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ZENTRUM FÜR TELEMATIK E.V.

AEROSPACE DEPARTMENT



MODEL PREDICTIVE CONTROL FOR CONTINUOUS
LOW THRUST SATELLITE FORMATION FLYING

KEYWORDS:MODEL PREDICTIVE CONTROL; SATELLITE FORMATION
FLYING; FORMATION CONTROL; CONTINUOUS LOW THRUST;

SPACECRAFT AUTONOMY

PANAYIOTIS D. KREMMYDAS

Master’s Thesis submitted in fulfillment of the
requirements of the University of Thessaly’s
degree in Electrical and Computer engineer-
ing.

Examination date: February 15, 2018.

Examination Board:

Prof. Dr. Lefteris H. Tsoukalas (supervisor)
University of Thessaly

Prof. Dr. Bargiotas Dimitrios
University of Thessaly

i



Περίληψη: Η πτυχιακή αυτή παρουσιάζει μία μεθοδολογία καθοδήγησης και

ελέγχου κατανεμημένων συστημάτων δορυφόρων που πετούν σε αποστάσεις

κοντινές στην Γη με σκοπό την προσέγγιση διάφορων τρισδιάστατων σχημα-

τισμών εν τροχιά κάτω από τεχνικούς περιορισμούς υπαρχόντων δορυφορικών

συστημάτων.

Abstract: This thesis presents a low thrust guidance and control strategy for
distributed spacecraft systems flying in proximity in low Earth orbit with the
purpose of converging to arbitrary three dimensional force free formation topolo-
gies taking account all possible constraints and system limitations.

ii



Contents

0.1 Applications and Benefits . . . . . . . . . . . . . . . . . . . . 2

1 Theoretical background 3

1.1 Coordinate Systems . . . . . . . . . . . . . . . . . . . . . . . . 3

1.1.1 Keplerian two body equations . . . . . . . . . . . . . 10

1.1.2 Hill Equations . . . . . . . . . . . . . . . . . . . . . . . 12

1.1.3 Clohessy - Wiltshire Equations . . . . . . . . . . . . . 12

1.1.4 Relative Dynamic Model Comparison . . . . . . . . . 17

2 Control Methods and Algorithms 19

2.1 Analytical solution with Optimal Control . . . . . . . . . . . 19

2.2 Modern Conrol Methods . . . . . . . . . . . . . . . . . . . . . 22

2.3 Linear Quadratic Regulator . . . . . . . . . . . . . . . . . . . 24

2.4 Model Predictive Control . . . . . . . . . . . . . . . . . . . . 25

3 Formation Acquisition 28

3.1 Structural degrees of freedom and acquisition cost efficiency 28

3.1.1 Infeasible Acquisition . . . . . . . . . . . . . . . . . . 29

iii



Contents

3.1.2 Numerical solution with standard MPC algorithmic
approaches . . . . . . . . . . . . . . . . . . . . . . . . 29

3.2 Types of Acquisitions and corresponding LVLH topologies
generated . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

3.3 Drift-free target acquisition for a mission objective . . . . . . 32

3.4 Degrees of freedom in a force free formation . . . . . . . . . 33

4 Evaluation 35

4.1 Model Description . . . . . . . . . . . . . . . . . . . . . . . . 35

4.2 Target Force free three dimensional formations . . . . . . . . 36

4.2.1 Eclipse Effect . . . . . . . . . . . . . . . . . . . . . . . 40

4.3 Special characteristics of the MPC implementation . . . . . . 41

4.3.1 Decentralized Multistep online MPC formulation . . 43

4.3.2 MPC Parameter Selection . . . . . . . . . . . . . . . . 44

4.4 Simulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

4.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

5 Code section 54

iv



Contents

Introduction

Satellite Formation Flying is promising goal on pursuit. Space science and
technology is undergoing various attempts to achieve distributed mission
architectures reducing down the costs, development time and expanding
possibilities for further mission concepts. Contributing to the improve-
ment of telecommunications, earth and deep space observation missions,
the discretization of satellite systems flying in proximity using three di-
mensional force free formations has yet to prove itself valuable in real
world applications.

There have been various successful missions demonstrating accu-
rate stationkeeping like the well known magnetospheric multi-scale (MMS)
mission from NASA and other similar formation flying missions in the
force induced and force free categories.

One that stands out for demonstrating autonomous maintenance
and acquisition of a force free three dimensional formation is the Can-x 4&
5 mission from Deep Space Industries which was the first research mission
to form a projected circular orbit formation, specifically for two satellites,
at a 50m and 100m ellipse radius.

In the UWE-4 mission, subject of this paper, it is pursued to develop
efficient guidance and control to various dynamically evolving topologies
as such. More specifically, three dimensional force free formations that are
defined from various geometric configurations and consist of four identi-
cal spacecraft equipped with 5.33 µN low thrust propulsion and a mass of
approximately 1.3 kg.

Although the control task at hand for missions with constant targets
is relatively straightforward, demonstrating low-thrust autonomous con-
trol on arbitrary satellite states to converge them in such dynamic topolo-
gies like the ones planned for the UWE-4 mission, involves a variety of
complex challenges.
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0.1. Applications and Benefits

0.1 Applications and Benefits

There are two important scenarios that fit and increase efficiency in dis-
crete space mission objectives from using a controller able to handle time
varying optimal propagated reference states. The first case is when the
objectives involve state acquisition for an instantaneous frame, part of an
orbit and the second case is when an orbiting formation topology itself
is required and a geometrically defined spacecraft configuration needs to
perform a task throughout an orbit.

For the first case its possible to achieve with great flexibility location
pinpointing with a lower fuel usage for a given distributed satellite system
at a given instant of an orbit while keeping the system in a low drift state.
Such benefit stems from making station-keeping and altitude convergence
fuel usage redundant.

The second case is when three dimensional formation topology is
necessary to be acquired as a goal by itself and the convergence to that
specified propagated state that defines a given formation and satisfies given
mission criteria for the duration of the periodic motion is necessary.

The following forms of target acquisition, including the above, can
be applied given various degrees of freedom for the relevant arbitrary
target state velocities and matching LVLH dynamic or static topologies
formed through them1.

1Assuming no perturbations
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Chapter 1

Theoretical background

1.1 Coordinate Systems

In Orbital Mechanics and specifically in Space flight many problems arise
concerning the rates with which bodies move in relation to each other and
their surroundings. For that purpose there are several different Coordi-
nate Systems describing in the most intuitive manner their given subject
of analysis. The term Coordinate System itself adheres to a system that de-
scribes a precise location for a given set of numeric values. A Coordinate
System is composed by a predefined Reference Frame1, Coordinate Vari-
able Type and Coordinate Variable Orientation to extract an exact location
in space.

Reference Frames

It is well know that a GPS unit needs a signal from at least 4 satellites
to pinpoint an exact location in space. A single satellite can give a point
within the surface of a sphere as the possible location of the unit, two satel-
lites limit that surface to the line of a circle, three satellites limit that line to

1Quite confusingly the terms ”Coordinate System”[SCSP08], ”Coordinate Frame”
[NM13] and ”Coordinate Reference Frame”[BH08] share the same meaning throughout
the related literature. For the purpose of this thesis and according to the established ISS
Programm’s consistent terminology, the word ”Frame” will only be used to express the
Reference Frame definition itself included in the definition of a Coordinate System.
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1.1. Coordinate Systems

only two possible exact points in space and a fourth satellite if necessary
can aid in finding the correct point between them. In a similar fashion,
a reference frame needs an origin point and three vectors or equivalently
four points in space to define a three axis system and all possible three
dimensional locations2. A RF is one of the three components that define a
Coordinate System. Any motion or the relative properties of a system has
to be set in relation to a set of specific points,vectors or axes.

To define a RF around an object for a Space Mission those reference
points or reference vectors or directly reference axis are usually formed
from: the centre of mass, a point on a surface or centre of volume of in-
terest, axis of rotation, vector of instantaneous velocity direction, vector
between two centres of mass, vector from the perceived origin point and
perpendicular to the plane defined by the other axes, Vernal equinox sub-
solar point of a specific year3. A RF can belong to one of the following two
categories for a given system:

• Fixed Reference Frame or Global Frame: A RF formed by reference
points conceived as static to the system’s analysis. For example the
Sun’s or Earth’s centre of mass in a heliocentric or geocentric analysis
or the Vernal equinox.

• Moving Reference Frame or Local Frame: A RF formed by refer-
ence points conceived as moving to the system’s analysis. For exam-
ple the centre of mass of a chief satellite in a formation of satellites
orbiting a large planetary body.

The reason of this distinction is the interest in the relative motion
dynamics themselves in a given set of local objects (e.g. satellite formation)
while at the same time uniformly being under major influence by another
object (e.g. Earth). A fixed point of reference with respect to a LEO satellite

2When it is only the relative distance and velocity to the centre of an object that is use-
ful to an analysis it can be simply inferred to ”according to the RF” without any further
definition of reference points to complete the frame (e.g.”From the Sun’s reference frame,
the Earth orbits the Sun with an average velocity of 30km/s and distance of 150.000km”)

3Every year there are two specific times the sun has a sub-solar point (90◦ angle with
the surface of the Earth) on the line of the equator. The precise position of a sub-solar
point on the time of Autumn (Vernal) Equinox with the information of the year that this
event took place are used by Space Mission Designers as a reference point from which an
extension to the centre of the Earth or the Sun (linear extension through the Earth’s centre
of mass radially towards the surface of the sun) forms one of the reference axes.
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1.1. Coordinate Systems

formation for simplification purposes is the Earth’s CoM. A moving point
of reference in proximity of which a satellite formation can be observed
and analysed is often defined to be a distinct satellite’s CoM, a virtual
orbiting point or an algorithmically defined local virtual location4.

As it is already clearly derived, any motion can be directly expressed
according to a Fixed or Global RF of a given system without defining a
moving or local reference frame. Any further generalizations of the RF
with respect to the Sun, the Galaxy, the Galaxy Cluster or really distant
stars which have minuscule effect over the scale of the studied motion can
be approximated accurately given the known motion of the celestial bod-
ies.

The preferred method of analysis is setting the reference frame with
respect to the object’s surroundings locally and simplifying any external
effects as certain corrections to the laws of motion. As an example, the
non-inertial orbit of a satellite affected by Earth’s gravity can be simplified
locally as inertial applying the Centrifugal pseudo-force (directed away
from the axis of rotation) or in another example in the case of an aircraft
moving at much inferior speeds some simple but practical modifications
of the gravitational coefficient can help neglect the small effect of the sun’s
rotation around its axis. In general, when trying to apply the laws of mo-
tion in accelerated frames of reference fictitious forces are perceived within
tham known as ”Inertial Forces” analogous to properties that have to do
with the actual body motion in respect to their corresponding fixed co-
ordinate system. In many occasions, working on the basis of a balanced
system as if moving at a constant speed greatly simplifies the process of
analysis.

Coordinate Variable Types and Coordinate Variable Orientation

There are many types of coordinate variable types used in different con-
texts (e.g. cylindrical, skew, canonical, trilinear), the ones most commonly
used in formation control are the following:

4For example, if the sun of a planetary system in addition was having an effect on the
same formation with significant variation over the formation’s orbit, then the planetary
body would be a moving point as well in that specific system analysis, assigning the sun
as the fixed point.
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1.1. Coordinate Systems
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Figure 1.3: Polar Co-
ordinate Variables

Besides defining the RF and variable type of a Coordinate System,
the orientation of the measured variables with respect to the RF has also to
be defined. Angle θ for example could be measured from 0◦ to 180◦ from
the north to the south pole, 0◦ to 180◦ from the south to the north pole,
90◦ to -90◦ degrees with 0◦ corresponding to coordinates on the equator
plane or even defined by an entirely new set of axes derived from the RF
of the given system. In the figures below (see Fig. 4), two examples are
illustrated having common RF (x,y,z axes) defined in relation to Earth and
common Spherical Coordinate Variables (r,θ,φ).

Common Coordinate Systems in Space Flight

The selection of Coordinate Systems bellow reflects some of the most com-
monly used/required for satellite formation flying.

• J2000 Coordinate System 5

Often referred to as ECI6 (Earth-Centred inertial or fixed) Coordinate

5Information concerning the exact definition of the mean Equinox time calculation or
the mean Equator plane of a referenced epoch and many other properties that precisely
define a pre agreed RF such as the J2000 are non-disclosed.

6Normally ECI should be the RF category that the J2000 Coordinate System belongs
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1.1. Coordinate Systems
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Figure 1.4: Defining the type of variables and a RF is not enough: In the
left example θ is measured from the equatorial plane, φ incremented in
the direction of the Earth’s rotation. In the other example: θ measured
from the north pole, φ incremented in the opposite direction of the Earth’s
rotation

System. Two axes defined by the sub-solar point precisely on the
time of the Vernal Equinox of the year 2000 in the Gregorian Calen-
dar, being a vector directed from the centre of the Earth to the centre
Sun, inwards to the solar system through that specific point on the
equator. In a spacecraft formation mission its typically used in the
launch phase to meet the orbiting parameters of the mission.

Coordinate Variable Type:

Cartesian Coordinate Variables

Reference Frame, Coordinate Variable Orientation: O: Earth’s centre of
mass

XJ2000 axis: Formed from the origin to the vernal equinox sub-solar
point of year 2000, positive outwards that direction

YJ2000 axis: Vector formed from the origin and perpendicular to the
plane formed by the X and Z axis, positive in the direction of the Z x
X vector (right handed rule.)

ZJ2000 axis: Lies on the rotational axis of the year 2000, positive to the
north pole.

• TOD (True of Date) Coordinate System

Defined the same way as the J2000 Coordinate system with the only
difference being the year matching the three shifting reference vec-
tors. The changes throughout the years include the slight tilt of the

in, other systems mentioned here are also Earth-Centred Inertial.
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1.1. Coordinate Systems

xJ2000

yJ2000

zJ2000

(xJ2000S1
, yJ2000S1

, zJ2000S1 
)

Figure 1.5: J2000 Coordinate System

Earth’s rotation axis and the change of the vernal equinox’ time,
equator plane and corresponding sub-solar spot. It is not as practical
as using the J2000 because of the frequency the coordinates have to
be transformed each year to correspond to the updated x,y,z refer-
ence axes.

• Greenwich TOD Coordinate System.

Often referred to as Earth-centre Earth-fixed Rotating Coordinate
System is the same as the TOD Coordinate System with the only
difference being the x axis formed from the centre of the Earth to
the point of the prime meridian crossing the True of Date equator
instead of a sub-solar point.

• Peri-focal Coordinate System

Similar to the previous but having its axes defined by the orbit of the
spacecraft under analysis. Axis X is set from the centre of mass of
Earth to the instantaneous periapsis point of the corresponding or-
bital body, z perpendicular to the instantaneous orbit plane positive
towards the north pole and Y positive in the direction of the z × x
vector (right handed rule)

• J2000 Polar Coordinate System

It is the Spherical variation of the J2000 coordinate system, having
the same RF as the J2000 and different Coordinate Variable Type and
corresponding Orientation.

Coordinate Variable Type:

8
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Figure 1.6: Peri-focal Coordinate System
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Figure 1.7: J2000 Polar Coordinate System

Spherical Coordinate Variables7 with right ascension ”α” and decli-
nation ”δ”.

Coordinate Variable Orientation:

αJ2000 Right Ascension: Angle formed from the projection of the ra-
dius vector on the X,Y axes plane to the X axis, positive towards the
direction of rotation of the Earth.

δJ2000 Declination: Angle formed from the X,Y axes plane (mean
equator plane) to the radius vector, positive towards the north pole.

r J2000 Radius: Distance to the Centre of the Earth.

7Although its official declaration[SCSP08] would normally describe ”Polar” coordi-
nate variables, that is not the case.
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1.1. Coordinate Systems

• Local Vertical Local Horizontal (LVLH) Coordinate System8

(xLVLHs1 , yLVLHs1 , zLVLHs1)

xLVLH

yLVLH

zLVLH

Figure 1.8: Local Vertical Local Horizontal

Often referred to as LO (Local Orbital) Coordinate System, it is the
most commonly used moving frame Coordinate System for forma-
tion control and will be the main focus on the following chapters.

Coordinate Variable Type:

Cartesian Coordinate Variables

Reference Frame, Coordinate Variable Orientation:

O: Orbiting spacecraft’s centre of mass

XLO axis:(Often named as V-bar[Feh03]) Lies on the instantaneous
velocity vector, positive in the direction of motion.

YLO axis:(Often named as H-bar[Feh03]) Perpendicular to the instan-
taneous orbit plane and directed opposite to the orbit momentum
(right handed rule Z x X)

ZLO axis:(Often named as R-bar[Feh03]) Directed from the origin to
the centre of mass of the fixed point of reference

1.1.1 Keplerian two body equations

Adhering to a simplistic model of spherical bodies, Newtonian only grav-
itational forces and the smaller body having zero or insignificant effect
on the larger, the following derivations are extracted using the Geocentric
Inertial Coordinate System:

8The reader should always be careful of the direction of the three axis in any given
reference. There is a Russian and an American equivalent version of the LVLH that have
different orientations for the three axis. For the purpose of this thesis, the ESA’s and ISS
program’s standard definition of LVLH described in the current page will be used for the
following chapters.
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1.1. Coordinate Systems

• Orbital period on elliptic and circular orbits.

T = 2π

√
a3

µ

• Total orbital energy
ε = − µ

2a

• Angular Velocity.

ḟ =

√
− µ

a3(1− e2)3 (1 + ecos f )2

• Orbital Velocity.

V =

√
2µ

r
− µ

a
or for circular orbits:

V =

√
µ

r

e: eccentricity:

e =
semi−minor axis
semi−major axis

a: semi-major axis. whereas: (a=r for circular orbits):

a =
periapsis distance + apoapsis distance

2

r: distance from the center of mass or orbit radius in case of circular

The corresponding Velocity Vector in the Perifocal coordinate system
takes the following form:

[ṙ] =
√

µ

a(1− e2)

 −sin f
e + cos f

0


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1.1. Coordinate Systems

1.1.2 Hill Equations

The equations of relative motion for circular obits[Hil78] given in the Local
Vertical Local Horizontal Coordinate System. The equations are derived
assuming a perfectly spherical mass and no perturbations.

ẍ− 1
mc

Fx = 2ωż

ÿ− 1
mc

Fy = − ω2y

z̈− 1
mc

Fz = −2ωẋ + 3ω2z

Where ω is the angular frequency of the chief satellite which is assumed
to be roughly equivalent to the deputy satellites:

ω = ωchie f =

√
µ

r3

1.1.3 Clohessy - Wiltshire Equations

The relative motion of a satellite in the LVLH Coordinate System, given
the initial state vector
[ x , y , z , ẋ , ẏ , ż ] and a time invariant propulsion thrust ~γ(x, y, z):

12



1.1. Coordinate Systems

x(t) = (
4ẋ0

ω
− 6z0)sin(ωt)− 2ż0

ω
cos(ωt) + (6ωz0 − 3ẋ0)t + (x0 +

2ż0

ω
) + ...

γz
2

ω2 (ωt− sin(ωt)) + γx(
4

ω2 (1− cos(ωt))− 3
2

t2)

y(t) = y0cos(ωt) +
ẏ0

ω
sin(ωt) + γy

1
ω2 (1− cos(ωt))

z(t) = (
2ẋ0

ω
− 3z0)cos(ωt) + ż0

1
ω

sin(ωt) + (4z0 −
2ẋ0

ω
) + ...

γx
2

ω2 (sin(ωt)−ωt) + γz
1

ω2 (1− cos(ωt))

Closed form solution to the constant input forces in the equations
of relative motion[CW60] have been derived from the Hill equations by
Clohessy and Wiltshire.

The solutions above are valid only for circular orbits and are lin-
earised9, meaning that they are good only for small satellite distances as
the curvature of the orbit is assumed to have insignificant effect. Further
attempts have been successfull in generallizing the equation above to a
non-linear solution taking account curvature and generalizing to elliptic
motion as well.

For the purpose of this thesis the derived precision of the Clohessy -
Wiltshire Equations is sufficient for the relevancy of the results to satellite
formations ranging from 0.1-2km distance10. As seen in the terms above
there is no starting time intruding in the equations (e.g. in relation to a
phase of an elliptic orbit) as a result of the second order terms being time-
invariant the system belongs to the LTI category having a multitude of
analysis and solution tools

An numerically easy way to obtain a solution of the above equation
given the differential equations of motion is working in their state space
form and solving the system through a Laplace transformation.

9assuming that gravitational acceleration is linear and constant across the Cartesian x
axis

10Existing practical applications in ISS’s randevouz and docking missions.
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1.1. Coordinate Systems

To avoid confusion with the cartesian coordinate variable common
notations the state of the system will be denoted with ’xstate’, the input
with ’uinput’ and the output with ’youtput’.

General state space form:

ẋstate(t) = Acxstate(t) + Bcuinput(t)

youtput(t) = Ccxstate(t) + Dcuinput(t)

Hill equations in state space form:

ẋstate =


ẋ(t)
ẏ(t)
ż(t)
ẍ(t)
ÿ(t)
z̈(t)

 =


0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1
0 0 0 0 0 2ω
0 −ω2 0 0 0 0
0 0 3ω2 −2ω 0 0

 ∗


x(t)
y(t)
z(t)
ẋ(t)
ẏ(t)
ż(t)

+


0 0 0
0 0 0
0 0 0
1 0 0
0 1 0
0 0 1

 ∗
γx(t)

γy(t)
γz(t)

 .

youtput(t) =


1 0 0 0 0 0
0 1 0 0 0 0
0 0 1 0 0 0
0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1

 ∗


x(t)
y(t)
z(t)
ẋ(t)
ẏ(t)
ż(t)

+


0 0 0
0 0 0
0 0 0
0 0 0
0 0 0
0 0 0

 ∗
γx(t)

γy(t)
γz(t)

 .

Where the output y is the current state of the spacecraft at a given
time (Cc = I) and is not linked to the input thrust vector in any way (Dc =
0).

Taking the laplace transform of the state space representation above

sX(s)− X(0) = AcX(s) + BcU(s)

(sI − Ac)X(s) = X(0) + BcU(s))

14



1.1. Coordinate Systems

X(s) = (sI − Ac)
−1X(0) + ((sI − Ac)

−1BcU(s))

And converting them back to the time domain

xstate(t) = L−1{(sI − Ac)
−1}xstate(0) + L−1{(sI − Ac)

−1Bcuinput(t)}

Considering a constant input u(t)=u(0) the equation becomes

xstate(t) = eAtx(0) + eAct
∫ t

0
e−AcτBcuinput(τ)dτ

xstate(t) = eActxstate(0) + (eAct
∫ t

0
e−AcτBcdτ)uinput(0)

And the solution takes the form

xstate(t) = Φ(t)xstate(0) + H(t)uinput(0)

Where

Φ(t) = L−1{(sI − Ac)
−1} = eAct

H(t) = L−1{(sI − Ac)
−1Bc} = eAct

∫ t

0
e−AcτBcdτ

For a constant input of magnitude u(0) and an initial position x(0)
the above function after time ∆t becomes

xstate(∆t) = Φ(∆t)xstate(0) + H(∆t)uinput(0)

Extending to discrete time for a sampling interval of ∆t

15



1.1. Coordinate Systems

xstate(k + 1) = Φ(∆t)xstate(k) + H(∆t)uinput(k)

And written in their discrete state space form for the specific system
dynamics Ad = Φ(∆t), Bd = H(∆t), Cd = Cc and Dd = Dc:

xstate(k + 1) = Adxstate(k) + Bduinput(k)

youtput(k + 1) = Cdxstate(k) + Dduinput(k)

For a typical angular frequency of ω=0.0011 rad/second and a sampling
interval of 300seconds the equations of orbital motion in their discrete
form for both the above Laplace derived solution and the solution by Clo-
hessy Wiltshire become:

x(k + 1)
y(k + 1)
z(k + 1)
ẋ(k + 1)
ẏ(k + 1)
ż(k + 1)

=


1.00 0.00 0.03 279.81 0.00 94.76
0.00 0.95 0.00 0.00 294.95 0.00
0.00 0.00 1.15 −94.76 0.00 294.95
0.00 0.00 0.00 0.80 0.00 0.63
0.00 0.00 0.00 0.00 0.95 0.00
0.00 0.00 0.00 −0.63 0.00 0.95

 ∗


x(k)
y(k)
z(k)
ẋ(k)
ẏ(k)
ż(k)

+


43483.09 0.00 9507.94

0.00 44620.77 0.00
−9507.94 0.00 44620.77

279.81 0.00 94.76
0.00 294.95 0.00
−94.76 0.00 294.95

 ∗
γx(k)

γy(k)
γz(k)



youtput(k) =


1 0 0 0 0 0
0 1 0 0 0 0
0 0 1 0 0 0
0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1

 ∗


x(k)
y(k)
z(k)
ẋ(k)
ẏ(k)
ż(k)

+


0 0 0
0 0 0
0 0 0
0 0 0
0 0 0
0 0 0

 ∗
γx

γy
γz

 =


x(k)
y(k)
z(k)
ẋ(k)
ẏ(k)
ż(k)

 .
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1.1. Coordinate Systems

1.1.4 Relative Dynamic Model Comparison

Clohessy-Wiltshire Model In the current chapter the CW model is de-
veloped and discussed as the main model for relative orbit control. The
existing assumption on this model that gravity is uniform may work well
for the current mission implementation given a 1-2% error tolerance but
for missions that involve greater relative distances or more precision, dif-
ferent models have to be evaluated for their effectiveness.

ẍ− 1
mc

Fx = 2ωż

ÿ− 1
mc

Fy = −ω2y

z̈− 1
mc

Fz = −2ωẋ + 3ω2z

Tschauner-Hempel Model Even slight eccentricity induces great diver-
gence in relative motion and the Tschauner-Hempel model without adding
to much complexity (an a) to the already established Clohessy-Wiltshire
can accomodate such motion in the following extended form:

ẍ− 1
mc

Fx =
−µ

r3 x + 2ωż− 2ωẋ

ÿ− 1
mc

Fy = − µ

r3 y

z̈− 1
mc

Fz =
2µ

r3 z− 2ωẋ + ω2z

ω̇ =
−2n2esin(v + evcosv)3

(1− e2)3

This simple extension greatly increases the resources necessary for
optimal path computation. An MPC implementation of the above model
would require far greater hardware capabilities for the introduced non-
linearities concerning the time variant true anomaly v.
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1.1. Coordinate Systems

Schweighart-Sedwick Model The following equations of relative mo-
tion are again given for circular orbits the same reference frame and ori-
entation as the above with a difference in the coordinate variable type.
The coordinate variables used are curvilinear and more specifically the x
and y vectors of the Schweighart-Sedwick coordinate system curve along
a sphere of radius equal to the one used by the assumed reference orbit.

ẍ− 1
mc

Fx = 2ωż

ÿ− 1
mc

Fy = 2lq cost(qt + φ)− q2y

z̈− 1
mc

Fz = −2ωẋ + (5ω2 − 2n2)z

Such model eliminates the non-linearity errors induced by the above
equation but introduces a lot of new terms. The new terms introduced
l, q, c, n, φ correspond to the following quantities and orbital characteris-
tics:

l : linearized rate of change for the amplitude cross-track separation

q : linearized argument of the cross-track separation ???? angle of
cross track separation.

n : mean orbital motion in deg/day

c : c = ω
n or c =

√
1 + s where s is the most complicated thing in the

world φ : initial phase angle of the cross-track motion.

Including the effects of earths characteristic geopotential J2, the model
has to be corrected model with extra terms defining a constant J2 drift over
an orbit [SS02].
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Chapter 2

Control Methods and Algorithms

2.1 Analytical solution with Optimal Control

Minimizing the state of error given from the navigational systems of a
satellite to its position in LVLH orbit according to its predefined motion
within a formation structure is a task easily performed by a typical trajec-
tory control algorithm tuned to the physical constraints of the system. A
problem of greater importance that remains to be solved in practice is the
acquisition of a new formation structure for a given number of satellites in
the most efficient possible way according to the same constraints.

For the following analysis we are assuming that in a typical space-
craft system the value on which there is absolute control is the propulsion
itself introduced as force (γx, γy, γz) in the CW equations. As force itself
affects directly changes in velocity (ẋ, ẏ, ż) and indirectly changes in posi-
tion (x, y, z) a typical state vector for a spacecraft that can fully describes its
guidance properties is composed by both the position and velocity vectors
(x, ẋ, y, ẏ, z, ż) 1

Tackling this problem analytically in the current section, we assume
that the only constraints existing in the acquisition of a given trajectory are
the maximum possible omnidirectional thrust, the time necessary to com-

1In the case that control has to be excerted through controlling a higher order deriva-
tive of the position vector (e.g.

...
p , like in the case of controlling the input fuel flow as a

function of time under certain restrictions), the state vector would include higher order
variables (e.g. x, ẋ, ẍ, y, ẏ, ÿ, z, ż, z̈)
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2.1. Analytical solution with Optimal Control

plete the maneuver and we simplify that the cost of the manuever we want
to minimize is derived directly and proportionally by the given accelera-
tion values through time. We are essentially not taking account the effi-
ciency curve or any special characteristics of the propulsion system used,
the instantaneous attitude of the satellite which influences thrust direction
and overall efficiency or any given perturbations existing throughout the
trajectory in low earth orbit.

Finding an optimal solution for the thrust function F(t) of that ma-
neuver analytically for a single satellite involves the simplification of that
function to a polynomial of a predefined order ’n’.

~F(t) = ~cntn + ~cn−1tn−1 + ... + ~c1t + ~c0

Any formation acquisition transfer within a timeframe of execution
T has a minimum possible total energy consumption for the acquisition of
the final state at the maximum of the allowed timeframe.

Physical Constraints (or State Constraints)

The final conditions that satisfy the new desired state within the new for-
mation structure to be acquired are defined by the final position r f inal and
final velocity v f inal vectors whereas the initial position rinitial and the initial
velocity vinitial replace the unknown coefficients produced by the follow-
ing integrals of acceleration α(t) and velocity v(t):

Motion under negligible gravitational forces:

~v f inal =
∫ τ

0

1
m
~F(t)dt +~vinitial

~r f inal =
∫ τ

0
(
∫ 1

m
~F(t)dt +~vinitial)dt +~rinitial

Which can also be written because of the proportional relationship
~α(t) = 1

m
~F(t):

~v f inal =
∫ τ

0
~α(t)dt +~vinitial
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2.1. Analytical solution with Optimal Control

~r f inal =
∫ τ

0
(
∫
~α(t)dt +~vinitial)dt +~rinitial

LVLH orbital motion under gravitational forces:

vx f inal = ẋ f inal =
∫ τ

0
(

1
m

Fx(t) + 2ωż)dt + vxinitial

rx f inal = x f inal =
∫ τ

0
(
∫
(

1
m

Fx(t) + 2ωż)dt + vxinitial)dt + rxinitial

vy f inal = ẏ f inal =
∫ τ

0
(

1
m

Fy(t)−ω2y)dt + vyinitial

ry f inal = y f inal =
∫ τ

0
(
∫
(

1
m

Fy(t)−ω2y)dt + vyinitial)dt + ryinitial

vz f inal = ż f inal =
∫ τ

0
(

1
m

Fz(t)− 2ωẋ + 3ω2z)dt + vzinitial

rz f inal = z f inal =
∫ τ

0
(
∫
(

1
m

Fz(t)− 2ωẋ + 3ω2z)dt + vzinitial)dt + rzinitial

The thrust in this case is not proportional to the acceleration in a
given axis (e.g. Fx 6= mẍ) but it is contributing to motion as described by
the Hill Equations (e.g. Fx = m(ẍ − 2ωż) ) for the corresponding axis to
be enforced on. 2

Whereas having an orbital speed ω→ 0 is essentially reducing down
the above equations to the well known gravity free variant.

Control Constraints

The constrain of the thrust function F(t) to the maximum possible values
that the propulsion can enforce within the timeframe τ is derived by: 3

2Any possible orbital petrubations can be written as separate thrust functions into the
Hill equations and get easily implemented into the state space equations.

3Having a specific thrust profile that the propulsion system enforces can be imple-
mented as separate time variant functions A(t), B(t), C(t)...etc that constraint an area
within which the thrust function can be formed in
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2.2. Modern Conrol Methods

|~F(t)| ≤ A , 0 ≤ t ≤ τ

Performance Measure

Finally, the function that needs to be minimized for the maximum possi-
ble fuel efficiency within the sets of possible thrust function coefficients
derived from the above constraints is the following: 4

Minimum o f :
∫ τ

0
|~F(t)|dt, 0 ≤ t ≤ τ

2.2 Modern Conrol Methods

The state space form of the system as described by the CW equations is
given in the following form:

xstate(k + 1) = Axstate(k) + Buinput(k)

youtput(k + 1) = Cxstate(k)

youtput(k) =


1 0 0 0 0 0
0 1 0 0 0 0
0 0 1 0 0 0
0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1

 ∗


x(k)
y(k)
z(k)
ẋ(k)
ẏ(k)
ż(k)


..............

4For an approach that includes derived fuel costs from a magnitude defined fuel effi-
ciency function of thrust (e.g cost(~F(t)) = |a~F2(t) + b~F(t)|+ c) , the appropriate function
has to be used inside the integral (e.g.

∫ τ
0 cost(~F(t))dt ) and for reduced computational

complexity , it is wise to divide the force function to its negative and positive equiva-
lent (F(t) = Fpos(t) + Fneg(t)) dealing with a single integral result to be minimized (e.g.∫ τ

0 (Fpos(t) − Fneg(t)) dt, 0 ≤ t ≤ τ)instead of conditional results over the arbitrary
coefficient sets derived from an absolute function
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2.2. Modern Conrol Methods

The system is controllable by its definition 5.

Where the cost function to be minimized for 6 state variables and 3
inputs without intermidiate states having effect has the general form:

J∗0,N =


xtarget(N)− x(N)
ytarget(N)− y(N)
ztarget(N)− z(N)
ẋtarget(N)− ẋ(N)
ẏtarget(N)− ẏ(N)
żtarget(N)− ż(N)



T

W


xtarget(N)− x(N)
ytarget(N)− y(N)
ztarget(N)− z(N)
ẋtarget(N)− ẋ(N)
ẏtarget(N)− ẏ(N)
żtarget(N)− ż(N)

+
N−1

∑
n=0

{γx(k)
γy(k)
γz(k)

T

H

γx(k)
γy(k)
γz(k)

T }

Customized weight function placing different importance on every value:

W =


W1 0 0 0 0 0
0 W2 0 0 0 0
0 0 W3 0 0 0
0 0 0 W4 0 0
0 0 0 0 W5 0
0 0 0 0 0 W6

 , H =

H1 0 0
0 H2 0
0 0 H3

 .

For the specialized case of minimizing the distance to a specific tar-
get state and its associated thrust cost having equal weight on all axes:

J∗0,N = R1

∥∥∥∥∥∥∥∥∥∥∥∥

xtarget(N)− x(N)
ytarget(N)− y(N)
ztarget(N)− z(N)
ẋtarget(N)− ẋ(N)
ẏtarget(N)− ẏ(N)
żtarget(N)− ż(N)

∥∥∥∥∥∥∥∥∥∥∥∥

2

+ R2

N−1

∑
n=0

∥∥∥∥∥∥
γx(k)
γy(k)
γz(k)

∥∥∥∥∥∥
2

.

With R1 and R2 defined as constants. R1 and R2 define the relationship
of importance between meeting the specific target state requirements and
input thrust cost for formation acquisition. The weights can be functions
of time and the cost function can be altered within operation meet shifting
demands, like in formation control initially the target state to be achieved
might have less importance than fuel cost but as time continues until the

5Every state can be manipulated by the system’s input. The spacecraft’s position and
velocity can be manipulated by its thrusters.
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2.3. Linear Quadratic Regulator

set acquisition time the importance of meeting the final state might be in-
creased.

The quadratic form on the L1 of the distance from the target and the
thrust values is used to negate the root which does not affect minimization
and makes it easier to handle mathematically.

———-

2.3 Linear Quadratic Regulator

Optimal Control with a cost function that has terms on a quadratic power.6.
A real-valued function defined on an n-dimensional interval is called con-
vex, the case of the Linear Quadratic Regulator is useful when the set of
the differential equations is linear and the cost derived from the system
dynamics is approximated by a quadratic function of the following form:

J = x2(ttarget) +
∫ ttarget

tinitial

(x2(τ) + u2(τ) + 2x(τ)u(τ))dτ

The resulting feedback controller can be derived directly from the
following equations:

Result is a matrix that you multiply the current state with to get the
optimal input necessary for the system to follow the optimal trajectory

Linear Quadratic Gaussian control

Derived from the method above, this extra methodology deals with sys-
tems that are uncertain, disturbed by Gaussian noise and having incom-
plete state information. In the particular case of spacecraft formations
the above problems do not need to be addressed and the Linear regula-
tor problem itself is enough

———
6Quadratic power becose it can simplify Quadratic Programming solutions[BBC12].
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2.4. Model Predictive Control

2.4 Model Predictive Control

Model Predictive Control or Receding Horizon Control is a formulated ex-
tension of well established Optimal Control whereas the optimal input is
found according to various system constraints and a weight defined cost
criterion. The main difference lies in the receding nature of the controller
which essentially involves iterative re-planning and re-optimization of the
control input for the lowest cost target acquisition throughout the moving
horizon window. Any model mismatches, manipulated input and mea-
sured output disturbances that cause accumulated target deviation over
time are thus taken account in such iterative manner. The recent popular-
ity of MPC in engineering has led to developed theory behind it in many
cases being driven by control engineers themselves and project oriented
implementations.

Since the reciding horizon is essentially calculating Optimal control
for trajectories that need to reach a destination within Thorizon < Tacquisition
the controller is enforcing steeper acceleration to meet the required final
state. Although getting closer to the final state in the first portion of the
trajectory compared to a full horizon optimal control Thorizon = Tacquisition
is something that can be desired, it will always leads to an increased fuel
cost assuming that the propulsion systems have a quadratic ”cost to accel-
eration” function because of the decreased initial acquisition timeframe.

Less frequent updating: When the effects of stochasticity in a model
are within tolerance for a given timeframe or, simply put, when the amount
of noise that builds up over a certain period is quite small there is less need
to update the control input values derived from an optimal solution cal-
culation in every single time interval.

The Optimal Control inputs apart from the first one are typically
discarded and for every discrete time-step the Optimal Control Problem
has to be solved. Less frequent updating is essentially reducing computa-
tions by using more than one of the Control inputs calculated by an itera-
tion of the Optimal Control problem before recalculating for the receding
horizon. Less frequent updating can be used to reduce computation usage
when the system does not have sadden dangers or obstacles within a spe-
cific timeframe that cannot be corrected or avoided by control inputs and
at the same time reducing the sampling frequency of the system state in-
puts and frequency of the control outputs would result in high frequency
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2.4. Model Predictive Control

degradation and potential higher cost control.

It has to be noted that in any case the computational load of the
Optimal Control problem has to be complete in a time less than the sam-
pling frequency of the system, meaning that it can only help computa-
tionally in cases of shared CPU applications or energy dependant systems
7.Multi-step MPC does not extend allowed execution time for the Opti-
mal Control Algorithm unless longer update intervals are implemented
on optimal control that gives a stack of optimal control inputs that will be
enforced with a delay.

Explicit MPC. What has been first introduced in relevant literature
as Dynamic Programming with constraints and later named Parametric
Programming or multi-parametric Programming. The result is a simple
use of a QP algorithm to solve off-line all possible discrete states x(k) for
a given frame k.

Can deal with every possible discrete control system problem iter-
atively forming a N+1 dimensional vector map of associated states and
input controls that point to their derived next state in the minimum cost
trajectory that satisfies the cost function and the given constraints (the re-
maining cost of that trajectory all the way to the end can also be included
as redundant information). The extra dimension denotes the discrete steps
of control and for example in a three dimensional motion of a spacecraft
through time it can denote time increments and their associated optimal
control input for each possible state.

The main issue that occurs implementing dynamic programming
is the great magnitude of the required memory necessary for storing all
this information for a N+1 dimensional control problem. For a spacecraft
for example the required memory to control LVLH space motion with a
magnitude of 10km devided in discrete points of 1 meter distance in each
dimension and a maximum control timeframe of 1000minutes with a 1
minute control interval is resulting in memory that occupies 104 ∗ 104 ∗
104 ∗ 103 = 1015 slots 8. Since memory resources are scarce in satellite
missions, the explicit implementation of MPC is not considered.

7Alternatively, time delaying methods have to be utilized
8Some algorithms and methods that can solve the above memory bound issue with

certain trade-offs like state Increment Dynamic Programming and Lagrange Multipliers
Polynomial Approximation.
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2.4. Model Predictive Control

Quadratic optimization problem

Solving the Optimal Control problem to derive a trajectory that satisfies
the final state and thrust constraints with a minimum cost involves simpli-
fying the cost function to a quadratic form turning the problem into a lin-
ear quadratic regulator problem. The LQR problem then has to be solved
iteratively within tight sample rates highlighting the need for an efficient
and low throughput Quadratic Programming algorithms that forms the
main computation load of LQR.

The solution to an MPC control iteration comes down to solving
a QP problem. There are several methods used for solving that problem
and although minimizng a convex quadratic function is something that
has been researched to be solved since 1955 it has been major subject for
ongoing research in resource efficient algorithms that can be implemented
in the current low cost microelectronic solutions widely available, achiev-
ing energy and resource efficient control for remote and discrete applica-
tions. The current most prominent methods for solving the QP of an MPC
controller are: Active Set methods (best for small and medium sized prob-
lems), Interior Point methods (can deal with large scale problems), Gradi-
ent projection methods(based on the gradient projection method and uses
a limited memory BFGS matrix to approximate the Hessian of the objec-
tive function), Conjugate gradient methods, Fast Dual Gradient Projection
methods, Forward-Backwards Newton, Augmented Lagrangian methods
(or alternating direction Lagrangian multipliers).
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Chapter 3

Formation Acquisition

The definition of a spacecraft formation is given by the following state-
ment proposed by NASA’s Godard space Flight Center:

”The tracking or maintenance of a desired relative separation , orientation
or position between or among spacecraft.”

The studied formations in this particular thesis are specifically ori-
ented towards a periodic time shifting separation of satellites to a refer-
rence orbit which generate a symbolic three dimensional structure.

This virtual structure can take an arbitrary number of forms to ac-
complish a given task. Specifically for formations flying force free in low
earth orbit the following formations derived from the Clohelsy Wilshire
equations and specific predefined initial conditions can be performed by
an arbitrary number of satellites.

3.1 Structural degrees of freedom and acquisi-
tion cost efficiency

We are assuming that the spacecraft originating from arbitrary positions
have to acquire new state vectors that result in a new trajectories within
a specific timeframe. In the special case of motion in an LVLH orbital
frame the new state vectors to be acquired can also result in periodical
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3.1. Structural degrees of freedom and acquisition cost efficiency

trajectories with a period ”T” corresponding to the characteristics of the
orbit as in the examples given in the previous chapter.

3.1.1 Infeasible Acquisition

Finally after calculating all possible constellation transfers to the speci-
fied formation structure it can also be concluded that a feasible control
input for the multiple admissible trajectories in each case cannot be satis-
fied within the required timeframe. The action necessary to be followed
in the case above is the calculation (maybe numberically) of the minimum
timeframe that the given formation acquisition can be feasible upon which
relevant actions can be decided by mission control.

Setting narrow timeframes for formation acquisition is greatly in-
creasing fuel usage. Assuming that any states between the initial state
and the target state of each spacecraft are not affected by any special at-
tribute of the system (e.g. propulsion plumes, collision avoidance) wider
timeframes always result in lower fuel usage for a given formation acqui-
sition.

3.1.2 Numerical solution with standard MPC algorithmic
approaches

Such simplifications are necessary to easily manage coordinates, defining
for example the distance to the chief satellite, on which precise calcula-
tion and control has to be exerted to satisfy the given motion criteria. It
is paramount therefore that any intricacies derived from the non-inertial
motion of the satellites be precisely integrated into a translation matrix
(taking such corrections into account), upon which the satellites propul-
sion system for example acts upon to perform the desired manoeuvres
that satisfy the local formation control requirements.

As explained in the Fixed RF definition, the orbit of such a satel-
lite formation in LEO is viewed as non-inertial with respect to Earth only
and not any further generalized RF because any effects emanating from
the differentiating distance to other celestial bodies are considered minus-
cule and within margin of error; their effect is many orders of magnitude
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smaller.

3.2 Types of Acquisitions and corresponding LVLH
topologies generated

Simple target acquisition: Each satellite is guided to the defined topology
having a complete freedom over the target state velocity for the given time
constraints. The spacecrafts can acquire the target states optimally with
the minimum possible fuel consumption but the force free propagation of
those states lead to over time accumulated drift in the LVLH coordinate
system and thus there is no resulting LVLH topology.

Drift-free target acquisition or (Force free dynamic unspecified topol-
ogy acquisition):1 The possible state velocities in this category are a subset
of the simple target acquisition such that the resulting final state prop-
agation has the effect of canceling its own drift. The spacecraft will be
reacquiring the same pattern in that particular defined phase every period
of the orbit but in the rest of the orbit they will have a topology which can
be overextending and amorphous.

Constrained drift-free target acquisition (or Constrained Force free
unspecified topology acquisition) A subset of the previous set of velocities
that within further mission criteria will not allow orbit in overextending
distances from the center of the LVLH frame. The possible amorphous
topology created is confined into a constrained LVLH space.

Force free three-dimensional formation acquisition2 (or Force free
specified topology acquisition ): This is the case that there are extra rules
that define and give relation or symmetry to some or all of the states of the
satellites throughout the orbit itself.If the topology is defined within the
same constraints as the above category then it is a subset of the previous
possible set of ending state velocities. The satellites now orbit in a topol-

1Force free describes a constant state in a formation where theoretically no force is
necessary to be used and Drift free describes a maneuver that does not allow substantial
drift.

2A formation is a dynamic topology evolving with specifications in its geometric ori-
entation and distance through its individual discrete periodic states. It can be a rigid
formation, having constant distances between the spacecraft, or a non-rigid formation
that includes a more complicated rule-set as seen in the mission examples below.
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ogy with one or more specified properties like the ones presented in the
paper that are constantly maintained in a force free manner.All force-free
formations are dynamically evolving topologies in the LVLH coordinate
system.

Force free one-dimensional formation acquisition (or force-free station-
keeping) An additional force-free formation that is not three-dimensional
is the well known along the orbit formation3 or trailing formation, which
is defined by station-keeping in specific locations in the x-axis of the LVLH
coordinate system.

Forced induced formation acquisition (or formation acquisition):
With a given unlimited fuel capacity, any kind of topology and any speci-
fied properties can be achieved in the LVLH frame. Force free formations
are a subset of this category.

Force induced station-keeping formation acquisition. Formation
topology defined by having its individual discrete state velocities to be
zero, requiring fuel to be utilized continuously to maintain such state.

Based on the above acquisitions and possible fuel limitations the
two most beneficial cases belong to the general maneuver category of Con-
strained Drift-free Target acquisition, the Force free formation acquisition
or a combination of the two. The first case is where a particular state with
specific criteria needs to be acquired in a given instant of an orbit, the sec-
ond case is where given criteria have to be fulfilled throughout an orbit
and the third case is a combination of the first two that require conver-
gence to a specific instantaneous state but with some kind of additional
definition for the orbit propagation of one or more discrete parts of the
satellite system. Such thing can be necessary considering that missions of-
ten need to serve multiple additional functions. All three of those cases
can be tackled by the same controller, subject of this paper, given a proper
way to generate the target trajectory to the optimized controller for each
individual satellite.

3It includes the specific case that all the satellites orbit along the same altitude through
time
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3.3 Drift-free target acquisition for a mission ob-
jective

To elaborate on a possible mission objective that can give a good idea be-
yond stereoscopic earth observation we assume the analysis of a particular
space target that has to be pointed at from a discrete multi-satellite system
in a specific configuration. It can be that for maximum signal resolution,
some of the satellites have to form a perpendicular surface and be equidis-
tant to the targets location for a given optimal phase of the systems’ orbit.

Giving an example of how the controller works for the first applica-
tion case, the resulting coefficients for a given satellite objective can often
be a set of position state variables in an LVLH frame (X,Y,Z) and a phase
in the orbit of a satellite constellation.

The first step of a drift free target acquisition involves strategically
choosing the right X,Y,Z velocities that constraint the resulting topology to
be drift free and require the least amount of fuel. The propagation of that
fully defined LVLH state is then feasible for every satellite in the orbit.

The second step involves using the set of those time-varying target
states with a potent controller able to handle dynamic reference trajecto-
ries given the existing system limitations. The controller needs to accu-
rately track the calculated dynamic reference vector with a valid time shift
concerning the initial phase of the orbit and precisely start control on the
exact time the configured sampling frequency allows reaching that state
with high accuracy.

Existing common methods for doing such a feat would require nul-
lification of the LVLH velocities and station-keeping costs. The result-
ing benefit of such maneuver in contrast to current approaches is the fuel
savings linked to redundant velocity nullification and station-keeping or
savings from the reconfiguration necessary for other objectives that could
have been benefited with existing non-zero system velocities or simply
savings from the necessity to return back every individual satellite to a
drift free state.
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3.4. Degrees of freedom in a force free formation

3.4 Degrees of freedom in a force free formation

For the second application case, where the formation topology itself is the
goal, there can be further freedom in the possible set of target reference
states propagated in the controller. Any form of freedom can be used as
an arbitrary input to enforce optimization on, for the thorough calculation
of the most efficient transfer of a constellation of spacecraft. This essen-
tially means that the minimum cost criteria for the sum of the spacecraft
acquisitions is possible to be achieved within a wider set of possible solu-
tions if the mission allows it and a potential reduced cost. The degrees of
freedom for a force free formation can be the following:

In a given mission the three degrees of freedom can be spacecraft
configuration, a shifted topology location in any of the three axes or simply
a shifted phase for the total periodic motion of the topology.

Shifted phase for the total constellation if there are strict rules that
define the admissible phase difference and dependent states for the whole
constellation of spacecraft (e.g. strictly phase correlated Equidistant for-
mation as seen in the paragraphs below) or a combined set of possible
shifted phases for different subsets of the discrete satellite system.

Multiple configurations of the spacecraft within the topology to be
acquired (e.g. spacecraft A could potentially interchange positions with
spacecraft B in the new formation if the initial positions allow a smaller
transfer cost) for every set of spacecraft that share the shame role and can
interchangeably fulfill mission objectives in different configurations.

Shifted topology location if the given orbit of the whole constella-
tion upon which the LVLH coordinate system is defined is not set on strict
constraints and the entire topology can be shifted in one or more axes.

Summing up, the degrees of freedom upon which the set of possible
ending sates is formed within formation acquisition time τ for a constella-
tion are: the initial phase of the formation topology to be acquired at time
τ, the spacecraft configuration within that new formation topology and
finally a possible shift of the formation topology itself within the LVLH
frame.

As a final remark, if fuel balancing is a concern inside a constella-
tion, arbitrary weights in the cost function of every spacecraft inversely
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3.4. Degrees of freedom in a force free formation

proportional to its fuel tank sufficiency can be implemented to increase
fuel consumption on the spacecraft that have ample fuel and decrease
consumption on the ones that have low reserves.Every possible cost es-
timation for the given degrees of freedom has to be calculated for the opti-
mal solution to be found according the fuel consumption policy (balanced
consumption, strict optimal consumption, spacecraft importance balanc-
ing etc.)

34



Chapter 4

Evaluation

4.1 Model Description

The equations of relative motion for circular orbits [Hil78] given in the
Local Orbital Coordinate System.

ẍ− 1
mc

Fx = 2ωż

ÿ− 1
mc

Fy = − ω2y

z̈− 1
mc

Fz = −2ωẋ + 3ω2z

Hill equations in state space form:

ẋstate =


ẋ(t)
ẏ(t)
ż(t)
ẍ(t)
ÿ(t)
z̈(t)

 =


0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1
0 0 0 0 0 2ω
0 −ω2 0 0 0 0
0 0 3ω2 −2ω 0 0

 ∗


x(t)
y(t)
z(t)
ẋ(t)
ẏ(t)
ż(t)

+ ...
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4.2. Target Force free three dimensional formations


0 0 0
0 0 0
0 0 0
1 0 0
0 1 0
0 0 1

 ∗
γx(t)

γy(t)
γz(t)

 .

Where ω is the average angular frequency of the constellation of
spacecraft and for the UWE-4 mission with an altitude of 700km is:

ω =

√
µ

r3 = 0.000001127rad/sec

Closed form solution to the constant input forces in the Hill equa-
tions of relative motion by Clohessy and Wiltshire[CW60].

x(t) = (
4ẋ0

ω
− 6z0)sin(ωt)− 2ż0

ω
cos(ωt) + (6ωz0 − 3ẋ0)t

+ (x0 +
2ż0

ω
) + γz

2
ω2 (ωt− sin(ωt))

+ γx(
4

ω2 (1− cos(ωt))− 3
2

t2)

y(t) = y0cos(ωt) +
ẏ0

ω
sin(ωt) + γy

1
ω2 (1− cos(ωt))

z(t) = (
2ẋ0

ω
− 3z0)cos(ωt) + ż0

1
ω

sin(ωt) + (4z0 −
2ẋ0

ω
)

+ γx
2

ω2 (sin(ωt)−ωt) + γz
1

ω2 (1− cos(ωt))

Where it is clear that the dynamics of the used system given certain
initial conditions lead to periodic motion in the LVLH frame.

4.2 Target Force free three dimensional forma-
tions

For the UWE-4 mission the initial topologies to be tested are the following:
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4.2. Target Force free three dimensional formations

3 in plane, 1 our of plane

Defined by 3 satellites having a periodic motion in the X,Z plane
and 1 satellite having a periodic motion in the Y plane. Initial conditions:

3 in plane satellites:

x0 = arbitrary = ±1000m
y0 = 0m
z0 = 0m
ẋ0 = 0m/s
ẏ0 = 0m/s

ż0 = (x0)
1
2

ω = 0000m/s

(4.1)

(the rest of the states calculated with a relevant force free time propagation
equal to a multiple of 1/3 and 2/3 of the orbital period)

1 out of plane satellite:

x0 = 0m
y0 = arbitrary = 600
z0 = 0m
ẋ0 = 0m/s
ẏ0 = arbitrary = 0m/s
ż0 = 0m/s

(4.2)

Equidistant

Defined by all the satellites having a periodic motion that propa-
gates them with constant distances to eachother through time.Initial con-
ditions:
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4.2. Target Force free three dimensional formations

Figure 4.1: 1 in plane-3 out of plane formation

x0 = arbitrary = ±1000m
y0 = 0m
z0 = 0m
ẋ0 = 0m/s

ẏ0 = (x0)

√
3
4

ω = 0000m/s

ż0 = (x0)
1
2

ω = 0000m/s

(4.3)

(the rest of the states calculated with a relevant force free time propagation
equal to a multiple of 1/4, 2/4 and 3/4 of the orbital period)

Tetrahedral formation

Defined by two stationary and two dynamic satellites in a way that,through
their periodic motion ,a dynamic tetrahedral of constant volume is formed
between them throughout the orbit. Initial conditions:
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4.2. Target Force free three dimensional formations

Figure 4.2: Equidistant formation

First Satellite:

x0 =
−2
3

A = ±000.90m

y0 =
√

3A = 500m

z0 =
2
√

2
3

A = 000m

ẋ0 =
4
√

2
3

ωA = 000m/s

ẏ0 = 0m/s

ż0 =
1
3

ωA = 000m/s

(4.4)

Second Satellite:

x0 = 2A = ±000.90m

y0 =
√

3A = 500m
z0 = 0m
ẋ0 = 0m/s

ẏ0 =
2
√

2√
3

ωA = 000m/s

ż0 = −ωA = 0000m/s

(4.5)

39



4.2. Target Force free three dimensional formations

LVLH Stationary satellites:

x0 = arbitrary = ±1000m
y0 = 0m
z0 = 0m
ẋ0 = 0m/s
ẏ0 = 0m/s
ż0 = 0m/s

(4.6)

Where A = 3
√

3
40 (semimajor) = 129.90;

Figure 4.3: Tetrahydral formation

4.2.1 Eclipse Effect

The attitude of the satellites is determined precisely by sun tracking sen-
sors for the subject mission. Given limitations in the accuracy of attitude
determination through other methods in the eclipse phase of the orbit
the mission specifications define one third of the orbit as unsafe to issue
propulsion within accurate specified orientation. The controller is thus re-
quired to ensue guidance only in the two thirds of every orbit that attitude
can be precisely calculated from the sun.
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4.3 Special characteristics of the MPC implemen-
tation

Concerning the ability to handle constraints, precisely adjust performance
to time-varying mission criteria and further tune any parameters easily
after deployment the MPC control strategy is chosen to be distinctively
fitting.

Concepts and theory behind MPC can be traced as early as the
1960s mostly in the work of Kalman and the linear quadratic regulator
mathematic formulation. As soon as the needs of the industry for system
constraints, non-linearities and regular updating were met within feasible
computational workloads the use of MPC started to spread starting from
the control of chemical and petroleum slow dynamic systems. In the last
decades there has been a wide integration of MPC control in industrial ap-
plications thanks to the leaps in the computational performance of embed-
ded systems being able to solve their way through demanding quadratic
programming problems online for increasingly fast and complex systems.

In the particular three dimensional formation acquisition feat for
low earth orbits which involve periodic motion with frequencies in the
manner of hours and limited perturbations, the computational resources
and power consumption of using a variant of model predictive control are
low enough to take the main lead for the ideal control strategy considering
the benefits.

Limited perturbations in the current mission are not sufficient to
diverge the trajectory or cause any significant change in optimal fuel con-
sumption calculations for a single orbit but for more orbits having the abil-
ity to get input data that could be generated and transmitted from Earth
as well would degrade the performance too much. For this reason the
CubeSats have to be fitted with subsystems that can handle the relatively
computationally and energy demanding task of formation acquisition and
formation keeping control.

The UWE-4 mission satellites will be equipped with low-thrust elec-
trical propulsion systems that will be responsible to acquire the required
orbits, do station-keeping and also converge on the required formations.
The goal to acquire these dynamic reference topologies for each satellite
with a relatively high accuracy is set to be in the magnitude of days. Such
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4.3. Special characteristics of the MPC implementation

feat for the given satellite altitude and low power propulsion would re-
quire planning and control horizons expanding on the scale of hundreds
of orbits if implemented in the usual MPC manner.

Combined with the above fact another characteristic that displaces
such controller out of traditional usage is the optimal sinusoid like form
of the required thrust generated to converge to such topologies and the
detailed requirements having to be taken account of within the orbit. A
long sampling time control as usually encountered in slow dynamic sys-
tems is not fit for such task and cannot produce a detailed thrust function
within a single orbit.Furthermore the nature of the satellite mission itself
has specific requirements over which parts of the orbit need to have spe-
cific constraints and take account formed couplings in a detailed way on
the scale of minutes to be able to produce a truly optimal thrust that takes
them into account.

Therefore having this small sampling time and a planning and con-
trol horizon in the scale of days results in a control problem that is not
practically feasible to compute if encountered as in typical MPC imple-
mentations. The computational resources and memory usage for such task
not only exceed the specifications of the on-board hardware but is nearly
impossible to run on a typical enterprise server. For the same reason, any
explicit MPC formulation of the problem is out of consideration due to the
large memory and power requirements of such implementation and the
rigidity of the defined tuning in the span of the mission.

A solution that is feasible within hardware requirements is a con-
trol formulation that uses greatly shortened planning and control hori-
zons. The optimized trajectories generated have to converge to the given
reference state without the control and planning horizons able to actually
extent enough to gain a relatively high proximity to that state for a given
iteration, as is usual in the final steps of typical MPC scenarios. This com-
plication for the given task at hand results in the great emphasis that needs
to be placed in the balance configuration between various weighted objec-
tives as any miscalculations can lead to problems. The control strategy has
to successfully pinpoint a perfect balance between the various state and in-
put variables in its own optimization formulation as any negligence and
miscalling can lead to steady state error or even exponential divergence
from the given objective.

Additionally, each satellite is controlled to a propagated and not a
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4.3. Special characteristics of the MPC implementation

constant reference state belonging to its specified topology. The low-thrust
propulsion of the spacecraft which allows only slight changes in the orbital
motion generates trajectory that diverges little from being periodic. Given
this specification and the nature of the mission requiring multiple MPC
iterations that can arbitrarily vary in their execution phase throughout an
orbit, a constant target reference point does not lead to feasible control.
For systems as such the re-initiation of a MPC control iteration has to take
into account a target reference state equally propagated in its periodic mo-
tion as the time it takes to run the next MPC iteration. The reason that the
above method is necessary, is that issuing a control trajectory for a constant
reference point within the desired formation structure iteratively from dif-
ferent phases of a close to periodic motion would result in opposing thrust
profiles and trajectories that do not necessarily accumulate to a common
converge in the desired constant reference state.

4.3.1 Decentralized Multistep online MPC formulation

The Decentralized1 Multistep MPC strategy is followed to reduce the com-
putational load and power consumption of the controllers. The choice for
this particular formulation is made taking account the long computation-
ally dormant periods in the orbit like the eclipse phase that could fit a long
MPC iteration and the flexibility to allow other computational demanding
tasks to be performed in the same processing system without the need
to form complex scheduling or to take in mind extensive function calling
overhead.

Sensitivity-based multistep MPC and Updated multistep MPC strate-
gies [PSK15] for this particular control implementation are considered re-
dundant due to the extremely low unmeasured perturbations existing in
earth orbit and the great accuracy of the models used for orbital system dy-
namics. A single orbit is considered sufficient to include any on-demand
specifications set online during the span of the mission and additionally
the derived multistep control input for a single orbit calculated from a sin-
gle MPC iteration is considered valid within margin of navigational error
given the existing plant perturbations.

1Decentralized because in the current implementation there is no necessary negotia-
tion between the satellites and the decision process for the target topology states involves
exchanging information before and after an MPC iteration even if the reference states are
chosen optimally according to the general constellation topology.
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4.3. Special characteristics of the MPC implementation

Focus is greatly emphasized in the efficient use of fuel,the abil-
ity to convergence with high accuracy within short time periods for the
given fuel consumption, flexibility to update possible future control crite-
ria throughout an orbit inducing time-variant constraints and weights and
the low overall computational load for the MPC iterations.

The controller needs to achieve a perfect balance between having a
thrust profile that receives high values in highly efficient parts of the pe-
riodic motion without the penalty of non convergence being able to issue
extension of such zones to non efficient areas while at the same time ac-
quire a proximity to the target topology with high accuracy after a number
of iterations.

4.3.2 MPC Parameter Selection

Scale and constraints of LVLH motion and thrust

The scale of the mission has to be accurately defined as it is part the
balance mechanism pinpointing the importance between generated thrust
inputs and convergence:

Magnitude: Thrust Position Velocity
X axis 2km 2m/s
y axis 1km 1m/s
Z axis 1km 1m/s

Propulsion constraints: 8 µN low thrust propulsion systems and a
mass of approximately 1.3 kg.

Thrust constraints have to be manually set to zero for the steps after
the control horizon ends until the end of the planning horizon because of
the default MPC implementation setting the value of the final MV input
in the control horizon to remain constant throughout the calculation of the
optimal trajectory, which is not the case for this system. 2

Variable Weights
2The system’s LVLH motion does not need to be constrained in the current mission

objectives.
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4.3. Special characteristics of the MPC implementation

The thrust input has constant weights as normally encountered in
typical MPC implementations but the state divergence output is set to
have terminal weights over constant weights or time-varying arbitrary
weights because of the control objective being its final state convergence.
The final state has to be set distinctively as the most important factor as
any intermediate states can cause redundant trajectory penalty and in-
creased fuel consumption having little effect in the mission 3.

Thrust input (MV) weight: 1

State divergence (M0) weight: 1.7

For every new objective the ratio between the thrust input and state
divergence weights has to be changed accordingly to fit the required con-
vergence timespan and fuel efficiency criteria. Any variable weight in any
of the given axes can be further adjusted given more specific criteria4.

Control and Planning Horizons

The resulting feat, to be feasible, involves a controller able to con-
verge the given state of a spacecraft to a dynamic target state that is part
of the required formation topology without necessarily being able to ac-
quire a proximity to it within the planning horizon. Thus the planning
and control horizons used are the following:

Control horizon adjusted to approximately two thirds of an orbit.
Within that span various possible online mission specifications that re-
quire change of different weights and constraints throughout an orbit can
be gratuitously enforced and a Multistep MPC iteration can generate a
sufficient number of thrust vector inputs within the duration of an ellipse.

Planning horizon adjusted to be two orbits. Reference target state
needs to be approximated within a number of timesteps ahead of the con-
trol horizon to allow the force induced propagation of the satellites to ac-
cumulate in order to give a good estimation of the related convergence
and fuel usage penalties.

3The weights are taking the same value uniformly through their corresponding vari-
ables as the scaling factors are setting an estimation of the proximity and importance of
the given raw numbers.

4The rates themselves have no meaning for the accumulated cost and should not effect
the optimization problem.
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Figure 4.4: a

Sampling time

The sampling time has to be small enough to produce a detailed
thrust function and approximate online in-orbit requirements but also big
enough to reduce the planning and control horizons spanning in a manner
of orbits to a number of steps computationally and resource feasible within
the onboard hardware.

Sampling time: 240 seconds

Control Horizon steps: 18

Planning Horizon steps: 33

4.4 Simulation

For the evaluation of the controller the following formation acquisition
maneuver is used which represents a real mission objective in the NetSat
mission: Acquisition from Tetrahedral to ”1 in plane-3 out of plane” for-
mation, demonstrated in the following figures.
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Figure 4.5: b

Figure 4.6: c
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4.4. Simulation

Figure 4.7: d

Figure 4.8: e
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4.4. Simulation

Figure 4.9: f

Figure 4.10: g
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4.4. Simulation

Figure 4.11: h

Figure 4.12: i
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4.4. Simulation

Figure 4.13: Thrust function generated for the acquisition
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4.4. Simulation

Figure 4.14: Thrust function, detailed view
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4.5 Conclusion

This paper proposes MPC as a suitable control strategy for continuous
low thrust formation flying in LEO and defines a set of parameters for
MPC that both leads to convergence to a given target formation and is can
be realistically performed on embedded hardware as met on nowadays
small satellites. Simulations using Matlab have been performed to show
the performance of the described MPC.

MPC proves advantageous due to several reasons, namely its opti-
mality, its ability to take various constraints into account and most – which
is most important for low thrust applications – its ability to plan for a dis-
tinct time into the future.

This controller development is planned to be implemented on the
described NetSat mission. This mission can also act as in-orbit verification
of the method presented.
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Chapter 5

Code section

Main Function:

1 %%P an ay io t i s D. Kremmydas
2 %Multi−S a t t e l i t e Formation contro l , Simulated with

r e s p e c t to Earth
3 %

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

4 %X , Y , Z values correspond to the LVLH Coordinate system
as defined by ESA , ( u n i t s s e t in meters )

5

6 %%%%%%User input :
7 addpath ( ’ l v l h f o r m a t i o n t r a j e c t o r y g e n e r a t o r s ’ ) ; %d ir :

formations fucnt ion f i l e
8

9

10

11 %% Orbit and Formation v a r i a b l e s
12 EarthMass = 3.986004415 e14 ; % Earth mass in mˆ3
13 EarthRadius = 6371000 ; %Mean Earth radius in m
14 o r b i t a l R a d i u s= EarthRadius + 700000 ; % f o r

c i r c u l a r o r b i t with a l t i t u d e 700km
15 angularSpeed= s q r t ( EarthMass / o r b i t a l R a d i u s ˆ 3 ) ; %

corresponding to f o r c e f r e e c i r c u l a r o r b i t : s q r t
(3 .986004415 e14 /(6371000+700000) ˆ 3 ) =0 .001061812 ,
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[1/ s ] ˜ Example : ISS ’ s angular frequency
0.00113027258 in rads/second , Al t i tude =400000 ,
O r b i t a l period =92.65 minutes =5559 seconds , %s q r t
P r e c i s i o n might not be s u f f i c i e n t

16 T=2∗pi/angularSpeed ; %5917 seconds or 100 minutes . %
Alt i tude matching a s p e c i f i c c i r c u l a r angular
frequency and period of o r b i t around an o b j e c t of a

s p e c i f i c mass
17 %Formation s t r u c t u r e parameters
18 s e m i m a j o r x z p l a n e e l l i p s e =400; %semi−major of the

formation s t r u c t u r e
19 i n i t y c h i e f a m p l i t u d e =150; %LVLH y p e r i o d i c

amplitude of the formation s t r u c t u r e
20 s a t e l l i t e n u m b e r =4; %Number of s a t e l l i t e s f o r the

given formation s t r u c t u r e . {Tetrahydral formations
are only supported by 4 s a t e l l i t e s }

21 t e t r a h y d r a l b i n a r y c o n f i g u r a t i o n =1; % Tetrahydral
formation parameter : o r i e n t a t i o n of the s u r f a c e
formed by the 2 LVLH non−s t a t i o n a r y s a t e l l i t e s , 1=
point ing to the north , −1=point ing to the south

22 %Simulat ion Parameters
23 f r e e d r i f t o r b i t a l r e v o l u t i o n s =2; %i n i t i a l s t a t e

o r b i t a l r e v o l u t i o n s to be simulated
24 t r a n s f e r t i m e o r b i t a l r e v o l u t i o n s =100; %c o n t r o l l e d

s t a t e o r b i t a l r e v o l u t i o n s to be simulated
25 p r o p a g a t e o r b i t a l r e v o l u t i o n s =70; %propagated s t a t e

o r b i t a l r e v o l u t i o n s to be simulated
26 formation1 =4; %i n i t i a l f r e e d r i f t formation %

cw moving plane =1 , cw pco =2 , cw plane 1out =3 ,
cw equidis tant =4 , t e t r a h e d r a l =5 , cw hel ix =6

27 formation2 =6; %t a g e t formation to be acquired %
cw moving plane =1 , cw pco =2 , cw plane 1out =3 ,
cw equidis tant =4 , t e t r a h e d r a l =5 , cw hel ix =6

28 sampleInterval =80; %every sampleInterval seconds a
sample i s c a l c u l a t e d and processed i n t o the
s imulat ion .

29 s i m u l a t i o n S t y l e =1; %SPACE BACKGROUND=1 %Smooth o r b i t
t r a n s i t i o n =2 %without background s t a r s s imulat ions
are f a s t e r

30 %Var iab les%%%%%%%%
31 t f r e e d r i f t = 0 : sampleInterval :
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f r e e d r i f t o r b i t a l r e v o l u t i o n s ∗T ;
32 t 1 l e n =length ( t f r e e d r i f t ) ;
33 t t r a n s f e r = 1 : 1 : t r a n s f e r t i m e o r b i t a l r e v o l u t i o n s ∗ (

c e i l ( T/sampleInterval ) ) ;
34 t 2 l e n =length ( t t r a n s f e r ) ;
35 t propagate= 0 : sampleInterval :

p r o p a g a t e o r b i t a l r e v o l u t i o n s ∗T ;
36 t 3 l e n =length ( t propagate ) ;
37 t o t a l s a m p l e s = t 1 l e n + t 2 l e n + t 3 l e n ;
38

39 %% Examples of f o r c e f r e e formations ( where s the
sample amount and k the number of s a t e l l i t e s )

40 %funct ion [ x ( k , 1 : s ) , y ( k , 1 : s ) , z ( k , 1 : s ) , dx ( k , 1 : s ) , dy ( k
, 1 : s ) , dz ( k , 1 : s ) ]= cw equidis tant (
s e m i m a j o r x z p l a n e e l l i p s e , s a t e l l i t e n u m b e r ,
angularSpeed , t ) ;

41 %%%%%%CW Equidis tant Formation : x0= a r b i t r a r y , y0=0 ,
z0=0 , dx0=0 , dy0=x0∗ s q r t ( 0 . 7 5 ) ∗omega , dz0=x0
∗ ( 0 . 5 ) ∗omega

42 %funct ion [ x ( k , 1 : s ) , y ( k , 1 : s ) , z ( k , 1 : s ) , dx ( k , 1 : s ) , dy ( k
, 1 : s ) , dz ( k , 1 : s ) ]= cw pco (
s e m i m a j o r x z p l a n e e l l i p s e , s a t e l l i t e n u m b e r ,
angularSpeed , t ) ;

43 % %%%%%P r o j e c t e d C i r c u l a r Orbit ( on X−Y plane ) : x0=
a r b i t r a r y , y0= a r b i t r a r y , z0=0 , dx0=0 , dy0=−2dz0
, dz0 = ( 0 . 5 ) ∗omega∗x0

44 %funct ion [ x ( k , 1 : s ) , y ( k , 1 : s ) , z ( k , 1 : s ) , dx ( k , 1 : s ) , dy ( k
, 1 : s ) , dz ( k , 1 : s ) ]= cw hel ix (
s e m i m a j o r x z p l a n e e l l i p s e , s a t e l l i t e n u m b e r ,
angularSpeed , t ) ;

45 % %%%%%CW Helix Formation : c h i e f : x0= a r b i t r a r y , y0=x0
/2 , z0=0 , dx0=0 , dy0=0 , dz0=x0 ∗ ( 0 . 5 ) ∗omega

46 %funct ion [ x ( k , 1 : s ) , y ( k , 1 : s ) , z ( k , 1 : s ) , dx ( k , 1 : s ) , dy ( k
, 1 : s ) , dz ( k , 1 : s ) ]= cw moving plane ( in i t y ampl i tude ,
s e m i m a j o r x z p l a n e e l l i p s e , s a t e l l i t e n u m b e r ,
angularSpeed , t ) ;

47 % %%%%%CW Moving Plane Formation ( Moving Y bar on YZ
and YX axes ) : x0=(+−k ) ∗ a r b i t r a r y , y0= a r b i t r a r y , z0
=0 , dx0=0 , dy0= a r b i t r a r y , dz0=(+−k ) ∗ ( 0 . 5 ) ∗omega∗
x0 , where k i s the corresponding number of the
s a t e l l i t e
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48 %funct ion [ x ( k , 1 : s ) , y ( k , 1 : s ) , z ( k , 1 : s ) , dx ( k , 1 : s ) , dy ( k
, 1 : s ) , dz ( k , 1 : s ) ]= cw plane 1out (
i n i t y c h i e f a m p l i t u d e , s e m i m a j o r x z p l a n e e l l i p s e ,
s a t e l l i t e n u m b e r , angularSpeed , t ) ;

49 % %%%%%CW one plane formation , 1 out of plane : x0=
a r b i t r a r y , y0= a r b i t r a r y , z0=0 , dx0=0 , dy0=−2dz0
, dz0 = ( 0 . 5 ) ∗omega∗x0

50 %funct ion [ x ( k , 1 : s ) , y ( k , 1 : s ) , z ( k , 1 : s ) , dx ( k , 1 : s ) , dy ( k
, 1 : s ) , dz ( k , 1 : s ) ]= t e t r a h e d r a l (
t e t r a h y d r a l b i n a r y c o n f i g u r a t i o n , angularSpeed , t ) ;

51 % %%%%%Tetrahedra l Formation ( constant volume i n s i d e
formation ) : c h i e f : x0= a r b i t r a r y , y0=x0/2 , z0=0 ,
dx0=0 , dy0=0 , dz0=x0 ∗ ( 0 . 5 ) ∗omega

52 %Output has t h i s form [ x ( k , 1 : s ) , y ( k , 1 : s ) , z ( k , 1 : s ) , dx ( k
, 1 : s ) , dy ( k , 1 : s ) , dz ( k , 1 : s ) ]

53

54

55 %% 1 : Formation FORCE FREE I n i t i a l S t a t e %(k , 0 : t 1 l e n )
56

57 i f formation1==1 %cw moving plane
58 [ x tot , ytot , z tot , dxtot , dytot , dztot ]= . . .
59 cw moving plane ( s e m i m a j o r x z p l a n e e l l i p s e ,

s a t e l l i t e n u m b e r , angularSpeed , t f r e e d r i f t
) ;

60 e l s e i f formation1==2 %cw pco
61 [ x tot , ytot , z tot , dxtot , dytot , dztot ]= . . .
62 cw pco ( s e m i m a j o r x z p l a n e e l l i p s e ,

s a t e l l i t e n u m b e r , angularSpeed , t f r e e d r i f t
) ;

63 e l s e i f formation1==3 %cw plane 1out
64 [ x tot , ytot , z tot , dxtot , dytot , dztot ]=

. . .
65 cw plane 1out ( i n i t y c h i e f a m p l i t u d e ,

s e m i m a j o r x z p l a n e e l l i p s e ,
s a t e l l i t e n u m b e r , angularSpeed ,
t f r e e d r i f t ) ;

66 e l s e i f formation1==4 %cw equidis tant
67 [ x tot , ytot , z tot , dxtot , dytot , dztot ]=

. . .
68 cw equidis tant ( s e m i m a j o r x z p l a n e e l l i p s e ,

s a t e l l i t e n u m b e r , angularSpeed ,
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t f r e e d r i f t ) ;
69 e l s e i f formation1==5 %t e t r a h e d r a l
70 [ x tot , ytot , z tot , dxtot , dytot , dztot ]=

. . .
71 t e t r a h e d r a l ( s e m i m a j o r x z p l a n e e l l i p s e ,

t e t r a h y d r a l b i n a r y c o n f i g u r a t i o n ,
angularSpeed , t f r e e d r i f t ) ;

72 e l s e i f formation1==6 %cw hel ix
73 [ x tot , ytot , z tot , dxtot , dytot , dztot ]=

. . .
74 cw hel ix ( s e m i m a j o r x z p l a n e e l l i p s e ,

s a t e l l i t e n u m b e r , angularSpeed ,
t f r e e d r i f t ) ;

75 end
76

77 %% 2 : Formation CONTROL Acquis i t ion Transfer
78 i f formation2==1 %cw moving plane
79 [ x1 , y1 , z1 , dx1 , dy1 , dz1 ]= . . .
80 cw moving plane ( s e m i m a j o r x z p l a n e e l l i p s e ,

s a t e l l i t e n u m b e r , angularSpeed , 0 ) ;
81 e l s e i f formation2==2 %cw pco
82 [ x1 , y1 , z1 , dx1 , dy1 , dz1 ]= . . .
83 cw pco ( s e m i m a j o r x z p l a n e e l l i p s e ,

s a t e l l i t e n u m b e r , angularSpeed , 0 ) ;
84 e l s e i f formation2==3 %cw plane 1out
85 [ x1 , y1 , z1 , dx1 , dy1 , dz1 ]= . . .
86 cw plane 1out ( i n i t y c h i e f a m p l i t u d e ,

s e m i m a j o r x z p l a n e e l l i p s e ,
s a t e l l i t e n u m b e r , angularSpeed , 0 ) ;

87 e l s e i f formation2==4 %cw equidis tant
88 [ x1 , y1 , z1 , dx1 , dy1 , dz1 ]= . . .
89 cw equidis tant ( s e m i m a j o r x z p l a n e e l l i p s e ,

s a t e l l i t e n u m b e r , angularSpeed , 0 ) ;
90 e l s e i f formation2==5 %t e t r a h e d r a l
91 [ x1 , y1 , z1 , dx1 , dy1 , dz1 ]= . . .
92 t e t r a h e d r a l ( s e m i m a j o r x z p l a n e e l l i p s e ,

t e t r a h y d r a l b i n a r y c o n f i g u r a t i o n ,
angularSpeed , 0 ) ;

93 e l s e i f formation2==6 %cw hel ix
94 [ x1 , y1 , z1 , dx1 , dy1 , dz1 ]= . . .
95 cw hel ix ( s e m i m a j o r x z p l a n e e l l i p s e ,

58



s a t e l l i t e n u m b e r , angularSpeed , 0 ) ;
96 end
97

98

99 f o r k = 1 : s a t e l l i t e n u m b e r
100 %FreeDri f tFormat ions ( x0 , y0 , z0 , dx0 , dy0 , dz0 , omeg ,

t ) values propagate according to the CW
equations f o r formation1 o r b i t s

101 [ y , r t , u , x , MPCobj , c o n t r o l l e r S t a t e , I t e r a t i o n s ] =
mpc Wrapper offl ine ( x t o t ( k , t 1 l e n ) , . . .

102 y t o t ( k , t 1 l e n ) , . . .
103 z t o t ( k , t 1 l e n ) , . . .
104 dxtot ( k , t 1 l e n ) , . . .
105 dytot ( k , t 1 l e n ) , . . .
106 dztot ( k , t 1 l e n ) , . . .
107 x1 ( k ) , . . .
108 y1 ( k ) , . . .
109 z1 ( k ) , . . .
110 dx1 ( k ) , . . .
111 dy1 ( k ) , . . .
112 dz1 ( k ) , . . .
113 angularSpeed ,

sampleInterval , t 2 l e n ) ;
114 x t o t ( k , t 1 l e n +1 : t 1 l e n + t 2 l e n ) =y ( 1 , : ) ;
115 y t o t ( k , t 1 l e n +1 : t 1 l e n + t 2 l e n ) =y ( 3 , : ) ;
116 z t o t ( k , t 1 l e n +1 : t 1 l e n + t 2 l e n ) =y ( 5 , : ) ;
117 dxtot ( k , t 1 l e n +1 : t 1 l e n + t 2 l e n ) =y ( 2 , : ) ;
118 dytot ( k , t 1 l e n +1 : t 1 l e n + t 2 l e n ) =y ( 4 , : ) ;
119 dztot ( k , t 1 l e n +1 : t 1 l e n + t 2 l e n ) =y ( 6 , : ) ;
120 sum(sum( abs ( ( ( 1 0 0 ∗u ) ∗ (100∗u ’ ) ) ∗ sampleInterval

) ) )
121 sum(sum( abs ( u∗ sampleInterval ) ) )
122 %%%%%%%%%%%%%%%%
123 display ( ’ s a t e l l i t e

:///////////////////////////////////////////////////////////////
’ , num2str ( k ) )

124 %Extra p l o t t i n g options and v a r i a b l e s torage {
Necessary to crosscheck embedded systems
implementation}

125 % i f ( k==3)
126 % o b j e c t T r a j e c t o r y =y ;
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127 % o b j e c t R e f e r e n c e = r t ;
128 % objectOptimalThrust=u ’ ;
129 % o b j e c t C o n t r o l l e r S t a t e = c o n t r o l l e r S t a t e ;
130 % o b j e c t Q P I t e r a t i o n s = I t e r a t i o n s ;
131 % o b j e c t I n i t i a l S t a t e =x ;
132 % f i g u r e
133 % p l o t ( objectOptimalThrust )
134 % return ;
135 % end
136 %%%%%%%%%%%%%%%%%
137 end
138

139 %% 3 : Formation FORCE FREE Propagated S t a t e s %f i n a l
s t a t e values of the MPC output , propagated in the
H i l l equat ions

140 f o r k = 1 : s a t e l l i t e n u m b e r
141 [ x t o t ( k , t 1 l e n + t 2 l e n +1: t o t a l s a m p l e s ) , . . .
142 y t o t ( k , t 1 l e n + t 2 l e n +1: t o t a l s a m p l e s ) , . . .
143 z t o t ( k , t 1 l e n + t 2 l e n +1: t o t a l s a m p l e s ) , . . .
144 dxtot ( k , t 1 l e n + t 2 l e n +1: t o t a l s a m p l e s ) , . . .
145 dytot ( k , t 1 l e n + t 2 l e n +1: t o t a l s a m p l e s ) , . . .
146 dztot ( k , t 1 l e n + t 2 l e n +1: t o t a l s a m p l e s ) ]=

. . .
147 FreeDri f tFormat ions ( x t o t ( k , t 1 l e n + t 2 l e n ) ,

. . .
148 y t o t ( k , t 1 l e n + t 2 l e n ) ,

. . .
149 z t o t ( k , t 1 l e n + t 2 l e n ) ,

. . .
150 dxtot ( k , t 1 l e n + t 2 l e n ) ,

. . .
151 dytot ( k , t 1 l e n + t 2 l e n ) ,

. . .
152 dztot ( k , t 1 l e n + t 2 l e n ) ,

. . .
153 angularSpeed ,

t propagate ) ;
154 end
155

156 %
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
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157 %Coordinate t ransformat ion from LVLH (X , Y , Z) to FIGURE
COORDINATES(X , Z,−Y) .

158 %Matlab ’ s d e f a u l t viewing l i m i t a t i o n s in i t s 3D
f i g u r e r e p r e s e n t a t i o n allow 3D o r i e n t a t i o n with

r e s p e c t to the xy axes only
159 % Camera focusing in the p e r s p e c t i v e of the xy

axes ins tead of the xz i s not i n t u i t i v e in the
current s imulat ion framework

160 % the y and z axes are switched to overcome t h a t
viewing l i m i t a t i o n and the earths ’ s north pole
i s displayed as top (−Y)

161 % The f i g u r e coordinates are thus used f o r a more
i n t u i t i v e g loba l p r e s e n t a t i o n (X , Z,−Y) ,

162 % and the l o c a l LVLH coordinate system i s
s e p a r a t e l y displayed by i t s e l f within i t .

163

164 %% P l o t t i n g options
165 c l o s e a l l %c l o s e s e x i s t i n g f i g u r e s when r e s t a r t i n g the

s imulat ion
166 Simulat ion= f i g u r e ( ’ Color ’ , ’ k ’ ) ; %c o l o r k s e t s the

background of the f i g u r e to black .
167 s e t ( 0 , ’ DefaultFigureWindowStyle ’ , ’ docked ’ ) %so t h a t

any subsequent f i g u r e s are becoming tabs the f i g u r e
window

168 hold on ;
169 s e t ( gca , ’ V i s i b l e ’ , ’ o f f ’ , ’ NextPlot ’ , ’ add ’ ) ;%Removes

d e f a u l t axes t h a t do not have any phys ica l f o r the
p r e s e n t a t i o n (X , Z,−Y)

170 a x i s vis3d ; %Locks the aspect r a t i o of a l l the axes to
1 : 1 : 1 f o r accura te 3D model p r e s e n t a t i o n

171 view ( 9 0 , 0 ) ; %Defaul t p e r s p e c t i v e in case animation
funct ion : view (59−0.8∗k ,41+47∗ s i n ( 0 . 0 0 5 5∗k +3.1∗ pi
/2) ) i s turned o f f

172

173

174

175 %% P l o t t e d o b j e c t s and t h e i r opt ions f o r : S a t e l l i t i e s ,
I n i t i a l S a t e l l i t e t r a i l , Control led S a t e l l i t e

t r a i l ,
176 %Terminated Control S a t e l l i t e t r a i l , Chief−Center of
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LVLH, Dummy XZ plane
177 f o r k = 1 : s a t e l l i t e n u m b e r
178 s a t ( k ) = animatedl ine ( ’ Color ’ , ’ y ’ , ’ LineWidth ’ , 1 . 5 ,

’MaximumNumPoints ’ , 1 , ’ Marker ’ , ’ o ’ ) ; %Current
l o c a t i o n of the S a t e l l i t e o b j e c t

179 t r a i l ( k ) = animatedl ine ( ’ Color ’ , ’ b ’ , ’ LineWidth ’
, 1 . 5 , ’MaximumNumPoints ’ ,6∗ c e i l (20∗ (50/
sampleInterval ) ) ) ; %I n i t i a l S a t e l l i t e t r a i l

180 t r a i l w i t h c o n t r o l ( k ) = animatedl ine ( ’ Color ’ , ’ r ’ , ’
LineWidth ’ , 1 . 5 , ’MaximumNumPoints ’ , 5 0 0 ) ; %
Control led S a t e l l i t e t r a i l

181 t r a i l r e l e a s e ( k ) = animatedl ine ( ’ Color ’ , ’ g ’ , ’
LineWidth ’ , 1 . 5 , ’MaximumNumPoints ’ , 4 2 0 ) ; %
Terminated Control S a t e l l i t e t r a i l

182 end
183 %s a t c h i e f = animatedl ine ( ’ Color ’ , ’ y ’ , ’ LineWidth ’ , 1 . 5 , ’

MaximumNumPoints ’ , 1 , ’ Marker ’ , ’ o ’ ) ; %Chief−Center of
LVLH

184 %addpoints ( s a t c h i e f , 0 , 0 , 0 ) ; %Chief−Center of LVLH
185 %dummy = animatedl ine ( ’ Color ’ , ’ r ’ , ’ LineWidth ’ , 1 . 2 , ’

MaximumNumPoints ’ , 6 0 , ’ L ineStyle ’ , ’ − . ’ ) ; Dummy XZ
plane

186

187

188 %% P l o t t i n g options : Rotat ing Earth FIGURE
COORDINATES(X , Z,−Y)

189 hgx = hgtransform ; %s u p e r c l a s s of a l l the o b j e c t s to
be transformed around t h e i r z a x i s . ( only the ear th

i t s e l f c u r r e n t l y )
190

191 e a r t h s i z e =6000; %ear th o b j e c t radius . s imulat ion
r e l a t i v e quant i ty only

192 e a r t h d i s t a n c e =8000; %ear th d i s t a n c e from c e n t e r of
formation . s imulat ion r e l a t i v e quant i ty only

193 %e l l i p s o i d ( x , y , z , xs ize , ysize , zs ize , num of
panels )

194 %%%%EARTH o b j e c t : 3D meshgrid using the e l l i p s o i d
funct ion on a p r e s e t number of t o t a l points
def in ing the above sphere on the predefined
d i s t a n c e .

195 [ temp1 , temp2 , temp3 ] = e l l i p s o i d ( 0 , ear thdis tance , 0 ,
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e a r t h s i z e , e a r t h s i z e , e a r t h s i z e , 40) ; %l e s s than
40 makes ear th l e s s c i r c u l a r .

196 globe = s u r f ( temp1 , temp2 , −temp3 , ’ Parent ’ , hgx ) ; %%
Draw the above s p h e r i c a l wireframe globe and add i t

to the hgx c l a s s which w i l l allow o b j e c t
t ransformat ion operat ions

197 data = imread ( ’ NasaEarth . jpg ’ ) ; % Earth image f o r
t e x t u r e map, must be 2 : 1 unprojected globe , imread
transforms i t in a CData form

198 %S e t t i n g the meshgrid to have a Texturemap contained
in ” data ” wrapped around i t :

199 s e t ( globe , ’ FaceColor ’ , ’ texturemap ’ , ’ CData ’ , data , ’
FaceAlpha ’ , 1 , ’ EdgeAlpha ’ , 0 . 2 , ’ EdgeColor ’ ,
0 . 9∗ [ 0 1 1 ] ) ; %Faceco lor i n d i c a t e s a texturemap ,
which Matlab expects to be in cdata .

200

201

202 i f ( s i m u l a t i o n S t y l e ==1) %S t y l e 1 : With s t a r s %%%%SPACE
BACKGROUND o b j e c t : 3D meshgrid using the e l l i p s o i d
funct ion on a p r e s e t number of t o t a l points
def in ing the above sphere on the predefined
d i s t a n c e .

203 [ temp1 , temp2 , temp3 ] = e l l i p s o i d ( 0 , 0 , 0 , 60000 ,
60000 , 60000 , 40) ;

204 globe = s u r f ( temp1 , temp2 , −temp3 ) ; %% Draw the
above s p h e r i c a l wireframe sphere and add i t to
the hgx c l a s s which w i l l allow o b j e c t
t ransformat ion operat ions

205 data = imread ( ’ NasaStarmap . jpg ’ ) ; % S t a r image
f o r t e x t u r e map, must be 2 : 1 unprojected globe ,

imread transforms i t in a CData form
206 %S e t t i n g the meshgrid to have a Texturemap

contained in ” data ” wrapped around i t :
207 s e t ( globe , ’ FaceColor ’ , ’ texturemap ’ , ’ CData ’ ,

data , ’ FaceAlpha ’ , 0 . 7 , ’ EdgeAlpha ’ , 0 , ’
EdgeColor ’ , 0∗ [0 1 1 ] ) ; %Faceco lor i n d i c a t e s a
texturemap , which Matlab expects to be in cdata
.

208 camzoom ( 1 ) ;
209 e l s e
210 camzoom ( 2 . 6 ) ;
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211 end
212

213 %% P l o t t i n g options : 3 axes and v e l o c i t y t r a c e r s f o r
the S a t e l l i t e Formation : FIGURE COORDINATES(X , Z,−Y)

214 p l o t (−8000∗ s in ( 0 : 0 . 0 5 : 0 . 8 ∗ pi ) ,8000−8000∗ cos
( 0 : 0 . 0 5 : 0 . 8 ∗ pi ) ) ; %v e l o c i t y t r a c e r s

215 a x e s s i z e = 0 : ( ear thdis tance−e a r t h s i z e ) / 1 . 4 ;
216 plot3 ( a x e s s i z e , zeros ( 1 , numel ( a x e s s i z e ) ) , zeros ( 1 ,

numel ( a x e s s i z e ) ) , ’ Color ’ , [ 1 0 . 5 0 0 . 3 ] ) ;
217 plot3 ( zeros ( 1 , numel ( a x e s s i z e ) ) , a x e s s i z e , zeros ( 1 ,

numel ( a x e s s i z e ) ) , ’ Color ’ , [ 1 0 . 5 0 0 . 3 ] ) ;
218 plot3 ( zeros ( 1 , numel ( a x e s s i z e ) ) , zeros ( 1 , numel (

a x e s s i z e ) ) ,− a x e s s i z e , ’ Color ’ , [ 1 0 . 5 0 0 . 3 ] ) ;
219 t e x t ( numel ( a x e s s i z e ) , 0 , 0 , ’ \bfx ’ , ’ Rotat ion ’ ,+0 , ’

Color ’ , [ 1 0 . 5 0 0 . 0 1 ] , ’ FontSize ’ , 1 4 ) ;
220 t e x t ( 0 , numel ( a x e s s i z e ) , 0 , ’ \bfz ’ , ’ Rotat ion ’ ,+0 , ’

Color ’ , [ 1 0 . 5 0 0 . 0 1 ] , ’ FontSize ’ , 1 4 ) ;
221 t e x t (0 ,0 ,−numel ( a x e s s i z e ) , ’ y ’ , ’ Rotat ion ’ ,+0 , ’ Color ’

, [ 1 0 . 5 0 0 . 0 1 ] , ’ FontSize ’ , 1 4 ) ;
222

223 xlim ([−2∗ e a r t h d i s t a n c e 2∗ e a r t h d i s t a n c e ] )
224 ylim ([−2∗ e a r t h d i s t a n c e 2∗ e a r t h d i s t a n c e ] )
225 zlim ([−2∗ e a r t h d i s t a n c e 2∗ e a r t h d i s t a n c e ] )
226

227

228 %% Simulat ion : Draw S a t e l l i t e s , Rotate Globe , Handle
Figure : CONVERTED TO FIGURE COORDINATES(X , Z,−Y)

229 s e t ( gcf , ’ P o s i t i o n ’ , [0 0 1300 8 0 0 ] ) ; %custom window
size , custom simulat ion s i z e

230 s e t ( gcf , ’ CurrentCharacter ’ , ’@ ’ ) ;
231 f o r k = 1 : length ( x t o t )
232 %f i g u r e ( Simulat ion ) ; %when implementing hotkeys

i t s important to keep focus on the f i g u r e .
233 f o r i = 1 : s a t e l l i t e n u m b e r
234 %%%%%%%%%%
235 i f ( k<t 1 l e n )
236 addpoints ( t r a i l ( i ) , x t o t ( i , k ) , z t o t ( i , k ) ,−

y t o t ( i , k ) ) ; %does allow fading normal
t r a i l

237 e l s e i f ( k<t 1 l e n + t 2 l e n )
238 addpoints ( t r a i l w i t h c o n t r o l ( i ) , x t o t ( i , k ) ,
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z t o t ( i , k ) ,−y t o t ( i , k ) ) ; %does allow
fading c o n t r o l t r a i l

239 e l s e
240 addpoints ( t r a i l r e l e a s e ( i ) , x t o t ( i , k ) , z t o t (

i , k ) ,−y t o t ( i , k ) ) ;
241 end
242 addpoints ( s a t ( i ) , x t o t ( i , k ) , z t o t ( i , k ) ,−y t o t ( i , k

) ) ;
243 %%%%%%%%%%
244

245 % addpoints ( t r a i l ( i ) , x t o t ( i , k ) , z t o t ( i , k ) ,−y t o t
( i , k ) ) ;

246 % addpoints ( s a t ( i ) , x t o t ( i , k ) , z t o t ( i , k ) ,−y t o t ( i
, k ) ) ;

247 end
248 %addpoints (dummy, x ( 1 , k ) , z ( 1 , k ) , 0 ) ; %Draw the XZ

e l l i p s e f o r r e f e r e n c e { corresponding to a
formation without any y displacement or
v e l o c i t y )

249

250

251 s e t ( hgx , ’ Matrix ’ , makehgtform ( ’ t r a n s l a t e ’
, [ 0 , 8 0 0 0 , 0 ] , ’ z r o t a t e ’ ,−( sampleInterval/T ) ∗k∗2∗
pi , ’ t r a n s l a t e ’ , [ 0 , −8000 ,0 ] ) ) %Rotat ing Globe ;
Rotat ion= T/sampleInterval

252

253

254 %%%%%%%%Drawing and Camera motion s t y l e s :
255 i f ( s i m u l a t i o n S t y l e ==1)%S t y l e 1 : With s t a r s
256 dis tanceConstant =25000;
257 xlim ( [ dis tanceConstant ∗ cos ( 0 . 0 4 5∗k )−

distanceConstant −14000 dis tanceConstant ∗ cos
( 0 . 0 4 5∗k ) +dis tanceConstant +14000] )

258 ylim ( [ dis tanceConstant ∗ s i n ( 0 . 0 4 5∗k )−
distanceConstant −14000 dis tanceConstant ∗ s i n
( 0 . 0 4 5∗k ) +dis tanceConstant +14000] )

259 zlim ([−3∗ dis tanceConstant 3∗dis tanceConstant ] )
260 drawnow
261 campos([−2∗ dis tanceConstant ∗ cos ( 0 . 0 4 5∗k ) −2∗

dis tanceConstant ∗ s i n ( 0 . 0 4 5∗k ) 2∗
dis tanceConstant+dis tanceConstant ∗ s i n
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( 0 . 0 0 4 5∗k ) ] )
262 camtarget ( [ 0 , 0 , 0 ] )
263 e l s e %S t y l e 2 : Smooth o r b i t t r a n s i t i o n
264 view (159−0.8∗k ,41+47∗ s in ( 0 . 0 0 4 5∗k +3.1∗ pi /2) ) ;

%Handle Camera
265 drawnow
266 end
267

268 %i f mod( k , 1 0 0 ) ==0 , pause ; end %
Image Capturing and expor ta t ion

269 %i f mod( k , 1 0 0 ) ==0 , disp ( k∗100/ length ( x t o t ) ) ; %
Simulat ion progress display

270

271 %inLoopTakeFrame AppendToGif ( k ) ; %
Simulat ion capturing as . g i f

272

273

274 end
275

276

277 % key=get ( gcf , ’ CurrentCharacter ’ ) ;
278 % i f key ˜= ’@’ % i f i t changed from the dummy

c h a r a c t e r
279 % s e t ( gcf , ’ CurrentCharacter ’ , ’@’ ) ; % r e s e t the

c h a r a c t e r
280 % % now process the key as required
281 % i f key==’q ’
282 % break ;
283 % %e l s e i f key<=6 && key>=1
284 % % newformationacquis i t ion ( key ) ;
285 % end
286 % end

Multistep Model predictive control Wrapper func-
tion

1 %mpc Wrapper Author : P an ay io t i s D. Kremmydas
2 %Reference : HCW MPC Example 2 : J u l i a n Scharnagl
3
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4 %Mult is tep MPC based on
5 %Co−ordinat ion and c o n t r o l of d i s t r i b u t e d s p a c e c r a f t
6 %systems using convex opt imizat ion techniques
7 % Detai led explanat ion goes here
8 %s t a r t mean [ a t h e t a i q1 q2 Omega lambda e ]
9 %f i n a l time ( o f f s e t from now) Tf [ s ]

10 % t a r g e t vec tor a t Tf : X f i n a l
11 %time step Ts ( i n t e g r a t i o n step s i z e )
12

13 func t ion [ y , r , u , x , MPCobj , c o n t r o l l e r S t a t e , i t e r a t i o n s ] =
mpc Wrapper offl ine ( x0 , y0 , z0 , dx0 , dy0 , dz0 , x1 , y1 , z1

, dx1 , dy1 , dz1 , w, ts tep , T )%the c o n t r o l l e r needs to
output the predic ted s t a t e s and c o n t r o l s within the

controlHorizon
14 %% D e f i n i t i o n of c o n s t r a i n t s {User Input } , implemented

with # def ine in embedded C
15 planningHorizon = c e i l ( ( 2∗ pi/w) / t s t e p ) ; %

planningHorizon=mult ip le of Number of s teps per
o r b i t

16 s0 = [ x0 ; dx0 ; y0 ; dy0 ; z0 ; dz0 ] ;
17 s r = [ x1 ; dx1 ; y1 ; dy1 ; z1 ; dz1 ] ;
18

19

20 [ MPCobj , s t a t e s p a c e ]= netSATmpc (w, t s t e p ) ;
21 [ rtemp , ˜ , ˜ ] = lsim ( s ta tespace , zeros ( 3 , 2∗T ) , 0 : t s t e p :

t s t e p ∗ (2∗T−1) , s r ) ; %%using the s t a t e space i t s e l f
to propagate th r e f e r e n c e s t a t e

22 r =rtemp ’ ; %r=transpose ( zeros ( 1 , 6 ) ) ;
23

24 % [ p r e v i o u s r e f e r e n c e s t a t e , ˜ , ˜ ] = lsim ( s ta tespace ,
zeros ( 3 , 2∗T ) , t s t e p ∗ ( s t e p s s i n c e l a s t m p c c a l l ) ,
p r e v i o u s r e f e r e n c e s t a t e ) ; %%using the s t a t e space
i t s e l f to propagate th r e f e r e n c e s t a t e

25 %s t e p s s i n c e l a s t m p c c a l l inc ludes the number of
s teps t h a t the current s a t e l l i t e s t a t e has been
propagated ( e . g . s teps propagated using the MPC
inputs or s teps propagated using zero inputs in the

case of the
26 %e c l i p s e )
27

28 x = mpcstate ( MPCobj ) ; %Current s t a t e
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29 y ( : , 1 ) = s0 ; %Output s t a t e y
30 x . Plant= s0 ; %i n t e r n a l s t a t e of the mpc

c o n t r o l l e r needs to be i n i t i a l l i z e d .
31 x . LastMove= [0 0 0 ] ; %i n t e r n a l s t a t e of the mpc

c o n t r o l l e r needs to be i n i t i a l l i z e d .
32 x . Disturbance= [0 0 0 0 0 ] ’ ;
33 x . Covariance= zeros ( 1 1 , 1 1 ) ;
34 c o n t r o l l e r S t a t e = s0 ;
35 i t e r a t i o n s = [ ] ;
36 %u = zeros ( 3 , T ) ; %P r e a l l o c a t i n g memory f o r

f a s t e r s i m u l l a t i o n s %Input t h r u s t u
37

38 options = mpcmoveopt ; %Like a l l o c a t i n g weights on
runtime

39 % options2 = mpcsimopt ( ) ; %used f o r sim
40 % options2 . P l a n t I n i t i a l S t a t e =s0 ;
41 % %options2 . OutputNoise = s0 ;
42 % options2 . RefLookAhead = ’on ’ ;
43 % options2 . MDLookAhead = ’on ’ ;
44 % options2 . Cons t ra in t s = ’on ’ ;
45 % options2 . OpenLoop = ’ of f ’ ;
46 % sim ( MPCobj , T , rtemp , [ ] , opt ions2 ) ;
47 % pause
48 o f f l i n e s t e p s = c e i l ( ( 2∗ pi/w) / t s t e p ) ;%planningHorizon−3

%planningHorizon ; %planningHorizon ;
49 f o r i = 2 : o f f l i n e s t e p s : T+ o f f l i n e s t e p s %T+

o f f l i n e s t e p s needs to c a l c u l a t e a few e x t r a s teps
but only output the ones necessary y=y ( : , 2 : T+1) ;

50

51

52 % needs to be read jus ted to the c o r r e c t r e f e r e n c e
s t a t e given at the end of the planning horizon

53 disp ( [ ’ i : ’ , num2str ( i ) , ’ of a t o t a l of ’ ,
num2str ( T ) , . . .

54 ’ and current e r r o r : ’ , num2str ( norm ( abs ( y
( 1 : 2 : 5 , i −1) . . .

55 − rtemp ( i −1 , 1 : 2 : 5 ) ’ ) ) ) ] ) ;
56 % end
57

58 [ unused , mpcmoveInfo]= mpcmove( MPCobj , x , x . Plant ,
rtemp ( i , : ) , [ ] , opt ions ) ; %[0 0 0 0 0 0 ] ,
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options ) ; %y3 ( : , i : i + o f f l i n e s t e p s −1)=
mpcmoveInfo . Yopt ( 1 : o f f l i n e s t e p s , : ) ’ not%
working %rtemp ( i + c e i l ( ( 1∗ pi/w) / t s t e p ) f o r phase

s h i f t in the t a r g e t r e f e r e n c e
59 %u ( 1 : 3 , i : i + o f f l i n e s t e p s −1) = mpcmoveInfo . Uopt ( 1 :

o f f l i n e s t e p s , : ) ’ ; %t h r u s t p r o f i l e
60

61 %Including E c l i p s e e f f e c t . Recommended use of a
sampling time lower than 120

62 f o r k =0: o f f l i n e s t e p s −1
63 i f k< c e i l ( ( 2 / 3 ) ∗ (2∗ pi/w) / t s t e p ) %mod( ( k+ i ) ∗

t s tep , ( 2 ∗ pi/w) )< (2/3) ∗ (2∗ pi/w)
64 y move = lsim ( s ta tespace , [ mpcmoveInfo . Uopt

( k + 1 , : ) ; zeros ( 1 , 3 ) ] , 0 : t s t e p : t s tep , y
( : , i +k−1) ) ;

65 y ( : , i +k ) = y move ( 2 , : ) ;
66 u ( 1 : 3 , i +k ) =mpcmoveInfo . Uopt ( k + 1 , : ) ;
67 e l s e
68 y move = lsim ( s ta tespace , [ zeros ( 1 , 3 ) ;

zeros ( 1 , 3 ) ] , 0 : t s t e p : t s tep , y ( : , i +k−1) ) ;
69 y ( : , i +k ) = y move ( 2 , : ) ;
70 u ( 1 : 3 , i +k ) =zeros ( 1 , 3 ) ;
71 end
72 end
73

74 %Without E c l i p s e e f f e c t .
75 % f o r k =0: o f f l i n e s t e p s −1
76 % y move = lsim ( s ta tespace , [ mpcmoveInfo .

Uopt ( k + 1 , : ) ; zeros ( 1 , 3 ) ] , 0 : t s t e p : t s tep , y ( : , i +k−1) )
;

77 % y ( : , i +k ) = y move ( 2 , : ) ;
78 % u ( 1 : 3 , i +k ) =mpcmoveInfo . Uopt ( k + 1 , : ) ;
79 % end
80

81 x . Plant= y ( : , i + o f f l i n e s t e p s −1) ; %i n t e r n a l s t a t e
of the mpc c o n t r o l l e r needs to be updated

82 x . LastMove= mpcmoveInfo . Uopt ( o f f l i n e s t e p s , : ) ; %
zeros ( 1 , 3 ) ;

83 % x . Disturbance= [0 0 0 0 0 ] ’ ;
84 % x . Covariance= zeros ( 1 1 , 1 1 ) ;
85 c o n t r o l l e r S t a t e = [ c o n t r o l l e r S t a t e x . Plant ] ;
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86 i t e r a t i o n s =[ i t e r a t i o n s mpcmoveInfo . I t e r a t i o n s ] ;
87 f o r k = 0 : 1 : o f f l i n e s t e p s
88 u(3∗k +1:3∗k+3)=mpcmoveInfo . Uopt ( k + 1 , : ) ;
89 end
90

91 % mpcmoveInfo . Cost
92 % i f max( abs ( y ( : , i −1) − r ( : , i −1) )

. ∗ [ 1 ; 1 0 0 ; 1 ; 1 0 0 ; 1 ; 1 0 0 ] ) < 0 . 1
93 % i f max( mpcmoveInfo . Cost ) < 10
94 % display ( ’ Time in days ’ )
95 % time =( i + o f f l i n e s t e p s ) ∗ t s t e p /(60∗60∗24)
96 % squarecost=sum(sum( abs ( ( ( 1 0 0 ∗u ) ∗ (100∗u ’ ) ) ∗

t s t e p ) ) )
97 % abscos t=sum(sum( abs ( u∗ t s t e p ) ) )
98 % p l o t ( u ’ )
99 % return ;

100 % end
101 end
102

103 u=u ( : , 2 : T+1) ;
104 y=y ( : , 2 : T+1) ;

MPC configuration function

1 %netSATmpc Author : Pan ay io t i s D. Kremmydas
2 %Reference : HCW MPC Example 2 : J u l i a n Scharnagl
3 %MPC o b j e c t and s t a t e space d e f i n i t i o n funct ion
4

5 func t ion [ MPCobj , sys1 ] = netSATmpc (w, t s t e p )
6

7 %Including E c l i p s e e f f e c t . Recommended use of a
sampling time lower than 120

8 planningHorizon = c e i l ( 2∗ ( 2 / 3 ) ∗ (2∗ pi/w) / t s t e p ) %Has to
be a mult ip le of the t o t a l number of s teps an

o r b i t
9 controlHorizon = c e i l ( ( 2 / 3 ) ∗ (2∗ pi/w) / t s t e p ) +1 %

M i t i g a t e s the e f f o r t to reach r e f e r r e n c e i n t o more
s teps . Should be equal to planningHorizon f o r
t h r u s t p r o f i l e s

10
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11 %Without E c l i p s e e f f e c t .
12 % planningHorizon = c e i l ( 3∗ ( 2∗ pi/w) / t s t e p ) %Has to be

a mult ip le of the t o t a l number of s teps an o r b i t
13 % controlHorizon = c e i l ( ( 2∗ pi/w) / t s t e p ) +2 %M i t i g a t e s

the e f f o r t to reach r e f e r r e n c e i n t o more s teps .
Should be equal to planningHorizon f o r t h r u s t
p r o f i l e s

14

15 %2 ∗ s t e p s O r b i t ; % Control horizon in s teps i s 2
o r b i t s . Control horizon can be anything below
planning horizon . %%%%%%%%

16 %For the implementation of s a t e l l i t e s i t makes sense
to have a c o n t r o l horizon and a planning horizon
only when the r e f e r e n c e s t a t e i s propagated

17 %when i t i s not having a c o n t r o l l e r t h a t achieves a
steady s t a t e e a r l i e r than the a c q u i s i t i o n time
would r e s u l t in a a t r a j e c t o r y t h a t

18 %loops around the acquired s t a t e u n t i l the end of the
manuever t r y i n g to hold t h a t steady s t a t e ,
r e s u l t i n g in major c o s t in f u e l consumption .

19 %% Contineus S t a t e space model of the H i l l equat ions
20

21 A = [ 0 , 1 , 0 , 0 , 0 , 0 ;
22 0 , 0 , 0 , 0 , 0 , 2∗w;
23 0 , 0 , 0 , 1 , 0 , 0 ;
24 0 , 0 , −w∗w, 0 , 0 , 0 ;
25 0 , 0 , 0 , 0 , 0 , 1 ;
26 0 , −2∗w, 0 , 0 , 3∗w∗w, 0 ] ;
27

28 B = [ 0 , 0 , 0 ;
29 1 , 0 , 0 ;
30 0 , 0 , 0 ;
31 0 , 1 , 0 ;
32 0 , 0 , 0 ;
33 0 , 0 , 1 ] ;
34

35 C = eye ( 6 ) ;
36

37 D = zeros ( 6 , 3 ) ;
38

39
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40

41 sys1 = ss (A, B , C,D) ;
42 sys1 . InputGroup . ManipulatedVariables = 1 : 3 ;
43 sys1 . OutputGroup . MeasuredOutputs = 1 : 6 ;
44

45 sys1=c2d ( sys1 , t s t e p ) ;
46

47

48 v e r b o s i t y = mpcverbosity ( ’ o f f ’ ) ; % Temporarily d i s a b l e
command l i n e messages .

49 MPCobj= mpc( sys1 , t s tep , planningHorizon , controlHorizon
) ;

50 v e r b o s i t y = mpcverbosity ( ’ on ’ ) ;
51

52 maxAcc = 8e−6/1.5; %3∗ 5 . 3N
53 % MPCobj . ManipulatedVariables ( 1 ) . Min = −maxAcc ;
54 % MPCobj . ManipulatedVariables ( 1 ) . Max = +maxAcc ;
55 % MPCobj . ManipulatedVariables ( 2 ) . Min = −maxAcc ;
56 % MPCobj . ManipulatedVariables ( 2 ) . Max = +maxAcc ;
57 % MPCobj . ManipulatedVariables ( 3 ) . Min = −maxAcc ;
58 % MPCobj . ManipulatedVariables ( 3 ) . Max = +maxAcc ;
59 %Thrust has to be manually s e t to zero f o r

the remaining planning horizon . The
d e f a u l t implementation i s leaving i t
constant with the value of the l a s t s tep
of the c o n t r o l horizon

60 MPCobj . ManipulatedVariables ( 1 ) . Min ( 1 :
controlHorizon ) = −maxAcc ;

61 MPCobj . ManipulatedVariables ( 1 ) . Max ( 1 :
controlHorizon ) = +maxAcc ;

62 MPCobj . ManipulatedVariables ( 2 ) . Min ( 1 :
controlHorizon ) = −maxAcc ;

63 MPCobj . ManipulatedVariables ( 2 ) . Max ( 1 :
controlHorizon ) = +maxAcc ;

64 MPCobj . ManipulatedVariables ( 3 ) . Min ( 1 :
controlHorizon ) = −maxAcc ;

65 MPCobj . ManipulatedVariables ( 3 ) . Max ( 1 :
controlHorizon ) = +maxAcc ;

66 MPCobj . ManipulatedVariables ( 1 ) . Min (
controlHorizon : planningHorizon ) = 0 ;

67 MPCobj . ManipulatedVariables ( 1 ) . Max (
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controlHorizon : planningHorizon ) = 0 ;
68 MPCobj . ManipulatedVariables ( 2 ) . Min (

controlHorizon : planningHorizon ) = 0 ;
69 MPCobj . ManipulatedVariables ( 2 ) . Max (

controlHorizon : planningHorizon ) = 0 ;
70 MPCobj . ManipulatedVariables ( 3 ) . Min (

controlHorizon : planningHorizon ) = 0 ;
71 MPCobj . ManipulatedVariables ( 3 ) . Max (

controlHorizon : planningHorizon ) = 0 ;
72

73

74 % o f f l i n e T i m e s t a r t = c e i l ( 0 . 2 ∗ ( 2 ∗ pi/w) / t s t e p ) ;
75 % off l ineTime end= c e i l ( 0 . 4 ∗ ( 2 ∗ pi/w) / t s t e p ) ;
76 % MPCobj . ManipulatedVariables ( 1 ) . Min ( 1 :

o f f l i n e T i m e s t a r t ) = −maxAcc ∗ 0 . 1 ;
77 % MPCobj . ManipulatedVariables ( 1 ) . Max ( 1 :

o f f l i n e T i m e s t a r t ) = +maxAcc ∗ 0 . 1 ;
78 % MPCobj . ManipulatedVariables ( 2 ) . Min ( 1 :

o f f l i n e T i m e s t a r t ) = −maxAcc ;
79 % MPCobj . ManipulatedVariables ( 2 ) . Max ( 1 :

o f f l i n e T i m e s t a r t ) = +maxAcc ;
80 % MPCobj . ManipulatedVariables ( 3 ) . Min ( 1 :

o f f l i n e T i m e s t a r t ) = −maxAcc ∗ 0 . 1 ;
81 % MPCobj . ManipulatedVariables ( 3 ) . Max ( 1 :

o f f l i n e T i m e s t a r t ) = +maxAcc ∗ 0 . 1 ;
82 % MPCobj . ManipulatedVariables ( 1 ) . Min (

o f f l i n e T i m e s t a r t : o f f l ineTime end ) = 0 ;
83 % MPCobj . ManipulatedVariables ( 1 ) . Max (

o f f l i n e T i m e s t a r t : o f f l ineTime end ) = 0 ;
84 % MPCobj . ManipulatedVariables ( 2 ) . Min (

o f f l i n e T i m e s t a r t : o f f l ineTime end ) = 0 ;
85 % MPCobj . ManipulatedVariables ( 2 ) . Max (

o f f l i n e T i m e s t a r t : o f f l ineTime end ) = 0 ;
86 % MPCobj . ManipulatedVariables ( 3 ) . Min (

o f f l i n e T i m e s t a r t : o f f l ineTime end ) = 0 ;
87 % MPCobj . ManipulatedVariables ( 3 ) . Max (

o f f l i n e T i m e s t a r t : o f f l ineTime end ) = 0 ;
88 % MPCobj . ManipulatedVariables ( 1 ) . Min (

of f l ineTime end : planningHorizon ) = −maxAcc ∗ 0 . 1 ;
89 % MPCobj . ManipulatedVariables ( 1 ) . Max (

of f l ineTime end : planningHorizon ) = +maxAcc ∗ 0 . 1 ;
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90 % MPCobj . ManipulatedVariables ( 2 ) . Min (
of f l ineTime end : planningHorizon ) = −maxAcc ;

91 % MPCobj . ManipulatedVariables ( 2 ) . Max (
of f l ineTime end : planningHorizon ) = +maxAcc ;

92 % MPCobj . ManipulatedVariables ( 3 ) . Min (
of f l ineTime end : planningHorizon ) = −maxAcc ∗ 0 . 1 ;

93 % MPCobj . ManipulatedVariables ( 3 ) . Max (
of f l ineTime end : planningHorizon ) = +maxAcc ∗ 0 . 1 ;

94

95

96

97

98 %% s p e c i f y nominal values f o r inputs and outputs
99 MPCobj . Model . Nominal .U = [ 0 ; 0 ; 0 ] ;

100 MPCobj . Model . Nominal . Y = [ 0 ; 0 ; 0 ; 0 ; 0 ; 0 ] ;
101 %% s p e c i f y s c a l e f a c t o r s f o r inputs and outputs
102 MPCobj .MV( 1 ) . S c a l e F a c t o r = 0 . 0 0 0 0 0 0 2 ; %min −100nN/m

max +100nN/m Can be +−8000nN and should be
inc luding timed t h r u s t usage

103 MPCobj .MV( 2 ) . S c a l e F a c t o r = 0 . 0 0 0 0 0 0 2 ;
104 MPCobj .MV( 3 ) . S c a l e F a c t o r = 0 . 0 0 0 0 0 0 2 ;
105 MPCobj .OV( 1 ) . S c a l e F a c t o r = 4 ; %min −2000m

max +2000m i f x0=semimajor =2000
106 MPCobj .OV( 2 ) . S c a l e F a c t o r = 0 . 0 0 4 ; %min −2.1236m/

s max +2.1236m/s i f dx0=x0∗angularSpeed
107 MPCobj .OV( 3 ) . S c a l e F a c t o r = 2 ; %min −1000m

max +1000m i f y0= i n i t y c h i e f a m p l i t u d e
=1000

108 MPCobj .OV( 4 ) . S c a l e F a c t o r = 0 . 0 0 2 ; %min −1.0618m/
s max +1.0618m/s i f dy0=y0∗angularSpeed or
semimajor∗ s q r t ( 0 . 7 5 ) ∗omega %∗0.001

109 MPCobj .OV( 5 ) . S c a l e F a c t o r = 2 ; %min −1000m
max +1000m i f z0=semimajor/2

110 MPCobj .OV( 6 ) . S c a l e F a c t o r = 0 . 0 0 2 ; %min −1.0618m/
s max +1.0618m/s i f dz0=z0∗angularSpeed

111

112 %% use custom output dis turbance model
113 %s e t o u t d i s t ( MPCobj , ’ model ’ , MPCobj ModelOD ) ;
114 %% use custom measurement noise model
115 %MPCobj . Model . Noise = MPCobj ModelMN ;
116

74



117 %% s p e c i f y c o n s t r a i n t s f o r MV and MV Rate
118 % MPCobj .MV( 1 ) . Min = −0.5;
119 % MPCobj .MV( 1 ) . Max = 0 . 5 ;
120 %% s p e c i f y weights
121 MPCobj . Weights .MV = [1 1 1 ] ;
122 MPCobj . Weights . MVRate =0∗[1 1 1 ] ; %p o s i t i v e e f f e c t on

unstable f i n i s h l i n e e f f e c t , negat ive e f f e c t on
spiked e f f i c i e n t t h r u s t behavior ( p o s i t i v e in
u n e f f i c i e n t square behavior )

123 % INPUTWeights = ones ( planningHorizon , 3 ) ; %
Output weight zero u n t i l end of planning horizon (
f i n i t e Horizon LQR c o s t funct ion )

124 % INPUTWeights ( planningHorizon , : ) = [0 0 0 ] ; % Output
weight zero u n t i l end of planning horizon ( f i n i t e

Horizon LQR c o s t funct ion )
125 % INPUTWeights ( planningHorizon −1 , : ) = [0 0 0 ] ;
126 % INPUTWeights ( planningHorizon −2 , : ) = [0 0 0 ] ;
127 % INPUTWeights ( planningHorizon −3 , : ) = [0 0 0 ] ;
128 % INPUTWeights ( planningHorizon −4 , : ) = [0 0 0 ] ;
129 % MPCobj . Weights .MV = INPUTWeights ;
130 %MPCobj .MV( 1 ) . Target = 0 . 0 0 0 0 2 ;
131 %MPCobj .MV( 2 ) . Target =−0.0002;
132 %MPCobj .MV( 3 ) . Target = 0 . 0 0 0 0 2 ;
133 outputWeights = zeros ( planningHorizon , 6 ) ; %

Output weight zero u n t i l end of planning horizon (
f i n i t e Horizon LQR c o s t funct ion )

134 outputWeights ( planningHorizon , : ) = 1 . 7∗ [ 1 1 1 1 1 1 ] ; %
Output weight zero u n t i l end of planning horizon (

f i n i t e Horizon LQR c o s t funct ion )
135 MPCobj . Weights .OV = outputWeights ; %

Output weight zero u n t i l end of planning horizon (
f i n i t e Horizon LQR c o s t funct ion )

136 %MPCobj . Weights .OV = [1 1 1 1 1 1 ] ;
137

138 MPCobj . Weights . ECR = 1 ; %Harder c o n s t r a i n t s ,
increased computation time , b e t t e r r e s u l t s

139

140 MPCobj . Optimizer . MaxIter= 1 0 0 ; %Limit the amount of
time necessary to compute a s o l u t i o n

141 MPCobj . Optimizer . UseSuboptimalSolution =1; %Give the
s o l u t i o n computed within the MaxIter l i m i t
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142 MPCobj . Optimizer . UseWarmStart =1;
143

144 s e t E s t i m a t o r ( MPCobj , ’ custom ’ ) ;%necessary f o r simulink
145

146 % [ coredata , s t a t e d a t a , onl inedata ] =
getCodeGenerationData ( MPCobj ) ;

147 % fun = ’ mpcmoveCodeGeneration ’ ;
148 % funOutput = ’mpcmoveMEX’ ;
149 % Cfg = coder . conf ig ( ’ mex ’ ) ;
150 % Cfg . DynamicMemoryAllocation = ’ of f ’ ;
151 % codegen( ’− config ’ , Cfg , fun , ’−o ’ , funOutput , ’− args ’ , . . .
152 % { coder . Constant ( coredata ) , s t a t e d a t a , onl inedata } )

;

Dynamic model

1 %P an ay io t i s D. Kremmydas
2 %Find i n i t i a l values t h a t when used in the CW

equations , the r e s u l t i n g
3 %p l o t s ressemble p a r t i c u l a r c i r c u l a r or e l e p t i c a l

motions in the LO axes .
4

5 %%RADS: radians/second
6

7 func t ion [ x , y , z , dx , dy , dz ] = FreeDri f tFormat ions ( x0 , y0 ,
z0 , dx0 , dy0 , dz0 , omeg , t )

8 x = ( ( 4∗ dx0/omeg) − 6∗z0 ) ∗ s in (omeg∗ t ) − (2∗dz0/
omeg) ∗ cos (omeg∗ t ) + (6∗omeg∗z0−3∗dx0 ) ∗ t + ( x0
+(2∗dz0/omeg) ) ;

9 y = y0∗ cos (omeg∗ t ) + ( dy0/omeg) ∗ s in (omeg∗ t ) ;
10 z = ( ( 2∗ dx0/omeg) − 3∗z0 ) ∗ cos (omeg∗ t ) + ( dz0/omeg) ∗

s in (omeg∗ t ) + (4∗ z0− (2∗dx0/omeg) ) ;
11

12 dx = (4∗dx0−6∗z0∗omeg) ∗ cos (omeg∗ t ) +2∗dz0∗ s in (omeg∗ t )
+6∗z0∗omeg−3∗dx0 ;

13 dy = −y0∗omeg∗ s i n (omeg∗ t ) +dy0∗ cos (omeg∗ t ) ;
14 dz = (3∗ z0∗omeg−2∗dx0 ) ∗ s in (omeg∗ t ) +dz0∗ cos (omeg∗ t ) ;
15 re turn
16 %%%could be much l i g h t e r computat ional ly i f f o r a

computation i t e r r a t i o n
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17 %%%i n t e r v a l of 10 samples per second , adding to the
l o c a t i o n vector the

18 %%%(v e l o c i t y vec tor mean f o r t h a t i n t e r v a l ) ∗ (
i n t e r v a l time )

19

20

21 %%D i g i t a l way of robot ( no a c c e l e r a t i o n ) : Taking a
l o c a t i o n and a given speed

22 %%( Ca l c u l a te new optimal speed ) Finding the next
l o c a t i o n according to the x , y , z+= ( new veloci ty ) ∗ (
time ) i n t e r v a l between t h a t l o c a t i o n and

23 %%the next .
24 %

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

25 %%I t e r a t i o n based c a l c u l a t i o n : A c c e l e r a t i o n i s not
time dependant , a l l

26 %%other q u a n t i t i e s can be c a l c u l a t e d based on the
previous step v e l o c i t y

27 %%and p o s i t i o n ( which gives the approximate
a c c e l e r a t i o n f o r the current i n t e r v a l ) ,

28 %%and approximated given the i t e r a t i o n time xdot+=
xdotdot ∗ t , x+=xdot∗ t

Moving Plane formation generator

1 func t ion [ x , y , z , dx , dy , dz]= cw moving plane (
in i t y ampl i tude , s e m i m a j o r x z p l a n e e l l i p s e ,
s a t e l l i t e n u m b e r , angularSpeed , t )

2 %%%%%CW Moving Plane Formation ( Moving Y bar on YZ and
YX axes ) : x0=(+−k ) ∗ a r b i t r a r y , y0= a r b i t r a r y , z0=0

, dx0=0 , dy0= a r b i t r a r y , dz0=(+−k ) ∗ ( 0 . 5 ) ∗omega∗x0 ,
where k i s the corresponding number of the

s a t e l l i t e
3 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%\\\\\\\

S a t e l l i t e F o r m a t i o n NORMAL LVLH(X , Y , Z)
4 %s e m i m a j o r x z p l a n e e l l i p s e =400; % c o i n c i d e s with the

x−a x i s i n i t i a l d i s t a n c e of the required o r b i t in
meters , semi−minor on z−a x i s i s always h a l f (
o r b i t a l mechanics ) %asuming t h a t the i n i t i a l z0 i s

77



s e t to 0 f o r the f i r s t of the s a t e l l i t e s
5 d z 0 e l l i p s e = −( s e m i m a j o r x z p l a n e e l l i p s e ∗

angularSpeed ) /2; %v e l o c i t y necessary to form an
e l l i p s e centered on x =0 , z=0

6 %i n i t y a m p l i t u d e =800; %; % because s t a r t i n g point i s
x0= s e m i m a j o r x z p l a n e e l l i p s e an i n i t i a l y0
amplitude w i l l give a yaw to the formation e l i p s e

7 i n i t y v e l o c i t y =1.234567∗ d z 0 e l l i p s e ;% because
s t a r t i n g point i s x0= s e m i m a j o r x z p l a n e e l l i p s e an

i n i t i a l dy0 v e l o c i t y w i l l give a r o l l to the
formation e l i p s e

8 %s a t e l l i t e n u m b e r =4;
9

10 %When y ( t ) i s a t i t s peak when z ( t ) i s a t i t s peak ( t =
pi /2 f o r the condi t ions above ) and y ( pi /2)= s q r t
( 0 . 7 5 ) ∗ s e m i m a j o r x z p l a n e e l l i p s e , then the
s a t e l l i t e s are o r b i t i n g in constant d i s t a n c e to the

o r i g i n
11 %y ( t ) +z ( t ) =x ( t ) when ymax( t ) ˆ2+zmax ( t ) ˆ2=xmax ( t ) ˆ 2 ,

zmax and xmax l inked with semimazor a x i s
12 %i n i t y v e l o c i t y = s q r t ( 0 . 7 5 ) ∗

s e m i m a j o r x z p l a n e e l l i p s e ∗angularSpeed=
866 .0254∗0 .00113027258

13 s=length ( t ) ;
14 f o r k = 1 : s a t e l l i t e n u m b e r
15 i f mod( k , 2 ) ;
16 [ x ( k , 1 : s ) , y ( k , 1 : s ) , z ( k , 1 : s ) , dx ( k , 1 : s ) , dy ( k , 1 : s ) , dz

( k , 1 : s ) ] = FreeDri f tFormat ions ( k∗
s e m i m a j o r x z p l a n e e l l i p s e , in i t y ampl i tude
, 0 , 0 , i n i t y v e l o c i t y , k∗ d z 0 e l l i p s e , angularSpeed
, t ) ;

17 e l s e
18 [ x ( k , 1 : s ) , y ( k , 1 : s ) , z ( k , 1 : s ) , dx ( k , 1 : s ) , dy ( k , 1 : s ) , dz

( k , 1 : s ) ] = FreeDri f tFormat ions (−(k−1)∗
s e m i m a j o r x z p l a n e e l l i p s e , in i t y ampl i tude
, 0 , 0 , i n i t y v e l o c i t y ,−(k−1)∗ d z 0 e l l i p s e ,
angularSpeed , t ) ;

19 end
20 end
21 %

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
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Projected Circular Orbit formation generator

1

2 func t ion [ x , y , z , dx , dy , dz]= cw pco (
s e m i m a j o r x z p l a n e e l l i p s e ,
s a t e l l i t e n u m b e r , angularSpeed , t )

3 T=2∗pi/angularSpeed ;
4 %%%%%P r o j e c t e d C i r c u l a r Orbit ( on X−Y

plane ) : x0= a r b i t r a r y , y0= a r b i t r a r y , z0
=0 , dx0=0 , dy0=−2dz0 , dz0 = ( 0 . 5 ) ∗
omega∗x0

5 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%\\\\\\\
S a t e l l i t e F o r m a t i o n NORMAL LVLH(X , Y , Z)

6 %%%the fol lowing 3 v a r i a b l e s p e r f e c t l y
def ine every p o s s i b l e s i n g l e plane
f o r c e f r e e formation : x0 , z0 , dx0 ,
dz0 are always dependant f o r a FFF
centered at or ig in , one def ines the
others )

7 %s e m i m a j o r x z p l a n e e l l i p s e =1000; %
c o i n c i d e s with the x−a x i s i n i t i a l
d i s t a n c e of the required o r b i t in
meters , semi−minor on z−a x i s i s always
h a l f ( o r b i t a l mechanics ) %asuming t h a t
the i n i t i a l z0 i s s e t to 0 f o r the
f i r s t of the s a t e l l i t e s

8 %s a t e l l i t e n u m b e r =4;
9 d z 0 e l l i p s e = −( s e m i m a j o r x z p l a n e e l l i p s e

∗angularSpeed ) /2; %v e l o c i t y necessary
to form an e l l i p s e centered on x =0 , z=0

10 i n i t y a m p l i t u d e =0; %; % because s t a r t i n g
point i s x0= s e m i m a j o r x z p l a n e e l l i p s e

an i n i t i a l y0 amplitude w i l l give a
yaw to the formation e l i p s e

11 i n i t y v e l o c i t y =2∗ d z 0 e l l i p s e ;% because
s t a r t i n g point i s x0=
s e m i m a j o r x z p l a n e e l l i p s e an i n i t i a l
dy0 v e l o c i t y w i l l give a r o l l to the
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formation e l i p s e
12

13 %When y ( t ) i s a t i t s peak when z ( t ) i s a t
i t s peak ( t =pi /2 f o r the condi t ions
above ) and y ( pi /2)= s q r t ( 0 . 7 5 ) ∗
s e m i m a j o r x z p l a n e e l l i p s e , then the
s a t e l l i t e s are o r b i t i n g in constant
d i s t a n c e to the o r i g i n

14 %y ( t ) +z ( t ) =x ( t ) when ymax( t ) ˆ2+zmax ( t ) ˆ2=
xmax ( t ) ˆ 2 , zmax and xmax l inked with
semimazor a x i s

15 %i n i t y v e l o c i t y = s q r t ( 0 . 7 5 ) ∗
s e m i m a j o r x z p l a n e e l l i p s e ∗
angularSpeed=
866 .0254∗0 .00113027258

16 s=length ( t ) ;
17 f o r k = 1 : s a t e l l i t e n u m b e r
18 [ xt , yt , zt , dxt , dyt , dzt ] =

FreeDri f tFormat ions (
s e m i m a j o r x z p l a n e e l l i p s e ,
in i t y ampl i tude , 0 , 0 , i n i t y v e l o c i t y
, d z 0 e l l i p s e , angularSpeed , ( ( k−1)/
s a t e l l i t e n u m b e r ) ∗T ) ;

19 [ x ( k , 1 : s ) , y ( k , 1 : s ) , z ( k , 1 : s ) , dx ( k , 1 : s ) ,
dy ( k , 1 : s ) , dz ( k , 1 : s ) ] =
FreeDri f tFormat ions ( xt , yt , zt , dxt , dyt
, dzt , angularSpeed , t ) ;

20 end
21 re turn

3 in plane, 1 out of plan formation generator

1 func t ion [ x , y , z , dx , dy , dz]= cw plane 1out (
i n i t y c h i e f a m p l i t u d e ,
s e m i m a j o r x z p l a n e e l l i p s e ,
s a t e l l i t e n u m b e r , angularSpeed , t )

2 T=2∗pi/angularSpeed ;
3 %%%%%CW one plane formation , 1 out of plane :

x0= a r b i t r a r y , y0= a r b i t r a r y , z0=0 , dx0=0 ,
dy0=−2dz0 , dz0 = ( 0 . 5 ) ∗omega∗x0
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4 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%\\\\\\\
S a t e l l i t e F o r m a t i o n NORMAL LVLH(X , Y , Z)

5 %%%the fol lowing 3 v a r i a b l e s p e r f e c t l y def ine
every p o s s i b l e s i n g l e plane f o r c e f r e e
formation : x0 , z0 , dx0 , dz0 are always
dependant f o r a FFF centered at or ig in , one

def i nes the others )
6 %s e m i m a j o r x z p l a n e e l l i p s e =1000; % c o i n c i d e s

with the x−a x i s i n i t i a l d i s t a n c e of the
required o r b i t in meters , semi−minor on z−
a x i s i s always h a l f ( o r b i t a l mechanics ) %
asuming t h a t the i n i t i a l z0 i s s e t to 0 f o r

the f i r s t of the s a t e l l i t e s
7 d z 0 e l l i p s e = −( s e m i m a j o r x z p l a n e e l l i p s e ∗

angularSpeed ) /2; %v e l o c i t y necessary to
form an e l l i p s e centered on x =0 , z=0

8 in i t y deputy ampl i tude =0; %; % because
s t a r t i n g point i s x0=
s e m i m a j o r x z p l a n e e l l i p s e an i n i t i a l y0
amplitude w i l l give a yaw to the formation
e l i p s e

9 i n i t y d e p u t y v e l o c i t y =0;% because s t a r t i n g
point i s x0= s e m i m a j o r x z p l a n e e l l i p s e an
i n i t i a l dy0 v e l o c i t y w i l l give a r o l l to
the formation e l i p s e

10 %i n i t y c h i e f a m p l i t u d e =100;
11 i n i t y c h i e f v e l o c i t y = 0 . 8 ;
12 %s a t e l l i t e n u m b e r =4;
13

14 %When y ( t ) i s a t i t s peak when z ( t ) i s a t i t s
peak ( t =pi /2 f o r the condi t ions above ) and
y ( pi /2)= s q r t ( 0 . 7 5 ) ∗
s e m i m a j o r x z p l a n e e l l i p s e , then the
s a t e l l i t e s are o r b i t i n g in constant
d i s t a n c e to the o r i g i n

15 %y ( t ) +z ( t ) =x ( t ) when ymax( t ) ˆ2+zmax ( t ) ˆ2=xmax (
t ) ˆ 2 , zmax and xmax l inked with semimazor
a x i s

16 %i n i t y v e l o c i t y = s q r t ( 0 . 7 5 ) ∗
s e m i m a j o r x z p l a n e e l l i p s e ∗angularSpeed=

866 .0254∗0 .00113027258
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17 s=length ( t ) ;
18 [ x ( 1 , 1 : s ) , y ( 1 , 1 : s ) , z ( 1 , 1 : s ) , dx ( 1 , 1 : s ) , dy ( 1 , 1 : s

) , dz ( 1 , 1 : s ) ] = FreeDri f tFormat ions ( 0 ,
i n i t y c h i e f a m p l i t u d e , 0 , 0 ,
i n i t y c h i e f v e l o c i t y , 0 , angularSpeed , t ) ;

19 f o r k = 2 : s a t e l l i t e n u m b e r
20 [ xt , yt , zt , dxt , dyt , dzt ] =

FreeDri f tFormat ions (
s e m i m a j o r x z p l a n e e l l i p s e ,
in i t y deputy ampl i tude , 0 , 0 ,
i n i t y d e p u t y v e l o c i t y , d z 0 e l l i p s e ,
angularSpeed , ( ( k−1)/( s a t e l l i t e n u m b e r −1)
) ∗T ) ;

21 [ x ( k , 1 : s ) , y ( k , 1 : s ) , z ( k , 1 : s ) , dx ( k , 1 : s ) , dy ( k
, 1 : s ) , dz ( k , 1 : s ) ] = FreeDri f tFormat ions (
xt , yt , zt , dxt , dyt , dzt , angularSpeed , t ) ;

22 end
23 %

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

Equidistant formation generator

1 %P an ay io t i s D. Kremmydas
2 func t ion [ x , y , z , dx , dy , dz]= cw equidis tant (

s e m i m a j o r x z p l a n e e l l i p s e , s a t e l l i t e n u m b e r ,
angularSpeed , t )

3 %%%%%CW Equidis tant Formation : x0= a r b i t r a r y , y0=0 , z0
=0 , dx0=0 , dy0=x0∗ s q r t ( 0 . 7 5 ) ∗omega , dz0=x0 ∗ ( 0 . 5 )
∗omega

4 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%\\\\\\\
S a t e l l i t e F o r m a t i o n NORMAL LVLH(X , Y , Z) 0

5 %%the fol lowing 3 v a r i a b l e s p e r f e c t l y def ine every
p o s s i b l e s i n g l e plane f o r c e f r e e formation : x0 , z0
, dx0 , dz0 are always dependant f o r a FFF centered
at or ig in , one def ines the others )

6 %s e m i m a j o r x z p l a n e e l l i p s e =1000; % c o i n c i d e s with
the x−a x i s i n i t i a l d i s t a n c e of the required o r b i t
in meters , semi−minor on z−a x i s i s always h a l f (
o r b i t a l mechanics ) %asuming t h a t the i n i t i a l z0 i s
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s e t to 0 f o r the f i r s t of the s a t e l l i t e s
7 d z 0 e l l i p s e = −( s e m i m a j o r x z p l a n e e l l i p s e ∗0 .5∗

angularSpeed ) ; %v e l o c i t y necessary to form an
e l l i p s e centered on x =0 , z=0

8 i n i t y a m p l i t u d e =0; %; % because s t a r t i n g point i s x0=
s e m i m a j o r x z p l a n e e l l i p s e an i n i t i a l y0 amplitude

w i l l give a yaw to the formation e l i p s e
9 i n i t y v e l o c i t y = s q r t ( 0 . 7 5 ) ∗ s e m i m a j o r x z p l a n e e l l i p s e

∗angularSpeed ;% because s t a r t i n g point i s x0=
s e m i m a j o r x z p l a n e e l l i p s e an i n i t i a l dy0 v e l o c i t y

w i l l give a r o l l to the formation e l i p s e
10 T=2∗pi/angularSpeed ;
11 %s a t e l l i t e n u m b e r =4;
12 %When y ( t ) i s a t i t s peak when z ( t ) i s a t i t s peak ( t =

pi /2 f o r the condi t ions above ) and y ( pi /2)= s q r t
( 0 . 7 5 ) ∗ s e m i m a j o r x z p l a n e e l l i p s e , then the
s a t e l l i t e s are o r b i t i n g in constant d i s t a n c e to the

o r i g i n
13 %y ( t ) +z ( t ) =x ( t ) when ymax( t ) ˆ2+zmax ( t ) ˆ2=xmax ( t ) ˆ 2 ,

zmax and xmax l inked with semimazor a x i s
14 %i n i t y v e l o c i t y = s q r t ( 0 . 7 5 ) ∗

s e m i m a j o r x z p l a n e e l l i p s e ∗angularSpeed=
866 .0254∗0 .00113027258

15 s=length ( t ) ;
16 f o r k = 1 : s a t e l l i t e n u m b e r
17 [ xt , yt , zt , dxt , dyt , dzt ] = FreeDri f tFormat ions (

s e m i m a j o r x z p l a n e e l l i p s e , in i t y ampl i tude
, 0 , 0 , i n i t y v e l o c i t y , d z 0 e l l i p s e , angularSpeed , ( (
k−1)/ s a t e l l i t e n u m b e r ) ∗T ) ;

18 [ x ( k , 1 : s ) , y ( k , 1 : s ) , z ( k , 1 : s ) , dx ( k , 1 : s ) , dy ( k , 1 : s ) , dz (
k , 1 : s ) ] = FreeDri f tFormat ions ( xt , yt , zt , dxt , dyt ,
dzt , angularSpeed , t ) ;

19 end
20 %

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

Tetrahedral formation generator

1 func t ion [ x , y , z , dx , dy , dz]= t e t r a h e d r a l (
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s e m i m a j o r x z p l a n e e l l i p s e , i n c l i n a t i o n ,
angularSpeed , t )

2 %%%%%Tetrahedra l Formation ( constant volume i n s i d e
formation ) : c h i e f : x0= a r b i t r a r y , y0=x0/2 , z0=0 ,
dx0=0 , dy0=0 , dz0=x0 ∗ ( 0 . 5 ) ∗omega

3 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%\\\\\\\
S a t e l l i t e F o r m a t i o n NORMAL LVLH(X , Y , Z)

4 s=length ( t ) ;
5 l e n g h t o f t e t r a h e d r o n x a x i s =2∗

s e m i m a j o r x z p l a n e e l l i p s e ;
6 A= 0 . 3∗ ( s q r t ( 3 ) /4)∗ l e n g h t o f t e t r a h e d r o n x a x i s ;
7 %i n c l i n a t i o n =+1;%1 or −1, y and dy can a l s o be

inversed to achieve inversed i n c l i n a t i o n of the
l o c a l o r b i t of the 2 s a t e l l i t e s

8

9 [ x ( 1 , 1 : s ) , y ( 1 , 1 : s ) , z ( 1 , 1 : s ) , dx ( 1 , 1 : s ) , dy ( 1 , 1 : s ) , dz
( 1 , 1 : s ) ] = FreeDri f tFormat ions (−A∗ (2/3) ,−
i n c l i n a t i o n ∗A∗ s q r t ( 3 ) ,2∗ s q r t ( 2 ) ∗A/3 ,+2∗ angularSpeed
∗2∗ s q r t ( 2 ) ∗A/3 ,0 ,+ angularSpeed∗A/3 , angularSpeed , t ) ;

10 [ x ( 2 , 1 : s ) , y ( 2 , 1 : s ) , z ( 2 , 1 : s ) , dx ( 2 , 1 : s ) , dy ( 2 , 1 : s ) , dz
( 2 , 1 : s ) ] = FreeDri f tFormat ions (2∗A,A/ s q r t ( 3 ) , 0 , 0 ,
i n c l i n a t i o n ∗2∗ s q r t ( 2 ) ∗A∗angularSpeed/ s q r t ( 3 ) ,−
angularSpeed∗A, angularSpeed , t ) ;

11 [ x ( 3 , 1 : s ) , y ( 3 , 1 : s ) , z ( 3 , 1 : s ) , dx ( 3 , 1 : s ) , dy ( 3 , 1 : s ) , dz
( 3 , 1 : s ) ] = FreeDri f tFormat ions (−
l e n g h t o f t e t r a h e d r o n x a x i s / 2 , 0 , 0 , 0 , 0 , 0 ,
angularSpeed , t ) ;

12 [ x ( 4 , 1 : s ) , y ( 4 , 1 : s ) , z ( 4 , 1 : s ) , dx ( 4 , 1 : s ) , dy ( 4 , 1 : s ) , dz
( 4 , 1 : s ) ] = FreeDri f tFormat ions (
l e n g h t o f t e t r a h e d r o n x a x i s / 2 , 0 , 0 , 0 , 0 , 0 ,
angularSpeed , t ) ;

13

14 %s e m i m a j o r x z p l a n e e l l i p s e =
l e n g h t o f t e t r a h e d r o n x a x i s /3;

15 %s a t e l l i t e n u m b e r =4;
16 %

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
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Helix formation generator

1 func t ion [ x , y , z , dx , dy , dz]= cw hel ix (
s e m i m a j o r x z p l a n e e l l i p s e , s a t e l l i t e n u m b e r ,
angularSpeed , t )

2 T=2∗pi/angularSpeed ;
3 %%%%%CW Helix Formation : c h i e f : x0= a r b i t r a r y , y0=x0/2

, z0=0 , dx0=0 , dy0=0 , dz0=x0 ∗ ( 0 . 5 ) ∗omega
4 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%\\\\\\\

S a t e l l i t e F o r m a t i o n NORMAL LVLH(X , Y , Z)
5 %s e m i m a j o r x z p l a n e e l l i p s e =1000; % c o i n c i d e s with

the x−a x i s i n i t i a l d i s t a n c e of the required o r b i t
in meters , semi−minor on z−a x i s i s always h a l f (
o r b i t a l mechanics ) %asuming t h a t the i n i t i a l z0 i s
s e t to 0 f o r the f i r s t of the s a t e l l i t e s

6 d z 0 e l l i p s e = −( s e m i m a j o r x z p l a n e e l l i p s e ∗0 .5∗
angularSpeed ) ; %v e l o c i t y necessary to form an
e l l i p s e centered on x =0 , z=0

7 i n i t y a m p l i t u d e = s e m i m a j o r x z p l a n e e l l i p s e /2; %; %
because s t a r t i n g point i s x0=
s e m i m a j o r x z p l a n e e l l i p s e an i n i t i a l y0 amplitude

w i l l give a yaw to the formation e l i p s e
8 i n i t y v e l o c i t y =0;% because s t a r t i n g point i s x0=

s e m i m a j o r x z p l a n e e l l i p s e an i n i t i a l dy0 v e l o c i t y
w i l l give a r o l l to the formation e l i p s e

9 %s a t e l l i t e n u m b e r =4;
10 %When y ( t ) i s a t i t s peak when z ( t ) i s a t i t s peak ( t =

pi /2 f o r the condi t ions above ) and y ( pi /2)= s q r t
( 0 . 7 5 ) ∗ s e m i m a j o r x z p l a n e e l l i p s e , then the
s a t e l l i t e s are o r b i t i n g in constant d i s t a n c e to the

o r i g i n
11 %y ( t ) +z ( t ) =x ( t ) when ymax( t ) ˆ2+zmax ( t ) ˆ2=xmax ( t ) ˆ 2 ,

zmax and xmax l inked with semimazor a x i s
12 %i n i t y v e l o c i t y = s q r t ( 0 . 7 5 ) ∗

s e m i m a j o r x z p l a n e e l l i p s e ∗angularSpeed=
866 .0254∗0 .00113027258

13 s=length ( t ) ;
14 f o r k = 1 : s a t e l l i t e n u m b e r
15 [ xt , yt , zt , dxt , dyt , dzt ] = FreeDri f tFormat ions (

s e m i m a j o r x z p l a n e e l l i p s e , in i t y ampl i tude
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, 0 , 0 , i n i t y v e l o c i t y , d z 0 e l l i p s e , angularSpeed , ( (
k−1)/ s a t e l l i t e n u m b e r ) ∗T ) ;

16 [ x ( k , 1 : s ) , y ( k , 1 : s ) , z ( k , 1 : s ) , dx ( k , 1 : s ) , dy ( k , 1 : s ) , dz (
k , 1 : s ) ] = FreeDri f tFormat ions ( xt , yt , zt , dxt , dyt ,
dzt , angularSpeed , t ) ;

17 end
18 %

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

Alternative main function for perpetual control

1 %% 2 : Formation CONTROL Acquis i t ion Transfer
2 i f formation2==1 %cw equidis tant
3 [ x1 , y1 , z1 , dx1 , dy1 , dz1 ]= . . .
4 cw equidis tant ( s e m i m a j o r x z p l a n e e l l i p s e ,

s a t e l l i t e n u m b e r , angularSpeed , 0 ) ;
5 e l s e i f formation2==2 %cw pco
6 [ x1 , y1 , z1 , dx1 , dy1 , dz1 ]= . . .
7 cw pco ( s e m i m a j o r x z p l a n e e l l i p s e ,

s a t e l l i t e n u m b e r , angularSpeed , 0 ) ;
8 e l s e i f formation2==3 %cw pco
9 [ x1 , y1 , z1 , dx1 , dy1 , dz1 ]= . . .

10 cw plane 1out ( i n i t y c h i e f a m p l i t u d e ,
s e m i m a j o r x z p l a n e e l l i p s e ,
s a t e l l i t e n u m b e r , angularSpeed , 0 ) ;

11 e l s e i f formation2==4 %cw pco
12 [ x1 , y1 , z1 , dx1 , dy1 , dz1 ]= . . .
13 cw equidis tant ( s e m i m a j o r x z p l a n e e l l i p s e ,

s a t e l l i t e n u m b e r , angularSpeed , 0 ) ;
14 e l s e i f formation2==5 %cw pco
15 [ x1 , y1 , z1 , dx1 , dy1 , dz1 ]= . . .
16 t e t r a h e d r a l ( s e m i m a j o r x z p l a n e e l l i p s e ,

i n c l i n a t i o n , angularSpeed , t f r e e d r i f t ) ;
17 end
18

19 o f f l i n e s t e p s = c e i l ( ( 2∗ pi/angularSpeed ) /
sampleInterval )

20

21 f o r k = 1 : s a t e l l i t e n u m b e r
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22 %FreeDri f tFormat ions ( x0 , y0 , z0 , dx0 , dy0 , dz0 ,
omeg , t ) values propagate according to
the CW equations f o r formation1 o r b i t s

23 s0 = [ x t o t ( k , t 1 l e n ) ; dxtot ( k , t 1 l e n ) ;
y t o t ( k , t 1 l e n ) ; dytot ( k , t 1 l e n ) ; z t o t ( k
, t 1 l e n ) ; dztot ( k , t 1 l e n ) ] ; %i n i t i a l
s p a c e c r a f t s t a t e before c o n t r o l
i n i t i a t i o n

24 s r = [ x1 ( k ) ; dx1 ( k ) ; y1 ( k ) ; dy1 ( k ) ; z1 ( k ) ;
dz1 ( k ) ] ; %s t a t e t h a t belongs to the
defined second formation to be acquired :

formation2
25 y= s0 ; %i n i t i a l s p a c e c r a f t s t a t e before

c o n t r o l i n i t i a t i o n
26

27 %c o n t r o l rout ine :
28 f o r i =2: o f f l i n e s t e p s : t 2 l e n + o f f l i n e s t e p s
29 [ u ] = c t r l m p c t r a n s f e r h i l l ( s0

( 1 ) , . . .
30 s0 ( 3 ) ,

. . .
31 s0 ( 5 ) ,

. . .
32 s0 ( 2 ) ,

. . .
33 s0 ( 4 ) ,

. . .
34 s0 ( 6 ) ,

. . .
35 s r ( 1 ) ,

. . .
36 s r ( 3 ) ,

. . .
37 s r ( 5 ) ,
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. . .
38 s r ( 2 )

, . . .

39 s r ( 4 )
, . . .

40 s r ( 6 )
, . . .

41 angularSpeed
,
sampleInterval
) ;

42

43 %t r a j e c t o r y simulated s t a t e s
using the given mult i s tep
t h r u s t vec tor {normally
replaced by o r k i t advanced
simulat ion }

44 f o r j =0 : o f f l i n e s t e p s −1
45 i f j< c e i l ( ( 2 / 3 ) ∗ (2∗ pi/

angularSpeed ) /
sampleInterval ) %
before e c l i p s e { ls im
with t h r u s t
u t i l i z a t i o n }

46 y move = lsim (
s ta tespace , [ u(3∗ j
+1 :3∗ j +3) ; zeros
( 1 , 3 ) ] , 0 :
sampleInterval :
sampleInterval , y
( : , i + j −1) ) ;

47 y ( : , i + j ) = y move ( 2 , : )
;

48 e l s e %a f t e r e c l i p s e { ls im
without t h r u s t

u t i l i z a t i o n }
49 y move = lsim (
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s ta tespace , [ zeros
( 1 , 3 ) ; zeros ( 1 , 3 )
] , 0 : sampleInterval :
sampleInterval , y ( : ,
i + j −1) ) ;

50 y ( : , i + j ) = y move ( 2 , : )
;

51 end
52 end
53 s0 = y move ( 2 , : ) ; %f i n a l

simulated s t a t e becomes the
t a r g e t s t a t e f o r the next
c o n t r o l i t e r a t i o n

54 [ rtemp , ˜ , ˜ ] = lsim ( s ta tespace ,
zeros ( 3 , o f f l i n e s t e p s +1) , 0 :
sampleInterval : sampleInterval
∗ ( o f f l i n e s t e p s ) , s r ) ;

55 s r=rtemp ( o f f l i n e s t e p s + 1 , : ) ’ ; %
propagated t a r g e t s t a t e :
should include the number of
s teps t h a t the current
s a t e l l i t e s t a t e has been
propagated s i n c e l a s t mpc c a l l

56 %( e . g . s teps propagated using
the MPC inputs or s teps
propagated using zero inputs
in the case of the e c l i p s e )

57 end
58 y=y ( : , 2 : t 2 l e n +1) ; %generated t r a j e c t o r y

f o r the o v e r a l l s imulat ion
59 x t o t ( k , t 1 l e n +1 : t 1 l e n + t 2 l e n ) =y ( 1 , : ) ;
60 y t o t ( k , t 1 l e n +1 : t 1 l e n + t 2 l e n ) =y ( 3 , : ) ;
61 z t o t ( k , t 1 l e n +1 : t 1 l e n + t 2 l e n ) =y ( 5 , : ) ;
62 dxtot ( k , t 1 l e n +1 : t 1 l e n + t 2 l e n ) =y ( 2 , : ) ;
63 dytot ( k , t 1 l e n +1 : t 1 l e n + t 2 l e n ) =y ( 4 , : ) ;
64 dztot ( k , t 1 l e n +1 : t 1 l e n + t 2 l e n ) =y ( 6 , : ) ;
65 sum(sum( abs ( ( ( 1 0 0 ∗u ) ∗ (100∗u ’ ) ) ∗

sampleInterval ) ) )
66 sum(sum( abs ( u∗ sampleInterval ) ) )
67 %%%%%%%%%%%%%%%%
68 display ( ’ s a t e l l i t e
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:///////////////////////////////////////////////////////////////
’ , num2str ( k ) )

69 end
70 %%%%%%%%%%%%%%%%%

Alternative MPC wrapper for perpetual control

1 func t ion [ u ] = c t r l m p c t r a n s f e r h i l l ( x0 , y0 , z0 , dx0
, dy0 , dz0 , x1 , y1 , z1 , dx1 , dy1 , dz1 , angularSpeed ,
sampleInterval ) %w=angular frequency m %t s t e p =
sample time

2 %CTRL HILL MPC based on
3 %Co−ordinat ion and c o n t r o l of d i s t r i b u t e d s p a c e c r a f t
4 %systems using convex opt imizat ion techniques
5 % Detai led explanat ion goes here
6 %s t a r t mean [ a t h e t a i q1 q2 Omega lambda e ]
7 %f i n a l time ( o f f s e t from now) Tf [ s ]
8 % t a r g e t vec tor a t Tf : X f i n a l
9 %time step Ts ( i n t e g r a t i o n step s i z e )

10

11

12 %%%%%%%F i r s t run , mpc i n i t i a l i z a t i o n .
13 p e r s i s t e n t VarName ;
14 p e r s i s t e n t MPCobj ;
15 p e r s i s t e n t opt ions ;
16 p e r s i s t e n t x ;
17 i f isempty (VarName) %Can cause problems when

changing angularSpeed in the c a l l i n g funct ion
18 [ MPCobj]= netSATmpc ( angularSpeed ,

sampleInterval ) ;
19 x = mpcstate ( MPCobj ) ; %Current s t a t e
20 options = mpcmoveopt ; %Used f o r p o s s i b l e

weight a l l o c a t i o n on runtime
21 VarName = 0 ;
22 end
23 %

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

24

25 %disp ( ’ >>>> MPC CTRL TRANSFER HILL ’ ) ;
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26 s0 = [ x0 ; dx0 ; y0 ; dy0 ; z0 ; dz0 ] ; %Current S t a t e
27 s r = [ x1 ; dx1 ; y1 ; dy1 ; z1 ; dz1 ] ; %Propagated

Reference S t a t e ( according to the current
t imestep of the s imulat ion )

28 x . Plant= s0 ; %i n t e r n a l s t a t e of the mpc
c o n t r o l l e r needs to be i n i t i a l l i z e d .

29 [ unused , mpcmoveInfo]= mpcmove( MPCobj , x , x . Plant ,
s r , [ ] , opt ions ) ;

30 f o r k = 0 : 1 : s i z e ( mpcmoveInfo . Uopt )−2
31 u(3∗k +1:3∗k+3)=mpcmoveInfo . Uopt ( k + 1 , : ) ;
32 end
33 % u
34 % pause
35

36

37 %% Dispaying inputs
38 % disp ( ’ X 0 LVLV : ’ ) ;
39 % disp ( X 0 LVLV ) ;
40 % disp ( ’ X T LVLH : ’ ) ;
41 % disp ( X T LVLH ) ;
42 % disp ( ’ o r b i t S t e p s : ’ ) ;
43 % disp ( o r b i t S t e p s ) ;
44 % disp ( ’ controlHorizon : ’ ) ;
45 % disp ( controlHorizon ) ;
46 % disp ( ’ stepDuration : ’ ) ;
47 % disp ( stepDuration ) ;
48

49

50 %% Return value u
51 % I f computation s u c c e s s f u l , re turn an (1 x n )

matrix c o n s i s t i n g of
52 % concatenated c o n t r o l v e c t o r s ( a c c e l e r a t i o n in m/

s ) .
53 % n = 3 ∗ c e i l ( contro lHor izon s / s teps )
54 end

Simulation animation file generator

1 %P an ay io t i s D. Kremmydas
2 func t ion inLoopTakeFrame AppendToGif ( k )
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3 im = frame2im ( getframe ) ;
4 [ imind , cm] = rgb2ind ( im , 2 5 6 ) ;
5 % Write to the GIF F i l e
6 i f k == 1
7 imwrite ( imind , cm, ’ Animated . g i f ’ , ’ g i f ’ , ’

Loopcount ’ , in f , ’ DelayTime ’ , 1/60) ;
8 e l s e
9 imwrite ( imind , cm, ’ Animated . g i f ’ , ’ g i f ’ , ’

WriteMode ’ , ’ append ’ , ’ DelayTime ’ , 1/60) ;
10 end
11 re turn
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