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Abstract-Advanced microcontroller bus architecture (AMBA) protocol family 

provides metric-driven verification of protocol compliance, enabling 

comprehensive testing of interface intellectual property (IP) blocks and System-

on-Chip (SoC) designs. This bachelor thesis presents a work aimed to design the 

AMBA AHB2APB bridge modeled in VHDL hardware description language 

(HDL)  and simulate the results for read and write operation of data and address 

using the INCISIVE Cadence tool.  

 

1. Introduction 
 

Embedded system designers have a choice of using a share or point-to-point bus in 

their designs. Typically, an embedded design will have a general purpose processor, 

cache, SDRAM, DMA port, and Bridge port to a slower I/O bus, such as the 

Advanced Micro Controller Bus Architecture (AMBA) Advanced Peripheral Bus 

(APB). In addition, there might be a port to a DSP processor, or hardware accelerator, 

common with the increased use of video in many applications. As chip-level device 

geometries become smaller and smaller, more and more functionality can be added 

without the concomitant increase in power and cost per die as seen in prior 

generations.  

The Advanced Microcontroller Bus Architecture (AMBA) was introduced by ARM 

Ltd 1996 and is widely used as the on-chip bus in system on chip (SoC) designs. 

AMBA is a registered trademark of ARM Ltd. The first AMBA buses were Advanced 

System Bus (ASB) and Advanced Peripheral Bus (APB). In its 2nd version, AMBA 

2, ARM added AMBA High-performance Bus (AHB) that is a single clock-edge 

protocol. In 2003, ARM introduced the 3rd generation, AMBA 3, including AXI to 

reach even higher performance interconnects and the Advanced Trace Bus (ATB) as 

part of the Core Sight on-chip debugs and trace solution. These protocols are today 

the de-facto standard for 32-bit embedded processors because they are well 

documented and can be used without royalties. In 2010 the AMBA 4 specifications 

were introduced starting with AMBA 4 AXI4, then in 2011 extending system wide 

coherency with AMBA 4 ACE. In 2013 the AMBA 5 CHI (Coherent Hub Interface) 

specification was introduced, with a re-designed high-speed transport layer and 

features designed to reduce congestion. The thesis has been organized as follows. The 

first section contains the description of AXI4-Lite protocol. Second section describes 

the AXI 4 Stream specification. Third section shows how we used Questasim for 

synthesis and simulation. 
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2. AXI protocol 
 

 

The AMBA AXI protocol supports high-performance, high-frequency system designs. 

The AXI protocol: 

• is suitable for high-bandwidth and low-latency designs 

• provides high-frequency operation without using complex bridges 

• meets the interface requirements of a wide range of components 

• is suitable for memory controllers with high initial access latency 

• provides flexibility in the implementation of interconnect architectures 

• is backward-compatible with existing AHB and APB interfaces. 

 

 

The key features of the AXI protocol are: 

• separate address/control and data phases 

• support for unaligned data transfers, using byte strobes 

• uses burst-based transactions with only the start address issued 

• separate read and write data channels, that can provide low-cost Direct 

Memory Access (DMA) 

• support for issuing multiple outstanding addresses 

• support for out-of-order transaction completion 

• permits easy addition of register stages to provide timing closure. 

 

The AXI protocol includes the optional extensions that cover signaling for low-power 

operation. The AXI protocol includes the AXI4-Lite specification, a subset of AXI4 

for communication with simpler control register style interfaces within components. 
 

2.1 AXI4-Lite Definition 
 

The AXI-Full specification proposes a diff erent range of important features such as 

variable data and address bus widths with high bandwidth burst operations. Also, it 

off ers advanced caching support and several transaction assurances and access 

permissions. While these features off er the user flexibility and control, it is often 

useful to be provided with a much simpler peripheral which consists of only a subset 

of these functions. For that reason, a reduced feature variant of the AXI4-Full 

specification exists in the form of the “AXI4-Lite”. 

 

The AXI4-Lite interconnect provides only necessary interconnect transactions which 

are required, and high-level capabilities of the interconnect such as burst support, 

cache support, and variable bit widths for the address and data buses has been 

removed. The AXI4-Lite interconnect is suitable for applications where simple 

control and status monitoring capabilities are required for a custom built IP block. 

 

 

The key functionality of AXI4-Lite operation is: 

• all transactions are of burst length 1 

• all data accesses use the full width of the data bus 

— AXI4-Lite supports a data bus width of 32-bit or 64-bit. 
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• all accesses are Non-modifiable, Non-bufferable 

• Exclusive accesses are not supported. 
 

 

Both the AXI-Full and the AXI-Lite have five diff erent channels between the Master 

and the Slave. Data between the master and the slave can move in both directions 

simultaneously, and data transfer sizes can be diff erent. The AXI4-Full consists of 

single address with multiple data with a burst transaction up to 256 data beats, but 

AXI4-Lite provides only 1 data transfer per transaction with 32 bits data width. 
 

 

 
 Figure 1: The read architecture of AXI. 

 

 

A master interface initiates a transaction by specifying a source/target address of the 

transaction. Simultaneously the master specifies the size of the transaction, 

information about caching, privileges, QoS, or atomicity properties. There are 

optional user signals available. 

 

After the transaction is initiated, another phase occurs. If it is a read transaction the 

slave now starts to send data to the master. In case of a write transaction the master 

starts to send data to the slave. When the master finishes, the slave returns a response 

that 
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Figure 2: The write architecture of AXI. 

 

allows the master to learn whether the write transaction succeeded or failed. Note that 

each phase uses a different independent physical channel. Each channel uses 

handshake signals TVALID and TREADY. 

 

Such a design enables to use pipelining because there is no fixed relationship between 

the channels. This makes possible to trade-off between cycles of latency and 

maximum frequency of operation. 
 

 

 
 

2.2 AXI4 Interface: Signaling List and handshaking 
 

 

 

Figure 3: AXI4 interface signals 

Institutional Repository - Library & Information Centre - University of Thessaly
02/06/2024 05:41:08 EEST - 13.59.221.235



  
 

8 
 

 

All five transaction channels use the same VALID/READY handshake process to 

transfer address, data, and control information. This two-way flow control mechanism 

means both the master and slave can control the rate at which the information moves 

between master and slave. The source generates the VALID signal to indicate when 

the address, data or control information is available. The destination generates the 

READY signal to indicate that it can accept the information. Transfer occurs only 

when both the VALID and READY signals are HIGH. 

On master and slave interfaces there must be no combinatorial paths between input 

and output signals. 

Each channel has each own VALID/READY handshake: 

 Address (read/write) 

 Data (read/write) 

 Response (write only) 

 

It is up to the master to assert the valid signal and the slave to assert the ready signals 

for all channels except the read data channel where the slave asserts valid to indicate 

that it is returning data. The agent that asserts ready determines the flexibility as seen 

in the three waveform options below. 

 

 

Figure 4: Inserting Wait States (VALID before READY handshake) 
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Figure 5: Always Ready (READY before VALID handshake) 

 

 

 

Figure 6: Same Cycle Acknowledge (VALID with READY handshake) 
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2.3 AXI4 Interface: Read transaction 
 

 

Figure 7: AXI4 - Read Burst 

 

The AXI4 read interfaces allows for data phase transfer up to 256 beats as opposed to 

the 16 beats that were supported for AXI3. Some signal features may not be required 

for all types of transfer, depending on user requirements and capabilities. 

 

Read Address Channel: 

ARID[3:0] - Master Read address ID. This signal is the identification tag for the read 

address group of signals. 

ARADDR[31:0] - Master Read address. The read address bus gives the initial address 

of a read burst transaction. Only the start address of the burst is provided and the 

control signals that are issued alongside the address detail how the address is 

calculated for the remaining transfers in the burst. 

ARLEN[7:0] - Master Burst length. The burst length gives the exact number of 

transfers in a burst. This information determines the number of data transfers 

associated with the address. 

ARSIZE[2:0] - Master Burst size. This signal indicates the size of each transfer in the 

burst. 

ARBURST[1:0] - Master Burst type. The burst type, coupled with the size 

information, details how the address for each transfer within the burst is calculated.  

ARLOCK[1:0] - Master Lock type. This signal provides additional information about 

the atomic characteristics of the transfer. 

ARCACHE[3:0] - Master Cache type. This signal provides additional information 

about the cacheable characteristics of the transfer. 

ARPROT[2:0] - Master Protection type. This signal provides protection unit 

information for the transaction. 

Institutional Repository - Library & Information Centre - University of Thessaly
02/06/2024 05:41:08 EEST - 13.59.221.235



  
 

11 
 

 

ARVALID - Master Read address valid. This signal indicates, when HIGH, that the 

read address and control information is valid and will remain stable until the address 

acknowledge signal, ARREADY, is high. 1 = address and control information valid 0 

= address and control information not valid. 

ARREADY - Slave Read address ready. This signal indicates that the slave is ready 

to accept an address and associated control signals: 1 = slave ready 0 = slave not 

ready. 

 

Read Data Channel: 

RID[3:0] - Slave Read ID tag. This signal is the ID tag of the read data group of 

signals. The RID value is generated by the slave and must match the ARID value of 

the read transaction to which it is responding. 

RDATA[31:0] - Slave Read data. The read data bus can be 8, 16, 32, 64, 128, 256, 

512, or 1024 bits wide. 

RRESP[1:0] - Slave Read response. This signal indicates the status of the read 

transfer. The allowable responses are OKAY, EXOKAY, SLVERR, and DECERR. 

RLAST - Slave Read last. This signal indicates the last transfer in a read burst. 

RVALID - Slave Read valid. This signal indicates that the required read data is 

available and the read transfer can complete: 1 = read data available 0 = read data not 

available. 

RREADY - Master Read ready. This signal indicates that the master can accept the 

read data and response information: 1= master ready 0 = master not ready. 

 

 

2.4 AXI4 Interface: Write transaction 
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Figure 8: AXI4 - Write Burst 

 

 

The AXI4 write interfaces allow for data phase transfer up to 256 beats as opposed to 

the 16 beats that were supported for AXI3. There exist three channels: Address, Data, 

Response and a selectable data transfer size. 

 

 

 

 

Write Address Channel: 

AWID[3:0] - Master Write address ID. This signal is the identification tag for the 

write address group of signals. 

AWADDR[31:0] - Master Write address. The write address bus gives the address of 

the first transfer in a write burst transaction. The associated control signals are used to 

determine the addresses of the remaining transfers in the burst. 

AWLEN[3:0] - Master Burst length. The burst length gives the exact number of 

transfers in a burst. This information determines the number of data transfers 

associated with the address.  

AWSIZE[2:0] - Master Burst size. This signal indicates the size of each transfer in 

the burst. Byte lane strobes indicate exactly which byte lanes to update.  

AWBURST[1:0] - Master Burst type. The burst type, coupled with the size 

information, details how the address for each transfer within the burst is calculated.  

AWLOCK[1:0] - Master Lock type. This signal provides additional information 

about the atomic characteristics of the transfer.  
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AWCACHE[3:0] - Master Cache type. This signal indicates the bufferable, 

cacheable, write-through, write-back, and allocate attributes of the transaction.  

AWPROT[2:0] - Master Protection type. This signal indicates the normal, privileged, 

or secure protection level of the transaction and whether the transaction is a data 

access or an instruction access. 

AWVALID - Master Write address valid. This signal indicates that valid write 

address and control information are available: 1 = address and control information 

available 0 = address and control information not available. The address and control 

information remain stable until the address acknowledge signal, AWREADY, goes 

HIGH. 

AWREADY - Slave Write address ready. This signal indicates that the slave is ready 

to accept an address and associated control signals: 1 = slave ready 0 = slave not 

ready. 

 

Write Data Channel: 

WID[3:0] - Master Write ID tag. This signal is the ID tag of the write data transfer. 

The WID value must match the AWID value of the write transaction. 

WDATA[31:0] - Master Write data. The write data bus can be 8, 16, 32, 64, 128, 

256, 512, or 1024 bits wide. 

WSTRB[3:0] - Master Write strobes. This signal indicates which byte lanes to update 

in memory. There is one write strobe for each eight bits of the write data bus. 

Therefore, WSTRB[n] corresponds to WDATA[(8 × n) + 7:(8 × n)]. 

WLAST - Master Write last. This signal indicates the last transfer in a write burst. 

WVALID - Master Write valid. This signal indicates that valid write data and strobes 

are available: 1 = write data and strobes available 0 = write data and strobes not 

available. 

WREADY - Slave Write ready. This signal indicates that the slave can accept the 

write data: 1 = slave ready 0 = slave not ready. 

 

Write Response Channel: 

BID[3:0] - Slave Response ID. The identification tag of the write response. The BID 

value must match the AWID value of the write transaction to which the slave is 

responding. 

BRESP[1:0] - Slave Write response. This signal indicates the status of the write 

transaction. The allowable responses are OKAY, EXOKAY, SLVERR, and 

DECERR. 

BVALID - Slave Write response valid. This signal indicates that a valid write 

response is available: 1 = write response available 0 = write response not available. 
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BREADY - Master Response ready. This signal indicates that the master can accept 

the response information. 1 = master ready 0 = master not ready. 

 

 

2.5 AXI4-Lite Signaling List 
 

 

 
 

   Figure 9: AXI4-Lite interface signals 

 

AXI4 signals not supported in AXI4-Lite 

 

The AXI4-Lite interface does not support the following signals: 

 AWLEN, ARLEN: The burst length is defined to be 1, equivalent to an 

AxLEN value of zero. 

 AWSIZE, ARSIZE: All accesses are defined to be the width of the data bus. 

 AWBURST, ARBURST: The burst type has no meaning because the burst 

length is 1. 

 AWLOCK, ARLOCK: All accesses are defined as Normal accesses, 

equivalent to an AxLOCK value of zero. 

 AWCACHE, ARCACHE: All accesses are defined as Non-modifiable, Non-

bufferable, equivalent to an AxCACHE value of 0b0000. 

 WLAST, RLAST: All bursts are defined to be of length 1, equivalent to a 

WLAST or RLAST value of 1. 

 

 

2.6 AXI4-Lite Bus Width 
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AXI4-Lite has a fixed data bus width and all transactions are the same width as the 

data bus. The data bus width must be, either 32-bits or 64-bits. 

ARM expects that: 

• the majority of components use a 32-bit interface 

• only components requiring 64-bit atomic accesses use a 64-bit interface. 

A 64-bit component can be designed for access by 32-bit masters, but the 

implementation must ensure that the component sees all transactions as 64-bit 

transactions. 

 

 

2.7 AXI4-Lite Write Strobes 
 

The AXI4-Lite protocol supports write strobes. This means multi-sized registers can 

be implemented and also supports memory structures that require support for 8-bit 

and 16-bit accesses. 

All master interfaces and interconnect components must provide correct write strobes.  

Any slave component can choose whether to use the write strobes. The options 

permitted are: 

• to make full use of the write strobes 

• to ignore the write strobes and treat all write accesses as being the full data 

bus width 

• to detect write strobe combinations that are not supported and provide an 

error response. 

A slave that provides memory access must fully support write strobes. Other slaves in 

the memory map might support a more limited write strobe option. 

When converting from full AXI to AXI4-Lite, a write transaction can be generated on 

AXI4-Lite with all write strobes deasserted. Automatic suppression of such 

transactions is permitted but not required. 

 

 

2.8 AXI4-Lite Optional signaling 
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AXI4-Lite supports multiple outstanding transactions, but a slave can restrict this by 

the appropriate use of the handshake signals. 

AXI4-Lite does not support AXI IDs. This means all transactions must be in order, 

and all accesses use a single fixed ID value. 

AXI4-Lite does not support data interleaving, the burst length is defined as 1. 

 
 

3. AXI4-Lite Implementation 
 

The AXI4-Lite IP suite implemented in the scope of this thesis is a solution for the 

verification of AXI4-lite master and slave devices. The source code of the 

implementation is System Verilog and the design supports READ and WRITE 

transaction between N-Masters and N-Slaves.  

 

It supports: 

 1,2, 4,8,16 and 32 bytes data block size 

 Multiple outstanding transactions 

 Wait states injection 

 Full random timings 

 Programmable response type 

 Read/Write response check 

 Full random timings 

 Misaligned transfers 

 Protection and Cache signals 

 

AXI4-Lite Master commands 

1. ARTransaction(delay, address, protection) : Read address valid transaction task 

2. RTransaction(delay, data, response) : Read ready transaction task 

3. AWTransaction(delay, address, protection) : Write address valid transaction task 

4. WTransaction(delay, data, strobe) : Write valid transaction task 

5. BTransaction(delay,response) : Write Response ready transaction task  

6. ReadTransaction(address, protection, data, response) : Read data transaction task 

(1,2) 

7. WriteTransaction(address, protection, data, strobe, response) : Write data 

transaction task (3,4,5) 

 

AXI4-Lite Slave commands 
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1. ARTransaction(delay, address, protection) : Read address ready transaction 

task 

2. RTransaction(delay, data, response) : Read valid transaction task 

3. AWTransaction(delay, address, protection) : Write address ready transaction 

task 

4. WTransaction(delay, data, strobe) : Write ready transaction task 

5. BTransaction(delay,response) : Write Response valid transaction task  

6. ReadRequest(address, protection) : Read request transaction task (1) 

7. ReadResponse(data, response) : Read response transaction task (2) 

8. WriteRequest(address, protection, data, strobe) : Write request transaction 

task (3,4) 

9. WriteResponse(response) : Write response transaction task (5) 

10. RunReadLoop() : Task to initiate Read transactions. (data initialization, Read 

Valid response) 

11. RunWriteLoop() : Task to initiate Write data transactions. (transfer data to 

strobes) 

 

 

 

Figure 10: AXI4-Lite IP Suite FSM 
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4. AXI4-Stream Protocol Specification  
 

The AXI4-Stream protocol is used as a standard interface to connect components that 

wish to exchange data. The interface can be used to connect a single master, that 

generates data, to a single slave, that receives data. The protocol can also be used 

when connecting larger numbers of master and slave components. The protocol 

supports multiple data streams using the same set of shared wires, allowing a generic 

interconnect to be constructed that can perform upsizing, downsizing and routing 

operations. 

The AXI4-Stream interface also supports a wide variety of different stream types. The 

stream protocol defines the association between Transfers and Packets. 

The AXI4-Stream protocol is a simplex--one way--bus (a link) from a master to a 

slave. 

There is no way for the slave to respond. It can stop the data ow just by the handshake 

signals. In fact, a subset of AXI4-Stream is used in the write and read data channels 

of the AXI4 protocol.  

 
 

 

 
 

 

 

 
 

 

 
 

 

 

 
 

 

 
Figure 11: AXI4-Streaming Transfer 

 

AXI4 streaming does not have an address phase; all transactions go to the same place. 

Note that the direction is always from master to slave. Philosophically this may cloud 

the concept of master and slave. AXI streaming is very close to the MicroBlaze™ 

processor FSL except that there is no requirement that a processor be involved. 
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4.1 AXI4-Stream Interface: Signaling List and 

handshaking  
 

 

 
 

Figure 12: AXI4-Stream Interface Signals 
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All signals except of TVALID and TREADY are optional. There are predefined 

default values of the signals when any signal is missing. The n represents a number of 

bytes per data transfer. The signal TKEEP represents a mask of valid bytes in the 

TDATA signal. The zero bits of the signal marks bytes that can be removed from the 

stream. It is possible to perform 

a transfer where the TKEEP signal contains only zeros (unless there is the TLAST 

signal asserted). The IP cores are not required to be able to process the zero bytes. 

The signal TSTRB is a mask that describes whether the associated byte is a data byte 

(one) or a position byte (zero). A data byte is a normal valid data byte. A position byte 

indicates a relative position of data bytes within the stream. The data associated with 

position bytes is not valid. 

 

The pairs of values of TKEEP and TSTRB have associated semantics: 

 

 TKEEP(i) = 1 ^ TSTRB(i) = 1: the i-th byte is valid and must be transmitted. 

 TKEEP(i) = 1 ^ TSTRB(i) = 0: the i-th byte indicates relative position. 

 TKEEP(i) = 0 ^ TSTRB(i) = 0: the i-th byte can be removed from the stream. 

 TKEEP(i) = 0 ^ TSTRB(i) = 1: represents a forbidden combination. 

 

It is desirable to group bytes into structures called packets for more efficient 

processing. 

 

A packet is a similar concept to an AXI4 burst. The signal TLAST can be used by the 

destination to indicate a packet boundary. The protocol does not provide any explicit  

signaling of the start of a packet. 

 

The signals TID and TDEST provide an identification of a packet transmitted over the 

stream. This is useful when a unit supports packet interleaving during the transfer. 

Any processing stage of an AXI-Stream can modify those values. The TID identifies 

the source of a packet on the link. The signal TDEST provides coarse routing 

information for the data stream. A routing unit can use the TDEST signal to deliver a 

packet to the corresponding slave. 
 

 

 
Figure 13: Example of packet routing 

 

Handshake process 
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The TVALID and TREADY handshake determines when information is passed 

across the interface. A two-way flow control mechanism enables both the master and 

slave to control the 

rate at which the data and control information is transmitted across the interface.  

 

For a transfer to occur both the TVALID and TREADY signals must be asserted. 

Either TVALID or TREADY can be asserted first or both can be asserted in the same 

ACLK cycle. 

 

A master is not permitted to wait until TREADY is asserted before asserting 

TVALID. Once 

TVALID is asserted it must remain asserted until the handshake occurs. 

 

A slave is permitted to wait for TVALID to be asserted before asserting the 

corresponding 

TREADY. If a slave asserts TREADY, it is permitted to deassert TREADY before 

TVALID is asserted. 
 

 

 
 

Figure 14: Inserting Wait States (TVALID before TREADY handshake) 

 

Figure 15: Always Ready (TREADY before TVALID handshake) 
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Figure 16: Same Cycle Acknowledge (TVALID with TREADY handshake) 

 

4.2 AXI4-Stream Byte qualifiers 
 

There are two byte qualifiers supported by the AXI4-Stream protocol: 

 

1. TKEEP A byte qualifier used to indicate whether the content of the associated 

byte must be transported to the destination. 

2. TSTRB A byte qualifier used to indicate whether the content of the associated 

byte is a data byte or a position byte. 

 

Each bit of TKEEP and TSTRB is associated with a byte of payload: 

• TKEEP[x] is associated with TDATA[(8x+7):8x] 

• TSTRB[x] is associated with TDATA[(8x+7):8x]  

 

4.3 AXI4-Stream TKEEP qualification 
 

When TKEEP is asserted HIGH, it indicates that the associated byte must be 

transmitted to the destination. When TKEEP is deasserted LOW, it indicates a null 

byte that can be removed from the stream. 

 

It is legal to have a transfer that has all TKEEP bits deasserted LOW. It is 

permissible for a transfer that has all TKEEP bits deasserted LOW to be suppressed 

unless it has TLAST asserted HIGH.  

 

It is not mandatory for masters and slaves to handle null bytes, therefore any 

interconnect that is capable of inserting null bytes in a stream should also be capable 

of removing them before the stream arrives at a destination that is not capable of 

handling null bytes. 
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4.3 AXI4-Stream TSTRB qualification 
 

When TKEEP is asserted, TSTRB is used to indicate whether the associated byte is a 

data byte or a position byte. When TSTRB is asserted HIGH it indicates that the 

associated byte contains valid information, and is a data byte.  

 

When TSTRB is deasserted LOW it indicates that the associated byte does not 

contain valid information and is a position byte. A position byte is used to indicate the 

correct relative position of the data bytes within the stream. Position bytes are 

typically used when the data stream is performing a partial update of information at 

the destination. Since the data associated with a position byte is not valid, an 

interconnect need not transmit the TDATA associated with a byte for which TSTRB 

is deasserted LOW. 
 

 

 

4.4 AXI4-Stream Packet Boundaries 
 

 

A packet is a grouping of bytes that are transmitted together across the interface. 

Infrastructure components can typically be made more efficient by dealing with 

transfers that are grouped together in packets. An AXI4-Stream packet is similar to an 

AXI4 burst. 

 

The signals to be considered during a packet transfer are TID, TDEST, and TLAST.  

 

The uses of TLAST are: 

• when deasserted, TLAST indicates that another transfer can follow and 

therefore it is acceptable to delay the current transfer for the purpose of 

upsizing, downsizing, or 

merging 

• when asserted, TLAST can be used by a destination to indicate a packet 

boundary 

• when asserted, TLAST indicates an efficient point to make an arbitration 

change on a shared link. 

 

 

 

TLAST can be used to transmit information between the source and destination. The 

number of packets, and the number of assertions of TLAST, must be preserved 

between the master and slave. 
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No explicit signaling of the start of a packet boundary is given in the protocol. The 

start of a packet is determined as: 

• the first occurrence of a TID and TDEST pair after reset 

• the first transfer after the end of the preceding packet for any unique set of 

TID and TDEST values. 

 

All bytes within a packet are from the same source and for the same destination and 

have the same TID and TDEST values. 

 

The merging of transfers that belong to different packets is not permitted. This 

requires that two transfers with the same TID and TDEST values must not be merged 

if the earlier transfer has TLAST asserted.  

 

The merging of transfers with different TID or TDEST values is never permitted. 

 

 
 

 

4.5 AXI4-Stream Transfer with zero data or position byte 
 

 

A transfer can have TLAST asserted but contain no data or position bytes. This can 

be used to: 

• indicate the end of a packet when there are no more data or position bytes to 

transmit 

• push through any data that is held in intermediate buffers 

• complete an operation at an end-point that is expecting a TLAST at the end 

of a packet. 

 

A transfer that has TLAST asserted, but does not have any data or position bytes, can 

be merged with an earlier transfer with matching TID and TDEST values that does 

not also have TLAST asserted. 

 

Because reordering is not supported, sending a transfer with zero data bytes will 

effectively push through all transfers between a master and slave. 

 
 

4.5 AXI4-Stream User Signaling 
 

 

Typical uses of a streaming interface require some User sideband signaling. Sideband 

signaling can be used for data byte, transfer, packet, or frame-based information. 

 

There are several uses of User signaling. For example: 

• marking the location or type of special data items 
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• providing ancillary information that must accompany the data, such as parity, 

control signals, and flags 

• identifying segments of a packet. 

 

To ensure a consistent method of transporting User information the protocol defines 

that User signaling is transferred on a byte basis. 

 

It is recommended, but not required, that the number of TUSER bits is an integer 

multiple of the width of the interface in bytes. The User signals for each byte must be 

packed together in adjacent bits within TUSER. 

 

The location of the User bits is defined as: 

• each data byte has m User signals associated with it 

• the total width of the interface is n bytes, 

• the total number of User bits is u, where u = m * n 

 

The user signals for byte x, where x = 0 ... (n-1), are located at:  
TUSER[((x*m)+(m-1)):(x*m)] 

 

The transfer of TUSER bits, when the associated TKEEP signal is deasserted LOW, 

is not required or guaranteed. 

 

User bits associated with a null byte, as indicated by the associated TKEEP bit, must 

be removed from the data stream if the null byte is removed from the stream. If a null 

byte is inserted in the data stream the appropriate number of User bits must also be 

inserted. When inserting additional bits they must be fixed LOW. 

 

TUSER can be used to convey information that is relevant to an entire transfer rather 

than to individual bytes. An example of this is where the same information applies to 

every byte in a transfer and it is more efficient to indicate the additional information 

once only for the entire transfer rather than replicating it for each byte within the 

transfer. 

 

TUSER can be used to convey transfer based information but the transport 

mechanism will divide the TUSER information between the data bytes being 

transported. Reliable transport of transfer-based TUSER information can only be 

guaranteed under the following constraints: 

 

• the data bus width at the input to the interconnect must match the data bus 

width at the output of the interconnect 

• any data width conversion that occurs in the interconnect must not modify 

the packing of the data between the input to the interconnect and the output of 

the interconnect 
 
 

 

 

4.5 AXI4-Stream User Signaling 
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The AXI4-Stream interface has many similarities to an AXI4 write data channel. 

However, 

there are some key differences. These differences are summarized as: 

 

• the AXI4 write data channel does not permit interleaving 

• the AXI4-Stream interface does not have a defined or maximum burst or 

packet length 

• the AXI4-Stream interface allows the data width to be any integer number of 

data bytes 

• the AXI4-Stream interface includes TID and TDEST signals to indicate the 

source and destination respectively 

• the AXI4-Stream interface defines more precisely the manipulation of the 

TUSER sideband signals 

• the AXI4-Stream interface includes TKEEP signals to allow the insertion 

and removal of null bytes. 

 
 
 

5. AXI4-Stream Implementation 
 

The AXI4-Stream suite implemented in the scope of this thesis is a solution for the 

verification of AXI4-Stream master and slave devices. The source code of the 

implementation is System Verilog and operates as a master or a slave, along with the 

protocol bus monitor. 

 

It supports: 

 1,2, 4,8  and 16 bytes data block size 

 Up to 8 user bits per byte 

 Wait states injection 

 Full random timings 

 Programmable response type 

 

Limitations: 

 Doesn't support packets with position bytes 

 

 

AXI4-Stream Master Commands 
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1. sendData(inbuff, setLast, tid, tdest) : Sends data buffer 

2. genSingleTransfer(tdata,tkeep,tstrb,tlast,tuser,tid,tdest) : Generate single 

transfer on the AXI4-Stream bus. 

3. createUserBuf(inBuf) : Create the user defined buffer which will be 

transmitted alongside the data stream. The information of this buffer will be 

transmitted via TUSER bus when sendData() command is used. If the size of 

this buffer is less than transmitted data buffer the 0s will be transmitted. 

4. busIdle(idleCycles) : Holds the bus in the idle state for the specified clock 

cycles 

5. waitCommandDone() : Wait until all transactions in the buffer are finished 

6. startEnv() : Start the AXI4-Stream master environment. Don't use data transfer 

commands before the environment start. 

 

 

 

 

 

 

AXI4-Stream Slave Commands 

 

1. getSingleTransfer(tdata,tkeep,tstrb,tlast,tuser,tid,tdest) : Get single transfer on 

the AXI4-Stream bus. 

2. readData(outBuff) : Reads the complete data packet from the bus. 

3. readUserBuf(outBuff) : Read the user data. 

4. getTID_TDEST(tid, tdest) : Returns the values from the tdest and tid buses. 

5. startEnv() : Start the AXI4-Stream slave environment 

 
 
 

 
 

 
Figure 17: AXI4-Stream State Machine 
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6. Design integration and Simulation 
 

For both AXI4-Lite and AXI4-Stream IP Suites, Questa Advanced Simulator was 

used for synthesis and simulation. 

 

AXI4-Lite simulation  

For the simulation of the AXI4-Lite design the following test scenario was created: 

 

 1 AXI4-Lite Master interface 

 1 AXI4-Lite Slave interface 

 Insertion of random delays at both Master and Slave 

 Generation of random packets 

 Master: Writes Data – Gets Write Response – Reads Data – Gets Data 

 Slave: Puts Data 

 

 

 

Figure 18: AXI4-Lite Read/Write Transactions 
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Values of Read and Write Data (DataOut, DataIn) are the same on both master and 

slave interfaces, thus we can conclude the transaction was successful.  

 

 

 

 

AXI4-Lite simulation  

For the simulation of the AXI4-Stream design the following test scenario was created: 

 

 1 AXI4- Stream Master interface 

 1 AXI4-Stream Slave interface 

 1 AXI4-Stream monitor 

 Insertion of random delays at both Master and Slave 

 Generation of Random packets 

 Master creates a User buffer and sends data 

 Slave reads data and outputs them to the Read User Buffer 
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Figure 19: AXI4-Stream 

 

 

 

The values of TID, TDEST, TDATA are the same on both master and slave interfaces, thus 

we can conclude the transaction was successful.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

References 
 

[1]   AMBA® AXI™ and ACE™ Protocol Specification). Available at http://www.arm.com 

[2]  AXI4™ and AXI4-Lite™ protocol assertion descriptions. Available at 

http://www.arm.com 

[3]  Questa® SIM GUI Reference Manual Including Support for Questa SV/AFV. Software 

Version 10.4c 

 

Institutional Repository - Library & Information Centre - University of Thessaly
02/06/2024 05:41:08 EEST - 13.59.221.235

http://www.arm.com/
http://www.arm.com/

	1. Introduction
	2. AXI protocol
	2.1 AXI4-Lite Definition
	2.2 AXI4 Interface: Signaling List and handshaking
	2.3 AXI4 Interface: Read transaction
	2.4 AXI4 Interface: Write transaction
	2.5 AXI4-Lite Signaling List
	2.6 AXI4-Lite Bus Width
	2.7 AXI4-Lite Write Strobes
	2.8 AXI4-Lite Optional signaling
	3. AXI4-Lite Implementation
	4. AXI4-Stream Protocol Specification
	4.1 AXI4-Stream Interface: Signaling List and handshaking
	4.2 AXI4-Stream Byte qualifiers
	4.3 AXI4-Stream TKEEP qualification
	4.3 AXI4-Stream TSTRB qualification
	4.4 AXI4-Stream Packet Boundaries
	4.5 AXI4-Stream Transfer with zero data or position byte
	4.5 AXI4-Stream User Signaling
	4.5 AXI4-Stream User Signaling
	5. AXI4-Stream Implementation
	6. Design integration and Simulation
	References

