). The parallel algorithm is 722.9% faster than 

the iterative. Speedup  = 
��� =  = 8.22 
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Figure 12: Average parsing time of 100 stocks of iterative and concurrent parsing 
algorithm using VM (virtual machine). The parallel algorithm is 941.1% faster than 

the iterative. Speedup  = 
��� =  = 10.41 

 

 
It is obvious that the parallel algorithm is capable of scaling in parsing, up to a few 
thousands of stocks. When the parallel parsing algorithm is being applied to a larger 
number of stocks it is also suitably efficient as it was. 
 

 

 
6.4 Bottleneck 

 
A network bottleneck refers to a discrete condition in which data flow is limited by 
computer or network resources. 

Although the network requests are being sent concurrently, the Network 
interface card (σIC) will empty its buffer sequentiallyέ The bottleneck isn’t in the 
cores but in the NIC.  
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Figure 13: An analog example of a bottleneck. In our case the cars represent the 
network requests and the bottle the NIC buffer respectively. 

 

 
Although the NIC buffer empties sequentially, the parallel parsing algorithm is still 
way faster and more efficient than the iterative. And the reason is that the iterative 
isn’t able of holding the σICΥs buffers fullέ As a result the iterative algorithm can’t 
take advantage of the network’s full potential, while the parallel sends all requests 
concurrently ensuring that the σIC’s buffer stays fullέ 
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Chapter 7 

 
 

Conclusions-Future Work 
 

 

 

7.1 Conclusions and results 

 
The purpose of this thesis was dual.  Firstly to study the Black-Scholes formula and 
some basic strategies that are being applied but primarily to present an online 
application in order to fully understand the formula on a practical level. The 
application is able of parsing stock prices from Google Finance concurrently using 
threads. After countless hours of parsing stock prices we ‘ve reached the conclusions:   

 It doesn’t matter only how fast the Internet connection is in order to parse a 
stock price because that is only half the job of the parsing algorithm. The other 
half on the algorithm is based on how fast and efficient the processor and the 
hard drive of a system are. In order to decrease the average parsing time and 
scale the algorithm we need faster Internet connection and faster processor. 
This algorithm could be tested in a system in other parallel systems so that we 
could have a better picture of it’s potential so as to examine how much we 
could decrease the average parsing time. 

 Due to the fact that the Network interface card (NIC), empties its buffer 
sequentially, there have to be a machine with multiple NIC in order for the 
parallel algorithm to reach its full potential. So it should be recommended a 
cluster of as many machines as possible. On each machine have a few threads 
(just to ensure the σIC’s buffer stays full)έ 

Moreover as mentioned above the hard disk drive is also a crucial factor for 
improving this algorithm. This is because when the whole html source code is being 
saved from Google finance to our file system as a txt file. Then all the characters are 
being assigned to an array, which is basically a copy and paste process that requires 
some milliseconds. Thus, the faster the HDD (higher RPM or an SSD) is, the faster 
the parsing algorithm can become. Of course there is a bound on how much we can 
decrease the average parsing time. 
 

 

 

 

 

 



  

 42 

 
 

References 
 

 
 
[1] F. Black and M. Scholes, "The Pricing of Options and Corporate 
Liabilities", Journal of Political Economy, vol. 81, no. 3, pp. 637-654, 1973. 
 
[2] T. Heimer and S. Arend, "The genesis of the Black-Scholes option pricing 
formula",Frankfurt School – Working Paper Series, vol. 98, pp. 11-12, 2008. 
 

[3] E. Turner, "M.S. Joshi. The Concepts and Practice of Mathematical Finance", 
Chicago, 2006. 
 
[4] S. Nickolas, "What is an option's implied volatility and how is it calculated?  
“Investopedia", Investopedia, 2015. [Online]. Available: 
http://www.investopedia.com/ask/answers/032515/what-options-implied-volatility-
and-how-it-calculated.asp 
 
[5] A. Damodaran, "What is the Riskfree Rate? A Search for the Basic Building 
Block", SSRN Electronic Journal, pp. 5-7. 
 
[6] P. Jacquinot and N. Sukhomlin, "A direct formulation of implied volatility in 
the BlackScholes model", Journal of Economics and International Finance, vol. 2, 
no. 6, pp. 95-101, 2010. 
 
[7]    P. Gross, "Parameter Estimation for Black-Scholes Equation", URA, Chicago, 
2006. 
 
[8]    M. Hemler and T. Miller Jr, "The Performance of Options-Based Investment 
Strategies: Evidence for Individual Stocks During 2003–2013", 2015. 
 

[9] C. McKhann, "Options Trading With The Iron Condor | 
Investopedia", Investopedia, 2006. [Online]. Available: 
http://www.investopedia.com/articles/optioninvestor/06/ironcondor.asp. 
 
[10] "Risk-Free Rate Of Return Definition | Investopedia", Investopedia, 2003. 
[Online]. Available: http://www.investopedia.com/terms/r/risk-freerate.asp. 
 
[11]   "Greeks Definition | Investopedia", Investopedia, 2003. [Online]. Available: 
http://www.investopedia.com/terms/g/greeks.asp. 
 

[12]  "Credit spread Definition | Investopedia", Investopedia, 2003. [Online]. 
Available: http://www.investopedia.com/terms/c/creditspread.asp. 



  

 43 

 
[13]    "Strangle Definition | Investopedia", Investopedia, 2003. [Online]. Available: 
http://www.investopedia.com/terms/s/strangle.asp. 
 
[14]  "Executors (The Java™ Tutorials ρ Essential Classes ρ 
Concurrency)", Docs.oracle.com, 2016. [Online]. Available: 
https://docs.oracle.com/javase/tutorial/essential/concurrency/executors.html. 
 

[15]   "Implied Volatility (IV) Definition | Investopedia", Investopedia, 2003. 
[Online]. Available: http://www.investopedia.com/terms/i/iv.asp. 
 

[16]  "Long Straddle Definition | Investopedia", Investopedia, 2006.[Online]. 
Available: http://www.investopedia.com/terms/l/longstraddle.asp. 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



  

 44 

 
 

Appendix 
 

 

 

Further Application description 

 
As mentioned above, in the appendix section there will be some further application 
description. In order to have a better understanding of the application we will offer an 
example including some screenshots. Let’s assume that we want to see how the stock 
market is going today by watching the stock prices and then plan a strategy involving 
options. The first step would be to get the most recent market stock prices.  
 

 
 

 
Figure 14: The concurrent parsing algorithm in action. The prices printed in the fields 
are in total synchronization with the prices at Google Finance. 
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Now that we know the current market price of the stock, we want to calculate the 
option premium as well as the Greeks in order to plan a strategy involving option. 
Here comes the second window to below in order to calculate the premium (put or 
call). Below we can see an example for Apple which goes by the name as AAPL. The 
current stock price is $108 on 10th of Augustέ δet’s choose an in-the-money option 
with a strike price K = $100, time to expiration = 40 days, implied volatility equal to 

 ο ββέβγ% (1 month ago taken from iVolatility )  and a risk-free rate of 4%. As we 
can see above on figure 7 the option premium for a call priced at $8.95 while the put 
at $0.51 because an out-of-the-money money. Along with the option premium the key 
elements for planning our strategy known as the Greeks are also being calculated. If 
we select the option Any then the option premiums are printed under the call and put 
buttons respectively. 

 

 

 
 

 

 

 

 
 

 
 
 
 
 
 
 
 
 

 
Figure 15: AAPL example for pricing a premium and calculating the Greeks using 
Black-Scholes formula. 
 
 

In what follows the reader can examine the concurrent parsing algorithm and how the 
threads are being initiated. 
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Parsing Algorithm: Concurrent downloading and parsing of a stock price from 
Google Finance for a thread pool of size N. 

 

 

 

 1:  GoogleFinanceUrl = new URL(thePath); 

 2:  GoogleFinanceUrc  = GoogleFinanceUrl.openConnection(); 
 3:  GoogleFinanceinp = GoogleFinanceUrc.getInputStream(); 
 4:  output = new PrintWriter(new FileOutputStream(Out)); 
 5:  while( (c = GoogleFinanceinp.read()) != -1) { 
 6:  output.print((char) c); 
 7:  } 
 6:  output.close(); 
 8:  GoogleFinanceinp.close(); 
 9:  f1 = new File(Out); 
 10: l = f1.length(); 
 11: char[] GoogleFnResidentFile = new char[(int) l]; 
 12: i = 0; 
 13: c = 0; 
 14: l = 0; 
 15: GoogleFninp = new FileInputStream(Out);   
 16: while( (c = GoogleFninp.read()) != -1 ) { 
 17: GoogleFnResidentFile[i] = (char) c; 
 18:   i++; 
 19: } 
 20: GoogleFninp.close(); 
 21: i = 0; 
 22: c = 0; 
 23: GoogleFnWholeFile = new String(GoogleFnResidentFile);  
 24: StartingPoint = GoogleFnWholeFile.indexOf(spanId, 0); 
25: EndingPoint = 
GoogleFnWholeFile.indexOf("</span>",StartingPoint); 
26: StocksPrice = GoogleFnWholeFile.substring(StartingPoint + 
spanId.length(), EndingPoint); 

 

 

 

 

where the thePath is the Url link in order to start a URL connection in Google finance 
for each stock. 
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Parsing Algorithm initiation: The code below initiates the pool of N threads by 
assigning in each thread the parsing of each stockPrice. 

 

 

 

 

 

 

By the time the loop will have finished each thread is assigned with the task of 
downloading and parsing the stock price from Google Finance. As seen in the above 
code the function submit is responsible for initiating the threadPool. The three 
identifiers which are described above are the parameters passed in the function 
submit. 

 

1: for (int i = 0; i<ThreadNum; i++) { 
2: final Future<String> price  = (Future<String>) threadPool.submit(new 
Price_Find(Urls[i], Outs[i], SpanIds[i] ) ); 

3: } 
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