
Scheduling and Performance Characterization
on Heterogeneous Computing Systems

Giorgis Georgakoudis

A thesis presented for the degree of
Doctor of Philosophy

Department of Electrical and Computer Engineering
University of Thessaly

Greece
May 2016

Dissertation Committee:
Associate Prof. Spyros Lalis
Prof. Dimitrios S. Nikolopoulos
Assistant Prof. Christos Antonopoulos

Institutional Repository - Library & Information Centre - University of Thessaly
24/09/2023 22:53:45 EEST - 44.200.101.84

Institutional Repository - Library & Information Centre - University of Thessaly
24/09/2023 22:53:45 EEST - 44.200.101.84

I would like to dedicate this thesis first to my family and then to my true teachers

Institutional Repository - Library & Information Centre - University of Thessaly
24/09/2023 22:53:45 EEST - 44.200.101.84

Institutional Repository - Library & Information Centre - University of Thessaly
24/09/2023 22:53:45 EEST - 44.200.101.84

Acknowledgements

This thesis includes research work conducted while working in two institutions. These are
the Department of Electrical and Computer Engineering of University of Thessaly in Greece,
and the School of Electronics, Electrical Engineering and Computer Science of Queen’s
University of Belfast in United Kingdom. I have only good memories, warm feelings and
gratitude for the universities I have been working in. I have also to acknowledge the funding
agencies which made this research possible through financial means. These include the
European Commission through EU projects and the Engineering, Physics and Research
Council (EPSRC) through UK national projects.

First and foremost I would like to thank my mentors and supervisors. I would like to
express my gratitude to Professor Spyros Lalis from the University of Thessaly who trusted
in me at the beginning of my research career. His guidance during my initial steps and
throughout my PhD molded me as a researcher. Also, I would like to especially thank
Professor Dimitrios Nikolopoulos in Queen’s University of Belfast who was instrumental
in enabling this research. Without his guidance and mentoring none of this work would be
possible. I would like to express my gratitude to Dr. Hans Vandierendonck from Queen’s
University of Belfast too. He was always available to discuss and provide constructive
criticism. His criticism helped tremendously in presenting effectively this work.

I would like also to acknowledge and thank my past and present colleagues who provided
me with help and enjoyable moments to ease the burden of research. Particularly, I would
like to thank Dr. Dimitris Syrivelis, Manos Koutsoubelias and Dr. Nikos Tziritas with whom
I shared my early years as a researcher. Also, from my current colleagues I would like to
especially thank Charalambos Chalios. Sharing research and technical experience and having
stimulating, and often heated, discussions, was very educating and relaxing.

Last but certainly not least, I owe great many thanks to my family. Especially I owe
to my parents, Thanasis and Kaiti, for their unconditional love and support all along my
academic pursuits. Also, I would like to express my gratitude and appreciation to my
soulmate Konstantia Georgouli, who I consider part of my family. Konstantia has been
always by my side during good times and bad times to support me with patience and love.
The least I can do is dedicate this thesis to them.

Institutional Repository - Library & Information Centre - University of Thessaly
24/09/2023 22:53:45 EEST - 44.200.101.84

Institutional Repository - Library & Information Centre - University of Thessaly
24/09/2023 22:53:45 EEST - 44.200.101.84

Abstract

Scheduling and Performance Characterization
on Heterogeneous Computing Systems

by
Giorgis Georgakoudis

Doctor of Philosophy, Graduate Program in Electrical and Computer Engineering,
University of Thessaly, Greece.

May 2016
Prof. Spyros Lalis, Chairperson

The era of performance and power efficiency scaling through transistor shrinking and
frequency scaling, characterized by Dennard’s law, has come to an end. Nevertheless,
transistor doubling still withstanding, computing architectures have moved to the multicore
and manycore era for improving performance through parallelism. However, this scaling
of computing architectures exposed power consumption to be an important limiting factor
and a key concern to sustain further growth. Heterogeneous computing architectures are the
next evolution step and promise to improve the performance, power and cost efficiency of
systems. They promise to do so through hardware specialization, by including components
which exhibit different performance and power consumption characteristics. The potential for
improved performance and power efficiency from heterogeneous architectures has rendered
them ubiquitous in every aspect of computing, from mobile devices such as smartphones
and tablets to large-scale computing installations such as supercomputers and datacenters.
However, the efficient allocation of heterogeneous resources to match workload requirements
with their capabilities, thus achieve their performance and power efficiency potential, is an
open and challenging problem.

In this dissertation we contribute novel solutions, techniques and insight on efficient
resource allocation for heterogeneous systems. At the level of heterogeneous processor
architectures, we present new techniques for managing instruction-based heterogeneity on

Institutional Repository - Library & Information Centre - University of Thessaly
24/09/2023 22:53:45 EEST - 44.200.101.84

viii

state-of-the-art, shared-ISA architectures. These include binary adaptation techniques to
enable software portability and thread migration across heterogeneous cores despite their
binary incompatibilities. Following, we present a novel, heterogeneous-aware scheduler for
maximizing the speedup of a workload through dynamic re-allocation of heterogeneous cores
between co-executing programs. The evaluation of our methods on a hardware prototype
platform shows that the dynamic scheduler we propose outperforms significantly previous
state-of-the-art solutions. Moreover, we scope resource allocation for performance and
energy efficiency on heterogeneous datacenter architectures. We present new methodologies
and define iso-comparison metrics to fairly and accurately characterize the performance and
energy efficiency across diverse, heterogeneous server platforms in the context of online data
analytic services. We evaluate several heterogeneous types of servers, including standard
servers, micro-servers and manycore accelerators. Our methods provide new insight by
assessing resource allocations in heterogeneous datacenter architectures under the prism
of meeting Quality-of-Service requirements of online data analytics while characterizing
their energy efficiency. The application of our methodologies can effectively guide efficient
heterogeneous resource allocation and provisioning in the datacenter.

Institutional Repository - Library & Information Centre - University of Thessaly
24/09/2023 22:53:45 EEST - 44.200.101.84

Per—lhyh

Qronoprogrammatismìc kai Qarakthrismìc
Apìdoshc Se Eterogen Sust mata Upologist‚n

apì ton
Gi‚rgh GewrgakoÔdh

Upoy fioc Did�ktwr, Metaptuqiakì Prìgramma Hlektrolìgwn Mhqanik‚n kai
Mhqanik‚n H/U

Panepist mio Jessal—ac, Ell�da.
M�ioc 2016

Kaj. SpÔroc L�lhc, Epikefal c epiblŁpwn

H epoq thc aÔxhshc twn upologistik‚n epidìsewn kai thc tautìqronhc me—wshc
thc katan�lwshc isqÔoc mŁsw thc sm—krunshc twn hmiagwg‚n kai thc aÔxhshc thc su-
qnìthtac leitourg—ac (nìmoc tou Dennard) Łqei parŁljei. Par’ ìl’ aut�, o arijmìc twn
diajŁsimwn hmiagwg‚n suneq—zei na diplasi�zetai. Autìc e—nai o lìgoc pou h arqite-
ktonik upologist‚n Łqei metakinhje— sth sqed—ash polupÔrhnwn epexergast‚n gia thn
aÔxhsh twn upologistik‚n epidìsewn mŁsw thc par�llhlhc epexergas—ac. ’Omwc, aut
h klim�kwsh ston arijmì twn epexergast‚n Łfere sthn epif�neia Łna nŁo prìblhma,
autì thc katan�lwshc isqÔoc, pou plŁon e—nai shmantikìc perioristikìc par�gontac
sthn peraitŁrw klim�kwsh twn susthm�twn. To epìmenh b ma sthn exŁlixh thc arqi-
tektonik c susthm�twn e—nai h sqed—ash eterogen‚n upologistik‚n susthm�twn pou
mporoÔn na belti‚soun shmantik� tìso tic upologistikŁc epidìseic, thn katan�lwsh
isqÔoc kai telik� thn energeiak apodotikìthta twn susthm�twn. Lìgw aut‚n twn qa-
rakthristik‚n, ta eterogen sust mata br—skontai se k�je Łkfansh thc upologistik c,
apì forhtŁc suskeuŁc mŁqri egkatast�seic uper-upologist‚n kai kŁntrwn dedomŁnwn.
Gia na epitÔqoun aut� ta ofŁlh, oi eterogene—c arqitektonikŁc akoloujoÔn thn arq
thc exeid—keushc ulikoÔ (hardware specialization), perilamb�nontac sust mata me diafo-
retikŁc epidìseic kai katan�lwsh isqÔoc gia thn ektŁlesh programm�twn. Wstìso, h

Institutional Repository - Library & Information Centre - University of Thessaly
24/09/2023 22:53:45 EEST - 44.200.101.84

x

posotikopo—hsh gia ton qarakthrismì thc apìdoshc twn eterogen‚n pìrwn kai o qro-
noprogrammatismìc touc gia thn apodotik ektŁlesh programm�twn paramŁnei anoiqtì
prìblhma.

Se aut th diatrib , suneisfŁroume nŁec lÔseic, mejìdouc kai teqnikŁc stoqeÔontac
sto prìblhma thc apìdoshc kai tou qronoprogrammatismoÔ eterogen‚n arqitektonik‚n.
SugkekrimŁna, sto ep—pedo twn eterogen‚n arqitektonik‚n epexergast‚n, meletoÔme
tic arqitektonikŁc diamoirazìmenou sunìlou entol‚n (shared-ISA architectures) wc te-
qnolog—a aiqm c, kai parousi�zoume nŁec teqnikŁc gia th diaqe—rish thc eterogŁneiac sto
ep—pedo entol‚n. S’ autŁc perilamb�nontai teqnikŁc meteggraf c duadikoÔ k‚dika pou
epitrŁpoun th forhtìthta duadikoÔ k‚dika all� pio shmantik� epitrŁpoun th metafor�
nhm�twn ektŁleshc metaxÔ eterogen‚n, epexergastik‚n pur nwn par� tic asumbatìth-
tec sto sÔnolo entol‚n. Epiprìsjeta, parousi�zoume mia kainoÔria mŁjodo dunamikoÔ
qronoprogrammatismoÔ pou epitaqÔnei thn tautìqronh ektŁlesh pollapl‚n program-
m�twn, antilamb�nontac thn epit�qunsh lìgw thc eterogŁneiac gia k�je prìgramma gia
na anakatane—mei touc eterogene—c pur nec mŁsw thc metafor�c nhm�twn ektŁleshc. H
axiolìghsh twn mejìdwn mac se mia platfìrma ulikoÔ pou ulopoie— mia arqitektonik
diamoirazìmenou sunìlou entol‚n de—qnei ìti uperteroÔn shmantik� se epidìseic apì
tic up�rqousec proteinìmenec teqnikŁc. Ep—shc, meletoÔme to prìblhma thc diaqe—rishc
upologistik‚n pìrwn se eterogene—c arqitektonikŁc kŁntrwn dedomŁnwn. Parousi�zou-
me mia nŁa mejodolog—a basismŁnh se iso-metrikŁc pou epitrŁpei th sÔgkrish eterogen‚n
exuphretht‚n, ìson afor� thn upologistik kai energeiak apìdosh touc, se perib�l-
lonta ektŁleshc online uphresi‚n an�lushc dedomŁnwn. MŁsw aut c thc mejodolog—ac,
posotikopoioÔme thn apìdosh di�forwn tÔpwn exuphretht‚n pou perilamb�noun tupiko-
Ôc exuphrethtŁc, mikro-exuphrethtŁc kai platfìrmec epitaqunt‚n pollapl‚n pur nwn.
Oi mŁjodo— mac exet�zoun thn posotikopo—hsh thc energeiak c apìdoshc jŁtontac ka-
jorismŁnouc stìqouc sthn apodekt poiìthta uphres—ac wc koinì mŁtro thc ep—doshc
eterogen‚n exuphretht‚n. H efarmog thc mejodolog—ac mac mpore— apotelesmati-
k� na kajodhg sei th diamoirasmì eterogen‚n pìrwn kai th prodiagraf energeiak�
apodotik‚n kŁntrwn dedomŁnwn.

Institutional Repository - Library & Information Centre - University of Thessaly
24/09/2023 22:53:45 EEST - 44.200.101.84

Related publications

[1] Giorgis Georgakoudis, Charles J. Gillan, Ahmed Sayed, Ivor Spence, Richard Faloon,
and Dimitrios S. Nikolopoulos. Methods and Metrics for Fair Server Assessment
Under Real-time Financial Workloads. Concurrency and Computation: Practice and
Experience, 28(3):916–928, 2016. cpe.3704.

[2] Giorgis Georgakoudis, Charles Gillan, Ahmed Sayed, Ivor Spence, Richard Faloon, and
Dimitrios S. Nikolopoulos. Iso-quality of Service: Fairly Ranking Servers for Real-time
Data Analytics. Parallel Processing Letters, 25(03):1541004, 2015.

[3] C. J. Gillan, D. S. Nikolopoulos, G. Georgakoudis, R. Faloon, G. Tzenakis, and I. Spence.
On the Viability of Microservers for Financial Analytics. In High Performance Compu-
tational Finance (WHPCF), 2014 Seventh Workshop on, pages 29–36, Nov 2014.

[4] G. Georgakoudis, D. S. Nikolopoulos, H. Vandierendonck, and S. Lalis. Fast Dynamic
Binary Rewriting for Flexible Thread Migration on Shared-ISA Heterogeneous MPSoCs.
In Embedded Computer Systems: Architectures, Modeling, and Simulation (SAMOS
XIV), 2014 International Conference on, pages 156–163, July 2014.

[5] G. Georgakoudis, D. S. Nikolopoulos, and S. Lalis. Fast Dynamic Binary Rewriting
to Support Thread Migration in Shared-ISA Asymmetric Multicores. In Proceedings
of the First International Workshop on Code OptimiSation for MultI and Many Cores,
COSMIC ’13, pages 1–10, New York, NY, USA, 2013. ACM – Best paper award.

[6] G. Georgakoudis, S. Lalis, and D. S. Nikolopoulos. Dynamic Binary Rewriting and
Migration for Shared-ISA Asymmetric, Multicore Processors: Summary. In Proceedings
of the 21st International Symposium on High-Performance Parallel and Distributed
Computing, HPDC ’12, pages 127–128, New York, NY, USA, 2012. ACM.

Institutional Repository - Library & Information Centre - University of Thessaly
24/09/2023 22:53:45 EEST - 44.200.101.84

Institutional Repository - Library & Information Centre - University of Thessaly
24/09/2023 22:53:45 EEST - 44.200.101.84

Contents

Related publications xi

List of Figures xvii

List of Tables xix

1 Introduction 1
1.1 Motivation . 1
1.2 Synopsis . 5

2 Background on Heterogeneous Architectures 7
2.1 Disjoint-ISA Architectures . 7
2.2 Single-ISA architectures . 8
2.3 Shared-ISA Architectures . 9

2.3.1 Experiment Platform . 9
2.4 Heterogeneous Datacenter Architectures 11

3 Dynamic Binary Adaptation on Shared-ISA Architectures 13
3.1 Introduction . 13
3.2 Previous State-of-the-art . 15

3.2.1 Universal Binaries . 15
3.2.2 Fault-and-migrate . 15
3.2.3 Dynamic Binary Rewriters . 16
3.2.4 Discussion . 16

3.3 Dynamic Binary Adaptation Techniques 17
3.3.1 Dynamic Binary Rewriting . 18
3.3.2 Dynamic Binary Translation . 21

3.4 Evaluation and Results . 23
3.4.1 Implementation Details . 23

Institutional Repository - Library & Information Centre - University of Thessaly
24/09/2023 22:53:45 EEST - 44.200.101.84

xiv Contents

3.4.2 Experiment Methodology . 24
3.4.3 Results . 26
3.4.4 Speedup Proportional Dynamic Scheduling 26

3.5 Chapter Conclusion . 30

4 Speedup Aware Dynamic Scheduling on Shared-ISA Architectures 31
4.1 Introduction . 31
4.2 Background . 35

4.2.1 Fault-and-migrate Scheduling on Shared-ISA Architectures 35
4.2.2 Other Dynamic Scheduling Solutions for Asymmetric Platforms . . 36

4.3 Online Speedup Profiling . 38
4.4 Cross-core Speedup Estimation . 40
4.5 Speedup-aware Scheduling . 42

4.5.1 SPEEDSWAP Scheduling . 42
4.5.2 Example . 45

4.6 Experiments and Results . 47
4.6.1 Implementation Details . 47
4.6.2 Experiment Methodology . 48
4.6.3 Multi-program Workloads . 50
4.6.4 Results . 53

4.7 Chapter Conclusion . 55

5 Performance Characterization on Heterogeneous Datacenter Architectures 57
5.1 Introduction . 57
5.2 Related Work . 59
5.3 Background . 60

5.3.1 Computing Option Prices . 61
5.4 Optimization Methodology . 63

5.4.1 Algorithmic Optimization of the Monte Carlo Equation 64
5.4.2 Vectorization of the Monte Carlo Kernel 64
5.4.3 Compiler Based Vectorization . 66

5.5 Experiment Setup and Measurement Methodology 67
5.5.1 Definition of Metrics . 67
5.5.2 Hardware Platforms . 68
5.5.3 Methodology . 69

5.6 Fair Comparison of Servers and Micro-servers 71
5.6.1 Monte Carlo Pricing . 71

Institutional Repository - Library & Information Centre - University of Thessaly
24/09/2023 22:53:45 EEST - 44.200.101.84

Contents xv

5.6.2 Binomial Tree . 72
5.6.3 QoS Discussion . 74

5.7 The Mathematical Basis of the QoS Metric 75
5.7.1 The QoS Cumulative Frequency Distribution 76
5.7.2 Iso-QoS and Total Energy Consumption 77
5.7.3 Application to Platforms . 77

5.8 Chapter Conclusion . 78

6 Conclusions and Future Work 83
6.1 Summary of Contributions . 83

6.1.1 Dynamic Binary Adaptation on Shared-ISA Architectures 83
6.1.2 Speedup Aware Dynamic Scheduling on Shared-ISA Architectures 84
6.1.3 Performance Characterization on Heterogeneous Datacenter Archi-

tectures . 85
6.2 Future Work . 86

Bibliography 87

Institutional Repository - Library & Information Centre - University of Thessaly
24/09/2023 22:53:45 EEST - 44.200.101.84

Institutional Repository - Library & Information Centre - University of Thessaly
24/09/2023 22:53:45 EEST - 44.200.101.84

List of Figures

1.1 The evolution of Intel processors (Intel Developer Forum 2015) 2

2.1 Overview of the shared-ISA FPGA prototype 10

3.1 Replacing a software emulation routine with an accelerating instruction . . 20
3.2 ACC instruction fault triggers DBT to set up the trampoline to the emulation

routine . 22
3.3 Comparing performance of DBR, DBT periodic migration vs. FAM. The

horizontal axis denotes migration periods for DBR, DBT and migrate-back
timeout values for FAM. 27

3.4 SPDS-DBR and SPDS-DBT vs. FAM for co-executing programs 29

4.1 Execution snapshots motivating thread swapping vs. FAM forced migration 33
4.2 A single ACC instruction triggers FAM, resulting in migration and unneeded

ACC core sharing . 35
4.3 Comparison of real and estimated CPI values 52
4.4 Workload speedup across all HW configurations, using FAM as the reference 54

5.1 Vectorization of the Binomial Tree kernel 65
5.2 Measurement setup using trace data . 69
5.3 The path of the current supply to the CPU, showing power measurement points 70
5.4 CPU power vs. time for the MC kernel . 70
5.5 All-or-nothing pricing vs. stock price update intervals 75
5.6 Cumulative frequency distribution of Facebook and Google stock price

updates for full trading sessions on July 7th and 15th 2014 77
5.7 BT kernel energy consumption scaling (at QoS=80%) of Viridis(16�4�1)

and Intel(2�8�1) . 80

Institutional Repository - Library & Information Centre - University of Thessaly
24/09/2023 22:53:45 EEST - 44.200.101.84

Institutional Repository - Library & Information Centre - University of Thessaly
24/09/2023 22:53:45 EEST - 44.200.101.84

List of Tables

2.1 Possible accelerating instructions . 11

3.1 Benchmarks from SPEC CPU2006 and Rodinia suites 25
3.2 Speedup heterogeneous, multi-program workloads 28

4.1 SPEEDSWAP example . 46
4.2 Co-executing program workloads per hardware configuration 51

5.1 Fastest Sopt profiles for standalone kernel experiments 73
5.2 MC kernel (N=0.5M and QoS=10%) . 78
5.3 BT kernel (N=4000 and QoS=80%) . 78
5.4 BT kernel (N=5000 and QoS=80%) . 79
5.5 BT kernel (N=7000 and QoS=80%) . 79
5.6 BT kernel (N=4000 and QoS=40%) . 79
5.7 BT kernel (N=5000 and QoS=40%) . 80
5.8 BT kernel (N=7000 and QoS=40%) . 80

Institutional Repository - Library & Information Centre - University of Thessaly
24/09/2023 22:53:45 EEST - 44.200.101.84

Institutional Repository - Library & Information Centre - University of Thessaly
24/09/2023 22:53:45 EEST - 44.200.101.84

Chapter 1

Introduction

1.1 Motivation

Computing in recent years observes a fundamental change from the the past. The sustained
increase in computing performance through clock scaling as a result of transistor shrinking
is not possible any more. This effect has been characterized as the power wall [81] and
marks the end of exponential growth of computing performance, characterized empirically
by Dennard scaling and Moore’s law. Although clock frequency does not scale any more,
transistor counts still increase, shifting the focus on multicore and manycore architectures, for
increasing raw performance through hardware parallelism. Core counts are roughly doubling
every two years (Figure 1.1) and multicore architectures are the mainstream in every aspect
of computing, from embedded systems to supercomputers. Moreover, the power wall effect
and the proliferation of battery-limited portable computing revealed the importance of power
consumption as a limiting factor and as an optimization opportunity. Power and energy
consumption are alongside performance important metrics when evaluating a system. The
paradigm shift from unicore to multicore and the rising importance of power consumption
raise new challenges in both hardware and software design to enable sustainable performance
of future computing systems.

Initial designs of multicore architectures typically include replicas of the same core
that share the memory address space through an interconnection network. This design
is referred to as a symmetric multiprocessor system (SMP), where each core presents an
identical interface to the software. Spending the transistor real estate on identical processing
elements favors simplicity but it is hardly the optimal choice regarding performance and
power consumption. Recent research in computing architecture [2, 7, 9, 19, 37, 39, 48, 59, 61,
63, 64, 91] shows that heterogeneous multiprocessing (HMP), which includes architecturally

Institutional Repository - Library & Information Centre - University of Thessaly
24/09/2023 22:53:45 EEST - 44.200.101.84

2 Introduction

Figure 1.1 The evolution of Intel processors (Intel Developer Forum 2015)

different cores (or other processing elements such as DSPs, FPGAs, GPUs and others), that
may not be software compatible, provides multiple advantages over SMP approaches:

• Increased performance, through customized, special-purpose hardware acceleration

• Better power efficiency, by including cores with different power-performance design
points

• Larger core counts for increased hardware parallelism, by combining larger (in terms
of area), more complex cores with smaller, simpler ones

These improved performance and power efficiency advantages of heterogeneous architectures
have rendered them ubiquitous in all kinds of computing, from mobile devices, such as smart-
phones and tablets, to large-scale datacenters and supercomputers. However, the problem of
how to efficiently expose heterogeneity to programs and how to map heterogeneous resources
to execution for performance and energy-efficiency is challenging.

Existing state-of-the-art heterogeneous multicores are divided into two categories in
relation to the interface they present to software: single-ISA, where all cores implements
the same ISA, for example the ARM big.LITTLE [38] architecture; and disjoint-ISA, where
cores implement different ISAs, such as CPU+GPU platforms, for example AMD Fusion
APUs [15] and NVIDIA Tegra [85] MPSoCs, and the STHORM platform [78]. Single-ISA
heterogeneous architectures preserve software compatibility, however, this limits hetero-
geneity only to the micro-architecture and precludes any functional acceleration possible

Institutional Repository - Library & Information Centre - University of Thessaly
24/09/2023 22:53:45 EEST - 44.200.101.84

1.1 Motivation 3

through ISA extensions. Disjoint-ISA architectures have high acceleration potential but are
hard to program. Developers need to cope with new software tools and programming mod-
els [1, 66, 88, 107] but most importantly, they need to have an intimate understanding of the
functional heterogeneity among cores. For bridging this gap between software compatibility
and acceleration potential, shared-ISA architectures [33, 64] have been proposed recently. In
these architectures, all cores implement a common, basic set of instructions – the basic ISA –
which preserves software compatibility among them. At the same time, some cores include
functional extensions to accelerate performance-critical operations. These are accessible to
software through ISA extensions. A program compiled to target any accelerating instruction
can run only on the subset of cores which support ISA extensions but this may cause load
imbalance hurting performance. Compiling a program to target the basic ISA means it can
run on any core, without ISA-related core affinities, but it must forgo acceleration. Managing
programmability for shared-ISA heterogeneity presents two challenges. First, it should be
transparent to the programmer to avoid replicating the programmability issues of disjoint-ISA
architectures and second, it must avoid setting ISA-related program-to-core affinities that
may degrade performance.

Contribution: In this thesis we present new techniques for transparently executing
programs on shared-ISA architectures, regardless of the ISA targeted during compilation, and
without setting any core affinities. It employs a fast, dynamic binary adaptation method which
employs lightweight instruction rewriting and translation techniques. Our novel techniques
re-target binary code for the host core ISA with minimal overhead by leveraging the partial
binary compatibility offered by the common, basic ISA of shared-ISA architectures. Dynamic
binary adaptation is implemented as an OS service, invoked on-demand by the system
scheduler. Most importantly, our method does not impose any restrictions on scheduling, thus
enabling the implementation of optimized, dynamic scheduling policies for heterogeneous
aware resource allocation which we discuss next.

Prior work [5, 10, 32, 54, 55, 60, 62, 96, 97, 97, 98, 100, 104, 106, 111] on optimizing
the performance and power efficiency of execution on heterogeneous architectures, regardless
of their ISA interface, has shown that the mapping of heterogeneous resources to programs is
crucial. Specifically, heterogeneous resources should be allocated to those programs which
make the most of their acceleration potential. In disjoint-ISA systems, the programmer is
burdened to map heterogeneous resources explicitly to programs for optimizing execution.
In single-ISA systems, heterogeneity and the associated acceleration is ISA-neutral, and for
optimizing the mapping of programs to heterogeneous resources it is sufficient to observe
program-level characteristics, such as compute and memory intensiveness or sequential and
parallel execution phases. By contrast, heterogeneity of shared-ISA architectures is exposed

Institutional Repository - Library & Information Centre - University of Thessaly
24/09/2023 22:53:45 EEST - 44.200.101.84

4 Introduction

at the instruction level, by the inclusion of accelerating ISA extensions on certain cores.
Identifying and quantifying acceleration potential of programs at the instruction level is an
open problem. Moreover, the fact that acceleration depends on extended instruction execution
renders the dynamic mapping of programs to heterogeneous cores necessary, dependent on
the control flow within programs.

Contribution: In this thesis we present a novel, dynamic scheduling solution for shared-
ISA architectures with the purpose of maximizing the speedup of co-executing programs.
Our solution combines a new, cross-core profiling technique to quantify program speedup
from accelerating instructions at runtime, and a heuristic search algorithm which exploits this
information to find program-to-core mappings that maximize workload speedup. Notably,
the scheduler leverages dynamic binary adaptation to perform on-demand, cross-core migra-
tions for mapping dynamically programs to cores. Next we discuss on resource allocation
for performance and energy efficiency at a larger scale, in the context of heterogeneous
datacenters.

Datacenters are essential infrastructures for providing large-scale data analytic services.
However, they carry an immensely high total cost of ownership and energy footprint. The
unsustainable growth in power consumption of datacenters [22, 35, 94] poses a major
challenge. Moreover, datacenters are notoriously wasteful, often using as little as 10% of the
supplied power for actual data storage and processing, while exhibiting less than 20% node
utilization [43, 58]. Leveraging a setup of heterogeneous servers in datacenter architectures
is key to improve their utilization and energy efficiency through resource allocation for
computation and energy proportionality [27, 28, 69, 95, 108]. In fact, datacenters are
inherently heterogeneous, because during their lifetime they include different generations
of servers [43, 75, 76]. Moreover, recent research has shown that the addition of micro-
servers [14, 90] and accelerators [21, 65] to the datacenter ecosystem has significant potential
to further improve performance and energy efficiency. Resource allocation in a diverse,
heterogeneous datacenter ecosystem for meeting Quality of Service (QoS) goals set by
online data analytics while promoting energy efficiency is a difficult problem. In particular,
quantifying the performance and energy efficiency across heterogeneous servers calls for
new methodologies to draw insight driven by application requirements.

Contribution: In this thesis, we present a rigorous methodology and define new metrics
for assessing the performance and energy efficiency across heterogeneous servers. Our
methodology enables resource provisioning and allocation on heterogeneous datacenters for
energy efficiency while meeting service-driven performance targets of online data analytics.
Central to our methodology are iso-comparisons using iso-QoS and iso-energy metrics to
accurately and fairly quantify both performance and energy efficiency across heterogeneous

Institutional Repository - Library & Information Centre - University of Thessaly
24/09/2023 22:53:45 EEST - 44.200.101.84

1.2 Synopsis 5

servers, despite their architectural differences. Characterization of servers using our iso-
comparison method enables dynamic resource allocators to leverage heterogeneous servers
for computation and energy proportional execution of workloads.

1.2 Synopsis

This thesis presents novel methodologies, tools and mechanisms to quantify and optimize the
efficiency of execution on emerging heterogeneous systems.

In Chapter 2 we present an overview of heterogeneous architectures both in the context
of processor multicores, including the state-of-the-art shared-ISA ones, and heterogeneous
datacenters. We discuss open problems and optimization opportunities from heterogeneity
and describe the hardware and software platforms used for experimentation and evaluation.

Chapter 3 describes our novel solution to address transparent execution despite binary
incompatibility on shared-ISA heterogeneous architectures. We present a dynamic binary
adaptation method which enables any binary to execute on any core in the system, without
needing programmer involvement or re-compilation. Moreover, our dynamic binary adapta-
tion makes possible dynamic, cross-core migrations at any point in time, to overcome the
load imbalance issues of existing, state-of-the-art fault-and-migrate techniques. Evaluating
our dynamic binary methods shows that they are indeed fast and have minimal overhead that
can be readily recovered through informed dynamic scheduling.

Chapter 4 introduces a novel scheduling framework that we developed for optimizing
the performance of co-executing programs on shared-ISA architectures. The framework
implements a new profiling method at runtime for assessing a thread’s acceleration potential
and predicting its cross-core speedup. We present a novel heuristic algorithm for scheduling
which maximizes workload speedup by periodically adjusting thread-to-core assignments, us-
ing cross-core migrations. Results comparing our scheduler to the state-of-the-art scheduling
based on fault-and-migrate scheduling show that it results in significantly lower execution
times across multi-program workloads and different configurations of the hardware platform.

Chapter 5 discusses heterogeneous datacenters and presents the problem of fairly as-
sessing performance and energy efficiency across heterogeneous servers. We present a new
iso-comparison methodology using new metrics in the context of online analytics services
to evaluate a heterogeneous setup using micro-servers, standard Intel Xeon servers and
Intel Xeon Phi manycore platforms. Moreover, we apply our methodology to thoroughly
investigate platform specific optimizations, such as vectorization, and alternate hardware con-
figurations impacting performance and power consumption by varying resource allocation.

Institutional Repository - Library & Information Centre - University of Thessaly
24/09/2023 22:53:45 EEST - 44.200.101.84

6 Introduction

Chapter 6 concludes the thesis, presenting a summary of the contributions and main
findings, as well as future work directions.

Institutional Repository - Library & Information Centre - University of Thessaly
24/09/2023 22:53:45 EEST - 44.200.101.84

Chapter 2

Background on Heterogeneous
Architectures

2.1 Disjoint-ISA Architectures

Disjoint-ISA architectures have high performance potential by combining cores with vastly
different design characteristics for acceleration and power efficiency. Examples of these
architectures include CPU+GPU platforms [25, 83], such as Nvidia Tegra family MPSoCs
and AMD Fusion APUs, the Cell BE [40], the STHORM platform [78] and other proposals
from the research community [17, 18, 29, 42]. The flexibility to not conform to a single ISA
allows those designs to provide a high potential for both performance and power optimization
at the cost of programmability.

Developers need to learn new tools and programming model to cope with binary in-
compatibility and architectural intricacies. Most importantly, developers need to have an
intimate and deep understanding of the functional heterogeneity and low-level details of the
architectures involved. These programmability issues render disjoint-ISA architectures hard
to program and make difficult to extract their full acceleration potential. Besides programma-
bility issues, mapping efficiently computation on those architectures is challenging. It is left
to the developer to map computation parts to processing elements and again this requires
deep knowledge of the different architectures to maximize acceleration or energy efficiency
or a combination of both.

Institutional Repository - Library & Information Centre - University of Thessaly
24/09/2023 22:53:45 EEST - 44.200.101.84

8 Background on Heterogeneous Architectures

2.2 Single-ISA architectures

Single-ISA architectures have a uniform ISA, thus all cores are binary compatible and
executables can run unmodified on any core in the system. However, this uniform ISA
restriction limits heterogeneity in traits that must be transparent to software, in the micro-
architecture of cores. State-of-the-art research has proposed numerous types of single-ISA
heterogeneity architectures: combining in-order and out-of-order cores [106], different
clock scaling domains [8, 60, 62] and lately there is the industrial proposition of ARM’s
big.LITTLE architecture [38].

In these proposed single-ISA architectures, there are two types of cores: big (as in area),
high clocked, power hungry cores and small, low clocked, power efficient ones. We name
the former collectively as fast cores to emphasize performance while the latter are deemed
as slow cores. Moreover, these designs target to have few fast cores but numerous slow
cores to comply with a fixed power or area budget. The rationale is to sacrifice single-core
performance for a larger core count, nonetheless considering that spending extra resources
to increase single-core performance has diminishing returns. In summary, such a design
exhibits the following characteristics:

• fast cores are fewer, power hungry but offer better single thread performance,

• slow cores are numerous and power efficient, hence they boost parallelism

Optimizing execution on these architectures is based on the concept of efficiency special-
ization [97, 98], as in running a thread to the core it executes most efficiently. Efficiency
can be defined in terms of performance, power or energy consumption or a combination of
these metrics. In this context of single-ISA designs, efficiency specialization translates into
discovering compute-intensive or memory-intensive phases during execution and whether
there is thread-level parallelism [10, 32, 57, 62, 70, 73, 96, 98–100, 106, 111]. Specifically,
compute-intensive execution phases run more efficiently on fast cores. This is because they
can reap the performance benefits of the extra hardware resources of these cores, justify-
ing the increased power consumption. By contrast, memory bound phases execute more
efficiently on slow cores since they have limited computational needs. Executing them on
slow cores is sufficient for their performance needs, while saving energy at the same time.
Regarding thread-level parallelism, sequential phases should execute on fast cores, to avoid
the bottleneck, while parallel phases benefit from executing on the multitude of slow cores
to make use of hardware parallelism. Overall, while single-ISA heterogeneous multicores
provide more customization possibilities than homogeneous architectures, they have limited
acceleration and power reduction potential. The fact that heterogeneity is restricted to ISA

Institutional Repository - Library & Information Centre - University of Thessaly
24/09/2023 22:53:45 EEST - 44.200.101.84

2.3 Shared-ISA Architectures 9

transparent features precludes any functional heterogeneity which has high acceleration
potential.

2.3 Shared-ISA Architectures

Recently proposed shared-ISA (also known as overlapping-ISA) architectures [33, 64] bridge
the dichotomy between disjoint-ISA and single-ISA multicores. In shared-ISA architectures
all cores provide a common, basic ISA, which preserves binary compatibility for programma-
bility purposes. At the same time, certain cores provide functional specialization, which is
visible to software through ISA extensions. Software can exploit the acceleration potential of
these functionally enhanced cores by specializing code to include these accelerating extension
instructions.

Shared-ISA architectures attempt to combine programmability with the performance
potential of functional heterogeneity. The basic ISA typically includes control flow instruc-
tions, memory operations and simple arithmetic instructions which are the bulk of common
operations across binaries. Selected, functionally enhanced cores implement ISA extensions,
which accelerate performance-critical operations, such as floating point computations, cryp-
tographic extensions and SIMD operations. However, if a binary is compiled to target any
accelerating instruction, it is not compatible to those cores which lack acceleration support.
On the other hand, binaries compiled to target the basic ISA can execute on any core but
without acceleration. This partial, instruction-level heterogeneity combined with the high
acceleration potential of functional heterogeneity presents unique challenges and possibilities
from the efficient use of shared-ISA architectures.

2.3.1 Experiment Platform

Hardware Prototype

Previously proposed approaches [33, 64] implement ISA heterogeneity by disabling hard-
ware accelerating components, specifically the FPU of selected cores. We follow a similar
approach by creating a shared-ISA multicore architecture on real hardware, an FPGA pro-
totype that consists of ISA heterogeneous RISC Microblaze cores. This platform choice
is motivated by the FPGA’s extensibility for architectural exploration and its ability for
hardware reconfiguration. Each Microblaze core implements a 32-bit RISC ISA which is
extensible with accelerating instructions, by optionally instantiating additional hardware
units. In this prototype functional extensions include FPUs and fast integer multiplier/divider

Institutional Repository - Library & Information Centre - University of Thessaly
24/09/2023 22:53:45 EEST - 44.200.101.84

10 Background on Heterogeneous Architectures

Figure 2.1 Overview of the shared-ISA FPGA prototype

units for accelerating numerical computations. Table 2.1 lists the accelerating instructions
pertaining to those units, along with their cycle latency for fully pipelined execution.

Other than ISA heterogeneity, cores have the same micro-architectural characteristics: 100
MHz clock frequency, single issue in-order 5-stage pipeline, separate 64KB L1 instruction
and data caches, a 512-entry branch target cache for branch prediction, and a dedicated
connection to the external memory controller. Figure 2.1 shows a schematic overview of
the shared-ISA multicore architecture of our platform, including a basic version of the
Microblaze and an accelerating one.

Software Platform

The hardware runs the Xilkernel operating system [110] with extensions that we introduced
to enable multi-processing support. The Xilkernel OS is an open-source operating system
developed by Xilinx that is partly POSIX compliant, including a POSIX thread interface for
thread creation and management. The platform has no hardware support for cache coherence
but our multi-processing extensions enforce cache consistency only for shared OS data,
through software-controlled cache invalidations. At the application level, cache consistency
should be enforced in the application itself, through explicit calls to cache flushing and
invalidation routines whenever there are shared data.

Institutional Repository - Library & Information Centre - University of Thessaly
24/09/2023 22:53:45 EEST - 44.200.101.84

2.4 Heterogeneous Datacenter Architectures 11

Table 2.1 Possible accelerating instructions

Instruction Function Hardware unit Clock cycles

mul INT multiplication Integer Multiplier 1

idiv signed INT division Integer Divider 32

idivu unsigned INT division Integer Divider 32

fadd FP addition FPU 4

frsub FP subtraction FPU 4

fmul FP multiplication FPU 4

fdiv FP division FPU 4

fcmp FP comparison FPU 4

2.4 Heterogeneous Datacenter Architectures

Interestingly, datacenter installations are inherently heterogeneous as they are provisioned
over a 15-year period [43], during which servers are gradually installed and replaced. This
means that servers of different architecture generations co-exist in datacenters. Exploiting
this inherent heterogeneity for resource allocation has shown [75, 76] to improve utilization
and energy efficiency on datacenters. However, standard servers are by design high-power
machines and there is need to revisit the datacenter architecture [58] to sustain the growth of
the energy consumption.

Micro-servers have been recently proposed [14, 52, 53, 71, 90, 103] as a low-power
alternative to standard servers. For reducing their power consumption, micro-servers follow
design methodologies of embedded systems, replacing typical server-grade processors with
low-power SoCs, similar to the those found on smartphones and tablets. Moreover, they are
designed for a small form factor to increase compute density by bundling together multiple
compute nodes in a rack blade.

Adding more to the heterogeneity, accelerators, including FPGAs, GPUs and Xeon
Phi coprocessors, are deployed within datacenters. Besides using accelerators as offload
coprocessors of a specific node, recent research work [50, 89, 109] has shown that breaking
away from this model and instead allowing multiple nodes to access those accelerators as
distinct computing elements improves utilization and power efficiency through sharing and
load distribution.

Heterogeneous datacenter architectures promise sustained growth by including servers
or computational elements with different performance and power efficiency design points.
These architectures improve energy efficiency and performance of installations through

Institutional Repository - Library & Information Centre - University of Thessaly
24/09/2023 22:53:45 EEST - 44.200.101.84

12 Background on Heterogeneous Architectures

hardware specialization [23, 27, 41] and efficient resource allocation to workloads. That
is, allocate those heterogeneous resources which are the most energy-efficient and at the
same time achieve the computational and QoS requirements of applications and services.
However, quantifying the performance and energy efficiency across heterogeneous servers is
necessary to guide resource allocation for specialization. As our experiment platforms to
evaluate heterogeneity in the datacenter, we make use of standard Intel Xeon SandyBridge
servers, ARM-based microservers and Xeon Phi coprocessors as a manycore platform.

Institutional Repository - Library & Information Centre - University of Thessaly
24/09/2023 22:53:45 EEST - 44.200.101.84

Chapter 3

Dynamic Binary Adaptation on
Shared-ISA Architectures

Shared-ISA multicore architectures expose their functional heterogeneity to software via
accelerating instructions. A program binary compiled to target the basic ISA can execute
on any core but must forgo acceleration. Conversely, binaries targeted for the accelerating
ISA can execute only on accelerating cores and this may lead to over-subscription degrading
performance. Existing state-of-the-art approaches addressing this issue are universal binaries
and the fault-and-migrate technique. However, both may affect adversely performance by
setting core affinities to cope with binary incompatibility although they can be sub-optimal.

In this chapter, we present fast dynamic binary adaptation techniques which can re-target
any binary to the basic or accelerating ISA. Most importantly, it avoids limitations existing in
state-of-the-art techniques and enables on demand, cross-core migration that can be leveraged
from dynamic scheduling policies. We evaluate our techniques on the real hardware, shared-
ISA prototype (discussed in Chapter 2) and show that they have little overhead which is
readily recoverable using a proof-of-concept dynamic scheduler.

3.1 Introduction

On shared-ISA architectures all cores provide a common, basic ISA, which preserves binary
compatibility and improves programmability. At the same time, selected cores provide
functional specialization, which is visible to software through ISA extensions. Software can
exploit the acceleration potential from these acceleration enhanced (ACC) cores, through code
specialization. However, instruction-based asymmetry renders execution non-transparent
at the binary level. Binaries must forgo acceleration and implement only the basic ISA to

Institutional Repository - Library & Information Centre - University of Thessaly
24/09/2023 22:53:45 EEST - 44.200.101.84

14 Dynamic Binary Adaptation on Shared-ISA Architectures

execute on all cores for full system utilization. If binaries include accelerating instructions
they can execute only on ACC cores. Transparent execution is crucial for shared-ISA systems
by avoiding programmability issues but at the same time make use of ISA acceleration when
possible.

The state-of-the-art technique for transparent execution on shared-ISA systems is fault-
and-migrate (FAM) [64, 91]. It assumes binaries implement the ACC ISA but a thread
can execute in any core in the system. If a thread executes an accelerating instruction on
a non-ACC core, FAM forcibly migrates it to an ACC core. FAM moves back a thread
to its originator core after a migrate-back timeout expires, to alleviate congestion on ACC
cores. This approach has severe limitations: (i) FAM forced migration sets dynamically core
affinities on a per-thread basis, precluding any other dynamic scheduling from implementing
global optimization policies, (ii) it may over-subscribe ACC cores with threads and limit
acceleration of those threads due to time-sharing the ACC core, (iii) FAM may suffer from an
excessive number of unavoidable thread migrations and the associated loss of performance.
Most importantly, FAM forced migration prohibits any dynamic scheduling approach to
improve performance or power consumption through efficient utilization of heterogeneous
resources.

In this chapter we present two different techniques to support transparent execution with
acceleration while enabling flexible, cross-core migration in shared-ISA systems. Through
our techniques, a binary can execute on any core in the system, using accelerating instructions
when possible. Also, any thread can migrate to any core type, at any point in time allowing
dynamic schedulers to leverage flexible migration for implementing global optimizing
policies. Specifically our contributions are:

• A lightweight Dynamic Binary Rewriting (DBR) method which rewrites binary code
implemented in the basic ISA depending on the host core accelerating instruction
extensions. DBR dynamically discovers code execution paths and replaces basic
instructions with accelerating instructions when executing on an ACC core or reverses
previous code changes to execute on a Basic core.

• A fast Dynamic Binary Translation (DBT) technique which implements fault-and-
rewrite: when an accelerating instruction execution faults, DBT sets up a trampoline
to an emulation routine translating this instruction to the basic ISA. DBT reverts
trampoline jumps to the original accelerating instruction for native execution on an
ACC core.

• We evaluate our techniques against FAM on the real hardware prototype of a shared-
ISA MPSoC, discussed on Chapter 2, using single-program workloads from the SPEC

Institutional Repository - Library & Information Centre - University of Thessaly
24/09/2023 22:53:45 EEST - 44.200.101.84

3.2 Previous State-of-the-art 15

CPU2006 [45] and Rodinia [20] suites. We measure the performance of DBR and
DBT by triggering migration periodically between a Basic and an ACC core. Periodic
migration under DBR has an average slowdown of about 40% while DBT average
slowdown is around 10% compared to FAM opportunistic acceleration scheduling.
This slowdown can be readily recovered through informed dynamic scheduling instead
of arbitrary periodic migration.

• We also show results for a Speedup Proportional Dynamic Scheduler (SPDS) enabled
by flexible migration provided from our binary-level techniques. SPDS dynamically
migrates threads between Basic and ACC cores to accelerate threads in proportion
to their speedup. We compare it against FAM scheduling by running heterogeneous,
multi-program workloads on a hexa-core MPSoC consisting of 2 ACC and 4 Basic
cores. SPDS, employing our binary-level techniques, out-performs FAM scheduling
by as much as 50%.

The rest of this chapter is organized as follows: Section 3.2 briefly discusses fault-
and-migrate and other transparent executions schemes. Section 3.3 presents our dynamic
binary adaptation methods. Section 3.4 presents the evaluation of our work, including the
experiment methodology and implementation details. Section 3.5 concludes the chapter.

3.2 Previous State-of-the-art

3.2.1 Universal Binaries

Universal (also known as “fat”) binaries bundle together different versions of binary images
for every ISA available on a heterogeneous multicore. At deployment time, the scheduler
assigns a core (usually the least loaded one) to execute the binary and selects the binary image
compatible with this core. However, universal binaries by design lack support for thread
migration: code deployed on a specific ISA must execute only on cores with the same ISA.
Cross-architectural migration between distinct ISA cores requires dynamic transformation of
the binary code itself and the runtime state, such as the call stack. Such migrations, however,
can be too costly or even infeasible, if there is not enough state information to resume a
thread on a core with a different ISA [29].

3.2.2 Fault-and-migrate

Fault-and-migrate (FAM) [64, 92] has been proposed as a method for transparent execution
with opportunistic acceleration on shared-ISA architectures. FAM assumes code is statically

Institutional Repository - Library & Information Centre - University of Thessaly
24/09/2023 22:53:45 EEST - 44.200.101.84

16 Dynamic Binary Adaptation on Shared-ISA Architectures

compiled to target the ACC ISA for performance. However, if a thread executes an ACC
instruction on a Basic core, FAM forcibly migrates this thread to an ACC core. FAM induced
migrations can cause ACC cores to become over-subscribed and system performance may
suffer from load imbalance. Furthermore, the scheduler is bound by forced migrations and
has no option to select which thread(s) to accelerate using ACC instructions, when such a
choice would affect application or overall system performance. Contrary to FAM, our binary
adaptation techniques transform a binary to execute transparently on any core in the system,
without forcing migration or any other disruption in scheduling. This enables the scheduler to
implement dynamic scheduling policies through on-demand, cross-core thread migrations as
is the case for scheduling policies proposed in later chapters. We have extensively compared
our work with FAM to show that flexible migration, provided by our binary-level techniques,
enables dynamic scheduling which out-performs FAM’s forced migration scheduling.

3.2.3 Dynamic Binary Rewriters

Existing dynamic binary rewriters, such as DynamoRIO [16] and Pin [72], execute a binary
in managed mode. They need to manage software code caches to enable code profiling,
security checking and complex optimizations. This approach permits elaborate code analysis
and fine-grain binary instrumentation but comes with significant overhead. Instead, DBR
and DBT are designed to be lightweight and fast, aiming for as much unobstructed execution
as possible to be efficient. Also, traditional rewriters assume that code is immovable, which
allows them to do time consuming optimizations, whereas our binary-level techniques target
flexible, cross-core migration.

3.2.4 Discussion

The fundamental difference of our binary-level adaptation techniques compared to these
methods is that they enable flexible migration which can be leveraged by dynamic schedulers
to implement global optimizing policies. By contrast, FAM enforces thread migrations by the
necessity to execute accelerating instructions only on ACC cores. FAM implicitly assumes
that forced migration will opportunistically accelerate execution to offset the migration cost.
However, this approach disrupts load balancing by oversubscribing ACC cores and hinders
any global dynamic scheduling due to forcing core affinities. Universal binaries on the other
hand forbid thread migration and enforce static, application-level scheduling decisions that
may compromise system performance during the execution of multi-program workloads.

With our binary-level techniques, a binary can execute transparently to any core in the
system, without forcing migration or any other disruption in scheduling. Also DBR and DBT

Institutional Repository - Library & Information Centre - University of Thessaly
24/09/2023 22:53:45 EEST - 44.200.101.84

3.3 Dynamic Binary Adaptation Techniques 17

differ from other frameworks that aim at binary portability, including interpreted execution,
virtual machines and heavyweight binary rewriters, in that they do not necessitate continuous
execution monitoring, costly binary analysis or prior code instrumentation. In particular, DBR
operates on stripped binaries, and discovers live execution paths and rewriting opportunities
for accelerating instructions only once, storing metadata to enable rewriting on demand.
Likewise, DBT needs no binary instrumentation and incurs significantly lower overhead
because it is invoked on demand and rewrites only in the scope of a single faulted instruction.

3.3 Dynamic Binary Adaptation Techniques

In this section we present two novel binary adaptation techniques, namely Dynamic Binary
Rewriting (DBR) and Dynamic Binary Translation (DBT) for shared-ISA systems. Both tech-
niques operate on stripped binaries [44, 93], that is binaries without any prior instrumentation
or debugging information.

Those techniques differ on the binary input they can operate on and the adaptation
methods each one employs. DBR operates on binaries statically targeted for the basic ISA. It
discovers dynamically live code paths and employs peephole optimization to rewrite parts
of the binary. DBR rewrites original binary code targeting basic instructions to the ACC
ISA, if the executor thread sets to run on an ACC core. DBR can revert to the original basic
instructions, if the thread sets to run on a Basic core.

By contrast, DBT operates on binaries targeting the ACC ISA. It employs a fault-and-
rewrite techniques: when the execution of an ACC instruction triggers a fault on a Basic core,
the instruction is replaced by a call to a translating routine, implementing the functionality
of this particular ACC instruction in the basic ISA. DBT also can revert calls to translation
routines back to the original instructions, when the thread sets to execute on an ACC core.

Both our techniques are designed to be lightweight. They execute on demand and strive
for native execution. DBR and DBT are complementary in the way that each one operates
on binaries produced on different static compilation targets. The combination of them can
adapt any binary, regardless of the static compilation target ISA, to the ISA capabilities of
the core which hosts the thread executing the binary code. We present and benchmark our
binary adaptation techniques separately, for clarity reasons and to highlight their individual
advantages and limitations.

Institutional Repository - Library & Information Centre - University of Thessaly
24/09/2023 22:53:45 EEST - 44.200.101.84

18 Dynamic Binary Adaptation on Shared-ISA Architectures

3.3.1 Dynamic Binary Rewriting

Overview

Dynamic Binary Rewriting (DBR) adapts code compiled statically for targeting basic instruc-
tions. It specializes this code with accelerating instructions depending on the host core ISA.
DBR runs as an OS service which is aware of the host core ISA type and operates transpar-
ently to application-level software. The OS bootstraps DBR operation by executing its entry
routine when a new thread enters the system. This initiates binary analysis to discover live
binary code for the thread. After binary code analysis, DBR rewrites accelerating instruction
in the discovered code, provided the host core implements the ACC ISA. The OS invokes
again DBR if a thread migrates to another core, due to scheduling activity, to adapt code to
the target core ISA.

On a brief overview of DBR operation, it dynamically discovers execution flow paths
by instrumenting branch instructions. Peephole analysis on the discovered basic blocks
identifies possible rewriting targets. Provided the host core implements the ACC ISA, DBR
patches binary code, replacing basic instructions with accelerating instructions. In case
a thread migrates to a Basic core from an ACC core, the OS invokes DBR to revert any
changes in the rewritten code the thread executes to the original basic instructions. DBR
enables unrestricted cross-core migration at any point in time, with accelerated execution
when the host core implements the ACC ISA. Moreover, it is applicable on stripped binaries
without prior instrumentation or debugging information. By design, DBR is lightweight by
minimizing time spent during managed execution and aiming for native execution whenever
possible.

Dynamic Control Flow Discovery

The OS bootstraps DBR control flow analysis by providing the thread’s start function, passed
on through a thread creation pthread_create call. DBR dynamically discovers the execution
path by instrumenting control flow instructions to discover basic blocks. Information on
the discovered basic blocks is stored in a list, within the OS thread descriptor structure,
accessible to later DBR invocations to avoid analyzing already discovered blocks. Next, we
expand in more detail and discuss the handling of indirect branches.

During analysis, DBR disassembles the basic block to find those branch instructions
which exit out of the block. The control flow analysis resolves the target address of the
branch and creates a new basic block datum, inserting it in the thread list. Note that the target
address of a direct branch can be resolved statically during analysis. However this is not
true for indirect branches which need special handling, discussed later. The datum of the

Institutional Repository - Library & Information Centre - University of Thessaly
24/09/2023 22:53:45 EEST - 44.200.101.84

3.3 Dynamic Binary Adaptation Techniques 19

new block discovered includes the block’s starting address, which is the branch target, and
the original instruction at this address. DBR replaces this instruction (the first instruction
of the target basic block) with a software break pointing to an entry routine invoking DBR
discovery and resumes native execution. If the break does execute, this entry routine saves
thread context (to restore it upon resuming native execution), replaces the break with the
original instruction and invokes DBR control flow analysis to repeat the basic block discovery
process. Control flow analysis does not set breaks for branches targeting code inside already
discovered basic blocks, since they have been already examined. By using the software break
mechanism, DBR discovers only live, executing code to save analysis overhead. For example,
this applies to conditional branches which may or may not be taken, pruning possibly large
code paths.

Indirect branches Although the target address of direct branches can be calculated
statically, indirect branch targets can be only resolved at runtime. When control flow
analysis encounters an indirect branch instruction, DBR replaces the branch instruction with
a software break to a special handler routine and inserts a helper basic block datum to save it.
When the software break for this indirect branch executes, DBR resolves the actual target by
consulting the saved thread context. Indirect branches use registers for addressing and the
thread context contains the actual register state before the branch’s execution. DBR proceeds
as with direct branch targets, inserting a new basic block datum for the target and replacing
the target address instruction with a software break for invoking DBR discovery. Indirect
branch analysis is commonly a significant source of overhead for binary instrumentation
frameworks [49]. For indirect branch handling, each execution of an indirect branch would
need to break into DBR which may add considerable overhead to execution. However,
indirect branches have good target locality [30]. Most of the time DBR resolves the same
target. DBR mitigates indirect branch analysis overhead by following a sampling approach
for processing indirect branches. Immediately after the branch target is resolved, DBR
restores the original indirect branch instruction, replacing the software break instruction.
At each scheduling interval, the OS invokes DBR to reset indirect branch instructions to
software breaks for re-probing target addresses if those branches are still live. In other
words, indirect branches are sampled once every scheduling interval. This sampling strategy
allows hotspot code targeted by indirect branches to be discovered without the overhead of
continuous analysis.

Binary Rewriting

At the same time with execution path discovery, DBR identifies rewriting targets using
peephole analysis techniques on the disassembled code. Peephole analysis identifies rewriting

Institutional Repository - Library & Information Centre - University of Thessaly
24/09/2023 22:53:45 EEST - 44.200.101.84

20 Dynamic Binary Adaptation on Shared-ISA Architectures

1 ...
2 imm 0 xc000
3 brlid r15 , divsi3
4 addik r5 , r5 , 6
5 ...

(a) Original code

...
nop
addik r5 , r5 , 6
idiv r3 , r6 , r5
...

(b) Patching an accelerating integer di-
vision instruction

Figure 3.1 Replacing a software emulation routine with an accelerating instruction

targets, that is instruction sequences replaceable by equivalent accelerating instructions. The
rewriting targets are saved in a list within the OS thread descriptor for future reference.
The rewriting list grows with more rewriting targets as new basic blocks are discovered
and analyzed. In the current implementation, DBR peephole analysis identifies instruction
sequences containing calls to routines that emulate ACC instructions in the basic ISA.
Provided the host core implements the ACC ISA, DBR patches the binary code, replacing
the rewriting targets with the accelerating instructions. Note that DBR is aware of the ABI
conventions for routine calls, and uses those conventions to setup the registers operands for
patching in the accelerating instructions.

If a thread migrates to a different core type, the OS invokes DBR before completing
migration to adapt the code section of the thread. DBR will apply or undo patches on
identified rewriting targets, depending on the target core type. If a thread running on an
ACC core migrates to a basic core, DBR reads the rewriting list and undoes changes in the
binary of the thread’s code section. Conversely, if a thread migrates from a basic core to an
ACC core, DBR patches the code with accelerating instructions for the discovered rewriting
targets.

Rewriting happens in-place, on the application binary code section itself. DBR may need
to remove or reorder instructions, and may amend the machine state because of rewriting.
Figure 3.1 shows an indicative example. A routine call implementing integer division using
basic instructions can be replaced with an accelerating idiv instruction in the ACC ISA. The
call is implemented as a delay-slotted, branch-and-link instruction, preceded by an imm
instruction for extending the branch operand address. DBR writes a nop in place of the
unused imm instruction. Furthermore, it swaps places between the patched, accelerating idiv
instruction and the instruction in the delay slot to preserve execution order.

Following the same example, DBR needs to update the thread’s machine state due to
rewriting. Let a thread execute the rewritten code snippet in Figure 3.1(b) on an ACC core.
If the scheduler sets this thread to migrate to a basic core, DBR has to undo the accelerating

Institutional Repository - Library & Information Centre - University of Thessaly
24/09/2023 22:53:45 EEST - 44.200.101.84

3.3 Dynamic Binary Adaptation Techniques 21

instruction patch and possibly amend the context-switch resume register (CSRR). The CSRR
points to the application code address saved before entering to the OS context. This is the
address the thread will resume execution at the user-level context, after migration. If CSRR
points to the instruction at line (3), DBR will move the CSRR to the preceding instruction at
line (2) to correctly resume the restored routine call. In a more challenging case, if CSRR
points to the previously patched accelerating instruction at line (4), the originally delay-
slotted instruction has been already executed. Thus it is not possible for DBR to backtrack
the CSRR in the original code to ensure correct execution after migration. DBR resolves this
case by executing the accelerating instruction in its own context, updating the thread machine
context as if the instruction has executed normally. CSRR is set to point to the subsequent
instruction at which the thread resumes after migration completes. DBR detects such cases
and performs any necessary amendments.

3.3.2 Dynamic Binary Translation

Dynamic Binary Translation (DBT) enables transparent execution and flexible migration,
operating on binary code which has been statically compiled for the ACC ISA. DBT is
implemented as an OS service too, being transparent to the application layer. DBT replaces
ACC instructions with equivalent, lightweight emulation routines, or vice versa. DBT is
triggered either when a thread executes an ACC instruction on a Basic core through a fault
handling mechanism, or by a scheduling decision to migrate a thread from a basic core to an
ACC core, for policy reasons. In the former case, DBT replaces the faulted ACC instruction
with a trampoline to an equivalent emulation routine implemented with basic instructions. In
the latter case, DBT restores any trampolines set previously to the original ACC instructions
for accelerated execution on the ACC core.

DBT Operation

In this section we discuss in detail the internal operation of DBT. Note that ACC instructions
execute at full speed, without DBT intervening, when a thread executes on an ACC core.
However, DBT needs to adapt the binary targeting the ACC ISA when a thread executes the
code section an a basic core. Figure 3.2 depicts DBT operation triggered by an instruction
fault. In more detail, when a thread executes an ACC instruction on a basic core, an illegal
instruction exception triggers the OS exception handler which has been extended to invoke
the DBT management routine. The DBT management routine follows a series of steps to
handle the fault and adapt the binary. Firstly, DBT sets up an emulation handler for the
faulted ACC instruction which translates this instruction to an equivalent implementation in

Institutional Repository - Library & Information Centre - University of Thessaly
24/09/2023 22:53:45 EEST - 44.200.101.84

22 Dynamic Binary Adaptation on Shared-ISA Architectures

Figure 3.2 ACC instruction fault triggers DBT to set up the trampoline to the emulation
routine

Institutional Repository - Library & Information Centre - University of Thessaly
24/09/2023 22:53:45 EEST - 44.200.101.84

3.4 Evaluation and Results 23

the basic ISA. Secondly, it patches the faulting address storing the ACC instruction with a
trampoline jump to the emulation handler. Specifically, the emulation handler code performs
the following sequence of operations:

(1) saves part of the thread execution context to avoid altering it when emulating

(2) sets up the call to the emulation routine, loading registers with input

(3) calls the emulation routine which is functionally equivalent to the ACC instruction

(4) stores back emulation results, saving them to output registers

(5) restores the unmodified execution context and finally,

(6) jumps back to the instruction following the trampoline branch.

Finally, after setting the emulation handling, DBT switches control back to the application
to resume at the faulted address where the trampoline has been written. Thread execution
resumes and jumps for the first time to the emulation handler code. Subsequent executions
of the rewritten instruction address take the trampoline jump to emulation, without DBT
intervening.

Moreover, DBT stores information on the emulation handlers and faulted instructions In
more details, DBT stores a data triplet containing the faulted address, the binary encoding of
the faulted instruction and the emulation handler’s address. This triplet is inserted in a per-
thread rewriting list, saved within the OS thread descriptor. If a thread, which has undergone
DBT rewriting previously, migrates to an ACC core, the OS invokes DBT which reads the
thread’s rewriting list and replaces trampoline jumps with the original ACC instructions for
accelerated execution after migration.

3.4 Evaluation and Results

3.4.1 Implementation Details

We extend the OS to implement DBR and DBT as system-level services transparent to the
application level. The OS bootstraps DBR with a thread’s start routine to perform dynamic
binary analysis and instruction patching. On thread migration to a different ISA core, the OS
invokes DBR to specialize code for the target core. DBR patches accelerating instructions
if the target core implements the ACC ISA, or reverts previous patches, restoring basic
instructions if the target is a basic core. DBR stores a total of 36 bytes of metadata per

Institutional Repository - Library & Information Centre - University of Thessaly
24/09/2023 22:53:45 EEST - 44.200.101.84

24 Dynamic Binary Adaptation on Shared-ISA Architectures

rewriting target, including the target’s rewriting type, the target instruction address, the
instruction itself, a flag for delay-slotted execution and other data structure variables. Also,
DBR stores 68 bytes per basic-block discovered, including the instruction at the block start
address, the block’s start and end addresses and other data for fast searching in the basic
block list.

Regarding DBT, the OS invokes it when a thread triggers an illegal instruction fault by
executing an unsupported accelerating instruction on a basic core. Also, the OS invokes DBT
again in case a thread migrates from a basic core to an ACC core, to remove any patched
trampoline jumps and restore the original accelerating instructions. DBT stores emulation
handlers in core private, low-latency scratchpad memories which are 32KB in size in our
implementation. Scratchpad memories function as emulation handling buffers with fast,
cache-like access times (1 cycle) and are addressable with a single branch instruction from
the trampoline. DBT saves rewriting management data in per-thread OS descriptors for later
reference, when managing the handler buffer or reverting back rewritten instructions. Specifi-
cally, DBT stores a total of 28 bytes per rewriting target including the target instruction’s
address, the instruction itself, and the emulation handler’s address. On migration from a basic
to an ACC core, DBT flushes any thread emulation handlers resident in the local scratchpad
buffer and restores previously emulated ACC instructions to execute natively at the target
core.

3.4.2 Experiment Methodology

We port benchmarks from the SPEC CPU2006 [45] and Rodinia [20] suites to our platform.
Table 3.1 lists the ported benchmarks. The table shows the executed instruction breakdown
per-benchmark and the end-to-end speedup. End-to-end speedup is computed by taking the
turnaround time of the benchmark executing on a basic core, using only basic instructions,
versus executing it on an ACC core, accelerated by ACC instructions.

We categorize benchmarks based on their end-to-end speedup as High, Medium and
Low speedup. High speedup benchmarks achieve more than 10� acceleration from ACC
instructions. This class includes streamcluster, cfd, and lud, which are computational kernels
from the Rodinia suite making frequent use of FP operations. Medium speedup benchmarks
achieve speedup between 2� and 10�. These are: milc, bfs, namd, srad, backprop, hmmer.
In those benchmarks most of their speedup comes from accelerating integer instructions
and to a lesser extend from infrequent use of FP operations. Interestingly, compiling milc
and namd, which are part of SPEC FP benchmarks, produces a binary which does not use
hardware, single-precision FPU instructions because of double-precision FP arithmetic in
the code. Nevertheless, hardware integer instructions accelerate double-precision compiled

Institutional Repository - Library & Information Centre - University of Thessaly
24/09/2023 22:53:45 EEST - 44.200.101.84

3.4 Evaluation and Results 25

Table 3.1 Benchmarks from SPEC CPU2006 and Rodinia suites

Benchmark Executed instructions breakdown (% of total) SP = T TBasic
T TACC

SP class

mul idiv idivu fadd frsub fmul fdiv fcmp basic

streamcluster 0.11 - - 4.33 4.46 4.47 - 0.13 86.50 24.27 High

cfd 0.29 - - 4.81 0.66 5.34 0.59 0.40 87.91 14.4 High

lud 3.79 - - - 3.78 3.78 0.01 - 88.64 14.25 High

milc 3.53 - - - - - - - 96.47 4.7 Medium

bfs 2.25 - 0.53 - - - - - 97.22 3.9 Medium

namd 3.06 - - - - - - - 96.94 3.59 Medium

srad 1.90 - - 0.09 0.05 0.12 0.04 0.02 97.78 3.4 Medium

backprop 0.55 - - 0.16 - 0.17 - - 99.12 2.63 Medium

hmmer 0.62 0.04 - 0.20 - - - 0.20 98.94 2.08 Medium

sjeng 0.68 - 0.05 - - - - - 99.27 1.53 Low

h264ref 0.61 0.04 0.02 - - - - - 99.33 1.37 Low

hotspot 0.15 - - - - - - - 99.85 1.14 Low

astar 0.08 - - 0.02 - 0.03 - - 99.87 1.13 Low

libquantum 0.08 - - 0.01 - 0.02 0.01 - 99.88 1.05 Low

bzip2 0.01 - - - - - - - 99.99 1.01 Low

code, providing more than 3� speedup over basic instructions. Benchmarks that achieve less
than 2� speedup from ACC instructions are categorized as low-speedup ones and include:
sjeng, h264ref, hotspot, astar, libquantum and bzip2. Those benchmarks execute mostly
basic instructions and very few accelerating ones.

Next, we present our methodology for comparing FAM again our binary adaptation
techniques. We built a hardware platform consisting of an ACC and a basic core. Each
benchmark runs alone, in single-threaded mode, to avoid interference from co-running
programs. To evaluate FAM, the benchmark thread is initially placed on the basic core. FAM
induces forced migration to the ACC core based on instruction faults and the OS moves back
the thread to the basic core when the migrate-back timeout expires. In our experiments we
vary the duration of the migrate-back timeout to measure its impact to execution time.

For our binary adaptation techniques we follow an induced migration approach. Since
DBR and DBT enable flexible migration at any point in time migration decisions should be
driven by an optimizing dynamic scheduler. Instead, to expose the overhead and limitations
of our techniques, we experiment with a periodic migration approach. Specifically, the OS
artificially migrates the benchmark thread between the basic and the ACC core, or vice versa,
at periodic intervals, invoking DBR or DBT as needed.

Institutional Repository - Library & Information Centre - University of Thessaly
24/09/2023 22:53:45 EEST - 44.200.101.84

26 Dynamic Binary Adaptation on Shared-ISA Architectures

The turnaround time for benchmark execution is measured in quantum scheduling inter-
vals. The migrate-back timeout of FAM and the migration period for DBR and DBT range
from 1 to 16 scheduling intervals in multiples of two. Note that in the implementation, the
quantum scheduling interval is 10ms.

3.4.3 Results

In this section we discuss the results of experimentation, contrasting induced periodic
migration under our binary-level techniques and FAM opportunistic acceleration. Compared
to FAM, periodic migration under DBR has an average slowdown of around 40% across
all benchmarks and migration periods while DBT slowdown is less, about 10%. One
reason for the greater slowdown of DBR is the fact that it operates on less optimized binary
code, statically targeted for basic instructions. By contrast, both FAM and DBT work
with code statically targeted for the ACC ISA. The compiler targeting the ACC ISA may
emit additional accelerating instructions than those identifiable by DBR on the basic binary
through peephole analysis. Furthermore, the compiler may do extra, ISA-neutral, compile-
time code optimizations exposed by code generation for the ACC ISA. Nevertheless, we
leave extending DBR with more potent binary analysis techniques as future work.

Moreover, on analyzing the performance results, it should be noted that FAM opportunis-
tically migrates threads to ACC cores on an instruction fault to achieve accelerated execution.
In our setup, which is a single-program workload, there is no time sharing of the ACC core
which would degrade performance. Instead, the benchmark thread is accelerated fully with
only the penalty of instruction fault handling and migration. Note this overhead is mitigated
as the migrate-back period increases. Single-program, single-threaded execution does not
expose FAM’s limitation of over-subscribing ACC cores.

Further, the periodic migration approach for DBR and DBT does not perform any
kind of scheduling optimization and exposes their limitations. For example, under FAM,
high speedup benchmarks execute mostly on the ACC core due to forced migration from
instruction faulting on the basic core. Whereas in periodic migration, a benchmark thread
will execute a full period on the basic core before it is migrated to the ACC core and vice
versa. This is possible because DBR and DBT enable cross-core execution. We present
results on a dynamic scheduler leveraging flexible migration next.

3.4.4 Speedup Proportional Dynamic Scheduling

We show results for a dynamic scheduler to illustrate the efficiency of flexible migration
enabled by our binary-level techniques. The dynamic scheduler implements a speedup

Institutional Repository - Library & Information Centre - University of Thessaly
24/09/2023 22:53:45 EEST - 44.200.101.84

3.4 Evaluation and Results 27

 0

 5000

 10000

 15000

 20000

 25000

1 2 4 8 10 12 14 16

T
ur

n.
 T

im
e

(in
te

rv
al

s)

streamcluster

FAM
DBR
DBT

Migration period

 0

 5000

 10000

 15000

 20000

 25000

1 2 4 8 10 12 14 16

cfd

Migration period

 0
 1000
 2000
 3000
 4000
 5000
 6000
 7000
 8000
 9000

 10000

1 2 4 8 10 12 14 16

lud

Migration period
(a) High speedup

 0

 50000

 100000

 150000

 200000

 250000

1 2 4 8 10 12 14 16

T
ur

n.
 T

im
e

(in
te

rv
al

s)

milc

Migration period

 0
 2000
 4000
 6000
 8000

 10000
 12000
 14000

1 2 4 8 10 12 14 16

bfs

Migration period

 0

 100000

 200000

 300000

 400000

 500000

 600000

1 2 4 8 10 12 14 16

namd

Migration period

 0
 10000
 20000
 30000
 40000
 50000
 60000
 70000
 80000

1 2 4 8 10 12 14 16

T
ur

n.
 T

im
e

(in
te

rv
al

s)

srad

Migration period

 0

 1000

 2000

 3000

 4000

 5000

 6000

1 2 4 8 10 12 14 16

backprop

Migration period

 0

 10000

 20000

 30000

 40000

 50000

 60000

1 2 4 8 10 12 14 16

hmmer

Migration period
(b) Medium speedup

 0
 5000

 10000
 15000
 20000
 25000
 30000
 35000
 40000
 45000

1 2 4 8 10 12 14 16

T
ur

n.
 T

im
e

(in
te

rv
al

s)

sjeng

Migration period

 0
 20000
 40000
 60000
 80000

 100000
 120000
 140000
 160000
 180000

1 2 4 8 10 12 14 16

h264ref

Migration period

 0

 2000

 4000

 6000

 8000

 10000

 12000

1 2 4 8 10 12 14 16

hotspot

Migration period

 0

 20000

 40000

 60000

 80000

 100000

 120000

1 2 4 8 10 12 14 16

T
ur

n.
 T

im
e

(in
te

rv
al

s)

astar

Migration period

 0
 10000
 20000
 30000
 40000
 50000
 60000
 70000
 80000
 90000

1 2 4 8 10 12 14 16

libquantum

Migration period

 0

 10000

 20000

 30000

 40000

 50000

 60000

1 2 4 8 10 12 14 16

bzip2

Migration period
(c) Low speedup

Figure 3.3 Comparing performance of DBR, DBT periodic migration vs. FAM. The hori-
zontal axis denotes migration periods for DBR, DBT and migrate-back timeout values for
FAM.

Institutional Repository - Library & Information Centre - University of Thessaly
24/09/2023 22:53:45 EEST - 44.200.101.84

28 Dynamic Binary Adaptation on Shared-ISA Architectures

proportional policy for time sharing ACC cores between executing threads in proportion to
each thread’s speedup.

We briefly discuss the Speedup Proportional Dynamic Scheduler (SPDS) internals. The
scheduler operates in rounds for time sharing ACC cores. A round is a system-wide schedul-
ing epoch which consists of a fixed number of quantum scheduling intervals. During a round,
the scheduler monitors the number of ACC intervals for each thread, i.e., the number of
intervals each thread has executed on an ACC core. It employs a thread swapping mechanism,
migrating threads between Basic and ACC cores, so that each thread executes on an ACC core
for a number of intervals which is proportional to its speedup, compared with the speedup of
the other threads in the system. At the end of a round, the scheduler resets the ACC interval
counters of all threads to begin a new round. For our implementation we retrofit benchmark
end-to-end speedup, shown in table 3.1, to the scheduler and set the round duration to 100
quantum scheduling intervals.

Table 3.2 Speedup heterogeneous, multi-program workloads

Workload

3H-3L cfd, streamcluster, lud, sjeng, bzip2, hotspot

3H-3M cfd, lud, streamcluster, milc, backprop, hmmer

3M-3L hmmer, srad, backprop, bzip2, sjeng, hotspot

For the evaluation we built a hexa-core MPSoC consisting of 2 ACC and 4 Basic cores.
In our experiments the system is kept fully-subscribed running speedup heterogeneous, multi-
program workloads. This means that multi-program workloads contain as many benchmarks
as the total number of cores (irrespective of core type) and that after a benchmark completes
execution, it is restarted to ensure a fully-subscribed system throughout workload execution.
An experiment finishes after each benchmark has completed at least three runs. Table 3.2
shows the particular benchmarks in each multi-program workload mix. A workload is
denoted by the number of benchmarks from each speedup class (High, Medium, Low). For
example, the workload denoted as 3H-3M has 3 High-speedup and 3 Medium-speedup
benchmarks. After the experiment is done, we compute the average turnaround time for
each benchmark by taking the mean of turnaround times of completed runs. Per-benchmark
average turnaround times are aggregated to compute SPDS speedup over FAM scheduling to
define workload speedup. The workload speedup is the geometric mean of per-benchmark
speedup values, which are calculated as the ratio of the benchmark turnaround time executing

Institutional Repository - Library & Information Centre - University of Thessaly
24/09/2023 22:53:45 EEST - 44.200.101.84

3.4 Evaluation and Results 29

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 1.6

3H-3L 3H-3M 3M-3L

W
or

kl
oa

d
sp

ee
du

p
(G

eo
m

et
ric

 m
ea

n)

FAM SPDS-DBR SPDS-DBT

Figure 3.4 SPDS-DBR and SPDS-DBT vs. FAM for co-executing programs

under FAM over SPDS. Formally, workload speedup (WSP) is:

WSPSPDS=FAM =
Ns

Õ
b2W

AvgT Tb;FAM

AvgT Tb;SPDS

where N is the total number of benchmarks (6 in our setup) and the product is taken over all
benchmarks (b) in the workload set (W).

For FAM scheduling, the (a priori known) highest speedup benchmarks threads known
are placed on ACC cores at loading time to reduce the number of faults causing forced
migrations. The FAM migrate-back timeout is set to 10 scheduling intervals which shows
good performance based on the single-program evaluation. Initial thread placement for SPDS,
either based on DBR (SPDS-DBR) or DBT (SPDS-DBT), is not important since dynamic
scheduling will migrate threads for sharing ACC cores. In our implementation, SPDS-DBR
and SPDS-DBT perform round balancing, that is thread swaps, every 10 scheduling intervals
to be comparable with FAM’s migrate-back timeout.

Figure 3.4 shows the results. SPDS-DBT performs significantly better than FAM forced
migration scheduling. It improves performance by about 50% compared to FAM, across all
multi-program workloads. SPDS-DBR improves workload speedup in comparison to FAM
by about 20% and 15% for the 3H-3L and 3M-3L workloads respectively, while it performs

Institutional Repository - Library & Information Centre - University of Thessaly
24/09/2023 22:53:45 EEST - 44.200.101.84

30 Dynamic Binary Adaptation on Shared-ISA Architectures

on par with FAM for the 3H-3M workload. This is because DBR works with code statically
targeted for basic instructions as we discussed in the previous section.

The results show that dynamic scheduling, enabled by flexible migration, can efficiently
leverage our binary-level techniques for implementing optimizing policies to out-perform
FAM forced migration scheduling.

3.5 Chapter Conclusion

In this chapter we presented two fast dynamic binary adaptation techniques, DBR and DBT,
for flexible, cross-core thread migration in shared-ISA MPSoC platforms. DBR adapts binary
code on demand for the host core ISA. DBT employs fault-and-rewrite in conjunction with a
translation scheme to execute hardware unavailable accelerating instructions. Both methods
achieve software transparent execution despite of ISA heterogeneity. Additionally, they
enable flexible, cross-core thread migration in contrast to fault-and-migrate (FAM) which is
the state-of-the-art approach for transparent execution on shared-ISA platforms. We have
also shown a speedup-proportional dynamic scheduler which leverages flexible migration
provided by our binary-level techniques to out-perform significantly FAM forced migration
scheduling.

In the next chapter we focus on dynamic scheduling to present a complete scheduling
framework which optimizes the execution of a workload as whole using online profiling
techniques and heuristic algorithm to decide on optimizing cross-core migrations.

Institutional Repository - Library & Information Centre - University of Thessaly
24/09/2023 22:53:45 EEST - 44.200.101.84

Chapter 4

Speedup Aware Dynamic Scheduling on
Shared-ISA Architectures

Efficient execution on shared-ISA architectures, as on any heterogeneous architecture, de-
pends on the optimal mapping of the computation to heterogeneous resources. Existing state-
of-the-art scheduling for shared-ISA architectures relies on the fault-and-migrate technique.
However, this limits scheduling by dynamically setting core affinities that over-subscribe
accelerating cores, resulting in loss of performance.

In this chapter we present a speedup-aware, dynamic scheduling method which adapts
thread-to-core assignments of co-executing programs to maximize the speedup of the work-
load. Our method leverages dynamic binary adaption for on demand, cross-core migrations
and online, instruction-level profiling to quantify speedup from accelerating instructions. It
implements a heuristic scheduling algorithm which evaluates different possible thread-to-core
assignment and selects the one which maximizes speedup.

4.1 Introduction

State-of-the-art schedulers for shared-ISA systems prioritize programmability and transparent
execution over performance. They are based on the fault-and-migrate (FAM) [64, 91]
technique which assumes binaries implement the ACC ISA but a thread can execute in any
core in the system. If a thread executes an accelerating instruction on a non-ACC core,
FAM forcibly migrates it to an ACC core. FAM-based schedulers implement a migrate-back
timeout in an effort to alleviate congestion on ACC cores due to forced migrations. When
the timeout expires, a migrated thread is moved back to its original core. This approach has
severe limitations: (i) FAM forced migration sets dynamically core affinities on a per-thread

Institutional Repository - Library & Information Centre - University of Thessaly
24/09/2023 22:53:45 EEST - 44.200.101.84

32 Speedup Aware Dynamic Scheduling on Shared-ISA Architectures

basis, precluding any other dynamic scheduling from implementing global optimization
policies, (ii) it over-subscribes ACC cores with threads and limit acceleration of those threads
due to time-sharing the ACC core, even when the migrate-back timeout is in effect. (iii) FAM
may trigger an excessive number of unavoidable thread migrations and the associated loss of
performance. Most importantly, FAM forced migration prohibits any dynamic scheduling
approach to improve performance or power consumption through efficient utilization of
heterogeneous resources. Dynamic scheduling is crucial to adapt execution to the availability
of these resources and to the the varying acceleration potential of different threads executing
concurrently [62, 82, 96, 99, 100].

Figure 4.1 shows indicative scenarios of FAM-based scheduling which result to degraded
performance, either due to unavoidable over-subscriptions or because of ignoring the accelera-
tion potential during thread execution. Figure 4.1a shows an indicative example, following an
execution snapshot of two threads, T1 and T2. The threads go through ACC phases (shaded)
and NACC phases (non-shaded), while running on a shared-ISA multicore with one ACC
and one non-ACC (Basic) core. A FAM scheduler would force T2 to migrate to the ACC
core when entering an ACC phase, effectively sharing the ACC core between T1 and T2 and
leaving the Basic core idle. However the Basic core could execute NACC phases concurrently
to speedup workload execution. In an ideal thread swapping scheme, the scheduler would
swap T1 and T2 between the ACC and Basic cores given that T2 executes an ACC phase
and T1 a NACC phase, or vice versa. In the same spirit, even when threads have overlapping
ACC phases but with different speedup, the scheduler should adapt thread-to-core assignment
for efficient sharing of ACC cores. Figure 4.1b shows an example of thread execution with
overlapping ACC phases of different speedup. Note that swapping two threads which both
execute ACC phases has the additional complexity of binary incompatibility, motivating
our DBT method. ACC instructions on a thread being swapped out of a ACC core would
need to be replaced with equivalent non-ACC instruction sequences, in order to execute on a
non-ACC core. T1 and T2 go through high and low ACC phases. A FAM scheduler would
force T1 and T2 to time share the ACC core. Thread swapping would intelligently swap
threads between the ACC and Basic core to execute high ACC phases on the ACC core. Low
ACC phases can execute emulated on the Basic core, albeit without acceleration.

In this chapter we present a dynamic scheduling framework and explore alternative
scheduling policies for shared-ISA asymmetric multicores. Specifically, the framework
consists of heterogeneous-ISA aware mechanisms to quantify speedup and enable transparent
execution and dynamic thread migration despite ISA incompatibilities. Leveraging these
techniques, we explore speedup-aware policies that selectively swap threads between ACC
and non-ACC cores for maximizing workload speedup. Our policies are based on two

Institutional Repository - Library & Information Centre - University of Thessaly
24/09/2023 22:53:45 EEST - 44.200.101.84

4.1 Introduction 33

(a) Thread execution snapshot with disjoint ACC phases

(b) Thread execution snapshot with overlapping ACC phases but with different speedup

Figure 4.1 Execution snapshots motivating thread swapping vs. FAM forced migration

Institutional Repository - Library & Information Centre - University of Thessaly
24/09/2023 22:53:45 EEST - 44.200.101.84

34 Speedup Aware Dynamic Scheduling on Shared-ISA Architectures

observations: first, that threads execute through phases with (ACC) and without (NACC)
acceleration potential and second, different threads have different acceleration potential
during ACC phase execution. The acceleration potential in ACC phases varies depending
on the number and type of ACC instructions retired during these phases. In summary, this
chapter makes the following contributions:

• We present a set of distinct mechanisms for heterogeneous ISA execution profiling and
management. These include mechanisms for hardware and software assisted profiling
at runtime and a cross-core speedup estimation methodology. Profiling gathers data
from customized, per-core hardware counters and Dynamic Binary Translation (DBT),
presented in Chapter 3, software counters for accounting the type and frequency of ACC
instructions executed. Cross-core speedup estimation takes as input these profiling data
and estimates cross-core execution speedup for each thread. The combination of these
techniques lifts the key limitations of FAM, which are forced migration and speedup
unawareness, and allows the implementation of global, optimizing scheduling policies.

• We present the SPEEDSWAP scheduler, a scheduler that optimizes workload per-
formance on shared-ISA heterogeneous multicores. SPEEDSWAP achieves this by
adjusting periodically thread-to-core assignments, using thread swapping, with the
criterion of maximizing workload speedup. It leverages continuous profiling coupled
with speedup estimation to quantify thread performance and DBT for enabling cross-
core dynamic migration. SPEEDSWAP operates in time epochs during which it keeps
the scheduling history and associated speedup profiles for all executing threads. Basicd
on this history and the most recent speedup estimate for each thread, SPEEDSWAP
swaps threads between heterogeneous cores only when this results in maximizing the
workload speedup. This informed scheduling approach is in contrast to FAM schedul-
ing, which operates obliviously to thread profiles and workload wide scheduling
information.

• We evaluate SPEEDSWAP on a hardware prototype of a shared-ISA system, using
multi-program workloads. Our experiments include different hardware configurations,
varying the ratio of ACC and non-ACC cores, to factor in the effects of possible
hardware configurations on FAM and SPEEDSWAP scheduling. Multi-program work-
loads include threads of applications with varying acceleration potential, from low to
high, to assess the performance and robustness of SPEEDSWAP and FAM scheduling.
SPEEDSWAP outperforms FAM in all tested hardware configurations. As the ratio of
Basic over ACC cores increases, so does the performance advantage of SPEEDSWAP
over FAM. SPEEDSWAP achieves as much as 2:5� faster execution times over FAM

Institutional Repository - Library & Information Centre - University of Thessaly
24/09/2023 22:53:45 EEST - 44.200.101.84

4.2 Background 35

Figure 4.2 A single ACC instruction triggers FAM, resulting in migration and unneeded ACC
core sharing

when there is a 4:1 ratio of Basic to ACC cores. FAM scheduling limitations are
less prominent when there is a 1:1 ratio of Basic to ACC cores. Even in this case,
SPEEDSWAP results in no less than 1:04� workload speedup compared to FAM.

The rest of this chapter is organized as follows: Section 4.2 reviews related work.
Section 4.3 describes the hardware and software assisted profiling and section 4.4 presents
the cross-core speedup estimation methodology. Section 4.5 presents scheduling including
SPEEDSWAP speedup-aware approach and the FAM scheduler. Section 4.6 includes the
evaluation of our work including the experiment methodology and implementation details.
Section 4.7 concludes the chapter.

4.2 Background

4.2.1 Fault-and-migrate Scheduling on Shared-ISA Architectures

FAM transparent execution requirement relies on forced migration which implicitly imple-
ments a scheduling policy of migrating threads executing ACC instructions to ACC cores.
FAM is fundamentally dependent on the assumption that a thread forcibly migrated to an
ACC core would obtain enough speedup to amortize the cost of migration and the cost of
potential core sharing. This assumption is restrictive and can lead to degraded performance.
Figure 4.2 shows an indicative example. Thread T2 migrates to a ACC core due to a single
ACC instruction but later executes only non-ACC instructions. The acceleration gained from
executing the ACC instruction natively does not amortize the cost of migrating the thread
and time sharing the ACC core.

The shortcomings of FAM are summarized to its obliviousness to core load on forced
migration and its unawareness of acceleration potential, as shown in figure 4.2. We enhance
the FAM scheduler with two techniques to address those shortcomings. The first is that a
FAM forced migration will always choose the least loaded ACC core to move a thread to, that

Institutional Repository - Library & Information Centre - University of Thessaly
24/09/2023 22:53:45 EEST - 44.200.101.84

36 Speedup Aware Dynamic Scheduling on Shared-ISA Architectures

is the ACC core with the fewest runnable threads. The second technique is migrate-back [64].
When FAM scheduling implements migrate-back, a thread migrated to an ACC core does not
run indefinitely on this core, instead it is moved back to a Basic core after a fixed time interval.
This technique alleviates both congestion and the fact that migrated threads may transition
to a non-accelerated phase, under-using ACC core resources. However, migrate-back may
induce extra migrations if a thread enters again an accelerated phase on a Basic core.

Overall, FAM has significant deficiencies because of its constraining approach to im-
plement transparent execution through forced migration. Most importantly, it deprives any
scheduling policies to optimize workload performance, since thread-to-core assignment is
dictated by necessity rather than performance. Note that the DBT mechanism overcomes
the forced migration limitation by using binary emulation for transparent execution. The
SPEEDSWAP schedulers leverage DBT to implement on demand, cross-core migration for
implement their workload optimizing policies.

4.2.2 Other Dynamic Scheduling Solutions for Asymmetric Platforms

Asymmetric multicore platforms, categorized by ISA heterogeneity, are divided into single-
ISA, shared-ISA and disjoint-ISA systems. In single-ISA systems performance asymmetry
comes from variation of ISA-transparent characteristics, and typically consist of few pow-
erful, large area cores and many smaller and power-efficient cores [60, 62]. Single-ISA
performance asymmetry is most frequently emulated by varying core clock frequency, pre-
serving software binary compatibility [32, 97, 98, 100]. Shared-ISA architectures extend
micro-architectural, single-ISA asymmetry with functional asymmetry: all cores implement a
common, basic ISA while few of them extend it with accelerating instructions for executing
certain operations accelerated. Shared-ISA architectures enable ISA heterogeneity, hence
providing more opportunities for functional specialization and power optimization. However,
ISA heterogeneity exposes to software because of binary incompatibilities. Disjoint-ISA
architectures, such as the Cell BE and CPU+GPU configurations, consist of cores that have
entirely different architectures and follow the offload model, where critical parts of the
computation are explicitly offloaded to specialized accelerators. Disjoint-ISA challenges
relate more to programmability rather than scheduling. System software must provide ways
to abstract hardware diversity to ease developer effort.

Kumar [60] and Hill [47] establish the case for single-ISA, asymmetric architectures for
power reduction and performance. The two key observations for scheduling on asymmetric
systems are efficiency specialization [60], meaning powerful cores should host execution
phases that make use of their performance enhanced resources, and TLP specialization [5],
meaning parallel execution phases should execute on the multitude of basic cores to make

Institutional Repository - Library & Information Centre - University of Thessaly
24/09/2023 22:53:45 EEST - 44.200.101.84

4.2 Background 37

use of hardware parallelism whereas sequential execution phases should execute on powerful
cores for maximum single-threaded acceleration.

Kumar [62] and Becchi [10] define efficiency specialization on single-ISA systems as
assigning compute intensive phases on accelerated cores and memory intensive phases to
basic cores. They characterize execution phases by using a sampling based method for
training: threads are forced to periodically migrate to different cores in the system for
probing performance counters, such as IPC, to identify as compute or memory boundness.
For efficient utilization of cores, scheduling assigns those threads with maximum sampled
IPC to the accelerated cores. Alternatively, when scheduling aims for global optimization, it
picks the one sampled thread-to-core assignment which has the maximum average IPC across
all threads. Periodic migration for sampling introduces significant overhead, since execution
cycles are spent for monitoring. Also, correct detection of execution phases depends on the
sampling frequency during training. Higher sampling frequency gives better detection results
but produces intolerable overhead. Sampling all possible thread assignments does not scale
and becomes practically infeasible as the number of co-executing threads and different cores
increases.

Shelepov [100] proposes architectural signatures, to avoid the overhead of online profil-
ing. Architectural signatures are generated statically, one-off, by running an application with
a training input set and calculating its reuse-distance profile to estimate memory boundness.
The scheduler reads per-application architectural signatures and estimates performance on
different cores. Also, it takes into account time-sharing because of threads co-located on the
same core. A change in thread count during a particular schedule triggers a re-evaluation of
thread-to-core assignments. Architectural signatures build an application’s profile offline to
avoid runtime overhead but doing so cannot capture dynamic and input-dependent phases
during thread execution. Application characterization depends on the training data set which
is possibly different than the actual input, thus affecting signature’s accuracy or requiring
re-training.

Fedorova [32] presents a TLP specialization method for single-ISA asymmetric sys-
tems. The idea is that sequential execution accelerates more efficiently on accelerated cores,
whereas parallel phases execute more efficiently on the numerous basic cores to exploit hard-
ware parallelism. The scheduler decides on thread-to-core assignments on a per-application
basis, examining the application’s thread count, to determine whether being in a sequential
or in a parallel phase.

Saez [96, 97] combines efficiency and TLP specialization into a single metric, the so-
called utility factor of a thread. LLC misses are used to estimate memory boundness and
the application’s thread count is used for detection of sequential or parallel execution phases.

Institutional Repository - Library & Information Centre - University of Thessaly
24/09/2023 22:53:45 EEST - 44.200.101.84

38 Speedup Aware Dynamic Scheduling on Shared-ISA Architectures

The utility factor is dynamically re-evaluated and guides the scheduler to migrate threads
between accelerated and basic cores but without tracking scheduling history or attempting to
optimize workload speedup.

Li [64] abstracts performance estimation by assuming static performance ratings for
asymmetric cores and uniform intra-thread speedup through execution, depending only on
a rating of the executing core. This work proposes a credit-based, round-robin scheduling
algorithm for fair sharing of accelerated cores. As this work targets fair sharing, it is not
concerned with optimizing performance and makes simplifying assumptions about asymmetry
and heterogeneity that obviate the need for performance estimation.

Van Craeynest [106] considers in-order versus out-of-order cores to argue that memory
intensity alone is not a good indicator for scheduling. Instead, they show that both ILP
and MLP should be factored in. Similar to our work, they build a performance estimation
model based on performance counters and known micro-architectural differences to estimate
the performance of a thread in any of the system’s core types. They experiment using
a simulated environment and consider both static scheduling, disallowing migrations by
choosing a schedule one-off, and dynamic scheduling. Dynamic scheduling periodically
re-evaluates thread-to-core assignment decisions to capture different execution phases. In
both cases performance estimation drives scheduling decisions. However, they consider
single-ISA asymmetry, hidden from software, unlike instruction-based heterogeneity in
shared-ISA systems. Furthermore, simulation allows for a synchronized, global view of
potential schedules whereas in our work we devise a thread-swapping algorithm on a real
system, running in a distributed manner to experiment with real-time latencies.

Efficiency specialization has been applied in areas where application-level information
can improve performance. Suleman [104] and Joao [54] propose to use the accelerated cores
for accelerating bottlenecks in multi-threaded execution. Specifically, to accelerate threads
executing critical sections by placing them to accelerated cores or to accelerate threads
lagging behind for reaching barrier synchronization. Kazempour [55] views efficiency
specialization in relation to virtualization. The idea is to share accelerated cores between
VMs to improve performance, or prioritize some VMs to schedule on accelerated cores for
service differentiation.

4.3 Online Speedup Profiling

Implementing a dynamic, system-wide performance optimization policy for shared-ISA
multicores necessitates a mechanism for profiling thread execution. Profiling needs to be
done at the instruction level to measure the impact of ISA heterogeneity on thread execution,

Institutional Repository - Library & Information Centre - University of Thessaly
24/09/2023 22:53:45 EEST - 44.200.101.84

4.3 Online Speedup Profiling 39

including the effect of emulation. In particular, the number of occurrences and type of ACC
instructions a thread executes determine its acceleration potential when running on an ACC
core or equivalently its performance handicap when running them emulated on a Basic core.
Profiling at this instruction level must be done only at runtime, since instructions executed
depend on the program’s control flow and possibly on its input. Note that our profiling
method measures execution latency at the binary level, that is for the ACC ISA. Because of
DBT emulated execution, a hardware counter solution is insufficient as it can only account
for natively executed ACC instructions. We present a combined hardware and software
assisted profiling method, comprising of a specialized hardware performance monitoring unit
(PMU) coordinating with DBT for profiling emulated execution.

The function of the profiling method is to provide execution latencies broken down into
the different instruction types at the binary level (ACC ISA) regardless of executing on an
ACC or a Basic core. Those profiling data are necessary to do speedup estimation, discussed
later. Regarding the hardware requirements for profiling, each core has a dedicated PMU
attached to it. The PMU monitors execution at the instruction level and operates in two
modes: native and emulation mode. Note it can be signaled dynamically to switch between
modes, explained later.

The native mode is the initial operating mode of the PMU, performing monitoring of
natively executing instructions. Native execution includes basic instructions, which by
definition are implemented natively on all core types, and ACC instructions when they
execute on an ACC core. In this mode, the PMU implements different sets of hardware
counters to count the number and type of instructions executed natively as well as their clock
cycle latency. At each quantum scheduling interval, the OS queries the PMU to retrieve the
values of those counters and stores them in the corresponding thread descriptor.

Next we discuss profiling when emulating with DBT. Our binary level profiling method
needs to attribute the emulation handler latency to each emulated ACC instruction, in the
same way native mode measures native execution latency. The PMU alone cannot provide
this functionality, thus profiling implements a combined hardware and software assisted
technique. On the software side, DBT adds a prologue and an epilogue code fragment to each
emulation handler routine. In the prologue, the emulation handler increments the occurrence
counter for this specific instruction type directly in the OS thread descriptor structure. Also
within the prologue, the emulation handler signals the PMU to enter the emulation profiling
mode. During this mode, the PMU counts only clock cycles by incrementing a dedicated
hardware counter for accumulating emulation latency. In the epilogue code, the handler
signals the PMU to resume native profiling and reads the PMU emulation latency counter
which holds the actual execution latency of the emulation handler. This latency is also the

Institutional Repository - Library & Information Centre - University of Thessaly
24/09/2023 22:53:45 EEST - 44.200.101.84

40 Speedup Aware Dynamic Scheduling on Shared-ISA Architectures

effective latency of executing this particular ACC instruction emulated. Finally, the epilogue
code stores the emulation latency value within the OS thread descriptor. Note that emulation
latencies are stored using different data fields for each ACC instruction, distinct from native
latency fields.

Those profiling data are the input to the cross-core speedup estimation methodology we
present in the next section.

4.4 Cross-core Speedup Estimation

Profiling attributes execution latencies at the instruction level but our dynamic scheduler
needs a method to estimate each thread’s performance on an ACC core. In particular, a thread
may achieve speedup from ACC instructions and this varies between threads depending on
their acceleration potential. This thread speedup metric needs to be quantified accurately at
runtime, regardless of the host core the thread runs, to rank threads based on acceleration
potential. We present a methodology for cross-core speedup estimation at the thread-level,
using the data gathered through hardware and software assisted profiling.

We state our assumptions for applying our methodology upfront, before deriving our
estimation model. We selectively restate some of the assumptions in the context they are
used. Without loss of generality, we assume the underlying architecture consists of ACC
cores, implementing in hardware both ACC and Basic instructions, and Basic cores which
implement only the basic ISA. Basic instructions execute in hardware on either the ACC cores
or Basic cores, thus have the same latency. This is because other than ISA heterogeneity
cores have the same memory hierarchy and micro-architectural traits, so pipeline stalls
from basic instructions have the same effect on both core types. ACC instructions perform
computational operations, they do not implement memory operations or branches. As such,
they execute fully pipelined, having a fixed latency documented in the hardware architecture
specification. ACC instructions execute natively on ACC cores but they execute emulated on
Basic cores through our DBT mechanism.

Following, execution time can be broken down into time for executing instructions of the
Basic ISA, and time for executing ACC instructions. Formally, execution time for a core p
over a number of instructions executed is:

Tp = å
i2Basic[ACC

ni �CCreal
i;p

CCreal
i;p is real instruction execution latency, including pipeline stalls, where ni denotes the

number of type i instructions executing on core p.

Institutional Repository - Library & Information Centre - University of Thessaly
24/09/2023 22:53:45 EEST - 44.200.101.84

4.4 Cross-core Speedup Estimation 41

On an ACC core, ACC instructions execute natively and execution latency is broken
down as:

TACC = å
i2Basic

ni �CCreal
i;ACC + å

i2ACC
ni �CCreal

i;ACC

Note the hardware PMU counts the occurrences of instructions and the latency in clock
cycles per instruction type.

On a Basic core, ACC instructions execute emulated instead, through emulation handlers
set up by DBT. Thus, execution latency can be broken down into native and emulated
components:

TBasic = å
i2Basic

ni �CCreal
i;Basic + å

i2ACC
ni �CCemu

i;Basic

where emulation latency is the number of type i emulated ACC instructions multiplied by
the execution latency of the respective emulation routine which translates them to the basic
ISA. Note that for profiling emulated ACC instructions, DBT coordinates with the PMU.
Specifically, DBT counts the occurrences of emulated ACC instructions and signals the
PMU to switch to emulation profiling mode on entering an emulation handler and resume
normal profiling once the handler is done. This break down is necessary to cross-estimate the
execution latency on an ACC core while actually executing on a Basic core, explained later.

Cross-estimating execution latency on a Basic core running on an ACC core makes use
of the assumption that Basic instructions execute with the same latency on both cores. PMU
profiling on the ACC core provides the number of occurrences for each ACC instruction.
However the emulation latency of these instructions is not constant as it depends on the
input to emulation routines. We solve this by combining offline measurements with an
online calibration technique. In more detail, emulation latency starts with an estimated value
based on offline measurements averaged over a wide variety of inputs. Online calibration
operates asynchronously, updating those estimates in a per-thread basis to account for
variability in emulation inputs depending on code executed by each thread. Specifically, if
the SPEEDSWAP scheduler (discussed later) migrates a thread to a Basic core, profiling will
measure real emulation latency and update model latencies for this thread. If at a later time
the thread is migrated to an ACC core, model latencies will be updated by real measurements.
To avoid bias effects, model latencies converge to the initial, average estimates using an
exponential decay technique. Formally, cross-estimating execution latency on a Basic core
when running on an ACC core is:

TBasic ACC = å
i2Basic

ni �CCreal
i;ACC + å

i2ACC
ni �CCemu0

i

Institutional Repository - Library & Information Centre - University of Thessaly
24/09/2023 22:53:45 EEST - 44.200.101.84

42 Speedup Aware Dynamic Scheduling on Shared-ISA Architectures

Additionally, cross-estimating execution on an ACC core running on a Basic core makes
use of the assumption that ACC instructions accelerate computational operations and cause
no pipeline stalls. As such, their execution latency for fully pipelined execution, depends only
on the instruction type. This would be a number mentioned in the architecture specification.
DBT profiling on the Basic core provides the number of emulated ACC instructions executed,
per-type. Formally, cross-estimated latency on an ACC core when running on a Basic core is:

TACC Basic = å
i2Basic

ni �CCreal
i;Basic + å

i2ACC
ni �CCspec

i

Basicd on the real execution latency measured on the core a thread actually runs and on
the cross-estimated latency, the speedup of executing a set of instructions on an ACC core
versus a Basic core formally is:

SPACC=Basic =

8
>>>>>>>>>>><

>>>>>>>>>>>:

TBasic

TACC Basic
=

å
i2Basic

ni �CCreal
i;Basic + å

i2ACC
ni �CCemu

i;Basic

å
i2Basic

ni �CCreal
i;Basic + å

i2ACC
ni �CCspec

i
; executing on a Basic core

TBasic ACC
TACC

=
å

i2Basic
ni �CCreal

i;ACC + å
i2ACC

ni �CCemu0
i

å
i2Basic

ni �CCreal
i;ACC + å

i2ACC
ni �CCreal

i;ACC
; executing on an ACC core

This speedup value quantifies the acceleration of a set of instructions executed on an ACC
core versus a Basic core and characterizes the execution of a thread at a certain point in
time. In the evaluation section, we show that our methodology for cross-estimating execution
latencies, and thus speedup, is accurate, having a mean standard error of no more than 5%
across our benchmarks. The SPEEDSWAP scheduler, discussed in the next section, samples
each thread’s speedup value in regular intervals to discover accelerated execution phases,
that is phases during a thread’s execution where speedup is almost constant.

4.5 Speedup-aware Scheduling

4.5.1 SPEEDSWAP Scheduling

SPEEDSWAP is a decentralized scheduler running on ACC cores and invoked periodically
by the OS. It swaps a thread running on a Basic core with a thread running on the host ACC
core, only if this swap maximizes the workload speedup. Next we discuss on the specifics of
the scheduling algorithm.

SPEEDSWAP operates in epochs where an epoch is a fixed-length collection of OS
quantum scheduling intervals. Additionally, SPEEDSWAP utilizes as input the scheduling

Institutional Repository - Library & Information Centre - University of Thessaly
24/09/2023 22:53:45 EEST - 44.200.101.84

4.5 Speedup-aware Scheduling 43

Algorithm 1: SPEEDSWAP scheduling algorithm
Input: P algorithm’s invocation period, n number of past scheduling intervals,

Ta thread executing on this ACC core, T set of threads in Basic cores
SPi;t speedup of thread t on interval i,
SPt estimated speedup of thread t

Output: Tmax thread maximizing global speedup if scheduled on this ACC core
/* Initialize workload speedup WSP and Tmax extending the schedule

(no swapping) for the next P intervals */

NxtSPTa =
1

n + P

"
n

å
i=1

SPi;Ta

!

+ P � SPTa

#

/* Threads in T have unit speedup for the next P intervals */

NxtSPT = Õ
t2T

1
n + P

"
n

å
i=1

SPi;t

!

+ P � 1

#

MaxWSP = NxtSPTa�NxtSPT
Tmax = Ta

for t 2 T do
/* Calculate speedup if t! ACC and Ta! Basic */

NxtSPt =
1

n + P

"
n

å
i=1

SPi;t

!

+ P � SPt

#

NxtSPTa =
1

n + P

"
n

å
i=1

SPi;Ta

!

+ P � 1

#

NxtSPT nt = Õ
n2T nt

1
n + P

"
n

å
i=1

SPi;n

!

+ P � 1

#

/* Calculate projected workload speedup */
WSP = NxtSPt �NxtSPTa�NxtSPT nt

if WSP > MaxWSP then
MaxWSP = WSP
Tmax = t

end
end

if Ta 6= Tmax then
swap Ta ! Tmax

end

Institutional Repository - Library & Information Centre - University of Thessaly
24/09/2023 22:53:45 EEST - 44.200.101.84

44 Speedup Aware Dynamic Scheduling on Shared-ISA Architectures

history of each thread during an epoch for computing the workload speedup. The scheduling
history of a thread keeps track of the speedup of thread execution during an epoch. For a
single scheduling interval, the speedup value is the unit if the thread has executed on a Basic
core, whereas cross-estimation provides the value if it executed on an ACC core. Overall, a
thread’s cumulative speedup in an epoch is the arithmetic mean of quantum interval speedup
values. At a higher level, the workload speedup across all threads executing in parallel is
the geometric mean of each thread’s cumulative speedup value. This epoch based approach
captures the recent execution history for each thread and avoids bias effects when calculating
workload speedup.

SPEEDSWAP is invoked periodically by the OS and subdivides the epoch to thread-
swapping decision intervals. When invoked, it searches for a thread swap which maximizes
workload speedup. Specifically, SPEEDSWAP, when invoked on an ACC core, performs a
dry run of possible thread swaps and calculates their impact on workload speedup. It uses
cross-estimation to compute projected speedup values for all threads running on a Basic core,
as if they were to run on the ACC core. Then it computes the projected workload speedup
assuming thread swapping. Note that the projected speedup for the swapped out thread on
the host ACC core is the unit. Only if thread swapping maximizes the projected workload
speedup, it is actually performed.

We describe in more detail how scheduling history is built. After every scheduling
interval, the OS logs the actual speedup of the application-level thread which has executed
during that interval. For threads having executed on a Basic core the speedup value is the
unit. For threads having executed on an ACC core the speedup value is cross-estimated
using online profiling data. Let the epoch consist of N equally sized, quantum scheduling
intervals. As execution progress within an epoch, the cumulative thread speedup is: 1

n åi SPi

where n� N . The cumulative thread speedup is the only metric the SPEEDSWAP algorithm
needs from the scheduling history. In fact it can be computed incrementally and it is the only
value the OS stores in thread descriptors. When transitioning to a new scheduling epoch,
old history is discarded by zeroing each thread’s cumulative speedup to avoid the bias from
possibly stale execution phases. Then history is re-built based on recent profiling data.

The SPEEDSWAP algorithm is described in pseudocode in Algorithm 1. On each ACC
core the OS invokes SPEEDSWAP periodically, every P quantum scheduling intervals, and
effectively subdivides the epoch into P-length scheduling units distributable among threads
through swapping. SPEEDSWAP initially calculates the projected workload speedup from
extending the existing thread-to-core assignment until the next invocation. Next, it iterates
over all possible thread swaps, hypothetically swapping a thread executing on a Basic core
with a thread on the ACC core. Note we assume full subscription so each core has exactly

Institutional Repository - Library & Information Centre - University of Thessaly
24/09/2023 22:53:45 EEST - 44.200.101.84

4.5 Speedup-aware Scheduling 45

one runnable thread – investigating over-subscription is left as future work. The algorithm
computes the expected workload speedup, by using cross-estimation method to predict
performance of presumably swapped threads under the new schedule. Iff there is such a swap
which maximizes workload speedup, then it is actually performed. The swapped-in thread
will execute on the ACC core for the next P intervals.

We also implement SPEEDSWAP-0 which is a special case of the SPEEDSWAP al-
gorithm that disregards execution history by assuming a 0-length epoch. SPPEDSWAP-0
targets to maximize the utilization of ACC cores by always running the threads that have the
highest speedup on ACC cores. The SPEEDSWAP-0 special case for maximizing ACC core
utilization contrasts the policy for maximizing the speedup of the whole workload of the
original SPEEDSWAP algorithm.

4.5.2 Example

For an indicative example of SPEEDSWAP, consider a hardware system of one ACC and one
Basic core executing two threads: T1 and T2. For simplicity, let those threads have constant
speedup throughout execution SPT1 = 10 and SPT2 = 5. In this example, SPEEDSWAP is
invoked every P = 1 quantum scheduling interval and the epoch length is N = 10. Table 4.1
shows a sample run of the algorithm, where T1 is initially assigned to the ACC core and T2

to the Basic core. Because of constant thread speedup values, the workload speedup can be
formulated analytically:

WSP = (a �SPT1 +(1�a)) � ((1�a) �SPT2 + a)

= (a �10 +(1�a)) � ((1�a) �5 + a)

where a 2 [0;1] is the ratio of ACC intervals over total intervals during which T1 executes
accelerated. Equivalently, because of swapping, a also equals the ratio of Basic over total
intervals during which T2 executes without acceleration. Moreover, the ratio 1�a holds the
ratio of time that T1 executes without acceleration and conversely it holds the ratio of time that
T2 executes on the ACC core. The analytic solution of dWSP

da = 0 finds the value of a which
maximizes WSP, being the optimal assignment ratio. In this case a = 0:57 for a maximum
workload speedup of WSP = 16:67. That is T1 should execute 57

100 intervals on the ACC
core while T2 should execute 43

100 on it, and the rest on the Basic core. Note that this result

contradicts speedup proportional assignment which would have a = SPT1
SPT1+SPT2

= 10
15 ’ 0:67

. The algorithm snapshot at table 4.1 converges to a = 6
10 ’ 0:6 for the scheduled ACC

intervals assigned to T1, approximating closely the optimal ratio found by the analysis.

Institutional Repository - Library & Information Centre - University of Thessaly
24/09/2023 22:53:45 EEST - 44.200.101.84

46 Speedup Aware Dynamic Scheduling on Shared-ISA Architectures

Table 4.1 SPEEDSWAP example

N = 10 SPT1!ACC = 10 SPT2!ACC = 5 P = 1

n T1 T2 SWAP

1 ACC Basic fWSPT1!ACC = 10:00 < WSPT2!ACC = 16:50g) T1 ! T2

2 Basic ACC fWSPT2!ACC = 14:67 < WSPT1!ACC = 16:33g) T2 ! T1

3 ACC Basic fWSPT1!ACC = 15:50 < WSPT2!ACC = 16:50g) T1 ! T2

4 Basic ACC fWSPT2!ACC = 15:64 < WSPT1!ACC = 16:64g) T2 ! T1

5 ACC Basic fWSPT1!ACC = 16:33 < WSPT2!ACC = 16:50g) T1 ! T2

6 Basic ACC fWSPT2!ACC = 15:96 < WSPT1!ACC = 16:67g) T2 ! T1

7 ACC Basic fWSPT2!ACC = 16:50 < WSPT1!ACC = 16:56g) no swap

8 ACC Basic fWSPT1!ACC = 16:33 < WSPT2!ACC = 16:67g) T1 ! T2

9 Basic ACC fWSPT2!ACC = 16:50 < WSPT1!ACC = 16:64g) T2 ! T1

11 ACC Basic fWSPT1!ACC = 16:51 < WSPT2!ACC = 16:65g) T1 ! T2

The epoch length (N) controls the impact of historic data on calculating the cumulative
thread speedup and by extension the workload speedup. The shorter the epoch length is, the
more sensitive the speedup calculation becomes to recent profiling data for sensing changes
in the execution phases of threads. Shorter epoch lengths, however, have fewer scheduling
intervals for the algorithm to converge. The algorithm’s invocation period (P) controls how
many times thread-swapping will be decided within an epoch. The shorter this period is, the
faster the algorithm converges to the optimal assignment, but by inducing more swaps. Both
N and P are statically configurable in our implementation – we leave the investigation of
dynamically setting those parameters as future work.

SPEEDSWAP-0 is a special case of the SPEEDSWAP algorithm, where N = 0, thus
ignoring scheduling history. Every P intervals, SPEEDSWAP-0 effectively selects the highest
speedup thread to execute on the ACC core since it disregards history when computing
workload speedup. SPEEDSWAP-0 is similar to existing scheduling algorithms proposed
for asymmetric platforms. They strive for efficiency specialization, that is maximum ACC
core utilization in our case, based only on most recent performance indicators.

Institutional Repository - Library & Information Centre - University of Thessaly
24/09/2023 22:53:45 EEST - 44.200.101.84

4.6 Experiments and Results 47

4.6 Experiments and Results

4.6.1 Implementation Details

We extend the operating system to implement DBT, profiling and speedup estimation and our
FAM and SPEEDSWAP schedulers. DBT is provided as an OS service for rewriting binary
code and updating thread related OS and system state. The OS invokes DBT either when a
thread triggers an illegal instruction exception or before the scheduler migrates a thread to an
ACC core. DBT stores emulation handlers in core private, 32KB, low-latency scratchpad
memories. Scratchpads function as emulation handling buffers with fast, cache-like access
times (1 cycle) and are addressable with a single branch instruction. DBT saves rewriting
management data in per-thread OS descriptors for later reference, when managing the handler
buffer or reverting back rewritten instructions. Specifically, DBT stores a total of 28 bytes per
rewriting target including the instruction’s address, the instruction itself, and the emulation
handler’s address. On migration from a Basic to an ACC core, DBT flushes any thread
emulation handlers resident in the local scratchpad buffer and restores previously emulated
ACC instructions to execute natively at the target core.

As has been discussed, speedup estimation relies on hardware and software assisted
profiling to quantify performance. Each Microblaze core has its own PMU. The core
communicates with it through a point-to-point, low latency link using special instructions
to read and write data. The OS manages the PMU issuing start, stop and query commands.
Performance counters are read at each scheduling interval and then the PMU is flushed. After
sampling the PMU counters, speedup estimation updates the estimate for the host thread,
calculating its potential speedup from running on a ACC core. The estimated speedup is a
moving average to smooth out the calculated value but with increased weighting of recent
estimations to quickly sense changes in acceleration potential.

FAM Implementation

Each core implements locally a round-robin (RR) scheduler for time-shared execution of
hosted runnable threads. An illegal instruction exception invokes the OS exception handler
that implements FAM. FAM moves the faulting thread to the least-loaded ACC core natively
executing the faulted instruction, and initializes the thread’s migrate-back timeout to a value
T , statically configurable in our implementation. The low-level RR scheduler decrements by
one the migrate-back timeout at each scheduling interval the thread runs on the migrated,
ACC core. When the timeout reaches 0, the scheduler migrates back the thread to its original
core. The value of T timeout affects FAM performance and no single value is optimal for

Institutional Repository - Library & Information Centre - University of Thessaly
24/09/2023 22:53:45 EEST - 44.200.101.84

48 Speedup Aware Dynamic Scheduling on Shared-ISA Architectures

all workloads [64]: a small timeout may cause excessive migrations when a thread executes
frequently faulting instructions, while a large timeout may degrade performance because
of over-subscribing ACC cores. In our implementation T = 8 scheduling intervals, which
is experimentally verified to achieve a good compromise between migration frequency and
over-subscribing ACC cores.

SPEEDSWAP Implementation

SPEEDSWAP implements dynamic thread scheduling by swapping threads between core
run queues. The SPEEDSWAP algorithm is distributed and runs independently on each
ACC core, with synchronized access to shared data. Each core’s scheduling routine invokes
the algorithm periodically, before executing the low-level RR scheduler, to look for thread
swaps which maximize global speedup. In our implementation, SWAP has an epoch length
of N = 100 scheduling intervals (each quantum scheduling interval equals 10 ms) and an
invocation period of P = 10 scheduling intervals. We have found experimentally that these
values show good performance with various workloads.

4.6.2 Experiment Methodology

For our experiments, hardware configurations consist of Basic cores, implementing just the
basic ISA, and ACC cores, implementing the additional ACC instructions. Moreover, we
exploit the FPGA’s flexibility and vary the number and type of implemented cores to analyze
the impact on scheduling. In our platform, there can be a maximum of 8 cores connecting
directly to the external RAM memory controller, without incurring bus contention. We
experiment with different ratios of Basic over ACC cores, while instantiating up to the
maximum number (8) of cores: 4:1 (4 Basic and 1 ACC core), 2:1 (4 Basic and 2 ACC cores)
and 1:1 (4 Basic and 4 ACC cores). Different ratios allow us to study the performance of
asymmetric platforms that mix and match simple and complex cores under a fixed area or
power budget. We anticipate SPEEDSWAP to perform better with a higher ratio of Basic
to ACC cores, by avoiding contention on ACC cores while scheduling threads to maximize
workload-wide speedup.

For our experiments the system is kept fully-subscribed. This means that multi-program
workloads contain as many benchmarks as the total number of cores (irrespective of core type)
and that after a benchmark completes execution, it is restarted to ensure a fully-subscribed
system throughout workload execution. An experiment finishes after each benchmark has
completed at least three runs. After the experiment is done, we compute the average
turnaround time for each benchmark by taking the mean of turnaround times of completed

Institutional Repository - Library & Information Centre - University of Thessaly
24/09/2023 22:53:45 EEST - 44.200.101.84

4.6 Experiments and Results 49

runs. Full subscription allows us to explore how the schedulers behave when the system
operates near its maximum capacity. Under-subscription is a special case where some cores
sit idle and known scheduling rules such as faster-first [64] can be used to improve utilization
of ACC cores. We leave the study of over-subscription (running more threads than the total
number of cores), which may have additional performance benefits in some workloads, as
future work.

We compare SPEEDSWAP to FAM by computing the relative workload speedup after
the workload execution finishes. For this speedup calculation, FAM is used as the baseline
as it is the state-of-the-art method for scheduling in shared-ISA platforms. The workload
speedup for comparing schedulers is the geometric mean of the measured speedup values
for each benchmark in the workload. The benchmark speedup is defined as the ratio of
turnaround times when the benchmark executes under FAM versus under SPEEDSWAP.
Formally, workload speedup (WSP) is:

WSPSWAP=FAM =
Ns

Õ
b2W

AvgT Tb;FAM

AvgT Tb;SWAP

where N is the total number of benchmarks and the set b 2W includes each benchmark in
the workload.

Complementary to workload speedup, we define a fairness metric for evaluating the
impact of dynamic scheduling in the workload, in sharing the ACC cores among benchmarks.
We define the workload Unfairness [54] as the ratio of the maximum slowdown over the
minimum slowdown considering all benchmarks in a workload. Slowdown is defined as the
ratio of the benchmark turnaround time when it executes standalone on an ACC core, without
sharing, over its turnaround time when it executes in a multi-program setup. Formally, it is
defined as:

Un f airness =
max
b2W

(T T SP
b; ACC=T T MP

b)

min
b2W

(T T SP
b;ACC=T T MP

b)

where T T SP
b; ACC is the turnaround time of benchmark b when executed standalone on a ACC

core, while T T MP
b is the turnaround time in the multi-program workload. The Unfairness

metric is an indicator of performance disparity due to dynamic scheduling affecting ACC
core sharing. Values closer to 1 indicate strong fairness, so sharing ACC cores is fair and no
benchmark slows down. Larger values indicate unfair sharing of ACC cores. FAM scheduling
is expected to be the fairest, because it does not give any priority in sharing ACC cores: a
benchmark migrates to an ACC core as soon as illegal instruction faults. This means that
benchmarks either time-share ACC cores when they have overlapping accelerated phases,

Institutional Repository - Library & Information Centre - University of Thessaly
24/09/2023 22:53:45 EEST - 44.200.101.84

50 Speedup Aware Dynamic Scheduling on Shared-ISA Architectures

resulting in uniform slowdown, or each benchmark executes on an ACC core alone when
there is no overlap, hence there is no slowdown.

SPPEDSWAP-0, selects always the highest speedup threads to execute on ACC cores,
prioritizing those threads over the rest. It is expected to be the least fair because of pri-
oritizing high speedup threads. On the other hand, SPEEDSWAP dynamically shares the
ACC cores taking into account scheduling history for maximizing workload speedup. We
expect SPEEDSWAP to be fairer than SPPEDSWAP-0 but less fair than FAM. However
SPEEDSWAP is expected to result in higher workload speedup because of its maximizing
workload speedup algorithm.

4.6.3 Multi-program Workloads

We evaluate FAM and SPEEDSWAP using multi-program workloads. The workloads include
sets of benchmarks from the SPEC CPU2006 [45] and Rodinia [20] suites. Table 3.1, shown
in the previous chapter, presents the list of the ported benchmarks, including a breakdown
of executed and the end-to-end speedup executing on an ACC versus a Basic core. As
discussed in section 3.4.2, We categorize benchmarks in High-speedup, Medium-speedup
and Low-speedup to heterogeneous multi-program workloads.

Mixing benchmarks from several speedup classes in the same workload raises scheduling
challenges for efficient execution on our shared-ISA platform. Table 4.2 shows the composed
multi-program workloads for each hardware configuration we experiment with. Hardware
configurations are denoted as XB-Y ACC, where X is the number of Basic cores and Y the
number of ACC ones in the system. For example 4B-4ACC denotes a system of 4 Basic
and 4 ACC cores. Notation for workloads shows the number of benchmarks from each
speedup class (High, Medium, Low) in the workload mix. For example, a workload denoted
as 2H-3M has 2 High-speedup benchmarks and 3 Medium ones, for a total of 5 benchmarks.
Table 4.2 also shows the particular benchmarks present in the mix. For some workloads there
is more than one instance of the same benchmark in order to achieve the intended speedup
mix. Different instances are denoted by appending a numerical extension to the original
benchmark’s name. For example in the 5H workload, there are two instances of the lud
benchmark, denoted as lud.1 and lud.2.

An experiment finishes when all benchmarks in the workload have completed at least
three runs. The system is kept fully subscribed throughout an experiment: whenever a
benchmark finishes its run, it is restarted until the experiment is done.

Institutional Repository - Library & Information Centre - University of Thessaly
24/09/2023 22:53:45 EEST - 44.200.101.84

4.6 Experiments and Results 51

Table 4.2 Co-executing program workloads per hardware configuration

4B-1ACC Benchmarks

5H cfd, streamcluster.1, lud.1, streamcluster.2, lud.2

3H-2M cfd, lud, streamcluster, milc, hmmer

2H-3M lud, streamcluster, milc, namd, hmmer

2H-3L streamcluster, lud, sjeng, bzip2, hotspot

5M hmmer, srad, backprop, bfs, gobmk

2M-3L hmmer, milc, sjeng, h264ref, nw

5L hotspot, bzip2, sjeng, astar, nw

4B-2ACC

6H cfd.1, streamcluster.1, lud.1, cfd.2, streamcluster.2, lud.2

3H-3M cfd, lud, streamcluster, milc, backprop, hmmer

3H-3L cfd, streamcluster, lud, sjeng, bzip2, hotspot

6M hmmer, milc, srad, backprop, bfs, namd

3M-3L hmmer, srad, backprop, bzip2, sjeng, hotspot

6L hotspot, bzip2, sjeng, astar, nw, libquantum

4B-4ACC

8H cfd.1, streamcluster.1, lud.1, cfd.2, streamcluster.2, lud.2, cfd.3, streamcluster.3

4H-4M cfd, lud.1, streamcluster, lud.2, milc, backprop, hmmer, srad

4H-4L cfd, lud.1, streamcluster, lud.2, bzip2, sjeng, hotspot, nw

8M hmmer.1, milc, srad, backprop, bfs, namd, gobmk, hmmer.2

4M-4L hmmer, srad, backprop, milc, bzip2, sjeng, hotspot, nw

8L hotspot, bzip2, sjeng, astar, nw, libquantum, h264ref, hotspot

Institutional Repository - Library & Information Centre - University of Thessaly
24/09/2023 22:53:45 EEST - 44.200.101.84

52 Speedup Aware Dynamic Scheduling on Shared-ISA Architectures

1

 1.5

 2

 2.5

 3

 3.5

 4

 4.5

0 2.0E
8

4.0E
8

6.0E
8

8.0E
8

1.0E
9

1.2E
9

1.4E
9

1.6E
9

1.8E
9

2.0E
9

ACC CPI
Est. ACC CPI

C
P

I

Cumulative instructions

1

 20

 40

 60

 80

 100

 120

 140

0 2.0E
8

4.0E
8

6.0E
8

8.0E
8

1.0E
9

1.2E
9

1.4E
9

1.6E
9

1.8E
9

2.0E
9

Basic CPI
Est. Basic CPI

Cumulative instructions
(a) streamcluster

1

 2

 3

 4

 5

 6

 7

0 2.0E
8

4.0E
8

6.0E
8

8.0E
8

1.0E
9

1.2E
9

ACC CPI
Est. ACC CPI

Cumulative instructions

1

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

0 2.0E
8

4.0E
8

6.0E
8

8.0E
8

1.0E
9

1.2E
9

Basic CPI
Est. Basic CPI

Cumulative instructions
(b) lud

1

 1.5

 2

 2.5

 3

 3.5

 4

0 5.0E
9

1.0E
10

1.5E
10

2.0E
10

2.5E
10

3.0E
10

3.5E
10

4.0E
10

4.5E
10

5.0E
10

ACC CPI
Est. ACC CPI

C
P

I

Cumulative instructions

1

 1.5

 2

 2.5

 3

 3.5

 4

 4.5

 5

 5.5

0 5.0E
9

1.0E
10

1.5E
10

2.0E
10

2.5E
10

3.0E
10

3.5E
10

4.0E
10

4.5E
10

5.0E
10

Basic CPI
Est. Basic CPI

Cumulative instructions
(c) namd

1

 2

 3

 4

 5

 6

 7

 8

 9

0 2.0E
8

4.0E
8

6.0E
8

8.0E
8

1.0E
9

1.2E
9

1.4E
9

ACC CPI
Est. ACC CPI

Cumulative instructions

1

 20

 40

 60

 80

 100

 120

0 2.0E
8

4.0E
8

6.0E
8

8.0E
8

1.0E
9

1.2E
9

1.4E
9

Basic CPI
Est. Basic CPI

Cumulative instructions
(d) backprop

1

 1.5

 2

 2.5

 3

 3.5

 4

0 5.0E
8

1.0E
9

1.5E
9

2.0E
9

2.5E
9

3.0E
9

3.5E
9

4.0E
9

4.5E
9

ACC CPI
Est. ACC CPI

C
P

I

Cumulative instructions

1

 1.5

 2

 2.5

 3

 3.5

 4

0 5.0E
8

1.0E
9

1.5E
9

2.0E
9

2.5E
9

3.0E
9

3.5E
9

4.0E
9

4.5E
9

Basic CPI
Est. Basic CPI

Cumulative instructions
(e) hotspot

1

 1.5

 2

 2.5

 3

 3.5

 4

 4.5

 5

 5.5

 6

0 2.0E
9

4.0E
9

6.0E
9

8.0E
9

1.0E
10

1.2E
10

1.4E
10

1.6E
10

1.8E
10

ACC CPI
Est. ACC CPI

Cumulative instructions

1
 2

 4

 6

 8

 10

 12

 14

0 2.0E
9

4.0E
9

6.0E
9

8.0E
9

1.0E
10

1.2E
10

1.4E
10

1.6E
10

1.8E
10

Basic CPI
Est. Basic CPI

Cumulative instructions
(f) astar

Figure 4.3 Comparison of real and estimated CPI values

Institutional Repository - Library & Information Centre - University of Thessaly
24/09/2023 22:53:45 EEST - 44.200.101.84

4.6 Experiments and Results 53

4.6.4 Results

Speedup Estimation

We illustrate the accuracy of the cross-core speedup estimation technique by comparing the
measured and estimated cycles per instructions (CPI). For this experiment, each benchmark
runs alone, first on a Basic core and then on an ACC core. Running the benchmark on the
Basic core, speedup estimation predicts CPI on the ACC core. Vice versa, running it on the
ACC core, speedup estimation predicts CPI on the Basic core. For each quantum scheduling
interval, we record the actual, measured CPI on the running core and the estimated CPI for
the opposite core type. At the end of the experiment, there are measurements for the actual
Basic CPI, the estimated Basic CPI, the actual ACC CPI and the estimated ACC CPI of the
benchmark. Note that the estimated speedup is equivalent to the ratio of the Basic CPI over
the ACC CPI. Figure 4.3 shows graphs for a selection of benchmarks which captures all
speedup classes, plots are similar for the rest of the programs. Each graph shows the real and
estimated CPI per core type, plotted against the cumulative count of executed instructions
in the ACC ISA, i.e., at the binary level. ACC instructions counted have executed either in
hardware (on a ACC core) or in emulation (on a Basic core).

Following from observing the results, the Estimated CPI indeed tracks closely the actual
CPI, either when running on a Basic core estimating CPI on the ACC core or vice versa.
The mean standard error is less than 5% across all benchmarks, much less in the majority
of them. Note that in these experiments, estimating the Basic CPI on an ACC core uses
the initial, average latency values for emulation routines, without any calibration due to
swapping. Nevertheless, estimation is accurate and, in a real deployment, swapping to a
Basic core due to scheduling, will probe actual emulation latencies, thus improving future
estimation accuracy.

Workload Speedup and Unfairness Metrics

Figure 4.4 shows the results on the workload speedup and unfairness metrics for all multi-
program workloads and hardware configurations. In all cases SPEEDSWAP outperforms
FAM, by a higher margin as the Basic-to-ACC core ratio increases. The experiments expose
FAM limitations, incurring congestion on ACC cores. Focusing the 4B-1ACC configuration,
SPEEDSWAP results in up to 2:5� faster execution times than FAM. Overall, taking the
geometric mean across all workloads in this configuration, shows that SPEEDSWAP has
an average speedup of 1:82� compared to FAM while SPEEDSWAP-0 slightly improves
this result being 1:88� faster than FAM. For the 4B-2ACC configuration, SPEEDSWAP is
on average 1:22� faster than FAM. SPEEDSWAP-0 has slightly less speedup being 1:17�

Institutional Repository - Library & Information Centre - University of Thessaly
24/09/2023 22:53:45 EEST - 44.200.101.84

54 Speedup Aware Dynamic Scheduling on Shared-ISA Architectures

 0

 0.5

 1

 1.5

 2

 2.5

 3

2H-3L 2H-3M 2M-3L 3H-2M 5H 5L 5M

W
or

kl
oa

d
sp

ee
du

p
(G

eo
m

et
ric

 m
ea

n)

FAM
SPEEDSWAP-0

 SPEEDSWAP

 0

 1

 2

 3

 4

 5

 6

2H3L 2H3M 2M3L 3H2M 5H 5L 5M
U

nf
ai

rn
es

s

(a) 4 Basic - 1 ACC core

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 1.6

3H-3L 3H-3M 3M-3L 6H 6L 6M

W
or

kl
oa

d
sp

ee
du

p
(G

eo
m

et
ric

 m
ea

n)

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

3H3L 3H3M 3M3L 6H 6L 6M

U
nf

ai
rn

es
s

(b) 4 Basic - 2 ACC cores

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

4H-4L 4H-4M 4M-4L 8H 8L 8M

W
or

kl
oa

d
sp

ee
du

p
(G

eo
m

et
ric

 m
ea

n)

 0

 0.5

 1

 1.5

 2

 2.5

 3

4H4L 4H4M 4M4L 8H 8L 8M

U
nf

ai
rn

es
s

(c) 4 Basic - 4 ACC cores

Figure 4.4 Workload speedup across all HW configurations, using FAM as the reference

Institutional Repository - Library & Information Centre - University of Thessaly
24/09/2023 22:53:45 EEST - 44.200.101.84

4.7 Chapter Conclusion 55

faster than FAM. SPEEDSWAP scheduling remains superior to FAM. In the 4B-4ACC
configuration, SPEEDSWAP has the least speedup across workloads, being 1:04� faster than
FAM, SPEEDSWAP-0 speedup is the same. This is because the 1:1 ratio of Basic and ACC
cores alleviates the congestion effect incurred by FAM. Specifically, due to full-subscription
of cores, the worst case in this configuration is to have at most two threads executing
concurrently on the same ACC core. Nevertheless, SPEEDSWAP scheduling results in up
to about 15% speedup over FAM, provided the workload comprises of benchmarks with
speedup disparity, such as the 4H-4L workload mix.

In some cases SPEEDSWAP-0 exhibits slightly higher speedup than SPEEDSWAP. This
occurs when the accelerated phases of benchmarks in the workload are disjoint in time.
SPEEDSWAP-0 avoids ACC core sharing by ignoring scheduling history, swapping always
highest speedup threads to ACC cores. However, in workloads where accelerated phases
overlap, SPEEDSWAP-0prioritizes highest speedup benchmarks, resulting in workload
speedup degradation and high unfairness. This is the case for the 5H and 6H workloads. In
these workloads, all benchmarks are of high speedup and execute mostly accelerated phases.
SPEEDSWAP resolves extreme unfairness, by taking into account scheduling history, thus
effectively sharing ACC cores and converging for maximizing workload-wide speedup.

4.7 Chapter Conclusion

Efficiency specialization and thread migration driven by execution phase characteristics are
essential in heterogeneous platforms to make use of performance and power optimization
opportunities. Shared-ISA systems introduce instruction-based heterogeneity which limits
thread mobility due to binary incompatibilities. The current state-of-the-art for scheduling
in shared-ISA platforms is based on fault-and-migrate which causes forced migrations,
interfering with efficient execution. In this chapter we introduced SPEEDSWAP, a distributed,
speedup-aware scheduling algorithm to perform thread swapping between heterogeneous
cores to maximize workload speedup.

SPEEDSWAP leverages a set of essential mechanisms for ISA heterogeneity and speedup
awareness. These include: a DBT method which enables execution on any shared ISA-type
core without imposing scheduling constraints, hardware and software-assisted profiling at
runtime coupled with a cross-core speedup estimation methodology and a heuristic algorithm
to find optimizing cross-core migrations.

Institutional Repository - Library & Information Centre - University of Thessaly
24/09/2023 22:53:45 EEST - 44.200.101.84

Institutional Repository - Library & Information Centre - University of Thessaly
24/09/2023 22:53:45 EEST - 44.200.101.84

Chapter 5

Performance Characterization on
Heterogeneous Datacenter Architectures

5.1 Introduction

Datacenters carry an immensely high total cost of ownership (TCO) and energy footprint.
This can be traced to the fact that datacenters are notoriously wasteful, often using as little
as 10% of the supplied power for actual data storage and processing, while exhibiting
less than 20% node utilization [43, 58]. Market analysts Frost and Sullivan report that in
2013 the aggregate power consumption of datacenters worldwide was approximately 30
GigaWatts [35], of which the USA was the largest consumer (11.56 GW) followed by the
UK (3.1 GW) and Germany (3.85 GW). Furthermore the North American and European
requirements are currently growing at a rate of 6% annually.

Micro-servers, comprised of low-power, embedded processors instead of server-class
ones, have recently emerged promising to reduce the energy consumption of datacenters.
Back-of-the-envelope estimates suggest that micro-server processors such as the Samsung
Exynos [90] and Calxeda Highbank ECX-1000 [84] consume 5 to 30 times less power than
high-end server-class counterparts, such as Intel’s Sandy Bridge and are 5 to 15 times more
energy-efficient (in integer performance per Watt) [86, 105].

Financial service providers operate datacenters which are co-located with market data
feeds, to meet the low latency requirements of real-time analytics. These datacenters incur
extraordinarily high cost of ownership due to hardware overprovisioning, their scale, and
their energy consumption. The choice of compute server architecture for these datacenters
fundamentally dictates their cost of ownership and sustainability. Unfortunately, there is a

Institutional Repository - Library & Information Centre - University of Thessaly
24/09/2023 22:53:45 EEST - 44.200.101.84

58 Performance Characterization on Heterogeneous Datacenter Architectures

lack of methodologies and metrics for fair assessment of server architectures as computational
workhorses for emerging analytics workloads.

In this chapter we present a rigorous methodology and a set of metrics for evaluating
performance and energy efficiency across heterogeneous servers in the context of financial
analytics workloads. We introduce a platform-independent workload setup and optimization
methodology, in conjunction with platform-independent metrics of performance and energy-
efficiency. Based on these tools, we fairly and thoroughly compare three server architectures
that represent vastly different price, cost, performance and power trade-offs: a Calxeda
ECX-1000 micro-server [84] based on ARM Cortex A9 cores; a Dell server based on Intel
Sandy Bridge cores; and a machine configuration based on an Intel Xeon Phi co-processor.

Our methodology yields important and often counter-intuitive findings. We establish
that a server based on the Xeon Phi processor delivers the highest performance and energy-
efficiency. However, by scaling out energy-efficient ARM micro-servers within a 2U rack-
mounted unit, we achieve competitive or better energy-efficiency than a power-equivalent
server with two Intel Sandy Bridge sockets, despite the micro-server’s slower cores. Using
a new iso-QoS (iso-Quality of Service) metric, we find that the ARM micro-server scales
enough to meet market throughput demand, i.e. a 100% QoS in terms of timely option pricing,
with as little as 55% of the energy consumed by the Sandy Bridge server.

Using the same C and SIMD code basis, we uncover several more findings of interest. The
servers exhibit vast differences in energy-efficiency due to differences in the implementation
of transcendental functions in hardware, as well as the implementation of vector units and
ISAs. We find that power saving modes employing DVFS are invariably less energy-efficient
than performance boosting modes for financial analytics workloads. We also find that
while servers exhibit good performance scaling allocating more cores, they also exhibit
non-ideal energy scaling, thus providing an opportunity for energy conservation via throttling
concurrency.

This chapter starts by discussing related work on metrics and characterization for per-
formance and energy efficiency in Section 5.2. Section 5.3 provides the background on
server comparison methodologies and the financial analytics workload. Section 5.4 discusses
code optimization and vectorization methodologies. Section 5.5 presents our experiment and
measurement methodology and metrics. Section 5.6 shows the results from applying our
methodology on different financial kernels running on heterogeneous machines. Section 5.7
elaborates on the QoS metric and presents an analytical approach for applying it. Section 5.8
concludes the chapter.

Institutional Repository - Library & Information Centre - University of Thessaly
24/09/2023 22:53:45 EEST - 44.200.101.84

5.2 Related Work 59

5.2 Related Work

Recent related work explores the performance and power consumption of low-power ARM
processor models attempting to enter the server [86, 105] and HPC markets [90]. We focus
on the domain of financial real-time analytics applications and further provide a comparison
between fully integrated ARM-based micro-servers in scale-out configurations, against high-
end Intel servers. Our study provides more insight on the viability of the ARM ecosystem for
datacenters and high-performance computing, using new platform-independent metrics and a
comprehensive method to ensure fair comparison. The work of Blem et al [13] is perhaps the
closest to ours, exploring the performance and power consumption of several ARM and Intel
processors. However, their study focuses on the energy and performance implications of
ISA choices on the different processors, rather than the use of the processors at scale or their
deployment in specific application domains. Anwar et al [6] study micro-server performance
with Hadoop workloads. Our work further advances the state of knowledge in micro-servers,
by exploring the performance and energy implications of scaling their resources up and out
and by comparing micro-servers to both general-purpose servers and accelerators targeting
the HPC market.

There is also related work measuring the energy-efficiency of specific algorithms and
numerically intensive kernels. Alonso et al [4] model the power and energy of a specific
task-parallel implementation of Cholesky factorization. Dongarra et al [31] explore the
energy footprint of dense numerical linear algebra libraries on multicore systems. Korthikanti
et al [56] analyzed the energy scalability of parallel algorithms on shared-memory multicore
architectures, focusing on the sensitivity of the the algorithms to the critical path length and
the power consumption of instruction execution and memory accesses. Our work differs in
that it explores a dynamic workload with real-time execution requirements and a mixture
of event-driven and data parallelism. We evaluate the power and energy of option pricing
kernels both in standalone mode and in the context of end-to-end market sessions to obtain a
complete view of the implications of the choice of server processors on total cost of datacenter
ownership.

Iso-metrics are common tools parallel and distributed computing. Iso-efficiency [36]
in terms of sustained to theoretical maximum speedup has routinely been used to compare
combinations of parallel algorithms and architectures. Iso-energy-efficiency [101, 102]
explores the influence of core scaling and frequency scaling on the energy-efficiency of
algorithms and architectures. We establish a new metric that caters to the needs of real-time
analytical workloads and emerging architectures that differ vastly in power budgets and form
factors, and further establish that the new metric is more appropriate to compare server value
propositions given modern hardware diversity.

Institutional Repository - Library & Information Centre - University of Thessaly
24/09/2023 22:53:45 EEST - 44.200.101.84

60 Performance Characterization on Heterogeneous Datacenter Architectures

Related to our work is also prior research on improving the energy-efficiency of real-
time financial workloads. Schryver et al [26] present a methodology for efficient design
of hardware accelerators for option pricing, whereby they cap the power consumption of
the accelerator and the system as a whole. Morales et al [79] propose an FPGA design,
programmable using OpenCL to build energy-efficient versions of binomial option pricing
algorithms. They report a performance of 2,000 Options/second which is consistent or lower
than the performance attained by our Xeon Phi and scaled-out Viridis implementations, but
with a power budget of 20W, which is lower than that of any of our platforms. The method
presented in this chapter fixes a workload-centric QoS metric instead of a system-centric
metric, while allowing flexibility in tuning both system and workload parameters to meet the
objective metric.

5.3 Background

Comparing servers requires a fair and unbiased methodology which takes into consideration
production workloads and deployment environments. A major challenge lies in the fact
that different server propositions represent vastly different price, performance and operating
power points.

We stipulate that a comparison methodology should be platform neutral and require that
the server architectures under consideration meet the same, tangible target, be it performance,
Quality of Service (QoS), power consumption, or energy consumption. We thus allow scale-
out or scale-up of each server to meet the set target, while comparing other metrics of interest
to rank the servers. Furthermore, the metrics used should reflect workload fluctuation, but
not be unduly influenced by non-deterministic environmental, hardware or system artifacts.
Finally, we stipulate that any comparison should be based on the same code base, developed
with similar coding effort on each server.

We use real-time option pricing workloads, which represent one of the most important
and performance-critical domains of financial analytics. Option pricing is an inherently
parallel problem, as each option contract is independently defined over a single stock. A
portable implementation with similar effort across servers, described in our earlier work [34],
exploits parallelism in the workload by using UDP multicast channels to distribute prices
and POSIX threads to scale-out the processing on each core and multiple hardware contexts
on each core, if present.

In addition we use the same code base to exploit data parallelism offered by vector
processing units. Our code base uses manual loop unrolling and vectorization using pragmas.
Our implementation is expressed in the C language, which is the norm in computational

Institutional Repository - Library & Information Centre - University of Thessaly
24/09/2023 22:53:45 EEST - 44.200.101.84

5.3 Background 61

finance. The C language standard presents a number of challenges for implicit vectorization
by a compiler [3], due to inability to verify loop bounds and pointer aliasing.

On the other hand, C compilers provide implicit vectorization with associated pragmas
and command line options to control the vectorization process. These features help the
authoring of portable SIMD code and we leverage them in this work. Still, there is no
common standard for compilers to abide by to provide the same level of vectorization nor is
there a method to enforce different compilers to produce comparable vectorization output.
We offer insights on how to address this problem in our methodology.

5.3.1 Computing Option Prices

In finance, the term Option means a derivative product which is a contract giving the holder
the right to either buy (Call option) or to sell (Put option) one or more underlying assets, such
as a fixed number of shares in a company, for a defined price and either on or before a contract
end date. An Options contract, unlike a Futures contract, does not impose an obligation on
the holder to exercise their right. There are several types of Options distinguished by the
terms in their contract. We construct real-time analytics workloads that continuously execute
Monte Carlo or Binomial Tree option pricing models. These can price both the so-called
exotic American or Bermudan options as well as European options. We focus on European
options for which the Black-Scholes equation provides a closed form solution, against which
our results can be compared for accuracy.

Black and Scholes [11, 12] proposed a second-order partial differential equation which
models the variation of the price of a European vanilla option, contractual strike price P, over
time in years T , assuming that:

• the underlying asset price (spot price), S follows a log normal distribution,

• the volatility s of S is constant and

• the risk free interest rate, or rate of return, r, expressed with continuous compounding
is constant.

Under these conditions an analytic solution is:

Price = (�1)p �SN((�1)pd1)�Pe�rT N((�1)pd2)
�

(5.1)

In this equation p = 1 for a Call option and p = 0 for a Put option and d1 and d2 are
defined by:

Institutional Repository - Library & Information Centre - University of Thessaly
24/09/2023 22:53:45 EEST - 44.200.101.84

62 Performance Characterization on Heterogeneous Datacenter Architectures

d1 =
1

s
p

T

�
log
�

S
N

�
+

r +s2

2
T
�

and d2 = d1�s
p

T (5.2)

where N(x) is the cumulative normal distribution function (CDF).
Moving beyond the limitations of the Black-Scholes model, the price of an option on any

given date can be modeled using stochastic calculus, essentially simulating the path of the
underlying variables over a set of paths within a time window. Analytical solutions for the
stochastic equations are not generally possible so that a variety of computational numerical
solution methods have been developed. European vanilla options can also be priced using
these numerical methods. We apply two models, with distinct computational characteristics,
as described next.

Monte Carlo (MC)

At the center of a Monte Carlo simulation of option pricing is a rate-limiting for-loop, an
aspect that it shares in common with HPC applications in many fields. For a Put option the
formula is [87]:

Price =
e�rT

N

N

å
i=1

max
�

0;S�Pe(r�s2
2)T+s

p
T xi

�
(5.3)

In equation 5.3, xi (i = 1 : : :N) are a set of random numbers drawn from the standard
normal distribution. The formula for a Call option is similar to the Put option.

Given that s ;r and T are constant within the context of the loop, the implementation
of equation 5.3 creates a compute bound process dominated by the exponential function,
with relatively few loads and stores to memory. One bottleneck is the control of numerical
round-off error associated with a floating point summation process over a large number of
terms [46, 67]. Another is the generation of sets of good quality pseudo-random numbers
(PRN) because the computed price converges only slowly as O

�
1p
N

�
. This is significant

because the operation count during execution of the for-loop code scales as O(N). In our work,
uniform random numbers are generated using the 32-bit version of the Mersenne Twister
algorithm [77], then transformed to a standard normal distribution using the Box-Muller
formula.

Binomial Tree (BT)

The binomial tree option pricing model [51] builds a lattice of options prices with a root
node at the starting date and multiple nodes at the end date. The model decomposes the
time variable into discrete steps, each corresponding to a level in the lattice. The price can

Institutional Repository - Library & Information Centre - University of Thessaly
24/09/2023 22:53:45 EEST - 44.200.101.84

5.4 Optimization Methodology 63

be computed at any level in the tree, which corresponds to an intermediate date within the
contract, thereby making the binomial model suitable for pricing American and Bermudan
options. In general at each time point i, there is a vector of option prices computed, Si j. Given
price Si j and a pair of factors u and d representing the up and down movements, the two
possible prices at the next level are S(i+1) j = uSi j and S(i+1)(j+1) = dSi j where the factors
u;d are constant across the tree and are formally defined as:

u = es
p

T and d =
1
u

(5.4)

The complete algorithm therefore has three steps:

• Given S0, the current spot price, work forward from today, the date of computation, to
the expiration date (timepoint N), applying the up and down factors at each step and
thereby computing all final node prices SN j.

• At each final node of the tree (level n) compute the exercise value.

• Iterate backwards from the final nodes in the tree and for every intermediate node
compute the option price assuming risk neutrality, which means that the price is
computed as the discounted value of the future payoff.

The final step; a nested for-loop, dominates the time taken by the computation. The
number of updates performed scales as O(N2

2) with each update consisting of two floating
point multiplications and one floating point addition. This contrasts with the MC algo-
rithm, where there is a need to repeatedly compute transcendental mathematical functions.
The convergence of the method is a function of the number of timesteps chosen for the
computations.

It is not necessary to hold all of the prices Si j in memory at the same time. Only
the prices at timepoint i are needed. A vector with the elements being overwritten as the
values are processed during the backwards iteration process suffices for this purpose. The
BT implementation is thus dominated by pointer dereferencing to generate array indices
and by data move activity, in contrast to the random number selection and sum reduction
characteristics of the MC algorithm.

5.4 Optimization Methodology

Initially we developed a common C language code base implementing the MC and BT
kernels described above to compile on all servers. This includes an algorithmic optimization
which we developed for the MC kernel which we describe below. We used the gcc and icc

Institutional Repository - Library & Information Centre - University of Thessaly
24/09/2023 22:53:45 EEST - 44.200.101.84

64 Performance Characterization on Heterogeneous Datacenter Architectures

compiler suites (icc is not available on the ARM system and gcc is not available on the Xeon
Phi) to apply the loop unrolling and auto-vectorization facilities offered by each compiler
to our code base. Setting command line flags on the compiler is all that is needed to enable
the automatic parallelization. Furthermore, we experimented with an approach in which we
applied manual loop unrolling and direct programming with available vector registers and
vector instructions through either assembler code or compiler supplied intrinsic functions
which map to these assembler instructions.

Our methodology is common across all platforms although the details of the manual
implementation differ due to the characteristics of each instruction set architecture. In
the following sub-sections, we explain the salient details of how our we instantiated our
optimization techniques in each kernel. Our work reflects a fixed development effort of
approximately thirty days to create, optimize and test the code base.

5.4.1 Algorithmic Optimization of the Monte Carlo Equation

The max() function in the MC kernel is an if-statement which hampers performance and
power efficiency optimizations, as will be clear in the results section. Given that all variables
in the MC loop are invariant except for the random number xi, we calculated a threshold
Thres such that any xi need only be included in the the summation when xi > Thres. For Call
options

Thres =
1

s
p

(T)
loge

P

Se(r�s2T
2)

(5.5)

This pre-screening leads to algebraic simplifications facilitating loop vectorization as ex-
plained below and also allows several multiply operations to be factored outside the sum
loop, which now becomes:

M

å
j=1

es
p

T x j (5.6)

where M < N is the number of random numbers passing the threshold test. The loop length
is now shorter and many executions of the expensive exp() function are therefore avoided.
We observed in some cases a four-fold reduction but this depends on the values of the input
data defining equation (5.5).

5.4.2 Vectorization of the Monte Carlo Kernel

We first unrolled the loop in equation 5.6 and then used vectorization to expedite the work
within each iteration. We compute the summation in single precision and on Intel SSE
and ARM NEON unrolled by a factor of 4, populating a single 128 bit argument with the

Institutional Repository - Library & Information Centre - University of Thessaly
24/09/2023 22:53:45 EEST - 44.200.101.84

5.4 Optimization Methodology 65

exponents. For the AVX implementation, we exploited the wider 256 bit registers unrolling
by a factor of 8. In all cases passing the argument to the vectorized version of the Cephes
software library [80] allowed us to compute the exponentials in parallel. The Cephes library
is an open source math library with versions tailored for the different vector units used in our
study.

Vectorization of the Binomial Tree Kernel

The binomial tree kernel is dominated by an inner loop computation, a step of which can be
expressed as

xi = axi + bxi+1 (5.7)

This loop step exhibits an anti-dependency between iterations. This dependency needs
to be removed in order to boost performance through vectorization. Notably, the GCC
compiler for all our servers failed to recognize this vectorizing opportunity. However, The
Intel compiler (ICC) managed to resolve this dependency and produce vectorized code.

Figure 5.1 Vectorization of the Binomial Tree kernel

We have constructed two handcrafted vectorized solutions for the kernel: one which
replaces the inner loop entirely by invoking a routine written in vectorized assembly, and
another using compiler vector intrinsics placed inline with the C source code. The latter are
referred to as INTRINSICS_xxx build and runs, where xxx depends on the platform. These
two handcrafted vectorization solutions overcome the apparent anti-dependency and enable
us to compare the low-level manual assembly solution versus a more abstract, intrinsic-based
vectorization method. Both versions employ loop unrolling in conjunction with vectorization
to reduce loop overhead. Figure 5.1 shows schematically the vectorized BT calculation. The
unroll factor is equal to the vector register width measured in double-precision floating point
numbers (single-precision in the case of the ARM Cortex A9 NEON unit). Similarly to the
Monte Carlo algorithm, we present a detailed example of vectorizing the BT calculation,

Institutional Repository - Library & Information Centre - University of Thessaly
24/09/2023 22:53:45 EEST - 44.200.101.84

66 Performance Characterization on Heterogeneous Datacenter Architectures

using the the SSE 128-bit instruction set as an example. The sequence of steps for the
vectorized iteration is as follows:

• Partition the XMM registers into three sets and load eight double precision values per
iteration into one set of four XMM registers which we view as a unit.

• Avoiding repeated memory accesses, replicate the register contents into a separate set
of four registers rearranging the contents as if performing a push-up operation on the
unit. One extra memory access is needed to load a value to fill the gap at the lower end.

• Prepare a third set consisting of two vector registers such that one holds two copies of
a and the other two copies of b. This can avoided in subsequent iterations.

• Apply multiply and add vector instructions to this register configuration to compute
eight values for the left hand side of equation 5.7, where these values are in the first
register set.

• Store contents of the first set of registers to RAM.

On the AVX and KNC architectures, the wider registers allow for sixteen values to be
processed in each iteration. Notwithstanding the availability of only single precision vector
floating point operations on the ARM NEON unit, a number of differences in the instruction
set architectures emerged between platforms when working at the assembler code level. SSE
and effectively the same throughput as AVX.

Regarding step 2, Intel SSE provides inter-lane shift operations on XMM registers making
the task possible in three vector instructions. The AVX instruction set lacks inter-lane shifts
on YMM registers so that an intricate sequence of seven permutation and blend operations
are needed to perform the same operation and this affects the results as shown later. In
contrast, the NEON and KNC instruction sets provide a vector align/extract operation thereby
requiring just a single instruction. Regarding step 4, only KNC provides a fused multiply-add
operation meaning that the step requires just two vector instructions while the others require
three instructions.

5.4.3 Compiler Based Vectorization

To test compiler-based vectorization (labeled AUTOVECT in our analysis) with GCC, we
first used the same GCC compiler flags on all servers: -O3 -Wall -g. We linked the libevent
(needed by the data feed handler, to be discussed further in Section 5.5), ipmi-1.4.4, math
and Pthread libraries statically during the compilation process. To test vectorization with ICC

Institutional Repository - Library & Information Centre - University of Thessaly
24/09/2023 22:53:45 EEST - 44.200.101.84

5.5 Experiment Setup and Measurement Methodology 67

on the Intel Sandy Bridge server, we used the -mavx flag to enable code generation for the
AVX vector instruction set. For the Intel Xeon Phi server we used the ICC -mmic flag. As
for ARM, we used the -mcpu=cortex-a9 -mfpu=neon GCC compiler flags. Alternatively the
vectorization flags were all disabled for the plain vanilla no-vectorization (labeled NOVECT)
builds and runs.

5.5 Experiment Setup and Measurement Methodology

Our experimental setup includes three platforms on which we execute the OptionPricer
and collect workload-specific performance and energy metrics. The next section defines
those metrics, section 5.5.2 describes the platforms and section 5.5.3 provides details of the
methodology used to obtain the power readings and calculate the energy consumption.

5.5.1 Definition of Metrics

Option pricing in finance takes place by consuming a live streaming data feed of stock
market prices, often within the context of high frequency trading (HFT), and for pre-trade
risk analytics. The execution time characteristics of option pricing are different from those
of numerical simulation in computational science using HPC.

By contrast to scientific codes which have measurable setup and post-processing phases,
option pricing runs relatively small standalone kernels at very high frequency with little
set up and post processing. Option pricing on live market data feeds is a form of event
processing. Based on these distinctions we present and use three workload-specific metrics
to compare servers under financial analytics workloads:

Joules/option (Jopt) The energy consumed per execution of a pricing kernel is a fundamental
metric given that this step is repeated at very high frequency throughout a trading session.
In the case of an actively traded stock, with a high number of defined option contracts,
this building block is executed repeatedly throughout the trading day. Correspondingly, a
reduction in this value can result in significant energy savings for providers offering option
pricing services.

Time/option (Sopt) In contrast to providers, end users, particularly those engaged in HFT,
are sensitive to end-to-end latency, thereby constraining the elapsed time per option metric.
This metric in turn can be used to evaluate the total time to price all contracts for a given
stock. Option pricing shares this time-to-solution performance metric in common with HPC
applications.

Institutional Repository - Library & Information Centre - University of Thessaly
24/09/2023 22:53:45 EEST - 44.200.101.84

68 Performance Characterization on Heterogeneous Datacenter Architectures

QoS New prices may arrive at any time in a trading session. This means that any contracts
not yet priced using the previous price update are abandoned and deemed unusable. Related
to the Time/option metric, but also dependent on market activity, we define the Quality
of Service metric (QoS) as the ratio of successful to the total requested option pricings.
The QoS metric is an application-specific measure on meeting option pricing performance
requirements. It is useful for characterizing application-related performance and scalability
offered by deploying multiple nodes. It is worth noting that QoS depends on the stock price
change rate and other market activities at the time of its calculation, so it will be different
each time it is calculated in a live market scenario.

5.5.2 Hardware Platforms

We used three platforms, one state-of-the-art server architecture with Intel Sandy Bridge
processors (briefly referred to as “Intel” in the rest of this chapter), one state-of-the-art HPC
architecture with Intel Xeon Phi Knights Corner coprocessor (referred to as “Xeon Phi”) and
a Calxeda ECX-1000 micro-server with ARM Cortex A9 processors, packaged in a Boston
Viridis rack-mounted unit (referred to as “Viridis”). We used the 4:7:3 version of the GCC
compiler and the Intel Compiler ICC version 14:0:020130728 for code generation, the latter
only on Intel platforms. The three platforms offer the possibility of scaling their frequency
and voltage through a DVFS interface. We conducted experiments with the highest and
lowest voltage-frequency settings on each platform, to which we refer as performance mode
experiments and powersave mode experiments respectively. The details of the platforms are
as follows:

Intel is an x86-64 server with Sandy Bridge architecture, with 2 Intel Xeon CPU E5-2650
processors operating at a default frequency of 2.00GHz and equipped with 8 cores each. The
machine has 32GB of DRAM (4 � 8GB DDR3 @ 1600Mhz). The frequency in powersave
is 1:2 GHz, while in performance mode it is 2:0 GHz. The server runs on Linux CentOS 6.5
with kernel version 2:6:32 (2:6:32�431:17:1:el6:x86_64).

Xeon Phi (Knights Corner) is a many core, x86-64 co-processor board (5110P model) over
PCIe. It features the many integrated cores (MIC) architecture which offers sixty, 4-way
hyperthreaded cores, each equipped with a very wide (512-bit) vector unit. The board has 6
or more GB of GDDR5 as a DRAM. In performance mode the frequency is 1.053GHz and
in powersave mode it is 842.104MHz. High performance and high energy efficiency are the
result of featuring a highly parallel many core design while running in low clock speeds.

The system runs on Linux kernel 2.6.38.8+mpss3.2.1.

Institutional Repository - Library & Information Centre - University of Thessaly
24/09/2023 22:53:45 EEST - 44.200.101.84

5.5 Experiment Setup and Measurement Methodology 69

Viridis is a 2U rack mounted server containing sixteen micro-server nodes connected
internally by a high-speed 10 Gb Ethernet network. The platform appears logically as sixteen
servers within one box. Each node is a Calxeda EnergyCore ECX-1000 comprising 4 ARM
Cortex A9 cores and 4 GB of DRAM running Ubuntu 12.04 LTS. Viridis has a frequency of
1:4GHz in performance mode and a frequency of 200MHz in powersave mode.

Note, when referring to the different platform settings we will be using the following
notation to represent the platform configuration [Nodes used � Cores Used � Threads per
Core].

5.5.3 Methodology

In this section we provide details of our proposed experimental and measurements methodol-
ogy, which are both critical for fair comparison between our platforms.

Experiment Methodology

We collected Facebook stock price ticks during a full New York Stock Exchange session and
replayed them using UDP multicast to all nodes in each platform, as shown in Figure 5.2.
This is as close as an experiment needs to be to reality without any external glitches or factors
affecting the setup or measurements. We used libevent to capture the event of an option
price changing, then the OptionPricer to calculate new prices for 617 Facebook options at
the maximum speed feasible. It is worth noting that libevent is only used for its capacity
to trigger option pricing events throughout this work.

Figure 5.2 Measurement setup using trace data

Power and Energy Measurements

Each measurement path exhibits different characteristics [74]. The Power supply unit (PSU)
converts the AC wall socket supply to DC, but can be up to 30% inefficient. The voltage
regulator module (VRM) stabilizes the DC supply before it reaches the CPU. The exact form
of the current supply path differs from one platform to the next but to provide a fair basis

Institutional Repository - Library & Information Centre - University of Thessaly
24/09/2023 22:53:45 EEST - 44.200.101.84

70 Performance Characterization on Heterogeneous Datacenter Architectures

������ ������ ������

�������	������ �������	������

Figure 5.3 The path of the current supply to the CPU, showing power measurement points

for comparison we identified two distinct points on the path which are measurable on both
platforms.

Measuring the power at the point before the PSU, which we label PRE-PSU, gives a value
that corresponds to the true economic cost for operating each platform. This would give an
overall picture of the external energy budget used by the different platforms. However, the
energy consumed internally by the compute cores is also relevant to our study, as it isolates
the energy effects of processors and discards artifacts of cooling and packaging, the study of
which is beyond the scope of this work.

To isolate the energy consumption of processor packages, we capture power consumption
at the point before the VRM, which we label PRE-VRM. For the Intel server, PRE-VRM mea-
surement is facilitated by reading the Running Average Power Limit (RAPL) counters while
the same functionality on Viridis is available through the Intelligent Platform Management
Interface (IPMI) counters, which is also available on the Xeon Phi platform.

Figure 5.4 shows the power versus time plot for a standalone execution of the MC kernel.
The BT execution plot is similar.

��������

����

��������

����

��������

����

���� ������ ���	�� ������ ������ ���
���� ���
���� ���
�	��

���
��

���
���

���
���

���
���

��
���

���
���

��
���

���
���

���
���

���
���

��

����������������������� ���

Figure 5.4 CPU power vs. time for the MC kernel

The profile of instantaneous power versus time follows a very sharp trapezoidal shape:
the CPU is fully utilized during execution and there are no periods of inactivity. This is
a common feature with other numerically intensive HPC applications. It means that the

Institutional Repository - Library & Information Centre - University of Thessaly
24/09/2023 22:53:45 EEST - 44.200.101.84

5.6 Fair Comparison of Servers and Micro-servers 71

measured average power is a representative measure of energy consumption throughout
kernel execution.

In each experiment with multiple cores or nodes, we measure the worst execution time
across the cores and use it as the elapsed time for all pricings. Each experiment was repeated
at least three times to compute the mean kernel execution execution time and mean power
consumption, so that the standard error of those means is below 5%. Energy consumption for
a kernel is the product of the average power and the worst case elapsed time for the kernel
execution, under the realistic assumption that kernels keep processors constantly busy while
pricing options.

5.6 Fair Comparison of Servers and Micro-servers

In this section we are using our workload-specific and platform-independent metrics to
directly compare the three server platforms. Detailed results are provided in Table 5.1.
Results include comparisons using the vectorized or non-vectorized version of each kernel
that achieves the fastest time per option priced on each platform. Furthermore, there are three
sets of experiments for each kernel on all platform, with varying number of convergence
iterations to reflect the different margins of error from the ideal analytical (Black Scholes)
pricing solution. Trading accuracy for execution speed emulates realistic market scenarios.
We also report PRE-VRM power measurements on all platforms.

5.6.1 Monte Carlo Pricing

A single Viridis micro-server underperforms a single Sandy Bridge socket in the MC kernel
by one order of magnitude, with both running in performance mode. Among the many
microarchitectural difference of the two platforms, our experiments suggest that the lack
of efficient hardware implementation of transcendental functions on the ARM Cortex A9
processors is the critical culprit. That said, the Sandy Bridge socket expends almost six times
as much power as the single micro-server.

Taking the MC kernel with one million iterations as an example, we observe that counter-
balancing low performance with low lower consumption yields a modest 18% energy loss
to price a single option on the Viridis. Notably, scaling out with the Viridis micro-server
achieves a near ideal fifteen-fold terms of time per option priced, with sustained energy
consumed per option, as power also scales linearly to the number of micro-server nodes.
Scaling out from one to two Sandy Bridge sockets yields a non-ideal speedup of 1.63, while
power consumption doubles. This narrows the gap in energy consumed per option to under

Institutional Repository - Library & Information Centre - University of Thessaly
24/09/2023 22:53:45 EEST - 44.200.101.84

72 Performance Characterization on Heterogeneous Datacenter Architectures

3% between the Sandy Bridge (better) and the Viridis (worse) when scaling out. Sixteen
ARM micro-server nodes outperform two Sandy Bridge sockets in time per option, but incur
an additional power tax of approximately 15 Watts. Running the kernel with more or less
than a million iterations indicates similar performance and energy-efficiency trends. The gap
in energy per option priced between the Viridis micro-servers and the Sandy Bridge in scale
out setup is a marginal 1.4%.

The Xeon Phi server consumes more than two times less energy per option in the Monte
Carlo kernel compared to both Viridis and the Sandy Bridge server. Notably, the Xeon
Phi does so without employing vectorization and with a significant boost in performance
and energy-efficiency from hyperthreading on each core. Taking the case with one million
iterations as an example (other cases behave similarly), the Phi with all cores and threads
activated provides a seemingly modest 34% performance improvement over the Viridis
(even more compared to Sandy Bridge) but offers a significantly better power-efficiency
proposition with 60 cores and 240 threads burning under 60 Watt, when the scaled out Viridis
micro-servers offers 64 cores at just over 100 Watt.

Conclusion: For a real-time option pricing workload using Monte Carlo methods, the Xeon
Phi is the best performing and most energy-efficient option. A scaled out ARM micro-server
is on par with a heavyweight Sandy Bridge server in terms of energy cost, but can provide
higher performance.

5.6.2 Binomial Tree

The lesser dependence on the BT kernel on transcendental functions becomes apparent from
single-node experiments: A single micro-server is 5.5 times slower than a single Sandy
Bridge socket (vs. 7.5 times in the MC kernel). A single Phi core is 2.5 times faster than a
single ARM Cortex A9 core thanks to the higher quality vectorization of the BT kernel on
the Phi and the more powerful SIMD set available, compared to the A9.

Scaling out the micro-server yields dramatically lower energy consumption per option
priced than the Sandy Bridge server. For example, running the BT kernel with 7000 iterations
consumes 81% less Joules per option on micro-servers compared to the Sandy Bridge.
Sixteen micro-servers also outperform two Sandy Bridge sockets by as much as 46%. Note
that in scale out mode the power consumption of both the Viridis and the Sandy Bridge
servers are comparable. This surprising result – considering the difference in single-core
performance between the two platforms – can be explained by workload effects. The Viridis
server demonstrates the fact that the BT model has two computational phases. The first phase
performs setup computations in linear complexity, involving transcendental mathematical

Institutional Repository - Library & Information Centre - University of Thessaly
24/09/2023 22:53:45 EEST - 44.200.101.84

5.6 Fair Comparison of Servers and Micro-servers 73

Table 5.1 Fastest Sopt profiles for standalone kernel experiments

Kernel and N VEC TYPE PRE-VRM Sopt Jopt
Platform P̄(W)

MC Viridis(1x4x1) 0.5M INTRINSICS 7.137 0.053298 0.380382
1.0M NEON128 7.258 0.105496 0.765691
2.0M NEON128 7.354 0.210560 1.548440

MC Viridis(16x4x1) 0.5M NEON128 101.930 0.003761 0.383398
1.0M INTRINSICS 102.680 0.007205 0.739765
2.0M NEON128 103.100 0.014316 1.476006

MC Intel(1x8x1) 0.5M AUTOVECT 44.899 0.007138 0.320485
1.0M SSE128 44.852 0.013896 0.623238
2.0M SSE128 45.078 0.027672 1.247364

MC Intel(2x8x1) 0.5M SSE128 87.814 0.004331 0.379259
1.0M NOVECT 90.999 0.008274 0.753282
2.0M AUTOVECT 96.691 0.016213 1.568116

MC Xeon Phi(1x60x1) 0.5M KNC512 48.690 0.004589 0.223363
1.0M AUTOVECT 52.022 0.008925 0.464319
2.0M AUTOVECT 54.065 0.017400 0.940726

MC Xeon Phi(1x60x2) 0.5M NOVECT 51.821 0.003582 0.185607
1.0M NOVECT 55.246 0.006720 0.371162
2.0M NOVECT 57.632 0.012860 0.741166

MC Xeon Phi(1x60x4) 0.5M NOVECT 55.087 0.002967 0.163309
1.0M NOVECT 59.288 0.005348 0.317089
2.0M NOVECT 62.804 0.010188 0.639805

BT Viridis(1x4x1) 4000 NEON128 6.246 0.007143 0.044611
5000 NEON128 6.317 0.011250 0.071070
7000 INTRINSICS 7.063 0.022279 0.157352

BT Viridis(16x4x1) 4000 NEON128 93.017 0.000649 0.060332
5000 NEON128 93.783 0.000973 0.091239
7000 INTRINSICS 98.650 0.001702 0.167785

BT Intel(1x8x1) 4000 INITRINSICS_AVX256 40.494 0.001302 0.052729
5000 INITRINSICS_AVX256 45.754 0.002222 0.101594
7000 AVX256 48.642 0.005192 0.252550

BT Intel(2x8x1) 4000 AVX256 86.159 0.000710 0.060584
5000 INITRINSICS_AVX256 80.621 0.001464 0.118039
7000 INITRINSICS_AVX256 95.177 0.003192 0.303158

BT Xeon Phi(1x60x1) 4000 INTRINSICS 23.833 0.000387 0.009229
5000 INTRINSICS 25.417 0.000617 0.015824
7000 KNC512 29.000 0.000745 0.021609

BT Xeon Phi(1x60x2) 4000 INTRINSICS 26.583 0.000401 0.010666
5000 KNC512 29.861 0.000466 0.013968
7000 KNC512 39.238 0.000731 0.028691

BT Xeon Phi(1x60x4) 4000 INTRINSICS 24.167 0.000544 0.013149
5000 AUTOVECT 26.389 0.000586 0.015522
7000 INTRINSICS 30.917 0.000891 0.027531

Institutional Repository - Library & Information Centre - University of Thessaly
24/09/2023 22:53:45 EEST - 44.200.101.84

74 Performance Characterization on Heterogeneous Datacenter Architectures

functions, which are accelerated by Intel hardware. The second phase is the tree scanning
phase, which has quadratic complexity, using only floating point addition and multiplication
operations. These operations execute natively on both platforms. While the Sandy Bridge
has an advantage over the ARM on the initialization phase, this advantage diminishes in the
computation phases and is marginalized as the number of iterations of the BT kernel grows.

The Xeon Phi offers once again an excellent power-efficiency proposition. Compared
to the Viridis micro-servers in scale out setup, the Phi achieves twice the performance, at a
third of the power budget, for a sixfold reduction of energy per option priced.

Conclusion: For a real-time option pricing workload using Binomial Tree methods, the
Xeon Phi is the best performing and most energy-efficient option. A scaled out ARM
micro-server is significantly faster and more energy-efficient than a Sandy Bridge server with
equivalent power consumption.

5.6.3 QoS Discussion

In a live market situation the question arises whether option pricing can keep pace with
the rate of arrival of new stock prices. We use the QoS metric defined in Section 5.5 to
consider the implications of dynamic deadlines set by market conditions on the option pricing
workload. We define an iso-QoS comparison method, where we compare the performance,
power and energy of different platforms, with setups that achieve the same QoS for a
given workload. One can conduct similar exercises using iso-metrics that equate power,
performance, energy consumption, or combined efficiency metrics.

When a new stock price arrives, this event triggers a computation of all available option
contracts. The most stringent QoS requirement is “all-or-nothing": the pricing of all options
must complete before another stock price update, otherwise any computation performed
before the deadline is discarded, having wasted time and energy. Indicatively, Figure 5.5
shows the percentage of successful all-or-nothing option pricing computations as a function
of the cumulative number of price updates, sorted into bins of 0.25 second intervals. The data
for our experiments are taken from a trading session of 6.5 hours where 10,156 price updates
occurred for the Facebook stock, which results in the cumulative profile shown in the figure.

Figure 5.5 shows the QoS profile of the Viridis and Sandy Bridge platforms with two
scenarios of Monte Carlo (half a million iterations) and Binomial Tree (4000 iterations). Both
platforms run in performance mode and are scaled to the maximum number of cores available.
The figure shows the performance gap between options pricing on the two platforms. The
micro-server is able to price all options using Monte Carlo slightly faster ([2:25� 2:50]
seconds time bin), while the Sandy Bridge is slower ([2:50� 2:75] seconds bin) but both

Institutional Repository - Library & Information Centre - University of Thessaly
24/09/2023 22:53:45 EEST - 44.200.101.84

5.7 The Mathematical Basis of the QoS Metric 75

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

0.
0-

0.
25

0.
25

-0
.5

0

0.
5-

0.
75

0.
75

-1
.0

0

1.
0-

1.
25

1.
25

-1
.5

0

1.
50

-1
.7

5

1.
75

-2
.0

0

2.
00

-2
.2

5

2.
25

-2
.5

0

2.
50

-2
.7

5

2.
75

-3
.0

0

3.
00

-3
.2

5

3.
25

-3
.5

0

3.
50

-3
.7

5

3.
75

-4
.0

0

4.
00

-4
.2

5

4.
25

-4
.5

0

4.
50

-4
.7

5

4.
75

-5
.0

0

>
5.

00

%
 s

uc
ce

ss
 p

ric
in

g
(a

ll-
or

-n
ot

hi
ng

)

Time interval (s)

Viridis(16x4x1) MC 0.5M NEON128 at 2.3 seconds, 13.5%

Intel(2x8x1) MC 0.5M SSE128 at 2.7 seconds, 12.5%

Viridis(16x4x1) BT 4000 NEON128 0.4s, 100%

Intel(2x8x1) BT 4000 AVX256 0.44s, 100%

Figure 5.5 All-or-nothing pricing vs. stock price update intervals

platforms exhibit low QoS (13.5% and 12.5% respectively), which may be unacceptable for
an end user. On the other hand, both platforms exhibit 100% QoS with the Binomial Tree
kernel, where the Viridis micro-servers also reduce total energy consumption by as much as
55%.

In the next section we elaborate on the QoS metric and on the iso-QoS comparison
methodology we devise to rank servers based on energy efficiency.

5.7 The Mathematical Basis of the QoS Metric

Many of the world leading financial trading venues are order driven markets. This means
that investors, especially high frequency traders, independently submit buy and sell orders
to matching engine software that needs to operate at high speed. These engines cross buy
and sell orders to create trades and are a key part of the electronic trading platforms which
underpin high frequency trading. Sequential models, which are the basis to analyze trading
patterns in high frequency trading, assume a Poisson distribution [24] to model the arrival of
orders affecting stock price into the system.

Institutional Repository - Library & Information Centre - University of Thessaly
24/09/2023 22:53:45 EEST - 44.200.101.84

76 Performance Characterization on Heterogeneous Datacenter Architectures

5.7.1 The QoS Cumulative Frequency Distribution

In this section we explain how we create a QoS curve as a function of the inter-arrival time
intervals of stock price updates. Inter-arrival time intervals between successive stock updates
are commonly referred to as time gaps. It is important to note that the QoS curve of a stock
is solely dictated by the market activity, reflected to the frequency distribution of the time
gaps of this particular stock, on a specific trading day. In the next section we explain how we
can determine whether a given platform can meet the required QoS value or not, by using the
Sopt ad Jopt metrics of this platform in conjunction with QoS curves.

From our data, we created a histogram of the distribution of time gaps between price
updates for the Facebook stock. Further processing these data, we compute the cumulative
frequency distribution (CFD) which indeed exhibits the characteristics of a Poisson CFD.
This reflects the assumptions of the sequential model of financial trading.

Normally in a CFD the value assigned to bin i is the sum of all values in bins 1; : : : ; i. In
our case these are time bins, so that frequency refers to the number of price updates arriving
at time intervals up to and including that represented by bin i. There is a value of the time
gap, below which it is not possible to satisfy the hard constraint of computing prices for
all defined options. We denoted this by G. This value depends on the performance of the
platform, the number of options to be priced and the particular financial kernel used. Our
QoS metric actually corresponds to the sum over all time bins greater than G. It follows that
our QoS function is obtained by reflecting the initial CFD around its mid-point on the time
axis. This means that we can fit our observed time gap distribution to the form

QoS(t) = 1� e�l
t

å
i=0

l t

bt!c
(5.8)

Furthermore, we define the QoS as the percentage of successful all-or-nothing pricings over
the total number of pricings triggered by a price update.

The data for our experiments are taken from a trading session of 6.5 hours where 10;156
price updates occurred for the Facebook (FB) stock, resulting in the cumulative distribution
function representing the QoS shown in figure 5.6. The solid line shows the measured values
while the dashed curve shows the result of fitting the measured data to the analytic expression
for the cumulative Poisson distribution. Further confirmation of the Poisson-like behavior of
the arrival of price updates is seen in the profile for the Google stock which is also presented
in figure 5.6. Similar price update profiles occur in work [68] studying prices on the German
DAX exchange.

Institutional Repository - Library & Information Centre - University of Thessaly
24/09/2023 22:53:45 EEST - 44.200.101.84

5.7 The Mathematical Basis of the QoS Metric 77

����

������

������

������

������

������

������

���	��

���
��

������

��������

���� �������� ���� �������� ���� �������� ���� �������� ���� �������� ���� �������� ����

��
���

���
���

���
���

���
���

���
���

���
���

���
���

���
���

���
���

���
���

���
���

��

��������������������������� ����������

�!�"���	�������#�����$����������

�%���&
�'��� �����������(�������������������������)�
�*���+�����������,���)����������

����

������

������

������

������

������

������

���	��

���
��

������

��������

���� �������� ���� �������� ���� �������� ���� �������� ���� �������� ���� �������� ����

��
���

���
���

���
���

���
���

���
���

���
���

���
���

���
���

���
���

���
���

���
���

��

��������������������������� ����������

�!�"�"�!�������������#�����$����������

�%���&
�'��� �����������(�������������������������)�
�*���+�����������,���)����������

Figure 5.6 Cumulative frequency distribution of Facebook and Google stock price updates
for full trading sessions on July 7th and 15th 2014

5.7.2 Iso-QoS and Total Energy Consumption

Let us set a required QoS Y % for all our platforms. From the QoS curve we can determine a
minimum time constraint, G, that we must satisfy. Within G seconds we need to compute all
Nopt options defined on the stock. First of all a platform can only satisfy this constraint if

G� Nopt�Sopt (5.9)

Assuming this is met, we know that the energy consumed in each time gap is then

Egap = Nopt� Jopt (5.10)

where we ignore idle power. Next, we know from the definition of QoS that the total number
of time gaps in which we will perform the computation is

Ngaps = floor(Y �Total number of updates for the session) (5.11)

so that the energy consumed doing option pricing while meeting QoS Y % is

EQoS=Y = Ngaps � Egap (5.12)

Platforms may then be ranked, for this QoS, in order of energy consumption.

5.7.3 Application to Platforms

We have applied the equations defined above using the QoS curve in figure 5.6. Table 5.2
is the result of the analysis of delivering option pricing with a 10% QoS using the MC
kernel operated with 0.5M iterations. Only the five cases (platform plus software) which

Institutional Repository - Library & Information Centre - University of Thessaly
24/09/2023 22:53:45 EEST - 44.200.101.84

78 Performance Characterization on Heterogeneous Datacenter Architectures

can satisfy the constraint in equation (5.9) are reported. We noted that at 50% QoS, none

Table 5.2 MC kernel (N=0.5M and QoS=10%)

Platform VEC TYPE Sopt Jopt Energy(KJ)

Viridis(16�4�1) INTRINSICS 0.0038 0.3830 239.85

Intel(2�8�1) AUTOVECT 0.0044 0.3794 237.58

Xeon Phi(1�60�1) KNC512 0.0046 0.2234 139.92

Xeon Phi(1�60�2) NOVECT 0.0036 0.1856 116.26

Xeon Phi(1�60�4) INTRINSICS 0.0030 0.1584 99.19

of our platform/software combinations could satisfy the constraint in equation (5.9). We
have commented on this characteristic previously [34] explaining that it means only that a
subset of all available options can be priced, but not the full set. The MC kernel involves
relatively expensive evaluation of the natural logarithm in the Box Muller transform and the
exponential function to compute the option price.

We repeated the analysis with the BT kernel, which is dominated by multiply add
operations, and report results for QoS values of 80% and 40% in tables 5.3 - 5.8.

Table 5.3 BT kernel (N=4000 and QoS=80%)

Platform VEC TYPE Sopt Jopt Energy(KJ)

Intel(2�8�1) AVX256 0.0007 0.0611 306.49

Viridis(16�4�1) NEON128 0.0006 0.0603 302.41

Intel(1�8�1) INTRINSICS 0.0013 0.0527 264.32

Xeon Phi(1�60�4) INTRINSICS 0.0005 0.0131 65.88

Xeon Phi(1�60�2) INTRINSICS 0.0004 0.0107 53.50

Xeon Phi(1�60�1) INTRINSICS 0.0004 0.0092 46.27

In figure 5.7 we show how energy of the scaled out configurations varies with the number
of points used. We are comparing Viridis(16�4�1) to Intel(2�8�1) and show how the
Viridis can actually outperform Intel’s Sandy Bridge while provisioning for an 80% QoS.

5.8 Chapter Conclusion

In this chapter we have presented a fair methodology for comparing server platforms for
real-time financial analytics. Our methodology considers performance, energy-efficiency, and

Institutional Repository - Library & Information Centre - University of Thessaly
24/09/2023 22:53:45 EEST - 44.200.101.84

5.8 Chapter Conclusion 79

Table 5.4 BT kernel (N=5000 and QoS=80%)

Platform VEC TYPE Sopt Jopt Energy(KJ)

Intel(2�8�1) INTRINSICS 0.0015 0.1180 591.65

Intel(1�8�1) INTRINSICS 0.0022 0.1017 509.69

Viridis(16�4�1) INTRINSICS 0.0010 0.0912 457.05

Xeon Phi(1�60�1) INTRINSICS 0.0006 0.0157 78.58

Xeon Phi(1�60�4) INTRINSICS 0.0006 0.0152 76.23

Xeon Phi(1�60�2) KNC512 0.0005 0.0139 69.76

Table 5.5 BT kernel (N=7000 and QoS=80%)

Platform VEC TYPE Sopt Jopt Energy(KJ)

Intel(2�8�1) INTRINSICS 0.0032 0.3038 1522.85

Viridis(16�4�1) INTRINSICS 0.0017 0.1679 841.83

Xeon Phi(1�60�2) AUTOVECT 0.0007 0.0281 140.84

Xeon Phi(1�60�4) INTRINSICS 0.0009 0.0275 138.02

Xeon Phi(1�60�1) KNC512 0.0007 0.0216 108.28

Table 5.6 BT kernel (N=4000 and QoS=40%)

Platform VEC TYPE Sopt Jopt Energy(KJ)

Intel(2�8�1) AVX256 0.0007 0.0611 153.24

Viridis(16�4�1) NEON128 0.0006 0.0603 151.21

Intel(1�8�1) INTRINSICS 0.0013 0.0527 132.16

Xeon Phi(1�60�4) INTRINSICS 0.0005 0.0131 32.94

Xeon Phi(1�60�2) INTRINSICS 0.0004 0.0107 26.75

Xeon Phi(1�60�1) INTRINSICS 0.0004 0.0092 23.13

Institutional Repository - Library & Information Centre - University of Thessaly
24/09/2023 22:53:45 EEST - 44.200.101.84

80 Performance Characterization on Heterogeneous Datacenter Architectures

Table 5.7 BT kernel (N=5000 and QoS=40%)

Platform VEC TYPE Sopt Jopt Energy(KJ)

Intel(2�8�1) INTRINSICS 0.0015 0.1180 295.82

Intel(1�8�1) INTRINSICS 0.0022 0.1017 254.85

Viridis(16�4�1) INTRINSICS 0.0010 0.0912 228.52

Xeon Phi(1�60�1) INTRINSICS 0.0006 0.0157 39.29

Xeon Phi(1�60�4) INTRINSICS 0.0006 0.0152 38.11

Xeon Phi(1�60�2) KNC512 0.0005 0.0139 34.88

Table 5.8 BT kernel (N=7000 and QoS=40%)

Platform VEC TYPE Sopt Jopt Energy(KJ)

Intel(2�8�1) INTRINSICS 0.0032 0.3038 761.42

Intel(1�8�1) AVX256 0.0052 0.2526 632.95

Viridis(16�4�1) INTRINSICS 0.0017 0.1679 420.92

Xeon Phi(1�60�2) AUTOVECT 0.0007 0.0281 70.42

Xeon Phi(1�60�4) INTRINSICS 0.0009 0.0275 69.01

Xeon Phi(1�60�1) KNC512 0.0007 0.0216 54.14

0

200

400

600

800

1000

1200

1400

1600

Intel(2 � 8� 1) Viridis(16 � 4� 1)

E
ne

rg
y

(K
J)

4000
5000
7000

Figure 5.7 BT kernel energy consumption scaling (at QoS=80%) of Viridis(16�4�1) and
Intel(2�8�1)

Institutional Repository - Library & Information Centre - University of Thessaly
24/09/2023 22:53:45 EEST - 44.200.101.84

5.8 Chapter Conclusion 81

QoS impact on energy consumption and hence the cost of provisioning these services. We
have based our methodology on workload-specific but platform-independent metrics, which
facilitated direct performance and cost comparisons. These comparisons benefit directly
datacenter operators during hardware procurement, but also developers of financial services
during exercises to reduce service cost while sustaining competitive performance and QoS in
their products. Moreover, they can guide dynamic resource allocation policies for meeting
performance targets while achieving energy efficiency by selecting the most energy efficient
but QoS compliant resources across heterogeneous servers. Notably, our study used real
stock market streaming data and captured the dynamic, event-driven nature of real-time
financial analytics workloads.

Our results show that micro-servers based on ARM processors are viable contenders
to state-of-the-art general-purpose servers. Scaled out micro-server configurations achieve
similar or better performance and similar or improved energy-efficiency under a fixed power
budget. However, micro-servers cannot match the densely packaged many-core accelerators,
such as the Xeon Phi. Based on our experimental results with real market data for a trading
session, micro-servers promise up to 45% less energy compared to a standard HPC server
while providing the same quality of service.

Institutional Repository - Library & Information Centre - University of Thessaly
24/09/2023 22:53:45 EEST - 44.200.101.84

Institutional Repository - Library & Information Centre - University of Thessaly
24/09/2023 22:53:45 EEST - 44.200.101.84

Chapter 6

Conclusions and Future Work

6.1 Summary of Contributions

6.1.1 Dynamic Binary Adaptation on Shared-ISA Architectures

We have presented two new binary adaptation techniques for Shared-ISA architectures, that
is Dynamic Binary Rewriting (DBR) and Dynamic Binary Translation (DBT). Our novel
binary-level techniques enable both cross-core, transparent execution of unmodified binaries
but also cross-core thread migration at any point in time. By contrast, Fault-And-Migrate
(FAM), which is the state-of-the-art technique for transparent execution, imposes forced
migrations that preclude applying any optimizing scheduling strategies and can lead to
degraded performance. DBR and DBT are designed to be fast and lightweight by adapting
the binary on-demand and with a reduced scope on code. Moreover, they do not require
any change on the compilation framework or prior binary instrumentation and they operate
transparently to the programmer, invoked by the OS as system services.

Specifically, DBR operates on binary code which has been statically targeted for the
basic ISA. It retargets parts of the code to accelerating instructions when the host core ISA
includes them. Conversely it can revert retargeted code to the original, basic instructions, if
the thread executing this code section is moved to a basic core because of scheduling policy.
DBR builds on techniques such as dynamic control flow discovery, indirect branch sampling
and peephole analysis, enhancing them for Shared-ISA execution.

DBT complements DBR by operating on binaries which have been statically targeted
for the accelerated ISA. In DBT we implement a novel fault-and-rewrite approach. The
OS traps instruction execution faults when an accelerating instruction executes on a basic
core and invokes DBT on-demand to replace this faulted instruction with a trampoline to an
emulation routine implemented with basic instructions. DBT can revert back trampolines to

Institutional Repository - Library & Information Centre - University of Thessaly
24/09/2023 22:53:45 EEST - 44.200.101.84

84 Conclusions and Future Work

the original accelerating instructions when scheduling policy moves the thread executing this
code section to a basic core.

We evaluated DBR and DBT compare with FAM. The purpose of this evaluation is to
quantify the overhead of dynamic binary adaptation that provides increase flexibility through
anytime cross-core thread migration compared to the state-of-the-art FAM approach which
imposes forced migrations. Evaluation has shown that dynamic binary adaptation does
not add significant overhead, on a periodic migration scenario DBR increases execution
time by about 40% while DBT has less overhead about 10% compared with FAM. A case
study of a Speedup Proportional Dynamic Scheduling (SPDS) policy on multi-program
workloads shows that this overhead is recoverable by dynamic scheduling compared to a
FAM scheduling policy. Specifically, SPDS with DBT executes workloads about 50% faster
than FAM, while SPDS with DBR executes them about 20% faster.

6.1.2 Speedup Aware Dynamic Scheduling on Shared-ISA Architec-
tures

We have presented a novel scheduling framework for Shared-ISA architectures (SPEEDSWAP)
which enables speedup-aware dynamic scheduling policies on Shared-ISA architectures. Our
framework builds on cross-core migration, possible through our Dynamic Binary Translation
(DBT) method, and a novel instruction-level profiling methodology at runtime for speedup
awareness. These mechanisms enable the design and implementation of informed dynamic
scheduling policies to optimize the execution of multi-program workloads.

In the context of our framework, we developed a dynamic scheduler which targets
to maximize workload speedup using a heuristic algorithm to swap threads periodically
between basic and accelerating cores. The heuristic algorithm operates in epochs (an
epoch is a collection of successive scheduling quantum intervals) during which it stores
per-thread scheduling information, including the time each thread spent executing on an
accelerating core and its average speedup. The scheduling algorithm runs decentralized
on each accelerating core and periodically assesses possible thread swaps evaluating the
projected acceleration using the speedup estimation technique. It swaps threads only if this
swap maximizes the estimated workload speedup.

We evaluated our dynamic scheduler against a state-of-the-art dynamic scheduler based on
Fault-And-Migrate (FAM) and experimented with different hardware configurations, altering
the number of cores and the ratio of accelerating to basic cores. SPEEDSWAP enables
an informed dynamic scheduling approach enable by on-demand cross-core migration and
speedup estimation as opposed to any state-of-the-art FAM scheduler which is oblivious

Institutional Repository - Library & Information Centre - University of Thessaly
24/09/2023 22:53:45 EEST - 44.200.101.84

6.1 Summary of Contributions 85

to speedup and relies on forced migration that can cause over-subscription. Evaluation has
shown that SPEEDSWAP outperforms FAM based dynamic scheduling and results in faster
execution times the fewer accelerating cores are. Indicatively, SPEEDSWAP can results in up
to 2:5� faster execution times than FAM when there is one accelerating core per four basic
ones. Even in the most favorable configuration for FAM, where there is one accelerating core
for each basic core, the SPEEDSWAP scheduler is never worse than FAM and can improves
up to 15% the workload execution time.

6.1.3 Performance Characterization on Heterogeneous Datacenter Ar-
chitectures

We have presented a rigorous methodology and a set of new iso-comparison metrics to
evaluate the performance and energy efficiency of resource allocation across a diverse set
of server platforms, including micro-servers and many-core platforms. We define platform-
independent though workload specific metrics for fairly comparing those servers despite
differences in deployment, architecture and power/performance monitoring capabilities. At
the center of our methodology are iso-comparisons on performance and energy. Specifically,
the Quality-Of-Service (QoS) metric, built using machine-level metrics, expresses perfor-
mance in a platform-independent way and is applicable to a wide variety of workloads in the
datacenter domain. Comparing the energy efficiency of machines for iso-QoS targets is a
fair measure of performance as perceived by the service user, thus enables a fair assessment
despite heterogeneity. These comparisons also benefit datacenter operators for hardware
procurement and provisioning.

We apply our methodology on a real-time financial workload for option pricing, which
implements a financial analytics service. We evaluate a variety of heterogeneous servers,
including an ARM-based micro-server, a typical Intel Xeon machine and a Xeon Phi many-
core platform which represents the future generation of server processors. Moreover, we
experiment with different levels of code optimization and scale-up and scale-out execution.
Our conclusions are that micro-servers offer a viable, more energy efficient alternative to
general-purpose servers consuming up to 45% less energy, provided scale-out execution is
possible. However high throughput, manycore platforms, such as the Xeon Phi architecture,
present the best performance and energy efficiency proposition.

Institutional Repository - Library & Information Centre - University of Thessaly
24/09/2023 22:53:45 EEST - 44.200.101.84

	Related publications
	Contents
	List of Figures
	List of Tables

