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Avti OpoAdyovu

EuxoapLotieg

H egxmévnon pLoag dLOaKTOoPLKAC dlaTplPAg eival évac dpduocg
otov omnolo Pplokeocoal ovILlpétwrnoc pe ToOANEC OuUokoAleg,
amotuXlegc xolL amoyonteUoelg. Méoa ouwg ond TLg OUOKOAlLeg
KOl TLC Lo avIiiéosg oOTLlypéc avadlovial TOAANEC eguraLlpleg,
apkel vo umopécoups va TLQ avTLAneboUtpe. X1n OLAPKe LA TNG
OLOAKTOPLKAC HoU épesuvacg, éva «tafidi» mou Efexlivnoes mpLv
and oapketd xpdHvia, eixa Tnv esuxkalpla va oulnithow Que
OUVadEAQPOUC, EmLOoTAuOvVECg, aradnuaikoUc kKoL ¢@lAoug, mmou O
kKaBévag oamd tnv mAsupd Tou, eumAoUTL{e TLC OKEPELC POU KOL
TLg 10éeg pou KoL ©OHTLle dLaotd&oelg mou dev ATV TAVIOTE
dueca  oviLlAnmiéc omd  péva. e pla oamd  TLg  TOAAECQ
oculntnoetLg, ¢évoag ouvaderpoc mPLVY Kalpd, POU oVEQEEPE UL
LLKpenh, vunopf Lok oAA& kol oaotela Lotopla oamd 10 PBLRAlO
«The Hitchhiker’s Guide to the Galaxy» (T'uplocte 1OV
Tahaéla pe wtootdm) tou Adams Douglas. I1nv Lotopla auth,
avoal{ntelital n "YyiLorn Andvinon oOIn Zwhn, OT0 IJUUIDOV KOl OTA
Mavta", YENOLUOTOLOVINC IOV UNEPUIOAOYLOTHl Deep Thought.
Yotepa amd évav ToAU ueydAo ¥pedvo UImoAoyLlouoU, o Deep
Thought diver 1tnv oam&vinon "oplOudc 42". Ouwg, Ootav
PwINONKe via voa mnoapdoxel tnv AndAutn Epdinon otnv omnolo
avoapepdtoy 1 mnponyouUusvn oan&vinon, O UNOAOYLOTAC d&gv ATV
ETMOPKAOC LoXUupdCg yia vo amoavIinoel. Mio Lotopla mou Ba HBegAa
VO HOLPOOTO viaTl...
btav Ta mnpdyuata mepltmiéxkovial, afiler tov kKémo voa otabel
KAVELQ KOl VO aQVAOYLOTE(: €Xxw KAVEL TNV OWOTH €p0TNON;

EAnilovitag voa PBonbnoel kKL AAAOUC O OTLYHéc adlLefddou. ..
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Avt il TIpoAdyou

51N dLépKe LO QUTACQ ng npoondBe Lag, IouU axrdOu
duokoAsUoual vo TLOTEYw OTL TeAeLldvel, dgv B umopoUoca Vo
nopore (Y0 Kol voa unv suxoaplotnow oOAoug bdooug pe Pondnoov
OTNV OAOKANPWON ouUIhc 1ITng OdlatplPAg. e odroug obooug
avopépoual TUPAKAT® OAAX kKol og OAoug exelvoug mou eival
adUvaTo Vva ovaeepbd ovouooT Lk, vo yvwplilouv 61l  TOUC
EUXXPLOTO Beppd& vioa Tnv ouveldntn 1O axrdua kKol €v ayvola
TOoUCg KabodAynon (e€mLOTNUOVLIKA KXL Un) XKoL Tn OTtAplLEn TouUg,
TNV TOAUT LUN KAl ovidLloTeAl Ponbela TIOU HOU IIPOCEPEQAV OF
OT LYUEC adlLegddou, BéTovIac OWOTEéC €PWINOCELC KoL
npolAnuot LouoUg.

IIpdto am’b6Aoug Oa NBeAN VA €UXAPLOTINC® TOV KaONynin upou
kKol  péviopa pou k. ZmUupo Kapapdvo, yia 11 OUvVEXH
eumiotooUvn kKol OTIAPLER TOoU KOUT& TNV TOAUETH ouvepyoolia
noc. Me ombAutn eAegubepla OTLC KLVACELC JWOU KL  TLC
emLAoyéC pou, ITnv og k&Oe PAPN ouéPLOTn €UmLOTooUVIN IIPOC
10 1mpdownd pou, OoAANX KL PE TNV TATIPLKA kKol  dL&epavn
KaBodnynorn Tou, KATOHEOwox vo €mLTUXW TOV TILO ONUAVTILKS €wC
TOPa okadNUATKSO OTdX0 ulag pokpdc kol enlmovng mnopelag.
Eival vyveyovdée o611 xwplc 1o dLopkég evdLapépov Tou, 1INV
EIMLUOVY) KL UIOUOVH TOU, TLC YVOOELC TOU KOL Inv sumelpla
Tou 1600 O¢ egmiLotnuovikd 600 kKol o mupoownlkd emimedo, n
dLatplPhy auth O Ou elixe mepatwbel. Aev pmopd mopd VA TOU
elpal vndxpen, kxuplwg viatl pe esnnpéoace wg &vOpwmo ue 1Inv
OMNT LKA TOU OTx HNPAyuaTa kKol tn otd&on (whg Tou.

o NBeAa emiong, Vo €UXKPLOTACW T WEAN TNG €E€TQOTLKNACQ
ETMLTEONNG, VLI TLC TOAUTLUEC mnoapatnpioelc kKol umodelfelLc
Toug, oL omnolegc ouvéPRorav otnv PBeAtlwon TOU TEALKOU
KeLuévou.

EoitomAéov, Oa noedho emionc voa euxaplotnow OAOUC TOUQ
kaOnyntécg, dLdakTOoPLKOUC poLINIéC KOl L oUVad EAPOUC
Unxov LKoUg ue Toug omoloug ouvepydoInko Kol ue Ponénoav
Katd& 1n OL&pKelo OoUTAC ITNC €peuvoag. IdLaltepa €UXUPLOTO

TOUC OUVadéApouUuC uou Iwtnpla XouAiLoapd, AovIAA BooLALKA,
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Avt il IIpoAdyou

T'Lopyo BapéAn, Ayialoa Toupvépa, X&pn Hoanabsoxdpn, Maplo
B&On, TiavvoUda XatlomoUAou xol TIpnydpn Joapldvn via 1In
cuvepyaoia TOUQ, TLC TOAUTLHeEC vunodelfelg TOUC KXL TO
evdLlapépov Tou  £deLlxvav k&Be oop& mou xpeilalduouva 1IN
BonBela Touc. IMapdAAnAa 6o NHBeAX VA €UXAPLOTNCW TOUCQ
avOPOIOUC MOU HUoU oT&OnKav Kol ue nictefav ce r&Oe pou
BAuc, ouupB&AAovioag ue T1Tov OLkO Toug t1pdmo kKL amd
dlLoagpopetLlkd mbdoTo O KAaBEvVAC, OInv mnmpoondbela QUTH IIOU
TOPA OAOKANPOVETOL .

T'ta 1o TéAOC AENOX TOUC ONuUavILKOTEPOUC aVOPROIOUC OTInN
(o) pou. Aev Ba umopoUoa vo nopafAéfew euolrd& tnv (dLa pou
Inv  oLlkoyévela, n onola otexrdtoav ndvia Odlimia  uou,

DLUKPLT LKA,

ce OAn Inv OLAPKELA KL

QUTAC Tng npoomnddeldc.

Htov ol &vBpwmol mou ue Tnv avidLloTeAn aydmn Toug, TNV
UIIOUOVI] TOUC Kol TInv ofévan UIoOTAPLEN TOUg £€KAVOV TLC
dUoKOAEC OTLYHEC Vo pol&louv eukoAdTIepeg. Ene1dn, dev
Bpolokw AdyLa va T1ToUug €kep&ow TNV UyvVOUooUvn Kol In Yopd

uou, Ttoug undoxoual
cpyooia aplepdvetTal o€
«zeby cos znalezZé,
TeALkS, o Jdpduog
povoayx Lkdég, ext1dg oamd

eudUvn yia tLg amdyeLg

Vo

10 &V ue €épva, via nédvioa. H

ocacg, Aolmdv, mou pou udbote OTL:

trzeba wiedzieé, czego sie szuka»

mou oxodoUBnoa dev  Atov  dLdAou
¢va tou onuelo. d&pw axrépoln TNV
nou exep&lovial oOTIn dLATPLPH KUl TN

A&Bn mou und&pxouv eival OAa dLk& uou.

Moatpltola Homnné,

Boérog 2016

viii

Institutional Repository - Library & Information Centre - University of Thessaly

11/06/2024 17:18:53 EEST - 3.15.206.238



Avt il TIpoAdyou

It always seems impossible until its done.

Nelson Mandela
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PATRICIA PAPPA

University of Thessaly
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Supervisor: Dr. Spyros A. Karamanos, Professor

Abstract

The research in the present dissertation is aimed at developing advanced
numerical tools for the simulation of shell buckling and post-buckling behavior,
in the inelastic range. In particular, this work describes the development and the
implementation of a J, - non-associative plasticity model, which takes into
account the "corner-like" effects at the loading point on the yield surface, and is
suitable for shell buckling calculations.

It has been widely recognized that although J, - flow theory can accurately
describe the general material behavior of metal components in the inelastic
range, bifurcation predictions based on the J, - flow theory may not be reliable
in cases where buckling occurs well into the inelastic range. On the other hand,

J, - deformation moduli may provide a much more reliable prediction of

X
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ABSTACT

buckling load on the primary equilibrium path. To account for this discrepancy,
several previous works have used the flow theory to trace the load-displacement
equilibrium path, while employing the J, - deformation theory moduli (instead
of the J, - flow theory moduli) to detect bifurcation on the primary equilibrium
path.

The superiority of J, — deformation theory is attributed to the "softer"
moduli of the deformation theory, simulating the development of a "vertex" or
"corner" (i.e. a high-curvature region on the yield surface at the point of loading
on the yield surface), reported in experimental observations in aluminum alloy
and steel materials.

The vertex forms on the yield surface at the loading point and this can be
very important in cases, where strong deviations from proportional loading
occurs, e.g. in the case of shell structural instability in the inelastic range.

The main task of the present work consists of the development and the
numerical implementation of a special-purpose constitutive model, suitable for
large-scale structural stability computations within a finite element framework.
The model employs von Mises yield surface (J, - plasticity) and the rate form of
J, - deformation theory, it accounts for large strains, and leads to a non-
associated flow rule. Special emphasis is paid on the continuity of plastic flow,
to overcome numerical problems of convergence. The numerical implementation
is conducted through both the backward-Euler and a forward-Euler substitution

scheme, where stress and strain tensors are described in curvilinear coordinates,

x1
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ABSTACT

accounting for the extra constraint of zero normal stress through the shell
thickness.

The model is incorporated in a special-purpose nonlinear cylindrical shell
finite element methodology, where the shell is described through a Lagrangian
approach with convected coordinates and discretization is considered through a
three-node “tube element”. The above technique is suitable for identifying
bifurcation, investigating imperfection sensitivity and determining post-
bifurcation behavior of the steel cylinder under compressive loads (uniform
compression or bending).

The numerical results are compared with available experimental data and
analytical predictions and is demonstrated that the present methodology is
capable of describing accurately and efficiently buckling and post-buckling
behavior of rather thick-walled cylindrical shells in the inelastic range.
Furthermore, wrinkling and post-wrinkling behavior of thick-walled high-
strength seamless tubular (circular hollow section) members are presented in
terms of both the ultimate load and the deformation capacity of typical cross-
sections, in order to determine their ability to sustain load well above the first
yield level. The results are aimed at evaluating the applicability of EN 1993-1-1
provisions for cross-sectional classification in the case of high-strength steel CHS
seamless tubular members an issue of major importance for the design of tubular
structures. The numerical results are compared with available experimental

data, performed elsewhere.

pall
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ABSTACT

The contributions of the present work can be summarized as follows:
. A J, - non-associative plasticity model is developed, capable of
describing the effects of yield surface vertex on the structural

response and buckling of shells in an efficient manner.

o Robust integration schemes are presented, accounting for zero stress

normal to shell surface and the “consistent moduli” are reported.

. A large-strain J, - non-associative plasticity model is also developed
for efficient large-strain nonlinear analysis of cylindrical shells, and is
integrated using the polar decomposition of deformation gradient and

appropriate rotation of stress and rate of deformation tensors.

. The constitutive model is implemented in a user material subroutine
and incorporated in an in-house finite element technique for shell

buckling analysis.

. The present numerical results are compared successfully with

available experimental data and analytical predictions.

. The comparison with test data demonstrates the superiority of this
non-associative model with respect to the classical associative J, -

plasticity model in predicting shell buckling in the inelastic range.

xiil
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ABSTACT

. Buckling calculations on thick-walled seamless tubulars made of high-
strength subjected to axial compression and bending are performed,
in terms of both the ultimate load and the deformation capacity, and
their ability to sustain load well beyond the elastic range is

determined.

. Based on the numerical results, considering imperfections and
residual stresses obtained from real measurements on high-strength
steel seamless tubes, those tubes exhibit significantly higher ultimate
load and deformation capacity with respect to the predictions of
existing design rules, indicating the conservativeness of current design

practice for the case of high-strength steel tubulars.
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APIOMHTIKH EITIAY2H AYTTEMOY KAI
METAAYTIZMIKHE YYMIIEPI®OPAX
YE ANEAAXTIKA KEAY®OH

Morpwia Momrmd

[Mavemotnpio Oeoooiiog
Tunpo MnyovoAdywv Mnyavikwv

2016

EmBAérwv: Ap. Xnvpog A. Kapapdvog, KaBnyntrg

IMepiinym

Avtikeipevo ¢ Sidaktopikng Satpifric  eivau 1 mpooopoiwon NG
oupTEPLDOPES HETOAAKWY KEAUDWV € AUYIOUO, HE OTOXO VO XOPAOOETHL HE
axpifelr 0 Spdpog ooppomiog TNG HETOAUYIOHIKNG OUUTEPIDOPES KoL Vo
neptypadetan n evoucOnoio o apyIkéG ATEAEIEC HECW TNG VATTTUENG €VOG €18IKOV
HOVTEAOU pn-cuvnptnpeévng mTAaotikotntag. O kiplog otdyog ¢ epyociog sival n
avé&mtuén €vOg HIN-cuVIPTHEVOU HOVTEAOU TAaoTikOTnTaG (/2 - non-associative
plasticity model), to omoio AapBdver utddn tnv Snpovpyia g ekoviknig ywviog
(“corner-like” effects) otnv emipdveia Sipporig oto onueio tng pdpTiong kou givat
KOUTAAANAO Yyl TV €€€TaOT TOU AUYIOHOU KoL TI) HETOAUYIOWIKT) oUUTEPLDOPE TwV
KeAVPwV.

H opBunuikn emidvon Avywopod kol  HETAAVYIOHIKNG  oupmepldopdg
aveAaoTIKwV keAubwv amotedel To Pactkd mpodPAnpa tg Aotpifrig. ta mAaiow,
eMOpévwG aTnG NG peAétng SiednyOn px exteviiq BipAoypadikn avaokdmnon
twv e€etaldpevwy mpoPAnudtwyv Omou yivetou ofloAdynon twv Sabéoipwv
TMELPAPATIKWV deSOHEVWV KAl AVOAUTIK®WY AVoewv. Oo mpémel v onpelwbdei dtL ot

QVOAUCEI] TIEMEPACHEVWY OTOLEIWV TTOU YPTOLHOTOIOUV GUVIPTIHEVO HOVTEAO
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ITEPIAHWH

mAooTikOTNTHG (J2 - associative plasticity model) mapovoidlovv piat onpavtikn
amdkAlon ammd ta melpdpota (Seiyvouv YEVIKWOG peEyaAUTEPT ovTOX] OTO TNV
TEPAPATIKT), AGYw KUPIWG TNG aduvapiog Twv ouviBwy KATAOTATIK®WY £EI0WOEWV
€AAOTOMAAOTIKNG OUUTEPLPOPES Vo TTEPLypEPouV TNV EVIATIKY KATAOTAOT OTO
HETHAAIKO UAIKO TNV OTIypn] TOU AvytopoU. AVTIf€TwG, T avTIoTOLXO LOVTEAX TTOU
EUTTTTOUV OTNV KATNYOPIX TWV HI-CUVIPTNHEVWY HOVTEAWY TAXCTIKOTNTOG (non-
associative plasticity models), ta omoix meprypddpouv mpooeyyloTIKA TNV
dnuovpyiat €vog kwvou otnv emdadveln dlappong, oto onpeio tng Poptiong,
meptypddouv pe koAltepn axkpifela tnv amdétopn ocArayr oto medio Twv TAoEWV
Vv otiypy tou Avylopol. To povtéAa Opw¢ ToU MPOKUMTOUV €ivol XPKETA
mepimAoka kot dev €xouv Soklpaotel o€ pPEYAANG KAipoxkog vumoAoylopolg
TIETMEPACUEVWV OTOLYEIWV.

Ytoxog¢ tnG epyonoioag eivar vo avamtuyBei évo véo pHOVTEAO TO OTOI0 VX
EVOWUATWVEL T TAEOVEKTIHATH TWV HOVTEAWV OV €x0UV TTpoTabel wg TWpo Kal
Voo €iva €0XpNOTO Y oplOUNTIKOUG UTOAOYIOHOUG TEMEPATHEVWV OTOLYEIWV
HEYAANG KAlpoKkag, kKaBWg Kot va emoAnOgVeL TA TEPAUATIKA ATTOTEAEGHATA TTOV
avadepovtat otny PiAloypadic.

[ v Snpiovpyi TOUu VEOU WUN-OUVNPTNHEVOU HOVIEAOU TAXGCTIKOTTOG
xpnowomomfnke 1n avénuikn popdn TOU HOVTEAOU TAXCGTIKOTINTAG GUVOAIKWV
tdoswv opapopdbwoewv (J, — deformation plasticity model). O puBpdg ovénong
NG TAXOTIKNG TapapoOpdwong amoteAeitan amd dU0 CUVIOTWOEG, piot kKaBeTn Ko
pio edoamropevikn otnv emidavelor diappong, oe ovtiBeon pe To ouvnpTNHEVX
HOVTEAX IOV €X0UV i ouVIoTWOoo KABeTn otnV emipavelx Slapporg. Auto €xeL ooy
AMOTEAEOUN, Ol EAACTOMANCTIKEG oTABEPEC MOV TTPOKUTTOUV Vo gival ALtyOTEPO
«8Vokortteg», Kot v teptypddouv pe akpifelo Ty omtdtopn aAiayr oto medio Twv
TAoEWV TNV OTlypn} Tou Avylopov. [8iaitepn éudoaon éxet dobei otnv cuvexela tou
puBpol ab€nong tng mAaotikng mapapdpdwong. Mia tpomomoinen tou pubpov
a’énong ¢ mAaoTiknG mopapopdwong €xel mpotabel, wote va EemepaocTovv

npofAnpoata aplOuntiknig oUykAwong. To véo povrédo mAaotikotnTag Sotnpei To

xvi
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ITEPIAHWH

Boaokd xapoxtnplotikd tng KAaoolkig Oswpiog, aAA& emexteivel v Pooikn
Bewpia woTe va Pmopel voe TPOSOpOLWVEL He akpifela To Avylopo Twv KeAVPWY,
XWpIC emMmTAéOV TAPAPETPOUG TTOU otoutovV Tta povtéAao corner/pseudo-corner
theory of plasticity. To povtéAo Bewpei pndevikn tdon kdbetn otV emipavelx Tov
KeAVDOUG, kol oAoKANpwvetat pe pia eVpwotn péBodo backward-Euler kabwg
emiong kou pe tnv péBodo forward-Euler. To povtéAo emekteivetou Ko yio HEYEAEG
TApAUPophWOEeLG, OOV OAOKANPWVETAL HEOW WG gVpwaotng pHeBodoAoyiag mou
Baoiletou otV TOAIKT] AVAAUOT] TOU TAVUGTH) KAIGT|G TG TopAHOpPwon.

[ tnv mpocopoiwon TG eAACTOTAACTIKNG CUUTEPLDOPES TOU KEAUDOUG Ko
TWV APYIKWV ATEAELDV, €XEL XpnolpoTonfel évag mNyaioq KWSIKKG TEMEPATUEVWV
otolyelwv mou avamtvxBnke amd tnv epevvnTikn opddo tou [lavemiotnpiov
Oeooodiog ko €xel dwoel eapeTIKA amoTeAéopATA Yot KUAWVSpIK& keAudn. To
KOTOOTATIKO HOVTEAO €ANCTOMAAOTIKNG CUUTEPLPOPAG €xel evowpatwbdel oto
TPOYPAUUN TEMEPACHEVWY OTOLYEIWVY, OOV Ypnotpomoteiton pioe peBodoroyioe pn
YPOHUIKNAG oVEAUONG KATooKeELWY, 1| omoia Paoileton og pioe Aoykpov{iovi
mepLypadr] Tou TAPAPOPPWOLHOU OTEPEOV HE KEVOWHATWHEVEG» ouvTeToypeveg. O
KWOOIKOG  €xel TNV SuvatodTNTA  €AAOTOMAXOTIKAG OVAAUGTC HE  HEYAAES
TAPAPOPDWOELG/ HETATOTICEL] KOl PETAAVYIOUIKNG avAAvonG Tou KeAUdoug Kot
xpnotpornotei éva e€eidikevpevo TpikopPiko “otoryeio cwAnvae” (“tube element”)yia
NV avdAuon Twv KUAWVIpIKwY KeAupwv To omoio cuvduader tnv Stopnkn
moapapopdbwaon tumov Jokov pe TNV mMopapdpdwon g SToprg tov cwAnva. O
mnyoiog kKwdkag €xel v duvatdtnta v AapBdvel vmddn owdrmote popdn
APYIKNG ATEAELNG KL OLXST)TTOTE KATAVOT] TTAPUPEVOUOWY TACEWY, EMITPEMOVING
TNV CUCTNOTIKT] TOPAUETPIKT) SLEPEUVNOT TNG OPLAKIG AVTOYTIG TWV XYWYWV.

Yta mAaiowx TG Tapovoag €pEUVOG HEAETHONKE O EAXCTOTANCTIKOG AUYIGHOG
KUAWVSpIKWV kKeAUPWY, pe Adyo Siopétpouv-mpog-méxog D/t, petagy 20 kot 60, o€
ouvOnkeg oovikng kot kopmtikig doptiong, ouvpmeplapPovopévng  Tng
HETOHAVYIOUIKTG oupmepldopdC. [TapdAAnAa pe tnv oaplOuntikny mpocopoiwaon

éxouv die€ayOel cuykpioelg pe aVOAUTIKE KO TELPOUATIKE XTOTEAEGUATA OTIOU

xvii

Institutional Repository - Library & Information Centre - University of Thessaly
11/06/2024 17:18:53 EEST - 3.15.206.238



ITEPIAHWH

aUTO Nty €PIKTO, TOU OMOCKOMOUV oTnv emaAnfevon twv  oplOuntikwv
amoteAeopdtwy, TV Podpovépnon Tou UMOAOYIOTIKOU HOVTEAOU KAl TnV
e&axpifwon g akpifeldg kou amoteAeopatikotnTog Tov. Too amoteAéopaTa eivot
oe ocupdwvio pe avaAutikég AVoELS Kal TELPUPATIKE SeSOHEVA, TOGO OTO KPIGLULO
doptio 600 Kol OTNV HETAAVYIOWIKT cupmepldopd Kot TNV evaucOnoio oe apyLkeg
ATEAELEC.

Yto teAevtaio pépog tnG datpiPrg mopovoidleTal [ OTHAVTIKY TPOKTIKY
epappoyn g avwtépw pedodoAoyiag, mou adopd TOV AUYIOHO CWANVWV OO
¥6AvBo vimAng avroynig. H ebappoyn auvtn eivar onpovtiki yioo tov Sopikd
OXEJIOOHO CWANVWTWY KATHOKEVWY, ISIAITEPA YIX TNV AELOAGYNOTN TWV IOXUOVIWYV
oxedlaotikwv Siatdéewv tou avtiototyov Evpwmaikol kavoviopov.

H npwrtotumia tng Sidaktopikrg Siatpifrig ouvopiletou ota axdAovBa onpeio:

o 2NV avamtuén TOU HN-CUVNPTNHHEVOU HOVTEAOU TAXCTIKOTNTHG Ylo
HIKPEG KOl PHEYAAEG TTAPAHOPPWTELG, TO OTOI0 TPOCOHOLWVEL EUHETWS
Vv dnpovpyia akpnig m&vw otnv emipavelo Slyppong, KAl TNV EMPPOT)
G oKPAG otnv SopIKy oupmepldopd Kol €UOTAOEIN HETHAAIKWV
KeEAUPWV.

. YtV e0pwotn 0AOKANPWOT] TOU XVWTEPW HOVTEAOU, GUUPATNG pe TNV
amaitnon Undevikig Taong kabeta mpog TNV emipavelx Tov KeAUDOUg
YL LIKPEG KO LEYAAES TTXPAOPDWTEL.

o YtV aplOuntikn ePopprOYr) TOU HOVTEAOU HE KATAAANAN UTOpoOUTIiVa
KO OTNV EVOWHATWOT TNG o€ €va TepIBAALOV TEMEPATHEVWV GTOLYElWV
YLOU TN UN-YPAUULIKT) 0VEAUGT] KUALVOPIKWV KEAUD®V.

. 2TV MOTOTOINGCT TNG UTTEPOXT)G TOU TTPOTELVOUEVOU HI-CUVI|PTIHLHEVOU
HOVTEAOU, o€ OY€oT) HE TO KANGOIKO HOVTEAO, e BdoTn cuykpioelg Twv
QUTOTEAEOUATWV [LE AVOAUTIKEG AUCELG KO TTELPXPATIKK ATOTEAETHATAL.

. Yty edappoyn e avwtépw pebodoloyiag yit Tov UTOAOYIGHS TNG
QVTOXTG KO KXTNYOPLOTIOINoNG TNG SIATOUNG HETAAAKWOV CWATVWY OTTO

X6 AUBo vPn AN avToxTS.
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Deformation gradient tensor
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Covariant base vector in the current configuration (curvilinear
system)

Contravariant base vector in the current configuration
(curvilinear system)

Hardening modulus
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S Jaumann rate of deviatoric part of the Kirchhoff stress
t Time
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T Kirchhoff stress

T Rate of Kirchhoff stress t

\%

T Jaumann rate of Kirchhoff stress =

'; Convected rate of Kirchhoff stress tensor

1 Rotational stress tensor

U Stretch tensor

U;; Components of U with respect to the (Gi ®Gj) basis
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&° Elastic strain rate

&P Plastic strain rate

&4 Equivalent plastic strain
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g g2 g Curvilinear system (where coordinate line &' is directed in the

hoop direction of the cylinder, £? in the axial direction of the
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Chapter 1

Introduction

Relatively thick cylindrical metal shells, with diameter-to-thickness ratio D/t
less than 50, are widely used in pipeline and piping applications for hydrocarbon
transportation and distribution. Those elongated metal cylinders, often referred
to as “tubes” or “pipes”, can be subjected to severe structural loading, which
induces significant compressive strains in the cylinder wall. As an example,
high-pressure/high-temperature (HP/HT) buried steel pipelines, restrained by
the surrounding ground, may experience severe axial compression (Yun and
Kyriakides, 1990). In offshore pipeline operations, significant bending may occur
in a pipeline during the installation process at the stinger (Corona and
Kyriakides, 1988; Karamanos and Tassoulas, 1991). Furthermore, the
differential motion of the surrounding soil in a buried steel pipeline caused by
fault movement, landslides, ground subsidence, permafrost melting, or soil
liquefaction, can also result in severe compression of the line (Vazouras et al.
2010, 2012, 2015).

Excessive compressive action on the pipe wall may result in buckling failure

in the form of wrinkles, sometimes referred to as “local buckling”. This is a
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CHAPTER 1 - INTRODUCTION

shell-type buckling, and is quite different from the one that thin-walled shells
exhibit. More specifically, thin-walled cylindrical shells under axial compression
buckle in the elastic range, and their behavior is characterized by sudden
collapse and imperfection sensitivity. Figure 1 - 1(a) shows the buckled shape of
thin-walled cylindrical vessel (D/t,<609) subjected to axial compression
(Karcher et al. 2009), whereas Figure 1 - 1(b) and Figure 1 - 1(c) show the
buckled shape of two relatively thin-walled cylinders ( D/t, =100) subjected to
bending (Van Foeken and Gresnigt, 1994). In both cases, failure of the cylinders
occurs suddenly and is catastrophic. On the contrary, thick-walled cylinders

buckle in the plastic range and failure occurs more gradually, after a sequence of

events.

Figure 1 - 1: Thin-walled cylindrical shell buckling; (a) azial compression of a thin-

walled tank (D/t=609); (b) and (c) buckling of thin-walled cylinders under bending.
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CHAPTER 1 - INTRODUCTION

1.1 Experimental and numerical work on buckling of thick-wall cylindrical

shells

Early experimental work has been reported on relatively-thick aluminum
cylinders by Lee (1962) and Batterman (1965), supported by analytical
bifurcation calculations based on nonlinear elastic-plastic shell analysis. Lee
(1962) tested ten tubes made of Al-3003-0 with yield stress equal to 6 ksi (41.4
MPa) and significant hardening. The tubes had diameter-to-thickness ratios
(D/t,) of 20, 40, 59.7 and 93 and length-to-diameter ratios (L/D) between
about 2 and 5. The cylinders were clamped at the ends and, as a result, edge
bulges developed, dominating the response, and no ‘bifurcation” stress or
wrinkle wavelength was reported although axial waves were observed in the test
section. Batterman (1965) tested 16 shell specimens from Al-2024-T4, with yield
stress equal to 56.5 ksi (390 MPa) and D/t, values between about 20 and 180.
The shells had length-to-diameter L/D ratios between 1.5 and 0.18. The
specimens were compressed between lubricated rigid platens to alleviate end
(boundary) effects and axisymmetric modes of failure have been reported for
tubes with the lower D/t, values. In both series of experiments, the buckling
resistance was reported in terms of the maximum (limit) stress and it was
indicated that the buckling resistance of relatively-thick metal cylindrical shells
is less sensitive to initial imperfections than of thin-walled elastic shells.

Nevertheless, the relatively short length of most of the specimens does not allow
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CHAPTER 1 - INTRODUCTION

for a direct comparison with bifurcation analysis predictions.

Bending tests of cylindrical shells were reported by Bouwkamp and Stephen
(1974). Eight tests were carried out on seven specimens. Test specimens were
longitudinal-seam tubes manufactured from X60 steel with a yield stress of 60
ksi (414 MPa), with the exception of one specimen. The nominal diameter of the
pipes was 48 in. (1,200 mm) and the nominal thickness was 0.462 in. (11.7 mm).
Bending was accompanied by the application of axial loads and internal

pressure.

(a) (b)

Figure 1 - 2: Thick-walled cylindrical shell buckling under axial compression

(D/t=26.5); (a) first wrinkling; (b) localization of buckled shape.
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CHAPTER 1 - INTRODUCTION

Tests on small-scale aluminum-alloy and stainless steel cylinders with D/t
ratios ranging from approximately 30 to 80 were reported by Reddy (1979),
motivated by the need to provide design guidelines for submarine pipeline
installation. Ten steel and nine aluminum specimens were tested. The nominal
diameter of the specimens was 1 in. (25.4 mm). The tests were carried out
under pure bending conditions in the absence of sheer through a four-point
loading set-up, and the results were reported in terms of extreme fiber
compressive strain. It was also reported that wrinkles steadily grew from
initial imperfections into sine-wave patterns on the compressive side of the
specimens before collapse took place.

The imperfection sensitivity of axially compressed cylindrical shells has been
investigated analytically by Gellin (1979), extending Koiter's methodology for
cylindrical shells in the inelastic range considering a uniform axisymmetric
initial imperfection (Koiter, 1963). Using nonlinear shell kinematics, deformation
theory of plasticity, and axisymmetric imperfections, Gellin calculated the stage
where a secondary bifurcation occurs, assuming that this is representative of
buckling strength of the compressed cylinder.

A thorough investigation of pure bending buckling of inelastic tubes and the
various instabilities that can be encountered was reported by Kyriakides and Ju
(1992) in a series of experiments on Al-6061-T6 tubes with diameter-to-

thickness values (D/ts) in the range of approximately 20-60. It was shown that
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D/t, governs which of the possible instabilities becomes dominant. For the
particular aluminum alloy used, axial wrinkling was found to develop when the
D/t, exceeded a value of about 25. In a companion paper, Ju and Kyriakides
(1992) developed a sequence of modeling features for calculating the inelastic
response of tubes under bending, in terms of the onset of tube wall wrinkling
and its evolution until failure. The basic formulation is an extension of the
ovalization model presented in Shaw and Kyriakides (1985) and Corona and
Kyriakides (1988), and the possibility of buckling into a wrinkling mode was
checked by a bifurcation analysis that is based on the instantaneous moduli of
the deformation theory of plasticity. Secondary bifurcation, localization of
buckled patterns and imperfection sensitivity were also examined. The
numerical results in terms of wrinkling curvatures were in good agreement with
the corresponding experimental values.

Zimmerman, et al., (1995) performed five tests with and without internal
pressure on Grade 483 steel pipeline specimens with D/t, ratios of 87 and 41,
and a total length of 32.8 ft (10 m). The pipe material was steel. The primary
aim of this work was to provide experimental data for calibration of finite
element models. The specimens were loaded in uniform bending moment until
failure and subsequently, the tests were simulated using finite element models;

good comparison was reported between tests and simulations in terms of the

moment-curvature response.
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A more recent combined experimental and analytical investigation of
buckling behavior of thick cylindrical shells under pure axial compression has
been reported by Bardi and Kyriakides (2006) and Bardi et al. (2006), which
followed a methodology similar to the works of Kyriakides and Ju (1992), and
Ju and Kyriakides (1992) for bent cylinders, described above.

In the paper of Tutuncu and O’Rourke (2006), the compression response of
300 mm internal diameter steel cylinders with D/t of 48 and yield stress equal
to 334 MPa is assessed by both experimental and analytical procedures. The
investigation referred to test specimens with small-scale global geometric
imperfections, typical of irregularities that occur during fabrication and
handling, and the large-scale local geometric imperfection generated by locally
indenting a test specimen to a depth exceeding 180% of its thickness. Analytical
procedures were also developed to represent these imperfections and their effects
on the compressive response and ultimate load strength.

Finally, eight very-high-strength (VHS) steel stub columns were tested under
axial compression by Jiao and Zhao (2003) with D/t, ratios between 24 and 46,
aiming to determine the yield slenderness limit, considering geometrical
imperfections and residual stresses. Two non-heat-treated tubes were also tested
to show the effect of manufacturing process on geometrical imperfections and

residual stresses.
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1.2 Material modeling in shell buckling simulations

In simulating metal shell buckling in the inelastic range, the choice of
appropriate material models constitutes a key issue. It has been recognized that
J, - flow theory can accurately describe the general material behavior of metals
in the inelastic range and it is widely used for the nonlinear elastic-plastic finite
element stress analysis of shell structures (Dvorkin et al., 1995, Argyris et al.,
2002, Paraskevopoulos and Talaslidis, 2006). Nevertheless, buckling predictions
based on the J, - flow theory may not be reliable in cases where bifurcation
from the prebuckling state occurs well into the inelastic range. This is
attributed to the vertex (corner) that develops on the yield surface at the point
of loading. The formation of such vertex on the yield surface at the loading
point has been detected experimentally in aluminum and steel materials
(Kuroda and Tvergaard, 2001), as shown in (Figure 1 - 3) and can be very
important in cases, where abrupt deviations from proportional loading occur,
such as in the case of shear band formation and localization of plastic flow, as
well as in the case of structural instability of shells in the inelastic range, where
the shell wall exhibits a transition from a smooth pre-buckling configuration to

a wavy-pattern associated with multi-axial state of stress.
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Figure 1 - 3: A typical example of the use of an abrupt path change for determining the

subsequent yield surface (Kuroda and Tvergaard, 2001).

To obtain more reliable buckling predictions, in axially-compressed
cylindrical metal shells, Tvergaard (1983) and Mikkelsen (1995) conducted
stability calculations through a special enhancement of J, (von Mises) plasticity
theory, referred to as the J, - corner theory, initially proposed by Christoffersen
and Hutchinson (1979). This theory provides a phenomenological framework for
the observations regarding the development of a corner (vertex) on the yield
surface at the loading point. Using J, - corner theory, the corresponding

instantaneous moduli are less stiff than those predicted by the J, - flow theory.
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Therefore, the response is significantly different for the case of abrupt change of
direction in the stress space (e.g. when buckling occurs), while for proportional
loading the two theories coincide. Nevertheless, the corner theory, despite its
good results for the prediction of shear band formation (Needleman and
Tvergaard, 1984) and its rigorousness in describing the corner of the yield
surface, may not be suitable for large-scale structural computations that involve
complex stress paths and loading/unloading response; a finite element procedure
that uses corner theory would require monitoring of all the previously formed
corners and their current evolution, and this may not be computationally
efficient. Furthermore, calibration of this theory from simple mechanical testing
of material coupons is also an open issue.

As an alternative to the above corner theory, several “pseudo-corner”
theories have been proposed. Hughes and Shakib (1986) presented a modified J,
- flow theory with a hardening modulus that depends on the angle between the
deviatoric strain increment and the outward vector normal to the yield surface.
In this simplistic manner, the model attempts to account for some essential
characteristic of the corner theory, such as reduced material stiffness and
increased plastic flow, while keeping the basic features of the classical J, - flow
theory. Nevertheless, this model is rather simplified and may not be a reliable
alternative to corner theory for shell buckling calculations in the plastic range.

In a subsequent paper, Simo (1987) proposed a J, - non-associative flow
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“pseudo-corner” model, which imitates some corner theory characteristics
through the adoption of a non-associative flow rule without introducing the
complexity associated with keeping track of the formation and evolution of yield
surface corners. Simo also presented an efficient backward-Euler scheme for the
numerical integration of the pseudo-corner model within a non-linear finite
element framework. However, Simo’s pseudo-corner model requires the
definition of several parameters related to the yield surface “vertex”. In addition
it is not clear how the proposed integration scheme can be implemented in shell
analysis problems. This model has not been used in large-scale inelastic shell
buckling calculations.

So far, most of the attempts to predict bifurcation buckling in the inelastic
range use the flow theory for tracing the prebuckling solution and employ the
deformation theory moduli to detect bifurcation on the prebuckling path (e.g.
Ju and Kyriakides, 1992; Bardi et al. 2006). However, such an approach does
not describe accurately the entire structural response, and most importantly,
the correct postbuckling performance. In a more recent publication, Peek (2000)
developed a J, - plasticity model, which uses a non-associated flow rule similar
to the rate form of the J, - deformation theory referred to as “incrementally
continuous” deformation theory with unloading and the proposed constitutive
model can be implemented with minimal changes to an algorithm based on

associative flow theory. This model constitutes an important contribution

44

Institutional Repository - Library & Information Centre - University of Thessaly
11/06/2024 17:18:53 EEST - 3.15.206.238



CHAPTER 1 - INTRODUCTION

towards elastic-plastic buckling analysis. However the main drawback of this
model is that unloading is no longer elastic, but it contains an amount of
inelastic deformation. Furthermore, its implementation to shell buckling
problems, where zero normal stress should be zero through shell thickness has
not been described.

The above discussion and presentation of the shortcomings of the above
models motivate the development of a new model for accurate and efficient
buckling and post-buckling analysis of shell metal structures. In particular, the
main objective of the present dissertation is the development and the numerical
implementation of an efficient special-purpose constitutive model, suitable for
accurate and efficient large-scale metal shell buckling computations within a
finite element environment. The material model is based on the von Mises yield
surface (J, plasticity) with isotropic hardening and employs the rate form of J, -
deformation theory, leading to a mnon-associated flow rule. The numerical
implementation follows a backward-Euler or a forward-Euler substitution
scheme, developed for elastic-plastic shell analysis, accounting for zero normal
stress through the shell thickness. The model maintains the basic features of the
classical J, - flow plasticity implementation, while introducing the key
enhancements for accurate and efficient shell buckling predictions. Furthermore
an enhanced version of the model is developed, which allows the simple and

efficient extension of the model for large strains through an additive
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decomposition of the rate-of-deformation tensor.

1.3 Contents and scope of present dissertation

The main purpose of the present research is the development, implementation
and application of a special-purpose non-associative plasticity model that can be
used for efficient inelastic shell buckling and post-buckling calculations. In
addition, in the final part of the dissertation, the non-associative model is
employed for investigating the local buckling resistance of thick-walled high-
strength steel cylinders, towards their evaluating classification according to
existing design provisions.

The proposed constitutive model and its numerical integration are presented
in the framework of small-strain plasticity in Chapter 2, whereas Chapter 3
describes the direct enhancement of the constitutive model for large strain
analysis. The non-associative constitutive model is incorporated in a special-
purpose finite element methodology, outlined in Chapter 4; this finite element
methodology has been introduced elsewhere for the analysis of nonlinear
cylindrical shells, and has been shown very efficient for analyzing the structural
behavior of steel cylinders (Karamanos and Tassoulas 1996). In Chapter 5, the
issue of plastic flow continuity is addressed in terms of the plastic production
ratio.

Using the above mentioned numerical technique shell buckling problems,

46

Institutional Repository - Library & Information Centre - University of Thessaly
11/06/2024 17:18:53 EEST - 3.15.206.238



CHAPTER 1 - INTRODUCTION

involving nonlinear equilibrium paths; bifurcation and limit points are analyzed,
whereas the issues of post-buckling response and imperfection sensitivity are
considered as well. In particular, the problem of inelastic elongated cylinders
under uniform axial compression and the bending response of inelastic cylinders
are examined in Chapter 6. The problems examined in the course of this study
may considered as benchmarks for the capabilities of the proposed special-
purpose model and its numerical implementation, in terms of its accuracy and
computational efficiency. The numerical results are compared with existing
analytical results, as well as with available experimental data.

In Chapter 7, wrinkling and post-wrinkling behavior of thick-walled CHS
seamless tubular members, made of high-strength steel (with yield stress above
590 MPa, up to 735 MPa), subjected to both axial and bending loading are
investigated, in order to determine their ability to sustain axial load or bending
moment above the first yield level. Furthermore, the deformation capacity of
those structural members in the inelastic range until the occurrence of local
buckling is also examined. The results are compared with available test data,
and are employed for evaluating the EN 1993 classification provisions. Those
provisions have been proposed for tubes made of steel grade equal or less than
460 MPa and the present investigation examines their applicability in the design

of high-strength steel tubes.
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Finally, in Chapter 8, some important conclusions from this dissertation are

summarized.
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Chapter 2

Constitutive Model

Materials models are presented for the description of elastic-plastic material
behavior assuming small and large deformations. In small strain plasticity the
most commonly employed constitutive laws are the “J, - flow theory” and “J, -
deformation theory” relations. Deformation theory was proposed by Hencky
(1924), [see also Lubliner (1990), pp. 123, 330], is clearly inadequate for
characterizing the most general path-dependent features of plastic behavior;
however, if the loading history is “proportional”, as in classical bifurcation
analyses, is simply the integrated result of the corresponding J, - flow theory.
The classical associative J, - flow theory is presented in Appendix I, followed by
its numerical integration and the development of the consistent elastic rigidity
matrix. In this chapter, a description of the non-associative J, - incremental
model for small-strain analysis that employs the rate form of J, - deformation
theory for plastic loading is presented, followed by its numerical integration and
the development of the consistent elastic rigidity matrix.

The purpose of the work described in this chapter, is the development of an
enhanced J, - incremental theory of plasticity, capable of describing buckling

and post-buckling response in the plastic range.
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CHAPTER 2 - CONSTITUTIVE MODEL

2.1 Model description

The equations describing the behavior of an elastic-plastic isotropic material
are well known and have been presented in many sources. In the framework of
incremental plasticity, the rate of stress 6 is related to the elastic strain rate £°
as follows:

6 =D&’ =D(i—2") (2.1)
where D is the fourth order elastic stiffness tensor, £ is the rate of total strain
and £P is the plastic strain rate. The elastic rigidity D can be expressed as

follows:
2
D:2Gl+3(K—§GjJ (2.2)

where K is the bulk modulus, G is the shear modulus, | is the symmetric
fourth-order identity tensor and J is the volumetric fourth-order identity
tensor. Tensor D can also be written in the following form:

D=2GP+3KJ (2.3)
where the fourth-order tensor P is defined as

P=1-J (2.4)

In the present model, the flow rule adopts the rate form of the J, -

deformation theory:

goo3f L 1,391 17 (2.5)
2|E, E) 2qlE E

S

where S is the deviatoric stress tensor, ¢ is the von Mises equivalent stress,
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defined as follows

q:,/gs- :ﬁ (2.6)

so that

G=— s (2.7)

2q
and E, E,, E; are the Young’s modulus, the secant modulus and the tangent

modulus respectively. Yielding is defined by the von Mises yield function with

isotropic hardening

1 1

F(c,gq)zis-s—gkz(e )=O (2.8)

q
where k =k(gq) is the material yield stress in uniaxial tension, which defines

the size of the yield surface, g, is the equivalent plastic strain, defined as

q

.2,
8q— gﬁ'n (29)

is the unit outward normal tensor to the yield surface and ||S|| is the

follows

S
and N=—
sl

magnitude of S <||S|| = x/s-s). Function k(gq) can be nonlinear, and is calibrated
from a uniaxial tension test.

The plastic strain rate equation (2.5) can be rewritten in the following, more

illustrative vector form

3
PO P R (2.10)
29 2\ E
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where

§'=$—(n-$)n (2.11)
The deviatoric stress tensor $§' is the component of $ tangent to the yield
surface shown in Figure 2 - 1. The flow rule in equation (2.10) implies that the
plastic strain increment is composed by two components, one normal to the
yield surface and one tangent to the yield surface. This makes the elastic-plastic
instantaneous moduli of the J, - deformation less stiff than the corresponding

moduli of the J, - flow theory. More specifically, the instantaneous rigidity

tensor (tangent moduli) for this model can be written as follows

Dep=ZGSI+3(K—§GSJJ—%(GS—GT)(S®S) (2.12)
where
1
7+7
G
1
G = 1 3 (2.14)
7+7
1
h_i_i (2.15)
E. E

and H is the hardening modulus, equal to d k/d g, , and also is defined as

H = (2.16)
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Figure 2 - 1: Schematic representation of stress and strain temsor increments in the

deviatoric plane, with respect to von Mises surface.

A curvilinear system &', £2,£% is considered to describe stress and
deformation within the shell, where coordinate lines &' and &° are directed in
the hoop and in the axial direction of the cylinder, respectively, and for a
constant value of &, they define a shell surface (lamina), whereas the
coordinate line &° is initially directed through the shell thickness. The covariant
and contravariant base vectors of this coordinate system are denoted as g, and
g’ respectively, as shown in Figure 2 - 2. Therefore, the stress tensor can be

written in terms of the covariant tensor base as

6=0" (gi®gj) (2.17)
and the components of fourth-order rigidity tensors D and Dep with respect to

the covariant basis can be written
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Di :G(gjlgik +g"gjk)+[K—§ngijgkl (2_18)

and

D}’ =G, (g"g" +gi'g"k)+(K—§stg”g“ —(:{—32(GS—GT)Sij st (2.19)
Finally, in the present formulation, following shell theory, it is required that

the traction component normal to any shell lamina is imposed to be zero at any

stage of deformation. Considering that the traction on the lamina is chB,

where HgSH is the magnitude of g@°, i.e. the contravariant base vector normal to

the &', & -surface (as shown in Figure 2 - 2), and that traction component

1

3H2 6-(g°®¢g’), which is equal to o®, one obtains

normal to the lamina is —
3

lo lo

the following condition for zero traction component nornal to any shell lamina.

0" =0 (2.20)

Figure 2 - 2: Curvilinear coordinate system and base vectors for shell description.
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2.2 Numerical Integration of the Constitutive Model

The above material model is integrated numerically towards implementation
within a nonlinear finite element analysis procedure. The problem can be
started as follows. Consider that at a material point, the stress o, , strain g, and

the equivalent plastic strain &y, are given at time t , as well as the strain

€,,=¢&,+Ag at time t . The calculation of ¢, and & requires integration

g n+t
of the above constitutive equations from t, to t,,,. An elastic predictor — plastic
corrector scheme (Simo &Taylor, 1986) is adopted where a purely elastic trial
state is followed by a plastic corrector phase. The purely elastic (trial) stress is
defined by the formula
¢' =6, +DAe (2.21)
In accordance with condition (2.20), the strain increment is decomposed as
follows
Ae=AZ+Ac, (g ®F’) (2.22)
where A€ is the known part of the total strain increment Ag, and Ag,, is an
extra unknown (Aravas, 1987).
If the trial stress violates the yield condition, an elastic-plastic behavior
should be taken into account, integrating equation (2.1) between stages t, and
tn+1 )

G,, =06, +D(A8—A8p) (2.23)

Using an backward-Euler integration scheme for equation (2.5), the
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increment of plastic strain is written

Ag, H
Aspzi(snﬂ—sn) 3 2% Mo (2.24)

+ —sn+1
2hn+1 2 qn+1hqn+1

where the von Mises equivalent final stress is

3
Onia = Esn+1'sn+l (2'25)
and
1 1
= _ - 2.26
g (2.26)

Using equations (2.22) and (2.24), the final stress becomes

~ 3GAg, H,

6,.,=6 +2G A533a—£(sn+l—sn) S, (2.27)
n+1 qn+1hl\n+1
where
6° =0, +DAE (2.28)
a=g°®g° (2.29)

and a’' is the deviatoric part of a. From equation (2.27), the hydrostatic and

the deviatoric parts of the final stress are written as

P =P —KAg, g® (2.30)
1 e , 3G
Spi = 3G 3GAz H_ [s +2GAga"+ . snj (2.31)
1+ —+ 1 n+l
hn+1 qh]_‘n+1

e —

where p°1l, S° are the hydrostatic and deviatoric parts of 6° (6°=-p°1+5°).

Equation (2.31) shows that s ,, and S° may not be co-linear and the “plastic
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correction” may not be on the deviatoric plane. Squaring equation (2.31), the

effective stress at the final state is calculated as follows

2
qn+1:% L(qe)z +(§_anj -|-s_GQ?--|-4G2A8323 g33 933+

1+ — n+1 n+1
n+1 (232)
%
s[5 8 || 30H
hn+1 n+l
where
3
q‘=,/=5°"-5° 2.33
= (23
and
3 e
Q=,/=5""s, (2.34)
2
The yield criterion (2.8) at stage (n+1) is written as
(/I (qu ,A533) =k (gq‘n +qu) (2.35)

Enforcing the conditions of zero stress normal to any shell lamina (o3, =0),

n+1 —

and using (2.27) the following equation is obtained

_e@ 4G 3G
]pm—l 933_[8() +?A833 933 933+h_533J=0

n+1

3GAg, H
143% 4 “a Tha
hn+1 qn+1hqn+l
(2.36)

Summarizing, equations (2.30), (2.32), (2.36) and the yield criterion (2.35),
constitute a system of four equations with four unknowns, namely, q,,,, Py

Ag, and Ag,,. Considering Ag, and Agy, as the primary unknowns, equations
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(2.36) and (2.35), can be solved in terms of Ag , Ag,, using Newton’s method
as described in more detail in Appendix II.

Alternatively, a forward-Euler method can be employed to integrate the
above constitutive equations, within an elastic predictor—plastic corrector

scheme. The forward-Euler integration of plastic strain rate gives

s (2.37)

The final stress and its deviatoric part are written as

3G 3G qu H,

' 4+2GAs.a-SC (s g )_228% M 2.38

G,,=06 + £552 . (Sn2—Sn) A, S, (2.38)

S,., = 130 {ge +2G A533a'+(£— e, Aeq]sn] (2.39)
1+h— h,d, hﬂn

n

Squaring equation (2.39), the effective stress at the final state is calculated as

follows

2
1 _\2 | 3G 3GH 2
qnuzﬁ (q ) J{h_q h quJ (a,)

1+7 n n l‘n
hn
H
+ E—(SG ”qu (Q)2+4GZA3323933933 (2.40)

hn qnhl\n
3G 3GH &

+6G Ay, | 59+ 2 - Ag, |5
hn qnhl\n

In addition, enforcing &® =0in equation (2.38), the following equation is

n+1

obtained
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. 3G Ag, H
1452 b, 07| 57+ 26 s, g% g¥ 4| S0 - 0T em 1m0 (241
h 3 h, qhq

Equations (2.30), (2.40), (2.41) and the yield criterion (2.35) constitute a
system of four equations with four unknowns, namely, q,,,, p,.,, Ag, and Agg,.
Considering Ag, and Ag;; as the primary unknowns, equations (2.41) and
(2.35) can be solved in terms of Ag,, Ag, using Newton’s method as described

in more detail in Appendix II.

2.3 Linearization moduli

The consistent (algorithmic) rigidity moduli (Simo & Taylor, 1985) are

computed from the following basic equation:

¢ _06,,
o= Gsnﬂl (2.42)
The final stress is written in terms of its deviatoric part
6,1 =S,.+K(g, 1)1 (2.43)
where 1 is the second-order unit tensor, and the final strain
1
En=Ct _(£n+1 '1)1 (2.44)

3

where e is the deviatoric strain tensor. Differentiation of equation (2.44) gives

®ns _p (2.45)
asml

Equation (2.42), with the consideration of equations (2.43) and (2.45), leads to

D¢ =% _ Buip gy (2.46)
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In the following, four-order tensor de,,,/0¢,,, is computed for the backward-

n+1

Euler integration scheme and presented in the previous section. In particular

using equations (2.21), (2.22) and (2.24), the final stress 6,,, can be written as

n+l

3 HAe
G,,=6 —ZG{Zh (Spis—8,)+ mn+lq NM} (2.47)

where the dimensionless tensor N is defined at a certain stress state ¢ by the

following expression:

N=2s (2.48)

2q
Using the definition of the equivalent stress in equation (2.6), it can be readily
verified that

oq
=N 2.49
P (2.49)

The corresponding deviatoric stress is

HAg
S, =5 -2G 3 ——(Sp—Sn )+ N, (2.50)
2h hl\n+l
or equivalently,
S .= L s°+ 3G S 2.51
n+l — 3G 3G H A¢ h n ( : )
1+ —+ . -+

hn+1 qn+1 h].‘n+l

Differentiation of equation (2.50) gives

HAeg
ds,,=ds° —SGd[ j 3Gd| —-s,, +3Gd[ J (2.52)
hn+1 qn+1 h]Jn+l hn+l

From the definition of the trial stress in equation (2.21), it is readily obtained
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that
ds*=2Gde,,=2GPdeg, (2.53)

Furthermore, it is necessary to express differential quantities dg,, ds,, and

n+l

dg,,, in terms of deg,,,. Squaring equation (2.51) the von Mises equivalent

stress at the final state is calculated as follows

2 7
1 ey [ 3G 6G 3GH,,
%he=—3g [(q ) +[—qnj +_Q2} _1qu} (2.54)

1+ — hn+1 hn+1 hqn+1
n+1
where
e 3 e e
q° =,/=S 'S (2.55)
2
3
qn = Esn Sn (256)
3 e
Q=,[=5""s, (2.57)
2
From the definition of the hardening modulus,
d qn+1 = Hn+l d ‘gq (258)

The final stress has to satisfy the yield criterion and using equations (2.35) and
(2.58) this can be expressed as follows
a2 (36 Y 6G 2% 3GH, , 3G
{(q ) +(anj +HQ J —mqu =[1+m]k(5qn+qu) (2.59)

Differentiation of equation (2.59) gives
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CHAPTER 2 - CONSTITUTIVE MODEL

1 Q2
20°dq°+(3Gq Yd| > [+6Gd| <
q q +( qn) (hri-lj—i_ (hml] Hn+1Ag
—3Gd| "t —"e =

. (36 Y 66.) LI
(o 2 ope

n+1 n+1

(2.60)
(1+£jdk(g +Ag)+3c;kd(ij
h L h
n+1 n+1
Furthermore,
Z—qeace :[228 seJ(Dd €1) (2.61)
(]
%666 :[%sn](Dd €.1) (2.62)
(]
1 hr:+1
3Gg,d - =3Gq, -5 de, (2.63)
n+1 4l
H . A 3GH,, ¢, h ., 3GAe H!
3Gd| || . s 3646 Hy, | 30H,, de,  (2.64)
h]JnJrl hl‘n+1 h].‘n+1 h].‘n+l

3G 1 3G 3Gkh,
(1+h Jdk(gq”+qu)+3de[h ]:K“h ]HM— 2 1]d5q (2.65)

n+1 n+l n+1 n+1

Finally, equation (2.60) becomes

de, = 26 f-}se+9(3 s, |de, (2.66)
ZAIBl-Cl hn+1
where
. (36 Y 66.,)"
Aﬁ((qe) +[h qnj t QZJ (2.67)
n+1 n+1
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CHAPTER 2 - CONSTITUTIVE MODEL

' 3GH,,4¢,h . 3GAg, H!
Bl=£1+§jHM— BGEhﬂﬂ - - oMo + %o 3GH,, (2.68)
n+1 hn+l hqn+1 h].‘n+1 hJJnJrl
2h h'
C1:(3an)2(— h;”}eed[—%j (2.69)
n+1 n+1

Subsequently, equations (2.53), (2.58) and (2.66) are substituted into (2.52)

d Sn+:|. = E P d 8n+1
B
16 (E—Han+l+3Ggg LERVE oo (2.70)
-— 1l ®|3s*+—s, |dg,
3 2 AiBl'Cl hn+1
where
3GHAe¢
B=1+ 3G + A (2.71)
hn+l qn+l hun+1
Substituting,
4G (le_HjN"*l+Squ N, 9G
d6n+1:Dd8n+l_? 2 B C n+l ®[3Se+h—sn]
Al ] n+1l (272)
+§(1—EJP}d €1
2 B
so that

Bl 3an hr:+1
B naa t hz n 9G 3 1
D¢ _p_4G|\B 1 ®|3°+—s |+=[1-=|P| (2.73)

P 3 2AB.-C, 2\" B

n+l

Finally, the condition of zero stress normal to shell laminae is imposed

considering d c® =0 in the rigitidy moduli of equation (2.73). The linearization
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CHAPTER 2 - CONSTITUTIVE MODEL

procedure leads to a non-symmetric consistent rigidity moduli.

2.4 A Note on Linearization Moduli

In the following the linearization procedure is described with simplified
assumption that tensor s° and s, are co-axial. This results in a concise and
symmetric form of rigidity moduli.

Consequently, squaring equation (2.51) and assuming for simplicity that
tensor s° is parallel to s,, the von Mises equivalent stress at the final state is

calculated as follows

=35
1+E

n+1

q°+ 3G q,— 3G H,., Ag, (2.74)
hn+l h].[n+1
The final stress has to satisfy the yield criterion and using equations (2.35) and

(2.74) this can be expressed as follows

3G 3GH 3G
qe+h q.- 1 Ag, :[1+h—J k(s +A8q) (2.75)

n+1 n+l

n+1

Differentiation of equation (2.75) gives

!

3 s*(Dde,,,)+3Gq, (— :led g,—3GH,,; As, {— h]im]d &,

qu n+1 n+l
3GAs, H! ' 270
- i "+1d5q—3GH”+1dsq=3Gk[—h”2+1st +(1+£JH de
h q h n+.
hﬂml hl‘n+l n+1 n+1
or equivalently,

2G

dgq :TNedanﬂ (277)

65

Institutional Repository - Library & Information Centre - University of Thessaly
11/06/2024 17:18:53 EEST - 3.15.206.238
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where

A= (1_'_ Ej Hn+l_ 3G qr12+1 hr'1+1 _ 3G H”+12qu hl‘n+l
h y
n+l n+l
364z Hi 3GH,,  36H.0,
hl‘n+l hl\n+l hn+1

Subsequently, equations (2.53), (2.58) and (2.77) are substituted into (2.52)

(2.78)

ds. =2Spg SM—E(E—E)NGENd e . (2.79)
B 3\B A
where
3GHA
B=1+°0 | % (2.80)
hn+l qn+l h]_‘n+1
Substituting,
de,,=Ddeg _46 (E—EJNM ®N, ., +§(1—1jP de,,, (2.81)
3|\B A 2 B
so that
Dt =p- 26 (l—ﬂ)le@NMi@—ljp (2.82)
3|\B A 2 B

Finally, the condition of zero stress normal to shell laminae is imposed

considering d c* =0 in the rigidity moduli of equation (2.82).
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Chapter 3

Large Strain Formulation

In this chapter, the extension of the previous model for large strains is
presented, towards efficient inelastic analysis of geometrically nonlinear shells
based on an additive decomposition of the rate-of-deformation tensor. Following
a short presentation of the constitutive equations, their numerical intergation is

described in detail.

3.1 Large-strain constitutive model

The starting point is a basic constitutive equation that relates the Jaumann
rate of Kirchhoff stress T to the elastic part of rate-of-deformation tensor d by

a linear hypoelastic equation of the form

v

T=t+TW-W1=Dd =D(d-d") (3.1)
where d® and d” are the elastic and the plastic parts of rate-of-deformation

tensor d, and W is the spin tensor and the Kirchhoff stress tensor T, which is

parallel to the Cauchy streess ¢ is defined as
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CHAPTER 3 - LARGE STRAIN FORMULATION

v

= 3.2
Ve (3.2)

T

where V, and V are the volume in the reference and in the current
configuration, respectively.

Assuming von Mises plasticity with isotropic hardening, the yield criterion is
defined by equation (2.8), where s is the deviatoric part of t, and the flow rule
is

gro3f L _t)g.3ap 1 1 (3.3)
2|E, E) "2qlE, E

S

which is an extension of the rate form of deformation theory for large strains
(Neale, 1981). In this equation, E, and E, are functions of the equivalent

plastic strain ¢, defined as the time integral of &,

) 2
Sq: gdp'n (34)

an equation analogous to (2.9). Using a standard inversion procedure in

equation (3.1), one obtains the elastic-plastic rigidity tensor Dep so that

=D, d (3.5)
For the purposes of inserting the present model within a finite element

formulation, to be discussed in the next section, the constitutive equation (3.5)

0
is written in terms of the convected rate of Kirchhoff stress tensor T defined as

follows
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CHAPTER 3 - LARGE STRAIN FORMULATION

0

t=7¢" (gi ®gj) (3.6)
From continuum mechanics [Malvern, (1969), pp.402-405], one may show that

the convected rate is related to the Jaumann rate as follows

T=1-Ld (3.7)
where £ is the geometric rigidity fourth-order tensor, with components:

Lijkl:E[gikfjl+gjkz_il+gilz_jk+gjlz_ik] (3.8)

> :

so that

1=(D, -£)d=Rd (3.9)
and ® is a fourth order tensor, equal to:

ijki ik

R™M =DM [ (3.10)
It can be verified that the components of tensor ® exhibit the symmetries
RM =@ ™ =® ™ (due to symmetry of T and d) and the nontrivial symmetry

Rijkl _ Rklij ‘

3.2 Numerical integration of the large-strain model

To integrate the above constitutive equations, an equivalent expression of the
equations in a “rotated” coordinate system is developed, using the rotation
tensor R from the decomposition of the deformation gradient AF that
corresponds to the time step under consideration (from state n to state n+1).

This methodology has been first suggested by Nagtegaal (1982) and it is
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CHAPTER 3 - LARGE STRAIN FORMULATION

adjusted herein for the purpose of analyzing nonlinear shells. More specifically,
the deformation gradient tensors at the beginning of the step F, and at the end
of the step F, ,, are related as follows

AF=F F'=g,®G (3.11)
where g; are the covariant base vectors at the current configuration (end of the
step), and G' are the contravariant base vectors at the beginning of the step.
Tensor AF is decomposed into a stretch tensor U and a rotation tensor R so
that

AF=RU (3.12)
Tensors R and U refer to the step under consideration and should be regarded
as incremental quantities from state n to state n+1. The stretch tensor U is
the square root of the right Cauchy-Green tensor C (defined as C=AF" AF),
and can be written in the following expression [Ting (1985); Simo & Hughes
(1998), pp. 240-244].

U=AC’+AC+ALl (3.13)
where 1 is the unit tensor, which can be written in the following form

1=G,(G'®G’) (3.14)
tensor C? is the square of the right Cauchy-Green tensor C defined as

C’=CC=g,9,G"(G'®G') (3.15)
And A (i=1,2,3) depend on the principal invariants of U, defined in Appendix

ITI. An expression similar to equation (3.13) can be derived for the inverse
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CHAPTER 3 - LARGE STRAIN FORMULATION

tensor U™ [Ting (1985); Simo & Hughes (1998), pp. 240-244].
U*=BC+B,U+B,l (3.16)

where B, (i=1,2,3) depend on the principal invariants of U™, also defined in

Appendix III. From equations (3.13) and (3.16) the components of U and U™

with respect to the (Gi ®Gj) basis denoted as U;;, Uj; respectively, are given

j o

by the following expressions

u; = Ag; + Ag; + AG; (3.17)

u; =B,g; + Bu; +BG; (3.18)
where

a; = 0, 9;G" (3.19)

Since U is symmetric and positive definite, the rotation tensor is written
R=AFU™ (3.20)
Therefore, the components of R with respect to the (gk ®Gj) basis are

rk 'jIJGIk (3.21)

=
so that

R=rf(g, ®G’) (3.22)
Subsequently, the so-called rotated stress tensor T and the logarithmic strain
AE are defined as follows

t=R"TR (3.23)

AE =InU (3.24)

For computational purposes, a truncated Taylor series expression for the InU is
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CHAPTER 3 - LARGE STRAIN FORMULATION

considered

InU:(U—l)—%(U—l)Z+§(U—1)3+0(U—1)4 (3.25)

where the higher-order terms are omitted. Combining equations (3.17), (3.24)

and (3.25), the components of AE with respect to G' ® G' reference basis are

1 1
AE; =ufY —Eui(,f”uﬁn”G"m +§ui‘k12)u§ﬁ})ka (3.26)
where
1) _ G
U; " =U; =G5 (3.27)
) =y 329

If the directions of the principal stretches (i.e., the eigenvectors of U) remain

fixed within the time period between t, and t it can be shown (Nagtegaal,

n+l?

1982) that over that time period the following expressions can be written

T=RAR’ (3.29)
and

E=R’dR (3.30)
Consequently,

E=R"(d°+d’)R=R’d° R+R’d" R=E° +E" (3.31)

where the elastic and plastic part of E are defined as follows:
E°=R’d°R (3.32)
E°=R’d’R (3.33)

The proof of equations (3.29) and (3.30) is stated below in Box 3 - 1.
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CHAPTER 3 - LARGE STRAIN FORMULATION

Box 3 - 1: Proof of equations (3.29) and (3.50).

Lemma:

If the directions of the principal stretches (i.e., the eigenvectors of U) remain

fixed within the time period between t, and t ,, it can be shown that over that

n+l "’

time period the rate-of-deformation tensor d and the spin tensor W can be

written
d(t)=R(t) E(t) R"(t) (3.34)
W(t)=R(t) R" (1) (3.35)

where E(t)=InU(t) is the logarithmic strain tensor.

Furthermore,

v .

Tt=R1R’ (3.36)
Proof:

The stretch tensor U and the inverse tensor U™, since U is symmetric and

positive definite, can be written in the following expressions:

U(t)=Zs:/l, (t)N, ®N, (3.37)

U%t):iiN. ®N, (3.38)
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CHAPTER 3 - LARGE STRAIN FORMULATION

In case that N, =0, the tensor U is given by:
. 3 -
U(t)=D A ()N, ®N, (3.39)
i=1
Using the above equations,

UUlzuleini ®N, =ZS:%(|n,1,(t))Ni ®N, (3.40)

= A1)
From equation (3.12), the rate form of the deformation tensor is
AF=RU+RU (3.41)
and
AF'=U'R*'=U"'R' (3.42)
Using the above equations and defined the velocity gradient as
L =AFAF* =(RU+RU)(U'R")=RR" +RUU 'R’ (3.43)

The symmetric and skew-symmetric parts of the velocity gradient are the rate-
of-strain tensor d and the spin tensor W, respectively and are defined as

follows:
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1
d=§(L+LT)

:%(RRT +RUUTRT —=RR" + Ru-luRT)

=£R(UU’1+ U’IU)RT
2

=£R(;%(tt))Ni®NiJRT (3.44)
=%R[In(ﬂ,, ()] N, @NRT
:%R(Inu)' R"

=RERT

where E=(In U) and

1
W==(L-L'
S(L-L7)
_ 1ot miipT L ppT _ 11T
—Z(RR +RUU™R" +RR" ~RU'UR") (3.45)
=3(2RRT +R(UUT-UTU)RT)
2
=R R’
Tensor R R" is skew-symmetric on account of the orthogonality of R.
RR =1=
RR'+RR' =0 = (3.46)

(RRT)' =—RRT
Using equations (3.45) and (3.46), the Jaumann rate of Kirchhoff stress can be

written for that time period in terms of the rate form of the “rotated stress”
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CHAPTER 3 - LARGE STRAIN FORMULATION

\Y . .
1T=t+TRR"+RR" 1
=RR"TTtRR"+RR"TRR" +RR" TRR’

L (3.47)
=R(RT iR+R" TR+ R’ TR)RT

-—RtR"

where © =R Tt R' is the “rotated stress” tensor.

Using the equations (3.47) and (3.44), and the properties of the rotation tensor

R, the constitutive relation (3.1) and the flow rule (3.3) can be written for that

time period in terms of the rotated stress and strain rates, as follows
1=DE°=D(E-EP) (3.48)

and

S

gro 3L _L1)e,3df L 1 (3.49)
2\E, E) 24lE E

where ( is the von Mises equivalent stress of the rotated stress

O
Il
N w
(7)Y
un

(3.50)

One can readily show that

d:,/gs-s=q (3.51)

and

£, = %Ep-ﬁ (3.52)
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is equal to &, so that during plastic loading (ﬁ=§qH. Using the rotated
quantities of stress and strain, the hypoelastic equation (3.48) can be integrated

exactly as follows

%,,=1,+D(AE-AE®) (3.53)
where it was taken into account that t, =1t,. The above equations (3.48)-(3.53)
are similar to the “small-strain” plasticity equations (2.1), (2.5)-(2.6), (2.9) and
(2.23). Therefore, the integration of the elasto-plastic equations can be carried
out by using a procedure similar to that described in the previous section for
small-strain plasticity.

In addition, one should account for the condition of zero stress normal to the

shell surface, requiring that throughout the analysis

(‘rgS)-g3=T-(g3®g3):O (3.54)
where g° is the contravariant base vector normal to the shell laminae. Defining
the “rotated” base vectors §" and §; as

§; =R'g, (3.55)

¢"=R'g" (3.56)
the zero normal stress condition (3.54) implies that

(18°)-8°=1-(8°®¢*)=0 (3.57)
or equivalently

233 _ 433
T =S5 —

§* =0 (3.58)

e )
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where 7" are the contravariant components of T with respect to the §, basis,

and from equations (3.21) and (3.56) one can readily show that

§" =0,G"G’ (3.59)
Using an backward-Euler scheme for the integration of the flow rule (3.49),

equation (3.48) becomes

t.=t,+DAE-36| =16 s)-36 1Ll @e0
E. E G\ E

T S

Expressing tensors T, T AE, in terms of tensor bases defined by the rotated

n+l?

vectors g™, g
AE =A%, (6 ®§") (3.61)
0= 70 (8 ®8;) (3.62)
t, =70 (g ®g)) (3.63)
where
AE,, =AE; (G'-§,)(G’-4,) (3.64)

{'rlm(Tl = 2A'ri1j+1 (@k 'Gj )(gm -G

SN~—"

(3.65)

so that equation (3.60) becomes

Afi Afi Jiikm 1 1 Aij 2ij j 1 1 Aii
Ty, =71 + D'"AE,, ~3G (—E —E](sntl -§1)-3G %(—E = jsntl (3.66)
T

S S

where D™ are the components of the 4™ order elastic rigidity tensor D with
respect to the rotated basis §; ®Q i ®Q, ®4,. For the purposes of accounting for

the zero stress condition normal to shell laminae, the strain increment is
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CHAPTER 3 - LARGE STRAIN FORMULATION

decomposed in a "known" and "unknown" part
AE=AE+AE_4 (3.67)

where AE is the known part of the total strain increment AE and

a=6"®§’=§6"§"" (6, ®4,) (3.68)
so that

. e ) 1 1). . a1 1).

T =T +AE33(D3)—3G(E—S—EJ(S,H1—Sn)—BG E(E—T—E—sjsml (369)
where

=1 +DAE (3.70)

The solution algorithm proceeds exactly as described in the previous chapter for
small strains, considering the “rotated” base vectors §;, §, and that ‘i‘iil =0.
Upon calculations of ZA'L, i.e., the components of tensor T with respect to the

«rotated» base (Q, ®Qj), the components 7z} of tensor 7, with respect to

n+1
the current base (gp ®gm) should be computed, using the definition of 7. More
specifically, the final stress is

Thn = R%nﬂRT (3.71)
After some tensor algebra and using equation (3.21), one obtains

T =R (8 G)(8;-G)(g, @8, (3.72)
and therefore the components of the final stress with respect to the current

covariant basis can be computed as follows:

o =16’ (G,-G)(§;-G") 2, (3.73)
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Chapter 4

Finite Element Formulation

In the present chapter, a finite element technique is briefly presented, which
simulates the nonlinear structural behavior of elastic and inelastic cylinders. It
is a continuum-based formulation with finite-element discretization, through a
special-purpose element, the so-called ‘‘tube-element”’. The technique is based
on the large-strain formulation of Needleman (1982) and was employed for the
nonlinear analysis of relatively thick elastic-plastic offshore tubular members
(Karamanos and Tassoulas 1996) and, more recently, for the elastic stability of
thin-walled cylinders under bending and pressure (Karamanos, 2002; Houliara
and Karamanos, 2006, 2010). Herein, this element formulation is further
elaborated and enhanced for the stability analysis (buckling and postbuckling)

of thick-walled cylinders in the inelastic range.

4.1 Governing Equations

The cylindrical shell is considered as an elastic-plastic continuum with
embedded (convected) coordinates are denoted by &' (i =1,2,3), as described in

previous chapters. The position vector of the material point (51,52,53) in the
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CHAPTER 4 - FINITE ELEMENT FORMULATION

current (deformed) configuration at time t is denoted as

x=x(&.&.81) (4.1)
whereas the position of the material point (51,52,53) at t=0 in the reference
(undeformed) configuration is denoted by

X=X(¢"¢"¢) (42)
At any material point, the covariant base vectors in the reference configuration

are

G =X (4.3)
o&'
and in the current configuration are
OX
g = — (4.4)
o4

Furthermore, G* and g* denote the contravariant (reciprocal) base vectors in
the reference and current configuration, respectively and are defined by

Sk ok
GG =9 (4.5)

9 =9 (4.6)

The constitutive equations, extensively discussed in the previous section,

relate the convected rate of Kirchhoff stress tensor T to the rate of deformation

tensor d through the relationship

[

t=(D,-L)d=] d (4.7)
where D, is the elastoplastic rigidy fourth-order tensor and L is the geometric

rigidity fourth-order tensor. Expressions for the components of D, , £ and ®

ep
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CHAPTER 4 - FINITE ELEMENT FORMULATION

are offered in equations (2.19), (3.8) and (3.10) respectively.
Deformation is described by the rate-of-deformation (stretch) tensor d, which
is the symmetric part of the velocity gradient. It can be shown that the

covariant components of the rate-of-deformation tensor are:

dkl :%[lel (ém‘gk)+vm/k (ém'g|)J (4'8)

where V,,, is the covariant derivative of the velocity vector component V, with
respect to the reference basis.

Equilibrium is expressed through the principle of virtual work, considering an
admissible displacement field Su. For a continuum occupying the region V, and
V in the reference and in the current configuration, respectively, and with
boundary B in the deformed configuration, the principle of virtual work is

expressed as:

(4.9)

where 1 is the surface traction and 7' are the contravariant components of the
Kirchhoff stress tensor T, which is parallel to the Cauchy stress 6 (equation
(3.2)) and

" :M.éi (4.10)
¢!

For the purpose of linearizing the equilibrium equations, the principle of virtual

work is considered at a "nearby" configuration X'(§1,§2,§3)

[ouy,;(G*-g)zav, = [ su'-tdB; (4.11)
J

Vo q

84

Institutional Repository - Library & Information Centre - University of Thessaly
11/06/2024 17:18:53 EEST - 3.15.206.238



CHAPTER 4 - FINITE ELEMENT FORMULATION

corresponding to stress tensor T’ and boundary traction t'. Considering the
increment of displacement AU, defined as the difference between, vectors X'

and X and the linearized form of the principle of virtual work is obtained as

follows
[6U,; 8™ AU, dV, = [ Su-t'dB,— [5U,; 67 aV, (4.12)
Vo By Vo
where
o(Au) ~
AU, = o7 G, (4.13)

components S%9 refer to the fourth-order tensor S and are equal to

¥ =(G' g, )RY™(g,-G")+ 71 G" (4.14)
and 6" are the contravariant components of the non-symmetric nominal stress
tensor 6, defined as follows:

6=—TF"' (4.15)

or, in component form

6" =7"(g,-G’) (4.16)

4.2 Finite element discretization

The numerical solution is based on the finite element discretization of
linearized equilibrium equations described in the previous section. Using a finite
element discretization and adopting matrix notation, the incremental

displacement field can be expressed as
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A

Au:[N]AU (4.17)
in which [N] is the interpolation matrix that contains the appropriate shape
functions and AU is a vector that contains the increments of nodal degrees of
freedom. Using the same functions for the virtual displacements, one can write

su=[N]sU (4.18)
where 6U are arbitrary virtual nodal displacements.

The covariant differentiation of equations (4.17) and (4.18) results in:

grad (Au)={AU,, } =[B]AU (4.19)

grad (u)={sU,, } =[B]sU (4.20)

where [B] contains the derivatives of the elements of the interpolation matrix.
Furthermore, in matrix form, equation (4.14) becomes,

[S1=[W] [=][W]+[c] (4.21)
where [W] is a 5x9 matrix containing the mixed components of the
deformation gradient with respect to the reference base vectors and is

introduced

FFF2F2 00 0 0 0 0 |
0 0 0 FLF2F 0 0 0
W=|F, F; F; F F/ F/ 0 0 0 (4.22)
0 0 0 F F F F F F
F;, F; F; 0 0 0 F FS F/

The mixed components of the deformation gradient with respect to the reference

base vectors are written as follows,

F-ij:F'(éi@)éi):(':éj)'éi:éi'gj (4.23)
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and [(R,] contains the components of rigidity tensor ® defined in (3.10).
Another auxiliary matrix [C] (9x9) is defined so that:
C, = I MIDGINP0) (4.24)

with the relations between the indices given by:

I,J iorp jorg

1 1 1

2 2 1 (4.25)
3 3 1

4 1 2

5 2 2

6 3 2

7 1 3

8 2 3

9 3 3

This arrangement is consistent with that of gradient components in (4.19)

AUl/l
AUZ/].
AU,
AUI/Z
{Aup/q}: AUy, (4.26)
AUy,
AU,
AUy
| AU

For arbitrary virtual displacements SU the following set of linearized equations
of the discretized continuum is obtained:
[K]AU=F,, —F,, (4.27)

where [K] is the incremental stiffness matrix
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[K]=[[B] [s][B]aV, (4.28)

and F, F, are the external and internal load vectors respectively:

F = [[N] tdB, (4.29)

By

Fo = [[B] [W] 7dV, (4.30)

int ;

Equilibrium is achieved when F, equals F,. An incremental Newton-
Raphson iterative numerical procedure is employed, enhanced to enable the
tracing of postbuckling “snap-back” equilibrium paths through an arc-length
algorithm, which monitors the value of the so-called “arc-length parameter”

(Crisfield, 1983).

4.3 ‘““Tube-Element’ Description

The cylinder is discretized through a three-node “tube element” (see Figure 4
- 1), introduced in Karamanos and Tassoulas (1996) for the analysis of thick
walled tubes also employed for analysis of thin-walled elastic cylinders. This
element combines longitudinal (beam-type) with cross-sectional deformation.
The convected coordinates (51,52,53) are assumed in the hoop, axial and radial
direction in the reference configuration respectively and are denoted as (0,( , ,0).

Nodes are located along the cylinder axis, which lies on the plane of bending,
and each node possesses three degrees of freedom (two translational and one

rotational). A reference line is chosen within the cross-section at node (k) and
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a local Cartesian coordinate system is defined, so that the X,y axes define the

cross-sectional plane. The orientation of node (k) is defined by the position of

e e and e(zk). For in-plane (ovalization)

three orthonormal vectors €, €,

deformation, fibers initially normal to the reference line remain normal to the
reference line. Furthermore, those fibers may rotate in the out-of-plane direction
by angle ¥ («9) Using quadratic interpolation in the longitudinal direction, the

position vector X(H,( : ,0) of an arbitrary point at the deformed configuration is:

3

X(0.£,0)= 2| (X 41 (6)+ ' (8)+ py () INV ()| (431)

k=1

where X®is the position vector of node (k), r(k)(ﬁ) is the position of the
reference line at a certain cross-section relative to the corresponding node (k),
n(k)(é’) is the “in-plane” outward normal of the reference line at the deformed
configuration and N(k)(é' ) is the corresponding Lagrangian quadratic
polynomial. Using nonlinear ring theory (Brush and Almroth, 1975), vector
functions r(k)(ﬁ) and n(k)(ﬁ), can be expressed in terms of the radial,
tangential and out-of-plane displacements of the reference line, denoted as
W(H), V(@), U(@), respectively. The position of the reference line at the cross-
section with the respect to node (k) is
r(0)=x (0)el +v, (0)e) +z,(6)el (4.32)

where X, (9), Y, (9) and Z, (9) are reference line coordinates with respect to the

local cross-section axes and are discretized as
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X, (6) =[r +w(8)]cos & —v(H)sin &
Y, (0) =[r +w(0)]sin & +v(6) cos & (4.33)
z,(6)=u(6)

The deformation functions W(H), V(@), u(@) and }/(9) are discretized as

follows:
w(0)=a,+asind+ > acosnd+ > a, sinnd (4.34)
n=248.,.. n=357,...
v(0)=—a,sinf+ b, sinnd + b, cosn@ (4.35)
n=248,.. n=357,....

u(@)= > c,cosnd+ > c,sinng (4.36)
n=24p6,.. n=357,...

y(0)= > y,cosnd+ > y,sinnd (4.37)
n=0,246.,.. n=1357,...

Coefficients a,, b, refer to in-plane cross-sectional deformation, and express the
ovalization of the cross-section, whereas c,, y, refer to out-of-plane cross-
sectional deformation, expressing cross-sectional warping.

The outward unit vector n™ (49), normal to the reference line can be written

as:

(8)=n, (9)¢l" +n, (0)e (435
where

0 :dyr/dé’

X ds,/d@ (4.39)

_dx /d@

y ds,/do (4.40)

and
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dy, ‘(oVlsi /

s =—[r+w(0)+v(6)Jsin0+[w () ~v(6)]cos6 (4.41)
dx, / / i

@_—[r+w(0)+v («9)]0059_[‘” (‘9)_\/(9)]5'”0 (4.42)

2

ds ) 2

—L = \r+2rfw(@)+v'(0) |+|w(8)+Vv'(8) | +| W (8)-Vv(O

s w@ @@ T <o) vo
The position vector expressed through (4.31) can be written alternatively as

follows

X(60,¢, P)ZZ[( (k)+(xr+P”x)e(xk)+(yr+pny)e(yk)
(4.44)

k=1
+(z+pr)el N (£)]
and differentiating this expression with respect to the time variable and

omitting higher-order terms the following for the velocity vector is obtained:
3

X=v(0,5,p)= 2 {[ K+ (% + o, el +(3, + o, el
(4.45)

k=1
(et on, )&+ (2, + p7)el + (2, + )& NV
Equation (4.45) can be rewritten in terms of incremental displacements
3
u(6,¢,p) :Z{[Au(k) +(Ax, + pAn, el
k=1

+(Ay, + pAn, )el +(y, + pn, ) Ael
+(Az, + pAy el +(z, +p7)Ae§")} N ()}

(4.46)

Considering vector AU, which contains the increments of nodal degrees of

freedom of the “tube-element’ as follows:
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(AU} =| (4.47)

A]/(k)

The covariant base vectors that are tangential to the coordinate lines
(0,{ : ,0) can by calculated by differentiation with respect to the local

coordinates of the position vector as follows:

_— =g:i[(dr<k>(9) . an® (0) +pd7(9)e(zk)} N(")(g)} )

de dé deo

9,=0, = x_ i{(x(k) +r®(6)+ pn™ (6)+ p}/(@)e(zk))M} (4.49)

o dg
0:=0,= =3 (" () +7(0)e! N ()] (4:50)

Considering the covariant base vectors in the reference configuration

él, G,, G;, appropriate differentiation of (4.46) and the definition of vector
AU , matrix [B] is formed to be used in equation (4.19).
For the purposes of the present study, a 16™ degree expansion is used for

w(8), v(8), u(8) and y(80) [considering N<16 in equations (4.34)-(4.37)], and
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four “tube-elements” per half wavelength are employed. Regarding the number
of integration points, 23 equally spaced integration points around the half-
circumference, five Gauss points in the radial (through the thickness) direction
and two Gauss points in the longitudinal direction of the “tube element” are
considered (reduced integration scheme) following relevant convergence studies

reported in previous works (Karamanos, 2002; Houliara & Karamanos, 2010).
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three-node
“tube” element (node 2)

tube axis
1)
e y

el ®
Q‘ cross-section ( \(node 3)
/( de 1) capable of deforming
node

(a)

e Plane
1 of bending

1
' deformed
y A reference line
undeformed
reference line

"n®) - ___.

V() - tangential

Un

Y

Figure 4 - 1: (a) Three-node “tube element” and deformation parameters; X, X, is the

plane of bending, (b) Cross-sectional ovalization (in-plane) deformation parameters
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4.4 Bifurcation in the inelastic range

Detection of bifurcation from prebuckling to post-buckling is performed upon
convergence of solution at the end of each loading increment, adopting Hill’s
“comparison solid” concept, as described in detail by Hutchinson (1974). The
use of “comparison solid” yields lower bound, yet quite accurate, estimates of

the bifurcation load, introducing the quadratic functional F :

F = [(RMAE,AE, +7'AUJ AU, )dV (4.51)
\%

The positive definiteness of functional (4.51) ensures uniqueness of solution
and stability. At the stage where F becomes non-positive definite, bifurcation

occurs. Using the following expressions,

IAUSAU,, =AU, G™ AU, (4.52)
1 ~k ~k
AE, =E[(G 9,)AU,,, +(G -gq)AUk,p} (4.53)

and the finite element discretization procedure described in the previous
paragraphs, functional F can be written in the following quadratic form in

terms of “stiffness matrix” [K']

F=AU"[K']AU (4.54)
where
[K]= Vf [B] [s][B]dV; (4.55)
and |
[S]=[W] [&][W]+[C] (4.56)
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and [Q{'] is the constitutive matrix containing the tangent elastic-plastic moduli
®™ of J, - non associative flow theory moduli. Therefore, the positive
definiteness of F is equivalent to the positive definiteness of [K'], examined
through the evaluation of its eigenvalues at the end of each loading increment.

Bifurcation occurs when the smallest eigenvalue of [K'] becomes equal to zero.
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Chapter 5

Continuity of Plastic Flow

In previous chapters the non-associative plasticity model has been presented
in detail. The main feature of this work has been the adoption of the
deformation theory, such that the production of plastic strain is increased for
non-proportional loading paths. Using this approach, the elastic-plastic moduli
become less stiff, and therefore, this enables improved predictions of the
bifurcation load.

As described in Chapter 2, the rate form of the J, - deformation theory
expressed by equation (2.10) implies that the plastic strain increment is
composed by two components, one normal to the yield surface (as in the case of
classical J, - flow theory) and one tangent to the yield surface. Therefore, the
present non-associative theory is associated with higher plastic strains when

compared with J, - flow associative theory.
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5.1 Plastic production ratio

In order to quantify the production of plastic flow, the so-called plastic

production ratio is adopted, defined by Hughes and Shakib (1986), as follows:

W(6’)—H (5.1)

el
where € is the deviatoric part of incremental strain tensor &, and €° is the
plastic part of €. The value of w depends on angle € between the outward
normal n and the deviatoric strain increment €, as shown in Figure 5 - 1.

Equivalently, equation (5.1) can be written in a normalized form:

. H
w (0)=w(0) 1+ — 5.2
(0)-w(0)[ 1435 | 52)
In the framework of associated plastic flow, the plastic strain rate can be

written as

.
P I (5.3)
2¢

where the equivalent plastic strain rate is

G =5 (5.4)
2qH

or equivalently

¢ =——r[=(n-¢) (5.5)

offering a measure of plastic strain-rate dependence on the direction of strain

increment with respect to the outward unit normal to the yield surface n. The
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value of w can be expressed as

w(6)= cosd

1+i
3G

or equivalently in its normalized form
W (6)=cosd

where

(5.7)

(5.8)

Figure 5 - 1: Schematic representation of deviatoric strain increment and the outward

unit normal to von Mises surface N .

In classical plasticity, loading paths tangential to the yield surface (927[/ 2)

imply zero plastic deformation, so that W =0 for 0= 7/2 as shown in Figure 5 -

2, corresponding to elastic behavior. Clearly, for @>7/2 the behavior is also

elastic.

For the non-associative flow rule under consideration as expressed in equation

(2.10) and using the definition of plastic production ratio in equation (5.1), the

following expression for the plastic production ratio can be obtained:
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w (6) :(1+ %}/m Bcos® ¢ (5.9)

where

Am— (5.10)
[1+ h(gq)]
3G

1 1
B= - (5.11)

) (28]

where h(gq) is a function of the Young’s modulus and secant modulus, and is

defined by equation (2.15).

In Figure 5 - 2 the value of W from the present model, expressed in
equations (5.9) - (5.11), is also plotted in terms of angle 6 with the two
continuous lines. The two lines correspond to two levels of equivalent plastic
strain &, equal to 3% and 5% respectively. There exists a discontinuity at
0=r/2, which is due to the non-zero tangential component of £€”. Apart from
the fact that this discontinuity is not consistent with the physical problem, it
may cause numerical convergence problems. Therefore, a zero value of W =0 at
O=r/2 is desired, and a modification of the plastic flow equation (2.5) is
proposed, so that the tangential (non-associative) part of the right-hand side

vanishes for 6 values approaching 7/2. Towards this purpose, a modified value
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of the secant modulus E, is considered in terms of @, denoted as E,, as follows:
E, (£,,0)=E,(&,)(1—sin"0)+E(sin" 0), 6> 6, (5.12)
where 6, is a threshold value quite close to 7/2 and n is a large-valued

exponent. Therefore, the values of h(gq) is replaced by ﬁ(gq ,49)

R(5.0) - EE, (&,.0)

E-E, (6‘q ,49) (513

and the plastic ratio becomes a continuous function of @, approaching smoothly
the value of zero for @=7/2. This is shown in Figure 5 - 2 with the dotted lines

for values of 6, and n equal to 75° and 300 respectively. In such a case,
W*(@):(l+%j«/ﬂ+ Bcos® @ (5.14)

As————— (5.15)

B= —~ (5.16)
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1.2 L
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Figure 5 - 2: Variation of plastic production ratio W in terms of 6 for various
plasticity models.

5.2 Comparison with other plasticity models

The normalized values of plastic production ratio W in terms of @, shown

in Figure 5 - 2, are also compared with those proposed in the models by Hughes

and Shakib (1986) and Simo (1987). The non-dimensional measures of the

plastic strain rate for the Hughes and Shakib (1986) model is defined in
equation (5.17).

(5.17)

103

Institutional Repository - Library & Information Centre - University of Thessaly
11/06/2024 17:18:53 EEST - 3.15.206.238



CHAPTER 5 - CONTINUITY OF PLASTIC FLOW

where

H'=3G (1+ijﬁ_1
3G jcosy
0 if0<0<a,,
T
7 \o-a,
v (3]0

VA
(2 - ecritj

if . <6<Z
2

(5.18)

(5.19)

Loading paths tangential to the smooth yield surface are assumed to engender

elastic response and a simple cosine interpolation between

to reduce W (9) to zero.

and 7/2 is used

In the “pseudo-corner” model proposed by Simo (1987), the plastic strain

rate can be written as

&P = 7}(n +c§m)

where
ne_>
5]
é—(n-é)n
m=
ey
y=n-@

tang for 06[—6’crw ecm]

crit

5" =
tang,, for |6’|e[0crit, %}

(5.20)

(5.21)

(5.22)

(5.23)

(5.24)
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The non-dimensional measures of the plastic strain rate is defined as
w (6) =¥x/1+5‘ (5.25)

where

H

ﬁ:£1+£j (5.26)

In Simo’s model, the production of plastic flow coincides with that of J, -

corner theory for 6 e[—Hcm, Hcm], and lies between the corresponding values for

Jrflow and J,-deformation theories for |6 e[@cm, %} Note that, for the needs

of presentation of the results, the value of .. equal to 45° is used for the both

crit

two models, as shown in Figure 5 - 2:
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Chapter 6

Verification Results

In this chapter, numerical results for three benchmark problems of metal
shell buckling are obtained to validate the numerical methodology described in
the previous chapters. Large-strains are considered with the material model
formulation described in Chapter 3. Furthermore, the integration of constitutive
models is performed with the backward-Euler method described in section 2.2.
The first problem refers to initial wrinkling of stainless steel tubes under
uniform axial compression, and comparison with both experimental data and
analytical predictions is conducted. The second problem refers to axially
compressed imperfect metal cylinders, where the present results are compared
with available semi-analytical solutions. The third problem refers to an
elongated cylindrical shell, referred to as “tube”, and subjected to longitudinal
bending, which has also been tested experimentally. In those problems,
comparison between the predictions of the .J, - non-associative plasticity model
and those from the classical associative model (J, - flow rule) is conducted,
towards verifying the reliable applicability of the non-associative model in thick

shell buckling problems.
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6.1 Initial wrinkling of metal tubes under axial compression

Long, relatively thick tubes and line pipes used to transport fluids experience
axial, shell-type buckling mainly when restrained from lateral movement. This,
for example, is the case for a pipeline buried in a trench or resting on a
deformable foundation. In offshore operations, compression can be caused by the
passage of hot hydrocarbons carried from the well to a central gathering point
by buried flow lines. Motion of the ground caused by fault movement,
landslides, ground subsidence, permafrost melting, or soil liquefaction, can also
result in severe compression of the lines. Both loading scenaria can impose
compressive strains high enough to result in axial buckling. In most onshore and
offshore pipeline operations, diameter-to-thickness ratios ( D/ts) and steel grades
are such that buckling occurs in the plastic range.

Unlike elastic shell buckling, in which collapse is sudden and catastrophic,
plastic buckling failure is preceded by a cascade of events, where the first
instability and collapse can be separated by average strains of 1-5%. The
behavior is summarized schematically in the axial stress-shortening response of
a long tube shown in Figure 6 - 1 (Bardi and Kyriakides, 2006).

The cylinder is under uniform axial compression, so that a constant state of
stress exists around the circumference. In rather thick cylinders, the cylinder
material enters into the inelastic range and then buckles. First buckling
corresponds to an axisymmetric wavy pattern the cylinder axial stiffness is

significantly reduced. Figure 6 - 1 shows schematically the response of such a
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cylinder, with a rounded stress-strain material curve that exhibits considerable

hardening in the inelastic (post-yield) range.

BAxisymmetric

a . .
* Non-Axisymmetric

5, /L
Figure 6 - 1: Stress-shortening responses expected in a compression test of an inelastic
circular cylinder. Shown is the onset of wrinkling (A) followed by axisymmetric collapse

(B) or non-axisymmetric collapse (C’) (Bardi and Kyriakides, 2006).

Upon formation of those axisymmetric waves, the response depends on the
value of the D/t ratio. In thicker cylinders (i.e. low values of D/t, ratio), a
limit load on the load-displacement path occurs, followed by a localization of
the axisymmetric wavy pattern, where a single wave develops much more than
all the other waves. Subsequently, a second bifurcation to a non-axisymmetric
deformation pattern may occur, resulting in a further decrease of axial load
capacity.

In thinner cylinders, the transition from the axisymmetric wavy pattern to a
non-axisymmetric deformation state is observed before the occurrence of a limit

load. This implies a further decrease of cylinder axial stiffness, so that a limit
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point occurs quite early. Beyond this limit point, localization of deformation
usually occurs, resulting in cylinder collapse and failure.

Numerical results for benchmark problems of metal shell buckling are
obtained to validate the numerical methodology described in the previous
chapters. The first problem refers to wrinkling of stainless steel tubes under
uniform axial compression, and comparison with both experimental data and
analytical predictions is conducted. Bifurcation analysis of perfect cylinders,
associated with the initial development of wrinkles is described first.
Subsequently, simulation of gradual development and localization of wrinkles in
initially imperfect cylinders is presented using a nonlinear incremental analysis.

The tubes under consideration have been tested by Bardi and Kyriakides
(2006a) and are made of stainless steel material SAF 2507 super-duplex, which
can be described for uniaxial tension through a Ramberg-Osgood stress-strain

curve [equation (6.1)]

gzg{u%(%)m} (6.1)

where the values of E, & and n have been determined through an appropriate
tensile test equal to 194 GPa, 572 MPa and 13 respectively. The cylindrical
shells are thick-walled with diameter-to-thickness ratio between 20 and 50, and
are appropriately machined so that the buckling area can be considered free of
boundary conditions. More details on the specimens and the experimental

procedure can be found in Bardi & Kyriakides (2006a).
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Initial wrinkling of those tubes as obtained from a bifurcation analysis
conducted with the present numerical tools. The numerical results are compared
with experimental results and analytical solutions. More specifically, the
bifurcation load at first wrinkling and the corresponding wavelength can be

calculated analytically using equations (6.2) and (6.3).

2 Y2
o, = C11sz _C12 [t_sj (6.2)
3 R

Y4
— C121 2
L., = [12( )] (Rts) (6.3)

C,C,,—C2

where R and t, are the radius and wall thickness of the tube and C,, are the
instantaneous material moduli according to J, - deformation plasticity theory, at
the bifurcation stage. Expressions for moduli C,,, for both associative and non-
assocative J, - plasticity, can be found in Bardi and Kyriakides (2006). It should
be noted that first wrinkling of those thick-walled cylinders in the plastic range
is always axisymmetric (Figure 6 - 4) as shown analytically by Gellin (1979).

The analytical and numerical predictions for the critical stress and strain are
plotted against D/t in Figure 6 - 2 and Figure 6 - 3, respectively, together with
experimental results reported in Bardi et al. (2006b). In this figure, o and e
refer to the upper and lower bound of first wrinkling observed in tests (Bardi
and Kyriakides, 2006a) respectively. In the same graph, the corresponding
analytical and numerical predictions using J, - flow (associative) and the present

(non-associative) theory both analytically and numerically are also shown. Note

110

Institutional Repository - Library & Information Centre - University of Thessaly
11/06/2024 17:18:53 EEST - 3.15.206.238



CHAPTER 6 — VERIFICATION RESULTS

that the numerical predictions of J, - flow theory have been obtained from the
present finite element technique and the constitutive equations for the
associative flow rule; these equations are obtained from the flow rule (2.10)
omitting the second term on the right-hand-side. The analytical predictions are
obtained from equation (6.2) using the appropriate instantaneous moduli C,,
for the associative and non-associative case. The comparison with experimental
data shows the superiority of the non-associative flow model with respect to the
associative flow model in predicting bifurcation in the plastic range.
Furthermore, a very good comparison of the present numerical model and the
corresponding analytical results from equation (6.2) is shown. The axisymmetric

buckling shape is shown in Figure 6 - 4.

850 - —
-+- analytical-associative flow
-m- numerical-associative flow
[ T -a- analytical-non assoc flow
800 #aee, . *
Saq -~ numerical-non assoc flow
Q*::\ e lower bound of test results
750 Dhhir o upper bound of test results ||
o ‘~:::::=:==~
© ‘~==*===:~~
¥ao SSSSzsaao
700 P
© ‘.......g © o] ~~‘
O§=-=&====~.:—~ (o] ° o
g s ~~::::1::: ____ " o
* T RSSEIszzzooe-
650 o . S S
[ [ ]
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D/t
Figure 6 - 2: Critical stress (onset of wrinkling) with respect to specimen D/t, ratio,

analytical predictions refers to equation (6.2)
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Figure 6 - 3: Critical strain (onset of wrinkling) with respect to specimen DJt, ratio

Figure 6 - 4: Bifurcation (first wrinkling) shape of azially loaded stainless steel cylinder

(D/t, =26.3).

Following the above bifurcation analysis, a nonlinear analysis is performed
that follows the gradual development of wrinkles under increasing axial

compression. Thick-walled cylinders subjected to axial compression, exhibit
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limit load instability (occurrence of maximum load on the load-displacement
curve), followed by the development of localized buckling patterns. To describe
this process, an initially axisymmetrically wrinkled pattern is assumed and
gradual development and localization of this wrinkling pattern is monitored.
Towards this purpose, a thick-walled cylinder (D/tS=26.3), with the same
material is considered, using a tube segment of length equal to seven half-
wavelengths. Each half-wavelength corresponds to the first buckling shape of
Figure 6 - 4, and an initial wave-type imperfection is imposed with a small
amplitude @, equal to 0.1% of thickness. The half-wave length L, has been
determined from the bifurcation analysis described above, equal to 14.515 mm.
The load-displacement equilibrium path is shown in Figure 6 - 5a. Considering a
small bias in the amplitude of one wrinkle (as initial imperfection), the analysis
leads to a maximum load due to wrinkle localization denoted as limit state as
shown in Figure 6 - 5a, where the numerical analysis the experimental curve are
compared. The comparison between the non-associative model and tests results
is very good in terms of the maximum load, the corresponding deformation and
the initial post buckling behavior. It is noted that the limit (maximum) load
occurs at a value of imposed displacement J/L equal to 4.5%, which is well
beyond the strain at which first wrinkles occur in the perfect cylinder (1.8%),
shown in Figure 6 - 5b. This means that first bifurcation may not be related to
the ultimate axial compression capacity of the cylinder, as noted by Bardi and

Kyriakides (2006). Figure 6 - 5b shows the buckled configuration of the
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cylindrical shell and the localization of wrinkling deformation at a value of
imposed displacement §/L equal 5%. In Figure 6 - 5c the evolution of radial
displacement along a cylinder generator is shown, illustrating the non-uniform
growth of wrinkle amplitude; the central ripple grows significantly more than
the others, resulting in localization of wrinkled pattern and loss of structural
strength. Finally, in Figure 6 - 5a, the numerical results using the classical J, -
flow theory are also shown. The comparison is satisfactory up to a certain level,
but this associative model does not predict accurately the ultimate load

deformation and the initial post buckling behavior.
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(b)
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Figure 6 - 5: (a) Stress-displacement response, comparison with the test result reported
in Bardi € Kyriakides (2006); (b) Deformed configuration of azially loaded cylinder
with localized wrinkling corresponding to S/L wvalue of 5%; (c) evolution of radial
displacement along a cylinder generator with increasing axial compression for specimen

with D/t, =26.3 and yield stress ¢ =572 MPa.
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Figure 6 - 6: Reproduction of a deformed configuration of the shell at different values of

displacement for specimen with Djt,=26.3 and yield stress & =572 MPa.

6.2 Imperfection sensitivity of cylindrical shells in the inelastic range

The buckling performance of imperfect thick-walled cylinders subjected to
axial (meridional) compression has been examined analytically by Gellin (1979).
Gellin enhanced the methodology initially proposed by Koiter (1963) for elastic
thin-walled cylinders, employing shell kinematics based on DMV shell theory,
and elastic-plastic material behavior through J, - deformation theory.

Comparison is conducted for a thick-walled cylindrical shell with D/t, equal
to 51. The material behavior can be described by equation (6.2), with E, & and
n equal to 194 GPa, 572 MPa and 5 respectively, so that the ratio of the

effective yield stress 0 to the classical buckling stress of the elastic shell & / o,
is 0.5 (0} is defined equal to Et, / \ ,3(1—1/2) R). The analysis assumes an initial

imperfection in the form of first axisymmetric buckling mode (see Figure 6 - 7)
obtained by a bifurcation analysis, as described above.

Considering a tube segment of length equal to twice the value of half-
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wavelength (L:2Lhw), and the axisymmetric initial imperfection, secondary
bifurcation to a non-axisymmetric mode is calculated. The results of the
numerical calculations are presented in Figure 6 - 7, where the bifurcation load

of the imperfect shell P, is normalized by the bifurcation load of the perfect

cr

shell P

o and plotted in terms of the imperfection amplitude @,,, showing a
very good comparison with Gellin’s results.

1
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Figure 6 - 7: Imperfection sensitivity in the plastic range for a metal cylinder with

D/t, =51 and yield stress 0 =572 MPa.

6.3 Bending buckling of elongated metal cylindrical shells

Elongated metal cylindrical shells, used in pipeline and piping applications,
are often subjected to longitudinal bending. Of particular interest in those

applications is the response of such shells, bent into the inelastic range and the
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various instabilities which result in their structural failure. Brazier (1927), in a
pioneering publication, has demonstrated analytically that bending of relatively
thin-walled circular elastic tubes induces ovalization to the tube cross-section.
The growth of ovalization causes a progressive reduction in the bending stiffness
of the shell, leading to a maximum value of moment, referred to as “limit
moment” or “ovalization moment”. With increasing bending beyond this “limit
point”, a drop in moment occurs. In practical applications, this limit moment
instability is often preceded by shell bifurcation-type instabilities characterized
by short-length axial waves, as demonstrated in recent numerical works
[Karamanos and Houliara (2006, 2010)].

In the case of thicker cylindrical shells (D/t, <100), the response and the
ensuing instabilities, are strongly influenced by both cross-sectional ovalization
and the plastic behavior of the metal material. Experimental works, together
with semi-analytical solutions have demonstrated that although the ovalization
imposed on the shell cross-section is relatively small for shells bent into the
plastic range, it still leads to the development of a limit moment. Nevertheless,
in addition to limit load instability, the shell exhibits various shell-type buckling
modes in the form of uniform wrinkles along the compression side of the bent
tube. Under increasing bending, localization of wrinkled patterns or secondary
buckling into a non-uniform wrinkling pattern has been observed in several
experiments.

The above structural behavior is simulated numerically, using the numerical
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tools described in the present work. The tube is made of aluminum (AL 6061-
T6), diameter and thickness are equal to 31.75 mm (1.25 in) and 0.889 mm
(0.035 in) respectively, D/t;=35.7 and has been tested experimentally
(Kyriakides and Ju, 1992). Material behavior is described by a Ramber-Osgood
of stress-strain curve equation (6.1), with E, ¢ and N equal to 67.36 GPa, 282
MPa and 28 respectively, corresponding to a yield stress of 283.4 MPa .

At first, wrinkling on the ovalization bending prebuckling state is
determined, and the corresponding half-wavelength is computed (L, ). A
sequence of analyses is performed to determine the half-wavelength (Figure 6 -
8). The moment is normalized by the fully-plastic moment (M, =0,t.D*) and

the curvature is normalized by the value of characteristic value x, =t,/D?.

1.2
1 —
i Ha—
0.8 / Ly - Ju and Kyriakides
L, - present study
0.6
E /
~
= 0.4

0.2 / A L,.,=6.24 mm

A L ,=7.20 mm

0 0.5 1 1.5 2 2.5
K/K;p

Figure 6 - 8: Comparison of results for the half-wavelength (Kyriakides and Ju, 1992)

with present numerical predictions.
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The structural response of thick cylindrical shells and the ensuing instabilities
are strongly influenced by the plastic behavior of the metal material, as well as
by the ovalization of the cross-section, implying a highly nonlinear prebuckling
state. Along this nonlinear path, the shell exhibits various shell-type buckling
modes in the form of wrinkles along its compression side. First bifurcation
occurs in a uniform wrinkling pattern shown in Figure 6 - 9, denoted by the
first arrow (1) on the primary path. Subsequently a secondary bifurcation on
the prebuckling path is also detected, in the form shown in Figure 6 - 9 denoted
by the second arrow (7). Figure 6 - 9 shows the predicted ovalization-curvature

response for the shell.

1.2
1 "
ol nl T~
s/
=0.6 /
0/
~
= 0.4
/ D/t, = 35.7
0.2 0,=283.4 MPa | |
E=64.36 GPa
0 |
0 0.5 1 1.5 2 2.5
K/K;
Figure 6 - 9: Moment-curvature diagram of alumium tube with D/t =35.7 and

o, =283.4 MPa from ovalization analysis; first and secondary bifurcation occurs in (a)

and(b), respectively.
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Figure 6 - 10: Ovalization-curvature diagram of aluminium tube with D/t,=35.7 and

o, =2834MPa from ovalization analysis.

(a) (b)
Figure 6 - 11: Bifurcation shapes of bending loaded aluminium tube with DJt, =357,

(a) 1" buckling mode (uniform wrinkling).and (b) 2" buckling mode.
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The post-buckling behavior of the shell can be analyzed by allowing for
deformations which vary along the length of the shell. A shell with initial
geometric imperfections is considered. The imperfection is in the shape of the
critical buckling mode obtained from the bifurcation analysis presented above.
The results of the effect of imperfections with amplitudes @ ,; =0.15% and
0.45% are shown in Figure 6 - 12 using tube segment of length equal to 2L, .
The main influence of the imperfections on the calculated responses is seen to
occur once the shell enters the plastic range of the material. Due to the
imperfections, the shell becomes more compliant and the limit load instability
occurs at a smaller curvature than that of the perfect shell. The limit point
indicated by (1) on the response, and the secondary bifurcation on the primary

path is calculated indicated by ( X).

1.2

//;-'—R—TN\‘%
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0.8 / N
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0.0 / 4% ¥
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0,=283.4 MPa
E=64.36 GPa
0 :

0 0.5 1 1.5 2
K/K;

M/M,

Figure 6 - 12: Moment-curvature diagram of tube with DJt,=35.7.
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From the results presented so far, it has been demonstrated that at some
curvature the shell develops uniform wrinkles. As the result, the overall stiffness
of the shell is reduced and the limit load develops. It has been shown that
structures which exhibit such behavior tend to develop localized buckling soon
after the limit load. The possibility of this occurring will be checked by
considering a section of the shell containing a number of wrinkles (L=7L,). A
small imperfection is included which provides a small bias to the amplitude of
the one of the wrinkles. For the shell with D/t =35.7 the wrinkles were found
to localize. The effect of localization on the response is shown in Figure 6 - 13,
where the uniform wrinkle analysis and the localized wrinkle analysis are
compared. Results for @,;=0.15% and 0.45% are shown in Figure 6 - 15,

respectively, with @, kept constant and equal to 0.015% of thickness.
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Figure 6 - 13: Comparison of test results (Kyriakides and Ju, 1992) with present

numerical predictions.

The progressive development of localized deformations in the shell is
illustrated in Figure 6 - 14, which shows the ovalization predicted along the

length of the shell analyzed at different value of curvature.
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Figure 6 - 14: Ovalization along length of the shell at different value of curvature.

S~

' 00;=0.45% | |
®,=0.015%
0.6

\

/ D/t, = 35.7
0.2 0,=283.4 MPa |-
E=64.36 GPa
0 |
0 0.5 1 1.5 2
K/ Ky

Figure 6 - 15: Comparison of predictions of uniform wrinkle and localized wrinkle

analysis.
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Figure 6 - 16: Deformed configuration of a bent shell with localized wrinkling

(D/t, =35.7).

The wrinkles are seen to grow uniformly up to the limit load, beyond which
the central part of the shell ovalizes faster than the other parts. Figure 6 - 16
shows the deformed configuration of the shell analyzed, which illustrates the
non-uniform growth of the amplitude of the wrinkles. The central wrinkle is
grown significantly more the others.

A shell with initial geometric imperfections is considered next. The
imperfections are related to the second buckling mode obtained from the
bifurcation analysis presented above. The effect of using the shape of the second
bifurcation as initial imperfection with different amplitudes is shown in Figure 6

- 17.
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Figure 6 - 17: Moment-curvature diagram of tube with initial imperfection the shape of

the second bifurcation

The results show that even very small initial wrinkles of the cylinder wall
may have significant effects on the structural response of the cylindrical member

under bending loading.
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Chapter 7

Steel Tubular Members under Axial

Compression and Bending

The numerical formulation developed in the previous chapter is employed for
the analysis of high-strength steel circular hollow section tubes. These tubular
members are basically thick-walled cylindrical shells that buckle in the plastic

range.

7.1 Introduction

High-strength steel circular hollow section (CHS) tubes are becoming popular
in a variety of structural engineering applications, such as tubular columns of
building systems or members of tubular lattice structures. The principal
characteristic of these steel products, with respect to CHS tubes of normal steel
grades, is the elevated yield stress value, which implies increased ultimate
capacity, resulting in a good relationship between weight and strength. They
can also be efficient in cases where space occupancy becomes a critical design
criterion.

According to current design practice, the ultimate capacity of steel CHS
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members under axial compression and bending loads depends primarily on
whether the section is classified as “compact” or “non-compact”, i.e. on the
ability of the cross-section to sustain significant inelastic deformation before
failure in the form of local buckling. The provisions of EN 1993-1-1 standard
specify four (4) cross-sectional classes. More specifically, Class 4 corresponds to
thin-walled sections, which are able to sustain compression due to axial/bending
load only in the elastic range. On the other hand, Class 1 comprises thick-walled
sections that are able to deform well into the plastic regime, without exhibiting
local buckling, whereas Classes 2 and 3 refer to intermediate type of structural
behavior. For the case of CHS tubular members, classification in EN 1993-1-1 is
based on the value of the diameter-to-thickness ratio, as well as on the value of
the material yield stress, as shown in the second column of Table 7 - 1. The
same classification is also adopted by the CIDECT guidelines (Rondal et al.,
1996) for hollow section stability, whereas similar provisions for cross-sectional
classification on CHS members can be found in other specifications (e.g. AISC,
API RP2A — LRFD).

The above classification provisions have been initially developed for the case
of high-strength steel CHS tubular members with o, <460 MPa. Within the
EN 1993 steel design framework, a new standard has been issued recently (EN
1993-1-12) to specify the applicability of the other EN 1993-1-xx standards in
high-strength steel applications. According to EN 1993-1-12, the EN 1993-1-1

classification provisions, shown in Table 7 - 1, may be applied for high-strength
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steel members as well. However, the existing classification for CHS tubular
members appears to be rather conservative for high-strength steel tubular
members; as an example one can readily obtain from Table 1 that CHS sections
with D/t;=35 and o, =690 MPa, are classified as Class 4 sections, which
implies a low ultimate capacity, within the elastic range. On the other hand,
such a section subjected to bending is expected to exhibit significant inelastic
deformation before local buckling.

The key issue in the above classification of CHS members is their cross-
sectional strength, mainly in terms of local buckling, which constitutes a shell-
buckling problem in the inelastic range. Inelastic buckling of relatively thick-
walled steel cylinders under compressive loads has been the issue of significant
research. Early experimental observations (Lee 1962; Batterman, 1965) as well
as the results of the previous chapter have shown that under pure axial
compression or bending, thick-walled cylinders — in contrast with thin-walled
ones — do not fail abruptly, but one can observe significant wall wrinkling before
an ultimate load occurs. Analytically, a main challenge for solving this problem
has been the combination of structural stability principles with inelastic multi-
axial material behavior. In particular, it has been recognized that buckling
predictions depend on the choice of plasticity theory (Gelin 1979; Tvergaard
1983), and for a thorough presentation of metal cylinder buckling behavior
under uniform axial compression, the reader is referred to the recent papers by

Bardi & Kyriakides (2006) and Bardi et al. (2006).

130

Institutional Repository - Library & Information Centre - University of Thessaly
11/06/2024 17:18:53 EEST - 3.15.206.238



CHAPTER 7 - HIGH-STRENGTH STEEL CHS TUBULAR MEMBERS
UNDER AXIAL COMPRESSION AND BENDING

In addition to uniform axial compression, bending buckling of tubular
members has also received significant attention, motivated mainly by their use
in pipeline applications. Experimental works indicated that failure of thick-
walled tubes under bending is associated with tube wall wrinkling, has several
similarities with the case of uniform axial compression, but is characterized by a
nonlinear prebuckling state — due to cross-sectional ovalization — and a more
localized buckling pattern on the compression side of the cylinder. The reader is
also referred to the papers by Ju & Kyriakides (1992) and Karamanos &
Tassoulas (1996), where semi-analytical and numerical tools have been
developed respectively for simulating the formation of local buckling due to
bending. These works have shown that the adoption of a non-associative corner-
like plasticity theory may provide the most accurate results with respect to
experimental data.

The present chapter aims at employing the non-associative model in order to
examine the cross-sectional classification of high-strength steel CHS seamless
tubular members. The investigation described in the present chapter is
numerical, based on the special-purpose finite element formulation, presented in
previous chapters, and is aimed at determining the maximum load at which
failure occurs, either because of bifurcation to a wavy pattern or due to
localization of deformation. It has been part of an extensive European research
program, ATTEL, on the structural behavior of high-strength steel tubular

members (Jaspart et. al., 2012). These high-strength steel tubes have also been
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considered by Pournara et al. (2012) in terms of their structural beam-column
behavior. In that work the need for a more reliable classification of high-
strength steel CHS sections has been addressed.

The seamless tubes under consideration have yield stress equal or higher than
590 MPa, and diameter-to-thickness ratio ranging between 20 and 60, which are
typical for structural applications. Initial imperfections and residual stresses
from real measurements are taken into account in the present analysis. The
numerical results are presented in the form of diagrams, which show the
cylinder strength and deformation capacity (axial and bending) in terms of
cylinder slenderness, and are aimed towards evaluating the applicability of

existing classification rules in EN 1993-1-1 for high-strength steel CHS tubes.

Table 7 - 1: Classification in EN 1993-1-1, based on the wvalue of the diameter-to-

thickness ratio

Class limits in terms
Class Class limits
of shell slenderness A *
1 D/t, <50&° A< 4 =0.278
2 50&% < D/t, < 70&? A4, =0278< A< 4,=0.329
3 702 < D/t, < 90¢2 A,=0329<1<4,=0.373
4 D/t, = 90&° A>2,=0.373

* 1 is the “shell slenderness” and defined as A =./oy /o, , where o, =0.605EC t/R is

the elastic buckling stress, and the value of C, is taken equal to 0.6 (Appendix IV)
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7.2 Material characterization and imperfection measurements

Results are obtained for 355.6-mm-diameter (14-inch) high-strength-steel
tubes with thickness ranging between 6.4 mm and 16 mm covering a wide range
of structural CHS sections. Two materials with yield stress equal to 590 MPa
and 735 MPa are used, with nearly constant hardening modulus equal to E/40
(Pournara et al. 2012), as shown in the nominal stress — engineering strain curve
of the high-strength steel material (O'Y =735 MPa) in Figure 7 - 1. The

elongations limit corresponding to maximum nominal stress 8%.
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Figure 7 - 1: Nominal stress — engineering strain curve of the high-strength steel

material.
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The finite element model is capable of including the effects of initial
imperfections, by prescribing the configuration of the shell surface in the initial
(reference) stage. In the present analysis, the initial imperfection is assumed in a
wavy form, similar to the buckling shape obtained from the bifurcation analysis
on the pre-buckling equilibrium path. In addition to initial imperfections, the
finite element model accounts for the presence of residual stresses, which may
have a significant effect on the buckling load. The amplitudes of initial
imperfections and residual stresses are obtained from measurements conducted
by Centro Sviluppo Materiali SpA on the tubes under considerations in the
course of the ATTEL project.

Initial wrinkling measurements have been obtained using an ultrasonic
device. Tube wall coordinates were measured at every 10 mm along 8 equally-
spaced generators, for a pipe length of equal to about two tube diameters.
Typical results from those measurements are shown in Figure 7 - 2(a) for three
typical generators.

These measurements along the generators have been processed to estimate
initial wrinkling, as well as cross-sectional distortions (i.e. out-of-roundness

imperfections) at specific cross sections along the tube.
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Figure 7 - 2: Typical data from (a) measurement of generator geometry (b) out-of-

roundness of three cross-sections.
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Figure 7 - 3: Statistical evaluation of @, , the measured absolute-value amplitude of the

axisymmetric imperfection.
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Figure 7 - j: Statistical evaluation of @,, the measured absolute-value amplitude of the

non-axisymmetric imperfection.
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It is assumed that the deviation of every cross-section from the perfect round
shape is the superposition of an "extensional" component, which is uniform
around the cross-section, and can be considered as axisymmetric initial
imperfection associated with pure “bulging” or “shrinking”, and a non-uniform
component which corresponds to cross-sectional out-of-roundness (distortion) as
shown in Figure 7 - 2(b). In Figure 7 - 3 and Figure 7 - 4, &, and @, represent
the measured amplitudes of the axisymmetric and the non-uniform imperfection
components respectively, with respect to tube thickness. A statistical evaluation
of @, and @, is offered in those Figures; the values of @,=0.8% and @&, =1.8%
correspond to an 80% upper limit of the measurements, and are considered as
representative initial imperfection values to for the parametric study described
in the next section.

Residual stress measurements have also been performed in both the axial and
the circumferential hoop direction (Pournara et al. 2012). The measurements in
the hoop direction have been obtained through the “splitting ring” method, as
specified in ASTM E1928-99, and resulted in an opening deformation (gap) of
17.7 mm, corresponding to a maximum hoop stress of 122 MPa (about 16% of
the actual yield stress). Furthermore, to estimate the residual stresses in the
axial direction, longitudinal strips have been obtained from the tubes, and their
curvature has been measured, corresponding to a maximum stress of 26 MPa,
which is only 4% of the yield stress. The values of residual stresses in the axial

direction are very low, due to the fact that the tubes under examination are
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seamless, and therefore, they can be neglected.

7.3 Analysis Methodology

7.3.1  Methodology for axial loading

Infinitely long cylindrical shells with axisymmetric and non-axisymmetric
initial imperfections are analyzed under axial compression loading by
appropriate implementation of the ‘‘tube-element’”. Non-axisymmetric modes
and Dbifurcations along the equilibrium path are identified. Experimental
observations as well as numerical results have shown that first wrinkling in the
plastic range is axisymmetric. First, the corresponding bifurcation load and
wavelength can be calculated analytically using equations (6.2) and (6.3), and
have shown to be very close to the numerical results.

The present analysis follows the steps described in Chapter 6.1. Assuming a
half-wave length from equation (6.3), axisymmetric wrinkling on the
prebuckling state for the uniformly-compressed cylinder is determined. Then,
considering a tube segment of length equal to twice the value of half-wavelength

L=2L,, , and an axisymmetric initial imperfection, secondary bifurcation to a
non-axisymmetric mode is calculated. In this analysis, the axisymmetric
imperfection amplitude @, is 0.8%, as indicated by the corresponding
measurements.

Subsequently, two possible limit states are examined. First, localization of the

axisymmetric wrinkling pattern is examined, using a tube segment of length
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equal to several half-wavelengths. Considering a small bias in the amplitude of
one wrinkle, the analysis leads to a maximum load N; due to wrinkle
localization denoted as limit state (a). In addition, a tube segment of length
equal to two half-wavelengths is analyzed with a combination of axisymmetric
and non-axisymmetric imperfections, with relative amplitudes @, and ®, equal
to 0.8% and 1.8% respectively, so that a maximum load N, is obtained. This
limit state is denoted as limit state (b). The smallest value of N, and N,
determines the ultimate axial load (strength) of the cross-section N,. The axial

shorting 6, corresponding load N, is also calculated.

7.3.2  Methodology for bending loading

The second part of this study concerns the prediction of ultimate capacity
under bending loading, following the analysis steps described by Ju&Kyriakides
(1992). The analysis is similar to the one in axial loading described above. At
first, wrinkling on the ovalized bending prebuckling state is determined, and the
corresponding half-wavelength is computed L,

w - Then, using an initial

imperfection on a tube segment of length equal to 2L, , secondary bifurcation is

w9
detected along the equilibrium path.

Subsequently, two possible limit states are examined, following a
methodology similar to the one described for axial loading; (a) localization of

wrinkling pattern with an ultimate moment M, and (b) a combination of

imperfection corresponding to initial and secondary buckling modes associated
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with a maximum moment M . The minimum value from the corresponding
maximum moments M, and M determines the ultimate moment of the cross-

section, denoted as M, .

7.3.3  Parametric study

The above advanced numerical tools are used to examine buckling of
cylindrical high-strength steel shells under pure axial compressive load and pure
bending. The cylindrical shells under consideration are thick-walled with

properties shown in Table 7 - 2.

Table 7 - 2: Geometric and mechanical properties of tubes

Tube t, [mm] D/t * o, [MPa] 1 Class**
1 6.4 55.56 735 0.517 4
2 8.0 44.45 735 0.463 4
3 10.0 35.56 735 0.414 4
4 12.5 28.45 735 0.370 3
5 14.2 25.05 735 0.347 3
6 16 22.22 735 0.327 2
7 14.2 25.05 590 0.311 2
8 16 22.22 590 0.293 2

* D is equal to 355.6 mm for all tubes,

** According to EN-1993-1-1
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The structural behavior is summarized schematically in the axial load-
displacement response of the thin-walled Tube 1 in Figure 7 - 5, whereas the
behavior of Tube 4 is shown in Figure 7 - 6. The load is normalized with the

valueN, =0 A, where A and o, are the cross sectional area and the yield

y
stress, respectively. The reported displacement is normalized by the tube length.
At a certain displacement value indicated by the first arrow (|) on the load-
displacement curve, first axisymmetric wrinkling is calculated. Secondary
bifurcation to a non-axisymmetric mode on the primary path is calculated
indicated by the second arrow (). The paths corresponding to the two possible
limit states are examined, as described in section 7.3.1. The ultimate maximum

strength axial load of the cross-section N,, is equal to N,, for the localization

u?

analysis and is indicated by the arrow (1) in the two graphs.

14
1.2
1 ————
Z%O'S D=355.6 mm |
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0.6 0,=735MPa
0.4 A=0.517
—perfect (primary path)
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0 i i

0 0.5 1.5 2

5/ (%)

Figure 7 - 5: Azial load — displacement diagram of Tube 1.
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Figure 7 - 6: Axial load — displacement diagram of Tube 4.
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Figure 7 - 7:. Moment-curvature diagram of thin-walled Tube 1.
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Figure 7 - 8: Moment-curvature diagram of Tube 4.

The bending behavior is shown in the moment- curvature response of Tube 1
in Figure 7 - 7 and of Tube 4 in Figure 7 - 8. The moment is normalized by the
fully-plastic moment (M, = o,t,D?) and the curvature is normalized by the

value of characteristic curvature K. =t, / D?.

7.4 Comparison with experimental results

Some limited experimental results are also reported on the high-strength steel
CHS seamless tubes under consideration for verification purposes. The tests
have been conducted by CSM in the course of ATTEL project, and comprise
three (3) tests with uniform axial compression, and two (2) tests on bending.
The tubes have cross-sections denoted as A, B and C (see Table 7 - 3), and a

steel material with yield stress equal to 735 MPa. The slenderness values for
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sections A, B and C are equal to 0.370, 0.395 and 0.305. The axial load tests
failed because of buckle development in the form of bulging near the welds, a
typical failure mode for this type of loading. All three tests showed that they
are capable of sustaining an axial load significantly higher than the full plastic
thrust of the section (see Table 7 - 3). The two bending experiments on sections
A and B, because of test set-up limitations, did not reach the local buckling
stage. Nevertheless, it has been possible to bend the two tubes at curvature

levels corresponding to bending moments higher than the fully plastic moment

(see Table 7 - 3).

Table 7 - 3: Fxperimental results on the high-strength steel tubes

Yield Ultimate Thust Ultimate Moment
Section | D [mm] t [mm] Stress Ny exp [kN] M, exo [kNm]
[MPa] (Nu,exp/Ny ) (Mu,exp/Mp )
10254 1168.6
A 355.6 12.5 735
(1.033) (1.402)
7961 805.93
B 323.9 10 735
(1.082) (1.438)
4414
C 193.7 10 735
(1.102)

classification of HSS CHS members
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7.4.1  Comparison with numerical results and test data and discussion

The above predictions of ultimate capacity are plotted against the finite
element results and the test data, in Figure 7 - 9 and Figure 7 - 10 for the axial
compression and bending respectively, with respect to the slenderness parameter
A. The ultimate axial load and bending moment values are normalized by N,
and M respectively. The comparison between numerical results, test data and
design provisions indicates that the EN 1993 standard provides a rather
conservative ultimate capacity in terms of both axial and bending moment for

the value of initial imperfections assumed in the present study.

1.20
strengthof class 1, 2, 3
1.15 - EN 1993-1-1 Test Results
X
1.10 & B/ :
C X ® Numerical Reults

1.05 X _

Z% L *ss\‘ /
\ <3

~ 1.00 A I XKoo e
& :

0.95 i strength of class 4 ||

I

0.90 I\\ / EN 1993-1-6

0.85 B

0.80 ‘ ‘ RIS

)\43:0-372
0.2 0.3 0.4 0.5 0.6

slenderness A

Figure 7 - 9: Stability curve in EN1993 compared with numerical results and

experimental data.
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Figure 7 - 10: Stability curve i ENI1993 compared with numerical results and

experimental data.

In addition, Figure 7 - 11 and Figure 7 - 12 show the numerical results for
the deformation capacity of the cross-section for axial (J,) and bending (k)
respectively, normalized by the corresponding values at initial yielding stage (&,
and K, ), with respect to the value of 4. The values of &, and k, correspond to
N, and M, respectively. The values of &,/5, and k,/k, indicate significant
deformation capacity of the tubes under consideration, well beyond first
yielding.

To distinguish between class 1 and class 2, the key issue is deformation

capacity. It has been empirically established that a ratio of ultimate

deformation over the yield deformation equal to 4, offers a reliable limit for the
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“border” between class 1 and class 2 sections.
Therefore, in bending:

° It M less than My: class 4.

max

o If M, less than M but higher than M, : class 3.

max

max

. If M, equal or higher than M, and k_, less than 4k : class 2.

max

J If M, equal or higher than M, and k_, larger than 4k, : class 1.

In axial compression

° If N less than Ny (= Np): class 4.

max

o If N, equal or higher than N , and &, “very close” to J,: class 3.

max

J If N, equal or higher than N , and ¢, less than 45, : class 2.

max

o If N, equal or higher than N , and ¢, larger than 44, : class 1.

max

—_
[

X
10 ‘
9 %
8 “‘\
7 X
& X
<5
! X,
3
2 X, —
I R o e --x
0
0.2 0.3 0.4 0.5 0.6

slenderness A

Figure 7 - 11: Deformation capacity of the cross-section under axial load conditions.
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Figure 7 - 12: Deformation capacity of the cross-section under bending moment.
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Chapter 8

Conclusions

A large-strain J, - non-associative plasticity model has been developed for
nonlinear analysis of cylindrical shells. The model maintains the basic
formulation and implementation features of the standard J, - flow theory, but
contains the necessary modifications and enhancements for accurate shell
buckling predictions, without any additional parameters required by corner or
pseudo-corner theories, reported in previous publications. The model is
consistent with shell theory requirements (zero stress normal to the shell
laminae), it is numerically integrated through both the robust backward-Euler
and forward-Euler substitution scheme.

An enhanced version of the model for large strains is also presented, based
on an additive decomposition of the rate-of-deformation tensor. This allows the
direct application of the above robust integration schemes in large-strain
analysis through a polar decomposition of the deformation gradient and
appropriate rotation of the stress and strain tensors, while accounting for zero
stress normal to shell laminae. The non-associative constitutive model is

implemented within a special-purpose finite element formulation, which uses a
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three-node “tube element”. Bifurcation buckling in the inelastic range is
detected along the equilibrium path through an implementation of the
“comparison solid” concept. Special emphasis is paid on the continuity of plastic
flow, to overcome numerical problems of convergence.

The numerical results are in excellent agreement with available experimental
data and analytical predictions, and demonstrate that the present methodology
is capable of describing accurately and efficiently buckling and post-buckling
behavior of rather think-walled cylindrical shells in the inelastic range. In
addition, the comparison with test data demonstrates the superiority of this
non-associative model with respect to the classical associative J, - plasticity
model in predicting shell buckling in the inelastic range.

Furthermore, wrinkling and post-wrinkling behavior of thick-walled high-
strength CHS seamless tubular have been presented in terms of both the
ultimate load and the deformation capacity of typical cross-sections, in order to
determine their ability to sustain load above the first yield level. The results
have been compared with limited test data, and with the EN 1993 provisions for
CHS member classification. Considering imperfections and residual stresses
obtained from real measurements on high-strength steel seamless tubes, the
finite element results indicated significantly higher ultimate capacity with
respect to the design rules of the above specification rules, as well as a
substantial deformation capacity, indicating the conservativeness of the EN

1993 provisions for high-strength steel CHS member classification.
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The contributions of the present dissertation can be summarized in the
following;:

e A J, - non-associative plasticity model is developed, capable of

describing the effects of yield surface vertex on the structural response

and buckling of shells in an efficient manner.

e Robust integration schemes are presented, accounting for zero stress

normal to shell surface and the “consistent moduli” are reported.

e A large-strain J, - non-associative plasticity model is also developed
for efficient large-strain nonlinear analysis of cylindrical shells, and is
integrated using the polar decomposition of deformation gradient and

appropriate rotation of stress and rate of deformation tensors.

e The constitutive model is implemented in a user material subroutine
and incorporated in an in-house finite element technique for shell

buckling analysis.

e The present numerical results are compared successfully with

available experimental data and analytical predictions.

e The comparison with test data demonstrates the superiority of this
non-associative model with respect to the classical associative J, -

plasticity model in predicting shell buckling in the inelastic range.
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e Buckling calculations on thick-walled seamless tubulars made of high-
strength subjected to axial compression and bending are performed, in
terms of both the ultimate load and the deformation capacity, and
their ability to sustain load well beyond the elastic range is

determined.

e Based on the numerical results, considering imperfections and residual
stresses obtained from real measurements on high-strength steel
seamless tubes, those tubes exhibit significantly higher ultimate load
and deformation capacity with respect to the predictions of existing
design rules, indicating the conservativeness of current design practice

for the case of high-strength steel tubulars.
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J, - Associative Constitutive Model and

Implementation

The classical formulation of J, - flow theory with isotropic hardening is
described in detail in this Appendix. Furthermore, its numerical integration is

presented, using backward-Euler and forward-Euler schemes.

I.1 Model description
In the framework of associated plastic flow the plastic strain rate can be
written as

P =1—=1]s (I.1)

where A is a positive scalar.

The consistency condition F =0 implies

3
=58 12
‘7 2kH (1-2)

The von Mises equivalent stress is defined as

q= gs-s (1.3)
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and the equivalent plastic strain rate, using equations (I.1) and (I.3) becomes

2 2 . 2
& ==& &P = =A% s==4 .4
] \/ 3 \/ 3 34 (L.4)
Then the plastic strain increment can be expressed as

P =—"1s (L5)

and using equation (I.1), equation (I.5) becomes

P

3 3 i(n~s)n=

_3 e 16
2q2qH(ss)s 2H (1.6)

2 4"
2H

. . S
where §" :(n-s)n and N=:— is the unit normal to the yield surface. The rate

s

form of the classical flow theory in equation (I.6) implies that the plastic strain
increment is always normal to the yield surface. The instantaneous moduli for

this model can be written as follows

D, =2GI+3(K—ZGJJ—£ _ 1 lses (L7)
P 3 9’ |1+ H/3G

The components of D, with respect to the covariant basis can be written

ikl K

il ik il jk Ev ij
o 2(1+v)(g )+( 99

9 99 1-2v)(1+v) L8)

3G 1 Si®sH
g’ \1+H/3G

I.2  Numerical integration of the J, - Associative Plasticity Model

The method employed to integrate the above constitutive equations follows
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an elastic predictor—plastic corrector scheme. Using the backward-Euler

integration scheme for equation (I.1), the increment of plastic strain is written

AgP = Aes 1.9
qu g7 n+l ( )
The final stress at stage (n+1) is written
3G 4¢,
Cp = ¢ - : Sni (110)
2qn+l

where the purely elastic (trial) stress is defined by the formula ¢° =06, +DAsg.

From (I-10) the deviatoric stress is

3G 4¢
Spi = - : Sni (111)
2qn+l
or
s L & (1.12)

nel = S
3G 4¢
1+ 1
2 qn+1

which shows that the final deviator stress s,,; is co-linear with the elastic stress
$°. Therefore, in the deviatoric plane, “plastic correction” from the elastic
predictor onto the yield surface takes place “radially”. Squaring equation (I.11),
the effective stress at the final state is calculated as follows

qn+1 :qe_gequ (113)

From (I-13), the yield function becomes

qe—BGqu—k(gq‘n+qu):0 (1.14)
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The above non-linear equation (I.14) is solved in terms of the equivalent plastic
strain Ag, using Newton’s method. Once Ag, is found, equation (I.12) provides

Sy and (I.11) the final stress o,,,. Finally the equivalent plastic strain at stage

n+l*

(n+1) is &,

LTE ‘n + Aé‘q , which completes the integration process.

Figure I - 1: Geometrical representation of “radial return” algorithm.

Nevertheless, in accordance with shell theory, it is required that the traction
component normal to any shell lamina is zero at any stage of deformation. In
such a case, the strain increment can be decomposed in two parts (see equation

(2.22)). The final stress becomes

. 3G 4¢,
6,.,=6 +2Gdg,,a—

s (I.15)

n+1
n+1

where 6° is the elastic predictor that corresponds to the known part of As (eq.
(2.28)).It should be noted that 6° is different from the elastic prediction ¢°.

From equation (I.15) the hydrostatic and the deviatoric parts of the final stress

157

Institutional Repository - Library & Information Centre - University of Thessaly
11/06/2024 17:18:53 EEST - 3.15.206.238



APPENDIX I - J,-~ASSOCIATIVE CONSTITUTIVE MODEL AND

IMPLEMENTATION
are written as

=e 33
P =P —Kde, g (I.16)
s =;(§9+26Ag a') (1.17)
n+l 3G qu 33 .

1+

qn+l

Equation (I.17) shows that S,,, and §° are not co-linear and the correction is
not on the deviatoric plane. Squaring equation (I.17), the von Mises equivalent

stress at the final state is calculated as follows

Gy =0+ 4G A6, g7 g7+ 66 A, 5 ~3G e, (L18)

where G° =,/(3/2)5°-5° .
From consistency, the final stress has to satisfy the yield criterion and this can

be expressed as follows

qn+l(qu’A833): k(é‘q‘n +A5q) (119)

Enforcing the conditions of zero stress normal to any shell lamina (&2, =0),

n+l —

and using (I-15) the following equation is obtained
(qn+l+ 3G qu) Prs g33_(§(e)33 +%A533 g® g33j =0 (1.20)

Summarizing the above formulation, equations (I.16), (I.18), (1.20) and the
yield criterion (I.19) constitute a system of four equations to be solved for the
four unknowns, namely, q,,,, P,,, 4&, and Ag,. Considering Ag, and Ag,; as

the primary unknowns, equations (1.20) and (I.19) can be solved in terms of
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Ag,, Agy using Newton’s method as described in more detail in Appendix II-2.

1.3 Linearization moduli for the von Mises Plasticity Model

The consistent rigidity moduli are computed from the basic equation

86 n+1

D: =
* aam—l

is computed for the

. In the following, four-order temsor de,,,/Ct,,,

backward-Euler integration scheme and presented in the previous section. In

particular, the final stress ¢, can be written as

do,,=Ddg,, —2G(4s,dN,,, +dg N,,,) (1.21)

n+l

where the dimensionless tensor N is defined at a certain stress state ¢ by the

following expression:

N ., =N°= [.22
n+l 2qe ( )
Differentiation of equation (I1.22) gives
dn =N e N 00 4 (I.23)
Oc* 06° Og,
One can show that
@:—1N®N+il (I.24)
06 q 2(
Therefore,
N° 1
2 - :——Ne®Ne+i| (1.25)
06 q 2Q

and differentiation of the purely elastic (trial) stress gives
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de’°=Ddeg, (1.26)
Using equations (I1.25) and (1.26), equation (1.23) becomes
N, ., =E(§| “N°® Nejd £ (1.27)
q\2
Differentiation of equation (I1.14) gives
99 4o*3Gds,— 1 g | =0 (1.28)
06 de, . n+l
or equivalently,
2G 3
= s°d [.29
“T3G+H 2" M (1.29)
Substituting,
d6n+l:Dd8n+l_4G ( 1 j 3ese 3 sn+l
3G+H )/)2q9° 2q,.,
(1.30)

Ag, G ?
+ : § I _(i] Sni ®Sn+l d €ni
qn+l 2 2qn+1

so that

c 1 quG 3
D, =D-4G N, ,®ON ,+—— -I-N_,®N_, (1.31)
3G+H m \2

Finally, the condition of zero stress normal to shell laminae is imposed

considering d ¢* =0 in the rigitidy moduli of equation (1.31).

160

Institutional Repository - Library & Information Centre - University of Thessaly
11/06/2024 17:18:53 EEST - 3.15.206.238



161

Institutional Repository - Library & Information Centre - University of Thessaly
11/06/2024 17:18:53 EEST - 3.15.206.238



Appendix II

Application of Newton’s Method in

Constitutive Model Implementation

II.1 J, - non-associative model

Equations (2.30), (2.32), (2.36), (2.35) or (2.30), (2.40), (2.41), (2.35) are
solved using the Newton method. The unknowns A¢,and A, are chosen as the
primary unknowns considering that equations (2.35) and (2.36) or (2.35) and

(2.41) are the basic equations. Denoting as & (qu)and o (A€33) the corrections

of Ag, and Ag,,, the Newton equations become:

& Ao p] s
A21 Azz 5(41833) bz
E(qu): (AZZbI_AizbZ)
det A (IL.2)
5(4‘533) _ (Anbz_ Azlbl)
det A
where
det A=A, A,— A, Ay, (I1.3)

The Ag, and Ag,,is updated by
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Ag, > Ae + §(A5q )
Agyy > Ay, +6(Aey,)

(IL4)

The iteration continues until b, b, - 0.

For the backward-Euler scheme, the constants A; and b are given in the

following expressions:

of 0 ok 0
A== O -9y (IL5)
0Ag, 0A4g, 0Ag, 0Ag,
A, = of, _ .09 _ ok __99 (I1.6)
0Ag,, 0Agy, 0Agy,  0Asy,
of, 3G 3Ghj,
= S
A21 aqu h§+1 + pn+1 g ( hnzﬂ
, 0
(36 4¢,H;;+3GH,,,)a,:h,,,—3G 45, H [aAq . qn+1h1n+1j (IL.7)
+

2 2
qn+1h1\n+1

3G4e H
A, = of, :[1—1— 3(3+ &, "*1}(—Kg33)g33

0A&4, By qn+1h1\n+1
(I1.8)
3GA‘9 n+1h1[ 1
e 8Ae 4
_ 33 pmlgss__Ggssgss
qn+lh].‘n+l 3
and
bh=-0,, (qu ,A533)+ k(gqn +A6‘q) (IL.9)
3G A¢ H
b, =—|1+ 3G | 252% M Pt O +{s(e) A6 4 £,0° g%+ = 3G s“J (I1.10)
hn+1 qh].‘n+1 3 hn+1
where
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GQ(ASq,AE%) 3Gh].‘nJrl n+1 q 1
oA 1+3GhY |t 1+3Gh?

q n+1

3G Ag, H! ,+3GH,,) 3Gde,H, h

( n+1 n+1)+ q2 1m 1 (1111)
hl\n+l h].‘n+1
+—QG hl[n+l hn+lqn BGhll\nﬂ n+1Q QG A€33 hl\n+1 n_fl :3
(1+SG hn_il)qn+l+36 Ae, n+lh1‘n+l

2 33 33 (e)®

aq(Aé‘q,A833) 1 4G 4¢,097 9 +3G(S +3Gh.; s, ) (1.12)
dde,, 1+3Gh, (1+3Gh})d,,,+3G 45, H, h

For the forward-Euler scheme, the constants A; and b are given in the

following expressions:

A, = ot _ 04 ok _0d (I1.13)

(ng 6qu Gqu Gqu

of, _o0q ok _ dq

= = = I1.14
A O0Agy, 0Agy,, OAg,;, 0Asy, ( )
Ay = 0%, __36H., S (IL.15)
aqu qnhun
a f 3G 33 33 4 33,433
Ay, =——* [1+—j -Kg~)g”+-Gg™g (11.16)
? 6A€33 h, ( ) 3
and
blz—qml(Ag A833)+k(8 +A8) (IL.17)
3G4g,H
b, = [1+3;1—G+—g] pn+1g33+(s() L3S, 33g33g33+3653} (I1.18)
N ahy, 3 h,
where
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Gq(qu ,A833) _|_ Hn qglhu7r11+l gGZ i_ qu H” 2
aqu (1+3G hn—il.)2 qn+1 hn qnhm] " (1119)
+3G*Q°+9G” dg;, 57
5Q(qu ’Agss) B 1 4G’ As,, g 933+BG§(8)33
0Ae,, 1+3Gh,’ (1+3Gh,")d,..
(11.20)

9G2 (hn‘1+ H, A, o;" hl“nl)sf
(1+3G hr:l)qn+1

I1.2 J, - associative model

In the framework of associated plastic theory, equations (I1.16), (1.18), (I1.19)
and (1.20) are solved using the Newton method. For the backward-Euler

scheme, the constants A; and b, are given in the following expressions:

_of, _oq 0k
0As, 0OAe équ

q q

A, =-3G-H (IL.21)

of, _ o0q 0k oq

= = = 11.22
A 0Ag,, 0Ag, 0Asy, 0Asy, ( )
of, <)% 2 33 33 (11.23)
A“:aAg =3GS" +4G“4¢,, 07 ¢ .
q
of 4
A =5 = =(0,4+3G 45, )(- Kg”)g”—WGg”g%
33 8 4G n+1 8 (1124)
+—q P g33_(§(9) +_A‘933 933 gssj d
0A4¢,, 3 0Asy,
and
b =-0q,, (qu ,A833)+ k(gq‘n +A8q) (IL.25)
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b, = —(qn+1+ 3G 4s, ) p,.. 9%+ (§(e)33 + % Agy, g% g33)qn+1 (I1.26)
where

0q(4e,.4¢e;,) _3G 597 +4G? 45, g% ¢¥
0A4&,, 0., +3G 4g,

(IL.27)

For the forward-Euler scheme, the constants A; and b are given in the

following expressions:

_o0h _ 09 ok _ o4 (IL28)

6qu 6qu Gqu - Gqu

Ay

of 0 ok 0
A, =20 - 99 __¢@ (I1.29)
0Ag,, O0Ag,, 0Asy, 0Asy,

f
p, =% _ 3G (I1.30)
0A¢g, a,
a f2 33 33 4 33433

A = ae (-Kg™)g™+3Gg™g (I1.31)
and

b, =0, (e, ,A533)+k(gq‘n +qu) (I1.32)

b, == p,.s g33+{§<9>“+?41833 g% g2 s quj (11.33)
where

aq(qu !A833) _ 9G2 qu _362 QZ/Qn_g(32 A833 Sgs/qn (II 34)

8A5q qn+1 |
166

Institutional Repository - Library & Information Centre - University of Thessaly
11/06/2024 17:18:53 EEST - 3.15.206.238



APPENDIX IT - NEWTON’S METHOD FOR INTEGRATING THE
CONSTITUTIVE MODELS

0d(4z,42,,) 365" +4G? 4g,, g g%-9G? 4, 57/,
aA833 qn+l

(IL.35)
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Appendix III

Algorithm for Polar Decomposition in

Curvilinear Coordinates

This algorithm computes the squares of the principal stretches A2, (i =1,2,3),
which are the eigenvalues of C, by solving in closed form the characteristic
polynomial. The algorithm has been introduced by Franca (1989), it is described
in the book of Simo and Hughes (1998), pp 244, and is adapted herein for the
case of curvilinear coordinates. The covariant base vector and the contravariant
(reciprocal) base vector in the beginning of the step G, G! , the covariant base
vector and the contravariant base vector in the current configuration g,, g’

respectively, are given. Let a,(i=1,2,3) be the principal invariants of U defined

as
a, =g,;G"
a, =%[(gijGij y _aijGu} (IIL.1)
a, = det(g; )

and

168

Institutional Repository - Library & Information Centre - University of Thessaly
11/06/2024 17:18:53 EEST - 3.15.206.238



APPENDIX III - ALGORITHM FOR POLAR DECOMPOSITION IN

CURVILINEAR COORDINATES

3 (I11.2)

where
a ii— gikngGkI (HI'3>

If b=0 (b <tolerence)

ﬂizﬂz:/g:\/% (III.4)
else
m=2 _—b
3
n= 3_1 (IIL5)
m
aux=1-n’

If aux<0 then

if n>1=t=0
II1.6
if n<1=>t=2 (IIL6)
3
else
tzlarctan[ ,aux} (TI1.7)
3 n
end if
2(i-1
X, =mcos{t+%}, =123 (IIL.8)
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and
ﬂfuz =%+ &
3 (I11.9)
A=\%
end if.

Compute the invariants of U

=4+ At
Iy = Ay + Ay + Ay (I11.10)
iy = 40,2,

Furthermore, the coefficients A, B, (i=1,2,3) in the expressions (3.13) and (3.16)

for U : U™ are defined as

1
A=——
D
i2
A2=(1 S ) (ITL.11)
A=
and
1
B ==
1 i3
B, = _I'l (IIL.12)
3
B _l

where D =1i, —1,.
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Appendix IV

Classicification of CHS Tubular Members

Table 1 shows the classification of CHS tubular members according the EN
1993-1-1. For consistency with the present analysis, the slenderness limits have

been also given in terms of the so-called “shell slenderness”, defined as:

R i (IV.1)
O-e
where
t
0, =0.805EC, — (IV.2)

is the elastic buckling stress, and the value of C, is taken equal to 0.6,
representing an infinitely long cylinder, free of boundary condition effects.

For Class 1, 2 and 3 CHS sections (4<0.372), the EN 1993-1-1 standard
specifies that the ultimate axial compressive capacity N, is equal to the fully-
plastic axial load N, =o, A, where A is the cross-sectional area. If the value of
A exceeds 0.372, then the cross-section is classified as Class 4, implying that
buckling occurs in the elastic range, and its ultimate axial compressive capacity
N, is calculated from the EN 1993-1-6 rules for buckling of cylindrical shells, as
follows:

N, =0, A (Iv.3)
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where the buckling strength o, ,, can be written:
oo =X (4) 0y (IV.4)

The reduction function y depends on shell slenderness as follows:

1 21<0.2
2-0.2
1)=411-0.6 0.2<A<A V.5
(2)--o0s 2292 : avs)
a A? A> Ay

where, assuming “excellent manufacturing quality”, the corresponding value of

Q is equal to 40, so that

o= 062 - (IVG)
1+1.91(Aw, /t)"
a1 R v
t 40\ t

2, =1581Ja (IV.8)
For the case of bending loading, those provisions specify that Class 1 and 2
cross-sections have an ultimate moment capacity M, equal to the plastic

bending moment M, =o,W,, where W, is the plastic bending modulus of the

pl >

cross-section. For Class 3 sections, M is specified equal to the elastic bending

u
moment M, =o,W, , where W, is the elastic bending modulus. Finally, for Class

4 CHS sections, M, is specified equal to o, oW, , where the critical axial stress

O, r is calculated from equations (IV.4) - (IV.8) above.

X
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