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Σύνοψη 

Θεωρούμε μια γραμμή παραγωγής που αποτελείται από N  μηχανές σε σειρά με 1N   

ενδιάμεσους πεπερασμένους αποθηκευτικούς χώρους, τοποθετημένους μεταξύ ζευγών 

διαδοχικών μηχανών. Τα προϊόντα ξεκινούν την επεξεργασία τους από την πρώτη μηχανή,  

επισκέπτονται κάθε μηχανή με συγκεκριμένη σειρά και εγκαταλείπουν το σύστημα από την N -

στή μηχανή. Οι χρόνοι επεξεργασίας των μηχανών θεωρούνται εκθετικά κατανεμημένες τυχαίες 

μεταβλητές. Κατά τον παραδοσιακό τρόπο λειτουργίας μιας τέτοιας γραμμής, μια μηχανή 

επιτρέπεται να επεξεργάζεται ένα προϊόν αν υπάρχει διαθέσιμος χώρος ενδιάμεσα αυτής και της 

επόμενης μηχανής. Αναφερόμαστε σε αυτό τον τρόπο λειτουργίας ως πολιτική εγκατεστημένων 

αποθηκευτικών χώρων (installation buffer policy). Σε αυτή την εργασία, θα διερευνήσουμε μια 

πολιτική που στοχεύει στην αύξηση της χρήσης των χώρων αυτών επιτρέποντας σε μια μηχανή 

να αποθηκεύει τα προϊόντα που παράγει στο συνολικό αποθηκευτικό χώρο μεταξύ αυτής και της 

τελευταίας μηχανής. Ο συνολικός χώρος στα κατάντη μιας μηχανής αναφέρεται ως κλιμακωτός 

αποθηκευτικός χώρος (echelon buffer) και αντιστοιχεί στο σύνολο των εγκατεστημένων χώρων 

στα κατάντη αυτής της μηχανής· η προκύπτουσα πολιτική αναφέρεται ως πολιτική κλιμακωτών 

αποθηκευτικών χώρων. Από την οπτική των αποθηκευτικών χώρων, κάθε ενδιάμεσος χώρος 

είναι κοινόχρηστος από όλες τις μηχανές στα ανάντη της γραμμής. Η πολιτική κλιμακωτών 

αποθηκευτικών χώρων χρησιμοποιεί καθολικά δεδομένα αφού επιτρέπει σε κάθε μηχανή να 

επεξεργάζεται προϊόντα βάσει του επιπέδου αποθέματος παραγωγής σε εξέλιξη (WIP) 

ολόκληρου του τμήματος της γραμμής στα κατάντη αυτής της μηχανής. Αντίθετα, η πολιτική 

εγκατεστημένων αποθηκευτικών χώρων χρησιμοποιεί μόνο τοπικά δεδομένα αφού επιτρέπει σε 

κάθε μηχανή να επεξεργάζεται προϊόντα βασισμένη στο επίπεδο αποθέματος σε εξέλιξη του 

τοπικού εγκατστημένου χώρου που έπεται αμέσως μετά την μηχανή. Για να αξιολογήσουμε την 

απόδοση της γραμμής στο πλαίσιο της πολιτικής κλιμακωτών αποθηκευτικών χώρων, 

αναπτύξαμε μια προσεγγιστική μέθοδο αποσύνθεσης του αρχικού συστήματος με N  μηχανές 

και 1N    κλιμακωτούς αποθηκευτικούς χώρους σε υποσυστήματα 2 μηχανών, όπου κάθε 

υποσύστημα έχει ένα ενδιάμεσο πεπερασμένο αποθηκευτικό χώρο που αντιπροσωπεύει ένα 

κλιμακωτό αποθεματικό χώρο στην αρχική γραμμή. Για την περίπτωση που οι μηχανές έχουν 

εκθετικά κατανεμημένους χρόνους επεξεργασίας (ανάλογο συνεχούς χρόνου του μοντέλου 

αξιοπιστίας Bernoulli), μοντελοποιούμε κάθε υποσύστημα 2-μηχανών σαν μια δισδιάστατη 

Μαρκοβιανή αλυσίδα που μπορεί να λυθεί αριθμητικά. Οι παράμετροι των υποσυστημάτων των 

2 μηχανών προσδιορίζονται από τις σχέσεις ροής των προϊόντων μέσω των κλιμακωτών 

αποθηκευτικών χώρων στο αρχικό σύστημα. Για την επίλυση των σχέσεων αυτών σχεδιάσαμε 

έναν επαναληπτικό αλγόριθμο. Η αριθμητική εφαρμογή δείχνει ότι η μέθοδος αυτή είναι υψηλής 

ακριβείας και υπολογιστικά αποδοτική. 

Λέξεις κλειδιά: γραμμή παραγωγής; κλιμακωτός αποθηκευτικός χώρος; αξιολόγηση απόδοσης; 

αποσύνθεση; προσομοίωση. 
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Abstract 

We consider a production line consisting of N  machines in series with 1N   finite intermediate 

buffers located between consecutive machine pairs. The parts begin their processing in the first 

machine, visit each machine in the line in a fixed order and leave the system from the N th 

machine. The processing times of the machines are assumed to be exponentially distributed 

random variables. In the traditional way of operating such a line, a machine is allowed to process 

a part if there is space in the single intermediate buffer between it and the next machine. We 

refer to this way of operation as installation buffer (IB) policy. In this thesis, we investigate a 

policy aimed at increasing the utilization of buffers by allowing a machine to store the parts that 

it produces in the total buffer space between it and the last machine. The total buffer downstream 

of a machine is referred to as echelon buffer and corresponds to the ensemble of the installation 

buffers downstream of this machine; the resulting policy is referred to as echelon buffer (EB) 

policy. From the point of view of buffers, under the EB policy, each intermediate buffer is shared 

by all its upstream machines. The EB policy uses global information because it enables each 

machine to process parts based on the WIP level of the entire part of the line downstream of this 

machine. On the contrary, the IB policy uses only local information because it enables each 

machine to process parts based on the WIP level of the local installation buffer immediately 

following this machine. To evaluate the performance of the line under the EB policy, we develop 

an approximation method that decomposes the original system with 𝑁 machines and  

echelon buffers into 1N   2-machine subsystems, where each subsystem has an intermediate 

finite buffer representing one of the echelon buffers in the original line. For the case where the 

machines have exponentially distributed processing times (continuous time analog of the 

Bernoulli reliability model), we model each 2-machine subsystem as a 2D Markov chain that can 

be solved numerically. The parameters of the 2-machine subsystems are determined by 

relationships among the flows of parts through the echelon buffers in the original system. An 

iterative algorithm is developed to solve these relationships. Numerical experimentation shows 

that this method is computationally efficient and highly accurate. 

 

Keywords: production line; echelon buffer; performance evaluation; decomposition; simulation.

1N 
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Chapter 1 - Introduction 

Production lines are series of work centers connected linearly, each one consisting of one or more 

identical machines in parallel. Every part visits each workstation in a fixed order, starting at the first 

machine, and leaving after the last machine. They are of economic importance since they are used in 

high volume manufacturing, particularly automobile production where they make engine blocks, 

transmission cables, cylinders, connecting rods etc. Their capital costs range from hundreds of 

thousands dollars to tens of millions of dollars. Stochastic production lines are subject to disturbances 

arising from variations in processing times and unpredictable failures of the workstations involved. 

This can cause the machines to stop producing and can lower the throughput of the line. In order to 

mitigate the effect of such disturbances, it is customary to install buffers between the machines so that 

parts flow from machine to buffer to machine and so on until they exit the line. Other ways of 

increasing throughput are to raise the processing rates of the machines starting with the slowest one, or 

to reduce the variance of processing times causing congestion in the line. However, these techniques 

require good handling at the machine level and possibly investing in new equipment. Inserting a buffer 

between two machines speeds up the line by decoupling the operation of the machines, as long as this 

buffer is neither full nor empty, hence limiting the propagation of processing time delays. We refer to 

such a buffer as installation buffer because it locally stores parts that are produced by its upstream 

machine (installation). We also refer to the resulting operating policy as installation buffer (IB) policy. 

An example of a production line with 4 machines denoted by ,  1 4n n    and 3 intermediate 

installation buffers denoted by 
' , 1, 2,3nB n    is shown in Figure 1. The capacities of these buffers are 

denoted by 
' , 1, 2,3nK n  . 

 

 

Figure 1.Serial production line with finite intermediate installation buffers operated under an IB policy. 

 

Although higher buffer capacity increases the production rate, it is not beneficial to install as many 

buffers as possible. In buffer optimization, the buffer capacity and the buffer distribution constitute 

important decision variables in the optimization of queueing networks and production systems in 

particular. Even if the total capacity has been optimized, storing parts locally in the installation buffers 
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between the machines does not take full advantage of this capacity. Apart from that, inserting buffers 

between machines comes at a cost of additional capital investment, floor space, and work-in-process 

(WIP) inventory. Depending on the industry, such a cost can be quite high. When the cost of buffer 

space is significant, it may be worthwhile to consider increasing the utilization of the existing buffers 

before setting out to increase total buffer capacity. In practice, it is not unusual for a line manager to 

route parts produced by a machine to buffers other than the machine’s designated installation buffer, if 

that buffer is full. Such an action effectively increases the utilization of the buffers. The question is, can 

this be done systematically, and if so, what are the gains and losses in performance?  

 

1.1  How the policy works 

If the physical layout of the production line is the traditional layout of machines in series with 

intermediate buffers, as shown in Figure 1, then under the EB policy, a part produced by machine nM  

will be physically stored in the first non-full installation buffer downstream of nM , as shown in Figure 

2. In this case, each installation buffer is shared by all its upstream machines. Under the classical IB 

policy, on the other hand, each installation buffer is used only by the machine that directly precedes it, 

as is shown in Figure 1. 

 

 

Figure 2.Serial production line with finite intermediate installation buffers operated under an EB policy. 

 

If the physical layout of the production line is one where there is a common storage area on the 

side of the line (or in the interior of the line, if the line is U-shaped or L-shaped), then under the EB 

policy, this area is divided into compartments that play the same role as the intermediate installation 

buffers in the traditional serial layout. In this case, the flow of parts is identical to that in the serial 

layout shown in Figure 2, except that the buffers (compartments) are adjacent, as is shown in Figure 

3(a). 
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Figure 3.Serial production line with a common storage area divided into (a) several compartments or (b) 

a single compartment, operated under an EB policy. 

 

To further clarify how the EB policy works, in both Figures 2 and 3(a), the first machine, 1M , 

can store parts in installation buffers, 
' '
1 2,B B  or 

'
3B  with 

'
1B  having the highest priority and 

'
3B  the 

lowest. Similarly, machine 2M  can store parts in buffers '
2B  or '

3B , whereas machine 3M  can store 

parts only in buffer 
'
3B . Clearly, if the capacities of buffers 

' '
1 2,B B  are zero while the capacity of 

'
3B  is 

positive (i.e., if ' '
1 2 0 K K   and '

3 0K K  ), then any machine will be allowed to store the parts that 

it produces in a single common buffer, as is shown in Figure 3(b). In this case, the EB policy reduces to 

a WIP-cap policy where every machine operates freely without ever being blocked, except for the first 

machine that is allowed to process a part only if there is space in the common buffer. This way of 

operation is effectively identical to the operation of a CONWIP system (Spearman et al. 1990). The 

only difference is that under CONWIP, the total WIP is constant because by definition it also includes 

the parts waiting to be processed on the first machine, whereas under the EB policy with 

' 0,  1, , 2,nK n N     and 
'

1 0NK K   , the total WIP does not include the parts that are waiting to 

be processed on the first machine and hence is limited rather than being constant. For the purposes of 

this thesis, we will henceforth refer to an EB policy with 
' 0,  1, , 2,nK n N     and 

'
1 0NK K   , as 

CONWIP. 

 

1.2  Related literature  

Most of the issues regarding flow line analysis that have been studied by the 1990’s fall into one 

of three categories: (a) modeling aspects, (b) performance evaluation, and (c) optimization.  

(a) (b)
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The major classes of manufacturing flow line models and their main features and properties such 

as blocking, processing times, failures and repairs, conservation of flow, rate-idle time and 

reversibility, including relationships among them, have been described by Dallery and Gershwin 
[1]

. 

Comprehensive reviews and analyses of production lines can be also found in Gershwin 
[2]

. Bernoulli 

machine reliability model is present in studying various aspects of production lines, e.g. production 

variability 
[3]

, transient behavior 
[4]

 and bottleneck identification 
[5]

. This model allows simplicity in 

capturing the stochastic nature of machine processing times. Its continuous-time equivalent, the 

exponential processing time assumption, has also been used extensively in the literature 
[6][7]

.  

The literature on production lines or tandem queues with finite inter-stage capacities contains 

various models of performance evaluation emphasizing exact or approximate computation of the 

steady-state performance measures of the system. The exact approaches are limited to two - or three - 

station lines. Exact models include Buzacott 
[8]

 and Gershwin and Berman 
[9]

, among others. These 

studies mainly focus on the solution of the steady-state flow-balance equations of the underlying 

Markov chains. Longer flow lines have been analyzed by using either numerical methods (e.g., the 

power method) or approximations. Various models of longer lines approximate the measures of 

performance by decomposing the system into a set of smaller systems (usually 2-machine, 1-buffer 

pseudo lines) that relate to each other within an iterative scheme 
[10][11]

. Typically, in the first step of 

such methods, the performance of each 2-machine pseudo line is evaluated given the parameters of the 

two machines. In the second step, the parameters of the 2-machine pseudo line are determined by 

relationships among the flows of parts through the intermediate buffers of the original system. Good 

references where different models of 2-machine systems have been analyzed, include early and simple 

models 
[9] [12] [13]

 and more general models 
[14] [15] [16]

. The majority of studies focuses on the impact of 

failures as well as buffer capacities on the measures of performance.  

Most studies concern production lines operated under the traditional IB policy. Under this policy, 

the upstream (downstream) machine in each 2-machine pseudo line essentially represents the entire 

part of the line upstream (downstream) of the corresponding buffer and is only affected by the state in 

that part of the system; hence the decoupling effect of the buffer is clear. Under the EB policy however, 

the decoupling effect is more complex because parts produced by a machine may have to be 

temporarily stored in the installation buffer of another machine further downstream the line before 

returning upstream again for further processing. To address this complexity, special attention is 

required. The important concept of echelon stock was introduced by Clark 
[17]

. In a multi-stage 

uncapacitated inventory system, a stage’s echelon stock is the inventory position of the subsystem 

consisting of the stage itself and all its downstream stages. Axsäter and Rosling 
[18]

 show that for ( , )Q r  
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rules, echelon-stock policies are in general superior to installation-stock policies whereby each stage 

follows a ( , )Q r  policy based on its local inventory position. 

The idea of temporarily storing parts in shared buffers when the intermediate dedicated buffers 

following the machines are full, while often used in practice, has not been thoroughly investigated in 

the literature. Tempelmeier et al. 
[19][20]

 have made one of the first attempts to model a flexible 

manufacturing system (FMS) with some sharing of buffer space. The FMS consists of several 

workstations, where each workstation has one or more machines and a local finite buffer that is 

primarily used to store parts waiting to be processed by the machines; however, if needed it may also 

store parts that have finished their processing on the machines. More specifically, once a part has been 

processed at a workstation, it is normally stored in the buffer of the next workstation unless that buffer 

is full, in which case the part is stored in a common central buffer. If the central buffer is full too, the 

part is stored in the local buffer of the workstation that produced it if there is still space in it; otherwise, 

it stays on the machine blocking it from processing a new part. Parts are mounted onto pallets that 

come in a fixed number. To evaluate the performance of the system, they model the FMS as a closed 

queueing network (CQN) with blocking and solve it using numerical approximation techniques. Ferrari 

and Matta 
[21]

 present an approximate analytical method, based on decomposition techniques, that 

assesses the physical performance of small flow lines with both dedicated and shared buffer. Their aim 

of the analytical method is to capture the interdependent behaviour of the machines in the line due to 

the shared buffers. Their method deals with discrete and deterministic processing time, limited buffer 

capacity, and both time to repair (TTR) and time between failure (TBF) follow a geometric 

distribution. They assess the accuracy of the analytical solutions with respect to results provided by 

simulation. 

A large number of researchers have addressed queueing network modeling of manufacturing 

systems. Papadopoulos and Heavey 
[22]

 provide a bibliography of material concerned with modeling of 

production and transfer lines using queueing networks. Queues in series with exponential processing 

times are decomposed by Hillier and Boling 
[23]

 and Altiok 
[24]

 among others. Hillier and Boling also 

developed expressions for the throughput of a serial production line of exponential machines with finite 

buffers by modeling them as continuous time Markov chains. Later, Hendricks
 [25]

 developed a 

technique to analytically describe the output process of a serial production line of N  machines with 

exponential processing time distributions and finite buffer capacities. He used extensive exact results to 

examine the effects of line length, buffer capacity, and buffer placement on the inter-departure 

distribution, correlation structure, and variability of the output process of the production line. He used 

Institutional Repository - Library & Information Centre - University of Thessaly
26/09/2022 06:59:39 EEST - 44.201.95.84



6 

 

results to determine the extent to which buffer allocation can be used to control the variability of the 

output process (and thereby the amount of work-in-process required to downstream subsystems). 

Springer 
[26]

 proposed an approximation for estimating the throughput rate and work-in-process 

inventory of finite-buffered exponential queues in series. He applied it to several sets of previously 

published test problems and found it performed well relative to existing models. In addition, he 

conducted a large simulation experiment to examine the robustness of the approximation under a wide 

range of parameter settings. Zhou and Lian 
[27]

 consider a 2-stage tandem network where each stage has 

a single exponential server. Customers arrive to the first stage following a Poisson process, and the 

waiting customers in the two stages share all or part of a common finite buffer. By constructing a 

Markov process, they derive the stationary probability distribution of the system and the sojourn time 

distribution. Their model, although limited to two servers, is somewhat similar to ours if one considers 

the external arrivals as being generated by a machine. 

Finally, Koukoumialos and Liberopoulos 
[28]

 develop an analytical approximation method for the 

performance evaluation of a multi-stage production inventory system operated under an echelon 

kanban (EK) policy. The Kanban system is a message-passing mechanism that transfers the demand 

generated by the downstream stages to the upstream production stages in pull systems. Kanban-type 

production/inventory systems are often modeled as queueing networks in the literature. Consequently, 

most of the techniques that have been developed for the analysis of kanban-type production/inventory 

systems are based on methods for the performance evaluation of queueing networks. The connection 

between the EK policy and the EB policy becomes evident once the association between the number of 

available echelon kanbans and the number of available buffer spaces is made. In the EK system, each 

stage has an input buffer and is an open queueing network of machines with load-dependent 

continuous-time processing rates. The main production unit in this paper, on the other hand, is a 

machine with no input buffer. As a result of this difference, in the EK system, blockages happen at 

output buffers rather than on machines. Moreover, in the EK system, the analysis of each subsystem in 

isolation involves a product-form approximation technique for solving a CQN problem, whereas in the 

EB system, each subsystem is evaluated using exact continuous-time Markov chain analysis. As a 

result, the accuracy of the decomposition method is higher in the EB system than it is in the EK system. 

 

1.3  Thesis outline 

The remainder of this thesis is organized as follows. In Chapter 2, we present a continuous-time 

queuing network model of a production line controlled by an EB policy. In Chapter 3, we develop a 
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decomposition approximation method for evaluating the performance of the EB policy for the case 

where the machines have exponentially distributed processing times. The method that we develop is 

based on decomposing the original line with machines and echelon buffers into 2-machine pseudo lines 

where each pseudo line has an intermediate finite buffer representing one of the echelon buffers in the 

original line. The parameters of the 2-machine subsystems are determined by relationships among the 

flows of parts through the echelon buffers in the original system. An iterative algorithm is developed to 

solve these relationships. We present the analysis of each subsystem in isolation, and we develop the 

analysis for the entire system. In Chapter 4, we present numerical results on the performance of the 

decomposition method and on the effect of system parameters on performance. We evaluate the 

accuracy of this method by comparing it against simulation. Finally, we draw conclusions in Chapter 5. 
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Chapter 2 - Model of a serial production line with finite echelon buffers 

We consider a serial production line consisting of N  machines, denoted by 1 2, ,..., NM M M , separated 

by 1N   infinite capacity buffers, denoted by " " "
1 2 1, ,..., NB B B  . In what follows, we will make some 

necessary assumptions and then describe the model and how it works. 

 

2.1  Assumptions of the analytical model 

a) Parts flow from outside the system to 1M  to "
1B  to 2M  to … to "

1NB   to NM  and exit the 

system. 

b) Time is continuous. 

c) The time to transfer parts from machines to remote installation buffers (if the nearby designated 

installation buffers are full) and back is negligible compared to the processing times on the 

machines. 

d) , 1,...,nM n N  produces a part with rate nl  unless it is starved or blocked. This implies that the 

processing time of a part on machine nM  is exponentially distributed with mean 
1

nl


, variance 

2
nl
 , and relative standard deviation 1. Suppose 

npT  is the processing time of a part by machine 

nM ; then from cumulative distribution function:  

2

1 2

1

1 2

2

0

{ }

{0 } 1 ( ) .

n n n

n

n

n

t
l t l t l t

p n

t

l t
p n n

t

P t T t l e e e

P T t e l t O t l t

  

 

 

     

          


 

e) The number of parts in buffer 
" , 1,..., 1nB n N  , including the part in machine 1nM   , in period 

𝑡, is denoted by 
" ( )nX t and is referred to as the stage WIP following machine nM ; hence, 

"
nB  is 

referred to as the stage buffer following nM . 

f) When a part flows from machine nM  to buffer 
"
nB , a token is generated and is placed in an 

associated finite buffer denoted by , 1,..., 1nB n N  . This token is removed from nB  and is 

attached onto the part when the part enters the last machine, NM . The token is discarded when 

the part leaves NM . 
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g) The number of tokens in buffer , 1,..., 1nB n N  , including the token that is attached onto the 

part in NM , in period 𝑡, is denoted by ( )nX t  and is referred to as the echelon WIP downstream 

of nM  because it is equal to the sum of the stage WIP levels downstream of nM , i.e., 

   
1

" ,   1, , 1;
N

n m

m n

X t X t n N



     ( 1 ) 

hence, nB  is referred to as the echelon buffer following nM . 

h) The capacity of echelon buffer nB  is finite and is denoted by , 1,..., 1nK n N  ; nK  is equal to 

the sum of the capacities of the physical installation buffer '
nB  and all its downstream 

installation buffers in Figures 2 and 3(a), i.e.,  

1
' , 1,..., 1

N

n m

m n

K K n N



     ( 2 ) 

Alternatively, 'nK  can be written in terms of nK  as follows: 

'
1, 1,..., 2n n nK K K n N      ( 3 ) 

'
1 1N NK K      ( 4 ) 

Expressions (3) and (4) imply that nK  is non-increasing in 𝑛, i.e., 1, 1,..., 2n nK K n N    and  

1 0NK   . 

i) Machine , 1,..., 1nM n N  , is blocked before service if ( )n nX t K . Machine NM  is never 

blocked. 

j) Machine , 2,...,nM n N  is starved if 
"

1( ) 0nX t  , or equivalently, if (i) 1( ) ( )n nX t X t  , for 

2,...,n N  or (ii) ( ) 0nX t  , for n N . Machine 1M  is never starved.  

 

2.2  Model structure and functioning 

The serial production line with echelon buffers described above can be modeled as a continuous - 

time queueing network with exponentially distributed service times and blocking before service. We 

denote this network by L . Figure 4 shows such a network for 4N   machines. Machines 

, 1,..., 1nM n N  , behave as disassembly (split) servers because every time they produce a part, they 

also generate a token; the part moves to stage buffer 
"
nB  and the token moves to echelon buffer nB . 

Machine NM  behaves as an assembly (merge) server because every time it is empty, it draws a part 
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from buffer "
1NB   (assuming one is available) and one token from each of the echelon buffers 

1 1,..., NB B  . These tokens are assembled (merged) onto the part. When the part is processed, it leaves 

the line, and the tokens that were attached to it are discarded. 

 

Figure 4.Queueing network model of a serial production line operated under an EB policy. 

The exponential processing time assumption (d) is a simple assumption for capturing the 

randomness of machine processing times. As we will see later, the method that we develop in this 

paper for analyzing the system allows us to also deal with the more general case where each machine 

, 2, , ,nM n N   has load-dependent production rates, 1
"( )n nxl   , where 

''
1nx   is the current value of 

 1
"
nX t  . Such a case can be used to model situations where the effective processing times are affected 

by the workload. The existence of such situations has been supported by empirical evidence. 

The non-increasing echelon buffer capacity assumption (h) is redundant. It is stated to stress the 

fact that the behavior of a production line with 1n nK K   for some 𝑛 is identical to the behavior of the 

same line in which 1n nK K  . This assumption can be written equivalently in terms of parameters 
'
nK  

as follows: 
' 0, 1,..., 2nK n N   , and 

'
1 0NK   . In fact, if 1n nK K   (equivalently, 

' 0nK  ), it is 

easy to see that echelon buffer 1nB   is obsolete and can be eliminated. With this in mind, note that the 

behavior of a line in which 0, 1,..., 2nK K n N    , (equivalently, 
' 0, 1,..., 2nK n N    and 

'
1 0NK K   ), is equivalent to the behavior of the same line in which all echelon buffers except 1B  

(equivalently all installation buffers except 
'

1NB  ) have been eliminated, as is shown in Figure 3(b). 

The total WIP in such a line is limited by K , and therefore the line operates under a CONWIP policy, 
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as was mentioned earlier, with the reminder that in CONWIP, as was originally defined, the total WIP 

is constant because it includes parts waiting to be processed by 1M . Finally, note that although buffer 

"
nB  has infinite capacity, the number of parts in it effectively is limited by nK . 

To further clarify the difference between the three types of buffers discussed thus far, note that 

installation buffers '
nB  in Figures 2 and 3(a) are physical buffers that hold actual parts, whereas stage 

buffers "
nB  in Figure 4 are functional buffers. More specifically, the entities in "

nB  represent parts that 

have been produced by machine nM  and are physically stored in one of the installation buffers 

downstream of nM . Finally, echelon buffers nB  are information buffers. The number of tokens in nB  

represents the total number of parts residing in the physical installation buffers downstream of nM . 

Hence, the number of empty spaces in nB  represents the total number of empty spaces in the physical 

installation buffers downstream of nM . 

In the following chapter we develop an approximation method for evaluating the performance of 

a production line operated under the EB policy described above. This method is based on (i) 

decomposing the long line (system) into many smaller parameterized lines (subsystems) that are easier 

to analyze and (ii) setting the parameters of these subsystems so the flow of parts through them mimics 

the flow of parts through the original system. 
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Chapter 3 - Decomposition of the production line model and parameter 

determination 

Let us define the state of the queueing network model of a production line operated under an EB policy 

described in the previous chapter as the vector of echelon WIP levels 1 1 1( ) ( ( ), ( ),..., ( ))Nt X t X t X tX . 

Clearly, { ( ), 0}t t X  is a continuous-time Markov chain. To find the number of states of this chain, we 

note that the echelon WIP levels satisfy 1( ) ( ) , 1,..., 2n n nX t X t K n N      and 1 10 ( )N NX t K   . 

These inequalities can be written in terms of the stage WIP levels " ( )nX t  as follows: 

1
" "

1

0 ( ) ( ), 1,..., 2
N

n n m

m n

X t K X t n N


 
      and 

"
1 10 ( )N NX t K   . Using these inequalities, we can 

express the total number of states of the Markov chain under the EB policy, denoted by eNS , as 

follows: 

1 1 1
" " "

2 1"
1 2 1 1 3 2

" " " " "
1 2 2 10 0 0 0 0

... ... 1

N N N

n m m m
N N N m n m m

N N n

K x K x K x
K K x

e

x x x x x

NS

  

      

 

  


    

  

         ( 5 ) 

This number can become very large even for problems of modest size and is certainly much larger that 

the corresponding number of states under the classical installation policy, denoted by iNS  given by 

1
'

1

( 1)
N

i
n

n

NS K



    ( 6 ) 

To get an idea of the relative magnitudes of eNS  and iNS , consider a production line with 7N 

machines and installation buffer capacities 
' 5, 1,...,6nK n   corresponding to echelon buffer 

capacities 1 2 3 4 5 630, 25, 20, 15, 10, 5K K K K K K      . From expressions (5) and (6), the 

number of states for this system under the EB and IB policies is 749.398eNS  and 46.656iNS  , 

respectively. 

Given the explosion in the number of states of the Markov chain model of a production line 

operated under an EB policy, in this chapter, we develop an approximation method for evaluating the 

performance of such a line. This method is based on decomposing the original system of N  machines 

and 1N   echelon buffers into ( 1)N   2-machine subsystems that are easier to analyze. Each 

subsystem has an intermediate finite buffer that represents one of the echelon buffers in the original 

line. The ultimate goal is to set the parameters of each subsystem so that the behavior of its 
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intermediate buffer mimics as closely as possible the behavior of the corresponding echelon buffer in 

the original line.  

 

3.1  Building block description and notation 

Figure 5 shows the 3 subsystems that result from the decomposition of the 4-machine 

production line L  shown in Figure 4. These subsystems are denoted by , 1,..., 1nL n N  . Subsystem 

, 2,..., 1nL n N   represents the entire part of the original production line downstream of machine

1nM  , while subsystem 1L  represents the entire production line. 

 

Figure 5.Decomposition of the production line with echelon buffers shown in Figure 4. 
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Each subsystem nL  has an upstream infinite buffer (except for 1L  which has none), an upstream 

machine, an intermediate finite buffer, and a downstream machine, denoted by n
uB , n

uM , n
dB , and n

dM , 

respectively. It also has another infinite buffer denoted by n
rB  that is parallel tο n

dB . The contents of 

n
rB  are always equal to the contents of n

dB  because both buffers are filled and depleted simultaneously. 

Hence, n
dB  could be eliminated from the model without changing its behavior. The number of parts in 

n
uB , including the part in n

uM , and the number of parts in n
dB , including the part in n

dM , in period 𝑡, 

are denoted by ( )n
uX t  and ( )n

dX t , respectively. The total number of parts in the entire subsystem is 

denoted by ( )n
sX t , i.e., ( ) ( ) ( )n n n

s u dX t X t X t  . Machine 
n
uM  and buffer 

n
dB  represent machine nM  

and echelon buffer nB  in the original N - machine line L , respectively; hence, n
uM  has production 

rate nl  and buffer 
n
dB  has capacity nK  including the space in 

n
dM . 

Machine n
dM  together with buffer n

rB  represents the entire part of the system downstream of 

nM  in the original line. It is therefore an aggregate representation of subsystem 1nL   , for 

1,..., 2n N  . In other words, 1nL   is nested in nL , 1,..., 1n N  . Because n
dM  represents an entire 

subsystem its behavior should be more complex than that of a simple machine with a single production 

rate. To capture this complexity, we assume that 
n
dM  has load-dependent production rates denoted by 

( )n n
d dl x  where 

n
dx  is the current value of ( )n

dX t . In the last subsystem, 1NL  , 
1N

dM 
 represents the last 

machine NM  in the original N - machine line; hence, 
1N

dM 
 has production rate Nl . 

Buffer 
n
uB  receives parts arriving from outside and represents stage buffer 

"
1nB   in the original 

line L . The latter buffer receives parts produced by machine 1nM  . Given that 1nM   may be blocked or 

starved, the behavior of the arrival process to 
"

1nB   should be more complex than the behavior of the 

production process of a simple machine with a single production rate. To capture this complexity, we 

assume that 
n
uB  receives parts with state-dependent arrival rate ( )n n

u sl x  where 
n
sx  is the current value of 

( )n
sX t , i.e., the total WIP in subsystem nL . The arrival process at buffer 

n
uB  has the property that 

1( ) 0n
u nl K    because in the original line, if 1 1( )n nX t K  , 1nM   is blocked and hence the rate of a 

part arriving to 
"

1nB   becomes zero. This implies that the maximum value that 
n
sx  can take is 1nK  .  
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To evaluate the performance of the original production line L , we must address the following 

two problems: (i) How can we analyze each subsystem nL  in isolation given the state-dependent 

external arrival rates 1( ), 0,...,n n n
u s s nl x x K  , (except for 1L  that has no external arrivals) and the load-

dependent production rates of machine n
dM , ( ), 0,...,n n n

d d d nl x x K  (except for 1NL   where machine 

1N
dM   has production rate Nl , and (ii) how can we determine the unknown rates ( )n n

u sl x , 

10,...,n
s nx K  , 2,..., 1n N   and ( ), 0,...,n n n

d d d nl x x K , 1,..., 2n N  . We address these problems in 

Sections 3.2 and 3.3, respectively. Once these problems have been solved, the performance measures of 

the original system L  can be obtained from the performance measures of subsystems , 1,..., 1nL n N 

. 

3.2  Analysis of 2-machine subsystem n
L  in isolation 

In this section, we describe how to analyze each subsystem , 1,..., 1nL n N   in isolation. First, we 

concentrate on subsystems , 2,..., 1nL n N   that have external arrivals, and then we proceed with the 

simpler subsystem 1L  that has no external arrivals. 

3.2.1  Analysis of subsystem 
n

L ,n = 2, ..., N - 1  

Figure 6 shows the queueing network model of subsystem , 2,..., 1nL n N  , for the general 

case where 
n
uM  has load-dependent production rates ( )n

u ul x . We consider this generalization to show 

that we can easily apply our analysis to the case where machine , 2,..., 1nM n N  , in the original line 

has load dependent production rates, as was mentioned in Section 2.2. 

 

Figure 6.Queueing network model of subsystem , 2,..., 1nL n N  . 
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If we define the state of each subsystem nL  as the vector of the WIP levels 

( ) ( ( ), ( ))n n n
u dt X t X tX , then { ( ), 0,1,...}n t t X  is a 2-dimensional discrete-state, continuous-time 

Markov chain with transition probabilities that are functions of the load-dependent production rates 

1( ), 0,...,n n
n u u nl x x K  , the state-dependent arrival rates 1( ), 0,...,n n n

u s s nl x x K  , and the load-dependent 

production rates ( ), 0,...,n n n
d d d nl x x K . The number of states of this chain is 

1

( 1)
( 1)( 1)

2

n n
n n

K K
K K


   . Figure 7 shows the state transition diagram of this chain for 1 7nK    

and 4nK  , indicating only the inter-state transitions but not the transition probabilities. 

To find the stationary probabilities of { ( ), 0}n t t X , denoted by ( , )n n n
u dP x x  , we must write the 

balance equations and the normalization equation and solve them. In what follows, we give the 

expressions for these equations, where, for notational simplicity, we dropped subscript/superscript n  

from rates ( ), ( ), ( )n n
n u dl l l , and probabilities ( , )nP . We used i  and j  to denote states n

ux  and n
dx  , 

respectively. The form of the balance equations differs depending on whether the states of the Markov 

chain are in the middle, on the boundaries, or at the corners of the state transition diagram, as is 

indicated in Figure 7.  
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Figure 7.State transition diagram of ( ), 2,..., 1n t n N X  for 1 7nK    and 4nK  . 

Balance equations 

Middle States (i, j) : For 11,..., 1, 1,..., 1,n nj K i K j      

( , )[ ( ) ( ) ( )]

( 1, ) ( 1 ) ( 1, 1) ( 1) ( , 1) ( 1)

u d

u d

P i j l i j l i l j

P i j l i j P i j l i P i j l j

  
          

 

Top left corner state (0,0) : (0,0) (0) (0,1) (1)u dP l P l  

Bottom left corner state n-1(K ,0) : 1 1 1 1( ,0) ( ) ( 1,0) ( 1)n n n u nP K l K P K l K       
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Top right corner state n(0,K ) : (0, )[ ( ) ( )] (1, 1) (1)n u n d n nP K l K l K P K l    

Bottom right corner state n-1 n n(K - K ,K ) : If 1n nK K  , 

1

1 1 1 1

( , ) ( )

( 1, ) ( 1) ( 1, 1) ( 1)

n n n d n

n n n u n n n n n n

P K K K l K

P K K K l K P K K K l K K



   


         

 

Left column states (i,0) : For 11,..., 1ni K     

( ,0)[ ( ) ( )] ( 1,0) ( 1) ( ,1) (1)u u dP i l i l i P i l i P i l      

Top row states (0, j) : For 1,..., 1nj K  , 

(0, )[ ( ) ( )]

(1, 1) (1) (0, 1) ( 1)

u d

d

P j l j l j

P j l P j l j


    

 

Right column states n(i,K )  : For 11,..., 1n ni K K   , 

( , )[ ( ) ( )]

( 1, ) ( 1 ) ( 1, 1) ( 1)

n u n d n

n u n n

P i K l i K l K

P i K l i K P i K l i

 
       

 

Diagonal bottom-right states n-1(K - j, j)  : For 1,..., 1nj K  , 

1 1

1 1 1 1

( , )[ ( ) ( )]

( 1, ) ( 1) ( 1, 1) ( 1)

n n d

n u n n n

P K j j l K j l j

P K j j l K P K j j l K j

 

   

   
        

 

Normalization equation 

1

0 0

( , ) 1
n nK K j

j i

P i j
 

 
  . 

Note that the transition rates at the extreme states are 1( ) (0) (0) 0u n dl K t l t l t       ; 

therefore, 11 ( ) 1 (0) 1 (0) 1u n dl K t l t l t         . We also let 0t   and eliminated terms of 

( )nO t . These facts led to a simplified form of balance equations, as the total number of expressions 

required to describe them has been reduced.  For example, the initial form of middle states balance 

equation is stated below: 
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( , ){1 [ ( ) ( ) ( ) (1 ( ) )(1 ( ) )(1 ( ) )]}

( 1, ) ( 1 ) (1 ( 1) )(1 ( ) )

( 1, 1) ( ) (1 ( 1) ) ( 1)

( 1, )(1 ( 1) ) ( 1) ( )

( , 1

u d u d

u d

u d

u d

P i j l i j tl i tl j t l i j t l i t l j t

P i j l i j t l i t l j t

P i j l i j t l i t l j t

P i j l i j t l i tl j t

P i j

            
         
         
        
  )(1 ( 1) ) ( ) (1 ( 1) )

( 1, 1)(1 ( ) )(1 ( 1) ) ( 1)

( , 1)(1 ( 1) )(1 ( 1) ) ( 1)

u d

u d

u d d

l i j t l i t l j t

P i j l i j t l j t l i t

P i j l i j t l j t l j t

       
          
          

 

 The above system of equations is linear and has a unique solution. It can be solved using any 

numerical analysis scheme. In our numerical examples, we use the Gauss-Seidel method, where in each 

iteration we sequentially update the stationary probability of each state using the most recent values of 

the stationary probabilities of the other states involved. At the end of each iteration, we normalize all 

probabilities. We terminate the iterations when the maximum absolute percentage difference between 

two successive iterations is below a very small number  . Once we have computed the stationary 

probabilities, we can use them to calculate the following performance measures of interest: 

( ), 0,...,n n n
out d d nl x x K : internal state-dependent arrival rate of parts to buffer 

n
dB . 

1( ), 0,...,n n n
s s nTH x x K  : conditional throughput of subsystem nL   

n
dX : average WIP level of buffer 

n
dB . 

nFR : overflow rate of buffer 
n
uB  defined as the rate that 

n
uX  increases by one unit when

1
n
u n nX K K  . nFR  approximates the rate that 

"
1nX   increases by one unit when

" '
1 1n nX K   in the 

original system L , and represents the rate at which parts produced by machine 1nM   are physically 

stored in an installation buffer downstream of 
'

1nB   because 
'

1nB   is full (hence, the term “overflow”).  

Note that in the above definitions, we have restored the original notation, namely, 

subscript/superscript n  for the subsystem index, and ,n n
u dx x  and 

n
sx  for the WIP levels ,i j  and i j , 

respectively. The above performance measures are calculated as follows: 
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
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 
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1
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n n
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n n n n n n n

u d u u d

x x K K

FR P x x l x x






  

      ( 10 ) 

 

3.2.2  Analysis of subsystem 1
L  

The first subsystem of the decomposition 1L , shown at the top of Figure 5, differs from the other 

subsystems in that there is no input process to machine 
1
uM ; hence, it is simpler. Because 

1
uM  

represents machine 1M  in the original line L , it is never starved and continuously produces a part with 

rate 1l   unless it is blocked by buffer 
n
uB  when this buffer is full. If we define the state of 1L  as the 

WIP level 
1 ( )dX t  then clearly  1 ( ), 0dX t t   is a continuous-time finite-state birth-death process, for 

which the stationary probabilities, denoted by 
1 1( )dP x  can be easily computed. The state transition 

diagram (excluding the self-transitions) of 
1 ( )dX t  is shown in Figure 8(a) or after elimination of 

0t   and terms of 
2( )O t  in 8(b). As previously, for notational simplicity, we dropped 

subscript/superscript “1” from rates 
1

1, ( )dl l  and probabilities 
1 1( )dP x  and we used j  to denote state 

1
dx . 
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Figure 8.State transition diagram of 
1 ( )dX t . 

 

To compute the stationary probabilities of  1 ( ), 0dX t t  we define coefficients ( )C j which satisfy the 

following expression: 

1

1, 0

( )
( 1), 1,..., .

( )d

j

C j l
C j j K

l j


   

 

The stationary probabilities are then given by: 

1
1

0

( )
( ) , 0,...,

( )

K

i

C j
P j j K

C i


 


. 

Once we have computed the stationary probabilities, we can use them to calculate the average 

throughput of subsystem 1, denoted by 1TH , and the average WIP level in buffer 1, denoted by 
1
dX , 

where we have restored the original notation, namely, subscript/superscript “1” for the subsystem index 

and 
1
dx  for the WIP level j . These two measures are calculated as follows: 

1 1
1 1(1 ( ))TH l P K  , ( 11 ) 

1

1

1 1 1 1

0

( )

d

K

d d d

x

X x P x



  . ( 12 ) 

 Finally, note that the internal state-dependent arrival probability of parts to buffer 
1
dB , denoted 

by 
1 1 1

1( ), 0,...,out d dl x x K , is simply given by 
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1
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1
1

, 0,..., 1,
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0, .
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out d

d

l x K
l x

x K

   


 

 

3.3  Analysis of the original production line 

 The unknown parameters of each subsystem nL  are the state-dependent external arrival rates 

1( ), 0,...,n n n
u s s nl x x K   (except in 1L , where there are no external arrivals), and the load-dependent 

production rates ( ), 0,...,n n n
d d d nl x x K  of machine dM  (except in 1nL  , where 1N

dM    is identical to the 

last machine, NM  and therefore has known production rate Nl ). To determine the values of these 

parameters we set up a system of equations that relate the flow of parts in subsystem nL  with the flow 

of parts in the neighboring subsystems 1nL    and 1nL  .More specifically, as we wrote earlier, 
n
dM  in 

subsystem , 1,..., 2nL n N  , is an aggregate representation of subsystem 1nL  . The load-dependent 

production rates of , ( ), 0,...,n n n n
d d d d nM l x x K , should therefore be equal to the conditional throughput 

of 1nL  . Just as n
dM  in nL  is an aggregate representation of 1, 1,..., 2nL n N   , so nL  is aggregately 

represented by machine as 
1n

dM 
 in 1, 1,..., 2nL n N   . The external arrival process to buffer 

n
uB  in 

1, ( ), 0,...,n n n n
u s s nL l x x K  , should therefore be equal to the internal state-dependent arrival process of 

parts from machine 
1n

uM 
 to buffer 1n

dB    (as well as to the redundant buffer 
1n

rB 
) in 1nL  . 

 The above relationships can be written as follows: 

1( ) ( ), 0,..., , 1,..., 2n n
d nl x TH x x K n N      ( 13 ) 

1
1( ) ( ), 0,..., , 2,..., 1n n

u out nl x l x x K n N
                     ( 14 ) 

For each subsystem nL , the conditional throughput ( )nTH x  and the internal state-dependent arrival 

rate ( )n
outl x  can be computed by analyzing the subsystem in isolation, given the values of the 

production rates 1( ), 0,...,n
u nl x x K  , and ( ), 0,...,n

d nl x x K , as was shown in Section 3.2. This means 

that 
1( )nTH x  in (13) is a function of 

1( )n
ul
  and 

1( )n
dl
  and 

1( )n
outl x  in (14) is a function of 

1( )n
ul
  

and 
1( )n

dl


. Hence, the unknown parameters ( )n
ul x  and ( )n

dl x  in expressions (13) and (14) are the 

solution of a fixed-point problem. To determine their values, we use the following iterative algorithm. 
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Algorithm for analyzing the entire production line 

Step 1 Initialization. 

1.1. Set the unknown external arrival rates of each subsystem (except 1L  which receives no external 

arrivals) to some initial value. A reasonable initial value that we have used in our numerical 

experiments is the smallest production rate of all machines upstream of nM , namely,

1,

1

min( : 1,..., 1), 0,..., 1,
( ) 2,..., 1.

0, ,

m nn init
u

n

l m n x K
l x n N

x K





   
   

             ( 15 ) 

1.2. Set the unknown production rates of machine n
dM  in each subsystem to some initial value. A 

reasonable initial value that we have used in our experiments is the smallest production probability 

of all machines downstream of nM , namely,  

,

1

0, 0,
( ) 1,..., 2.

min( : 1,..., ), 1,..., ,

n init
d

m n

x
l x n N

l m n N x K 


     

            ( 16 ) 

 

Step 2.Main Iteration. 

Iterate backwards and forwards until the external and internal arrival rates converge, i.e., until 
1

1( ) ( ), 0,..., , 3,..., 1n n
u out nl x l x x K n N

    . More specifically, 

Set 1n N  . 

While 2n  , 

 If 1n N  , 

Given 1
2( ), 0,...,N

u Nl x x K
 , solve subsystem 1NL   and compute 

1 1 1
2( ), 1,..., , ,N N N

N dTH x x K X FR  
 , from (8)-(10), respectively, for 1n N  . 

Set 
2 1

2( ) ( ), 1,..., 1N N
d out Nl x r x x K 

   ; set 2n N  . 

 Else 

Given 1( ), 0,...,n
u nl x x K   and ( ), 0,...,n

d nl x x K  solve subsystem nL  and compute 

1( ), 0,..., 1, ( ), 1,..., , ,n n n n
out n n dl x x K TH x x K X FR   , from (7)-(10), respectively. 

  If 
1( ) ( ), 0,..., 1n n

out u nl x l x x K   , 

 Set 
1( ) ( ), 1,..., 1n n

d nl x TH x x K    ; set 1n n  . 

Else 

   Set 
1( ) ( ), 0,..., 1n n

u out nl x l x x K    ; set 1n n  . 

  Endif 

 Endif 

Endwhile 

 

Step 3.Compute average system throughput and WIP. 

Given 
1

1( ), 0,...,dl x x K , solve subsystem 1L  and compute average throughput 1TH  from (11) and 

average 

WIP level 
1
dX  from (12). These two values are the final estimates of the average throughput and total 

WIP of the system. Similarly, the most recent values of , 2,..., 1n
dX n N  , are the final estimates of 
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the average echelon WIP downstream of machine , 2,..., 1nM n N  . Finally, the most recent values of

, 2,..., 1nFR n N  , are the final estimates of the overflow rates of '
1, 2,..., 1nB n N   . 

 Note that the first time each subsystem , 2,..., 1nL n N  , is solved using the method presented 

in Section 3.2, the stationary probabilities of Markov chain ( )n tX  must be initialized. The simplest 

way to do this is to set them all equal and such that their sum is one. A more intelligent way is to set 

( , )n n n
u dP x x  equal to the normalized product of the approximate marginal stationary distributions of 

( )n
uX t  and ( )n

dX t  in isolation. The approximate marginal distribution of ( )n
uX t  in isolation can be 

found by solving a 2-machine 1-buffer line (as a continuous-time finite-state birth-death process), 

where the upstream and downstream machines have production rates 
,
,1 ( )n init

ul x  and 
1,

,1 ( )n init
dl x

 given by 

(15) and (16), respectively. Similarly, the approximate marginal distribution of ( )n
dX t  in isolation can 

be found by solving a 2-machine 1-buffer line, where the upstream and machines have production 

probabilities 
1,

,1 ( )n init
ul x

and 
,
,1 ( )n init

dl x given by (15) and (16), respectively. From then on, each time 

subsystem , 2,..., 1nL n N  , is solved again, the stationary probabilities from the previous time are 

used as initial values. Numerical experimentation has shown that this method results in significant 

gains in overall computational time. Finally, the criterion that we used to detect if 

1( ) ( ), 0,..., 1n n
out u nl x l x x K    in step 2 of the above procedure is 

1

0,..., 1 1

( ) ( )
max

( )n

n n
out u

x K n
u

l x l x

l x




  

    
  

  where   is a very small number. In the following chapter we 

report on numerical experimentation with the decomposition method. 
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Chapter 4 - Numerical results on the performance of the decomposition 

method and the effect of system parameters on system performance 

In this chapter, we evaluate the accuracy and efficiency of the decomposition method developed in 

Sections 3.2 and 3.3 by comparing it against simulation, for several instances of two numerical 

examples, also exploring the effect of system parameters on system performance. In all instances, we 

used the value of 0.0001  (convergence criterion) both in the procedure for analyzing each 

subsystem nL  in isolation, described in Section 3.2, and in the algorithm for analyzing the original 

system L , described in Section 3.3. To obtain the simulation results, for each instance, we executed 30 

independent event-driven simulation runs of the production line over a maximum production of 

200.000 parts. For each performance measure estimate that we compute, we report the sample mean 

and a 95% confidence interval over the 30 runs. Both the decomposition and simulation algorithms 

were written in Matlab R2011a and were run on a laptop with a Pentium® Dual-Core CPU @ 2.1 GHz. 

4.1  Example 1: 5-machine line 

In Example 1, we consider a production line consisting of 5N   machines and 4 buffers. For this 

system, we evaluated 9 different instances (cases). Table 1 shows the input data for each case, namely, 

the production rates of the machines, , 1, ,5n nl   , the capacities of echelon buffers, , 1, ,4nK n   , 

and the resulting capacities of the installation buffers, 
' , 1, , 4nK n   , computed from (3)-(4).  

Table 1.Input data for Example 1. 

# 𝒍𝟏 𝒍𝟐 𝒍𝟑 𝒍𝟒 𝒍𝟓 𝑲𝟏 𝑲𝟐 𝑲𝟑 𝑲𝟒 𝑲𝟏
′  𝑲𝟐

′  𝑲𝟑
′  𝑲𝟒

′  

1 6 6 6 6 6 20 15 10 5 5 5 5 5 
2 6 6 6 6 6 40 30 20 10 10 10 10 10 
3 6 6 6 6 6 60 45 30 15 15 15 15 15 
4 6 6 4 6 6 20 15 10 5 5 5 5 5 
5 6 6 4 6 6 40 30 20 10 10 10 10 10 
6 6 6 6 6 6 40 40 40 40 0 0 0 40 
7 6 6 4 6 6 40 40 40 40 0 0 0 40 
8 8 8 8 8 8 40 30 20 10 10 10 10 10 
9 9 9 6 9 9 20 15 10 5 5 5 5 5 

 

Cases 1-3, 6, and 8 represent balanced lines where all machines have the same production rate. In 

all these cases, except case 8, the rate is 6; in case 8, it is 8. The difference between cases 1-3 is that the 

installation buffer capacities are 5, 10, and 15 units, respectively. The buffer capacities in case 8 are the 

same as those in case 2. In cases 4, 5, 7 and 9 all machines have the same production rate except 3M , 
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which has a smaller rate, representing a bottleneck machine. The buffer capacities in cases 4 and 5 are 

the same as those in cases 1 and 2, respectively. The buffer capacities in case 9 are the same as those is 

case 4. Finally, in cases 6 and 7, the capacities of all the installation buffers except the last one are zero; 

as a result, all echelon buffer capacities are the same. As was mentioned in Section 2.2, this 

corresponds to the case of a line operating under CONWIP. Tables 2 and 3 show the performance 

measure estimates obtained by decomposition and simulation, respectively. These measures are the 

average echelon WIP levels, denoted by , 1, , 4nX n    , the average line throughput, denoted by TH , 

the average overflow rate of buffer ''
nB  , denoted by , 1, ,3n nFR    and the computation time, CPU , 

in seconds. For the simulation estimates, 95% confidence intervals are also shown. For the 

decomposition method, recall that the values of nX , TH , and nFR  are computed as the final values of 

n
dX , 1TH , and 1nFR   once the algorithm described in Section 3.3 converges. Note that 4FR  and more 

generally 1NFR   is zero because there is no overflow of parts for the last buffer 
'

1
'
NB  . Finally, Table 4 

shows the percent difference between the decomposition and the simulation estimates, i.e. 

100
dec sim

sim

estimate estimate

estimate

   . 

Table 2.Performance measure estimates for Example 1 obtained by decomposition. 

# 𝑿̅𝟏 𝑿̅𝟐 𝑿̅𝟑 𝑿̅𝟒 𝑻𝑯 𝑭𝑹𝟏 𝑭𝑹𝟐 𝑭𝑹𝟑 𝑪𝑷𝑼(𝒔) 

1 16,7188 11,2891 6,4386 2,2189 4,7405 2,5058 2,1836 1,8320 0,3525 
2 33,3391 22,5563 12,9010 4,4989 5,3032 2,7737 2,4179 2,0230 2,8234 
3 49,9530 33,8299 19,3720 6,7835 5,5186 2,8761 2,5079 2,0991 10,9487 
4 18,2068 13,1128 3,5388 1,5062 3,8900 1,9693 3,4888 0,4649 0,3102 
5 38,0069 27,9895 3,9838 1,9241 3,9970 1,9999 3,9705 0,0721 1,3662 
6 31,9964 23,9965 16,0014 8,0058 5,4549 5,4544 5,4552 5,4544 6,3684 
7 38,0003 36,0006 3,9994 1,9997 3,9999 3,9999 3,9999 3,9999 3,0302 
8 33,3391 22,5563 12,9010 4,4989 7,0710 3,6983 3,2238 2,6973 2,8591 
9 18,2068 13,1128 3,5388 1,5062 5,8350 2,9540 5,2332 0,6974 0,2852 

 

Table 3.Performance measure estimates for Example 1 obtained by simulation. 

# 𝑿̅𝟏 𝑿̅𝟐 𝑿̅𝟑 𝑿̅𝟒 𝑻𝑯 𝑭𝑹𝟏 𝑭𝑹𝟐 𝑭𝑹𝟑 𝑪𝑷𝑼(𝒔) 

1 
16,8639 

0,0127 

11,4144 

0,0119 

6,4878 

0,0089 

2,2136 

0,0045 

4,7546 

0,0023 

2,5297 

0,0062 

2,2393 

0,0075 

1,8769 

0,0059 
1459,6482 

2 
33,6387 

0,0397 

22,7848 

0,0416 

12,9726 

0,0240 

4,5045 

0,0128 

5,3102 

0,0019 

2,8030 

0,0125 

2,4812 

0,0133 

2,0511 

0,0113 
1422,5819 

3 
50,4385 

0,1019 

34,2058 

0,0901 

19,4570 

0,0772 

6,7871 

0,0261 

5,5226 

0,0025 

2,8999 

0,0217 

2,5859 

0,0192 

2,1188 

0,0197 
1410,9796 

4 
18,2466 

0,0040 

13,1445 

0,0053 

3,5674 

0,0070 

1,4992 

0,0028 

3,8904 

0,0021 

1,9777 

0,0039 

3,5050 

0,0032 

0,4622 

0,0031 
1334,7884 

5 
37,9977 

0,0093 

27,9782 

0,0083 

4,0273 

0,0109 

1,9232 

0,0052 

3,9971 

0,0031 

2,0012 

0,0041 

3,9700 

0,0031 

0,0739 

0,0018 
1350,6668 
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6 
32,0191 

0,0423 

23,9655 

0,0672 

15,9346 

0,0640 

7,9794 

0,0608 

5,4541 

0,0028 

5,4549 

0,0028 

5,4547 

0,0027 

5,4545 

0,0027 
1361,0225 

7 
37,9942 

0,0078 

35,9859 

0,0104 

4,0317 

0,0140 

2,0008 

0,0074 

3,9995 

0,0031 

4,0003 

0,0030 

4,0002 

0,0030 

3,9996 

0,0030 
1351,3238 

8 
33,6387 

0,0397 

22,7848 

0,0416 

12,9726 

0,0240 

4,5045 

0,0128 

7,0803 

0,0025 

3,7374 

0,0167 

3,3083 

0,0178 

2,7348 

0,0151 
1438,8483 

9 
18,2466 

0,0040 

13,1445 

0,0053 

3,5674 

0,0070 

1,4992 

0,0028 

5,8356 

0,0032 

2,9666 

0,0059 

5,2575 

0,0048 

0,6933 

0,0047 
1376,0249 

 

Table 4.Percent difference in performance measure estimates obtained by 

 decomposition and simulation for Example 1. 

# 𝑿̅𝟏 𝑿̅𝟐 𝑿̅𝟑 𝑿̅𝟒 𝑭𝑹𝟏 𝑭𝑹𝟐 𝑭𝑹𝟑 𝑻𝑯 

1 -0,8604 -1,0977 -0,7583 0,2394 -0,9448 -2,4874 -2,3922 -0,2966 
2 -0,8906 -1,0029 -0,5519 -0,1243 -1,0453 -2,5512 -1,3700 -0,1318 
3 -0,9626 -1,0989 -0,4369 -0,0530 -0,8207 -3,0164 -0,9298 -0,0724 
4 -0,2181 -0,2412 -0,8017 0,4669 -0,4247 -0,4622 0,5842 -0,0103 
5 0,0242 0,0404 -1,0801 0,0468 -0,0650 0,0126 -2,4357 -0,0025 
6 -0,0709 0,1294 0,4192 0,3309 -0,0092 0,0092 -0,0018 0,0147 
7 0,0161 0,0408 -0,8012 -0,0550 -0,0100 -0,0075 0,0075 0,0100 
8 -0,8906 -1,0029 -0,5519 -0,1243 -1,0462 -2,5542 -1,3712 -0,1314 
9 -0,2181 -0,2412 -0,8017 0,4669 -0,4247 -0,4622 0,5914 -0,0103 

 

4.1.1  Confidence in simulation results 

The confidence intervals were calculated according to the formula 
 1,96

30

std M
CI


  , where 

1,96 is the critical value of normal distribution for confidence level 0,95 and  std M  is the standard 

deviation of each estimate array of values that emerge during our 30 simulation runs. From the results 

in Table 3, we observe that in all cases, the confidence intervals of the throughput estimates obtained 

by simulation are very tight and are below 0,1% of these estimates. The confidence intervals of the 

average echelon WIP level estimates are looser but still remain below 0,8% of these estimates. Finally, 

the confidence intervals for the overflow rates remain well below 2,6% of these estimates. 

 

4.1.2  Accuracy and computational efficiency of the decomposition method 

From the results in Table 4, we make the following observations regarding the accuracy of the 

decomposition method with respect to simulation: 

a. In all cases, the accuracy of the decomposition method is very high. More specifically, the absolute 

percent difference in the throughput estimate, average echelon WIP levels, and overflow rates does 

not exceed 0,3%, 1,1%, and 3,02%, respectively. 

b. The accuracy of the decomposition method in estimating the average throughput is increasing in the 

echelon buffer capacities (compare cases 1-3). Most likely this happens because when the echelon 

Institutional Repository - Library & Information Centre - University of Thessaly
26/09/2022 06:59:39 EEST - 44.201.95.84



28 

 

buffer capacities increase, the buffer-full and buffer-empty probabilities decrease. As a result, the 

decoupling effect of the buffers increases, improving the accuracy of the method. 

c. The accuracy of the decomposition method is much higher for the lines with a bottleneck machine 

than for the balanced lines (compare cases 1, 2 vs. cases 4, 5, 9). Having a bottleneck machine in 

the line effectively separates the line into two segments, one upstream and the other downstream of 

the bottleneck machine. The bottleneck machine is almost never starved and hence almost always 

feeds the downstream segment independently of what is going on in the upstream segment. This 

decoupling effect again helps increase the accuracy of the decomposition method. 

By comparing the last column of Tables 2 and 3, we make the following observations regarding the 

computational efficiency of the decomposition method compared to that of simulation: 

a. The computational time using decomposition is 2 or even 3 orders of magnitude smaller than the 

corresponding time using simulation. 

b. The computational time using decomposition is increasing in the echelon buffer capacities. This is 

because the larger the capacities, the larger the number of states of the Markov chain of the 2-

machine subsystems nL   that need to be solved.  

c. The computational time using decomposition is smaller for the lines with a bottleneck machine than 

it is for the balanced lines (compare cases 1, 2 and 4, 5, 9). Most likely this happens because of the 

decoupling effect discussed earlier. 

 

4.1.3  Effect of system parameters on system performance 

Finally, by comparing the performance measures between the different cases in Table 2 (and 

Table 3) we make the following observations regarding the effect of system parameters on system 

performance: 

a. The average echelon WIP levels and line throughput are increasing in the echelon buffer capacities 

(compare cases 1-3). As the echelon buffer capacities increase, the average line throughput 

approaches the production rate of the slowest machine. This is also true when one compares cases 2 

and 5 against 6 and 7. 

b. The average echelon WIP level estimates are identical for cases 2, 8 and cases 4, 9. This possibly 

happens because in a system with 2 machines and 1 intermediate buffer, the average number of 

parts in the buffer is determined by 1

2

l

l
 ratio, where 1l  and 2l  are the processing rates of the 2 

machines. In the above-mentioned cases these ratios are the same. 
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c. The overflow rate is decreasing in the echelon buffer capacities. 

d. The line throughput and overflow rates are increasing in the production rate of the machines 

(compare cases 2, 8 and 4, 9). 

e. Having a bottleneck machine in the line results in increasing the average echelon WIP levels 

upstream of the bottleneck and decreasing them downstream of the bottleneck (compare cases 1-2 

vs. cases 4-5). 

The above observations on the effect of the system parameters on system performance are 

expected. 

 

4.2  Example 2: 10-machine line 

In Example 2, we consider a production line consisting of 10N   machines and 9 buffers. For 

this system, we evaluated 6 different instances. Table 5 shows the input data for each instance. The 

rationale behind the choice of parameter values for the different instances is similar to that in Example 

1 explained in the previous section.  

Table 5. Input data for Example 2. 

# 𝒍𝟏 𝒍𝟐 𝒍𝟑 𝒍𝟒 𝒍𝟓 𝒍𝟔 𝒍𝟕 𝒍𝟖 𝒍𝟗 𝒍𝟏𝟎 𝑲𝟏 𝑲𝟐 𝑲𝟑 𝑲𝟒 𝑲𝟓 𝑲𝟔 𝑲𝟕 𝑲𝟖 𝑲𝟗 𝑲𝟏
′  𝑲𝟐

′  𝑲𝟑
′  𝑲𝟒

′  𝑲𝟓
′  𝑲𝟔

′  𝑲𝟕
′  𝑲𝟖

′  𝑲𝟗
′  

1 6 6 6 6 6 6 6 6 6 6 45 40 35 30 25 20 15 10 5 5 5 5 5 5 5 5 5 5 

2 6 6 6 6 6 6 6 6 6 6 90 80 70 60 50 40 30 20 10 10 10 10 10 10 10 10 10 10 

3 6 6 6 6 6 4 6 6 6 6 45 40 35 30 25 20 15 10 5 5 5 5 5 5 5 5 5 5 

4 6 6 6 6 6 4 6 6 6 6 90 80 70 60 50 40 30 20 10 10 10 10 10 10 10 10 10 10 

5 6 6 6 6 6 6 6 6 6 6 45 45 45 45 45 45 45 45 45 0 0 0 0 0 0 0 0 45 

6 8 8 8 8 8 8 8 8 8 8 45 40 35 30 25 20 15 10 5 5 5 5 5 5 5 5 5 5 

Tables 6-8 are similar to Tables 2-4 and show the performance measure estimates obtained by 

simulation and decomposition, and the percent difference between these estimates. Briefly, cases 1, 2, 

5, and 6 represent balanced lines, whereas cases 3 and 4 represent lines with a bottleneck machine. 

Also, all cases, except 5, represent lines where the echelon buffer capacities are incremented uniformly 

from the end to the beginning of the line. In case 5, all echelon buffer capacities are the same, implying 

that the capacities of all installation buffers except the last one are zero. This is equivalent to a 

CONWIP system. 

Table 6. Performance measure estimates for Example 2 obtained by decomposition. 

# 𝑿̅𝟏 𝑿̅𝟐 𝑿̅𝟑 𝑿̅𝟒 𝑿̅𝟓 𝑿̅𝟔 𝑿̅𝟕 𝑿̅𝟖 𝑿̅𝟗 𝑻𝑯 

1 41,5466 35,8054 30,4288 25,2522 20,2291 15,3534 10,6485 6,1828 2,1676 4,6858 
2 82,9800 71,6002 60,8894 50,5587 40,5272 30,7833 21,3735 12,4371 4,4093 5,2717 
3 43,0632 37,8879 32,8357 27,8237 22,8342 7,9553 5,9373 3,8061 1,5674 3,9602 
4 88,0001 77,9787 67,9772 57,9771 47,9772 8,0203 6,0185 4,0072 1,9300 3,9999 
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5 40,4977 35,9962 31,4965 26,9972 22,4990 18,0009 13,5030 8,9994 4,4984 5,0005 
6 41,5466 35,8054 30,4288 25,2522 20,2291 15,3534 10,6485 6,1828 2,1676 6,2477  

𝑭𝑹𝟏 𝑭𝑹𝟐 𝑭𝑹𝟑 𝑭𝑹𝟒 𝑭𝑹𝟓 𝑭𝑹𝟔 𝑭𝑹𝟕 𝑭𝑹𝟖 𝑪𝑷𝑼(𝒔) 

2,5689 2,3549 2,2491 2,1751 2,1092 2,0352 1,9276 1,6861 10,0803 
2,8545 2,6165 2,4984 2,4159 2,3428 2,2614 2,1428 1,8701 94,2226 
2,0347 1,9489 1,9236 1,9118 3,8152 0,5135 0,5632 0,5980 6,0017 
2,0026 1,9916 1,9909 1,9908 3,9994 0,0694 0,0707 0,0779 37,3216 
5,0004 5,0004 5,0002 5,0000 4,9998 4,9996 4,9995 4,9995 49,2823 
3,4253 3,1399 2,9988 2,9002 2,8122 2,7136 2,5701 2,2481 10,0212 

 

Table 7. Performance measure estimates for Example 2 obtained by simulation. 

# 𝑿̅𝟏 𝑿̅𝟐 𝑿̅𝟑 𝑿̅𝟒 𝑿̅𝟓 𝑿̅𝟔 𝑿̅𝟕 𝑿̅𝟖 𝑿̅𝟗 𝑻𝑯 

1 
41,8922 
±0,0157 

36,3079 
±0,0184 

31,0166 
±0,0166 

25,8617 
±0,0181 

20,7973 
±0,0190 

15,8128 
±0,0181 

10,9596 
±0,0149 

6,3123 
±0,0100 

2,1871 
±0,0033 

4,7155 
±0,0021 

2 
83,6240 
±0,0665 

72,5053 
±0,0730 

61,9496 
±0,0733 

51,6415 
±0,0777 

41,4645 
±0,0694 

31,5728 
±0,0637 

21,9008 
±0,0548 

12,6426 
±0,0346 

4,4362 
±0,0091 

5,2882 
±0,0024 

3 
43,1340 
±0,0063 

37,9898 
±0,0084 

32,9496 
±0,0091 

27,9364 
±0,0071 

22,9323 
±0,0077 

7,9920 
±0,0205 

5,9575 
±0,0152 

3,8169 
±0,0095 

1,5678 
±0,0035 

3,9627 
±0,0031 

4 
87,9670 
±0,0080 

77,9418 
±0,0102 

67,9460 
±0,0084 

57,9432 
±0,0073 

47,9475 
±0,0081 

8,0279 
±0,0245 

6,0087 
±0,0199 

4,0000 
±0,0150 

1,9288 
±0,0072 

4,0007 
±0,0032 

5 
40,4941 
±0,0231 

35,9942 
±0,0292 

31,4900 
±0,0310 

26,9996 
±0,0387 

22,5060 
±0,0386 

18,0039 
±0,0371 

13,4995 
±0,0366 

8,9987 
±0,0332 

4,5019 
±0,0268 

4,9985 
±0,0020 

6 
41,8922 
±0,0157 

36,3079 
±0,0184 

31,0166 
±0,0166 

25,8617 
±0,0181 

20,7973 
±0,0190 

15,8128 
±0,0181 

10,9596 
±0,0149 

6,3123 
±0,0100 

2,1871 
±0,0033 

6,2873 
±0,0028  

𝑭𝑹𝟏 𝑭𝑹𝟐 𝑭𝑹𝟑 𝑭𝑹𝟒 𝑭𝑹𝟓 𝑭𝑹𝟔 𝑭𝑹𝟕 𝑭𝑹𝟖 𝑪𝑷𝑼(𝒔) 

2,5457 
±0,0066 

2,3604 
±0,0078 

2,2851 
±0,0069 

2,2328 
±0,0061 

2,1998 
±0,0074 

2,1437 
±0,0072 

2,0523 
±0,0068 

1,7678 
±0,0065 

2970,2425 

2,8278 
±0,0153 

2,6254 
±0,0155 

2,5351 
±0,0144 

2,4976 
±0,0185 

2,4238 
±0,0120 

2,3701 
±0,0142 

2,2696 
±0,0141 

1,9438 
±0,0138 

3148,4971 

2,0282 
±0,0044 

1,9556 
±0,0054 

1,9389 
±0,0043 

1,9317 
±0,0039 

3,8273 
±0,0025 

0,5167 
±0,0035 

0,5698 
±0,0042 

0,6092 
±0,0038 

3102,1409 

2,0064 
±0,0048 

1,9909 
±0,0052 

1,9969 
±0,0044 

1,9904 
±0,0056 

3,9998 
±0,0033 

0,0701 
±0,0018 

0,0708 
±0,0016 

0,0775 
±0,0025 

3115,8593 

4,9995 
±0,0019 

4,9994 
±0,0019 

4,9993 
±0,0019 

4,9991 
±0,0019 

4,9990 
±0,0019 

4,9989 
±0,0019 

4,9988 
±0,0019 

4,9987 
±0,0019 

3186,9086 

3,3942 
±0,0088 

3,1472 
±0,0104 

3,0467 
±0,0092 

2,9771 
±0,0082 

2,9331 
±0,0098 

2,8583 
±0,0096 

2,7364 
±0,0091 

2,3570 
±0,0087 

3220,9396 

 

Table 8. Percent difference in performance measure estimates obtained by  

decomposition and simulation for Example 2. 

# 𝑿̅𝟏 𝑿̅𝟐 𝑿̅𝟑 𝑿̅𝟒 𝑿̅𝟓 𝑿̅𝟔 𝑿̅𝟕 𝑿̅𝟖 𝑿̅𝟗 𝑻𝑯 

1 -0,8250 -1,3840 -1,8951 -2,3568 -2,7321 -2,9052 -2,8386 -2,0516 -0,8916 -0,6298 
2 -0,7701 -1,2483 -1,7114 -2,0968 -2,2605 -2,5006 -2,4077 -1,6255 -0,6064 -0,3120 
3 -0,1641 -0,2682 -0,3457 -0,4034 -0,4278 -0,4592 -0,3391 -0,2830 -0,0255 -0,0631 
4 0,0376 0,0473 0,0459 0,0585 0,0619 -0,0947 0,1631 0,1800 0,0622 -0,0200 
5 0,0089 0,0056 0,0206 -0,0089 -0,0311 -0,0167 0,0259 0,0078 -0,0777 0,0400 
6 -0,8250 -1,3840 -1,8951 -2,3568 -2,7321 -2,9052 -2,8386 -2,0516 -0,8916 -0,6298 

 

𝑭𝑹𝟏 𝑭𝑹𝟐 𝑭𝑹𝟑 𝑭𝑹𝟒 𝑭𝑹𝟓 𝑭𝑹𝟔 𝑭𝑹𝟕 𝑭𝑹𝟖 

0,9113 -0,2330 -1,5754 -2,5842 -4,1186 -5,0613 -6,0761 -4,6216 
0,9442 -0,3390 -1,4477 -3,2711 -3,3419 -4,5863 -5,5869 -3,7915 
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0,3205 -0,3426 -0,7891 -1,0302 -0,3161 -0,6193 -1,1583 -1,8385 
-0,1894 0,0352 -0,3005 0,0201 -0,0100 -0,9986 -0,1412 0,5161 
0,0180 0,0200 0,0180 0,0180 0,0160 0,0140 0,0140 0,0160 
0,9163 -0,2320 -1,5722 -2,5831 -4,1219 -5,0624 -6,0773 -4,6203 

The observations on the results of Example 1 still hold for the results of Example 2. The only 

significant difference is that in Example 2, the computational time of the decomposition method is 

higher than it is in Example 1 but still lower than the corresponding time of simulation. This is natural 

because in Example 2, there are twice as many stages (machines) and – more importantly – the echelon 

buffer capacities are much higher. 
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Chapter 5 - Conclusions 

In this thesis, we introduced the EB policy for controlling the flow of parts through a serial 

production line, and we developed a decomposition approximation method for evaluating its 

performance. Our numerical results show that this method is computationally efficient and highly 

accurate when compared to simulation. Given the promising results regarding the performance of the 

EB policy, a worthwhile direction for future research would be to generalize the decomposition method 

for more complicated machine behavior models than the exponential processing time assumption of 

Bernoulli model. Even under the continuous-time equivalent of Bernoulli machine, however, it would 

be useful to come up with a more efficient way to analyze the 2-machine subsystems in isolation in the 

decomposition method. A shortcoming of the EB policy is that it has increased material handling 

requirements compared to the IB policy. However, modern technology can handle such increased 

requirements at affordable costs. Finally, under the EB policy, parts are produced earlier by the first 

and the last machine of a production line than they do under the IB policy; hence, the average 

throughput of the line is higher. On the downside, parts spend more time in the line under the EB 

policy than they do under the IB policy as a result of the increased congestion induced by the former 

policy. From Little’s law, this implies that the average WIP in the line is higher under the EB policy 

than it is under the IB policy. The question whether the benefit of the throughput increase under the EB 

policy outweighs the disadvantage of the WIP increase, also taking into account that less total buffer 

space may be needed under the EB policy than under the IB policy to achieve the same throughput 

level, can be a matter of further investigation. 
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Appendix 

MATLAB Algorithms 

DECOMPOSITION: 

1. External Algorithm 

% Decomposition-based approximate solution for an N-machine 
% (N-1)-(echelon) buffer flow line with Exponential Machines 
% Input: 
% k = number of machines 
% p = (array) probability that machine M_i produces one unit in one time 
% unit, i = 1, ..., N 
% N = (array) buffer size (including space in M_d) of buffer B_i, 
% i = 1, ..., N-1; 
% Output: 
% Average throughput and buffer level vector 

 
tic; 

  
% Input parameters for testing 

  
k = 5;                                % number of machines 
p = [8,8,8,8,8];                      % production rates 
N = [10,10,10,10]; 

  
% Decomposition parameters 
epsilon = 0.0001;               % convergence criterion 

  
% Initialization 
NE = fliplr(cumsum(fliplr(N))); % Echelon buffer sizes 
NE1 = NE + 1; 
BEDec = zeros(1,k-1);           % Average echelon buffer levels 
FRDec = zeros(1,k-1);           % Frequency of installation buffer overflow 

  
% Initialization 
lu = zeros(k-1, NE1(1));    
l = lu;                      
ld = lu;                     
Pmarg = lu;                 
PP = zeros (k-1, NE1(1), NE1(2)); 

  
count = zeros(1,k-1); 

  
ld(1,1:NE1(1)) = [0, ones(1,NE(1))*min(p(2:k))]; 
Pmarg(1,1:NE1(1)) = InitPcont( ones(1,NE1(1))*p(1), ones(1,NE1(1))*min(p(2:k)), 

NE(1)); 
for m=2:k-1 
    lu(m,1:NE(m-1)) = ones(1,NE(m-1))*min(p(1:m-1)); 
    l(m,2:NE1(m-1)) = ones(1,NE(m-1))*p(m); 
    ld(m,2:NE1(m)) = ones(1,NE(m))*min(p(m+1:k)); 
    Pmarg(m,1:NE1(m)) = InitPcont ( ones(1,NE1(m))* min(p(1:m)), ... 
        ones(1,NE1(m))*min(p(m+1:k)), NE(m)); 
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    SumPP = 0; 
    for j = 1:NE1(m) 
        for i = 1:NE1(m-1)-j+1 
            PP(m,i,j) = Pmarg(m-1,i)*Pmarg(m,j); 
            SumPP = SumPP + PP(m,i,j); 
        end 
    end 
    PP(m,:,:) = PP(m,:,:)/SumPP; 
end 

  
i = k-1; 

  
% Iterations 
while i >= 2 
    count(i) = count(i) + 1; 
    dif = 0; 
    [lout, rout, Bavout, FRout, Pout] = AlgLncontFR( lu(i,1:NE1(i-1)), ... 
        l(i,1:NE1(i-1)), ld(i,1:NE1(i)), NE(i), NE(i-1), ... 
        squeeze(PP(i,1:NE1(i-1),1:NE1(i))) ); 
    PP(i,1:NE1(i-1),1:NE1(i)) = Pout; 
    BEDec(i) = Bavout; 
    FRDec(i-1) = FRout; 
    if i < k-1 
        dif = max( abs(lout - lu(i+1,1:NE1(i))) / lu(i+1,1:NE1(i)) ); 
    end 
    if dif < epsilon 
        ld(i-1,1:NE1(i-1)) = rout; 
        i = i-1; 
    else 
        lu(i+1,1:NE1(i)) = lout; 
        i = i+1; 
    end 
end 

  
[THEDec, Bavout] = AlgL1cont( p(1), ld(1,1:NE1(1)), NE(1) ); 
BEDec(1) = Bavout; 

  
CPUDec = toc; 

 

2. Internal function InitPcont 

function P = InitPcont( l, ld, K ) 
 

% Analytical solution for a 2-machine 1-buffer flow line with Exponential 
% machines 

 
% parameters for testing the function 
% K = 6; 
% l = ones(1,K+1)*0.6; 
% ld = ones(1,K+1)*0.4; 

  
% Decomposition parameters 
C = ones(1,K+1);           % C_i factors for the birth-death process 

  
for i = 2:K+1 
    C(i) = C(i-1)*l(i-1) / ld(i); 
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end 
P = C/sum(C); 
end 

 

3. Internal function AlgLncontFR 

function [lout, rout, Bavout, FRout, P] = AlgLncontFR( lu, l, ld, Kl, Kh, P ) 

  
% Parameters for independent testing of function 
% Kl = 2;                                      
% Kh = 4;                                      
% lu = [ones(1,Kh)*0.4, 0];    
% l = [0, ones(1,Kh)*0.5];     
% ld = [0, ones(1,Kl)*0.6];    
% numelements = (Kh+1)*(Kl+1)-(Kl+1)*Kl/2;    % Number of states 
% P = ones(Kh+1, Kl+1)/numelements;           % Transition probability matrix 

  
lout = zeros(1,Kl+1); 
numlout = lout; 
denlout = lout; 
rout = zeros(1,Kh+1); 
numrout = rout; 
denrout = rout; 
Bavout = 0; 
FRout = 0; 

  
% Decomposition parameters 
epsilon = 0.0001;                           % convergence criterion 
dif = epsilon + 1;                          % max difference 

  
while dif > epsilon  
    SumP = 0; 
    Pold = P; 

     
    % *** MIDDLE STATES *** 
    for j = 2: Kl-1                
        for i = 2: Kh-j+1          
            num = P(i-1,j) * lu(i+j-2) + ... 
                  P(i,j+1) * ld(j+1) + ... 
                  P(i+1,j-1) * l(i+1); 
            den = l(i) + ld(j) + lu(i+j-1); 
            P(i,j) = num/den; 
            SumP = SumP + P(i,j); 

            
        end 
    end 
    if Kl >= 2                      
        for i = 2: Kh-Kl+1          
            num = P(i-1,Kl) * lu(i+Kl-2) + ... 
                P(i,Kl+1) * ld(Kl+1) + ... 
                P(i+1,Kl-1) * l(i+1);  
            den = lu(i+Kl-1) + l(i) + ld(Kl); 
            P(i,Kl) = num/den; 
            SumP = SumP + P(i,Kl); 

             
        end 
    end 
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    % *** LEFT COLUMN *** 
    %if Kl >= 2 
        for i = 2: Kh        
            num = P(i-1,1) * lu(i-1) + P(i,2) * ld(2); 
            den = lu(i) + l(i); 
            P(i,1) = num/den; 
            SumP = SumP + P(i,1); 

             
        end 
    %end 

     
    % *** RIGHT COLUMN *** 
    for i = 2: Kh-Kl          
        num = P(i-1,Kl+1) * lu(i+Kl-1) + ... 
            P(i+1,Kl) * l(i+1); 
        den = lu(i+Kl) + ld(Kl+1); 
        P(i,Kl+1) = num/den; 
        SumP = SumP + P(i,Kl+1); 

         
    end 

     
    % *** TOP ROW *** 
    for j = 2: Kl            
        num = P(1,j+1) * ld(j+1) + P(2,j-1) * l(2); 
        den = lu(j) + ld(j); 
        P(1,j) = num/den; 
        SumP = SumP + P(1,j); 

         
    end 

     
    % *** DIAGONAL BOTTOM RIGHT *** 
    for j = 2: Kl;            
        i = Kh-j+2;           
        num = P(i-1,j) * lu(i+j-2) + ... 
              P(i+1,j-1) * l(i+1); 
        den = l(i) + ld(j); 
        P(i,j) = num/den; 
        SumP = SumP + P(i,j); 

         
    end 

     
    % *** TOP LEFT CORNER *** 
    P(1,1) = P(1,2)* ld(2) / lu(1); 
    SumP = SumP + P(1,1); 

     

     
    % *** BOTTOM LEFT CORNER *** 
    P(Kh+1,1) = P(Kh,1) * lu(Kh) / l(Kh+1); 
    SumP = SumP + P(Kh+1,1); 

     

     
    % *** TOP RIGHT CORNER ***   
    P(1,Kl+1) = P(2,Kl) * l(2) / (lu(Kl+1) + ld(Kl+1)); 
    SumP = SumP + P(1,Kl+1); 
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    % *** BOTTOM RIGHT CORNER *** 
    if Kh > Kl 
            P(Kh-Kl+1,Kl+1) = (P(Kh-Kl,Kl+1) * lu(Kh) + ... 
            P(Kh-Kl+2,Kl) * l(Kh-Kl+2)) / ld(Kl+1); 
        SumP = SumP + P(Kh-Kl+1,Kl+1); 

         
    end 
    P = P/SumP; 
    dif = max(max(abs((P - Pold))./Pold)); 
end 

  
for j = 1:Kl+1           
    for i = 1:Kh-j+2     
        numlout(j) = numlout(j) + P(i,j)*l(i); 
        denlout(j) = denlout(j) + P(i,j); 
        numrout(i+j-1) = numrout(i+j-1) + P(i,j)*ld(j); 
        denrout(i+j-1) = denrout(i+j-1) + P(i,j); 
        Bavout = Bavout + P(i,j)*(j-1); 
    end 
    for i = Kh - Kl + 1: Kh - j + 1 
        FRout = FRout + P(i,j)*lu(i+j-1); 
    end 
end 
lout = numlout./denlout; %internal state dependent arrival probabilities 
lout(Kl+1) = 0; 
rout = numrout./denrout; %conditional throughput r of subsystem Ln 

  
end 

 

4. Internal function AlgLncontFR 

function [rout, Bavout] = AlgL1cont( l, ld, K ) 
% Analytical solution for a 2-machine 1-buffer flow line with Exponential 
% machines 

  
% parameters for testing the function 
% K = 5; 
% l = 0.6; 
% ld = [0, ones(1,K)*0.5]; 

  
% Decomposition parameters 
C = ones(1,K+1); 
for i = 2:K+1 
    C(i) = C(i-1)*l / ld(i);    
end 
P = C/sum(C); 
rout = l * (1-P(K+1)); 
Bavout = sum((0:K).*P); 

 
end 

 

 

 

 

Institutional Repository - Library & Information Centre - University of Thessaly
26/09/2022 06:59:39 EEST - 44.201.95.84



38 

 

SIMULATION: 

% SIMULATION SOLUTION 
% Flow Line with Echelon Buffers and Exponential Machines  
 

tic; 

  
% Problem parameters 

  
k = 5;                          % number of machines 
p = 1./[9,9,6,9,9];             % production rates 
N = [5,5,5,5];                  % buffer sizes 

  
NE = fliplr(cumsum(fliplr(N))); % Echelon buffer sizes 

  
% Simulation parameters 
% Tsim = 400000;           % simulation horizon 
MaxProd = 200000;        % number of parts produced before simulation ends 
Reps = 30;               % Number of simulation runs 
rng('default');          % random number generator reset 
rng(1);                  % random number generator seed 

  
% Initialization 
rep = 0;                           % repetition index 
THEarraySim = zeros(1,Reps);      % Av Throughput per sim run 
BEmatSim = zeros(Reps,k-1);       % Av Bi vector per sim run 
FRmatSim = zeros(Reps,k-1);       % Av Bi vector per sim run 

  
% Repeat simulation runs 
while rep < Reps 
    BE = zeros(1,k-1);           
    BEcum = BE;                 % ΒΕ*time in BE 
    FR = zeros(1,k-1);          % Freq(i) = frequency of overflow of B_i 

     
    t = 0; 
    Prod = 0; 
    % Simulate individual run 
    tnext = exprnd(p);          % Generate random processing times for the machines 

     
    %     while t < Tsim 
    while Prod < MaxProd 
        BEcur = BE; 
        DFR = zeros(1,k-1); 
        enable = zeros(1,k);    % Initiatially no production event is enabled       
        tmin = 100000;           

% tmin is the minimum processing time among all enabled machines; initially 

it is set to a very large number. 
         

%Find next event and tmin 
        if BE(1) < NE(1) % M1 not blocked 

            enable(1) = 1;  % If M1 is not blocked then it is enabled to 

process its part 
            if tnext(1) < tmin 
                tmin = tnext(1); 
                tminidx = 1;    % tminidx is the machine that produces next  
            end 
        end 
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        for i=2:k-1 
            if BE(i) < min(NE(i),BE(i-1))  % Mi not blocked or starved 
                enable(i) = 1;              

% If Mi is neither blocked nor starved then it is enabled to process its part 

                if tnext(i) < tmin 
                    tmin = tnext(i); 
                    tminidx = i; 
                end 
            end 
        end 

         
        if BE(k-1) > 0 % Mk not starved 
            enable(k) = 1; 
            if tnext(k) < tmin 
                tmin = tnext(k); 
                tminidx = k; 
            end 
        end 

         
        % Update event times and state 
        for i=1:k-1 
            if enable(i) == 1 
                if i == tminidx 
                    if i < k-1 
                        if BEcur(i) - BEcur(i+1) >= N(i) 
                            DFR(i) = 1; 
                        end 
                    end 
                    BEcur(i) = BEcur(i)+1; 
                    tnext(i) = exprnd(p(i)); 
                else 
                    tnext(i) = tnext(i) - tmin; 
                end 
            end 
        end 
        if enable(k) == 1 
            if k == tminidx 
                BEcur = BEcur - 1; 
                Prod = Prod + 1; 
                tnext(k) = exprnd(p(k)); 
            else 
                tnext(k) = tnext(k) - tmin; 
            end 
        end 

         
        %calculate frequency of buffer overflow 
        FR = FR + DFR; 

         
        BE = BEcur; 
        BEcum = BEcum + BE*tmin; 
        t = t + tmin; 
    end 
    rep = rep+1; 
    THEarraySim(rep) = Prod/t; % Average throughput TH 
    BEmatSim(rep,:) = BEcum/t; % Average WIP Bi, i=1,...,k-1 
    FRmatSim(rep,:) = FR/t;   % Average frequency of buffer overflow 
end 
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% Compute mean and CI of throughput and buffer levels 
THESim = mean(THEarraySim); 
THEstdSim = std(THEarraySim); 
THECISim = [THESim - 1.96*THEstdSim/sqrt(Reps), THESim + 

1.96*THEstdSim/sqrt(Reps)]; 

  
BESim = mean(BEmatSim,1); 
BEstdSim = std(BEmatSim,1); 
BECISim = [BESim - 1.96*BEstdSim/sqrt(Reps), BESim + 1.96*BEstdSim/sqrt(Reps)]; 

  
FRSim = mean(FRmatSim,1); 
FRstdSim = std(FRmatSim,1); 
FRCISim = [FRSim - 1.96*FRstdSim/sqrt(Reps), FRSim + 1.96*FRstdSim/sqrt(Reps)]; 

  
BEImatSim=[fliplr(diff(fliplr(BEmatSim),1,2)),BEmatSim(:,k-1)]; 
BEISim = mean(BEImatSim,1); 
BEIstdSim = std(BEImatSim,1); 
BEICISim = [BEISim - 1.96*BEIstdSim/sqrt(Reps); BEISim +1.96*BEIstdSim/sqrt(Reps)]; 

  
CPUSim = toc; 
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