
University of Thessaly

Doctoral Thesis

Intelligent information caching in novel
network architectures

Author:

Konstantinos Poularakis

Supervisor:

Dr. Athanasios Korakis

A thesis submitted in partial fulfilment of the requirements

for the degree of Doctor of Philosophy

in the

Department of Electrical and Computer Engineering

January 2016

Institutional Repository - Library & Information Centre - University of Thessaly
11/05/2024 18:13:15 EEST - 18.117.73.223

http://www.uth.gr
http://www.inf.uth.gr

Institutional Repository - Library & Information Centre - University of Thessaly
11/05/2024 18:13:15 EEST - 18.117.73.223

Declaration of Authorship

I, Konstantinos Poularakis, declare that this thesis titled, ’Intelligent information

caching in novel network architectures’ and the work presented in it are my own. I

confirm that:

� This work was done wholly or mainly while in candidature for a research degree

at this University.

� Where any part of this thesis has previously been submitted for a degree or any

other qualification at this University or any other institution, this has been clearly

stated.

� Where I have consulted the published work of others, this is always clearly at-

tributed.

� Where I have quoted from the work of others, the source is always given. With

the exception of such quotations, this thesis is entirely my own work.

� I have acknowledged all main sources of help.

� Where the thesis is based on work done by myself jointly with others, I have made

clear exactly what was done by others and what I have contributed myself.

Signed:

Date:

Institutional Repository - Library & Information Centre - University of Thessaly
11/05/2024 18:13:15 EEST - 18.117.73.223

Institutional Repository - Library & Information Centre - University of Thessaly
11/05/2024 18:13:15 EEST - 18.117.73.223

UNIVERSITY OF THESSALY

Abstract

Department of Electrical and Computer Engineering

Doctor of Philosophy

Intelligent information caching in novel network architectures

by Konstantinos Poularakis

A significant portion of today’s network traffic is due to recurring downloads of a few

popular contents (e.g., movies, video clips and daily news). It has been observed that

replicating the latter in caches installed at network edge -close to users- can drastically

reduce network bandwidth usage and improve content access delay. In this thesis, such

caching architectures are studied starting with the hierarchical structure architecture

and moving to emerging architectures that enable caching at the wireless edge. In

particular, we develop mechanisms that make caching decisions about where and which

content item to cache and manage the routing of content among caches. The novelty of

our work lies on exploiting the special characteristics of user content access such as (i)

the diversity of user demand in terms of the required quality level of content (e.g., spatial

resolution and frame rate of video), (ii) the concurrency in accessing content across users

which allows serving multiple requesters via a common multicast stream and (iii) the

regularity of user mobility patterns which can be used for predicting future access to

cache-endowed nodes. These are cutting-edge approaches that can achieve significant

performance and cost-reduction benefits over the state-of-the-art methods.

Institutional Repository - Library & Information Centre - University of Thessaly
11/05/2024 18:13:15 EEST - 18.117.73.223

http://www.uth.gr
http://www.inf.uth.gr

Institutional Repository - Library & Information Centre - University of Thessaly
11/05/2024 18:13:15 EEST - 18.117.73.223

ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΙΑΣ

Περίληψη

Τμήμα Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών

Διδακτορικό Δίπλωμα

Ευφυής αποθήκευση πληροφορίας σε νέες αρχιτεκτονικές δικτύων

Κωνσταντίνος Πουλαράκης

Ένα σημαντικό μέρος του διαδικτυακού φόρτου σήμερα οφείλεται σε επαναλαμβανόμενες

λήψεις ενός μικρού αριθμού δημοφιλών αρχείων (π.χ. ταινίες, βίντεο κλιπ και νέα της

ημέρας). Έχει παρατηρηθεί ότι η τοποθέτηση αντιγράφων των τελευταίων σε κρυφές μνήμες

(caches) εγκατεστημένες στα άκρα του δικτύου - κοντά στους χρήστες - μπορεί να μειωσεί

δραστικά την κατανάλωση εύρους ζώνης του δικτύου και να βελτιώσει την καθυστέρηση

πρόσβασης των χρηστών. Στην παρούσα διατριβή, μελετώνται αρχιτεκτονικές προσωρινής

αποθήκευσης περιεχομένου (caching) ξεκινώντας από τα δίκτυα ιεραρχικής δομής και

συνεχίζοντας σε καινοτόμες αρχιτεκτονικές οι οποίες επιτρέπουν την προσωρινή

αποθήκευση στα άκρα των ασύρματων δικτύων. Συγκεκριμένα, αναπτύσσουμε μηχανισμούς

οι οποίοι λαμβάνουν τις αποφάσεις σχετικά με το που και ποιο αρχείο θα αποθηκευτεί και τη

διαχείριση της δρομολόγησης του περιεχομένου στο δίκτυο. Η καινοτομία έγκειται στην

αξιοποίηση των ιδιαίτερων χαρακτηριστικών της πρόσβασης περιεχομένου από τους

χρήστες, όπως (i) η ποικιλομορφία των απαιτήσεων των χρηστών όσον αφορά το επίπεδο

ποιότητας του περιεχομένου (π.χ., χωρική ανάλυση και ρυθμός ανανέωσης πλαισίων βίντεο),

(ii) οι ταυτόχρονες αιτήσεις περιεχομένου μεταξύ των χρηστών γεγονός το οποίο επιτρέπει

την εξυπηρέτηση πολλαπλών αιτούντων μέσω μιας κοινής αποστολής (multicast) και (iii) τα

πρότυπα κινητικότας των ασύρματων χρηστών τα οποία μπορούν να χρησιμοποιηθούν για

την πρόβλεψη της μελλοντικής πρόσβασης στις caches. Αυτές είναι προσεγγίσεις αιχμής οι

οποίες δύναται να επιτύχουν σημαντική βελτίωση στην απόδοση και μείωση του κόστους

του δικτύου σε σύγκριση με τις υπάρχουσες τεχνικές.

Institutional Repository - Library & Information Centre - University of Thessaly
11/05/2024 18:13:15 EEST - 18.117.73.223

Institutional Repository - Library & Information Centre - University of Thessaly
11/05/2024 18:13:15 EEST - 18.117.73.223

Acknowledgements

I would like to thank all the members of the thesis committee; Prof. Athanasios Korakis,

Iordanis Koutsopoulos, Leonidas Georgiadis, Elias Houstis, Aikaterini Housti, Spyros

Lalis and Antonios Argyriou.

I am deeply indebted to Prof. Leandros Tassiulas for first taking me as an undergraduate

and Master’s student, guiding me through my first steps in research and sharing his

numerous ideas, many of which form the foundations of this thesis.

Last, I would like to thank the “Alexander S. Onassis Public Benefit Foundation” for

the financial support through a scholarship for the years 2013-2015.

viii

Institutional Repository - Library & Information Centre - University of Thessaly
11/05/2024 18:13:15 EEST - 18.117.73.223

Institutional Repository - Library & Information Centre - University of Thessaly
11/05/2024 18:13:15 EEST - 18.117.73.223

x

Publications

The results, the ideas and figures are included in the following publications:

International Journals

[J.1] K. Poularakis, L. Tassiulas, “On the Complexity of Optimal Content Placement

in Hierarchical Caching Networks”, IEEE Transactions on Communications, 2016,

subject to minor revision.

[J.2] K. Poularakis, G. Iosifidis, I. Pefkianakis, L. Tassiulas, Martin May, “Mobile

Data Offloading through Caching in Residential 802.11 Wireless Networks”, IEEE

Transactions on Network and Service Management, 2016, to appear.

[J.3] K. Poularakis, G. Iosifidis, V. Sourlas, L. Tassiulas, “Exploiting Caching and

Multicast for 5G Wireless Networks”, IEEE Transactions on Wireless Communi-

cations, 2016, to appear.

[J.4] K. Poularakis, L. Tassiulas, “Code, Cache and Deliver on the Move: A Novel

Caching Paradigm in Hyper-Dense Small-cell Networks”, IEEE Transactions on

Mobile Computing, 2016, subject to minor revision.

[J.5] K. Poularakis, L. Tassiulas, “Cooperation and information replication in wireless

networks”, Royal Society, Philosophical Transactions A, 2016, to appear.

[J.6] K. Poularakis, G. Iosifidis, L. Tassiulas, “Approximation Algorithms for Mobile

Data Caching in Small Cell Networks”, IEEE Transactions on Communications,

vol. 62, no. 10, pp. 3665-3677, October 2014.

International Conferences

[C.1] K. Poularakis, G. Iosifidis, A. Argyriou, I. Koutsopoulos, L. Tassiulas, “Caching

and Operator Cooperation Policies for Layered Video Content Delivery”, IEEE

International Conference on Computer Communications (INFOCOM), 2016, to

appear (Acceptance rate: 18.2%).

[C.2] K. Poularakis, G. Iosifidis, A. Argyriou, L. Tassiulas, “Video Delivery over Het-

erogeneous Cellular Networks: Optimizing Cost and Performance”, IEEE Inter-

national Conference on Computer Communications (INFOCOM), pp. 1078-1086,

2014 (Acceptance rate: 19.3%).

[C.3] K. Poularakis, G. Iosifidis, V. Sourlas, L. Tassiulas, “Multicast-aware Caching

for Small Cell Networks”, IEEE Wireless Communications and Networking Con-

ference (WCNC), pp. 2300-2305, 2014.

Institutional Repository - Library & Information Centre - University of Thessaly
11/05/2024 18:13:15 EEST - 18.117.73.223

[C.4] K. Poularakis, G. Iosifidis, L. Tassiulas, “Approximation Caching and Rout-

ing Algorithms for Massive Mobile Data Delivery”, IEEE Global Communications

Conference (GLOBECOM), pp. 3534-3539, 2013.

[C.5] K. Poularakis, L. Tassiulas, “Exploiting User Mobility for Wireless Content De-

livery”, IEEE International Symposium on Information Theory (ISIT), pp. 1017-

1021, 2013.

Institutional Repository - Library & Information Centre - University of Thessaly
11/05/2024 18:13:15 EEST - 18.117.73.223

Contents

Declaration of Authorship ii

Abstract iv

Greek Abstract vi

Acknowledgements viii

Publications x

Contents xii

1 Introduction 2

1.1 Motivation . 2

1.2 Outline and Contributions . 4

1.3 Literature Review . 7

1.3.1 Wired network caching . 7

1.3.2 Wireless network caching . 8

2 Hierarchical Caching 10

2.1 Introduction . 10

2.2 System model and problem formulation 12

2.3 Complexity of HCP problem . 15

2.3.1 Hardness of general case . 15

2.3.2 Special case: caches installed on a single hierarchy path 17

2.4 Approximation algorithms . 19

2.4.1 An 1.582-approximation algorithm for two-level hierarchies 19

2.4.2 Extension to multiple-level hierarchies 22

2.5 Performance evaluation . 23

3 Joint Caching and Routing in Wireless Networks 28

3.1 Introduction . 29

3.2 System Model and Problem Formulation 30

xii

Institutional Repository - Library & Information Centre - University of Thessaly
11/05/2024 18:13:15 EEST - 18.117.73.223

Contents xiii

3.2.1 System Model . 31

3.2.2 Motivating Example . 32

3.2.3 Problem Formulation . 33

3.3 Reduction to Facility Location Problem 34

3.3.1 The Reduction . 36

3.3.2 The Reduction Proof . 37

3.4 Approximation Algorithms . 39

3.4.1 Approximation Ratios for the UHCMFL Problem 40

3.4.2 Approximation Ratios for the JRC-UR Problem 41

3.4.3 The Case of Uniform-capacity SBSs 44

3.5 Performance Evaluation . 44

3.5.1 Simulation Setup and Methodology 45

3.5.2 Parameter Impact Analysis . 46

3.5.2.1 Impact of the Cache Sizes 46

3.5.2.2 Impact of the Transmission Bandwidth Capacities 46

3.5.2.3 Impact of the File Request Pattern 47

3.6 Extension to the Case of Residential User-owned Caches 48

3.6.1 Dataset Analysis . 48

3.6.2 Residential User Model . 50

3.6.3 MNO Model . 51

3.6.4 Dataset-driven Evaluation . 53

4 Caching Layered Video 58

4.1 Introduction . 58

4.2 System Model and Problem Statement . 60

4.2.1 System Model . 60

4.2.2 Problem Statement . 62

4.3 Delivering Versions . 64

4.3.1 MVD Problem Formulation . 64

4.3.2 MVD Solution Method . 67

4.4 Delivering Layers and Video Streaming . 69

4.4.1 Layered Encoding . 69

4.4.2 Video Streaming Concerns . 71

4.5 Performance Evaluation . 72

4.6 Cooperative Caching of Layered Video . 76

4.6.1 Cooperative Caching Model . 76

4.6.2 Cooperative Caching Policies . 78

4.6.3 Evaluating Cooperative Caching 81

5 Multicast-aware Caching 84

5.1 Introduction . 84

5.2 System Model and Problem Formulation 87

5.2.1 System Model . 87

5.2.2 Motivating Example . 89

5.2.3 Problem Formulation . 91

5.3 Complexity and Solution Algorithms . 92

5.3.1 Complexity . 92

Institutional Repository - Library & Information Centre - University of Thessaly
11/05/2024 18:13:15 EEST - 18.117.73.223

Contents xiv

5.3.2 Algorithm with performance guarantees 95

5.3.3 Heuristic algorithm . 98

5.4 Performance Evaluation . 99

5.4.1 Algorithms and evaluation setup 100

5.4.2 Evaluation results . 102

6 Mobility-aware Caching 106

6.1 Introduction . 106

6.2 System model and problem formulation 108

6.2.1 System model . 109

6.2.2 Motivating example . 111

6.2.3 Problem formulation . 112

6.3 Complexity and centralized small-scale solution 113

6.3.1 Complexity . 113

6.3.2 MIP formulation . 114

6.4 Distributed large-scale solution . 115

6.4.1 Relation to the Markov chain model 115

6.4.2 Upper bound on the objective function 117

6.4.3 Distributed algorithm . 119

6.4.4 Implementation considerations . 122

6.5 Performance evaluation . 122

6.5.1 Algorithms . 123

6.5.2 Mobility model . 123

6.5.3 Demand model . 125

6.5.4 Evaluation results . 125

7 Conclusions and Future work 130

7.1 Conclusions . 130

7.2 Future work . 131

7.2.1 Incomplete information . 131

7.2.2 Communication overhead . 132

7.2.3 Conflicting objectives . 132

Appendix 134

Bibliography 142

Institutional Repository - Library & Information Centre - University of Thessaly
11/05/2024 18:13:15 EEST - 18.117.73.223

Institutional Repository - Library & Information Centre - University of Thessaly
11/05/2024 18:13:15 EEST - 18.117.73.223

To my family, Niko, Christina, Stergio and Olga, and to Mihali.

Institutional Repository - Library & Information Centre - University of Thessaly
11/05/2024 18:13:15 EEST - 18.117.73.223

Institutional Repository - Library & Information Centre - University of Thessaly
11/05/2024 18:13:15 EEST - 18.117.73.223

Chapter 1

Introduction

Contents

1.1 Motivation . 2

1.2 Outline and Contributions . 4

1.3 Literature Review . 7

1.3.1 Wired network caching . 7

1.3.2 Wireless network caching . 8

1.1 Motivation

Today, we are witnessing an explosive growth in global internet traffic, that is expected

to nearly triple between 2014 to 2019 [1]. This trend is mainly fueled by the penetration

of fixed-line and mobile broadband packages and the popularity of modern communica-

tion devices with large screens and rich multimedia capabilities (smart phones, tablets,

notebooks, in-vehicle communication systems). These developments herald the advent

of a new era in communication systems, with novel challenges for content delivery over

wired and wireless networks. Namely, network operators (NOs) are facing a bandwidth

crunch due to the gap between network capacity of their networks and demand. This

results in degradation of user service quality and threatens the economic viability of

NOs.

Traditional methods for increasing network capacity, such as technology upgrades (e.g.,

from DSL to Fiber, from WCDMA to LTE, etc.) and additional spectrum acquisition,

may be prohibitively expensive, require significant time to implement, or even be in-

feasible due, for example, to prior spectrum allocation for other uses (television, radio,

military purposes). More importantly these methods will most probably be outpaced by

1

Institutional Repository - Library & Information Centre - University of Thessaly
11/05/2024 18:13:15 EEST - 18.117.73.223

Chapter 1. Introduction 2

the continuing traffic increase, requiring novel out-of-the-box ideas and business models

for moving the field forward.

An alternative approach for mitigating the effects of traffic growth is to replicate pop-

ular content items in caches installed at network edge -close to users. This way, the

cached content can be rapidly delivered to requesters, decreasing the bandwidth con-

sumption in the core network. Clearly, such caching schemes are more effective when a

few popular contents (e.g., movies, video clips, daily news, etc.) attract an important

portion of network traffic. The idea of in-network caching is traced back to the early

90’s, when proxy servers were used as caches to improve the scalability of world wide

web. Since then, various caching architectures have been proposed, differing in the level

of cooperation between the caches in serving user requests [2]. More recently, the con-

cept of information-centric networks (ICNs) appeared, which aims to change the way

of accessing the content on the internet, by uniquely naming contents and replicating

them almost ubiquitously throughout the network [3], [4]. Today, storage is considered

as a network resource that is managed similarly to link bandwidth, and related prod-

ucts and technical solutions exist [5]. The large-scale deployment of in-network caching

architectures is favoured by the downward slope in storage space price (a few tens of US

dollars per terabyte currently [6]).

Caching has been used successfully in Content Distribution Networks (CDNs) to manage

the tremendous growth in broadband data consumption, by replicating popular content

in various locations and in effect closer to users [7]. At the same time, caching is

expected to play a crucial role in emerging 5G wireless communication networks. Indeed,

there are currently various proposals for using caching at the network core so as to

reduce transit bandwidth costs, at the base stations to overcome the limited backhaul

capacity problem [8], and even at the users’ devices in order to exploit their devices’

capabilities [9]. There is currently growing consensus that such architectural innovations

can multiply network throughput, reduce networks’ expenditures, and improve user

perceived performance.

Interestingly, the wireless industry has already begun to commercialize systems that

enable caching in the radio access network (RAN). Notable examples include Alto-

bridge’s “Data at-the-Edge” solution [10], Nokia Siemens Networks’ liquid application

solution [11] and Saguna Networks’ Open RAN platform [12] with caching at the LTE

base stations. There have been also some initial developments of such technology at the

WiFi Access Point (AP) side. For example, the Linksys Smart WiFi [13] and the Hi-

WiFi [14] routers can be connected with external storage devices using their USB ports.

Importantly, their advanced operating system is capable of running various applications

to customize content caching schemes. These efforts were encouraged by measurement

Institutional Repository - Library & Information Centre - University of Thessaly
11/05/2024 18:13:15 EEST - 18.117.73.223

Chapter 1. Introduction 3

studies that indicated substantial performance benefits, up to two thirds reduction in

mobile traffic, by using RAN caching in 3G [15] and 4G [16] networks.

Despite the plethora of work in this field, there are still many questions to be answered.

For example, how to make caching decisions about where and which content item to cache

and manage the routing of content among caches? Second, how the specific requirements

of different types of user applications impact the efficiency of the caching algorithms?

For example, in the context of video streaming applications, different users may ask for

different quality-levels (e.g., spatial resolutions, frame rates, etc.) of the same video file

and therefore the caching problem needs to be revisited to consider caching the different

video-quality segments. Third, how the caching algorithms developed for wired networks

can be extended to the wireless domain? The latter question is not trivial to answer due

to the unique characteristics of the wireless networks, such as (i) the broadcast nature

of the wireless medium, which allows serving many concurrent requests via a common

multicast stream, and (ii) the mobility of the users who may be handed-off from one

base station to another before data transfer is finished. In the following subsection, we

provide the outline of our work for tackling these challenges.

1.2 Outline and Contributions

This thesis consists of two main parts dealing with caching in wired and wireless net-

works respectively. We first study hierarchical wired networks, where caches may be

installed at multiple hierarchy levels (Chapter 2). Then, we move to wireless networks

and define the joint problem of caching content at cellular base stations or WiFi ac-

cess points, and routing content to users (Chapter 3). An extension to the case of

diverse requests for videos that are available at multiple qualities is provided in Chapter

4. Finally, caching algorithms that exploit the broadcast/multicast nature of wireless

medium and the predictability of user mobility patterns are developed in Chapters 5

and 6 respectively.

Below, we briefly discuss the contribution of our work in each one of the five chapters.

Chapter 2. Hierarchical Caching: Hierarchical topologies have been applied in

many systems that provide massive content delivery services, such as IPTV and video

on Demand (VoD) [17]. In such systems, requests for content files are generated at the

bottom-level nodes of the hierarchy and are routed upwards until they reach a cache-

node (e.g., an intermediate office (IO), a central office (CO) or a digital subscriber line

access multiplexer (DSLAM)) that stores the requested file. If none of the accessed nodes

has stored the respective file, a distant content server is triggered to serve the request.

Institutional Repository - Library & Information Centre - University of Thessaly
11/05/2024 18:13:15 EEST - 18.117.73.223

Chapter 1. Introduction 4

Since the latter option incurs extra processing overhead and raises scalability concerns,

our goal in this chapter is to reduce the load of the server by serving as many requests

as possible by the caches. The currently best performing caching methods achieve an

approximation ratio close to 2, i.e., in the worst case half of the optimal number of

requests are served by the caches [18]. In our recent work [19], we showed that this

problem is NP-Hard, we uncovered a tractable special case of caches installed on a single

hierarchy path and developed an algorithm achieving a provably better approximation

ratio than the best-known counterparts.

Chapter 3. Joint Caching and Routing in Wireless Networks: In order to

cope with the mobile data traffic explosion mobile network operators deploy small cell

base stations (SBSs), such as pico-cells and femto-cells, or WiFi Access Points (APs),

which operate in conjunction with the collocated macrocell base stations [20]. Local

caching of popular content items at the SBSs has been proposed in order to decrease the

costly transmissions from the macrocell base stations without requiring high capacity

backhaul links for connecting the SBSs with the core network. However, the caching

policy design is a challenging problem especially if one considers realistic parameters

such as the bandwidth capacity constraints of the SBSs that can be reached in congested

urban areas. In our recent work [21], we studied the joint caching and request routing

problem aimed at maximizing the number of requests served by the cache-endowed

SBSs. We identified a connection of this problem to an instance of the facility location

problem. This paved the road for exploiting the broad literature in facility location

algorithms for deriving caching algorithms with provable approximation ratios. We also

proposed leasing cache space and wireless bandwidth from residential WiFi APs for

offloading mobile data in [22]. To encourage residential users to contribute their cache

and bandwidth resources, we designed monetary incentive (reimbursement) schemes.

Using a novel WiFi usage dataset collected from 167 residential users, we showed that

in densely-populated areas, our proposal can reduce operator’s cost by a factor of 2.

Chapter 4. Caching Layered Video: Video delivery to mobile users is one of the

largest challenges that network operators face today. In contrast to other types of con-

tent, video should be available in various qualities since users often have different quality

requirements (spatial resolutions, frame rates, etc.). To achieve this, every video can

be encoded into multiple versions which differ in quality and rate (versions). Another

option is scalable video coding (SVC) (layers) where each video is encoded into different

layers which, when combined, produce a quality that increases as more layers are used.

This technique introduces an encoding overhead but offers network flexibility since the

layers of each video can be cached at different base stations and/or routed over different

paths. The MNO can use versions, layers or a mixture of them to cache and deliver video

to mobile users. In our recent work [23], we showed that the caching problem obtains

Institutional Repository - Library & Information Centre - University of Thessaly
11/05/2024 18:13:15 EEST - 18.117.73.223

Chapter 1. Introduction 5

an interesting new twist with the advent of SVC, with both the solution space and the

objective function of the problem being different. We derived novel approximation algo-

rithms using a connection to a knapsack-type problem and a technique that partitions

the amount of cache space of a node dedicated to own and others’ content. Going one

step further in [24], we revisited the joint caching and routing problem introduced in

Chapter 3 for the case of video delivery with the goal of minimizing a balanced objec-

tive of average delay and servicing cost. The numerical results indicated that versions

and layers may have different impact on the delay and servicing cost, depending on the

diversity of users’ demand, and that the cost-delay trade off is affected by the network’s

load.

Chapter 5. Multicast-aware Caching: Many operators take advantage of mul-

ticast to efficiently utilize the available bandwidth of their networks in delivering the

same content to multiple receivers. Compared to unicast communication, multicast

incurs less traffic as the requested file is transmitted to users only once, rather than

with many point-to-point transmissions. Intuitively, multicast should be effective when

there is significant concurrency in accessing information across users; i.e., many users

concurrently generate requests for the same content file. Such scenarios are more com-

mon during crowded events with a large number of co-located people that are interested

in the same contents, e.g., during sporting games, concerts and public demonstrations

with often tens of thousand attendees. In our recent work [25], we designed caching al-

gorithms with concerns on multicast transmissions. We showed that the multicast-aware

caching problem is NP-Hard and developed solutions with performance guarantees using

randomized-rounding techniques. Trace-driven numerical results showed that in pres-

ence of massive demand for delay tolerant content, combining caching and multicast can

reduce energy consumption of the network. The gains over existing caching schemes are

17.5% when users tolerate delay of three minutes, increasing further with the steepness

of content access pattern.

Chapter 6. Mobility-aware Caching: In the emerging hyper-dense cellular network

deployments, mobile users may associate to multiple base stations encountered at close

times. Clearly, leveraging predictions about the mobility patterns of the users can

play a crucial role in further improving the gains that can be acquired from caching in

wireless networks. In our recent work [26], we introduced an optimization framework that

models user movements via random walks on a Markov chain aimed at minimizing the

load of the macro-cell. As the main contribution, we put forward a distributed caching

paradigm that leverages user mobility predictions and innovative information-mixing

methods based on the principle of network coding. Systematic experiments based on

measured traces of human mobility patterns demonstrated that our approach can offload

65% more macro-cell traffic than existing caching schemes in realistic settings.

Institutional Repository - Library & Information Centre - University of Thessaly
11/05/2024 18:13:15 EEST - 18.117.73.223

Chapter 1. Introduction 6

1.3 Literature Review

Several questions arise when dealing with in-network caching, such as determining in

which nodes to install caches, which content files to store in each cache and how often to

refresh the cached content. Although all these questions are particularly important for

network operators, typically they need to be solved in different timescales. For example,

an operator will most probably install caches at some nodes once, but periodically update

the cached content, due, for example, to variations in user demand pattern. Motivated

by the above, most of the existing works have focused on a specific time period within

which a set of caches are pre-installed at certain nodes.

Broadly speaking, the schemes for caching content are classified into pull-based and push-

based caching algorithms. Pull-based caching is a popular technique that is reactive and

stores content in caches on-demand. Examples include the Least Frequently Used (LFU)

and Least Recently Used (LRU) algorithms. On the other hand, push-based caching pro-

actively estimates content requests and demand patterns, and preemptively store content

to meet the user requests efficiently. Push-based caching algorithms have been proven

to improve performance over pull-based caching techniques[27]. Therefore, in this thesis

we focus on developing push-based caching algorithms.

1.3.1 Wired network caching

The caching problem has been well investigated in wired networks, with applications

in content distribution networks (CDNs), peer-to-peer (P2P), information centric net-

works (ICNs) and internet protocol television (IPTV) networks. Unfortunately, this has

been shown to be an NP-Hard problem in its general form, since it is closely related

to the knapsack and facility location problems. Therefore, previous research efforts

have focused on designing approximation algorithms that can provide solutions with

performance guarantees or identifying special cases that are tractable. Baev et al. [28]

investigated a cost minimization version of the caching problem, where transmitting

content between caches incurs a cost. Under the assumption that costs form a metric,

the authors presented a 10-approximation algorithm by rounding the optimal solution to

a natural LP-relaxation of the caching problem. For the (equivalent) cost savings max-

imization version of the caching problem and without any restriction on costs, Borst et

al. [18] presented a 2-approximation algorithm that iteratively swaps files in and out of

the caches. For the special case of hierarchical networks and assuming that the costs be-

tween the caches form an ultra-metric, Korupolu et al. [29] presented a polynomial-time

optimal caching algorithm by reduction to the minimum-cost flow problem. This gener-

alizes the results presented in [30] where all costs are equal. Another optimal algorithm

Institutional Repository - Library & Information Centre - University of Thessaly
11/05/2024 18:13:15 EEST - 18.117.73.223

Chapter 1. Introduction 7

was presented in [31] considering hierarchies of two levels with two caches installed at

the bottom level. An analogy between the front-end request nodes and the back-end

caches in a content distribution network with the input and output nodes of a switch

was made in [34]. Here, queues of requests for different files build up at the request

nodes, which route these requests to caches. A version of the well known max-weight

scheduling algorithm was used for joint content placement and request routing, ensur-

ing throughput optimality. Nevertheless, given the simple switch topology, routing is

reduced to cache node selection (one-hop), and hence these techniques cannot be used

in more general networks. When bandwidth limits are reached, e.g., in populated areas

or during peak traffic hours, the caching policy needs to be jointly designed with the

routing policy, that routes user requests to the caches [32], [17].

1.3.2 Wireless network caching

The caching problem obtains an interesting new twist in wireless networks. Namely, in

the emerging hyper-dense heterogeneous cellular environments, the base stations may

have overlapping coverage areas, which implies that the content can be delivered to users

through multiple paths. Also, unlike the cache-nodes in wired networks, base station

caches are typically not connected each other, and hence they can not exchange content.

More importantly, novel challenges arise due to the broadcast nature of the wireless

medium, that allows multiple users to receive a content file through a common multicast

stream, and the mobility of the users, who may rapidly associate to multiple base sta-

tions as they move in space. Existing works have studied the caching problem assuming

that all the requests are served via unicast (point to point) transmissions and that the

users are static-they are in fixed locations. Based on these assumptions, various models

have been proposed facing the caching problem from an optimization [33], [8], [35], an

information theoretic [36] and a game theoretic point of view [37], [38]. The results

span a wide range of techniques, such as discrete/convex optimization, content-centric

algorithms, coalition formation and matching games. The caching problem was recon-

sidered in [39] to handle the case of mobile users requesting videos with different quality

requirements (e.g., spatial resolution). In this case, each video is encoded into multi-

ple segments (called versions and layers), and caching decisions are taken per segment,

rather than per video. The impact of caching on the energy consumption and backhaul

usage for renewable energy powered small cell networks with limited battery capacity

and backhaul bandwidth was investigated in [40]. A stochastic geometry based wire-

less caching model along with an optimal probabilistic caching algorithm were presented

in [41]. A different model was presented in [42] that considers base stations with conflict-

ing objectives, i.e., each maximizing the quality of experience of its connected users. A

Institutional Repository - Library & Information Centre - University of Thessaly
11/05/2024 18:13:15 EEST - 18.117.73.223

Chapter 1. Introduction 8

mechanism that allocates some of the available base station bandwidth to serve the local

users and trades the rest with other caches in an auction-game fashion was proposed.

Another auction-game based caching mechanism that takes into consideration both the

utilities of the base station owners and the mobile users was proposed in [43].

However, all the above works neglect the broadcast nature of the wireless medium when

deriving the caching policy. This is important for two reasons; first because of the

interference caused by simultaneous wireless transmissions which can significantly reduce

content delivery rate, and second because of the opportunity of serving multiple users

with common interests via a dedicated multicast channel. For the first issue, the work

in [44] investigated ways for mitigating the interference caused when multiple cache-

endowed base stations deliver content to their associated users. The caching policy was

derived with concerns on the cooperative MIMO (CoMP) technique that can be used

to transform the cross-link interference into spatial multiplexing gain. This is possible

by sharing both real-time channel state information (CSI) and payload data among the

concerned base stations. For the second issue, the optimal multicast scheduling policy

for a given cache placement at a base station has been explored in [45]. A joint caching

and multicast scheduling policy in cellular networks was presented in [46]. Here, users

are equipped with caches in order to store in advance multicasted content and retrieve

later when they need it. More recently, Maddah-Ali et al. [47] developed a joint caching

and multicast scheduling mechanism in tree networks aiming at reducing the peak traffic

rate for serving a set of users, each one requesting a single file. However, the idea of

caching content in base stations with concerns on the multicast schedule was firstly

proposed in our recent work in [25].

Taking into consideration mobility profiles of the users is crucial to extract maximum

benefit in network performance. This has been explored in wired networks where mobile

users randomly connect to the leaf nodes in a cache hierarchy [48]. In wireless networks,

the same problem has been studied by Guan et al. in [49]. The authors assume that

the exact trajectories are known a priori for a set of moving users and optimize base

station caching based on them. This seems to be an over-optimistic view of current

mobility prediction mechanisms. In contrast, caching mechanisms that take as input

the probabilities of user movements from one location to another appear to be a more

realistic assumption. In our prior work [26], we have designed such mechanisms and

demonstrated the performance benefits over conventional (mobility-agnostic) caching

schemes.

Institutional Repository - Library & Information Centre - University of Thessaly
11/05/2024 18:13:15 EEST - 18.117.73.223

Chapter 2

Hierarchical Caching

Contents

2.1 Introduction . 10

2.2 System model and problem formulation 12

2.3 Complexity of HCP problem 15

2.3.1 Hardness of general case . 15

2.3.2 Special case: caches installed on a single hierarchy path 17

2.4 Approximation algorithms . 19

2.4.1 An 1.582-approximation algorithm for two-level hierarchies . . 19

2.4.2 Extension to multiple-level hierarchies 22

2.5 Performance evaluation . 23

2.1 Introduction

Hierarchical topologies have been applied in many systems that provide massive con-

tent delivery services, such as IPTV and video on Demand (VoD), and gain increasing

interest. In this chapter, we address the caching problem in multiple-level hierarchical

systems, where caches may be installed at more than one levels. Requests for content

files are generated at the bottom-level nodes of the hierarchy, which we refer to as leaves,

and are routed upwards until they reach a cache-node that stores the requested file. If

none of the accessed nodes has stored the respective file, a distant content server is

triggered to serve the request. Since the latter option raises scalability concerns during

peak usage hours and incurs high content delivery delay, our goal is to reduce the load

of the server by serving as many requests as possible by the caches. Part of the results

is also published in [19].

9

Institutional Repository - Library & Information Centre - University of Thessaly
11/05/2024 18:13:15 EEST - 18.117.73.223

Chapter 2. Hierarchical Caching 10

A key challenge in these systems is to devise the optimal caching policy: for a given

anticipated content demand, determine which files should be placed in each cache, so as

to maximize the number of requests served by the caches. Despite the plethora of work

in this field, the optimal solution to the caching problem in multiple-level hierarchies re-

mains unexplored. Existing optimal solutions are limited to hierarchies involving caches

at the leaf nodes only [29], [30], being able though to serve one the requests of the others,

associating a cost for each data transfer. However, installing caches at multiple levels

differentiates the caching problem and calls for alternative solution techniques. The

currently best performing methods achieve an approximation ratio close to 2, i.e., in the

worst case half of the optimal number of requests are served by the caches [18], [33].

At present time, it is questionable what is the computational complexity of the caching

problem in multiple-level hierarchies and whether additional solutions with improved ap-

proximation guarantees are possible.

Motivated by the above, we introduce a general optimization problem for devising the

optimal caching policy for caches installed at multiple levels of hierarchies. This is an

integer optimization problem and, thus, it is challenging to solve. We allow different leaf

nodes to receive requests for different files with different intensity. The availability of the

content at the caches determines whether the request will reach content servers or not.

We show that the problem is NP-Hard in its general form by reduction from a variant

of the set cover problem [50], and that it can be solved optimally in polynomial time

when caches are installed only on a single hierarchy path. As the main contribution,

we present an efficient algorithm with provably better approximation ratio than the

best known counterparts for general cache hierarchies. Our methodology is based on

expressing the caching problem as a maximization of a submodular function subject to

uniform matroid constraints [51].

Our technical contributions can be summarized as follows:

• Hierarchical Caching Problem (HCP). We introduce the HCP problem that derives

caching policies in multiple-level hierarchies. This is very important since hierar-

chical topologies have been applied in many systems that provide massive content

delivery services, such as IPTV and video on Demand (VoD), and gain increasing

interest.

• Complexity of HCP problem. We show that the HCP problem is NP-Hard in its

general form by reduction from a variant of the set cover problem. This is a novel

result considering that the NP-Hardness of the caching problem has been shown

for arbitrarily-shaped networks [33], [28], not necessarily implying that the same

statement holds when restricted to hierarchical topologies. For the special case that

Institutional Repository - Library & Information Centre - University of Thessaly
11/05/2024 18:13:15 EEST - 18.117.73.223

Chapter 2. Hierarchical Caching 11

caches are installed only on a single hierarchy path, we show that the constraint

set of the HCP problem satisfies the total unimodularity property [52]. Therefore,

the optimal solution can be obtained by solving the corresponding linear relaxed

problem.

• Approximation algorithms. We express the HCP problem in its general form

as a maximization of a submodular function subject to uniform matroid con-

straints [51]. This enables the derivation of a simple greedy algorithm with ap-

proximation guarantees that are provably better than those known.

• Performance evaluation. We evaluate the performance of the proposed algorithm

for typical popularity distributions and demonstrate significant performance im-

provements (up to 56%) compared to conventional caching algorithms. The gains

are higher when the popularity distribution is steep and the cache capacities at

the upper hierarchy levels are large.

The rest of the chapter is organized as follows: Section 2.2 describes the system model

and defines the HCP problem formally. Sections 2.3 and 2.4 present the complexity

results and the approximation algorithms respectively. In Section 2.5 we present our

numerical results.

2.2 System model and problem formulation

In this section we introduce the system model and formally define the hierarchical

caching optimization problem.

System Model. We consider a general multiple-level hierarchical network like the one

depicted in Figure 2.1. In an IPTV service system, access to the content servers is

provided by the VHO (Video Head-end Office) for the users in a metropolitan area.

Typically, content passes through a number of nodes such as intermediate offices (IO),

central offices (CO), and digital subscriber line access multiplexer (DSLAM) before

reaching a user. The operator may have installed caches at various nodes, possibly in

more than one levels. We denote with N the set of nodes in the hierarchy, and with

Cn ≥ 0 (bytes) the size of the cache at node n ∈ N .

We study the system for a certain time period (e.g., several days), during which the

average demand for a set F of F popular files is assumed to be known in advance,

as in [17], [18], [21], [33]. For example, the demand can be learned through analysis of

previous time period statistics [53], [54], [55]. For notational convenience, we assume that

all files have the same size, normalized to 1. This assumption can be easily removed as, in

Institutional Repository - Library & Information Centre - University of Thessaly
11/05/2024 18:13:15 EEST - 18.117.73.223

Chapter 2. Hierarchical Caching 12

Content

servers

Caches

Internet

DSLAM

CO

IO

User

demand

VHO

Figure 2.1: Graphical illustration of a hierarchical caching network.

real systems, files can be divided into blocks of the same length for convenience [17], [33].

User requests for content are generated at the bottom level nodes of the hierarchy, e.g.,

the DSLAMs, also called the leaves. We denote with L ⊆ N the respective set of leaves,

and with λnf ≥ 0 the average user demand for file f generated at leaf n. The vector λn

contains the demand values for a particular leaf n.

Let us also introduce the notation Pn to indicate the unique path uniting the leaf n ∈ L
with the VHO (including the two endpoints). Each time a user request at leaf n is

generated, it is served by the local leaf if it has the requested file cached. Otherwise,

the request is routed upwards following the Pn path. The content servers are triggered

to serve the request if none of the nodes on Pn path has the requested file cached. This

latter option implies a significant server load and scalability concerns during peak usage

hours. This exactly is the goal of this work: “To carefully design the caching policy so

as to effectively reduce the load of the content servers”.

Problem Formulation. Let us introduce the integer decision variable xnf ∈ {0, 1}
that indicates whether file f ∈ F is placed at cache-node n ∈ N (xnf = 1) or not

(xnf = 0) 1. We also define the respective caching policy matrix:

x = (xnf ∈ {0, 1} : n ∈ N , f ∈ F) (2.1)

1Note that we do not consider probabilistic content placement [41] or placement of encoded file
portions [33] which are problems with continuous optimization variables. Instead, we tackle the (more
challenging) binary-nature caching problem in this work.

Institutional Repository - Library & Information Centre - University of Thessaly
11/05/2024 18:13:15 EEST - 18.117.73.223

Chapter 2. Hierarchical Caching 13

The problem of determining the caching policy that minimizes the number of requests

served by the content servers (server load) can be expressed as follows:

min
x

∑
n∈L

∑
f∈F

λnf1{ ∑
n′∈Pn

(xn′f)<1
} (2.2)

s.t.
∑
f∈F

(xnf) ≤ Cn, ∀n ∈ N (2.3)

xnf ∈ {0, 1}, ∀n ∈ N , f ∈ F (2.4)

where 1{.} is the indicator function, i.e., 1{c} = 1 if condition c is true; otherwise 1{c} = 0.

The expression in the objective function indicates that for each leaf node n that receives

λnf requests for file f , the requests will reach the content servers if none of the caches

on the path Pn has stored file f , i.e., when
∑

n′∈Pn(xn′f) < 1; otherwise the requests

will be served by a cache on Pn that has stored this file. Inequalities in (2.3) denote

the capacity constraints of the caches, whereas constraints in (2.4) indicate the discrete

nature of the optimization variables.

One can note that it would be wasteful to place the same file more than once on the

same path Pn, for any n ∈ L. Lemma 2.1 summarizes this point.

Lemma 2.1. In the optimal caching policy, the files stored on Pn path are disjoint, i.e.,

no two nodes on Pn store the same file, ∀n ∈ L.

Lemma 2.1, the proof of which is deferred to Appendix A, is important since it limits

the number of possible file placements in the caches and simplifies the problem. Based

on it, we can formulate the (equivalent) problem of maximizing the number of requests

served by the caches as follows:

max
x

∑
n∈L

∑
f∈F

λnf
∑

n′∈Pn xnf (2.5)

s.t. constraints: (2.3), (2.4)∑
n′∈Pn

xnf ≤ 1, ∀n ∈ L, f ∈ F (2.6)

where constraint (2.6) is because of Lemma 2.1. Due to constraint (2.6) and the inte-

grality of the optimization variables, the sum
∑

n′∈Pn xnf can take either the value 1 or

0, ∀n ∈ L, f ∈ F . Hence, for each leaf n and file f , either all the λnf requests will be

served by the caches (
∑

n′∈Pn xnf = 1) or none of them (
∑

n′∈Pn xnf = 0). We call the

above the Hierarchical Caching Problem (HCP).

Although the objective function of the HCP problem is linear with respect to the op-

timization variables, the problem is non-trivial to solve due to its discrete nature. In

the next two sections, we formally prove that HCP is NP-Hard in its general form, and

Institutional Repository - Library & Information Centre - University of Thessaly
11/05/2024 18:13:15 EEST - 18.117.73.223

Chapter 2. Hierarchical Caching 14

design optimal and approximation algorithms for the special case of caches installed on

a single hierarchy path and the general case respectively.

2.3 Complexity of HCP problem

In this section we prove the high complexity of the HCP problem and identify a non-

trivial special case where the problem can be optimally solved in polynomial-time.

2.3.1 Hardness of general case

Although the caching problem has been shown to be NP-Hard in general networks [28], [33],

it remains questionable whether the same statement holds when restricted to hierarchi-

cal topologies. In this work, we answer this question in the affirmative by reduction from

a variant of the set cover problem, which is NP-Hard [50]. In other words, we prove that

the set cover variant is a special case of HCP, which implies that HCP is also NP-Hard.

Particularly, the following theorem holds:

Theorem 2.2. HCP is an NP-Hard problem.

In order to prove Theorem 2.2, we will consider the corresponding (and equivalent)

decision problem, called Hierarchical Caching Decision Problem (HCDP). Specifically:

HCDP : Given a multiple-level hierarchy with a set N of N nodes, a set L ⊆ N of L

leaves and their paths Pn to servers, a set F of F files, the cache sizes Cn ∀n ∈ N , the

user requests λnf ∀n ∈ L, f ∈ F , and a real number Q ≥ 0, we ask the following question:

does there exist a caching policy x, such that the value of the objective function in (2.5)

is more or equal to Q and constraints (2.3),(2.4),(2.6) are satisfied?

We also consider the following variant of the set cover problem:

3-SCP [50]: Given a set of elements U (called the universe) and a family S of subsets of

U , a cover is a subfamily C ⊆ S of subsets whose union is U . In the considered 3-SCP

variant, the cardinality of each subset is at most three and the number of occurrences

of each element in the subsets is exactly two. We ask the following question: given an

integer k, does there exist a set cover of size k or less?

Lemma 2.3. 3-SCP problem is polynomial-time reducible to the HCDP.

Proof. Given any instance of the 3-SCP problem, described by the U , S and k values,

we construct the equivalent instance of the HCDP problem as follows. There are caches

Institutional Repository - Library & Information Centre - University of Thessaly
11/05/2024 18:13:15 EEST - 18.117.73.223

Chapter 2. Hierarchical Caching 15

root cache

λ1{1,2,3}=1

Q=2 4=8
0

21 3 4leaf caches
C1=1

λ1{1,2}=1

λ2{1,2,3}=1

λ2{3,4}=1

λ3{4,5}=1

λ3{3,4}=1

λ4{4,5}=1

λ4{5}=1

C2=1 C3=1 C4=1

C0=2

Figure 2.2: An example of the reduction from 3-SCP with U = {1, 2, 3, 4, 5}, S =
{{1, 2, 3}, {4, 5}, {1, 2}, {3, 4}, {5}} and k = 2.

at two levels of the hierarchy; a root cache and multiple leaf caches. For each subset

s ∈ S, we create a content file, which we refer to as fs. Hence, there will be F = |S|
files in total. For each pair of subsets s1 and s2 in S that overlap, i.e., they share at

least one common element, we create a distinct leaf cache, denoted with ns1s2 . Further,

we set the demand at the leaf ns1s2 to be λns1s2fs1 = λns1s2fs2 = 1; zero for the rest

files. Hence, the total number of file requests will be two times that of leaf caches, i.e.,∑
n∈L

∑
f∈F λnf = 2L. The size of each leaf cache is 1, whereas we set the root cache

size to be equal to k. The question is whether there exists a caching policy that serves

all the file requests by the caches, i.e., Q = 2L.

If the caches serve none of the requests, then the HCDP problem has a value of 0 (the

worst case scenario). For each leaf node that the network manages to serve its requests

completely through caching, the HCDP value increases by 2. This reduction is ensured

only if the two files requested by that leaf are cached in the local leaf cache and/or the

root cache. Notice though that each leaf cache can store up to one file, which implies

that it can serve locally at most one of its two requests. Therefore, in order to achieve

the desirable value Q = 2L, the root node needs to serve at least one request from each

leaf node. That is, to store k files in the root such that each leaf node performs at least

one request for these files. Since the two files requested by a leaf node correspond to two

subsets that share common elements, and the number of occurrences of each element in

the subsets is exactly two, finding k such files is equivalent of finding k subsets whose

union is the universe of all elements. Hence, the HCDP problem is equivalent to the

3-SCP problem.

Figure 2.2 illustrates an example of the reduction from 3-SCP with U = {1, 2, 3, 4, 5},
S ={ {1, 2, 3}, {4, 5}, {1, 2}, {3, 4}, {5} } and k = 2. In the HCDP instance there are

F = |S| = 5 files, a root cache of size k = 2 and L = 4 leaf caches, each of size 1. Each

Institutional Repository - Library & Information Centre - University of Thessaly
11/05/2024 18:13:15 EEST - 18.117.73.223

Chapter 2. Hierarchical Caching 16

leaf receives requests for two files. There is a solution to HCDP of value Q = 2L = 8

that places the files corresponding to subsets {1, 2, 3} and {4, 5} in the root cache, and

the files corresponding to subsets {1, 2}, {3, 4}, {3, 4} and {5} in the leaf caches 1, 2,

3 and 4 respectively. Accordingly, the solution to 3-SCP picks the subsets {1, 2, 3} and

{4, 5}.

The 3-SCP problem with the aforementioned restrictions on the cardinality of the subsets

and the number of occurrences of the elements has been shown to be NP-Hard in [50],

which completes the proof of Theorem 2.2.

2.3.2 Special case: caches installed on a single hierarchy path

Although the HCP problem is NP-Hard in its general form, in this subsection we show

that it can be optimally solved in polynomial-time for a non-trivial special case. Specifi-

cally, we consider the network illustrated in Figure 2.1, but assume that there are caches

installed only on a single hierarchy path, say Pl∗ , as in Figure 2.3(a). In this case, caching

decisions are taken only for the nodes on this path:

x = (xnf ∈ {0, 1} : n ∈ Pl∗ , f ∈ F) (2.7)

Hence, we can reformulate the HCP problem as follows:

max
x

∑
n∈L

∑
f∈F

λnf
∑

n′∈Pn∩Pl∗ xnf (2.8)

s.t.
∑
f∈F

(xnf) ≤ Cn, ∀n ∈ Pl∗ (2.9)∑
n∈Pl∗

(xnf) ≤ 1, ∀f ∈ F (2.10)

xnf ∈ {0, 1}, ∀n ∈ Pl∗ , f ∈ F (2.11)

In order to show that the above problem is tractable, we will show that the integrality

constraints in (2.11) are redundant; they can be replaced with the following constraints

without changing the optimal solution:

xnf ∈ [0, 1], ∀n ∈ Pl∗ , f ∈ F (2.12)

Hence, the optimal solution can be efficiently attained using standard linear optimization

techniques [56] and software toolboxes like CPLEX and Mosek [57]. The proof is based

on the total unimodularity property of the constraint matrix. Specifically, for a matrix

A the following definitions and results hold [58]:

Institutional Repository - Library & Information Centre - University of Thessaly
11/05/2024 18:13:15 EEST - 18.117.73.223

Chapter 2. Hierarchical Caching 17

1

11 12

2

21 22

0

(a)

1 1 1 1 0 0 0 0 0 0 0 0

0 0 0 0 1 1 1 1 0 0 0 0

0 0 0 0 0 0 0 0 1 1 1 1

1 0 0 0 1 0 0 0 1 0 0 0

0 1 0 0 0 1 0 0 0 1 0 0

0 0 1 0 0 0 1 0 0 0 1 0

0 0 0 1 0 0 0 1 0 0 0 1

9 10 11 12

1

2

3

4

5

6

7

5 6 7 81 2 3 4
 s

e
t B

 s
e

t C

(b)

Figure 2.3: (a) An example for a network with caches installed on a single path (solid
circles), and (b) the respective constraint matrix described in (2.9),(2.10), for F = 4

files.

Definition 2.4. An integral matrix A is totally unimodular if the determinant of every

square submatrix is 0, +1, or -1.

Proposition 2.5. If for a linear program {max cTx : Ax ≤ b}, A is totally unimodular

and b is integral, then there is an optimal solution to the linear program that is integral.

Note that the constraints in (2.9) and (2.10), namely
∑

f∈F (xnf) ≤ Cn, ∀n ∈ Pl∗
and

∑
n∈Pl∗ (xnf) ≤ 1, ∀f ∈ F , can be written in the form Ax ≤ b, where A and b

are integrals. Hence, it suffices to show that A is totally unimodular in order for our

problem to be solvable in polynomial time. To prove the total unimodularity property

of matrix A, we use the following proposition [52]:

Proposition 2.6. Let A be a matrix whose rows can be partitioned into two disjoint

sets B and C. Then the following four conditions together are sufficient for A to be

totally unimodular: (i) every column of A contains at most two non-zero entries, (ii)

every entry in A is 0, +1, or -1, (iii) if two non-zero entries in a column of A have the

same sign, then the row of one is in B, and the other in C, and (iv) if two non-zero

entries in a column of A have opposite signs, then the rows of both are in B, or both in

C.

In our case, every column contains exactly two non-zero elements, each with value +1.

Hence, conditions (i), (ii) and (iv) are satisfied. To show that condition (iii) is satis-

fied, we note that each column includes a non-zero element in a row corresponding to

constraint (2.9) and another in a row corresponding to constraint (2.10). Hence, we can

Institutional Repository - Library & Information Centre - University of Thessaly
11/05/2024 18:13:15 EEST - 18.117.73.223

Chapter 2. Hierarchical Caching 18

partition the rows of matrix A into a set B containing the rows in constraint (2.9) and

a set C containing the rows in constraint (2.10), satisfying condition (iii). Figure 2.3(b)

depicts an example of the constraint matrix. Since proposition 2.6 is satisfied, we obtain

the following lemma:

Lemma 2.7. The constraint matrix described in inequalities (2.9),(2.10) is totally uni-

modular.

Hence, we obtain the following theorem:

Theorem 2.8. When caches are installed on a single hierarchy path, the optimal caching

policy can be found in polynomial time.

2.4 Approximation algorithms

In this section, we investigate the hierarchical caching problem in its general form and

derive algorithms with improved approximation guarantees compared to state-of-the-art

methods [18],[33]. We start by presenting a simple greedy algorithm achieving 1.582-

approximation in two-level hierarchies. Then, we show how it can be extended to handle

the general case of any number of levels.

2.4.1 An 1.582-approximation algorithm for two-level hierarchies

We consider a two-level hierarchy, as in Figure 2.2, with a root cache, indexed by 0, and L

leaf caches, indexed by 1, 2, . . . , L. As we showed in Theorem 2.2, the respective caching

problem is NP-Hard. Hence, exact solution approaches are not practical and the use of

approximation algorithms is justified. Subsequently, we derive such an approximation by

expressing the caching problem as a maximization of a submodular function subject to

uniform matroid constraints [51]. This is a novel result that is specific to the hierarchical

structure of the underlying topology, and does not hold in other types of networks2. We

begin by introducing the definition of submodular functions.

Definition 2.9. Given a finite set of elements G, a function h : 2G → R is submodular

if for every sets X ⊆ Y ⊆ G and every element g ∈ G \ Y , it holds that:

h(X ∪ {g})− h(X) ≥ h(Y ∪ {g})− h(Y) (2.13)

2For example, in [33] and [35], the constraints of the caching problems were expressed as partition
rather than uniform matroids.

Institutional Repository - Library & Information Centre - University of Thessaly
11/05/2024 18:13:15 EEST - 18.117.73.223

Chapter 2. Hierarchical Caching 19

The set G is often referred to as ground set. The submodularity property specifies that

the marginal value of the function when adding a new element in a set decreases as this

set becomes larger.

For a given file placement in the root cache, the optimal file placement in the leaf caches

can be efficiently computed; every leaf n stores the Cn most popular files with respect

to λn, but the files in the root (cf. Lemma 2.1). Let us denote the placement of file f in

the root cache by an element ef and define the ground set G consisting of all elements

as:

G = (ef : f ∈ F) (2.14)

Then, every possible caching solution can be expressed by a subset X ⊆ G, where the

elements included in X correspond to the files placed in the root cache. Due to the

cache capacity limitation of the root, it should be X ⊆ I where:

I = {X ⊆ G : |X| ≤ C0} (2.15)

The pair (G, I) defines a uniform matroid [51].

Based on the above, we can write the objective function in (2.5) as a function of the set

X:

h(X) =
∑
n∈L

(∑
f∈F :ef∈X

(λnf) +
∑

f∈Mn(X)

(λnf)

)
(2.16)

where Mn(X) denotes the files placed in the leaf cache n given the file placement in

the root X. The first term in the sum corresponds to the requests served by the root,

whereas the second to the requests served by the leaf caches.

Then, we have the following lemma:

Lemma 2.10. The function h(X) is monotone, increasing and submodular.

Proof. Since the sum of submodular functions is also submodular, it suffices to show

that every term of the external sum in (2.16) is a submodular function. Let us focus on

a single leaf cache n ∈ L, and consider adding element ef in a set X. We distinguish

the following two cases: (i) If file f is not included in Mn(X), then storing file f in

the root cache enables the requests generated at leaf n to be served by the root cache

instead of the content servers, resulting a marginal value of h(X ∪ {ef})− h(X) = λnf .

(ii) Otherwise, storing file f in the root cache forces leaf cache n to swap file f with

the most popular file with respect to λn but those files already cached in the root and

the local leaf cache. Let us denote with f ′ that file. Then, the marginal value will be

h(X ∪ {ef})− h(X) = λnf ′ .

Institutional Repository - Library & Information Centre - University of Thessaly
11/05/2024 18:13:15 EEST - 18.117.73.223

Chapter 2. Hierarchical Caching 20

Algorithm 2.1: Greedy algorithm for two-level hierarchies

1 X ← ∅
2 for iteration = 1, 2, ..., C0 do
3 e∗f ← argmaxef∈G\X{h(X ∪ {ef})− h(X)}
4 X ← X ∪ {e∗f}
5 Caching is done according to X for the root and Mn(X) for every leaf n ∈ L.

We now consider adding the same element ef in a set Y ⊇ X. We distinguish the

following two cases: (i) If file f is not included in Mn(Y), then, by definition of the

Mn(.) set, file f is not included in Mn(X) neither. Hence, the marginal value will be

h(Y ∪ {ef}) − h(Y) = h(X ∪ {ef}) − h(X) = λnf . (ii) If file f is included in Mn(Y),

then, the marginal value is h(Y ∪{ef})−h(Y) = λnf ′′ , where f ′′ is the the most popular

file with respect to λn but those files already cached in the root and the local leaf cache.

We distinguish the following two subcases: (ii.a) File f is not included in Mn(X).

Then, h(X ∪ {ef}) − h(X) = λnf ≥ λnf ′′ . (ii.b) File f is included in Mn(X). Then,

h(X ∪ ef) − h(X) = λnf ′ ≥ λnf ′′ , where the last inequality is because file f ′′ is picked

among a subset of the files used for picking f ′.

Hence, the marginal value for adding an element in Y is always lower or equal to the

one in X, which implies that h(.) is submodular. Finally, it is not hard to show that as

more files are stored in the root cache, more requests are served by the caches. Hence,

h(Y) ≥ h(X), which implies that h(.) is monotone and increasing.

A greedy algorithm obtains an approximate solution for the problem of maximizing a

submodular function subject to uniform matroid constraints, with a performance that is

provably at most e/(e− 1) = 1.582 times worse than optimal [51]. The algorithm starts

with an empty set, and at each iteration it adds the element with the highest marginal

value to the set, while satisfying inequality (2.15). The procedure is summarized in

Algorithm 2.1.

Algorithm 2.1 runs in C0 iterations. At each iteration, it computes the value h(X ∪
{ef}) for each one of at most F elements in order to determine e∗f . Each one of these

computations requires finding the Mn(X∪{ef}) set for every leaf n ∈ L, i.e, the Cn most

popular files with respect to λn, but those corresponding to X∪{ef}. Assuming that the

λn vector is initially sorted, these files can be found by traversing λn until Cn such values

are obtained. In the worst case, the Cn +C0 first elements will be traversed. Hence, the

overall complexity for all iterations is upper bounded by: C0F
∑

n∈L(Cn + C0). Since

sorting a vector of size F requires F logF time [59], we obtain the following theorem:

Theorem 2.11. In a two-level hierarchy, Algorithm 2.1 finds a 1.582-approximate so-

lution to the caching problem in LF logF + C0F
∑

n∈L(Cn + C0) time.

Institutional Repository - Library & Information Centre - University of Thessaly
11/05/2024 18:13:15 EEST - 18.117.73.223

Chapter 2. Hierarchical Caching 21

This improves the (2L−1)/L-approximation ratio for two-level hierarchies given in [18],

as well as the 2-approximation ratio given in [33]. Also, for the special case of L = 2

leaves, we can show that Algorithm 2.1 finds the optimal solution.

Theorem 2.12. In a two-level hierarchy with two leaves, Algorithm 2.1 finds the optimal

solution to the caching problem in 2F logF + C0F (C1 + C2 + 2C0) time.

The proof of Theorem 2.12 is deferred to Appendix B.

2.4.2 Extension to multiple-level hierarchies

In this subsection, we show how to extend Algorithm 2.1 for general (not necessarily

two-level) hierarchies. We start with a three-level hierarchy, as the one depicted in

Figure 2.4. Using the same arguments as in the previous subsection, we can express

the objective function in (2.5) as a submodular function of the files placed in the root

cache. However, in contrast to the two-level case, here, for a given file placement in

the root cache X, we can not efficiently compute the optimal file placement in the rest

caches. Namely, for each direct descendant of the root cache, e.g., caches 1, 2 and 3

in Figure 2.4, there is a two-level hierarchy subproblem involving this cache and its

descendants. According to Lemma 2.3, each one of these subproblems is NP-Hard by

itself. Hence, the best we can get is an α-approximate solution to each subproblem by

applying Algorithm 2.1. We note, however, that when solving these subproblems, we

need to ensure that the files in X will not be placed in any other cache (cf. Lemma 1).

With that in mind, we can extend Algorithm 2.1 to determine the file placement in the

root cache of a three-level hierarchy. As in the two-level case, we iteratively choose the

file to be placed in the root cache based on its marginal value. However, since we can

not efficiently find the choice with the highest marginal value (since we can not solve

optimally the two-level subproblems), at each one of the C0 iterations we pick an element

with a marginal value that is at most α times worse than that of the optimal choice. This

is possible by applying Algorithm 2.1 to approximately solve each one of the two-level

subproblems formed, one time for each possible file choice in the root, and picking the

file that results the highest marginal value. Once the file placement in the root cache

is found, we decide the file placement in the rest caches by applying Algorithm 2.1, one

time for each subproblem, ensuring that the files placed in the root cache will not be be

placed in any other cache.

When an α-approximation algorithm is used to find the element with the best marginal

value to add in the greedy solution, the greedy algorithm outputs a (e1/a/(e1/a − 1))-

approximate solution [60]. This generalizes the results presented for two-level hierarchies

Institutional Repository - Library & Information Centre - University of Thessaly
11/05/2024 18:13:15 EEST - 18.117.73.223

Chapter 2. Hierarchical Caching 22

0

1

11 12 13

2

21 22 23

subproblem 1 subproblem 2

root cache

3

31 32 33

subproblem 3

Figure 2.4: Graphical illustration of the application of Algorithm 2.1 to a three-level
cache hierarchy.

(where α = 1), to multiple-level hierarchies. Specifically, for three-level hierarchies, we

have α = 1.582, which yields an e1/1.582/(e1/1.582 − 1) = 2.1343 approximation ratio

for the greedy algorithm. Similarly, we can use the 2.1343-approximation algorithm

for three-level hierarchies to obtain an approximation ratio of e1/2.1343/(e1/2.1343 − 1) =

2.6732 for four-level hierarchies and so on.

In the next section, we numerically show the performance benefits of Algorithm 2.1 over

the state-of-the-art methods in [18],[33].

2.5 Performance evaluation

In this section, we present the numerical results of the experiments that we have con-

ducted to show the superiority of the proposed caching scheme over certain commonly

used schemes. Specifically, we compare the performance of the following four schemes:

1. Greedy [18]: Each leaf cache stores the most popular files with respect to its

local demand. Then, moving from the bottom to the top-level, each cache stores

the most popular files with respect to the demand that was left unserved by its

descendants.

2. Swapping [18]: It starts with a random cache placement. Iteratively, it swaps a

file that is currently included in a cache to one not included in it if this increases

the requests served by the caches, i.e.,
∑

n∈L
∑

f∈F λnf
∑

n′∈Pn xnf . The process

is iterated until no possible swap can improve performance.

Institutional Repository - Library & Information Centre - University of Thessaly
11/05/2024 18:13:15 EEST - 18.117.73.223

Chapter 2. Hierarchical Caching 23

3. Femtocaching [33]: It starts with all the caches being empty. Iteratively, it per-

forms the placement of a file to a cache that maximizes the requests served by the

caches, i.e.,
∑

n∈L
∑

f∈F λnf
∑

n′∈Pn xnf . The procedure terminates when all the

caches become full.

4. Algorithm 2.1: The proposed scheme in Algorithm 2.1 extended to multiple-level

hierarchies.

The performance criterion that we consider is the total number of requests that reach

the serves (server load), which is defined by expression (2.2). To describe in detail the

benefits of the proposed scheme, we also depict the normalized difference between the

server load achieved by any of the first three schemes and the proposed one (server load

gains). Formally, the server load gains for the Greedy algorithm are defined as:

server loadGreedy − server loadAlgorithm2.1

server loadAlgorithm2.1
(2.17)

where server loadscheme denotes the server load achieved by the associated scheme. A

similar definition holds for the Swapping and Femtocaching schemes.

Simulation Setup. We consider the three-level cache hierarchy depicted in Figure 2.4,

consisting of a single root cache (indexed by 0), three inner caches (indexed by 1, 2, 3)

and nine leaf caches (indexed by 11, 12, 13, 21, 22, 23, 31, 32, 33). We simulate the

delivery of a library of F = 500 popular files, for which recurring requests are expected.

Specifically, within the evaluation period each leaf node receives 1, 000 requests for these

files, resulting to 9, 000 requests in total. Following empirical studies in VoD systems,

we model content popularity using a Zipf distribution, i.e., the request rate for the ith

most popular file is proportional to i−z, for some shape parameter z > 0 [61], [62]. In

order to simulate diverse popularity distributions, the ranks of the files are randomly

permuted in every leaf node. Unless otherwise specified, each cache is capable of storing

10% of the entire file library size, whereas we set z = 0.8 [62]. Throughout, we evaluate

the performance of the four schemes for different values of the cache sizes per hierarchy

level and the zipf shape parameter z. For the algorithms’ implementation we used the

C++ language in the Visual Studio environment.

Impact of cache sizes. We first compare the performance of the four schemes for

different sizes of the caches. In the experiment in Figure 2.5(a), the size of the root

cache spans a wide range of values, starting from 5% to 50% of the entire file library

size, reflecting different operator conditions. As expected, increasing the root cache

size reduces server load for all schemes, since more files become available for download

within the paths to servers. The proposed scheme (Algorithm 2.1) performs markedly

better than the other schemes, especially for large values of the root cache size. The

Institutional Repository - Library & Information Centre - University of Thessaly
11/05/2024 18:13:15 EEST - 18.117.73.223

Chapter 2. Hierarchical Caching 24

0 10 20 30 40 50
1000

1500

2000

2500

3000

3500

Root cache size (% of entire file library size)

S
e
rv

e
r

lo
a

d

Greedy
Swapping
Femtocaching
Algorithm 2.1

0 10 20 30 40 50
1000

1500

2000

2500

3000

3500

Inner cache size (% of entire file library size)

S
e
rv

e
r

lo
a

d

Greedy
Swapping
Femtocaching
Algorithm 2.1

0 10 20 30 40 50

1000

1500

2000

2500

3000

3500

Leaf cache size (% of entire file library size)

S
e
rv

e
r

lo
a

d

Greedy
Swapping
Femtocaching
Algorithm 2.1

0 10 20 30 40 50
0

10

20

30

40

50

Root cache size (% of entire file library size)

S
e
rv

e
r

lo
a
d
 g

a
in

s
 (

%
)

Greedy
Swapping
Femtocaching

(a) Impact of root cache size

0 10 20 30 40 50
0

10

20

30

40

50

Inner cache size (% of entire file library size)

S
e
rv

e
r

lo
a
d
 g

a
in

s
 (

%
)

Greedy
Swapping
Femtocaching

(b) Impact of inner cache size

0 10 20 30 40 50
0

10

20

30

40

50

Leaf cache size (% of entire file library size)

S
e
rv

e
r

lo
a
d
 g

a
in

s
 (

%
)

Greedy
Swapping
Femtocaching

(c) Impact of leaf cache size

Figure 2.5: Performance comparison between Greedy, Swapping, Femtocaching and
Algorithm 2.1 for various values of (a) the root cache size, (b) the inner cache size and

(c) the leaf cache size.

server load gains are up to 56%, 10% and 9.5% when compared to Greedy, Swapping

and Femtocaching scheme respectively.

We repeat the above experiment, but vary the size of each one of the three inner caches

rather than the root. The results are depicted in Figure 2.5(b). Although the shapes of

the curves are similar to that in Figure 2.5(a), the server load gains are now lower, up

to 37%, 8% and 7.5% when compared to Greedy, Swapping and Femtocaching scheme

respectively. Finally, Figure 2.5(c) depicts the results when we vary the size of the

leaf caches. In this case, the server load gains are limited to 25%, 5% and 6% over

Greedy, Swapping and Femtocaching scheme respectively. Thus, we can infer that the

superiority of Algorithm 2.1 over the existing schemes is more pronounced for large sizes

of the caches installed at the upper hierarchy levels.

Impact of popularity distribution. Figures 2.6(a)-2.6(b) show the impact of the

zipf shape parameter z on the performance of the four schemes. We observe that as the

z value increases, the server load decreases for all the schemes, reflecting the well known

fact that caching effectiveness improves as the popularity distribution gets steeper [18].

Interestingly, Algorithm 2.1 consistently outperforms the other schemes, with the gains

increasing as z increases. Particularly, while the server load gains over Greedy, Swapping

and Femtocaching scheme are 2%, 0.6% and 0.7% respectively when z = 0.2, they

increase to 44%, 14.5% and 27.5% when z = 2.

Institutional Repository - Library & Information Centre - University of Thessaly
11/05/2024 18:13:15 EEST - 18.117.73.223

0 0.4 0.8 1.2 1.6 2
0

1000

2000

3000

4000

5000

6000

Zipf shape parameter
S

e
rv

e
r

lo
a

d

Greedy
Swapping
Femtocaching
Algorithm 2.1

(a)

0 0.4 0.8 1.2 1.6 2
0

5

10

15

20

25

30

35

40

45

Zipf shape parameter

S
e
rv

e
r

lo
a
d
 g

a
in

s
 (

%
)

Greedy
Swapping
Femtocaching

(b)

Figure 2.6: Performance comparison between Greedy, Swapping, Femtocaching and
Algorithm 2.1 for various values of the zipf shape parameter.

Main takeaways: The hierarchical caching problem is NP-Hard even in two-level

networks. Nevertheless, the problem can be optimally solved in polynomial-time when

all then caches are installed on a single hierarchy path. The simple iterative algorithm

that we propose (Algorithm 2.1) achieves a provably better approximation ratio than

the best-known counterparts. In our simulation the performance gains are up to 56%,

being more pronounced when the cache capacities at the upper hierarchy levels are large

and the content popularity distribution is steep.

Institutional Repository - Library & Information Centre - University of Thessaly
11/05/2024 18:13:15 EEST - 18.117.73.223

Institutional Repository - Library & Information Centre - University of Thessaly
11/05/2024 18:13:15 EEST - 18.117.73.223

Chapter 3

Joint Caching and Routing in

Wireless Networks

Contents

3.1 Introduction . 29

3.2 System Model and Problem Formulation 30

3.2.1 System Model . 31

3.2.2 Motivating Example . 32

3.2.3 Problem Formulation . 33

3.3 Reduction to Facility Location Problem 34

3.3.1 The Reduction . 36

3.3.2 The Reduction Proof . 37

3.4 Approximation Algorithms . 39

3.4.1 Approximation Ratios for the UHCMFL Problem 40

3.4.2 Approximation Ratios for the JRC-UR Problem 41

3.4.3 The Case of Uniform-capacity SBSs 44

3.5 Performance Evaluation . 44

3.5.1 Simulation Setup and Methodology 45

3.5.2 Parameter Impact Analysis . 46

3.6 Extension to the Case of Residential User-owned Caches . 48

3.6.1 Dataset Analysis . 48

3.6.2 Residential User Model . 50

3.6.3 MNO Model . 51

3.6.4 Dataset-driven Evaluation . 53

27

Institutional Repository - Library & Information Centre - University of Thessaly
11/05/2024 18:13:15 EEST - 18.117.73.223

Chapter 3. Joint Caching and Routing in Wireless Networks 28

3.1 Introduction

In order to cope with the mobile data traffic explosion [1] mobile network operators

(MNOs) deploy small cell base stations (SBSs) which operate in conjunction with the

macrocell base stations (MBSs) [20]. This architecture benefits both the MNO by re-

placing the long-range costly transmissions of the MBSs, and the users by offering them

high-capacity, energy-prudent communication links. However, the operation of these

small cells presumes the existence of high-speed backhaul links connecting the deployed

base stations with the core network. Decentralized caching architectures have been re-

cently proposed [33], [8] with the goal to minimize peak traffic - and subsequently the

cost - of these backhaul links. The main idea is to cache in advance (during off-peak de-

mand) popular content items at the SBSs so as to reduce, especially during peak traffic

hours, the requests that are routed over the backhaul links to the core network.

Given the vast set of the content items, the challenge in this context is to find the optimal

caching policy. That is, decide which items should be cached at each base station, so as

to maximize the portion of user requests that are satisfied locally by the SBSs, without

using backhaul links or employing the MBSs. Unfortunately though, this has been

proved to be in general an NP-hard problem [33]. The problem becomes even more

challenging if one considers massive content delivery scenarios, e.g., in populated areas

or during peak traffic hours. In these cases, mobile data delivery will be constrained by

the transmission capacity of the SBSs. Obviously, in order to deliver a content item to a

user, it does not suffice to have it cached at a base station within the user’s transmission

range, but additionally the base station should have enough capacity to deliver it. Prior

works assume that the transmission capacity is rarely the bottleneck for the caching

base stations. Clearly, this is not a realistic assumption for dense urban areas where

user content demand is often massive.

In this chapter, we consider the scenario of massive content delivery through cache-

endowed SBSs with hard bandwidth constraints that bottleneck the data transmission

to mobile users. We consider the case that user requests are unsplittable, which implies

that each one of the requests is entirely satisfied by one base station, i.e., a user that

requests a file will not receive different parts of it from different base stations, but a

complete replica from a single base station. This is of major importance, since associating

a user request with multiple base stations incurs the extra effort to synchronize the

communication. Besides, user association cannot change in a very small time scale as

base station reselection requires a time interval of several seconds [63].

We introduce the joint routing and caching for un-splittable requests (JRC-UR) problem,

the solution of which maximizes the content requests that are satisfied by the SBSs. We

Institutional Repository - Library & Information Centre - University of Thessaly
11/05/2024 18:13:15 EEST - 18.117.73.223

Chapter 3. Joint Caching and Routing in Wireless Networks 29

propose a novel mapping of the JRC-UR problem to a variant of the facility location

problem known as the Unsplittable Hard-Capacitated Metric Facility Location Problem

(UHCMFL). The UHCMFL problem has been studied extensively, and there exist a

variety of bi-criteria approximation algorithms for its solution [64]-[69]. A bi-criteria

(α, β)-approximation algorithm ensures an α-approximation solution under the assump-

tion that the facility capacities can be violated up to β times. We prove that the JRC-UR

can be reduced in polynomial time to UHCMFL. Moreover, we provide a methodology for

transforming the above bi-criteria facility location algorithms to approximation caching

algorithms. We evaluate numerically one of the derived approximation algorithms in

representative scenarios, and find that its performance (in terms of requests routed to

MBS) is up to 38% better than conventional caching schemes.

Going one step further, we design joint caching and routing policies for caches owned

by residential WiFi users. Since the residential users are self-interested, the MNO must

offer them proper (monetary) compensation in order to agree to cache and deliver the

requested content to mobile users. The offered reimbursements directly determine the

available amounts of bandwidth and cache space in every AP, which in turn affect the

caching policy and the routing policy. We show that this is a NP-Hard problem in its

general form, and we derive a policy that minimizes the cost of the MNO using the

Primal-dual method. Using a novel WiFi usage dataset collected from 167 residential

users, we show that in densely-populated areas with costly network capacity upgrades,

our proposal reduces operator’s total cost by a factor of 2, while reimbursing up to 9

euros per month each residential user.

The rest of the chapter is organized as follows. Section 3.2 describes the system model

and the assumptions, and introduces formally the problem. In Section 3.3 we reduce the

problem to the UHCMFL problem. Section 3.4 presents an approximation framework

based on the above reduction, whereas Section 3.5 provides the numerical results. The

extension to the case of user-owned caches is described in 3.6.

3.2 System Model and Problem Formulation

In this section, we first introduce the system model and explain the considered network

architecture. In the sequel, we provide a simple, yet representative, example that mo-

tivates the joint design of routing and caching policies, and we formally introduce the

respective optimization problem.

Institutional Repository - Library & Information Centre - University of Thessaly
11/05/2024 18:13:15 EEST - 18.117.73.223

Chapter 3. Joint Caching and Routing in Wireless Networks 30

Figure 3.1: Mobile users are randomly distributed in the coverage regions of the
SBSs. Each SBS n has certain storage and bandwidth capacity of Sn and Bn units

respectively.

3.2.1 System Model

We consider a single macrocell1 in which the mobile network operator (MNO) serves

the content requests submitted by a set K = {1, 2, . . . ,K} of K = |K| classes of mobile

users (MUs). Each class represents the users lying in a certain geographic area2. Hence,

it is possible to have more than one requests for one file originating from the same

point. Also, there exists a set N = {1, 2, . . . , N} of N = |N | small cell base stations

(SBSs) which operate in conjunction with the macrocell base station (MBS), yielding a

heterogeneous cellular network. This two-layer architecture is depicted in Figure 3.1.

We consider the case that the SBSs operate in disjoint subchannels than the MBS.

Also, we assume that neighboring SBSs are assigned orthogonal frequency bands and/or

employ enhanced inter-cell interference coordination techniques (eICIC) proposed in

LTE Rel. 10 [70]. We assume that time is slotted and we study the system for one

time period T . Each SBS n ∈ N has a certain transmission capacity, i.e., it can deliver

Bn ≥ 0 data bytes within period T . Additionally, each SBS n ∈ N is endowed with a

storage capacity of Sn ≥ 0 bytes.

Let the set I indicate a static collection of I = |I| content items (or, files). For notational

convenience, we assume that all files have the same size s. This assumption can be easily

removed as, in real systems, files can be divided into blocks of the same length or by

1The study can be directly extended for more macrocells.
2Hereafter, we may use the term user k ∈ K to refer to user class k ∈ K.

Institutional Repository - Library & Information Centre - University of Thessaly
11/05/2024 18:13:15 EEST - 18.117.73.223

Chapter 3. Joint Caching and Routing in Wireless Networks 31

leveraging advanced coding techniques [33]. We denote with λki ∈ Z+ the expected

number of requests for file i ∈ I generated by user class k ∈ K within T . Observe

that a user class consists of many users and thus can generate more than one requests

for the same file. User requests may change over consecutive time periods but are

considered fixed (and known) within each period. This is a realistic assumption for

proactive caching as the popularity distribution of the files changes slowly [33]. The

coverage areas of the SBSs are overlapping. Let Nk ⊆ N denote the set of SBSs that

are in communication range with user class k. Then, a request generated by k can be

satisfied by any of the SBSs in Nk that owns a copy of the requested item. The requests

that cannot be satisfied locally, i.e., by any SBS, are routed to the MBS. Our goal is to

minimize this latter quantity which depends both on the caching and the routing policy

of the operator.

3.2.2 Motivating Example

Consider the system depicted in Figure 3.2 with two SBSs (n1 and n2) and three users

(k1, k2 and k3). The circles represent the coverage areas of the SBSs while all the users

are also covered by the MBS (not shown). There are also two equal-sized files denoted

i1 and i2. Each SBS can cache at most one file due to its limited storage capacity. Also,

because of the bandwidth limitations, n1 can serve at most 5 requests and n2 can serve

at most 10 requests. User class k1 requests file i1 1 time, k2 requests i1 2 times and

k3 requests file i2 10 times. The optimal routing and caching strategy is the one that

maximizes the requests satisfied by n1 and n2. In this example, this policy dictates to

cache i1 to n1, and i2 to n2. Then, n1 serves the request for i1 generated by k1, and n2

serves all the requests for i2 generated by k3. Hence, only 2 requests need to be served

by the MBS.

However, if we omit the transmission capacity constraints, then the optimal caching

policy changes: it places i2 to n1, and i1 to n2. Then, n1 handles all the requests of

k3, and n2 handles all the requests of k2, letting only the one request generated by k1

to be routed to the MBS. Nevertheless, in practice, n1 will serve only half of incoming

requests (due to limited capacity) and redirect the rest to the MBS. Hence, the MBS

will have to serve 6 > 2 requests.

This example demonstrated that ignoring the SBSs’ bandwidth capacities when designing

the caching policy leads the system to inefficient operating points, for the case of massive

content requests where the capacity limits of the SBSs are reached. In the sequel, we

formalize the respective problem for the general case.

Institutional Repository - Library & Information Centre - University of Thessaly
11/05/2024 18:13:15 EEST - 18.117.73.223

Chapter 3. Joint Caching and Routing in Wireless Networks 32

Figure 3.2: An example with 2 SBSs (n1 and n2) and 3 users (k1, k2, k3). The circles
denote the transmission range of each SBS.

3.2.3 Problem Formulation

Let us introduce the binary decision variable xni ∈ {0, 1} which indicates whether file

i ∈ I is placed at the cache of SBS n ∈ N or not. We also define the respective caching

policy matrix:

x = (xni : n ∈ N , i ∈ I). (3.1)

Additionally, let the integer decision variable ykni ∈ Z+ indicate the number of requests

for file i generated by user class k that are routed to SBS n. Also, ykMi ∈ Z+ denotes the

number of requests for file i generated by user k ∈ K that are routed to the MBS which

is denoted with M . The routing policy of the operator is described by the following

matrix:

y =
(
ykni : n ∈ N ∪ {M}, i ∈ I, k ∈ K

)
. (3.2)

Observe that each one of the λki requests for file i generated by user class k must be

satisfied by exactly one SBS, ∀i ∈ I, k ∈ K. This means that each variable ykni is allowed

to take value in the integer set {0, 1, ..., λki} (“un-splittable requests”). The above

integrality constraint makes the problem even harder compared to the simplified case

that any fraction of the total user demand for a file is allowed to be routed to multiple

SBSs, i.e., the variable ykni take values in the real set [0, λki] (“splittable requests”) [17].

As we explained in the previous example, the routing policy should take into account

the bandwidth capacity constraint Bn of each SBS n ∈ N . Clearly, if an SBS is already

congested, it cannot serve additional user requests. Moreover, routing decisions are

coupled with the respective caching decisions: a request is routed to an SBS only if the

latter has the requested content item cached. At the same time, the caching policy must

respect the storage capacity Sn of each base station n ∈ N .

Summarizing, the problem of devising the joint routing and caching policy for un-

splittable requests (JRC-UR problem) which minimizes the requests routed to the MBS,

Institutional Repository - Library & Information Centre - University of Thessaly
11/05/2024 18:13:15 EEST - 18.117.73.223

Chapter 3. Joint Caching and Routing in Wireless Networks 33

can be formulated as follows:

min
x,y

∑
k∈K

∑
i∈I

ykMi (3.3)

s.t. ∑
i∈I

xnis ≤ Sn, ∀n ∈ N , (3.4)

∑
k∈K

∑
i∈I

yknis ≤ Bn, ∀n ∈ N , (3.5)

ykni ≤ xniλki, ∀i ∈ I, k ∈ K, n ∈ N , (3.6)

ykni = 0, ∀i ∈ I, k ∈ K, n ∈ N \ Nk, (3.7)

∑
n∈N∪{M}

ykni = λki, ∀i ∈ I, k ∈ K, (3.8)

xni ∈ {0, 1}, ∀n ∈ N , i ∈ I, (3.9)

ykni ∈ Z+, ∀n ∈ N ∪ {M}, i ∈ I, k ∈ K, (3.10)

where inequalities (3.6) indicate that SBSs can not serve requests for files that are not

in their caches. Constraints (3.7) denote that SBSs can not serve requests generated by

users located out of their coverage areas, and (3.8) dictate that the system must serve

all the requests (inelastic demand3). Finally, (3.9)-(3.10) reveal the discrete nature of

the optimization variables.

Clearly, the above problem is very hard to solve optimally. Namely, the following lemma

holds.

Lemma 3.1. The JRC-UR problem is NP-hard.

Proof. The JRC-UR problem is a generalization of the Helper Decision Problem (HDP),

described in [33], by incorporating the hard bandwidth constraints of the SBSs. Hence,

problem HDP, which is NP-hard, can be directly reduced in polynomial time to our

problem. Consequently, JRC-UR is also NP-hard.

3.3 Reduction to Facility Location Problem

In this section our goal is to devise a polynomial time reduction of the JRC-UR problem

to a well known facility location problem. This will help us in the sequel to derive

3Notice that we have not included a capacity constraint for the MBS, assuming that it can accom-
modate all the unsatisfied requests even if this entails a very high OpEx cost.

Institutional Repository - Library & Information Centre - University of Thessaly
11/05/2024 18:13:15 EEST - 18.117.73.223

Chapter 3. Joint Caching and Routing in Wireless Networks 34

approximation algorithms for our problem, by using the ones that have been designed

for the facility location problem. Note that although, in general, reduction preserves

only optimality (and not approximation bounds), for our case it also holds that we can

compute how much in the worst case the approximation ratio deteriorates, as we show

in the next section. Hence, the reduction serves as the main building block for our

optimization framework. Subsequently, we describe a polynomial time reduction of the

JRC-UR problem to the following variant of the facility location problem [68]:

Definition 3.2. Unsplittable Hard-Capacitated Metric Facility Location Problem (UHCMFL):

We are given a set V of |V| locations, where there is a subset A ⊆ V of facilities, and a

subset B ⊆ V of clients. Let di ≥ 0 denote the demand of client i ∈ B. Besides, let fj ≥ 0

and Cj ≥ 0 denote the opening cost and the capacity of facility j ∈ A, respectively. Each

client needs to assign its entire demand to a single open facility (unsplittable). Capacity

Cj limits the total sum of demands served by facility j (hard capacitated). We denote

by cij ≥ 0 the unit cost incurred when serving one unit of demand of client i by facility

j. We assume that these costs form a metric, i.e., they are non-negative, symmetric

(cij = cji), and satisfy the triangle inequality: cij + cjk ≥ cik, ∀i, j, k ∈ V.

The problem is to determine which subset of facilities A∗ ⊆ A should open, and which

clients each one of them should serve (denoted by a function π : B → A∗), so as to

minimize the aggregate facility opening and servicing cost Q:

Q =
∑
j∈A∗

fj +
∑
i∈B

dici π(i). (3.11)

At the same time satisfying the capacity constraints
∑
{i∈B:π(i)=j} di ≤ Cj , ∀j ∈ A.

The connection between the UHCMFL and the JRC-UR problem is non-trivial. In

fact, previous works in the literature that established reductions of caching problems

to facility location problems, focused on the simplified case that only a single piece of

content is to be placed in the caches [68]. Our model substantially differs from these

works, as it considers the practical case that multiple files exist, while the cache size and

the bandwidth capacity of the SBSs are limited. To the best of our knowledge this is

the first work that shows that such a connection exists. The following theorem describes

this result.

Theorem 3.3. The JRC-UR problem is polynomial-time reducible to the UHCMFL

problem.

We describe in detail this reduction and prove its validity in the following two subsec-

tions.

Institutional Repository - Library & Information Centre - University of Thessaly
11/05/2024 18:13:15 EEST - 18.117.73.223

Chapter 3. Joint Caching and Routing in Wireless Networks 35

Figure 3.3: An example of the reduction to the UHCMFL problem. We consider a
setting with 1 MBS, 2 SBSs, and 3 users as shown on the left. The system parameters

are |I| = 4, s = 1, S1 = S2 = 2, and B1 = B2 = 2.

3.3.1 The Reduction

In this subsection, we analytically describe the reduction mentioned in Theorem 3.3.

Particularly, we reduce any instance of the JRC-UR problem to an instance of the

UHCMFL problem. Let FJRC−UR be that instance of the UHCMFL problem. Then,

FJRC−UR is constructed as follows:

The set of facilities A consists of: (i) one facility named aM for the MBS and (ii) a facility

named ani for every SBS n ∈ N and every file i ∈ I. The set of clients B comprises

the following subsets: (i) B1 that contains λki clients, ∀k ∈ K and ∀i ∈ I, denoted as

bki1, bki2 . . . , bkiλki , (ii) B2, with |I| − bSns c clients, denoted b′n1, b′n2 etc, ∀n ∈ N , and

(iii) subset B3 which contains (bSns c − 1)bBns c clients, which are denoted b′′n1, b
′′
n2 etc,

∀n ∈ N . The symbol b.c denotes rounding to the next lower integer. The capacity of

the facility aM is set to +∞ and to Bn/s for each ani, ∀n ∈ N , i ∈ I. The demand

of each client b′ni ∈ B2 is equal to Bn/s. Each of the remaining clients bkij ∈ B1 and

b′′ni ∈ B3 has demand equal to 1.

Let c be an arbitrarily small positive constant. Then, the unit serving cost for each

pair of a facility and a client is specified as follows: (i) each pair of the form (aM , bkij),

∀k, i, j, has cost equal to 1+0.5+c, (ii) each pair of the form (ani, bkij), such that n ∈ Nk
and j ∈ {1, ..., λki}, has cost equal to 0.5+c, (iii) each pair of the form (ani, b

′
nj), ∀n, i, j,

has cost equal to 0.5 + c, (iv) each pair of the form (ani, b
′′
nj), ∀n, i, j, has cost equal to

0.5 + c. The cost value of each of the remaining pairs is equal to the cost of the shortest

path that unite this pair. Thus, the costs form a metric. Finally, the facility opening

cost is set to zero for every facility.

Roughly speaking, the facility aM represents the MBS and the facilities ani, ∀i, the SBS

n. Hence, the facility capacity choices indicate that the MBS can serve all the user

requests, while each SBS n can serve up to a limited number of requests. Each one of

the clients of the type bkij ∈ B1, ∀k, i, j (whose demand is equal to one) represents one

Institutional Repository - Library & Information Centre - University of Thessaly
11/05/2024 18:13:15 EEST - 18.117.73.223

Chapter 3. Joint Caching and Routing in Wireless Networks 36

user request, while b′ni ∈ B2, and b′′ni ∈ B3, ∀n, i denote virtual user requests that are

necessary to preserve the cache capacity and bandwidth constraints of the SBSs, as it

will become clear in the following subsection.

Each solution for the FJRC−UR problem can be mapped to a solution for the JRC-UR

problem as follows:

• Rule 1: For each facility ani not serving any client of the form b′nj ∈ B2,

∀j, place file i to the cache of SBS n.

• Rule 2: For each facility of the form ani serving a client of the form

bkij ∈ B1, ∀n, i, k, j route the jth request of user k for file i to SBS n.

• Rule 3: The remaining requests are routed to the MBS.

Figure 3.3 depicts the reduction for the example of Figure 3.2. Here, we set the system

values as follows: |I| = 4, s = 1, S1 = S2 = 2 and B1 = B2 = 2. Each of the two first

users requests every file once. User 3 performs two requests for the first file. Squares

represent the facilities and circles the clients. Solid lines unite clients to facilities with

cost 0.5 + c. Dashed lines mean that the corresponding cost is 1 + 0.5 + c. The cost

value of each of the remaining pairs is equal to the cost of the shortest path that unites

this pair. For example, the cost between the client b′11 and facility a21 is 1.5 + 3c. The

demand of each client is 1, except for the clients named as b′ni ∈ B2,∀n, i, whose demand

is 2. The capacity of each facility is 2, except for the aM facility, whose capacity is +∞.

To help the reader understand the rationality behind the reduction, we also present

a partition of the UHCMFL components, specified by the dashed rectangles and the

arrowed labels with cyan color. Recall that the role of the clients in B2 and B3 is to

preserve the cache space and bandwidth limitations of the SBSs, which are mapped to the

facilities ani, ∀n, i. Hence, a logical partition of the UHCMFL components should include

the above into the same group. To this end, each SBS in our example corresponds to the

8 components in the top of the UHCMFL instance (namely 4 facilities and 4 clients),

each user k to
∑

i∈I λki of the bottom clients, and the MBS to the facility named aM .

3.3.2 The Reduction Proof

We now prove that the preceding reduction holds, by proving the next two lemmas. Let

D denote the total demand of the clients in FJRC−UR. Then, we have:

Institutional Repository - Library & Information Centre - University of Thessaly
11/05/2024 18:13:15 EEST - 18.117.73.223

Chapter 3. Joint Caching and Routing in Wireless Networks 37

Lemma 3.4. For every feasible solution of the JRC-UR problem with value C, there is

a feasible solution to FJRC−UR with total cost C +D(c+ 0.5).

We construct the solution to FJRC−UR as follows:

1. We open all the facilities at zero cost.

2. For each file i not cached at SBS n, we assign the (entire) demand of one client of

type b′nj ∈ B2, j ∈ {1, ..., |I| − bSns c} to the facility ani.

3. For each request generated by a user k for a file i served by an SBS n, we assign

the demand of one client of type bkij ∈ B1, j ∈ {1, ..., λki} to the facility ani.

4. The demand of a client of type b′′nj ∈ B3, j ∈ {1, ..., (bSns c−1)(bBns c)}, is randomly

assigned to one of the facilities of the form ani, ∀i ∈ I, without violating their

capacity constraints.

5. For each client bkij ∈ B1 that has not been covered yet, we assign its demand to

the facility aM . Thus, every unit of demand of the clients was assigned to a facility.

An assignment to the facility aM incurs a per unit cost equal to 1 + 0.5 + c, while

all the other assignments incur a per unit cost equal to 0.5 + c. By construction of

the graph, the total demand assigned to aM is equal to the number of requests that

are routed to the MBS (C). Thus, the solution has cost equal to C +D(0.5 + c).

Lemma 3.5. For every minimum cost solution of the FJRC−UR instance with total cost

C, there is a feasible solution to the JRC-UR problem with value C −D(0.5 + c).

We construct the solution to JRC-UR problem as follows:

(i) For each facility ani not serving any client of the form b′nj ∈ B2, ∀j, place file i to the

cache of SBS n (Rule 1). Observe that each client b′nj ∈ B2, ∀j, must be assigned to a

facility of the form ani, ∀i ∈ I, at per unit cost 0.5+ c. This is because each of the other

choices incurs at least 1 + 0.5 + 3c per unit cost. Thus, the extra cost paid is at least

1 + 2c. On the other hand, each client bkij ∈ B1, ∀k, i, j, can always be assigned to the

facility aM at per unit cost 1 + 0.5 + c. This means that the potential gain for assigning

it to a facility of the form ani, ∀i ∈ I, at cost 0.5 + c, is equal to 1, which is strictly

lower than the extra cost paid above. We also observe that, the demand of each of these

clients is equal to the capacity of each of the facilities of the form ani, ∀i ∈ I. There

are |I|− bSns c such clients. Thus, these clients fully occupy the capacity of |I|− bSns c of

these facilities. Consequently, exactly bSns c of the above facilities will remain uncovered

corresponding to the files placed at the cache of SBS n.

Institutional Repository - Library & Information Centre - University of Thessaly
11/05/2024 18:13:15 EEST - 18.117.73.223

Chapter 3. Joint Caching and Routing in Wireless Networks 38

(ii) For each facility of the form ani serving a client of the form bkij ∈ B1, ∀n, i, k, j
route the jth request of user k for file i to SBS n (Rule 2). Observe that each of the

clients of type b′′nj ∈ B3, ∀j, must be assigned to one of the bSns c uncovered facilities of

the form ani, ∀i, similarly to the above case. The capacity of each of these facilities is

equal to Bn
s . There exist (bSns c − 1)bBns c such clients, each of them with demand equal

to 1. Thus, the remaining capacity suffices for serving at most Bn
s units of demand of

the clients bkij ∈ B1, ∀k, i, j. By construction, a client bkij ∈ B1 can be served by a

facility ani with cost equal to 0.5 + c iff n ∈ Nk. The cost for serving bkij ∈ B1 by ani,

∀n /∈ Nk is more than the serving cost by aM . Thus, at most Bn
s requests generated

by users in the coverage area of an SBS n will be routed to n,∀n ∈ N . The remaining

C −D(0.5 + c) requests will be routed to the MBS (Rule 3).

To avoid confusion, we need to emphasize that the key point of the reduction is to force

all the clients b′nj ∈ B2 and b′′nj ∈ B3, ∀j to assign their (entire) demand on one of the

facilities of the form ani, ∀i, for each SBS n ∈ N . To ensure this, we picked the servicing

cost values appropriately. A different choice would be to set the cost between each one

of the clients in the set B2 ∪B3 and one of the above facilities equal to zero, and to +∞
for all the other choices. Then, we could set the cost for assigning clients in B1 from

0.5 + c to zero, from 1 + 0.5 + c to 1 and to +∞ for the rest choices. Note that, although

this new instance of the facility location problem would be equivalent to the JRC-UR

problem, the costs would not form a metric any more. The non-metric version of the

UHCMFL problem is much harder, and there are not any approximation algorithms for

it in the literature. This is the reason that we added the quantity 0.5 + c to the cost

value of each one of the above links and restricted the cost of each one of the rest links

to be equal to the aggregate cost in the shortest path that unites the endpoint vertices.

Note that the reduction does not hold for c ≤ 0, since the extra cost paid for assigning

a client b′nj ∈ B2 or b′′nj ∈ B3 to a facility an′i, n
′ 6= n can be lower than the potential

gains.

3.4 Approximation Algorithms

In this section, we present an approximation framework for the JRC-UR problem based

on the reduction described in Sec. 3.3. We first discuss existing approximation algo-

rithms for the UHCMFL problem. Accordingly, we describe methods to extend them

so as to tackle the problem under consideration. Additionally, we derive improved ap-

proximation ratios for the special case of equal transmission capacity SBSs. This is an

important case because, more often than not, SBSs will be of the same type and hence

they will have equal transmission capacities.

Institutional Repository - Library & Information Centre - University of Thessaly
11/05/2024 18:13:15 EEST - 18.117.73.223

Chapter 3. Joint Caching and Routing in Wireless Networks 39

3.4.1 Approximation Ratios for the UHCMFL Problem

It is NP-hard even to approximate the solution of UHCMFL problem. Hence, previous

works [64]-[69] focused on obtaining bi-criteria approximation algorithms. Formally, an

(α, β)−bi-criteria approximation algorithm finds an infeasible solution with a cost at

most α ≥ 1 times the optimal cost and aggregate demand assigned to each facility at

most β ≥ 1 times its capacity. Similarly, we can define an (α, β)−bi-criteria approxima-

tion algorithm for the JRC-UR problem, such that its solution violates the bandwidth

capacities of the SBSs by at most a factor of β. Clearly, when β equals to one, a feasible

solution is attained. We call the corresponding algorithm simply as an α−approximation

algorithm.

Table 3.1 summarizes the existing results in the literature in chronological order. Notice

that different results are obtained for the case that facilities have equal capacities (uni-

form case). Parameter ε > 0 is arbitrarily small and |V| is the size of the facility location

instance. A Quasi-polynomial time algorithm (QP.) runs slower than polynomial time

(P.), yet faster than exponential time [68]. For example, the complexity of Algorithm

3.7 is |V|O(log |V|).

Shmoys et al. [64] provided the first approximation algorithm for the UHCMFL problem

(Algorithm 3.1). They used the filtering and rounding technique of Lin and Vitter

to solve the splittable version of the problem, and then round the obtained solution

to provide a (9, 4)-approximation algorithm for the unsplittable case. The first step

requires solving the linear programming relaxation of the UHCMFL problem, and then

rounding it to obtain a g − close integer solution, i.e., a solution that assigns clients

to facilities with cost at most g. The second step expresses the problem as one of

assigning jobs to machines. Then, it rounds the current solution to a new one by solving

an appropriately constructed instance of the maximum weight matching in a bipartite

graph problem. The running time of this procedure is cubic to the size of the facility

location instance. Authors in [64] also proposed a randomized variant of the above

technique that provides an improved approximation guarantee (Algorithm 3.2). As it

is well discussed in [69], applying the same rounding technique of [64] to the results for

the splittable case provided in [65], [66], [67] yields even tighter approximation ratios for

the unsplittable variant of the facility location problem (Algorithms 3.3-3.5).

The work in [68] provided an (1 + ε, 1 + ε)−approximation algorithm for the UHCMFL

problem for the special case that the costs form a tree metric [71], ∀ε > 0. Their

algorithm is based on a dynamic programming approach. Clearly, the costs in the

instance of the facility location problem in Section 3.3 do not form a tree metric. Hence,

we can not use this result as the previous ones. Interestingly, using Fakcharoenphol

Institutional Repository - Library & Information Centre - University of Thessaly
11/05/2024 18:13:15 EEST - 18.117.73.223

Chapter 3. Joint Caching and Routing in Wireless Networks 40

Table 3.1: Bi-criteria Bounds for the UHCMFL problem.

Algorithm Case Bound Complexity Reference

3.1 Uniform (9, 4) P. [64]

3.2 Uniform (7.62, 4.29) P. [64]

3.3 Uniform (O(1), 2) P. [65]

3.4 General (11, 2) P. [69],[66],[64]

3.5 Uniform (5, 2) P. [69],[67],[64]

3.6 Uniform (log |V|, 1 + ε) P. [68]

3.7 General (log |V|, 1 + ε) QP. [68]

3.8 Uniform (10.173, 1.5) P. [69]

3.9 Uniform (30.432, 4
3) P. [69]

et al.’s machinery [71], we can translate the above solution to obtain a (log |V|, 1 + ε)-

approximation algorithm for general metrics. This translation requires polynomial time

for the uniform capacities case and quasi-polynomial time for the general case. Finally,

the work in [69] provided the first approximation algorithms that violate the capacities

by a factor less than two and achieve a constant approximation ratio. The result is

based on a reduction to a restricted version of the initial problem in a way that any

(O(1), 1+ε)-approximation algorithm for the restricted problem implies an (O(1), 1+ε)-

approximation algorithm for the initial problem, for ε ∈ {1/2, 1/3}.

3.4.2 Approximation Ratios for the JRC-UR Problem

Although JRC-UR and UHCMFL problems are equivalent in terms of their optimal so-

lution, the extension of approximation algorithms from one to the other is not straight-

forward. The following theorem describes the way that the bi-criteria bound changes

when translating the solution to handle the JRC-UR case. Let us define:

c′ =
D(0.5 + c)∑

k∈K
∑

i∈I(λki)−
∑

n∈N (Bn/s)
(3.12)

Then, we have:

Theorem 3.6. For any (α, β)−bi-criteria approximation algorithm for the UHCMFL

problem there is an
(
α + (α− 1)c′, (β − 1)|I|+ 1

)
−bi-criteria approximation algorithm

for the JRC-UR problem, requiring the same computational complexity.

The overall traffic routed to an SBS n ∈ N by the real users is β|I|Bns −(|I|−bSns c)
Bn
s −

(bSns c−1)bBns c in the worst case. This is because, each SBS corresponds to |I| facilities,

each one of which has capacity equal to the capacity of the SBS. The virtual clients of

the type b′nj ∈ B2 and b′′nj ∈ B3, ∀j, must be served by the facilities ani ∀i, in any case,

Institutional Repository - Library & Information Centre - University of Thessaly
11/05/2024 18:13:15 EEST - 18.117.73.223

Chapter 3. Joint Caching and Routing in Wireless Networks 41

as explained in the previous section. That is the reason that we subtracted the traffic

sent to them in the above expression. However, in reality, only Bn
s amount of data can

be transmitted by each SBS. The fraction of the two values, after some computations,

can be written as (β − 1)|I|+ 1.

Besides, let opt and approx be the optimal and an approximation solution of the JRC-UR

problem respectively. By Lemma 3.4, it holds that:

approx+D(0.5 + c) ≤ α
(
opt+D(0.5 + c)

)
(3.13)

or equivalently:

approx ≤
(
α+

D(0.5 + c)(α− 1)

opt

)
opt (3.14)

Finally, it is:

opt ≥
∑
k∈K

∑
i∈I

(λki)−
∑
n∈N

(Bn/s) (3.15)

which completes the proof.

Theorem 3.6 combined with Algorithms 3.4 and 3.7 in Table 3.1, provides two bi-criteria

approximation algorithms for the JRC-UR problem. The following corollary describes

this result:

Corollary 3.7. There exist a polynomial time (α1, β1)-bi-criteria approximation algo-

rithm and a quasi-polynomial time (α2, β2)-bi-criteria approximation algorithm for the

JRC-UR problem, for:

(α1, β1) = (11 + 10c′, |I|+ 1) (3.16)

(α2, β2) = (log v + (log v − 1)c′, ε|I|+ 1), ε > 0 (3.17)

where v is the size of the instance of the UHCMFL problem corresponding to the JRC-UR

problem.

We can use the above bi-criteria solutions to perform caching and routing in our problem

as it is described in Figure 3.4. Note also that, as the bandwidth capacities of the SBSs

may be violated by the above factors, the operator may need to endow the base stations

with additional bandwidth capacity, in order to ensure the described approximation

ratio. Nevertheless, in many cases, the operator is unwilling (or, incapable) to perform

additional investments. Thus, the additional requests that reach an SBS will be rerouted

to the MBS, further increasing its load. How much worse is the obtained result? The

next theorem characterizes the worst case scenario in terms of the quality of the resulted

solution.

Institutional Repository - Library & Information Centre - University of Thessaly
11/05/2024 18:13:15 EEST - 18.117.73.223

Chapter 3. Joint Caching and Routing in Wireless Networks 42

Figure 3.4: Our algorithms operate in three stages: In Stage I, the MNO transforms
the JRC-UR into the UHCMFL instance. In Stage II, it solves that instance by em-
ploying one of the algorithms in Table 3.1. In Stage III, it maps the obtained solution

to a solution for the JRC-UR instance based on the rules in Section 3.3

Theorem 3.8. For any (α, β)−bi-criteria approximation algorithm for the UHCMFL

problem there is an (α+(α−1)c′)c′′(β)−approximation algorithm for the JRC-UR prob-

lem, requiring the same computational complexity, where:

c′′(β) =

∑
k∈K

∑
i∈I(λki)−

∑
n∈N (Bn/s)∑

k∈K
∑
i∈I(λki)− ((β − 1)|I|+ 1)

∑
n∈N (Bn/s)

(3.18)

Let Hβ be the number of requests routed to the SBSs and Rβ be the number of requests

routed to the MBS, according to the described reduction, when the capacities of the

facilities are violated by a factor of β. In reality, all the requests beyond the capacities

of the SBSs will be rerouted to the MBS, as the SBSs can not serve them. Let H be

the number of requests served by the SBSs and R the number of requests served by the

MBS after this rerouting. Then, it holds:

R

Rβ
=

∑
k∈K

∑
i∈I(λki)−H∑

k∈K
∑

i∈I(λki)−Hβ
(3.19)

=

∑
k∈K

∑
i∈I(λki)−H∑

k∈K
∑

i∈I(λki)−H · ((β − 1)|I|+ 1)

=

∑
k∈K

∑
i∈I(λki)−

∑
n∈N b

Bn
s c∑

k∈K
∑

i∈I(λki)−
∑

n∈N b
Bn
s c · ((β − 1)|I|+ 1)

where the first equation holds because of the definition of the terms H, Hβ, R and

Rβ which yields that: Hβ + Rβ = H + R =
∑

k∈K
∑

i∈I(λki). The second equation is

because of theorem 3.6: Hβ = H((β−1)|I|+1). Finally, the last equation holds because

after the rerouting of requests each SBS will only serve as many requests as its capacity

allows.

Theorem 3.8 combined with the results in Table 3.1, provides two approximation algo-

rithms for the JRC-UR problem:

Corollary 3.9. There exists a polynomial time α3−approximation algorithm and a

quasi-polynomial time α4−approximation algorithm, for the JRC-UR problem, for:

α3 = (11 + 10c′)c′′(2) (3.20)

α4 = (log v + (log v − 1)c′)c′′(1 + ε), ε > 0, (3.21)

Institutional Repository - Library & Information Centre - University of Thessaly
11/05/2024 18:13:15 EEST - 18.117.73.223

Chapter 3. Joint Caching and Routing in Wireless Networks 43

where v is the size of the instance of the UHCMFL problem corresponding to the JRC-UR

problem.

3.4.3 The Case of Uniform-capacity SBSs

In this subsection, we focus on the special case of the JRC-UR problem where the SBSs

have equal transmission capacities, i.e., Bn = B, ∀n ∈ N . For example, assume that

SBSs are of the same type, e.g., certain type of femtocells or picocells. However, the cache

sizes can be different. We can map this problem to a certain UHCMFL problem in which

all the capacities of the facilities are equal and exploit the improved approximation ratios

that are known for this uniform capacity setting. According to the reduction described

in Section 3.3.1, for this special case of the problem, all the capacities of the facilities

are equal, i.e., Cj = B/s, ∀j ∈ A, except for the facility aM , which has infinite capacity.

Parameter aM can be replaced by d
∑
k∈K

∑
i∈I λki

bB/sc e facilities each one of capacity B/s.

Clearly, the aggregate capacity of them suffices to serve all the demand of the clients of

the form bkij ∈ B1, ∀k, i, j and the new instance is equivalent to the initial.

Based on the above, Table 3.1 provides the following approximation algorithms for the

uniform-capacity JRC-UR problem. The next corollary describes the results:

Corollary 3.10. For the uniform-capacities JRC-UR problem, there exists an r1−bi-

criteria approximation algorithm, and an r2−approximation algorithm, such that:

r1 =
(
α+ (α− 1)c′, (β − 1)|I|+ 1

)
(3.22)

r2 =
(
α+ (α− 1)c′

)
c′′(β) (3.23)

for: (α, β) ∈ {(9, 4), (7.62, 4.29), (O(1), 2), (5, 2), (log v, 1 + ε),

(10.173, 1.5), (30.432, 4/3)}, ε > 0,

where v is the size of the instance of the UHCMFL problem corresponding to the JRC-UR

problem.

3.5 Performance Evaluation

In this section, we present the numerical results of the experiments that we have con-

ducted to evaluate our derived theoretical results. Specifically, using realistic system

settings we characterize the performance improvements offered by one of the proposed

algorithms over conventional caching schemes, as well as its performance gap to the

optimal solution.

Institutional Repository - Library & Information Centre - University of Thessaly
11/05/2024 18:13:15 EEST - 18.117.73.223

Chapter 3. Joint Caching and Routing in Wireless Networks 44

3.5.1 Simulation Setup and Methodology

We compare the performance of the four following schemes:

1. Greedy : The naive approach according to which each SBS caches the most popular

files based on the requests of the nearby users independently from the others. When

a request is generated, it is routed to the nearest SBS that has stored a copy of

the associated file.

2. Iterative [33]: It starts with all the caches empty. At each iteration, it places the

file to a non-full cache that yields the lowest value of the objective function in

(3). The algorithm terminates when all the caches become full. When a request is

generated, it is routed to the nearest SBS that has stored a copy of the associated

file.

3. Facility : The routing and caching policies are jointly derived by solving the in-

stance of the facility location problem using Algorithm 3.1 in Table 3.1, as de-

scribed in detail in Section 3.4, and it is shown in Figure 3.4.

4. Optimal : The optimal solution of the JRC-UR problem found through exhaustive

search. Since its running time is unacceptable large, i.e., in the scale of days,

using realistic system settings, Optimal is only used as a benchmark for gauging

the performance of the proposed solutions and determine if there is still room for

improvement.

The performance criterion we use is the total number of requests that reach the MBS

(MBS load). To describe in detail the performance improvements of the Facility scheme

compared to its alternatives, we also depict the normalized difference between the MBS

load achieved by any of the first three schemes and the Optimal (MBS load difference).

Formally, the MBS load difference of the Greedy algorithm is defined as:

MBS loadGreedy −MBS loadOptimal
MBS loadOptimal

(3.24)

where MBS loadscheme denotes the MBS load achieved by the associated scheme, i.e.,

the value
∑

k∈K
∑

i∈I y
k
Mi. A similar definition holds for the Iterative and the Facility

Scheme.

Throughout, we consider a single MBS serving a circular-shaped cell with radius 350

meters (typical of urban macrocell [33]). We assume that N = 16 SBSs are randomly

deployed within it, each one having a communication range of 80 meters. The system

supports the service of a rich collection of I = 1, 000 unit-sized files. Unless otherwise

Institutional Repository - Library & Information Centre - University of Thessaly
11/05/2024 18:13:15 EEST - 18.117.73.223

Chapter 3. Joint Caching and Routing in Wireless Networks 45

specified, a large number of K = 1, 000 mobile users are uniformly placed in random

statistically independent positions in the cell. Each user requests one file based on the

zipf law with shape parameter z = 0.8 [61], i.e., the probability that a request is for the

jth most popular file is: j−z/
∑|I|

i=1 i
−z. Each SBS n is endowed with a cache of size

Sn = S, ∀n ∈ N that is equal to 3% of the entire file set size. Finally, its bandwidth

Bn = B, ∀n ∈ N suffices for transmitting 5% of the entire file set.

3.5.2 Parameter Impact Analysis

3.5.2.1 Impact of the Cache Sizes

Figures 3.5(a) compare the performance of the discussed schemes as a function of the

cache size S of each SBS. Parameter S varies in our simulation from 0.5% to 5% of the

entire file set size. As expected, increasing the available cache space, decreases the MBS

load for all the schemes, as more files are cached at the SBSs. More importantly, as S

increases the performance of Facility scheme comes very close to the optimal one. Even

for low values of S, the Facility scheme operates very close to the Optimal (less than

10% worse), and far better than the worst case conditions indicate. Besides, the Facility

scheme provides significant performance gains, up to 38%, over the Greedy and Iterative

schemes. To elaborate on this, we observe that although the Iterative scheme performs

the cache placement more efficiently than Greedy (since it places the files in multiple

stages rather than simultaneously), both schemes fail to appropriately route the user

requests to the SBSs. This is because, they both ignore the bandwidth limitations of

the SBSs (bandwidth-agnostic).

3.5.2.2 Impact of the Transmission Bandwidth Capacities

We analyze the impact of the transmission bandwidth capacities on the algorithms’

performance in Figures 3.5(b). We vary the bandwidth capacity per SBS B from 0.5%

to 5% of the entire file set size. As expected, increasing B, decreases the MBS load,

since the SBSs can serve more requests. We observe that for low values of B, i.e., when

the system is in overloaded conditions, the performance of the three schemes is similar.

This is because, in these cases, simply caching the S most popular file at each SBS

suffices to fully utilize its bandwidth capacity for almost all the SBSs. Interestingly, the

performance gap between Facility and Optimal scheme increases as B increases in the

range of 0 to 10%. This is because, as explained in Section 3.4, the solution of the facility

location problem may violate the bandwidth capacities of the SBSs, and redirecting the

extra requests to the MBS further increases its load. This is more crucial for high values

Institutional Repository - Library & Information Centre - University of Thessaly
11/05/2024 18:13:15 EEST - 18.117.73.223

Chapter 3. Joint Caching and Routing in Wireless Networks 46

0 1 2 3 4 5
0

200

400

600

800

1000

S/I (%)

M
B

S
 L

o
a
d

Greedy

Iterative

Facility

Optimal

0 1 2 3 4 5
0

200

400

600

800

1000

B/I (%)

M
B

S
 L

o
a
d

Greedy

Iterative

Facility

Optimal

0 0.4 0.8 1.2 1.6 2
0

200

400

600

800

1000

z

M
B

S
 L

o
a
d

Greedy

Iterative

Facility

Optimal

0 1 2 3 4 5
0

20

40

60

80

S/I (%)

M
B

S
 L

o
a
d
 D

if
fe

re
n
c
e
 (

%
) Greedy

Iterative

Facility

(a) Cache Size

0 1 2 3 4 5
0

20

40

60

80

B/I (%)

M
B

S
 L

o
a
d

 D
if

f
e
r
e
n

c
e
 (

%
)

Greedy

Iterative

Facility

(b) Bandwidth Capacity

0 0.4 0.8 1.2 1.6 2
0

20

40

60

80

z

M
B

S
 L

o
a
d
 D

i
f
f
e
r
e
n
c
e
 (

%
) Greedy

Iterative

Facility

(c) Zipf-Parameter

Figure 3.5: Performance comparison between Greedy, Iterative, Facility and Optimal
scheme for various values of (a) the cache size, (b) the bandwidth capacity per SBS and

(c) the zipf parameter of the popularity distribution of the files.

of B. Finally, we note that Facility scheme consistently outperforms the Greedy and

Iterative schemes, a gap that increases with B in the range of 0% to 25%.

3.5.2.3 Impact of the File Request Pattern

We explore the impact of the steepness of the file request pattern on the algorithms’

performance in Figures 3.5(c). Namely, we vary the shape parameter z of the file pop-

ularity from the value 0.2 to 2. We observe that as z increases, the MBS load decreases

for all the schemes, reflecting the well known fact that caching effectiveness improves

as the popularity distribution gets steeper. Besides, as z increases the performance gap

between each pair of the discussed algorithms is shrinking. This is because, when z is

high, the vast majority of user requests refer to a small number of files. Clearly, caching

the above files provides significant benefits to the provider. To conclude, our algorithm

achieves a performance that is up to 31% better than the Greedy, up to 17% better than

Iterative, and less than 10% worse than the optimal one.

Institutional Repository - Library & Information Centre - University of Thessaly
11/05/2024 18:13:15 EEST - 18.117.73.223

Chapter 3. Joint Caching and Routing in Wireless Networks 47

Access Speed(Mbps) Monthly price(euros) %residential users

ADSL 24/1 21.94 28.7
Fiber 30/3 25.20 6.6
Fiber 100/10 33.33 64.7

Table 3.2: Tariff plans for all the residential users in our dataset.

3.6 Extension to the Case of Residential User-owned Caches

In this section, we extend our model for the case that the caches are owned by residential

WiFi users. Considering that the SBS deployment requires significant CAPEX cost to

MNO, this architecture can significantly reduce costs. In fact, residential users today

own possibly more than one storage devices (e.g., hard disks, flash memories, etc.),

which can be used by the MNO to cache and deliver content to mobile users. The

success of this proposal depends on the willingness of the residential users to lease their

cache space and wireless bandwidth. Intuitively, residential users that frequently connect

to the Internet through their wireless devices (e.g., laptops, tablets, smartphones) are

expected to be more reluctant for leasing the wireless bandwidth of their Access Points

(APs). The MNO can offer monetary incentives (reimbursements) to compensate for

the opportunity cost, i.e., the fact that due to the reduced bandwidth, the residential

users may need to change their daily habits, such as the time of the day they use their

devices, the type of applications they run, etc. The required reimbursement is expected

to be higher when the utilization of the WiFi connection inside residence increases.

3.6.1 Dataset Analysis

Clearly, it is important to understand how often and when the residential WiFi APs are

utilized. In order to obtain insights into this question, we analyze a dataset of detailed

WiFi usage obtained from 167 residential users in Portugal, subscribers of Portugal Tele-

com (PT). These users are distributed over a large geographic area spanning 10 cities,

and volunteered to be part of a data collection project within a 4-month period (June-

September, 2013). The gateway platform of each user has the following specifications:

(a) ADSL2+ modem or fiber WAN access link, (b) 4 ethernet ports and (c) a WiFi AP

with a Broadcom 802.11b/g/n 2x2 interface with MIMO support. The 802.11 interface

operates at 2.4GHz band and supports both 20MHz and 40MHz channels. The tariff

plans span two different access technologies (ADSL and Fiber) and three different down-

stream/upstream access speeds at the backhaul links (24/1, 30/3 and 100/10 Mbps).

Table 3.2 presents a summary of the subscriber population in our dataset.

Institutional Repository - Library & Information Centre - University of Thessaly
11/05/2024 18:13:15 EEST - 18.117.73.223

Chapter 3. Joint Caching and Routing in Wireless Networks 48

0 5 10 15 20
0

0.2

0.4

0.6

0.8

1

WiFi utilization within a day (in hours)
C

um
ul

at
iv

e
di

st
ri

bu
ti

on

Weekdays
Weekends

Figure 3.6: Cumulative Distribution Function of WiFi utilization within a day.

Each gateway reports every 30 seconds the actual throughput Ta (measured in Kbps)

for each wireless device connected to it. The actual throughput is the total number

of (transmitted or received) bits over time, and it captures the actual demand on the

wireless network. We leverage Ta metric to estimate WiFi utilization over time. Partic-

ularly, we consider a WiFi AP to be utilized across a 30-second time bin t, if there is

at least one in-residence device with non-zero aggregated (transmit and receive) actual

throughput during t. During the utilized periods, serving external (non-resident) devices

may negatively impact the residential users’ quality of experience.

In Figure 3.6, we plot the cumulative distribution function of WiFi utilization within a

day (measured in hours) seen across the 167 users in our dataset. Here, measurements

for weekdays and weekend days are taken separately. We find that WiFi utilization is

slightly higher during weekend days than weekdays, with the average values being 3.69

and 3.32 hours per day respectively. We also observe a wide disparity in WiFi utilization

in both weekdays and weekend days. The majority of the users use WiFi for a few hours

within a day, with ∼ 80% of them being active for less than 5 hours of the day. On

the upper extreme, a few users connect to WiFi for up to 18 hours of the day. This is

an important result, since the unused wireless bandwidth can be leased by the MNO

without actually affecting the quality of experience of the residential users. To reduce its

leasing fees, the MNO should target the residential users with the lowest WiFi utilization

among a set of candidate choices in the same region.

In order to capture the temporal characteristics of WiFi utilization, we depict in Figure

3.7 the probability that the APs are utilized during different times of the day. For

a specific time, this probability is computed by summing all the WiFi measurements

collected in our dataset for this time, and normalizing by the number of samples. We

find that WiFi utilization follows a diurnal pattern, with the value increasing during

the daytime, but reducing at late night until the early morning. The peak value (found

Institutional Repository - Library & Information Centre - University of Thessaly
11/05/2024 18:13:15 EEST - 18.117.73.223

Chapter 3. Joint Caching and Routing in Wireless Networks 49

6 12 18 24
0

0.05

0.1

0.15

0.2

0.25

Time of day (in hours)
P

ro
ba

bi
li

ty
 o

f
W

iF
i u

ti
li

za
ti

on

Weekdays
Weekends

Figure 3.7: Daily pattern of WiFi utilization.

to be at 21pm in the evening) is ∼ 2.5 times higher than the lowest one (found to be

at 5am in the early morning) during both weekdays and weekend days. During the

weekend, the WiFi utilization is higher for a longer period of time, reflecting the users

accessing the Internet from home during the morning too. Interestingly, most of the

wireless bandwidth is unused during all times of the day, even in the evening. This is of

high importance, since an MNO may need to offload the cellular network in the evening

when the mobile data traffic may also peak.

Summarizing, in circumstances that cover most kinds of residential user activity, leasing

WiFi bandwidth can be a feasible mechanism for the MNO to reduce the mobile data

volumes. However, the overall cost-benefit is likely to depend on a number of factors:

response of the residential users to incentives, network costs of MNO, spatiotemporal

characteristics of mobile user demand, and so on.

3.6.2 Residential User Model

In the new model, we use the set N to denote N residential users rather than SBSs.

Each residential user owns a WiFi access point (AP) with transmission range a few tens

of meters, e.g., using IEEE 802.11b/g/n technology. We assume that the residential

users are rational and self-interested entities. Namely, we denote with UBn (r) the utility

perceived by residential user n for using r portion of his wireless bandwidth to serve

his own communication needs (i.e., to serve the registered devices in the residence).

Similarly, we denote with USn (r) the obtained utility for using r portion of his cache

capacity to cache data for his own needs. The utility functions may change over time

(e.g., due to variations in habits and behavior of the users), but they are considered

fixed for the period of study. Following the principle of diminishing returns [72], we

consider residential user utility to be logarithmically related to the portion of consumed

Institutional Repository - Library & Information Centre - University of Thessaly
11/05/2024 18:13:15 EEST - 18.117.73.223

Chapter 3. Joint Caching and Routing in Wireless Networks 50

resources:

UBn (r) = αBn log(βBn · r) (3.25)

and

USn (r) = αSn log(βSn · r) (3.26)

Here, αBn is a scaling parameter that captures how different users evaluate a unit of

wireless bandwidth. Parameter βBn specifies the slope of the logarithmic function for the

bandwidth. Large βBn values reflect an indifference to bandwidth variations, while low

values reflect that the user is affected by changes in bandwidth. Similarly, parameters

αSn and βSn characterize the residential user valuation for the cache space.

The AP of a residential user n can cache and deliver content to the nearby mobile users.

This induces cost to the residential user due to energy consumption. Following previous

work, we consider the caching cost to increase as more data is cached, controlled by a

slope parameter πSn , i.e., it will be equal to πSn · b when b portion of the cache capacity

is leased [73]. Similarly, the cost for delivering mobile data will be πBn · b when b portion

of the wireless bandwidth capacity is leased [99].

3.6.3 MNO Model

The MNO can lease cache and wireless bandwidth capacity from the residential users

to offload MBS. To accomplish this, the MNO announces to residential users that they

will benefit from price discounts that are proportionally related to the amount of leased

resources. Particularly, the MNO announces a price pSn ≥ 0 per portion of cache space

and a price pBn ≥ 0 per portion of wireless bandwidth capacity that will offer to each

residential user n ∈ N as a leasing fee. We emphasize that the prices may differ across

residential users for two reasons. First, the MNO may assume that some residential users

will be more or less reluctant to accept mobile data traffic and cache content. Second,

the cost savings from offloading may be higher or lower for different APs depending on

their location, e.g., at the cell edge the energy savings from offloading may be higher

compared to a location close to MBS. The respective vectors can be defined as follows:

pS = (pSn : n ∈ N), pB = (pBn : n ∈ N) (3.27)

In response to these offers, the MNO leases Ŝn(pSn) ∈ [0, 1] portion of cache space and

B̂n(pBn) ∈ [0, 1] portion of WiFi bandwidth from residential user n. Since the residential

users are rational and self-interested, it is expected to determine these quantities by

assessing the benefits from using the AP resources for their own needs and the benefits

from the offered monetary incentives. In particular, the portion of leased cache space

Institutional Repository - Library & Information Centre - University of Thessaly
11/05/2024 18:13:15 EEST - 18.117.73.223

Chapter 3. Joint Caching and Routing in Wireless Networks 51

for residential user n will be:

Ŝn(pSn) = argmax
b∈[0,1]

[USn (1− b) + pSn · b− πSn · b] (3.28)

i.e., he will decide how much cache space he will lease by maximizing the sum of utility

and payment obtained minus the cost for caching content. Similarly, the portion of

leased wireless bandwidth will be:

B̂n(pBn) = argmax
b∈[0,1]

[UBn (1− b) + pBn · b− πBn · b] (3.29)

Given the utility function shapes in equations (3.25)-(3.26), the leased portions for each

residential user n are given by [82]:

Ŝn(pSn) = 1− αSn
pSn − πSn

, B̂n(pBn) = 1− αBn
pBn − πBn

(3.30)

where, in order to be Ŝn(pSn) ∈ [0, 1] and B̂n(pBn) ∈ [0, 1], it should hold pSn − πSn ≥ αSn

and pBn − πBn ≥ αBn .

The MNO can predict the response of the residential users to any possible prices in

pS , pB. In other words, the MNO can learn the functions B̂n(pBn) and Ŝn(pSn), ∀n ∈ N .

Even if the price vectors (incentive policy) are decided, the MNO needs to additionally

decide which content files to place in each cache (caching policy) and in which AP to

route the requests of each mobile user (routing policy). These are constrained by the

amount of cache and bandwidth capacity leased. Hence, equations 3.4 and 3.5 should

be replaced by the following:

∑
i∈I

xnis ≤ Ŝn(pSn) · Sn, ∀n ∈ N , (3.31)

∑
k∈K

∑
i∈I

yknis ≤ B̂n(pBn) ·Bn, ∀n ∈ N , (3.32)

where Bn (bytes per second) indicates the expected bandwidth rate with which the

AP n can transmit data to mobile users. This is expected to be lower than the nomi-

nal access rate of the AP router due to interference from coexisting WiFi-transmitters

and commonly available non-WiFi devices such as mircrowave ovens, cordless phones,

etc [102], [101].

Also, the MNO should target to minimize the total cost for both serving the mobile

users and providing incentives to residential users:

Institutional Repository - Library & Information Centre - University of Thessaly
11/05/2024 18:13:15 EEST - 18.117.73.223

Chapter 3. Joint Caching and Routing in Wireless Networks 52

min
x,y,pS ,pB

Q(y) +
∑
n∈N

(
pSnŜn(pSn) + pBn B̂n(pBn)

)
(3.33)

where Q(y) denotes the cost for serving requests by the MBS. In our recent work in [22],

we used the primal-dual method to solve the joint caching, routing and incentive prob-

lem. Specifically, we relaxed the constraint in (3.6) and introduced the set of dual

Lagrange multipliers:

µ = (µkni ≥ 0 : ∀n ∈ N , i ∈ I, k ∈ K) (3.34)

Then, we defined the Lagrange function as follows:

L(x, y, pS , pB, µ) = Q(y)

+
∑
n∈N

(
pSnŜn(pSn) + pBn B̂n(pBn)

)
+
∑
n∈N

∑
k∈K

∑
i∈I

µkni(y
k
ni − xni) (3.35)

Optimizing the Lagrange function over x, y (primal variables) and µ (dual variables)

is a simpler problem and admits an intuitive interpretation since the caching and the

bandwidth decisions of the MNO are decoupled. Particularly, the problem can be solved

in an iterative fashion [82]. In each iteration, denoted with t, the variables of the

dual problem (µ) are updated and accordingly the primal problem is solved in order to

update the primal variables (x, y, pC , pB), which in turn are used in the subsequent dual

objective update. In the next chapter, the primal-dual method is presented for a similar

joint caching and routing problem. Hence, its complete description is omitted from this

chapter.

3.6.4 Dataset-driven Evaluation

In this subsection, the impact of employing WiFi APs for offloading mobile data is

evaluated using the dataset of real residential users. It is shown that MNOs can reduce

the cost for serving the mobile users by implementing the proposed mechanism, but the

benefits heavily depend on the population density and the cellular network cost in the

regional market. In the best scenario, a MNO can improve its bottom line by a factor

of 2, while reimbursing up to 9 euros per month each residential user.

The evaluation is carried out for a typical circular-shaped macrocell with radius 2km.

The N = 167 residential users in the dataset are uniformly placed in random statistically

Institutional Repository - Library & Information Centre - University of Thessaly
11/05/2024 18:13:15 EEST - 18.117.73.223

Chapter 3. Joint Caching and Routing in Wireless Networks 53

independent positions in the macrocell. The MNO may employ some of these residential

users to offload the macrocell base station (MBS) within the peak-time periods of a

month. These are set between 6pm and 11pm each day. Within these periods, each AP

can serve the requests for mobile data that are generated within 100 meters distance

with an expected bandwidth rate of Bn Mbps which depends on the 802.11 technology

used, contention and interference, and is varied in our evaluation.

Next, we describe how to extract the utility coefficient parameters, αBn , βBn , αSn and βSn

which are introduced in equations (3.25) and (3.26). To start, we make the assumption

that each residential user n evaluates the amount of wireless bandwidth that he uses

equal or almost equal to the tariff price tn he currently pays to the provider (Table 3.2).

Particularly, we assume that the evaluation of user n is tn + v, where v is a random

value in [−3,+3] euros. This is reasonable, since the user would probably have picked a

different tariff if this were not the case. Then, replacing the left side of equation (3.25)

with tn + v, we obtain that:

tn + v = αBn log(βBn · rn) (3.36)

where rn ∈ (0, 1) captures the average bandwidth demand of user n as observed within

the peak time periods in our dataset.

To obtain a second equation with the two unknowns (αBn and βBn), we assume that the

net utility obtained when user n increases his bandwidth consumption from rn to 1

portion is very low. This is reasonable, since the user would probably have consumed

all the available bandwidth if this were not the case. Hence, we obtain:

(tn + v) · (1 + δ) = αBn log(βBn · 1) (3.37)

where δ is a small positive constant reflecting the net utility for increasing the used

bandwidth portion from rn to 1. Throughout the evaluation, we set δ = 0.1, although

this does not impact the qualitative results of our analysis.

To determine αSn and βSn , we consider each user owning a personal hard disk of capacity

Sn = 100 GB (typical for modern laptops) and assume that he evaluates it similarly to

the current price of online storage devices, i.e., 2 euros per month [74]. Then, assuming

that the slope of the function is similar across users (βSn = 100, ∀n), we obtain the αSn

value by equation (3.26). We further upper bound the portion of leased cache capacity

by 0.9, assuming that 10% of it is occupied by permanent files that cannot be erased,

e.g., system files.

Institutional Repository - Library & Information Centre - University of Thessaly
11/05/2024 18:13:15 EEST - 18.117.73.223

Chapter 3. Joint Caching and Routing in Wireless Networks 54

In general, there are several cost components involved in the operation of a cellular net-

work, such as energy consumption, network capacity and infrastructure costs, building

and personnel costs, and so on. Apparently, cost structures are typically confidential

and not (easily) available to the research community. Besides, many of these costs are

managed on slow timescales (over years). The cost function in our model is generic, and

hence can apply to all the preceding cases. In the evaluation, we focus on the network

capacity cost. Particularly, since the network is usually dimensioned based on the peak

load, reducing peak load results in cost savings by postponing the network capacity

upgrades needed to meet the growing mobile data demand. Hence, we can approximate

the servicing cost by a linear function of the MBS’s peak load (as in [75], [76]):

Q(y) = s
∑
k∈K

∑
i∈I

λki(1−
∑
n∈Nk

ykni) (3.38)

where s > 0 is a scaling constant that is used to convert traffic load into monetary units

(euros).

We consider three scenarios differing in the density of mobile user population; 2,000

(small city), 5,000 (sparse city) and 12,000 (dense city) mobile users per km2 [76]. The

slope s is set to 0.0033 /MB in the small city, 0.0063 /MB in the sparse city, and 0.0096

/MB in the dense city; these values are based on AT&T’s and Verizon’s data plan overage

charges in the U.S [76] assuming that one third of the charge covers servicing costs [77].

The mobile users are interested in downloading a collection of I = 1, 000 popular files,

each of size 100MB. On average, a mobile user requests 0.33 files during the peak-time

of a day, which results to 1GB of data per month. To capture the spatial heterogeneity

of demand, we group mobile users into K = 200 classes and randomly place them in the

macrocell. Each user class may be covered by more than one distinct APs, but around

half of them are covered only by the MBS. Then, we spread the requests across files

based on the Zipf model with shape parameter z > 0 [61]. Unless otherwise specified,

we set Bn = 9 mbps [101], z = 0.8 [61] and πSn = πBn = 0, ∀n ∈ N .

We first look at the impact of varying the bandwidth rate Bn of the APs on MNO’s total

cost. The latter includes both the cost for providing incentives to residential users and

the cost for serving the requests of the mobile users through the MBS. This investigation

is important since Bn varies with the 802.11 protocol used, vendors, contention time

with other devices on the same frequency, interference, etc [101]. We carry out the

investigation separately for the small, sparse and dense city (Figure 3.8). To improve

figure visualization, the performance of Baseline (which is independent of the Bn value)

is written as text inside the figure instead of being plotted.

Institutional Repository - Library & Information Centre - University of Thessaly
11/05/2024 18:13:15 EEST - 18.117.73.223

Chapter 3. Joint Caching and Routing in Wireless Networks 55

0 4 8 12 16 20

2

2.1

2.2

2.3

2.4

x 10
4

Bandwidth rate (mbps)

M
N

O
 t

o
ta

l
c
o

s
t

(e
u

ro
s
)

Femtocaching
Primal−dual

Baseline=3.1971x10
4

(a) Small city

0 4 8 12 16 20

8

8.5

9

9.5

10
x 10

4

Bandwidth rate (mbps)

M
N

O
 t

o
ta

l
c
o

s
t

(e
u

ro
s
)

Femtocaching
Primal−dual

4
Baseline=15.1876x10

(b) Sparse city

0 4 8 12 16 20
2.5

3

3.5

4

4.5
x 10

5

Bandwidth rate (mbps)

M
N

O
 t

o
ta

l
c
o

s
t

(e
u

ro
s
)

Femtocaching
Primal−dual

5Baseline=5.5635x10

(c) Dense city

Fig. 3.8: MNO total cost for different AP bandwidth rates in a (a) small, (b) sparse
and (c) dense city.

0
0.5

1

0

0.5

1
0

5

10

Cache (portion)Bandwidth (portion)

P
ri

c
e
 d

is
c
o
u
n
t

(e
u
ro

s)

(d) Small city

0
0.5

1

0

0.5

1
0

5

10

Cache (portion)Bandwidth (portion)

P
ri

c
e
 d

is
c
o
u
n
t

(e
u
ro

s)

(e) Sparse city

0
0.5

1

0

0.5

1
0

5

10

Cache (portion)Bandwidth (portion)
P

ri
c
e
 d

is
c
o
u
n
t

(e
u
ro

s)

(f) Dense city

Fig. 3.9: Scatter plot of monthly price discount (incentive), bandwidth and cache
portion leased from residential users in a (a) small, (b) sparse and (c) dense city.

As expected, increasing the AP rate decreases the MNO’s total cost for all the algorithms

(except from Baseline), since the APs can serve more mobile users. The offloading

benefits are higher in the dense city than in small and sparse, since the cellular network

costs and the demand of mobile users are higher. Consequently, the need for offloading

mobile data to WiFi APs is greater. This observation is consistent with the fact that

offloading mechanisms have existed for a long time in densely populated areas. The

proposed Primal-dual algorithm consistently outperforms a common state of the art

algorithm, named Femtocaching [33]. The gains are up to 19%.

We now examine mobile data offloading from the viewpoint of individual residential

users. The three-dimensional scatter plots in Figure 3.9 illustrate the distribution of

the discounts in monthly subscription bills (incentives), and the portion of leased cache

and bandwidth capacity across all the residential users, when Primal-dual algorithm is

applied. The results uncover a wide disparity in the amount of leased resources across

residential users, especially in the dense city scenario. Also, some of the residential

users see a notable reduction in their monthly bills. These generally correspond to the

Institutional Repository - Library & Information Centre - University of Thessaly
11/05/2024 18:13:15 EEST - 18.117.73.223

Chapter 3. Joint Caching and Routing in Wireless Networks 56

users residing in areas with relatively high mobile data demand, where the need for

offloading mobile data and managing cellular network costs is crucial. In overall, the

price discounts are higher in the dense city scenario, and can reach 9 euros per month

in the upper extreme case.

Main takeaways: The facility location and the caching problems are connected.

Hence, the algorithms known for the former problem can be used to solve the latter

problem. The presented numerical results show that a facility-location inspired caching

algorithm in a small-cell network performs up to 38% better that existing caching al-

gorithms. Leveraging the idle residential user-owned resources (cache space and WiFi

bandwidth) to store and deliver content to mobile users can further reduce the costs of

network operators.

Institutional Repository - Library & Information Centre - University of Thessaly
11/05/2024 18:13:15 EEST - 18.117.73.223

Chapter 4

Caching Layered Video

Contents

4.1 Introduction . 58

4.2 System Model and Problem Statement 60

4.2.1 System Model . 60

4.2.2 Problem Statement . 62

4.3 Delivering Versions . 64

4.3.1 MVD Problem Formulation . 64

4.3.2 MVD Solution Method . 67

4.4 Delivering Layers and Video Streaming 69

4.4.1 Layered Encoding . 69

4.4.2 Video Streaming Concerns . 71

4.5 Performance Evaluation . 72

4.6 Cooperative Caching of Layered Video 76

4.6.1 Cooperative Caching Model . 76

4.6.2 Cooperative Caching Policies 78

4.6.3 Evaluating Cooperative Caching 81

4.1 Introduction

Nowadays there is a tremendous growth in the number of mobile users viewing videos [1],

which are encoded and pre-stored on servers and delivered over cellular networks. Mobile

network operators (MNOs) strive to serve these massive requests and achieve the mini-

mum possible video delivery delay. This is very important since it is the main criteria for

the users’ perceived satisfaction. However, delivering this content puts unprecedented

57

Institutional Repository - Library & Information Centre - University of Thessaly
11/05/2024 18:13:15 EEST - 18.117.73.223

Chapter 4. Caching Layered Video 58

pressure on the networks and often yields a very high servicing cost for the operators.

Achieving the right balance between this cost and the delivery delay experienced by the

users is currently one of the most important challenges for the MNOs.

In this chapter, we revisit the caching problem in Heterogeneous Cellular Networks

(HCNs), with cache-endowed small-cell base stations (SBSs), by considering the partic-

ular characteristics of video delivery. Specifically, each video file should be available in

various qualities since users often have different (minimum) quality requirements (e.g.,

spatial resolution, frame-rate, etc.). To achieve this, every video can be encoded into

multiple versions which differ in quality and rate (versions). Another option is scalable

video coding (SVC) (layers) where each video is encoded into different layers which,

when combined, produce a quality that increases as more layers are used. This tech-

nique introduces an encoding overhead but offers network flexibility since the layers of

each file can be cached at different base stations and/or routed over different paths. The

MNO can use versions, layers or a mixture of them for the video files.

Obviously, the MNOs have a large repertoire of video encoding, caching and routing

decisions for servicing the user requests. The MNO should take these decisions in a way

that balances a cost-performance objective. We propose such an optimization frame-

work, and investigate numerically the impact of caching decisions on the balanced delay

and servicing cost. We find that when the user demand is homogeneous in terms of re-

quested video quality, the operator can improve his balanced objective by using versions

instead of layered encoding. However, as the users’ demand becomes more diverse, lay-

ered encoding can be more beneficial, as it allows for more flexible caching and routing

decisions. Moreover, we characterize the delay - cost tradeoff. We find that improving

the delivery delay (by tuning properly a balancing parameter) by an average 10% may

increase the servicing cost from 10% up to 30% depending on the load of the network

(users’ requests).

We also design caching algorithms for multiple operators that cooperate by pooling

together their co-located caches, in an effort to aid each other, so as to avoid large

delays that follow from downloading layered video from distant servers. We derive novel

approximation algorithms using a connection to a knapsack-type problem and a cache-

partition technique. The results demonstrate up to 25% delay savings over existing

schemes.

Summarizing, the contributions of this chapter are as follows:

• Optimization Framework. We introduce a framework for the joint optimization of

video encoding, caching and routing decisions, that minimize a balanced objective

of average delay and servicing cost. Our model considers realistic aspects of HCNs

Institutional Repository - Library & Information Centre - University of Thessaly
11/05/2024 18:13:15 EEST - 18.117.73.223

Chapter 4. Caching Layered Video 59

such as the capacitated backhaul links and the constraints for the cache sizes and

the wireless capacity of the SBSs.

• Video Encoding Policies. We explicitly model and study the impact of the em-

ployed video encoding scheme (versions or layers) on the servicing cost and delay.

We explain under which conditions the operator should select one of them or even

employ both of them. Also, we discuss how our analysis accounts for the video

streaming model requirements.

• Performance Evaluation. Our study is generic which allows us to investigate the

impact of several system parameters. Based on our numerical analysis, we conclude

that video encoding decisions are affected by the homogeneity of users requests,

the capacity of the SBSs and the encoding overhead of layering. Also, we show

that improving the delay up to 10% may induce additional servicing cost which

can reach 30% when the network is heavily loaded.

• Cooperation among operators. We design caching algorithms for many operators

that cooperate in order to cache layered video destined also for users of other

operators. Numerical results based on a measured trace of layer sizes demonstrate

up to 25% reduction in delay over existing (layer-agnostic) caching schemes.

The rest of this chapter is organized as follows. Sec. 4.2 introduces the system model

and the problem. In Sec. 4.3 we solve the video delivery problem for the case of

versions encoding. We extend our methodology for the case that both versions and

layers are used and discuss the implications for video streaming in Sec. 4.4. Sec. 4.5

provides performance evaluation results. Finally, Sec. 4.6 provides caching algorithms

for cooperating operators.

4.2 System Model and Problem Statement

4.2.1 System Model

The system architecture is depicted in Fig. 4.1. We study the downlink operation of

an HCN macrocell with one macrocellular BS (MBS), hereafter indexed M , a set (tier)

NP , {1, 2, . . . , NP } of |NP | picocell base stations (PBSs) covering smaller areas within

the macrocell, and a set NF , {1, 2, . . . , NF } of |NF | femtocell base stations (FBSs)

with transmission range of few tens of meters1. We denote as N , NP ∪ NF the set of

all small cell base stations (SBSs).

1The analysis can be extended for more classes of small cell base stations (e.g., microcells), and can
be generalized for multiple macrocells.

Institutional Repository - Library & Information Centre - University of Thessaly
11/05/2024 18:13:15 EEST - 18.117.73.223

Chapter 4. Caching Layered Video 60

Figure 4.1: A multi-tier cellular architecture with store-capable base stations.

We study the system for a certain time period during which each SBS n ∈ N has an

average wireless capacity of Cn ≥ 0 bps, while the capacity of the macrocell is CM ≥ 0

bps. BSs of the same type have similar characteristics but may differ in certain cases

(e.g., due to location-dependent shadowing effects). The MBS coverage overlaps with

all the other base stations, while it is also possible to have overlapping femto or picocell

base stations. We consider disjoint subchannel allocation among different tiers of BSs as

in the previous chapter. Neighboring BSs in the same tier can also be assigned orthogo-

nal frequency bands or employ enhanced inter-cell interference coordination techniques

(eICIC) proposed in LTE Rel. 10.

Each SBS n ∈ N is connected to the core network through a wired or wireless backhaul

link of average capacity Gn ≥ 0 bps. These links connect the SBS to certain aggregation

points, e.g., fibre cabinets close to macrosites. The MBS is connected to the core network

through the typical high-capacity RAN backhaul. Finally, each SBS n is endowed with

a certain storage capacity of Sn ≥ 0 bytes.

We study the delivery of a large set I , {1, 2, . . . , I} of video files, each one of which can

be delivered in Q > 1 different quality levels. The term quality level in this chapter can

correspond to different spatial resolutions (frame sizes), different temporal resolutions

(frame rates), or different SNR qualities (controlled at the video coder). We assume

that there is a set V of versions that can be offered for each file i ∈ I. Each version

v ∈ V corresponds to a certain quality level (it is |V| = Q) and has size oiv bytes which

increases with the quality, i.e., oiv ≥ oiu if v > u (assuming there is an ordering in

versions wrt their quality and size).

Institutional Repository - Library & Information Centre - University of Thessaly
11/05/2024 18:13:15 EEST - 18.117.73.223

Chapter 4. Caching Layered Video 61

Also, we assume that there is a set of layers L that can be offered for each video

file when it is encoded with scalable video coding (SVC). This is an extension of the

H.264/MPEG4-AVC standard that offers, among others, quality scalability [78]. A video

decoder can reconstruct the video sequence by receiving a subset of them. In order to

decode the layer l, all preceding layers l′ ≤ l of the same video file should be available2.

Let oil denote the size of layer l ∈ L of file i. Compared to versions, layered encoding

typically incurs an encoding overhead:

q∑
l=1

oil = oiv(1 +Rqi), v = q, ∀q ∈ {1, 2, ..., Q} (4.1)

where Rqi > 0 is the encoding overhead for the quality level q of file i that can be

calculated with experimental methods [79]. Layered encoding through SVC has been

used extensively the last few years in the real-world video-conferencing systems3.

We model demand by introducing a set K , {1, 2, . . . ,K} of user classes, each one rep-

resenting a subset of users in the same location (very small subregion of the macrocell),

asking for (possibly) different files with certain minimum quality requirements4. Video

files are delivered through the streaming mechanism. This means that the user starts

decoding and rendering the video file before it receives it in its entirety. This aspect

is analyzed in detail in Section 4.4.B. User locations can be random, e.g., following a

uniform distribution. Let λki ≥ 0 denote the demand (i.e., number of requests) of user

class k for file i ∈ I with minimum quality qki > 0. This means that user class k should

get either one version v with v ≥ qki, or all layers up to qki, i.e. l = 1, 2, . . . , qki. Unless

otherwise specified, a user requesting (minimum) quality qki can be served with higher

quality as well. The total demand that must be served by the MNO for the specific

macrocell is:

Λ =
(
(λki, qki) : k ∈ K, i ∈ I

)
(4.2)

We denote with Nk ⊆ N the subset of BSs that are in range with user class k and

assume that user association can be accomplished based on network performance or

cost criteria.

4.2.2 Problem Statement

The objective of the network operator is to deliver as many of the requested video files as

possible, with the minimum delay and the minimum possible servicing cost. These latter

2The ordering is wrt quality: with slight abuse of notation, we use the index of the layer (and the
version) to denote also the respective quality.

3See for example, Vidyo: http://www.vidyo.com, and Radvision: http://www.radvision.com.
4Notice that this is not a restriction or an assumption, rather it implies that we group the users based

on location and on quality requirements.

Institutional Repository - Library & Information Centre - University of Thessaly
11/05/2024 18:13:15 EEST - 18.117.73.223

http://www.vidyo.com
http://www.radvision.com

Chapter 4. Caching Layered Video 62

depend on the demand and the servicing policy of the operator, i.e., the base stations

and the backhaul links that will be used. We denote with Jn(a) ≥ 0 the cost incurred

by the MNO when it uses SBS n ∈ N to deliver content with rate of a ≥ 0 bps, and

JM (a) the respective cost for the MBS. This cost includes the BS energy consumption

and is positively correlated to the distance between the BS and the served users.

Since the resources of the operator are limited, some user requests may not be served

or served with practically intolerable delays. This induces cost to the operator due to

future revenue losses, e.g., unsatisfied clients unsubscribe from the service. We introduce

a penalty function P (·) to capture this cost, which is assumed to be a positive, increasing

and convex function of the number of unserved requests.

The average delay Dki experienced by user class k for downloading item i ∈ I depends

on the path and the congestion of the respective links. The main components of the

delay are the processing, propagation and transmission delay as well as the queueing

delay which captures link congestion [80]. For each user class k the operator determines

the portion of the requests that will be routed over each possible path leading either to a

cache of an SBS (having the item), or to a content server. Clearly, the routing decisions

of the operator are coupled with its caching policy.

The MNO decides whether it will cache a certain file and with what quality at each

SBS. Different versions (or layers) of each file have different size and can satisfy different

subset of requests. In order to serve a user by a SBS, the requested content should

either be already cached there or fetched via the respective backhaul link. This latter

option adds delay which, depending on the backhaul type, capacity and load, may be

quite significant. Alternatively, the MBS can serve the requests with smaller delay (if it

is not heavily loaded).

The delay minimization and the cost minimization may in general be conflicting ob-

jectives, and hence need to be balanced properly, depending on the objective of each

operator. Formally, the problem of the MNO can be defined as follows.

MNO Video Delivery Problem (MVD). Given: (1) the matrix Λ of requests for

video files, for a certain time period, (2) the storage and average capacities of the SBSs,

Sn, Cn, Gn, ∀n ∈ N , (3) the servicing cost of the BSs, JM (·), Jn(·), ∀n ∈ N , and (4)

the penalty cost P (·) for rejecting requests:

• for each video file, decide in which base stations it will be cached and at which

quality (which version/layers),

Institutional Repository - Library & Information Centre - University of Thessaly
11/05/2024 18:13:15 EEST - 18.117.73.223

Chapter 4. Caching Layered Video 63

• for each request from user class k, determine from which base stations it will be

served, whether backhaul links will be used or if it will be delivered by the MBS,

and with what quality,

so as to optimize the balanced objective of average user experienced delay, and total

servicing and penalty cost.

4.3 Delivering Versions

In this section we formally introduce the problem for the case of video encoding in

multiple qualities (versions) and accordingly present a methodology for its solution.

4.3.1 MVD Problem Formulation

Decision Variables and Constraints. Let xniv ∈ {0, 1} denote whether version v ∈ V
of file i ∈ I will be cached at SBS n ∈ N . These variables consitute the caching policy

of the MNO:

x =
(
xniv : n ∈ N , i ∈ I, v ∈ V

)
(4.3)

Also, the variable ykniv ∈ [0, 1] denotes the portion of requests of user-class k for file i

that will be satisfied with version v downloaded from SBS n ∈ N , and ykMiv ∈ [0, 1] is

the respective decision for the MBS (M). Finally, zkniv ∈ [0, 1] is the portion of requests

of user k for file i that require fetching version v via the backhaul of SBS n ∈ N . The

routing policy of the MNO is described by the following matrices:

y =
(
ykniv, ykMiv : k ∈ K, n ∈ Nk, i ∈ I, v ∈ V

)
(4.4)

z =
(
zkniv : k ∈ K, n ∈ Nk, i ∈ I, v ∈ V

)
(4.5)

In order for a SBS to send a version to a user, it needs either to have it cached or to

download it through the backhaul. Moreover, the servicing rate from SBS n to user k

can be maximum if item i is cached, and if not, it cannot exceed backhaul servicing rate.

Hence:

ykniv ≤ xniv + zkniv ∀ k ∈ K, n ∈ Nk, i ∈ I, v ∈ V (4.6)

Besides, the MNO cannot satisfy a request more than once:

∑
v≥qki

ykMiv +
∑
n∈Nk

∑
v≥qki

ykniv ≤ 1, ∀ k ∈ K, i ∈ I (4.7)

Institutional Repository - Library & Information Centre - University of Thessaly
11/05/2024 18:13:15 EEST - 18.117.73.223

Chapter 4. Caching Layered Video 64

Notice that the requests of each user class for each file may be satisfied by versions of

different qualities (higher or equal to the minimum quality required by the user). Hence,

there is a need to add the respective components.

Clearly, the routing and caching policies are constrained by the wireless capacity and

storage capacity of the base stations. Also, for the routing decisions there may be

additional constraints due to interference. The current industry practice is to use a

disjoint channel allocation across different tiers of base stations, as well as orthogonal

subchannels for overlapping base stations within each tier. Channel orthogonality across

different BSs can also be provided with the introduction of almost blank subframes

(ABS) that were defined in the eICIC mechanism. The impact of this type of interference

management techniques on the system’s (average) capacity can be modeled using the

protocol interference model. Clearly, the data delivery of interfering SBSs cannot be

concurrently maximized. Specifically, it should hold:

∑
n∈Nk

1

Cn

∑
m∈K

∑
i∈I

∑
v∈V

ymnivoivλmi ≤ 1, ∀ k ∈ K (4.8)

where Nk is the set of SBS in range with user k and hence are potential interferers.

Delay-Cost Minimization. The delay cost of user class k requesting file i, depends

on caching x and routing policy (y, z):

Dki(y, z,Λ) =
∑
v≥qki

(
dkMiv(y,Λ) +

∑
n∈Nk

dkniv(y, z,Λ)
)

(4.9)

where dkniv is the delay when users k are served by SBS n ∈ Nk with version v of file

i, and dkMiv is the delay when served by the MBS. Notice that the summation over the

different versions is necessary since a request can be satisfied with higher quality version,

e.g., if it is already available in a nearby SBS. The flow-level delay we consider here has

fixed components, such as the propagation and the processing delay at the base stations

(or routers), and some components that vary with the load of the links. The latter is

often modeled as a queueing delay under the hypothesis of M/M/1 queueing behavior

[80]. Namely, each bit traversing a link of capacity C bps which carries a total flow with

rate f ≥ 0 bps, experiences a delay of 1/(C − f) seconds.

The MNO servicing cost Jn(y, z,Λ) depends on the total bandwidth that each SBS n

delivers to the subscribers, including the backhaul link consumption. Similarly, for the

MBS, it is JM (y,Λ). Notice that we do not take into account the RAN backhaul cost

since this hop is common for the SBS and the MBS. We assume that these functions

are positive, increasing and convex on the delivered bandwidth due to congestion effects

Institutional Repository - Library & Information Centre - University of Thessaly
11/05/2024 18:13:15 EEST - 18.117.73.223

Chapter 4. Caching Layered Video 65

[81]5. The aggregate servicing cost of the operator can be defined as follows:

J(y, z,Λ) = JM (y,Λ) +
∑
n∈N

Jn(y, z,Λ) (4.10)

The goal of the MNO is to minimize, for a certain time period of duration T , the average

delay for all users and the total servicing and penalty cost. This is achieved by solving

the following joint routing and caching optimization problem (MVD Problem):

min
x,y,z

J(y, z,Λ) + P (y,ΛP) + α
∑
k∈K

∑
∈I

Dki(y, z,Λ)

s.t. (4.6), (4.7), (4.8) ∑
i∈I

∑
v∈V

oivxniv ≤ Sn, ∀n ∈ N (4.11)

∑
k∈K

∑
i∈I

∑
v≥qki

λkioivykniv ≤ CnT, n ∈ N (4.12)

∑
k∈K

∑
i∈I

∑
v≥qki

λkioivzkniv ≤ GnT ∀n ∈ N (4.13)

∑
k∈K

∑
i∈I

∑
v≥qki

λkioivykMiv ≤ CMT (4.14)

zkniv, ykniv, ykMiv ∈ [0, 1], ∀k ∈ K, n ∈ Nk, i ∈ I, v ∈ V (4.15)

xniv ∈ {0, 1} ∀n ∈ N , i ∈ I, v ∈ V (4.16)

where parameter α > 0 (measured in monetary units over time units) is determined by

the operator and is used to balance the cost-delay objectives. For example, an operator

interested in reducing the delay even at the expense of higher servicing cost may set

a high value for α. Also, there is no MBS backhaul constraint (assume that RAN

backhaul is sufficiently large) and it is ykniv = 0 when n /∈ Nk. Finally, ΛP is the

number of unserved requests:

ΛP =
∑
k∈K

∑
i∈I

λki
(
1−

∑
v≥qki

[ykMiv +
∑
n∈Nk

ykniv]
)

The objective function of the MVD problem is convex under the assumptions about

the properties of Dki(·), J(·) and P (·). However, the constraint set includes the 0 − 1

5The exact form of the backhaul link cost function depends on various technical parameters (e.g.,
transmission technology) and economic parameters (leased or owned) [81].

Institutional Repository - Library & Information Centre - University of Thessaly
11/05/2024 18:13:15 EEST - 18.117.73.223

Chapter 4. Caching Layered Video 66

decisions variables xniv that render it NP-hard. In the sequel, we present an algorithm

for deriving a solution that asymptotically converges to the optimal one.

4.3.2 MVD Solution Method

In order to solve the MVD problem we use the method of Lagrange partial relaxation

[82]. Specifically, we relax the constraints in (4.6) and introduce the respective set of

dual Lagrange multipliers:

µ = (µkniv ≥ 0 : ∀ k ∈ K, n ∈ Nk, i ∈ I, v ∈ V) (4.17)

This relaxation simplifies the solution of the problem and admits an intuitive interpre-

tation since it decouples the routing and the caching decisions of the operator.

First, we define the Lagrange function as follows:

L = J(y, z,Λ) + P (y,ΛP) + α
∑
k∈K

∑
i∈I

Dki(y, z,Λ) +

+
∑
k∈K

∑
n∈Nk

∑
i∈I

∑
v∈V

µkniv(ykniv − xniv − zkniv)

Using this relaxation, the problem can be rewritten:

max
µ

min
x,y,z

L(x, y, z, µ)

s.t. (4.7), (4.8), (4.11), (4.12), (4.13), (4.14), (4.15), (4.16)

µkniv ≥ 0, ∀k ∈ K, n ∈ Nk, i ∈ I, v ∈ V (4.18)

which can be solved in an iterative fashion, using a primal-dual Lagrange method. Notice

that due to the discrete constraint set, we have to employ a subgradient method for

updating the dual variables [82].

In each iteration, denoted with t, the dual objective is improved using a subgradient

update and accordingly the primal relaxed problem is solved in order to update the

primal variables (which in turn are used in the subsequent dual objective update). The

dual variables are updated with a subgradient method as follows:

µ
(t+1)
kniv = [µ

(t)
kniv + σ(t)g

(t)
kniv]

+, ∀ k ∈ K, n ∈ N , i ∈ I, v ∈ V (4.19)

where [.]+ denotes the projection onto the non-negative orthant, and σ(t) is the step size

at iteration t. Also, g
(t)
kniv is the subgradient, i.e., g

(t)
kniv = y

(t)
kniv − x

(t)
niv − z

(t)
kniv.

Institutional Repository - Library & Information Centre - University of Thessaly
11/05/2024 18:13:15 EEST - 18.117.73.223

Chapter 4. Caching Layered Video 67

Algorithm 4.1: Primal-Dual Algorithm

Input : J(·), P (·), Dik(·), α, Λ
Output: x∗, y∗, z∗

1 Initialize dual variables µ1 to zero, the lower bound as LB = −∞ and the upper bound
as UB = +∞.

2 t← 1;
3 repeat

4 Solve P1 and find x(t);

5 Solve P2 and find y(t) and z(t);

6 Name as q(µ(t)) the solution value of the primal problem;

7 if q(µ(t)) > LB then

8 LB = q(µ(t));

9 Update UB;

10 Update dual variables µ(t+1) using (4.19);
11 t← t+ 1;

12 until UB−LB
UB < 0.1 and t < 1000;

Then, we need to solve the relaxed primal problem and obtain the updated values of x,

y and z (for the current iteration t). Interestingly, the primal problem can be further

decomposed into two subproblems, named P1 and P2, as follows:

P1 : max
x

∑
k∈K

∑
n∈Nk

∑
i∈I

∑
v∈V

µknivxniv

s.t. (4.11), (4.16)

and

P2 : min
y,z

J(y, z,Λ) + P (y,ΛP) +

+α
∑
k∈K

∑
i∈I

Dki(y, z,Λ) +

+
∑
i∈I

∑
k∈K

∑
n∈Nk

∑
v∈V

µkniv(ykniv − zkniv)

s.t. (4.7), (4.8), (4.12), (4.13), (4.14), (4.15)

P1 involves only the caching variables x. Hence, we call it the caching subproblem.

Also, P1 is separable into |N | unidimensional knapsack problems, one for each SBS

n ∈ N , and thus can be solved in a distributed manner. The knapsack problem can be

optimally solved in pseudo-polynomial time using dynamic programming methods. On

the other hand, P2 involves only the bandwidth allocation decisions y and z. We call

it the bandwidth allocation subproblem. The objective function of P2 is strictly convex

and the constraint set is convex, compact and continuous. Hence, it can be efficiently

Institutional Repository - Library & Information Centre - University of Thessaly
11/05/2024 18:13:15 EEST - 18.117.73.223

Chapter 4. Caching Layered Video 68

solved using standard convex optimization techniques [82]. The method is summarized

in Algorithm 4.1.

The solution that we provide for this NP-hard problem converges asymptotically to the

optimal solution. Specifically the following lemma holds:

Lemma 4.1. Algorithm 4.1 converges asymptotically to the optimal solution x∗, y∗, z∗.

Proof. The convergence of this type of primal-dual algorithms with subgradient updates

(non-differentiable dual functions) is ensured if (i) a proper diminishing step size is

selected satisfying conditions of Prop. 8.2.6 [82, Chapter 8], (ii) the subgradients are

bounded. Here, we follow the methodology in [83] and set σ(t) = ν UB−q(µ
(t))

||g(t)||2 , where ν is

a parameter with positive value and UB is the upper bound on each iteration that can

be calculated by simply finding a feasible solution to the primal problem. Also, by their

definition, it can be directly seen that the subgradients are bounded.

An operator can use Algorithm 4.1 to solve offline, that is at the beginning of each time

period, the MVD problem and find a near optimal joint routing and caching policy for

versions. In the sequel, we extend our methodology for the case of layered encoding.

4.4 Delivering Layers and Video Streaming

In this section, we explain how the system architecture and the video delivery optimiza-

tion problem described previously change, when the MNO employs SVC for compressing

and delivering the video files. Next, we discuss how the proposed optimization approach

is related to the key video streaming parameters that are configured at the video decoder.

4.4.1 Layered Encoding

We extend the model to include video encoded in layers, and more specifically we adopt

the SVC extension of the H.264/MPEG4-AVC standard [78]. The operator can deliver

either a version or a subset of layers that satisfies the minimum quality requirement

of user requests. One of our goals is to investigate under what conditions caching and

delivering layers is less costly for the operator than delivering versions of the files. This

is of major importance since layers are rarely used today by CDNs (and MNOs) due to

the additional rate overhead they introduce. However, as we will explain in the sequel

and demonstrate in the performance evaluation section, for HCNs with storage capable

SBSs, caching layers may be beneficial in terms of servicing cost and experienced delay

Institutional Repository - Library & Information Centre - University of Thessaly
11/05/2024 18:13:15 EEST - 18.117.73.223

Chapter 4. Caching Layered Video 69

instead of transcoding the video into multiple versions. The reason is that more flexible

caching and routing decisions can be made, since each user can receive different layers

(for the same file) through different paths. For example, the base layer can be delivered

even via costly links if this ensures small delays, while subsequent layers (that improve

quality) can be delivered through other, less costly and/or congested paths.

Before we formally describe the extension of our optimization framework, we have to

clarify that SVC allows different types of scalable encoding (spatial, temporal, quality)

to be combined and create a single layer. Our modeling approach for layered video

is generic and it can capture the delivery of all the potential scalability combinations

that are available in SVC. This is possible because every scalability combination can

be expressed in terms of specific well-ordered dependencies between the involved layers.

In this chapter we are not concerned with the specifics of the layered encoding and the

optimal selection of scalability combinations but only with the implications on network

delivery of this relatively new type of encoded video streams.

The set of layers is denoted as L , {1, 2, . . . , Q}. These layers introduce additional

constraints on the derivation of the MNO’s policies. Namely, there is no benefit for a

user to receive a specific layer if it has not received all the lower layers. Hence, for each

user k requesting file i should hold:

∑
n∈Nk

ykni(l+1) =
∑
n∈Nk

yknil, ∀ l < qki (4.20)

∑
n∈Nk

yknil = 0, ∀ l > qki (4.21)

where we extended the definition of y variables, so that they also refer to layers, i.e.

yknil ∈ [0, 1] denotes the portion of requests of user-class k for file i that will be satisfied

with layer l downloaded from BS n ∈ N . We do the same for the rest of the optimization

variables x and z.

Requests can be satisfied either using layers or versions. In any case, each request by

user k for each file i cannot be satisfied more than one time:

ykMilq +
∑
v≥qki

ykMiv +
∑
n∈Nk

yknilq +
∑
n∈Nk

∑
v≥qki

ykniv ≤ 1 (4.22)

where lq ∈ L is the highest layer required to satisfy quality request qki.

The delay components are similarly defined as before, with the only difference that there

is a need to minimize the maximum delay for each delivered layer (since all layers must

be delivered in order to watch the video). Namely, the delay Dki is now written as

Institutional Repository - Library & Information Centre - University of Thessaly
11/05/2024 18:13:15 EEST - 18.117.73.223

Chapter 4. Caching Layered Video 70

follows:

Dki(y, z,Λ) =
∑
v≥qki

(dMikv(y,Λ) +
∑
n∈Nk

dnikv(y, z,Λ))

+ dkMild(y,Λ) +
∑
n∈Nk

dknild(y, z,Λ) (4.23)

where ld is the layer that is delivered with the largest delay (for each user k and each file

i). Notice also that some requests of each user for each file may be satisfied by layers

while others by versions. Hence, there is a need to add the respective delay components.

4.4.2 Video Streaming Concerns

From the perspective of the end user the result of our optimization is the minimized

delivery delay of the requested video file. This delay will directly impact the video

streaming process through the necessary startup delay that is introduced at the video

decoder of the user. In the sequel, we will describe how the benefits that our optimization

framework provides can be readily translated into a minimized startup delay.

In typical video decoders there are two delay components that are introduced before

the video playback commences. First, for playback to start there is a need to buffer

a certain number of video frames that can be translated to either a portion of the file

in bytes or seconds. Let us denote this inelastic buffering delay as Db1 . Second, the

video decoder usually adds an additional delay element before it starts the playback in

order to accommodate fluctuations in the bandwidth of the network. This is usually

exercised by measuring the RTT and the average receiver data rate. This additional

delay component is denoted as Db2 . Finally, when the video decoder commences the

playback of the video, it will normally maintain a constant playback rate in terms of

frames-per-second (fps). Thus, this delay component that accounts for the rendering of

the video file is denoted as Dr and is simply equal to the length of the video in seconds.

What all the above mean is that once the user requests the video file, say at time instant

t = 0, the time instant that the playback ends is equal to Db1 +Db2 +Dr.

From the last three delay components we discussed the only one that can be practically

controlled is Db2 . If at the decoder this delay is too small then the decoder might experi-

ence a buffer underrun which means that it requires data for decoding and playback but

they have not yet been received. This is typically addressed with the undesired playback

pauses. To avoid these events, the average delay that the complete video is delivered,

must be lower than the time instant that the playback ends at the user decoder. Thus,

Institutional Repository - Library & Information Centre - University of Thessaly
11/05/2024 18:13:15 EEST - 18.117.73.223

Chapter 4. Caching Layered Video 71

the following condition must hold:

Dki(y, z,Λ) ≤ Db1 +Db2 +Dp (4.24)

Thus, by minimizing the file delivery delay Dki(y, z,Λ), we can indirectly allow the video

decoder to use a smaller delay Db2 . For the defined system model, our optimization

framework ensures the minimum startup delay in order to avoid a buffer underrun (for

a specific cost-delay tradeoff expressed with parameter α).

Also, it is clear that the video streaming performance depends on the quality level of the

delivered video, as this in turn determines the video file size. Hence, delivering versions

of high quality is more likely to induce buffer underrun or other similar undesirable

phenomena. On the other hand, layered encoding has a unique advantage as one can

determine the video quality more dynamically. For example, deliver first the basic layer

(with small size), and then, if the network conditions change, deliver the higher quality

layer. This is particularly important for the case that the routing and caching decisions

are taken not for the entire video files but for the video segments.

4.5 Performance Evaluation

In this section we present the numerical experiments that we have conducted to evaluate

the performance of the proposed algorithm using realistic system settings. Our main

objectives/goals are as follows:

• Compare the two different video encoding techniques, i.e. layered encoding and

versions.

• Describe the cost-delay trade off.

• Examine the convergence of the proposed algorithm.

Methodology and Performance Criteria. Particularly, we compare the performance

of our algorithm in three cases:

1. Versions: The files are encoded with different rates that yield multiple versions.

2. Layered-Encoding : Each file has a multi-layer representation based on SVC.

3. Mixed Strategy : The system supports both versions and layers.

Institutional Repository - Library & Information Centre - University of Thessaly
11/05/2024 18:13:15 EEST - 18.117.73.223

Chapter 4. Caching Layered Video 72

The performance criteria that we consider are the incurred cost by the operator and

the experienced delay by the users. Because of the quadratic relation between power

consumption and achievable rate, we adopt the following cost function:

Jn(y, z,Λ) =
(∑
k∈K

wkn
∑
i∈I

∑
q∈V∪L

oiqλkiykniq
)2

+

+ β
(K∑
k=1

I∑
i=1

∑
q∈V∪L

oiqλkizkniq
)2

where β is a positive constant and wkn ≥ 0 captures the wireless transmission efficiency

among user k and base station n. The largest the value of wkn is the less are the resources

the network has to consume (e.g., frequency - time slots, or energy) in order to serve

the user6. The experienced delay for each user k receiving version (or layer) q of file i

by BS n is [84]:

dkniq(y, z,Λ) =
ykniqλkioiq
Cn −An(y)

+ dknykniqλkiokniq

+
zkniqλkioiq
Gn −Bn(z)

+ dbhn zkniqλkiokniq

where An(y) =
∑

k∈K
∑

i∈I
∑

q∈V∪L(ykniqλkioiq) is the assigned load to the BS n. Sim-

ilarly, for the backhaul link it is Bn(z). dkn is the propagation and processing delay for

the transmission from base station n to user k, and dbhn the respective delay component

for the backhaul link of the base station.

We adopt the following linear penalty cost function for the unserved requests: P (y,ΛP) =

γΛP , where ΛP is the number of unserved requests, as defined in Section III, and γ is

the unit cost incurred per unserved request.

Simulation Setup. Throughout, we consider a cellular network consisted of a single

main base station located at the center of a circular-shaped cell with radius 200m.

K = 200 mobile users, |NP | = 4 PBSs and |NF | = 16 FBSs are uniformly placed

in random statistically independent positions in the cell. The transmission radius of a

PBS and a FBS is equal to 80m and 50m respectively. Neighboring BSs operate in

orthogonal frequency bands. The coefficients wkn are set as the fraction of the distance

between the user k and the base station n over the radius of the cell. We also set dkn = 1

and dbhn = 1 for each base station n, β = 1 and γ = 1000.

In all simulations, we assume a collection of M = 100 files, each one of which can be

delivered in Q = 2 quality levels. The size of a version of a file is equal to 10 and 20 units

6More formally, we can define the transmission efficiency as the average volume of traffic (measured
in bits) that can be supported by one unit of spectrum resource (measured in Hz). Obviously, the
transmission efficiency is closely related to the path loss and shadow fading of a link. In the simplest
case, it can be defined as the Shannon capacity.

Institutional Repository - Library & Information Centre - University of Thessaly
11/05/2024 18:13:15 EEST - 18.117.73.223

Chapter 4. Caching Layered Video 73

of data in the low and the high quality level respectively. The layered-encoding overhead

is 10%. This is a realistic choice inspired by the video traces in [85]. Within a period T

of size normalized to 1, each user requests a file based on a Zipf-Mandelbrot model [61]

with a shape parameter value equal to 0.8 and a shift parameter value equal to 10. Unless

otherwise specified, Cn = 100, ∀n ∈ N ∪M , Sn = 50, Gn = 100, ∀n ∈ N , α = 1 and

the requested video quality follows the uniform probability distribution. The parameter

ν of Algorithm 4.1 is initially set to 2.0 and is halved if there is no improvement in the

UB for 50 successive iterations [83].

Comparison between Versions and Layers. We first compare the balanced cost of

the operator achieved by the proposed algorithm as a function of the probability that a

user request is for the high quality level in Figure 4.2(a). As expected, this cost increases

when the aforementioned probability increases, as more users request the high quality

level of the files and, thus, a larger amount of data is downloaded. We observe that pure

version caching is desirable when the requests are homogeneous in terms of the requested

quality level. This is because of the overhead that layered encoding incurs. However,

when both the quality levels are requested layered encoding may be preferable, as it

requires less storage space for serving the same requests compared to the pure versions

scheme. Mixed strategy operates the best, as it efficiently combines the inherent features

of the two encoding methods (e.g. the user demand is homogeneous in terms of the

requested quality in a cell’s subregion, but it is heterogeneous in the rest of it).

We then analyze the impact of the transmission bandwidth capacity of each SBS on the

balanced cost of the operator. Figure 4.2(b) shows the results when all the requests are

for the high quality level. We observe that for low capacity values the layers achieve

lower cost than the pure version scheme. This is because using layers balances the traffic

across the base stations, as the same user can fetch the two layers from two different

neighboring base stations. This cost decrement is more crucial when the base station

capacity is low. For higher values of the BS capacity, the layered encoding overhead

can not be justified by the above gain and, thus, the pure versions caching scheme

outperforms the layered scheme.

The superiority of the layered scheme compared with the versions scheme depends on

the encoding overhead, as depicted in Figure 4.2(c). When this overhead becomes large

enough, the pure version caching scheme becomes more preferable.

Study of the cost-delay trade off. The objective’s balancing parameter α reflects the

preference of the operator for reducing the user experienced delay or the servicing cost.

Figures 4.2(d)-4.2(e) show the results in the versions case when the per user demand is 1

(Low Load) and 10 (High Load). As α increases the user delay decreases, at the expense

of the servicing cost increase and vice versa. This is because when α is low, users are

Institutional Repository - Library & Information Centre - University of Thessaly
11/05/2024 18:13:15 EEST - 18.117.73.223

Chapter 4. Caching Layered Video 74

0 0.2 0.4 0.6 0.8 1
1.3

1.35

1.4

1.45

1.5

1.55

1.6

1.65

1.7
x 10

5

Probability of high quality request

B
al

an
ce

d
 C

o
st

Version
Layer
Mixed

(a)

20 40 60 80 100
1.6

1.65

1.7

1.75

1.8

1.85

1.9

1.95

2
x 10

5

Bandwidth Capacity per BS

B
al

an
ce

d
 C

o
st

Version
Layer
Mixed

(b)

0 0.04 0.08 0.12 0.16 0.2
1.4

1.42

1.44

1.46

1.48

1.5
x 10

5

Layered−Encoding Overhead

B
a

la
n

c
e

d
 C

o
s
t

Version
Layer
Mixed

(c)

0 2 4 6 8 10
0

500

1000

1500

2000

2500

3000

Objective’s Balancing Parameter

D
el

ay
 C

o
st

High Load
Low Load

(d)

0 2 4 6 8 10
0

1000

2000

3000

4000

5000

6000

7000

Objective’s Balancing Parameter

S
er

v
ic

in
g
 C

o
st

High Load
Low Load

(e)

10 20 30 40 50
0

0.5

1

1.5

2
x 10

5

Iteration Number

B
al

an
ce

d
C

os
t

UB
Alg. 1
LB

(f)

Figure 4.2: The balanced cost of the operator as a function of (a) the probability
that a request is for the high quality level, (b) the bandwidth capacity per BS and (c)
the layered encoding overhead. The impact of the objective’s balancing parameter α
on (d) the delay cost and (e) the servicing cost. (f) The balanced cost of the operator,

the UB and the LB at each step of the execution of Algorithm 4.1.

assigned to the SBSs with the largest spectral efficiency, but when α increases they are

forced to be assigned to the less loaded SBSs regardless of the spectral efficiency (and

thus consuming more energy). The impact of the parameter α on the two metrics is

greater in the High Load case, as the assignment of the users to the overloaded base

stations is more costly to the operator. We observe that improving the delivery delay

(by tuning properly the parameter α) by an average 10% may increase the servicing cost

from 10% up to 30%.

Convergence of Algorithm 4.1. The MVD problem is an NP-hard problem and

hence its solution cannot be derived in polynomial time. The iterative solution we

propose gradually improves the obtained result. In other words, a network operator can

execute the suggested algorithm in an offline fashion to determine for each time period

the joint routing and caching policy. The performance improves with the time that

the algorithm runs. Specifically, the convergence of our algorithm in the versions case

is depicted in Figure 4.2(f). Even when layers come into the picture, the convergence

typically happens in less than a few hundreds steps.

Institutional Repository - Library & Information Centre - University of Thessaly
11/05/2024 18:13:15 EEST - 18.117.73.223

Chapter 4. Caching Layered Video 75

4.6 Cooperative Caching of Layered Video

Going one step further, we study the performance benefits that may arise when different

network operators (NOs) cooperate in SVC caching. Today there exist many market

entities (e.g., different Telco-CDNs) that often deploy their own caches in the same

locations so as to serve their users-clients. The caches may be interconnected with each

other [86]. Thus, it is meaningful to explore the potential of a local cache of a certain

network entity to retrieve a video layer from the co-located cache of a different network

entity, instead of fetching it from a distant server of its own that would cause larger

delay. However, the diverse user demands that the networks must serve render this

cooperative caching problem particularly challenging. Hence, it is important to derive a

joint caching policy that minimizes the total delay for all network operators, considering

the global content demand.

4.6.1 Cooperative Caching Model

We update the notation so that N represents the set of cache-nodes instead of SBSs,

V the set of videos and L the set of SVC layers. The size of the lth layer of video v is

ovl bytes, which typically decreases with l, i.e., ov1 ≥ ov2 ≥ ... ≥ ovQ. Each cache-node

belongs to a NO in the set K of size K, and is located at a region in the set M of

size M (Figure 4.3). Here, Nk ⊆ N indicates the subset of nodes that belong to NO

k ∈ K. Also, Nm ⊆ N indicates the subset of nodes that belong to region m ∈ M. It

is assumed that each NO has installed one cache per region, and that all the caches in

a region are interconnected. We also denote with λnvq > 0 the expected demand of the

users associated to node n ∈ N for video v ∈ V with required quality q ∈ Q.

Ideally, each user would like to receive all the layers of the requested video from the

local node n since this induces a practically zero delay. If a layer cannot be found at

the local cache node n, then n can download it from another node n′ in the same region

that has already cached it. We denote with dnn′ the per unit data delay incurred for

this transfer, where it trivially holds that dnn = 0, ∀n ∈ N . As a last resort for node

n, the content server can deliver the layer with delay dn > dnn′ , ∀n, n′. Clearly, a user

may download the required layers from different caches or servers. In this case, the user

experienced delay will be equal to the maximum of the respective delays.

The global caching policy of the cooperating NOs is given by the vector (x = xnvl ∈
{0, 1},∀n ∈ N , v ∈ V, l ∈ L). The objective is to minimize the total delay for satisfying

the entire set of requests. The total delay can be written as JcT (x) =
∑

k∈K J
c
k(x), where:

Institutional Repository - Library & Information Centre - University of Thessaly
11/05/2024 18:13:15 EEST - 18.117.73.223

Chapter 4. Caching Layered Video 76

Figure 4.3: A distributed caching architecture with K NOs and M regions. Every
cache is connected with a distant content server and possibly with other caches in the

same region.

Jck(x) =
∑
n∈Nk

∑
v∈V

∑
q∈Q

λnvq max
l∈{1,...,q}


∏
n′∈N :
Mn′=Mn

(1− xn′vl)ovldn

+
(

1−
∏
n′∈N :
Mn′=Mn

(1− xn′vl)
)
ovl min

n′∈N :
Mn′=Mn, xn′vl=1

{dnn′}

 (4.25)

Here, Mn ∈ M indicates the region where node n is located. Every required layer

l ∈ {1, ..., q} will be delivered to local node n by the content server with per unit

data delay dn if none of the nodes in the same region with n have cached it, i.e., if∏
n′∈N :Mn′=Mn

(1−xn′vl) = 1. Otherwise, among the nodes that have cached l, the one

with the lowest delay will deliver it.

Institutional Repository - Library & Information Centre - University of Thessaly
11/05/2024 18:13:15 EEST - 18.117.73.223

Chapter 4. Caching Layered Video 77

4.6.2 Cooperative Caching Policies

The problem of determining the caching policy that minimizes the user delay of all NOs

can be expressed as follows:

minx J
c
T (x) (4.26)∑

v∈V

∑
l∈L

ovlxnvl ≤ Sn,∀n ∈ N (4.27)

xnvl ∈ {0, 1}, ∀n ∈ N , v ∈ V, l ∈ L (4.28)

Decomposition: Since content can only be transferred between nodes in the same

region, the above problem can be decomposed into M independent subproblems, one

for each region m ∈ M. We denote with Nm ⊆ N the set of nodes located at region

m. For a specific region m, we observe that the total user delay equals to Dm
wc =∑

n∈Nm
∑

v∈V
∑

q∈Q λnvqov1dn without using local caching, since all requests are served

with layer 1 downloaded by the content servers. Hence, we can express the equivalent

problem of maximizing delay savings for region m, which we refer to as Rm, as follows:

Rm : max
xm

Dm
wc −

∑
n∈Nm

∑
v∈V

∑
q∈Q

λnvq max
l∈{1,...,q}

{
∏

n′∈Nm
(1− xn′vl)ovldn + (1−

∏
n′∈Nm

(1− xn′vl))ovldnn∗
}

s.t.
∑

v∈V
∑

l∈L ovlxnvl ≤ Sn, ∀n ∈ Nm (4.29)

xnvl ∈ {0, 1}, ∀n ∈ Nm, v ∈ V, l ∈ L (4.30)

where xm = (xnvl : n ∈ Nm, v ∈ V, l ∈ L). Each layer l of a file v will be delivered to n

by the content server with per unit data delay dn if none of the nodes have cached it,

i.e., if
∏
n′∈Nm(1− xn′vl) = 1. Otherwise, among the nodes that have cached l, the one

with the lowest delay will deliver it, i.e., the node n∗ =n′∈Nm:xn′vl=1 {dnn′}.

Solution: Rm is a very challenging problem, since each node should seek the best

tradeoff between caching the layers of the videos that are popular for its own users

(optimizing local demand), and caching the ones that are frequently requested by users

of other nodes in the same region (optimizing global demand). Subsequently, we present

an algorithm that achieves an approximation ratio for this important problem. The

algorithm partitions the cache space of each node based on an input parameter F ∈ [0, 1].

Here, F stands for the portion of each cache that is filled in with globally popular video

content, while the rest 1 − F portion is filled in with locally popular video content.

Clearly, if F = 0, then each node n caches the locally popular video layers independently

from the others, while when F = 1 all nodes put together their caches and they fill in

the union cache space with globally popular video layers.

Institutional Repository - Library & Information Centre - University of Thessaly
11/05/2024 18:13:15 EEST - 18.117.73.223

Chapter 4. Caching Layered Video 78

The proposed algorithm uses the solution to the following type of knapsack problems [87]:

Definition 4.2. Multiple-Choice Knapsack (MCK): Given R classes E1, E2,...,ER of

items to pack in a knapsack of capacity W , where item i ∈ Er has value pri and weight

wri, choose at most one item from each class such that the total value is maximized

without the total weight exceeding W .

Although MCK problem is NP-hard, there exists a pseudopolynomial-time optimal al-

gorithm and a fully-polynomial-time approximation (FPTA) algorithm to solve it [87].

Pseudopolynomial means that the time is polynomial in the input (knapsack capacity

and item weights), but exponential in the length of it (number of digits required to

represent it). The FPTA algorithm finds a solution with a performance that is prov-

able no less than (1 − ε) times the optimal, while its running time is polynomial to 1
ε ,

ε ∈ (0, 1). Therefore, the FPTA algorithm complexity and performance are adjustable,

which makes it preferable compared to the first algorithm for large problem instances.

Apart from MCK, the proposed algorithm also uses the solution to the independent

caching problem for a single cache-node n, in which case node n is excluded from ex-

changing content with other nodes. Hence, node n only optimizes its local demand. We

denote with Pn this independent caching problem. Then, the following lemma holds.

Lemma 4.3. The problem Pn is polynomial-time reducible to the MCK problem.

The proof of this lemma is deferred to Appendix C. The proposed algorithm uses as

components the solution to the following two problems:

1. MCK(m): The instance of the MCK problem comprising a knapsack of capacity

F ·
∑

n∈Nm Sn and V classes of items, each with Q items. The ith item of the vth class has

weight
∑i

l=1 oil and value
∑

n∈Nm
∑

q∈Q λnvqdn
∑q

l=1(ovl − ovl+1)
∏l
j=1(1{j∈{1,2,...,i}}),

where 1{.} is the indicator function, i.e. 1{c} = 1 if condition c is true; otherwise it is

zero, and ovl+1 = 0 for l = q. Here, the ith item of the vth class corresponds to the first

i layers of video v.

2. Pn(An): The instance of the Pn problem in which the layers in the set An are already

placed in cache n.

We now present the proposed Layer-aware Cooperative Caching (LCC) algorithm:

Institutional Repository - Library & Information Centre - University of Thessaly
11/05/2024 18:13:15 EEST - 18.117.73.223

Chapter 4. Caching Layered Video 79

• Stage 1: Solve the MCK(m) problem. For each item picked in the

knapsack, place the corresponding set of layers into the node n ∈ Nm
with the highest local demand for the respective video. Ensure at each

step that at most F · Sn + s amount of data is placed at each node n,

where s is the maximum size of an item.

• Stage 2: For each node n ∈ Nm, fill in its remaining cache space by

solving the Pn(An) problem, where An consists of the layers placed at n

in stage 1.

Theorem 4.4 summarizes one of the main contributions of this section:

Theorem 4.4. LCC algorithm achieves an approximation ratio of min{ ρµ, ρ′µ′ } for

the Rm problem, where:

ρ = F − s∑
n∈Nm

Sn
, µ = min

n∈Nm

min
n′∈Nm\n

{dn − dnn′}

max
n′∈Nm\n

{dn − dnn′}

ρ′ = 1− F − 2s

min
n∈Nm

Sn
, µ′ = min

n∈Nm

min
n′∈Nm\n

dnn′

max
n′∈Nm\n

dnn′

The proof of Theorem 4.4 is deferred to Appendix D. The tightness of the approximation

ratio of LCC algorithm depends on the delay coefficients (dn, dnn′ , ∀n, n′ ∈ Nm), the

cache sizes (Cn, ∀n ∈ Nm) and the input value F . In the symmetric case where dn = d

and dnn′ = d′, ∀n, n′ ∈ Nm it becomes: µ = 1 and µ′ = 1. When additionally the caches

are relatively large, i.e., s
minn∈Nm Sn

→ 0, setting F = 0.5 yields an approximation ratio

of 0.5, i.e., LCC algorithm achieves at least half of the optimal performance.

We note that F is passed as an input to LCC algorithm. A reasonable choice for F is

the value that yields the best possible approximation ratio. This requires solving the

following optimization problem:

max
0≤F≤1

min{ ρµ, ρ′µ′ } (4.31)

Here, the objective function is pointwise minimum of finite number of affine functions

and therefore it is concave. Hence, this problem can be solved using standard convex

optimization techniques [82].

Institutional Repository - Library & Information Centre - University of Thessaly
11/05/2024 18:13:15 EEST - 18.117.73.223

Chapter 4. Caching Layered Video 80

20 25 30 35 40
10

1

10
2

10
3

10
4

QP

C
u

m
u

la
ti
v
e

 L
a

y
e

r
s
iz

e
 (

M
B

s
)

Figure 4.4: The cumulative size of the layers required at each quality level for the
videos in the library [85]. Each video is encoded into 5 quality levels corresponding to

different quantization parameters; QP ∈ {20, 25, 30, 35, 40}.

4.6.3 Evaluating Cooperative Caching

In this subsection, we present the numerical results of the experiments that we have

conducted to show the superiority of the proposed approach over a commonly used

caching scheme. Specifically, we implement the following three algorithms:

• Independent Caching (IC): Each NO serves only its own subscribers. For each

cache-node n, the caching is performed independently from the rest, by solving

the Pn problem.

• Layer-aware Cooperative Caching (LCC): The proposed cooperative algorithm ac-

cording to which all nodes dedicate F fraction of their cache space for storing

layers of videos that are globally popular. The remaining space is filled in based

on the local video demand.

• Femtocaching [33] : This cooperative caching algorithm starts with all the caches

being empty. Iteratively, it performs the placement of a layer to a cache that

achieves the maximum performance improvement, in terms of total delay (JcT).

The procedure terminates when there does not exist any cache space available to

store content.

The evaluation is carried out for K = 3 NOs and a single geographical region. Each

NO has installed a cache of capacity equal to S (bytes). The rate of the link between a

content server and each of the caches is 1/dn = 1mbps, while between any pair of caches

it is 1/dnn′ . As a canonical scenario we set 1/dnn′ = 5mbps, while our evaluation also

covers the cases where: 1/dnn′ ∈ {1, 2, ..., 10} mbps.

Requests for a library of V = 1, 000 popular videos are randomly generated by the

users that are associated to the caches. Each video is realized in Q = 5 quality levels

using SVC. We set the sizes of the 5, 000 respective layers randomly using the real-world

Institutional Repository - Library & Information Centre - University of Thessaly
11/05/2024 18:13:15 EEST - 18.117.73.223

Chapter 4. Caching Layered Video 81

trace in [85]. This dataset contains detailed information about 19 SVC-encoded popular

movies spanning 5 SNR quality levels (Figure 4.4). We believe that this is representative

of a realistic video delivery system, since layer sizes span two orders of magnitude, and

videos of various source formats and publish times are included.

Following empirical studies in VoD systems, we spread the user requests across videos

using a Zipf distribution, i.e., the request rate for the ith most popular video is pro-

portional to i−z, for some shape parameter z > 0 [61]. We further spread the requests

across the Q = 5 quality levels uniformly at random. Unless otherwise specified, we set:

S = 100GBs and z = 0.8, while we run the LCC algorithm for each value of F at 0.1

granularity, and pick the value with the lowest total delay.

Impact of rate between caches: We first explore the impact of varying the band-

width rate between the caches on the average video delivery delay. In the experiment

in Figure 4.4(a), the rate spans a wide range of values, starting from 1 to 10 mbps,

reflecting different operating conditions. We note that the performance of the IC algo-

rithm is unaffected by this variation, since the caches are excluded from transmitting

content one another. On other hand, increasing the rate between caches reduces delay

for the cooperative caching algorithms (Femtocaching and LCC), since the layers can

be exchanged faster between the caches. The proposed algorithm (LCC) performs better

than the rest for all the rate values. The delay gains are up to 54% and 22% when

compared to IC and Femtocaching algorithm respectively.

Impact of cache sizes: We analyze the impact of cache sizes on algorithms’ per-

formance in Figure 4.4(b). As expected, increasing cache sizes reduces delay for all

the algorithms as more requests are satisfied locally (without the participation of the

content server). IC results in the largest delay compared to the rest schemes (up to

76% difference), since the latter schemes allow the exchange of content between the

caches. The proposed LCC algorithm consistently outperforms Femtocaching, with the

gains increasing with cache sizes (up to 22%).

Impact of demand steepness: Finally, we show the impact of the Zipf shape pa-

rameter z on algorithms’ performance in Figure 4.4(c). As the z value increases the

demand distribution becomes steeper and a few videos attract most of the demand. On

other hand, a small z value corresponds to an almost uniform demand distribution. We

observe that the delay decreases with z for all the algorithms, reflecting that caching

effectiveness improves with the steepness of demand distribution. LCC performs signifi-

cantly better than IC and Femtocaching, especially for large z values, with gains up to

39% and 25% respectively.

Institutional Repository - Library & Information Centre - University of Thessaly
11/05/2024 18:13:15 EEST - 18.117.73.223

Chapter 4. Caching Layered Video 82

0 2 4 6 8 10
20

25

30

35

40

Rate between caches (mbps)

A
v

e
ra

g
e
 d

e
li

v
e
ry

 d
e
la

y
 (

m
in

u
te

s)

IC
Femtocaching
LCC

(a) Impact of rate between

caches.

0 40 80 120 160 200
10

20

30

40

50

Cache size (GBs)

A
v
e
ra

g
e
 d

e
li

v
e
ry

 d
e
la

y
 (

m
in

u
te

s)

IC
Femtocaching
LCC

(b) Impact of cache sizes.

0.4 0.6 0.8 1.0 1.2

10

20

30

40

50

Zipf shape parameter

A
v
e
ra

g
e
 d

e
li

v
e
ry

 d
e
la

y
 (

m
in

u
te

s)

IC
Femtocaching
LCC

(c) Impact of demand steepness.

Fig. 4.4. (a) The average video delivery delay achieved by IC, Femtocaching and LCC

algorithms as a function of (a) the rate between caches, (b) the cache sizes, and (c) the shape

parameter of the Zipf distribution.

Main takeaways: For the purpose of optimizing video delivery, the caching problem

needs to be revisited so as to additionally take into consideration the different video

encoding techniques used to realize different levels of video quality. Layered video en-

coding technologies, e.g., SVC, offer network flexibility since the layers of each video

can be cached at different base stations and/or routed over different paths to users.

The benefits mainly depend on the diversity of user demand in terms of the required

quality level of video. Cooperative schemes that allow the exchange of content between

the caches owned by different network operators can reduce further the video delivery

delay.

Institutional Repository - Library & Information Centre - University of Thessaly
11/05/2024 18:13:15 EEST - 18.117.73.223

Chapter 5

Multicast-aware Caching

Contents

5.1 Introduction . 84

5.2 System Model and Problem Formulation 87

5.2.1 System Model . 87

5.2.2 Motivating Example . 89

5.2.3 Problem Formulation . 91

5.3 Complexity and Solution Algorithms 92

5.3.1 Complexity . 92

5.3.2 Algorithm with performance guarantees 95

5.3.3 Heuristic algorithm . 98

5.4 Performance Evaluation . 99

5.4.1 Algorithms and evaluation setup 100

5.4.2 Evaluation results . 102

5.1 Introduction

Today many operators take advantage of multicast to efficiently utilize the available

bandwidth of their networks in delivering the same content to multiple receivers [88].

For example, multicast is often used for delivering sponsored content, e.g., mobile ad-

vertisements in certain locations, downloading news, stock market reports, weather and

sports updates [89]. Meanwhile, multicast has been incorporated in 3GPP specifica-

tions in which the proposed technology for LTE is called Evolved Multimedia Broadcast

and Multicast Services (eMBMS) [90]. A commercial example of eMBMS is Ericsson

LTE Broadcast solution [91]. This technology can be used across multiple cells where

83

Institutional Repository - Library & Information Centre - University of Thessaly
11/05/2024 18:13:15 EEST - 18.117.73.223

Chapter 5. Multicast-aware Caching 84

the transmission across them is synchronous using a common carrier frequency. Hence,

multicast consumes a subset of the radio resources needed by a unicast service. The

remaining resources can be used to support transmissions towards other users, thus

enhancing network capacity.

Current proposals from academia and industry consider caching and multicast inde-

pendently one from the other and for different purposes. On the one hand, caching is

used to shift traffic from peak to off-peak hours by exploiting the periodic pattern of

traffic generation. This is realized by filling the caches with content during off-peak

hours (e.g., nighttime), and serving requests for the stored content by the caches during

peak-time (e.g., daytime). On the other hand, multicast is used to reduce energy and

bandwidth consumption by serving concurrent user requests for the same content via a

single point-to-multipoint transmission instead of many point-to-point (unicast) trans-

missions. Intuitively, caching should be effective when there is enough content reuse;

i.e., many recurring requests for a few content files appear over time. Multicast should

be effective when there is significant concurrency in accessing information across users;

i.e., many users concurrently generate requests for the same content file. Such scenarios

are more common during crowded events with a large number of co-located people that

are interested in the same contents, e.g., during sporting games, concerts and public

demonstrations with often tens of thousand attendees [92], [93]. In next generation 5G

systems where the demand for mobile data is often massive, and a variety of new ser-

vices such as social networking platforms and news services employ the one-to-many

communication paradigm, e.g., updates in Tweeter, Facebook, etc, it is expected that

multicast will be more often applied.

Clearly, it is of paramount importance to design caching and multicast mechanisms for

servicing the mobile user requests with the minimum possible energy expenditures. The

caching problem differs when multicast is employed to serve concurrent requests for the

same content file. Compared to unicast communication, multicast incurs less traffic as

the requested file is transmitted to users only once, rather than with many point-to-point

transmissions. Hence, the caching problem needs to be revisited to effectively tackle the

following questions: Can caching and multicast be combined to reduce energy costs of

an operator? If yes, what is the condition and where the gains come from? From which

network parameters or user demand characteristics is this affected?

In order to answer the above questions, we consider a HCN model that supports caching

and multicast for the service of the mobile users. Requests for the same content file gen-

erated during a short-time window are aggregated and served through a single multicast

transmission when the corresponding window expires (batching multicast [94]). To en-

sure that the user experienced delay will be limited, the duration of this window should

Institutional Repository - Library & Information Centre - University of Thessaly
11/05/2024 18:13:15 EEST - 18.117.73.223

Chapter 5. Multicast-aware Caching 85

be as small as possible. For example, users may tolerate a very small start-up delay for

video streaming applications, whereas larger delay may be acceptable for downloading

news, stock market reports, weather and sports updates. The multicast stream can be

delivered either by a SBS that is in communication range with the requesters in case that

the respective file is available in its cache, or by the MBS which has access to the entire

file library through a backhaul link. Clearly, a MBS multicast transmission can satisfy

requests generated within the coverage areas of different SBSs that have not cached the

requested file. However, it typically induces higher energy cost than a SBS, since the

distance to the receiver is larger and it also needs to fetch the file via its backhaul link.

First, we demonstrate through simple examples how multicast affects the efficiency of

caching policies. Then, we introduce a general optimization problem (which we name

MACP) for devising the multicast-aware caching policy that minimizes the overall energy

cost. We formally prove the intractability of the MACP problem by reducing it to the set

packing problem [95], which is NP-Hard. Following that, we develop an algorithm with

performance guarantees under the assumption that the capacity of the caches can be

expanded by a bounded factor. This algorithm applies linear relaxation and randomized

rounding techniques. Then, we describe a simple heuristic solution that can achieve

significant performance gains over existing caching schemes.

Using traffic information from a crowded event with over fifty thousand attendees [92],

we investigate numerically the impact of various system parameters, such as the delay

tolerance of user application, the SBS cache sizes, the base station transmission cost

values and the demand intensity and steepness. We find that the superiority of multicast-

aware caching over traditional caching schemes is highly pronounced when: (i) the user

demand for content is high and (ii) the user requests for content are delay-tolerant. The

gains are 17.5% when users tolerate delay of three minutes, increasing further with the

steepness of content access pattern.

Our main technical contributions are as follows:

• Multicast-aware caching problem (MACP). We propose a novel caching paradigm

and an optimization framework building on the combination of caching and mul-

ticast techniques in HCNs. This is important, as content delivery via multicast is

part of 3GPP standards and gains increasing interest.

• Complexity Analysis. We prove the intractability of the MACP problem by reduc-

ing it to the set packing problem [95]. That is, we show that MACP is NP-Hard

even to approximate within a factor of O(
√
N), where N is the number of SBSs in

a macro-cell. This result reveals how the consideration of multicast transmissions

further perplexes the caching problem.

Institutional Repository - Library & Information Centre - University of Thessaly
11/05/2024 18:13:15 EEST - 18.117.73.223

Chapter 5. Multicast-aware Caching 86

• Solution algorithms. Using randomized rounding techniques, we develop a multicast-

aware caching algorithm that achieves performance guarantees under the assump-

tion that the capacity constraints can be violated in a bounded way. Also, we

describe a simple-to-implement heuristic algorithm that provides significant per-

formance gains compared to the existing caching schemes.

• Performance Evaluation. Using system parameters driven from real traffic obser-

vations in a crowded event, we show the cases where the next generation HCN

systems should optimize caching with concerns on multicast delivery. The pro-

posed algorithms yield significant energy savings over existing caching schemes,

which are more pronounced when the demand is massive and the user requests

can be delayed by three minutes or more.

The rest of the chapter is organized as follows: Section 5.2 describes the system model

and defines the MACP problem formally. In Section 5.3, we show the intractability of

the problem and present algorithms with performance guarantees and heuristics. Section

5.4 presents our trace-driven numerical results.

5.2 System Model and Problem Formulation

In this section we introduce the system model, we provide a motivating example that

highlights how multicast affects the efficiency of caching policies and, finally, we formally

define the multicast-aware caching optimization problem.

5.2.1 System Model

We study the downlink operation of a heterogeneous cellular network (HCN) like the one

depicted in Fig. 5.1. A set N of N small-cell base stations (SBSs) are deployed within a

macro-cell,1 serving the requests of the nearby users. Each SBS n ∈ N is equipped with

a cache of size Sn ≥ 0 bytes. The macro-cell base station (MBS) is connected to the

core network via a backhaul link through which it receives data from the content servers.

We denote with cB ≥ 0 the expected energy cost per byte incurred when transferring

data via the MBS backahul link. This captures the energy consumed at the aggregation

switches, which, based on recent measurement studies [96], increases (approximately)

linearly to the total traffic. The backhaul links of the SBSs are usually of low-capacity,

e.g., often facilitated by the consumers’ home networks such as Digital Subscriber Line

1The model can be directly extended for the scenario of more macro-cells and more layers of base
stations, e.g., including micro-BSs, femto-cells, etc, where different cells employ different multicasts or
coordinate via single-frequency network configurations [90].

Institutional Repository - Library & Information Centre - University of Thessaly
11/05/2024 18:13:15 EEST - 18.117.73.223

Chapter 5. Multicast-aware Caching 87

MBS

Macro-cell B
ackhaul

Core Network

Content

Servers

 SBS 1

λ1

I content files

λ2

Cached

files at

SBS 1

λ0

S1

S2

Mobile user

c1

c2

cW

cB

λΝ
SΝ

cΝ

 SBS 2

 SBS Ν

Figure 5.1: Graphical illustration of the discussed model. The circles represent the
coverage areas of the MBS and the SBSs.

(DSL) [97], and when the content demand is massive they are mainly used to refresh

the cached content during off-peak time periods [33]. Therefore, the respective traffic

cost can be safely ignored.

Moving to the radio access network, we denote with cW ≥ 0 the per byte energy cost

incurred when transmitting data directly from MBS to the users in the cell. Although,

in many cases energy costs grow super-linearly with wireless traffic [98], recent energy

measurements indicated that they can be well approximated by a linear function of the

base station load [99]. Similarly, we denote with cn ≥ 0 the per byte energy cost incurred

when transmitting data from the SBS n to its nearby users. Since the SBSs are in closer

proximity to the users than the MBS, it should be: cn ≤ cW , ∀n ∈ N . We elaborate on

the base station transmission cost values in Section 5.4.

The user demand for a set of popular files and within a certain time period is assumed

to be known in advance, as in [33]-[35], [18]. Let I indicate that collection of files,

with I = |I|. For notational convenience, we consider all files to have the same size

normalized to 1. To facilitate the analysis, we consider the case that the coverage areas

of the SBSs are non-overlapping and denote with λni ≥ 0 the average demand for file

i generated by the users located in the coverage area of SBS n.2 Also, λ0i ≥ 0 denotes

the average demand for file i generated by users who are not in the coverage area of any

of the SBSs3.

2The model can be directly extended to handle the case of overlapping SBS coverage areas.
3Notice that the current practice of operators is to deploy SBSs to certain areas with high traffic.

Hence, other less congested areas may be covered only by the MBS.

Institutional Repository - Library & Information Centre - University of Thessaly
11/05/2024 18:13:15 EEST - 18.117.73.223

Chapter 5. Multicast-aware Caching 88

The operator employs multicast (such as eMBMS) for transmission of the same content to

multiple receivers. In this case, user requests within a short-time window are aggregated

and served through a single multicast stream when the corresponding window expires.

We denote with d (time units) the time duration of this window, also called multicast

period. We then denote with pni the probability that at least one request for file i is

generated by users in the coverage area4 of SBS n (area n) during a multicast period.

Similarly, p0i indicates the respective probability for the users that are not in the coverage

area of any of the SBSs (area n0). The collection of all subsets of areas excluding the

empty set can be defined as follows:

R = (r : r ⊆ N ∪ n0, r 6= ∅). (5.1)

Then, we denote with qri the probability that at least one request for the file i ∈ I is

generated within each one of the areas r ∈ R, during a multicast period. For example, if

requests are generated independently among different areas, then the following equation

holds:

qri =
∏
n∈r

(pni) ·
∏
n/∈r

(1− pni). (5.2)

Our model is generic, since it allows for any probability distribution.

We consider the more general case in which both the SBSs and the MBS can use multi-

cast. Namely, a multicast transmission of SBS n ∈ N satisfies the requests for a cached

file generated by users within its coverage area, while a MBS transmission satisfies re-

quests generated within the coverage areas of different SBSs (and requests from area

n0) that have not cached the requested file. This latter option induces higher cost since

the MBS has higher transmission cost (cW ≥ cn) and also needs to fetch the file via

its backhaul link (cB > 0).5 This exactly is the main contribution of this work: “To

carefully design the caching policy with concerns on the multicast transmissions so as to

minimize the overall energy cost”.

Before we introduce formally the problem, let us provide a simple example that highlights

how the consideration of multicast transmissions perplexes the caching problem.

5.2.2 Motivating Example

Let us consider a multicast service system with two SBSs (N = {1, 2}) and three files

(I = {1, 2, 3}). Each SBS can cache at most one file because of its limited cache size.

4With a slight abuse of notation we use the same index for base stations and their coverage area.
5Notice that our model can be extended for the case that the MBS is also equipped with a cache,

where the locally cached files are directly delivered to the users by the MBS without using the backhaul
link.

Institutional Repository - Library & Information Centre - University of Thessaly
11/05/2024 18:13:15 EEST - 18.117.73.223

Chapter 5. Multicast-aware Caching 89

1 1

2

λ11 λ12 λ21 λ23

3

SBS 2SBS 1

Two MBS Multicast

transmissions

(a) Conventional caching.

2 3

1

One MBS Multicast

transmission

λ11 λ12 λ21 λ23

SBS 1 SBS 2

(b) Multicast-aware caching.

Figure 5.2: An example with two SBSs and three files when (a) conventional and (b)
multicast-aware caching is applied. The labels below SBSs represent the cached files.

The labels on the top represent the files delivered by MBS.

We set cB + cW = 1, c1 = c2 = 0 and d = 1. We also set the number of requests for each

file i within the coverage area of a SBS n to follow a Poisson probability distribution

with rate parameter λni, ∀n ∈ N , i ∈ I. Hence, the probability that at least one request

for file i is generated within SBS n in the time period d is:

pni = 1− e−λnid (5.3)

Finally, we set λ11 = 0.51, λ12 = 0.49, λ13 = 0, λ21 = 0.51, λ22 = 0, and λ23 = 0.49,

which imply that p11 = 0.3995, p12 = 0.3874, p13 = 0, p21 = 0.3995, p22 = 0 and

p23 = 0.3874.

In a conventional system, each user request is served via a point-to-point unicast trans-

mission. It is well known that placing the most popular files with respect to the

local demand in each cache is optimal (in terms of the overall energy cost) in this

setting. Hence, the optimal caching policy places file 1, which is the most popular

file, to both SBS caches. By applying the above caching policy to the multicast ser-

vice system that we consider here, all the requests for file 1 will be satisfied by the

accessed SBSs at zero cost. The requests within SBS 1 for file 2 and the requests

within SBS 2 for file 3 will be served by the MBS at per unit cost cB + cW (Fig.

5.2(a)). Assuming independent generation of requests, the total energy cost will be:

(cB + cW) · p12 · (1− p23) + (cB + cW) · (1− p12) · p23 + 2 · (cB + cW) · p12 · p23 = 0.7747,

where the last term in the summation is multiplied by 2 because two different files are

requested for download and thus two MBS transmissions are required for serving the

requests.

Institutional Repository - Library & Information Centre - University of Thessaly
11/05/2024 18:13:15 EEST - 18.117.73.223

Chapter 5. Multicast-aware Caching 90

However, if we take into consideration the fact that the user requests are aggregated and

served via multicast transmissions every d = 1 time unit, then the optimal caching policy

changes; it places file 2 to SBS 1 and file 3 to SBS 2. In this case, all the requests for file

1 will be served by the MBS via a single multicast transmission of cost cB + cW (Fig.

5.2(b)). The requests for the rest files will be satisfied by the accessed SBSs at zero cost.

Hence, the total energy cost will be: (cB+cW) ·
(
p11 ·(1−p21)+(1−p11) ·p21 +p11 ·p21

)
=

0.6394 < 0.7747.

This example demonstrated the inefficiency of conventional caching schemes that ne-

glect multicast transmissions when determining the file placement to the caches. Novel

schemes are needed that combine caching with multicast to better exploit the available

cache space.

5.2.3 Problem Formulation

Let us introduce the binary optimization variable xni that indicates whether file i ∈ I
is placed at the cache of SBS n ∈ N (xni = 1) or not (xni = 0) 6. These variables

constitute the caching policy of the operator:

x = (xni ∈ {0, 1} : n ∈ N , i ∈ I) (5.4)

We also consider a subset r ∈ R that includes the areas receiving requests for a file i ∈ I.

In this case, a MBS multicast transmission of file i will occur if a requester cannot find

i in an accessed SBS. This implies that at least one of the following conditions holds:

(i) a request for file i is generated within an area that is not in the coverage area of any

of the SBSs, i.e., n0 ∈ r, or (ii) a request for file i is generated within the coverage area

of a SBS n ∈ r \ n0, but the latter has not stored in its cache the requested file. We use

the term yri to indicate whether a MBS multicast transmission will occur (yri = 1) or

not (yri = 0). Based on the above discussion, yri is a function of the caching policy x:

yri = max
{

max
n∈r\n0

{1− xni}, 1{n0∈r}

}
(5.5)

where 1{.} is the indicator function, i.e., 1{b} = 1 iff condition b is true; otherwise

1{b} = 0. The external max term is equal to 1 if at least one of the two internal terms

is equal to 1.

Let us now denote with Ji(x) the energy cost for servicing all the requests for a file i,

which clearly depends on the caching policy x. For each subset of areas r that generate

6Note that we do not consider fragmentation of files and placement of file fractions at different caches.
Instead, we tackle the (more challenging) integer-nature caching problem in this work.

Institutional Repository - Library & Information Centre - University of Thessaly
11/05/2024 18:13:15 EEST - 18.117.73.223

Chapter 5. Multicast-aware Caching 91

requests for file i within a time period, a single MBS multicast transmission of cost

cB + cW occurs, if a requester cannot find i in an accessed SBS (yri = 1). In other case

(yri = 0), all the requests are satisfied by the accessed SBSs, where the requests in area

n incur cost cn. Hence:

Ji(x) =
∑
r∈R

qri ·
(
yri · (cB + cW) + (1− yri) ·

∑
n∈r

cn

)
(5.6)

The Multicast-Aware Caching Problem (MACP) determines the caching policy that min-

imizes the total (across all files) energy cost7:

MACP: minimizex
∑
i∈I

Ji(x) (5.7)

subject to:
∑
i∈I

xni ≤ Sn, ∀n ∈ N (5.8)

xni ∈ {0, 1}, ∀n ∈ N , i ∈ I, (5.9)

where inequalities in (5.8) ensure that the total amount of data placed at each cache

will not exceed its capacity. Constraints in (5.9) indicate the discrete nature of the

optimization variables.

MACP is an integer non-linear programming problem and hence it is challenging to

solve. Also, its objective function in (5.7) has an exponentially long description in the

number of SBSs N , since the summation in Ji(x) is over all subsets r ∈ R. As we

formally prove in the next section, MACP is an NP-Hard problem.

5.3 Complexity and Solution Algorithms

In this section, we prove the high complexity of the MACP problem and present solution

algorithms with performance guarantees and heuristics.

5.3.1 Complexity

In this subsection, we prove that the MACP problem cannot be approximated within

any ratio better than the square root of the number of SBSs. The proof is based on

7We emphasize that our model is focused on the energy consumed for transmitting data to users.
Hence, other factors such as cooling [99] and caching energy costs [100] are left outside the scope of our
study.

Institutional Repository - Library & Information Centre - University of Thessaly
11/05/2024 18:13:15 EEST - 18.117.73.223

Chapter 5. Multicast-aware Caching 92

a reduction from the well known NP-Hard set packing problem (SPP) [95]. In other

words, we prove that SPP is a special case of MACP. Particularly, the following theorem

holds:

Theorem 5.1. It is NP-Hard to approximate MACP within any ratio better than

O(
√
N).

Theorem 5.1 is of high importance, since it reveals how the consideration of multicast

transmissions further perplexes the caching problem. In order to prove Theorem 5.1

we will consider the corresponding (and equivalent) decision problem, called Multicast-

Aware Caching Decision Problem (MACDP). Specifically:

MACDP : Given a set N of SBSs, a set I of files, the cache sizes Sn ∀n ∈ N , the costs

cB, cW and cn ∀n ∈ N , the multicast period d, the probabilities qri ∀r ∈ R, i ∈ I, and a

real number Q ≥ 0, we ask the following question: does there exist a caching policy x,

such that the value of the objective function in (5.7) is less or equal to Q and constraints

(5.8)-(5.9) are satisfied?

The set packing decision problem is defined as follows:

SPP : Consider a finite set of elements E and a list L containing subsets of E . We ask:

do there exist k subsets in L that are pairwise disjoint?

Lemma 5.2. SPP problem is polynomial-time reducible to the MACDP.

Proof. Consider the SPP decision problem and a specific instance of MACDP with

N = |E| SBSs, i.e., N = {1, 2, . . . , |E|}, I = |L| files, i.e., I = {1, 2, . . . , |L|}, unit-sized

caches: Sn = 1 ∀n ∈ N , cB + cW = 1, and cn = 0 ∀n ∈ N . Parameter d is any

positive number, and the question is if we can satisfy all the user requests with energy

cost Q = 1 − k
|L| , where k is the parameter from the SPP. The important point is that

we define the qri elements as follows:

qri =

1/|L|, if r = L(i)

0, else
(5.10)

where L(i) is the ith component of the list L. Notice that with the previous definitions,

L(i) contains a certain subset of elements of E . For the MACDP, under the above

mapping, this corresponds to a subset of SBSs asking with a non-zero probability file i.

Moreover, with (5.10) we assume that these probabilities are equal for all files i ∈ I and

have value 1/|L|.

Institutional Repository - Library & Information Centre - University of Thessaly
11/05/2024 18:13:15 EEST - 18.117.73.223

Chapter 5. Multicast-aware Caching 93

S1=1

SBS 1

S2=1

SBS 2

S3=1

SBS 3

0 0 0

q{1}1=1/3 q{1,2}2=1/3 q{2,3}3=1/3

Q=1-(2/3)L ={{1}, {1,2}, {2,3}}

E={1,2,3}

k=2

Figure 5.3: An example of the reduction from SPP with E = {1, 2, 3}, L =
{{1}, {1, 2}, {2, 3}} and k = 2. In the MACDP instance there are N = |E| = 3 SBSs
and I = |L| = 3 files. There is a solution to MACDP of cost Q = 1− 2

3 that places file
1 to SBS 1 and file 3 to SBSs 2 and 3. Accordingly, the solution to SPP picks k = 2

subsets: L(1) = {1} and L(3) = {2, 3}.

If the MBS serves all the requests, then the MACDP problem has a value (cost) of

cB + cW = 1 (the worst case scenario). For each file i that the operator manages to

serve completely through local caching at the SBSs, the operator reduces its cost by

(cB + cW) · qri = 1/|L|. This reduction is ensured only if the file is cached in all the

SBSs n ∈ r for which qri = 1/|L|. Therefore, in order to achieve the desirable value

Q = 1− k
|L| , we need to serve locally the requests for k files. That is, to find k subsets

of SBSs where the file requested by these SBSs will be cached (so as to avoid MBS

multicasts).

Notice that each cache can store up to one file. Hence, the caching decisions should be

disjoint with respect to the SBSs. For example, in Fig. 5.3, SBS 1 cannot store both

files 1 and 2, because S1 = 1. This ensures that the subsets {1} and {1, 2} in the SPP

problem will not be both selected. In other words, the value of the objective function

in (5.7) can be less or equal to 1 − k
|L| , if there exist k subsets in L that are pairwise

disjoint.

Conversely, if a Set Packing for some k exists, then for each subset L(i) that is picked in

it, one can place the file i to the cache of each one of the SBSs n ∈ L(i) corresponding

to this subset. At most one file is placed in each cache, since the selected subsets in the

list are pairwise disjoint. The cost will be equal to 1− k
|L| .

Institutional Repository - Library & Information Centre - University of Thessaly
11/05/2024 18:13:15 EEST - 18.117.73.223

Chapter 5. Multicast-aware Caching 94

SPP is NP-Hard and moreover it is inapproximable within O(
√
|E|) [95]. According to

the reduction, we create a SBS for each one of the elements in E , and hence it holds

|E| = N , which completes the proof of Theorem 5.1.

5.3.2 Algorithm with performance guarantees

In this subsection, we present a caching algorithm with performance guarantees. We

first note that, based on Theorem 5.1, it is unlikely to find a tight approximate solu-

tion to the MACP problem. Hence, we follow an alternative approach by letting the

solution to violate the cache capacity constraints in equation (5.8) by a bounded factor.

Such a constraint violation turns out to greatly facilitate the solution of the problem.

Following that, we present a provably near-optimal solution algorithm applying linear

relaxation and randomized rounding techniques, variants of which have been also used

for optimizing graph cuts [103].

To start with, we express the yri terms, introduced in equation (5.5), as binary opti-

mization variables and denote with y the respective vector:

y = (yri ∈ {0, 1} : r ∈ R, i ∈ I) (5.11)

Then, the equivalent to the MACP problem, which we refer to as MACP′, that optimizes

both the values in x and y can be expressed as follows:

MACP′: minimizex,y
∑
i∈I

Ji(x, y) (5.12)

subject to: constraints: (5.8), (5.9)

yri ≥ 1− xni, ∀r ∈ R, i ∈ I, n ∈ r (5.13)

yri ≥ 1{n0∈r}, ∀r ∈ R, i ∈ I (5.14)

yri ∈ {0, 1}, ∀r ∈ R, i ∈ I (5.15)

where Ji(x, y), is given by equation (5.6), and it is now explicitly expressed as a func-

tion of both the x and y variables. Constraints (5.13)-(5.14) stem of decomposition of

equation (5.5), dictating that yri is equal to 1 if either there is a SBS in r that has not

cached file i or n0 ∈ r.

Then, we introduce the linear relaxation of the MACP′ problem, which we refer to as

LR(MACP′). This differs from MACP′ in that the variables in x and y can take any real

value within [0, 1], i.e., constraints (5.9) and (5.15) are replaced by xni ∈ [0, 1], ∀n ∈
N , i ∈ I and yri ∈ [0, 1], ∀r ∈ R, i ∈ I. The objective function and the constraints of

the LR(MACP′) problem are linear with respect to the optimization variables. Hence, it

Institutional Repository - Library & Information Centre - University of Thessaly
11/05/2024 18:13:15 EEST - 18.117.73.223

Chapter 5. Multicast-aware Caching 95

Algorithm 5.1: Randomized rounding algorithm with parameter µ ∈ (0, 1
2)

1 Let (x†, y†) be the optimal solution to LR(MACP′);
2 Choose m ∈ [1

2 − µ,
1
2 + µ] uniformly at random;

3 Let A = {(r, i) : r ∈ R, i ∈ I, y†ri ≥ m};
4 Let B = {(r, i) : r ∈ R, i ∈ I, y†ri < m};
5 Set yri = 1 ∀(r, i) ∈ A, and yri = 0 ∀(r, i) ∈ B;
6 for n ∈ N , i ∈ I do
7 if ∃ r : yri = 0 and n ∈ r then
8 xni ← 1;
9 else

10 xni ← 0;

11 Output x;

can be solved using standard linear optimization techniques [56]. We need to emphasize

at this point that the number of optimization variables in the LR(MACP′) problem is

non-polynomial to the number of SBSs N , since there is a variable for each subset r ∈ R
(equation (6.4)). In practice though, the number of SBSs in a macro-cell is small (e.g.,

a few tens), and hence we can apply software toolboxes like CPLEX and Mosek [57] to

efficiently solve LR(MACP′).

Having found a fractional solution to the LR(MACP′) problem, denoted with (x†, y†),

the proposed algorithm applies randomized rounding techniques to approximate the

(integer) solution of the MACP problem. Specifically, given an input parameter value

µ ∈ (0, 1
2), the algorithm decides uniformly at random a threshold valuem ∈ [1

2−µ,
1
2+µ].

Then, iteratively it rounds each yri variable to 1 if its (fractional) value exceeds m (subset

A); otherwise it takes the 0 value (subset B). Finally, a variable xni will take the value

1, if there exists yri variable with n ∈ r that was rounded to 0; otherwise it takes the 0

value. The procedure is summarized in Algorithm 5.1.

Theorem 5.3. Algorithm 5.1 outputs a caching policy of energy cost at most 2
1−2µ times

the optimal. The expected amount of data placed in each cache is at most 1
2µ times its

capacity.

Proof. Let Vopt and V1 indicate the optimal solution value for the MACP problem and

the one achieved by Algorithm 5.1 respectively. Then, it holds that:

Institutional Repository - Library & Information Centre - University of Thessaly
11/05/2024 18:13:15 EEST - 18.117.73.223

Chapter 5. Multicast-aware Caching 96

Vopt ≥
∑
r∈R

∑
i∈I

qri

(
y†ri(cB + cW) + (1− y†ri)

∑
n∈N

cn

)
≥

∑
(r,i)∈A

qriy
†
ri(cB + cW) +

∑
(r,i)∈B

qri(1− y†ri)
∑
n∈N

cn

≥
∑

(r,i)∈A

qri(
1

2
− µ)(cB + cW) +

∑
(r,i)∈B

qri(
1

2
− µ)

∑
n∈N

cn

= (
1

2
− µ)V1, (5.16)

where the first inequality is because the optimal solution of the linear relaxed problem

provides a lower bound to the optimal solution value of the initial problem. The second

inequality is because we kept in the summation only a subset of the terms and all the

terms are positive, i.e., qri ≥ 0, y†ri ≥ 0, 1 − y†ri ≥ 0, cB + cW ≥ 0, cn ≥ 0. The third

inequality is because: y†ri ≥ m ≥
1
2 − µ, ∀(r, i) ∈ A and y†ri < m ≤ 1

2 + µ, ∀(r, i) ∈ B.

We also note that the m value is picked uniformly at random from an interval of size 2µ.

According to step 7 of Algorithm 5.1, a file i will be placed at a SBS cache n (xni = 1)

only if there exists r ∈ R for which n ∈ r and yri = 0. Variable yri takes the zero value

when m is larger than y†ri, which happens with probability at most
1−y†ri

2µ . Hence, the

probability that xni takes the value 1 is at most:

1− min
r∈R:n∈r

y†ri

2µ

(5.13)

≤
x†ni
2µ

(5.17)

Summing over all the files yields that the expected amount of data placed in a SBS cache

n ∈ N is at most: ∑
i∈I

(x†ni
2µ

) (5.8)

≤ 1

2µ
· Sn (5.18)

For example, picking the value µ = 1
6 will result a solution of cost that is at most three

times larger than the optimal violating cache capacities by a factor less than three.

Picking a lower value µ yields a tighter performance guarantee, but increases the factor

within which the cache capacities are violated. Hence, the parameter value µ can be

used to control the trade off between performance and robustness of the solution, where

different operators may decide different µ values based on their priorities.

Constructing a feasible solution. We note that, as the cache capacities of the SBSs

may be violated by a factor of 1
2µ when applying Algorithm 5.1, the operator may not be

able to store and deliver through the SBSs all the files required to ensure the performance

Institutional Repository - Library & Information Centre - University of Thessaly
11/05/2024 18:13:15 EEST - 18.117.73.223

Chapter 5. Multicast-aware Caching 97

guarantee of our algorithm (2
1−2µ). In this case, an option for the operator is to expand

the cache capacities by a factor of 1
2µ . Nevertheless, the operator is often unwilling (or,

incapable) to perform additional investments. Hence, it is needed to convert the solution

of Algorithm 5.1 into a feasible solution, i.e., a solution that satisfies equation (5.8).

To obtain such a solution, we start with the solution obtained by Algorithm 5.1. Then,

iteratively, we perform the removal of a file to a SBS cache that yields the minimum cost

increment (with respect to the objective in (5.7)). At each iteration, we ensure that the

SBSs with remaining amount of cached data that is lower or equal to their capacities

are excluded from content removal. The procedure terminates when there does not exist

any SBS available to remove content.

Please notice that, the above conversion may deteriorate the quality of the solution of

Algorithm 5.1. Unfortunately, we cannot derive a tight theoretical performance bound

for the obtained solution due to hardness of the MACP problem (as we described in

Theorem 5.1). However, as we show with an extensive numerical study in the next

section, the obtained solution operates very close to the optimal one in realistic settings.

5.3.3 Heuristic algorithm

Finally, we present an alternate algorithm which, in contrast to the previous algorithm,

finds a solution to the MACP problem in a greedy manner, rather than using a systematic

optimization procedure.

The proposed iterative algorithm starts with all the caches being empty. At each iter-

ation, it places the file to a non-full cache that yields the lowest value to the objective

function in (5.7). The iteration terminates when all the caches become full. This is a

greedy ascending procedure that can be summarized in Algorithm 5.2.

Specifically, In is the number of files already placed at the cache of SBS n at every

iteration of the algorithm, and (×) denotes the cartesian product of two sets. The set

D includes all the pairs (n, i) for which the placement of file i at the cache of SBS n

has not been performed yet, and the cache of n has not been filled up yet. Let f(x, n, i)

be the value of the objective function of the MACP for the file placement x, where we

additionally set xni = 1. At every iteration, Algorithm 5.2 picks the pair (n∗, i∗) ∈ D
with the lowest cost value f(x, n∗, i∗). This corresponds to the placement of the file i∗

at the cache of the SBS n∗. If the cache of SBS n∗ becomes full, then the algorithm

excludes all the pairs (n∗, i), ∀i, from the set D. This way, no more files will be placed

at this cache. The algorithm terminates when all the caches become full.

Institutional Repository - Library & Information Centre - University of Thessaly
11/05/2024 18:13:15 EEST - 18.117.73.223

Chapter 5. Multicast-aware Caching 98

Algorithm 5.2: Heuristic algorithm

1 x← [0, ..., 0] ;
2 In ← 0, ∀n ∈ N ;
3 D ← N × I ;
4 for t = 1, 2, ...,

∑
n∈N (Sn) do

5 (n∗, i∗)← argmin(n,i)∈Df(x, n, i);

6 xn∗i∗ = 1;
7 D ← D \ (n∗, i∗);
8 In∗ ← In∗ + 1;
9 if In∗ = Sn∗ then

10 for i ∈ I such that (n∗, i) ∈ D do
11 D ← D \ (n∗, i)

12 Output x;

Algorithm 5.2 requires
∑N

n=1(Sn) iterations to terminate. At each iteration it evaluates

the value of the objective function after each one of N · I candidate file placements. We

need to emphasize at this point that a similar technique has been shown to achieve an

approximation ratio of 2 for the conventional caching problem of unicast transmissions

(without multicast), where a different objective function was optimized [33]. However,

the problem we consider in this chapter is of higher complexity, as we showed in Theorem

5.1. Despite the lack of any theoretical performance guarantees, Algorithm 5.2 provides

significant performance gains over existing caching schemes in practical scenarios, as we

will show numerically in the next section.

5.4 Performance Evaluation

In this section, we numerically evaluate the energy savings achieved by the proposed

multicast-aware caching algorithms over existing caching strategies. The main part of

the evaluation is carried out for a sporting event with thousand attendees [92] covered by

a macrocell and several SBSs. Additional scenarios differing in the population density,

number of SBSs and energy costs are evaluated, which lead to an understanding of how

the savings vary in different regions and markets. Overall, we find that moving from

a conventional caching scheme to one enhanced with multicast-awareness can indeed

reduce energy costs, and the benefits are higher when the demand is massive and the

user requests for content are delay-tolerant. For a crowded event, an operator can

improve its bottom line by 17.5% by delivering multicast streams every 3 minutes, with

the gains increasing further with the steepness of content access pattern. In the rest of

this section, we discuss these results in detail; we begin by describing the algorithms

and the simulation setup used in the later evaluations.

Institutional Repository - Library & Information Centre - University of Thessaly
11/05/2024 18:13:15 EEST - 18.117.73.223

Chapter 5. Multicast-aware Caching 99

5.4.1 Algorithms and evaluation setup

Throughout, we compare the performance of five schemes:

1. Popularity-Aware Caching & Unicast Transmissions (PAC-UT): The standard

mode of operation currently in use in many caching systems. Each SBS stores

in its cache the locally most popular files independently from the others. Each

user request is served by a separate unicast transmission.

2. Popularity-Aware Caching & Multicast Transmissions (PAC-MT): Similar to PAC-

UT, differing in that requests for the same file within the same multicast period

are served by a single multicast transmission.

3. Linear-Relaxed Multicast-Aware Caching & Multicast Transmissions (LMAC-MT):

We apply Algorithm 1 with µ = 1/6 to decide the cache placement. The place-

ment is further processed to yield a feasible solution as described in the end of

Subsection 5.3.2. User requests for the same file within the same multicast period

are served by a single multicast transmission.

4. Greedy Multicast-Aware Caching & Multicast Transmissions (GMAC-MT): Sim-

ilar to LMAC-MT, differing in that we apply Algorithm 2 to decide the cache

placement.

5. Lower-bound (LB): The lower bound to the optimal solution of the MACP problem

found by solving the linear relaxed problem (LR(MACP′)). Since, this solution

is not feasible, it is only used as a benchmark for measuring the efficacy of the

proposed algorithms.

We need to emphasize that, in order to solve the linear problem in LMAC-MT and

LB schemes, we executed code from the Visual Studio environment using the Mosek

Optimization Toolbox [57]. This software uses interior point methods and sparse arrays

to store variables, which, for our setup, yield a running time in the scale of minutes.

The main part of the evaluation is carried out for a sporting event with macrocell

coverage and stadium-wide deployment of N = 14 SBSs as in Figure 5.4. The system

parameters are set using the measured trace of content requests collected during the

2013 Superbowl in February at the New Orleans Superdome [92]. During this event, over

fifty thousand users generated around three thousand requests for a set of I = 1, 000

popular files. Considering that all requests appear during the four-hour period of the

game, this results to an average rate of ≈ 12.5 requests per minute. To model the

user demand in our evaluation, we uniformly spread the requests in the trace across

Institutional Repository - Library & Information Centre - University of Thessaly
11/05/2024 18:13:15 EEST - 18.117.73.223

Chapter 5. Multicast-aware Caching 100

MBS

Stadium-wide SBS deployment

Figure 5.4: A stadium-wide deployment of SBSs. The dashed circles represent the
coverage areas of the SBSs. A user can be served either by the neighbor SBS or by the

collocated MBS.

the coverage regions of the 14 SBSs. We further spread these requests across files using

a Zipf popularity distribution with shape parameter z [61]. This results the demand

values λni for each SBS n and file i. We also set λ0i = 0, ∀i ∈ I. For the computation

of pni and qri probabilities, we assume that request generation follows an independent

Poisson distribution (Eq. (5.2) and Eq. (5.3)). Unless otherwise specified, all file sizes

are normalized to 1 and each SBS is equipped with a cache that can store up to 20%

of the entire file library size. Finally, we set z = 1.2 and d = 3 minutes, while our

evaluation also covers a wide range of z and d values.

Following recent measurement traces in 3G networks, we approximate MBS power con-

sumption by a linear function of the carried traffic load, with the slope being 8.25/GMBS ,

where GMBS denotes the bandwidth capacity of the MBS (cf. Figure 3 in [99]). Since,

the MBS capacities are typically dimensioned based on the anticipated demand, we set

GMBS to be capable of handling all the user requests in our simulation, i.e., GMBS = 12.5

(requests per minute); therefore it is cW = 8.25/12.5. The MBS backhaul power includes

the power consumed at the aggregation switches, which increases linearly to the total

traffic, with the slope being (1 − α)AgswitchAgmax
Pmax [96]. Here, Pmax represents the maxi-

mum power consumption of the switch, Agswitch is the amount of carried traffic, Agmax is

the maximum amount of traffic a switch can handle and α ∈ (0, 1). We set Pmax = 300

(Watts), Agmax = 24 · GMBS and α = 0.1 (as in Table II in [96]); therefore it is

cB = 30/(24 · 12.5). SBS energy consumption is typically lower than the one for the

MBS, due to the closer proximity to the users, with the actual value depending on the

type of the SBS and its coverage (e.g. pico-cell, femto-cell). As a canonical scenario we

Institutional Repository - Library & Information Centre - University of Thessaly
11/05/2024 18:13:15 EEST - 18.117.73.223

Chapter 5. Multicast-aware Caching 101

set cn = cW /2, while our evaluation also covers the cases where: cW
cn
∈ {1, 2, ..., 10} [96].

5.4.2 Evaluation results

We compare the energy cost achieved by the above schemes as a function of the duration

of multicast period, the cache sizes and the base station transmission costs. Following

that, we investigate how the population density, the intensity and steepness of demand

and the number of SBSs impact the results.

Impact of the duration of the multicast period: Intuitively, multicast will be

effective when there is significant concurrency in accessing content across users, i.e.,

many requests for the same file frequently appear within a multicast period. In this case,

the requests are aggregated and served via a common multicast stream (instead of many

unicast transmissions) improving the energy efficiency of the system. Although, this may

occasionally be the case for typical urban macrocells with a few hundred or thousand

users, our analysis reveals that it is particularly relevant during crowded events with tens

of thousand people collocated in the same area. For the specific sporting event that we

consider in the evaluation, Figure 5.5(a) shows the energy cost achieved by the discussed

schemes when the duration of the multicast period d is varied within 1 to 15 minutes. We

observe that the performance gap between each one of the schemes that enable mulitcast

transmissions (PAC-MT, LMAC-MT, GMAC-MT and LB) and the PAC-UT increases

with d. This was expected, since increasing d increases the probability of receiving

multicast requests for a file within a period. Importantly, the proposed multicast-aware

caching schemes (LMAC-MT, GMAC-MT) consistently outperform PAC-MT, with the

gains increasing with d (up to 31%). Even for a relatively small value of d, multicast-

aware caching schemes achieve significant energy savings over the conventional caching

scheme. For example, the gains are 17.5% for d = 3. This is of high importance since

users are unlikely to tolerate large delays in receiving content. Interestingly, the proposed

schemes operate very close to LB and hence the optimal solution (less than 2% worse).

Impact of cache sizes: We analyze the impact of the cache sizes on the algorithms’

performance in Figure 5.5(b). Here, the cache size of each SBS is varied from 5% to

50% of the entire file library size. As expected, increasing cache sizes reduces energy

costs for all schemes as more requests are satisfied locally (without the participation

of the MBS). PAC-UT results in the largest energy cost compared to the rest schemes

(up to 30% difference), since the latter schemes serve many aggregated requests via a

single multicast instead of many unicast transmissions. The proposed multicat-aware

caching schemes (LMAC-MT and GMAC-MT) consistently outperform the popularity-

aware caching scheme PAC-MT, with the gains increasing with cache sizes (up to 19%).

Institutional Repository - Library & Information Centre - University of Thessaly
11/05/2024 18:13:15 EEST - 18.117.73.223

Chapter 5. Multicast-aware Caching 102

0 5 10 15
650

700

750

800

850

900

950

1000

1050

1100

1150

Multicast period (minutes)

E
n

e
rg

y
co

st

PAC−UT
PAC−MT
GMAC−MT
LMAC−MT
LB

(a) Impact of multicast period

0 10 20 30 40 50

800

900

1000

1100

1200

1300

Cache size (% of file library size)

E
n

e
rg

y
co

st

PAC−UT
PAC−MT
GMAC−MT
LMAC−MT
LB

(b) Impact of cache sizes

0 2 4 6 8 10

400

600

800

1000

1200

1400

1600

1800

2000

C
w

/c
n

E
n

e
rg

y
co

st

PAC−UT
PAC−MT
GMAC−MT
LMAC−MT
LB

(c) Impact of transmission costs

Figure 5.5: Energy cost achieved by PAC-UT, PAC-MT, LMAC-MT, GMAC-MT
and LB schemes for various values of: (a) the multicast time period, (b) the cache size

of each SBS and (c) the base station transmission costs.

More importantly, LMAC-MT and GMAC-MT operate very close to LB -and hence the

optimal solution- for all the cache sizes (less than 4% worse).

Impact of base station transmission costs: We explore the impact of the the base

station transmission cost parameters on the algorithms’ performance in Figure 5.5(c).

Particularly, we keep cW constant and alter the cn values within {cW /1, cW /2, ..., cW /10}.
We observe that as the ratio cW /cn increases, the energy cost achieved by all the

schemes decreases since the cost incurred by the service at the SBSs becomes lower.

The popularity-aware caching schemes (PAC-UT and PAC-MT) are the most sensitive

to this alteration. Again, LMAC-MT and GMAC-MT outperform the popularity-aware

schemes, especially for low values of cW /cn. For cW = cn, the gains are 57% and 44%

when compared to the PAC-UT and PAC-MT scheme respectively. However, when cn

values become relatively low compared to cW , the performance of the PAC-MT scheme

comes very close to the multicast-aware schemes. This is because, the file popularity

distribution is the same across all the SBSs (homogeneous demand) in our experiment,

and hence simply replicating the (same) most popular files at all the caches drastically

reduces the number of multicast-transmissions employed by the MBS.

Impact of demand patterns and number of SBSs: The demand patterns used in

Figures 5.5(a)-5.5(c) may seem contrived, but in fact, they are very much in line with

recent traffic measurements reported during crowded events [92]. To obtain a holistic

view of the benefits of enhancing the caching scheme with multicast-awareness we repeat

the experiments for different values of intensity and steepness of demand. Specifically,

we consider ten scenarios with five to fifty thousand users generating requests for files.

The intensity of demand for the case of fifty thousand people matches the one used for

the sporting game in Figures 5.5(a)-5.5(c). For the rest choices, the demand intensity

is scaled down proportionally to the number of users. For each scenario, five different

choices of the Zipf shape parameter z are evaluated. Here, z = 0.4 indicates an almost

Institutional Repository - Library & Information Centre - University of Thessaly
11/05/2024 18:13:15 EEST - 18.117.73.223

Chapter 5. Multicast-aware Caching 103

10000
20000

30000
40000

50000

2
1.6

1.2
0.8

0.4

0

50

100

Number of usersShape parameter
G

ai
ns

 (
%

)

(a) Impact of user demand

2 4 6 8 10 12 14 16 18 20
0

5

10

15

20

Number of SBSs

G
ai

ns
 (%

)

(b) Impact of number of SBSs

Figure 5.6: Gains of multicast-aware caching (GMAC-MT) over conventional caching
(PAC-MT) as a function of (a) the intensity and steepness of demand for content and

(b) the number of SBSs.

uniform content popularity distribution, whereas z = 2 stands for a high-steep distribu-

tion. The 3-D barplot in Figure 5.6(a) shows that the energy gains of a multicast-aware

caching scheme (GMAC-MT) over a conventional caching scheme (PAC-MT) increase

as either the intensity or the steepness of demand increases. In the best scenario, with

fifty thousand users and z = 2, the gains are more than 90%.

Finally, we explore how the number of SBSs N impacts the results. The barplot in Figure

5.6(b) shows that the energy gains of a multicast-aware caching scheme (GMAC-MT)

over a conventional caching scheme (PAC-MT) increase as N increases. For example,

the gains grow from 4.8% when N = 4 to 15.2% when N = 12, and further increase to

18.1% for N = 20. This is because, increasing N makes it more likely that concurrent

requests for the same file occur at different SBSs, which implies a higher number of MBS

multicast transmissions. This in turn calls for a careful cache-design that intelligently

balances the number of requests served via MBS and SBS multicast.

Institutional Repository - Library & Information Centre - University of Thessaly
11/05/2024 18:13:15 EEST - 18.117.73.223

Chapter 5. Multicast-aware Caching 104

Main takeaways: Caching can be combined with multicast to reduce the energy ex-

penses required for serving the mobile users. Taking into consideration multicast when

designing the caching policy perplexes the problem further. A simple iterative as well as

a randomized-greedy caching algorithm can yield significant energy savings over existing

caching schemes, which are more pronounced when the demand is massive and the user

requests can be delayed by three minutes or more.

Institutional Repository - Library & Information Centre - University of Thessaly
11/05/2024 18:13:15 EEST - 18.117.73.223

Chapter 6

Mobility-aware Caching

Contents

6.1 Introduction . 106

6.2 System model and problem formulation 108

6.2.1 System model . 109

6.2.2 Motivating example . 111

6.2.3 Problem formulation . 112

6.3 Complexity and centralized small-scale solution 113

6.3.1 Complexity . 113

6.3.2 MIP formulation . 114

6.4 Distributed large-scale solution 115

6.4.1 Relation to the Markov chain model 115

6.4.2 Upper bound on the objective function 117

6.4.3 Distributed algorithm . 119

6.4.4 Implementation considerations 122

6.5 Performance evaluation . 122

6.5.1 Algorithms . 123

6.5.2 Mobility model . 123

6.5.3 Demand model . 125

6.5.4 Evaluation results . 125

6.1 Introduction

In the emerging hyper-dense deployments of Small-Cell Base Stations (SBSs) [104], [105]

mobile users may be frequently handed off between SBSs. This transition can take place

105

Institutional Repository - Library & Information Centre - University of Thessaly
11/05/2024 18:13:15 EEST - 18.117.73.223

Chapter 6. Mobility-aware Caching 106

within a few minutes considering the typical range of SBS coverage areas [106]. For a

user who is repeatedly moving in and out of the SBS coverage areas, the system can

deliver parts of the requested file through different SBS caches that the user encounters.

If certain file parts fail to be delivered on time by the SBSs, the request is redirected to

the macro-cell network. The latter option raises scalability concerns, especially during

peak usage hours.

Clearly, mobility affects the efficiency of the caching policies. For example, on a several

blocks long shopping road, users may frequently move in and out of the coverage areas

of two SBSs located a few blocks away one from another. These users see a distributed

cache that is the union of the two SBS caches. Therefore, there is no benefit from

replicating the same file parts at both the SBSs. Disjoint file parts should be cached

instead. Clearly, the caching policy should be designed with concerns on predictions

about user mobility patterns. Such a consideration adds up to the complexity of the

traditional caching problem where optimization is based solely on the anticipated content

demand [33], [35], [8].

In this chapter, we revisit the caching problem taking into consideration the mobility

of the users. We first show that the problem of deriving the caching policy that maxi-

mizes the requests served by the caches is NP-Hard to approximate within any constant

factor. Then, as a first attempt to overcome this difficulty, we present a Mixed Integer

Programming formulation to find optimal centralized solutions using branch and bound

techniques [110].

Following the intuition that the user’s future position highly depends on the current

one, we model user movements via random walks on a Markov chain [107]. Going one

step further, we assign weights to the states of the chain representing the amount of

“useful” data that a user can download by the SBS caches at each time instance. Here,

by “useful” data, we refer to the parts of the requested file which were not previously

downloaded by the user. Therefore, the total weight of a walk determines whether the

request will be redirected to the MBS or not, and the framework enables the operator to

minimize the load of the macro-cell network. Using large deviation inequalities specific

to the Markov model, we derive a distributed caching algorithm that leverages mobility

predictions to minimize the probability that a request reaches the macro-cell network. To

better utilize the cache space, our scheme applies Maximum Distance Separable (MDS)

codes [108], [109] to store at the SBSs encoded versions of the files instead of the raw

data packets. In this sense, a file request is completely served when the total amount

of (encoded) data downloaded by the user is at least equal to the size of the requested

file. This facilitates analysis and can potentially increase the efficiency of content access

compared to the traditional case that uncoded file segments are cached.

Institutional Repository - Library & Information Centre - University of Thessaly
11/05/2024 18:13:15 EEST - 18.117.73.223

Chapter 6. Mobility-aware Caching 107

Using measured traces of human mobility patterns in wireless network environments and

requests for Youtube videos, we investigate numerically the impact of various param-

eters on the efficiency of the caching decisions, such as the SBS cache sizes, the delay

deadline, the density of SBS deployment and the transmission capacities of SBSs. We

find that the proposed algorithm can offload up to 65% more traffic of the macro-cells

than conventional caching algorithms in realistic settings. The technical contributions

of this work can be summarized as follows:

• Modeling. We introduce the caching problem in HCNs compromising users moving

in and out of the SBS coverage areas with the goal of minimizing the probability

that a request reaches the macro-cell network.

• Complexity. We prove the caching problem to be NP-Hard to approximate within

any constant factor. The proof is based on a reduction from the Independent Set

Decision Problem [95].

• Centralized small-scale solution. We formulate the caching problem as a Mixed

Integer Programming (MIP) problem, and give a centralized solution using branch

and bound techniques.

• Distributed large-scale solution. We introduce an optimization framework that

relates the probability that a request reaches the macro-cell network to the total

weight of a random walk in a Markov chain. Using large deviation inequalities, we

derive a distributed caching algorithm that scales well with problem size.

• Performance evaluation. We use real traces of mobility patterns and requests for

Youtube videos and show that our approach can offload up to 65% more traffic of

the macro-cells than existing caching algorithms.

The rest of the chapter is organized as follows: Section 6.2 describes the system model

and introduces formally the caching problem. In Section 6.3, we prove the intractability

of the problem and present a centralized solution that is applicable for small problem

sizes. A connection to the Markov chain model and a distributed solution that scales

well with problem size are presented in Section 6.4. Finally, Section 6.5 presents our

evaluation results.

6.2 System model and problem formulation

In this section, we describe the system model, we present a simple example that shows

how mobility affects the efficiency of the caching policies, and we formally define the

optimization problem.

Institutional Repository - Library & Information Centre - University of Thessaly
11/05/2024 18:13:15 EEST - 18.117.73.223

Chapter 6. Mobility-aware Caching 108

6.2.1 System model

We study the downlink operation of a heterogeneous cellular network like the one de-

picted in Figure 6.1. A set N of N small-cell base stations (SBSs) are deployed in

a macro-cell operating in conjunction with the conventional macro-cell base station

(MBS)1. Each SBS n ∈ N is equipped with a cache of size Cn (bytes). Since the cov-

erage areas of the SBSs may overlap one another, a user may be concurrently covered

by multiple SBSs. Mobile users may repeatedly move in and out of the SBS coverage

areas, thus associating with different SBSs at different times.

To model user mobility, we introduce a set L of L highly visited locations in the macro-

cell, e.g., busy shopping blocks, hotspots, crowded crossroads, etc. These locations can

be extracted using clustering algorithms on the user mobility traces [111]. Each location

l ∈ Lmay be covered by multiple SBSs, denoted by Nl ⊆ N . We then partition time into

identical slots and allow users to move to different locations from slot to slot as in [107].

We assume that the operator leverages previous time period statistics to estimate user’s

location [112], [113]. In this sense, we denote with pl the probability that a user is in

location l ∈ L. We also denote with qll′ the probability that a user moves from location

l to location l′, ∀l, l′ ∈ L within a time slot. Intuitively, the probability qll′ will be higher

for locations l and l′ that are in close proximity one another.

The average mobile user demand for a set F of F popular content files and within a

certain time period (e.g., a few hours or days) is assumed to be fixed and known in

advance, as in [33]. Specifically, for a request generated in location l, we denote with

λlf the probability that f is the requested file. This captures the interest/preferences

of the users in location l for content which may vary from location to location. For

example, users on a shopping road may be particularly interested in fashion content,

while users in proximity to stock market may frequently ask for financial reports. The

size of file f ∈ F is denoted with sf > 0 (bytes).

We consider delayed data offloading and associate each request with a deadline d. That

is, each request must be served within a specified time window of d slots by the encoun-

tered SBSs, or it will be redirected to the MBS. Clearly, a user visits d locations within

the deadline. We refer to the sequence of visited locations as the walk of the user, i.e.,

w = (w1, w2, . . . , wd), where wi ∈ L denotes the location visited at slot i ∈ {1, 2, . . . , d}.
Since a user may visit multiple times the same location, the walk w is a multiset, i.e., it

possibly includes duplicate elements. Let us denote withW the set of all possible walks.

1Our model can be directly extended for multiple macro-cells and MBSs.

Institutional Repository - Library & Information Centre - University of Thessaly
11/05/2024 18:13:15 EEST - 18.117.73.223

Chapter 6. Mobility-aware Caching 109

Macro-cell

Base Station

(MBS)

Macro-cell B
ackhaul

Core Network

Content

Servers

Small-cell

Base Station

(SBS) 1

F content files

Cached

files at

SBS 1

C1

C2

CN

Request served

by the MBS

Request served

by the SBSs

Figure 6.1: Graphical illustration of the proposed model. Circles represent the cover-
age areas of the MBS and the SBSs. Solid and dashed arrows specify user trajectories

and base station associations respectively.

Then, the probability that a user takes a walk w ∈ W is given by:

rw = pw1

d−1∏
i=1

qwiwi+1 (6.1)

We consider a massive content delivery scenario, e.g., in populated areas or during peak

traffic hours. Hence, the bottleneck in content delivery is not the receiver antenna, but

the limited transmission capacity of the SBSs. In this sense, we denote with Bn ≥ 0

the average amount of data that SBS n can transmit to a user within a time slot. The

different Bn values across the SBSs reflect the heterogeneity in terms of the deployed

bandwidth and the average workload.

To better utilize the SBS cache space, we adopt a Maximum Distance Separable (MDS)

code [108], [109] and store encoded versions of the files instead of the raw data packets.

Particularly, a set of encoded segments for each file is generated. Since these segments

can be treated equally, we only need to consider how many segments, rather than exactly

which segments, of a file to store at each cache. Successful file recovery occurs when the

total amount of encoded data is at least equal to the size of the original (uncoded) file.

Our goal is to determine the content placement at each SBS to fully utilize the network

resources, such as the limited cache sizes of the SBSs, and the limited contact duration

with the users. Traditional caching schemes neglect user mobility and contact duration

limits and store complete copies of the files at the caches [33], [35]-[8]. In the following,

we show the inefficiency of such schemes using a simple example.

Institutional Repository - Library & Information Centre - University of Thessaly
11/05/2024 18:13:15 EEST - 18.117.73.223

Chapter 6. Mobility-aware Caching 110

SBS 1 SBS 2

SBS 3
file 2

file 1

Figure 6.2: An example with N = 3 SBSs, F = 2 unit-sized files and unit-sized
caches. Mobile users contact uniformly at random a pair of two SBSs within d = 2

slots deadline. During each contact half unit of data can be transmitted.

6.2.2 Motivating example

Let us consider the scenario in Figure 6.2 with N = 3 SBSs each one equipped with

a unit-sized cache. Within a deadline of d = 2 time slots, each mobile user contacts

uniformly at random a sequence of two SBSs as he moves. During each contact only

half unit of data can be transmitted due to the time slot duration limits. There exist

also F = 2 equally-popular files each one of size one.

In a mobility-agnostic system, each user is assumed to be stationary and hence he can

be served by the local SBS. It is well known that placing the most popular files with

respect to the local demand in each cache is optimal (in terms of the macro-cell load)

in this setting [33]. Since the two files are equally popular in our example, there is an

indifference in caching them by the operator. Hence, the optimal caching policy would

store a complete copy of either file 1 or file 2 at each SBS. If all SBSs store the same file,

say file 1, then all the users can successfully download this file by the two encountered

SBSs; half unit of data by each one of them. However, all the requests for file 2 will be

redirected to MBS. In the other case that an SBS, say SBS 1, stores a different file (file

2), then only the users requesting file 1 contacting the two last SBSs would successfully

download the requested file within the deadline. The rest users will be redirected to

the MBS, since they will download at most half of the requested file by the encountered

SBSs.

However, if we take into consideration the fact that the users move and access pairs

of SBSs, then the optimal caching policy changes; it stores half unit of MDS-encoded

data of each file at each SBS. In this case, no matter which file a user requests, he

can download half of it by each encountered SBS. The downloaded encoded parts can

be combined to recover the requested (uncoded) file. Hence, none of the requests will

Institutional Repository - Library & Information Centre - University of Thessaly
11/05/2024 18:13:15 EEST - 18.117.73.223

Chapter 6. Mobility-aware Caching 111

be redirected to MBS. This example, reveals the inefficiency of conventional caching

schemes that neglect user mobility and contact duration limits.

6.2.3 Problem formulation

We introduce the optimization variable xnf ∈ [0, 1] to indicate the portion of encoded

data of file f that is cached at SBS n. These variables constitute the caching policy of

the operator:

x = (xnf ∈ [0, 1] : ∀n ∈ N , f ∈ F) (6.2)

A user may encounter the same SBS multiple times during his walk. We denote with

Nw ⊆ N the set of SBSs encountered at least once during the walk w, and αwn the exact

number of appearances of SBS n in w. Clearly, it is wasteful for a user to download the

same data already downloaded by an SBS at previous contacts. Specifically, during the

1st contact with SBS n, the useful portion of file f that can be downloaded is given by:

y1
nf = min {xnf ,

Bn
sf
} (6.3)

i.e., it is upper bounded by the portion of cached data and the SBS transmission capacity.

During the kth contact with SBS n, where k ∈ {2, 3, . . . , αwn}, the useful portion of file

f is given by:

yknf = min {xnf −
k−1∑
t=1

ytnf ,
Bn
sf
} (6.4)

where we have subtracted from xnf the portion of file f downloaded at the k−1 previous

contacts.

A user request will reach the MBS if the total portion of the requested file that is

downloaded by the SBSs is less than 1. To express the probability of this event, we

note that, for a user taking walk w and requesting file f , the total portion of the file

f downloaded by the encountered SBSs is equal to
∑

n∈Nw
∑αwn

k=1 y
k
nf . Since the latter

indirectly depends on the caching policy x (cf. equations (6.3), (6.4)), the probability

that a user request reaches the MBS can be expressed as follows:

J(x) =
∑
w∈W

rw
∑
f∈F

λw1f1{
∑
n∈Nw

∑αwn
k=1 y

k
nf<1} (6.5)

where 1{.} is the indicator function, i.e., 1{c} = 1 iff condition c is true; otherwise

1{c} = 0.

Institutional Repository - Library & Information Centre - University of Thessaly
11/05/2024 18:13:15 EEST - 18.117.73.223

Chapter 6. Mobility-aware Caching 112

The problem of deriving the caching policy that minimizes the probability that a request

reaches the MBS can be expressed as follows:

min
x

J(x) (6.6)

s.t.
∑
f∈F

sfxnf ≤ Cn, ∀n ∈ N (6.7)

xnf ∈ [0, 1],∀n ∈ N , f ∈ F (6.8)

where constraints in (6.7) indicate that the total amount of data placed in a cache

should not exceed its capacity. Inequalities in (6.8) indicate the non-negativeness of the

optimization variables and that it would be wasteful to place to a cache more than one

unit of a file. The above problem is difficult to solve due to it’s non-convex nature and

the high number of different walks that a user can take. Namely, there exist Ld such

walks. In the next two sections, we prove the intractability of the problem and provide

efficient solutions.

6.3 Complexity and centralized small-scale solution

In this section, we formally prove the intractability of the caching problem and show

how to formulate it as a Mixed Integer Programming (MIP) problem. This is important

since there exist many commercial packages, such as CPLEX [110], that allow for efficient

solution to such problems.

6.3.1 Complexity

As Lemma 6.1 states, the caching problem is NP-Hard to approximate within any con-

stant factor.

Lemma 6.1. It is NP-Hard to approximate the problem described in (6.6)-(6.8) within

any constant factor.

Proof. To prove lemma 6.1, we consider the corresponding decision problem, Caching

Decision Problem (CDP): CDP: Given the values of the terms d, rw, Nw, αwn, λlf , sf ,

Bn and Cn and a number Q > 0, we ask: does there exist a caching policy x, such

that the value of the objective function in (6.6) is less or equal to Q and constraints

(6.7)-(6.8) are satisfied?

We will prove the NP-Hardness of CDP by reduction from the independent set decision

problem (ISDP) [95]. ISDP: Consider an undirected graph with a set V of V vertices

Institutional Repository - Library & Information Centre - University of Thessaly
11/05/2024 18:13:15 EEST - 18.117.73.223

Chapter 6. Mobility-aware Caching 113

and a set E of E edges. We ask: do there exist k vertices that are non-adjacent, i.e., for

every two vertices there is no edge connecting the two?

We will show that every instance of the ISDP problem can be expressed as a specific

instance of the CDP problem. We construct this instance as follows:

We create V walks, one walk for each vertex v ∈ V. We denote with w(v) the walk

corresponding to vertex v. For each walk, we also create a unit-sized file and a user

that requests this file following this walk. Each walk includes a sequence of d SBSs

without duplicates, where each SBS corresponds to a separate location. Each SBS can

deliver arbitrarily large amount of data per slot, i.e., Bn = +∞, ∀n. We also restrict the

aggregate cache space of the SBSs in a walk w(v) to be equal to 1, i.e.,
∑

n∈Nw(v)
Cn = 1,

∀v ∈ V. The important point is that we force every two walks w(v1) and w(v2) for which

the vertices v1 and v2 are adjacent in the ISDP instance to share a common SBS.

If the MBS serves all the requests, then the objective function in (6.6) has a value

equal to 1 (the worst case scenario). For each user that the operator manages to serve

completely through local caching at the SBSs, the operator reduces this value by 1/V .

Hence, there will be a caching policy with value equal to 1 − k/V if there are k users

that are served by the SBSs during their walks. Notice that the aggregate amount of

data that the SBSs in a walk can cache is at most 1 and each user requests a separate

file. Hence, the caching decisions should be disjoint with respect to the k walks. Since

every walk corresponds to a separate vertex, this occurs when there are k vertices in

the ISDP instance that are non-adjacent. Hence, the CDP instance is equivalent to the

ISDP instance.

ISDP is NP-Hard to approximate within any constant factor [95]. Hence, the above

reduction indicates the inapproximability of CDP as well and completes the proof of

Lemma 6.1.

6.3.2 MIP formulation

To obtain the MIP formulation of the caching problem, we express the yknf terms, intro-

duced in equations (6.3)-(6.4), as optimization variables and denote with y the respective

vector:

y = (yknf ∈ [0, 1] : n ∈ N , f ∈ F , k ∈ {1, 2, . . . , d}) (6.9)

We also introduce the integer optimization variables z:

z = (zwf ∈ {0, 1} : w ∈ W, f ∈ F) (6.10)

Institutional Repository - Library & Information Centre - University of Thessaly
11/05/2024 18:13:15 EEST - 18.117.73.223

Chapter 6. Mobility-aware Caching 114

Here, zwf indicates whether file f will be delivered to a user taking a walk w by the

MBS (zwf = 1) or not (zwf = 0).

Then, the MIP problem can be expressed as follows:

min
x,y,z

∑
w∈W

rw
∑
f∈F

λw1fzwf (6.11)

s.t. (6.7)− (6.8)

yknf ∈ [0,
Bn
sf

], ∀n ∈ N , f ∈ F , k = 1, ..., d (6.12)

d∑
k=1

yknf ≤ xnf , ∀n ∈ N , f ∈ F (6.13)

zwf ≥ 1−
∑
n∈Nw

αwn∑
k=1

yknf , ∀w ∈ W, f ∈ F (6.14)

zwf ∈ {0, 1}, ∀w ∈ W, f ∈ F (6.15)

Inequalities (6.12)-(6.13) stem of decomposition of inequalities (6.3)-(6.4). Inequality

(6.14) restricts that zwf will be 1 if
∑

n∈Nw
∑αwn

k=1 y
k
nf < 1.

In practice, MIP problems can be solved only for small-scale instances, i.e., involving a

few number of SBSs, locations and files. This is because the applied Branch & Bound

methods perform implicit enumeration of the solution space, partitioning it into a search

tree of exponential size. Also, a central entity is required to compute and communicate

the solution to the SBSs. In the following section, we will show how to derive an efficient

distributed solution for arbitrarily large problem instances.

6.4 Distributed large-scale solution

In this section, we establish a distributed solution for large-scale caching systems. We

first show how the caching problem relates to the Markov chain model, then we establish

an upper bound on the objective function in (6.6) using large deviation inequalities, and

finally we propose a distributed algorithm that minimizes this upper bound.

6.4.1 Relation to the Markov chain model

We introduce a Markov chain with state space S and matrix M of transition probabil-

ities. A sequence of states (S1, S2, . . . , St) indicates a t-step random walk on the chain

starting from an initial distribution Φ on S. States can be assigned weights based on a

function Ω : S → [0, 1]. In this case, the total weight of a walk (S1, S2, . . . , St) is equal to

Institutional Repository - Library & Information Centre - University of Thessaly
11/05/2024 18:13:15 EEST - 18.117.73.223

Chapter 6. Mobility-aware Caching 115

∑t
i=1 Ω(Si). Given an instance of the caching problem, we construct the corresponding

Markov chain as follows.

State space S. The state space consists of the following: (i) a root state indexed by 0,

and (ii) a group of
∑d

t=1 L
t inner states for each file f ∈ F . The states of each group are

partitioned into d tiers, where tier 1 contains the first L states, tier 2 the next L2 states

and so on. We denote with Fu ∈ {1, 2, . . . , F} and Tu ∈ {1, 2, . . . , d} the group and

the tier of a state u respectively. Here, a state u belonging to tier t ∈ {1, 2, . . . , d − 1}
is the unique parent of L states in tier t + 1. We call the latter states as the children

of state u and denote with Cu ⊆ S the respective set. We also introduce the notation

Lu ∈ {1, 2, . . . , L} for a state u, where Lu = l if u is the lth child of another inner state.

Similarly, the root state is the unique parent of all the states in tier 1, L for each group.

For a tier-1 state u that is the lth child of the root in a particular group, we set Lu = l.

Transition matrix M . The probability of transiting from state u ∈ S to v ∈ S is given

by:

Muv =



1− α, if u = v = 0

α · pLu · λLuFu , if u = 0, Tv = 1

qLuLv , if 0 < Tu < d, v ∈ Cu

1, if Tu = d, v = 0

0, otherwise

(6.16)

where a ∈ (0, 1) is any constant. Therefore, during a walk, when at the root state, the

chain can either stay in it or move to a tier-1 state at the next step. Then, the chain

moves to a tier-2 state and so on. Having reached a tier-d state, the chain moves back

to the root. Figure 6.3 illustrates an example for N = 2 SBSs, L = 2 locations, F = 2

files and d = 3 slots deadline. Here, each location corresponds to a single SBS coverage

area.

Initial Probability Φ. The probability that a random walk starts from a state u ∈ S
is given by:

Φ(u) =

pLu · λLuFu , if Tu = 1

0, otherwise
(6.17)

Therefore, every walk starts from a tier-1 state.

We can show that a user’s walk in the macro-cell in the caching problem can be expressed

as random walk on the above chain. Specifically, each inner state u represents a specific

location Lu ∈ L visited by a user requesting file Fu ∈ F at time slot Tu ∈ {1, 2, . . . , d}.

Institutional Repository - Library & Information Centre - University of Thessaly
11/05/2024 18:13:15 EEST - 18.117.73.223

Chapter 6. Mobility-aware Caching 116

SBS 1 SBS 2

p1, λ1f p2, λ2f

Caching problem Markov chain

y
3

11 y
1

21 y
2

11 y
2

21

y
2

11 y
1

21

y
1

11

q11 q12 q21 q22

q11 q12

y
2

11 y
2

21 y
1

11 y
3

21

y
1

11 y
2

21

y
1

21

q11 q12 q21 q22

q21 q22

y
3

12 y
1

22 y
2

12 y
2

22

y
2

12 y
1

22

y
1

12

q11 q12 q21 q22

q11 q12

y
2

12 y
2

22 y
1

12 y
3

22

y
1
12 y

2
22

y
1
22

q11 q12 q21 q22

q21 q22

Group 1 Group 2

0

Tier 3

Tier 2

Tier 1

Root
Location 1 Location 2

q12

q21

q11 q22

1-α

αp1λ11
αp2λ21 αp1λ12 αp2λ22

Figure 6.3: An example of the Markov chain with N = 2 SBSs, L = 2 locations,
F = 2 files and d = 3 slots. In the chain, rectangles denote states and state labels
indicate the respective weights. Link labels specify the transition probabilities. To ease

presentation, the links uniting tier-d states to the root are omitted.

By construction, a random walk starting from a tier-1 state traverses Tu−1 states before

reaching u. Equivalently, the user visits Tu − 1 locations before reaching location Lu.

Denoting with w(u) such a walk, the notation αw(u)n specifies the number of appearances

of SBS n in this walk. Based on Eqn. (6.3) and Eqn. (6.4), the useful portion of file

Fu that the user downloads by an SBS n ∈ Lu at slot Tu is equal to y
αw(u)n

nFu . Then, the

important point for this relation to hold is to define the state weights as follows:

Weight function Ω. The weight of a state u ∈ S is given by:

Ω(u) =

0, if u = 0∑
n∈NLu

y
αw(u)n

nFu , otherwise
(6.18)

Hence, the total weight of a d−step walk on the chain, which we model with a ran-

dom variable Y , specifies the total portion of the requested file that a user manages to

download by the encountered SBSs within the delay deadline. If Y ≥ 1, the amount of

downloaded data suffices to recover the requested file; otherwise the request is redirected

to the MBS. The objective function in (6.6) can be written as the probability that Y is

lower than 1, i.e., Pr[Y < 1]. In the following, we show how the presented framework

can be used to optimize the caching policy.

6.4.2 Upper bound on the objective function

We start with the following large deviation inequality.

Lemma 6.2. (Hoeffding’s Inequality for Markov Chains [114]).

Consider an ergodic Markov chain and a t-step random walk starting from an initial

distribution φ with total weight Y . For any δ ∈ [0, 1], there exists some constant c such

that:

Pr[Y ≤ (1− δ)µt] ≤ c||φ||π exp

{
− δ2µt

72T

}
(6.19)

where π is the stationary distribution, µ is the expected weight of the walk with respect

to π, T is the mixing time, and ||φ||π indicates the π−norm of the vector φ.

Institutional Repository - Library & Information Centre - University of Thessaly
11/05/2024 18:13:15 EEST - 18.117.73.223

Chapter 6. Mobility-aware Caching 117

Clearly, the Markov chain that we constructed in the previous subsection is ergodic,

i.e., it is possible to go from every state to every state within a finite number of steps.

Hence, we can use Lemma 6.2 to upper bound the objective function in (6.6), i.e.,

Pr[Y < 1]. Specifically, for t = d, δ = 1 − 1/(µd) and µd ≥ 1, and using the inequality

Pr[Y < 1] ≤ Pr[Y ≤ 1], we can show that:

Pr[Y < 1] ≤ c||Φ||π exp

{
−
µd+ 1

µd − 2

72T

}
(6.20)

Besides of the constant c, the value of which is given in [114], the initial probability

distribution Φ defined in the previous subsection, and the delay deadline d, the upper

bound depends on: (i) the stationary distribution π, (ii) the expected weight of a walk

µ and (iii) the mixing time T . In the rest of this subsection, we formally define these

values.

(i) Stationary distribution π. The stationary distribution π is a probability distri-

bution vector on the states that is unchanged by the operation of transition matrix M

on it, i.e.,

π = πM (6.21)

Due to the special structure of this chain, we can compute the stationary probability for

a state u 6= 0 as follows:

π(u) = π(0) ·M0,S1 ·MS1,S2 · · · · ·MSl,u (6.22)

where (S1, S2, . . . , Sl) denotes the intermediate states on the walk starting from the root

until state u. Besides, since π is a probability distribution, it holds that:

∑
u∈S

π(u) = 1 (6.23)

By combining (6.22) and (6.23), we can show that:

π(0) =
1

1 + αd
(6.24)

(ii) Expected weight of a d−step walk µ. Let us first denote with Pr[yknf] the proba-

bility with respect to π of reaching any state u with n ∈ Lu, f = Fu and αw(u)n = k. For

example, in Figure 6.3 there are three states with weight y1
11 (the states corresponding

Institutional Repository - Library & Information Centre - University of Thessaly
11/05/2024 18:13:15 EEST - 18.117.73.223

Chapter 6. Mobility-aware Caching 118

to marked rectangles) and hence it should be:

Pr[y1
11] = π(0)αp1λ11

+ π(0)αp2λ21q21

+ π(0)αp2λ21q22q21 (6.25)

Then, by definition, the expected weight of a d−step random walk is equal to:

µ(y) =
N∑
n=1

F∑
f=1

d∑
k=1

Pr[yknf]yknf (6.26)

where we have explicitly expressed µ as a function of y variables to capture this depen-

dency.

(iii) Mixing time T . Following [114], we define T = min{t : maxq ||qM t−π||TV ≤ 1
8}.

Here, q is an arbitrary initial distribution over S. For two distributions q and q′, it is:

||q − q′||TV = maxA⊆S |
∑

i∈A qi −
∑

i∈A q
′
i|.

6.4.3 Distributed algorithm

Since it is NP-Hard to directly minimize the objective function in (6.6), we take an

alternate approach and minimize its upper bound in (6.20). From this approach, we

obtain an approximate solution, together with a guaranteed upper bound on the achieved

probability of requests routed to MBS.

Lemma 6.3 shows that minimizing this bound is equivalent to maximizing the expected

weight µ(y).

Lemma 6.3. Let g(y) = c||φ||π exp

{
−
µ(y)d+ 1

µ(y)d
−2

72T

}
. Then, (x,y)∈A{g(y)} = argmax(x,y)∈A{µ(y)},

where A = {x, y : xnf ∈ [0, 1], yknf ∈ [0, 1] ∀n ∈ N , f ∈ F , k ∈ {1, 2, . . . , d} and con-

straints (6.7)-(6.8) and (6.12)-(6.13) are satisfied}.

Proof. Let (x∗, y∗) =(x,y)∈A {g(y)}, i.e., g(y∗) ≤ g(y) ∀(x, y) ∈ A. Dividing by c||φ||π
and then taking the logarithm on both sides preserves the inequality as c > 0, ||φ||π > 0

and log(.) is increasing function. Hence, we obtain:

−
µ(y∗)d+ 1

µ(y∗)d − 2

72T
≤ −

µ(y)d+ 1
µ(y)d − 2

72T
(6.27)

Dividing by −72T ≤ 0 and then adding 2 on both sides yields:

µ(y∗)d+
1

µ(y∗)d
≥ µ(y)d+

1

µ(y)d
(6.28)

Institutional Repository - Library & Information Centre - University of Thessaly
11/05/2024 18:13:15 EEST - 18.117.73.223

Chapter 6. Mobility-aware Caching 119

However, it holds that: µ(y)d ≥ 1, resulting that: µ(y∗)d ≥ µ(y)d ∀(x, y) ∈ A, which

completes the proof.

Based on Lemma 6.3, the caching problem becomes:

max
x,y

µ(y) (6.29)

s.t. (6.7), (6.8), (6.12), (6.13)

The above problem is more tractable than the original caching problem. By the structure

of µ(y), that is described in Eqn. (6.26), and the above constraints we can show that

the caching decisions at an SBS do not affect the rest. Hence, we can decompose this

problem toN independent subproblems, one for each SBS, and solve them in a distributed

manner. The problem for an SBS n ∈ N , which we refer to as Pn, can be expressed as

follows:

Pn : max
xn,yn

F∑
f=1

d∑
k=1

Pr[yknf]yknf (6.30)

s.t.
∑
f∈F

sfxnf ≤ Cn (6.31)

xnf ∈ [0, 1], ∀f ∈ F (6.32)

yknf ∈ [0,
Bn
sf

], ∀f ∈ F , k = 1, ..., d (6.33)

d∑
k=1

yknf ≤ xnf , ∀f ∈ F (6.34)

where xn and yn denote the variables in x and y for SBS n. The objective function

and the constraints of this problem are linear with respect to the optimization variables.

Hence, it can be efficiently solved using standard linear optimization techniques [56].

Going one step further, we show that Pn falls into a class of knapsack problems with

known solution structure, alleviating the need for applying linear optimization tech-

niques. Specifically, we will prove the following lemma.

Lemma 6.4. The optimal solution of problem Pn can be computed in O(F ·d · log(F ·d))

time.

Proof. Fractional knapsack problem asks for placing fractions of items of different values

and weights in a knapsack of limited capacity in a way that maximizes the aggregate

value of items placed in it [115]. The problem Pn can be translated to a restricted version

Institutional Repository - Library & Information Centre - University of Thessaly
11/05/2024 18:13:15 EEST - 18.117.73.223

Chapter 6. Mobility-aware Caching 120

Algorithm 6.1: Mobility-aware caching algorithm

Input : An instance of the Pn problem.
Output: The optimal solution xn, yn.

1 valueknf ← Pr[yknf], ∀f ∈ F , k ∈ {1, . . . , d};
2 weightknf ← sf , ∀f ∈ F , k ∈ {1, . . . , d};
3 yknf ← 0, ∀f ∈ F , k ∈ {1, . . . , d};
4 D ← F × {1, . . . , d};
5 for i = 1, 2, . . . , F · d do

6 (f∗, k∗)← argmax(f,k)∈D
valueknf
weightknf

;

7 yk
∗
nf∗ ← min

{
Bn
sf∗
, 1−

d∑
k=1

yknf∗ , Cn −
∑
f∈F

d∑
k=1

yknf

}
;

8 D ← D \ (f∗, k∗);

9 if
∑
f∈F

d∑
k=1

yknf = Cn then

10 break;

11 xnf =
d∑

k=1

yknf , ∀f ∈ F ;

of the fractional knapsack problem in which there exist F · d items, one item for each

variable yknf , f ∈ F , k = 1, 2, . . . , d and a knapsack of capacity Cn. The value of the

item corresponding to yknf is Pr[yknf] and it’s weight is sf . The item placement must also

satisfy the following two restrictions: Restriction 1: At most Bn/sf fraction of the

item corresponding to variable yknf can be placed in the knapsack, ∀f, k. Restriction

2: The total amount of items corresponding to variables yknf , k = 1, 2, . . . , d placed in

the knapsack must be less or equal to 1, ∀f .

The optimal solution of this knapsack-type problem can be attained by a simple scheme

that iteratively places a fraction of the item with the highest ratio of value/weight in the

knapsack until the knapsack becomes full [115]. At each iteration, the scheme ensures

that the item placement satisfies the above two restrictions. The knapsack solution can

be mapped to a solution to the problem Pn such that every yknf variable takes as value

the fraction of the associated item placed in the knapsack and xnf takes as value the

sum:
∑d

k=1 y
k
nf . This procedure is summarized in Algorithm 6.1.

Here, valueknf and weightknf denote the value and weight of the item corresponding to

variable yknf respectively (lines 1-2). Operator × denotes the cartesian product of two

sets. Collection D includes all the (f, k) pairs for which item yknf has not been picked yet

(line 4). At every iteration, Algorithm 6.1 picks the pair (f∗, k∗) ∈ D with the largest

ratio value/weight (line 6). Then, a fraction of item yk
∗
nf∗ will be placed in the knapsack

satisfying the two restrictions (line 7). The algorithm terminates when all the items are

picked or the knapsack becomes full (line 9).

Institutional Repository - Library & Information Centre - University of Thessaly
11/05/2024 18:13:15 EEST - 18.117.73.223

Chapter 6. Mobility-aware Caching 121

In the worst case, all the F · d items will be picked. Since the items are picked in

decreasing order of their ratios of value/weight, sorting all these ratios is required. Hence,

the complexity of Algorithm 6.1 will be O(F · d · log(F · d)) [59], which completes the

proof of lemma 6.4.

6.4.4 Implementation considerations

We need to emphasize that the overhead of cooperation among SBSs and MBS for

serving the user requests may affect the efficiency of Algorithm 6.1. For example, the

operator may use techniques like network initiated offloading [116] to dynamically decide

which SBS will serve each request taking into account the cached content. This may

cause additional latency for signaling among SBSs and MBS [117] which can be to the

detriment of the mobile users. An operator can estimate the overhead latency, e.g., by

processing previous time period statistics. This information can be used to estimate the

amount of data delivered in a slot to a user. The latter is captured in our model by the

parameter Bn for each SBS n that is passed as input to Algorithm 6.1.

A second aspect that we need to consider is that several Video-on-Demand sites (YouTube,

Netflix, Hulu, etc) make use of DASH-based [118] (or similar) adaptive streaming ap-

proaches in the late years. Optimizing the quality of streaming experience creates a far

more difficult challenge for caching in SBSs since it involves new metrics such as start-up

delay, video stalls, frame rate and spatial resolution. This is a different approach from

our main objective, since the method we describe centers on offloading the macro-cell

networks. The latter is particularly important during periods of peak traffic when scala-

bility issues are raised. Even if an adaptive video streaming protocol is applied, we stress

that our method requires only a small delay for streaming to start. This is captured by

the delay deadline d. As we show in the next section, our approach achieves significant

gains, in terms of reduction in macrocell’s load, delaying video viewing by less than 1

minute. The latter is an often acceptable video start-up delay.

6.5 Performance evaluation

In this section, we evaluate the performance of the proposed algorithm using real traces

of human mobility patterns and requests for Youtube videos. Overall, we find that

moving from a conventional caching algorithm to one enhanced with mobility-awareness

reduces the load of the macro-cell network, and this heavily depends on cache sizes,

delay deadline and density of SBS deployment. In the best scenario, an operator can

improve its bottom line by 65% delaying data transfer by 1 minute. In the rest of this

Institutional Repository - Library & Information Centre - University of Thessaly
11/05/2024 18:13:15 EEST - 18.117.73.223

Chapter 6. Mobility-aware Caching 122

section, we discuss these results in detail; we begin by describing the algorithms used in

the later evaluations.

6.5.1 Algorithms

Throughout the evaluation, we compare the performance of three algorithms:

1. Max-popularity : Each SBS stores in its cache the locally most popular files inde-

pendently from the others.

2. Femtocaching [33] : All users are assumed to be stationary during the evaluation

and caching decisions are made based on the initial distribution of the users in the

cell. Particularly, the algorithm starts with all the caches being empty. Iteratively,

it performs the placement of a file to a cache that minimizes the probability of

requests served by MBS, i.e.,
∑

l∈L pl
∑

f∈F λlf1{
∑
n∈Nl

xnf<1}. The procedure

terminates when all the caches become full.

3. Mobility-aware: We apply Algorithm 6.1 to determine the caching policy for each

SBS in a distributed manner.

The first two algorithms take caching decisions considering only user demand (i.e., λlf

and pl). The proposed algorithm considers also information about the users’ motility

patterns (i.e., qll′ values) and places MDS-encoded file segments at the SBSs instead of

entire file copies.

6.5.2 Mobility model

We evaluate the performance of the described schemes using the measured trace of

mobility patterns released by the Wireless Topology Discovery project [119]. This trace

contains information from approximately 275 PDA users for an 11 week period between

September 22, 2002 and December 8, 2002. Specifically, each active user records every

20 seconds all the WiFi access points (APs) that are detected by its device. Due to the

short distance between APs, a user may sense more than one APs at the same time.

In total, more than 400 APs are detected. For each one of these APs, its geographical

location, described by a pair of (X,Y) values (measured in meters), is also recorded.

We focus on a certain subarea in [119] with dense AP deployment depicted in Figure

6.4. To facilitate presentation, we shifted the point (X,Y)=(1698270,259950) to the zero

coordinates. This area includes N = 15 APs in total. In our evaluation, we substitute

SBSs for WiFi APs as in [49]. This is a reasonable approximation for pico-cells, since

Institutional Repository - Library & Information Centre - University of Thessaly
11/05/2024 18:13:15 EEST - 18.117.73.223

Chapter 6. Mobility-aware Caching 123

0 100 200 300 400 500
0

100

200

300

400

500

meters

m
et

er
s

Figure 6.4: A 500m× 500m area with 15 APs (triangles) in [119].

the radius of the latter usually resembles that of the WiFi APs (∼ 100 meters [106]).

Importantly, due to the fact that operators typically keep the datasets of mobility across

their base stations confidential, it would be difficult to acquire such information. In

contrast, the trace we use is publicly available online. Hence, any caching algorithms

that will be developed in the future can be directly compared with the proposed one

under the same network settings. This is of high importance since it ensures that our

work is not detached from future research efforts.

We focus on the busiest day, namely the day of 16 October 2002, and keep the peak

time statistics, i.e., between 18pm and 23pm. For each subset of SBSs that concurrently

cover a user we create a distinct location, which results into L = 185 locations in total.

We also set the time slot duration to be 20 seconds. Then, for each location l, we set the

pl probability to be the portion of slots that users visit location l. In order to compute

qll′ , we divide the number of sequential visits to locations l and l′ over the total number

of visits to l. If a user becomes inactive by the end of a slot, we assume that he remains

in the same location, and hence we increase the value of qll, where l is the location

recorded last.

Intuitively, the benefits of applying a mobility-aware caching scheme instead of a con-

ventional one are higher when users move rapidly in and out of the SBS coverage areas.

Therefore, it is crucial to answer how often this occurs. Figure 6.5 aims to shed light

on this question by showing the cumulative distribution function (CDF) of the number

of SBSs detected by a user within a deadline of d ∈ {1, 2, 3, 4, 5} slots. Here, for d = 1,

all the requests are satisfied within a single slot, and hence all the users can download

data only by the SBSs detected in this slot. However, for d > 1, the users can detect

additional SBSs encountered in subsequent slots until the deadline expires. The average

number of detected SBSs increases from 2.76 for d = 1 up to 6.87 for d = 5 slots. This

is a drastic increase, bearing in mind that the extra time interval is only a few tens of

Institutional Repository - Library & Information Centre - University of Thessaly
11/05/2024 18:13:15 EEST - 18.117.73.223

Chapter 6. Mobility-aware Caching 124

0 5 10 15
0

0.2

0.4

0.6

0.8

1

Number of detected SBSs

C
D

F

d=1 slot
d=2 slots
d=3 slots
d=4 slots
d=5 slots

Figure 6.5: Cumulative distribution function of the number of SBSs detected during
a user walk in [119].

seconds long. Clearly, all the SBSs that are detected during this extra time interval can

be used to deliver content to the user if they have cached parts of the requested file.

Hence, even for a short delay deadline d, e.g., a few minutes, a mobility-aware caching

scheme can potentially offload more traffic from the macro-cell network compared to a

conventional scheme.

6.5.3 Demand model

In order to model user demand, we use a measured trace of YouTube requests from a

study performed at Amherst campus, University of Massachusetts, in 2008 [120]. The

trace records for each request arising from the (wired) campus network, its exact time

and a unique identifier of the requested video. We use the trace data for the two

consecutive weeks starting from January 29th, 2008. The number of requests for the

10, 000 most popular videos is presented in Figure 6.6. In our evaluation, we consider

the same video library (F = 10, 000) and set the λlf probabilities for each location l

based on the popularity of video f in the trace as in [33].

6.5.4 Evaluation results

Throughout the evaluation, we set all video files to be of size 40 MB, which is reasonable

assuming a screen size 640×360, flash encoding and a few minutes (3−4 min) playback

time. Unless otherwise specified, each SBS n is endowed with a cache of size Cn =

C ∀n ∈ N that can store up to 10% of the entire video library size. To set the Bn

values, we follow the real bandwidth measurements in [121], which report an average

bit-rate between a user and an SBS equal to 8 mbps. Hence, we upper bound the per-slot

amount of data that an SBS n can deliver to a user by Bn = 20MB. The performance

Institutional Repository - Library & Information Centre - University of Thessaly
11/05/2024 18:13:15 EEST - 18.117.73.223

Chapter 6. Mobility-aware Caching 125

10
0

10
1

10
2

10
3

10
4

0

500

1000

1500

2000

Video

Nu
m

be
r o

f r
eq

ue
st

s

Figure 6.6: Number of requests for videos in Youtube trace [120].

criterion we use is the probability that a request is served by the macro-cell network

denoted with J (Eqn. (6.5)).

Before we proceed with the evaluation results, let us remark that for the algorithms’

implementation we used the C++ language in the Visual Studio environment.

Impact of cache sizes: We first compare the probability that a request is served by the

macro-cell network (J) achieved by the presented algorithms for different cache sizes. In

the experiment in Figure 6.7(a), cache sizes span a wide range of values, starting from 5%

to 50% of the entire file library size, reflecting different operator conditions. As expected,

increasing the cache sizes reduces J for all algorithms, since more files become available

for download from the SBSs. Femtocaching consistently outperforms Max-popularity

algorithm. This can be explained from the fact that the latter simply stores the C most

popular files at all the SBSs. However, in dense SBS deployments, users often access

multiple SBSs and each sees a distributed cache that is the union of the respective caches.

Clearly, such users would benefit if some of the SBSs stored different (less popular) files,

since they could find more files at the accessed SBSs. Femtocaching algorithm identifies

such cases by considering the overlapping SBS coverage areas, captured by the Nl values.

Besides of the superiority of Femtocaching over Max-popularity, Figure 6.7(a) comments

also on the inefficiency of the existing caching policies that are designed for static net-

works. Namely, in realistic environments where users move rapidly from SBS to SBS,

mobility impacts the performance of the caching policy. Mobility-aware is the only al-

gorithm among the three that exploits user mobility, captured by the qll′ values. In our

experiment, Mobility-aware performs markedly better than Max-popularity and Femto-

caching, where the gains increase with cache sizes reaching 65% and 41% respectively.

Impact of delay deadline: Figure 6.7(b) shows how the performance of the presented

algorithms depends on the delay deadline d. In this experiment, the deadline varies

Institutional Repository - Library & Information Centre - University of Thessaly
11/05/2024 18:13:15 EEST - 18.117.73.223

Chapter 6. Mobility-aware Caching 126

0 10 20 30 40 50
0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Cache size (% of file library size)

P
ro

b
a

b
ili

ty
 o

f
m

a
c
ro

−
c
e

ll
s
e

rv
ic

e
 J

Max−popularity
Femtocaching
Mobility−aware

(a)

1 2 3 4 5
0.5

0.6

0.7

0.8

0.9

Delay deadline (slots)

P
ro

b
a

b
ili

ty
 o

f
m

a
c
ro

−
c
e

ll
s
e

rv
ic

e
 J

Max−popularity
Femtocaching
Mobility−aware

(b)

0 5 10 15

0.6

0.7

0.8

0.9

1

Number of SBSs

P
ro

b
a

b
ili

ty
 o

f
m

a
c
ro

−
c
e

ll
s
e

rv
ic

e
 J

Max−popularity
Femtocaching
Mobility−aware

(c)

Figure 6.7: Probability that a request is served by the macro-cell network for different
values of: (a) the cache size per SBS C, (b) the delay deadline d and (c) the number of

SBSs N .

within {1, 2, 3, 4, 5} slots, i.e., {20, 40, 60, 80, 100} seconds. This is an often acceptable

video start-up delay. We observe that as d increases, probability J decreases for all the

algorithms, since users have more contact opportunities with the SBSs. The performance

of Max-popularity saturates at d = 2, since from this point and above users download

all the most popular files that are fully replicated at the SBSs, but none of the rest files.

On other hand, Femtocaching stores different files across the SBSs, and hence users can

download more files as d increases. Among the three algorithms, Mobility-aware exploits

better the contact opportunities, since for a sequence of SBSs that are frequently visited

one after the other, coded parts of a file are spread to all the SBSs instead of storing

complete file copies at some of them. This increases the number of potential sources from

which a user can obtain data and can potentially decrease probability J . Specifically, we

find that Mobility-aware outperforms Max-popularity and Femtocaching for all values of

d, where the gains can be up to 16% and 15% respectively.

Impact of SBS density: We explore how the density of SBSs impacts the results

in Figure 6.7(c). Specifically, we consider the topology depicted in Figure 6.4, but

keep a randomly chosen subset of the SBSs. We observe that as the number of SBSs

increases, the probability J decreases for all the algorithms, since users encounter more

SBSs within the deadline. Mobility-aware consistently outperforms the rest algorithms,

especially for high number of SBSs. For example, the gains over Max-popularity and

Femtocaching are very close to zero when there exist five SBSs, but increase to 16% and

8% respectively when all the fifteen SBSs are considered. As a takeaway, the superiority

of Mobility-aware over the alternate algorithms that were examined, is more pronounced

for dense SBS deployments.

Impact of SBS bit-rate: We analyze the impact of the available bit-rate between

SBSs and users on the algorithms’ performance in Figure 6.8(a). Specifically, we vary

Institutional Repository - Library & Information Centre - University of Thessaly
11/05/2024 18:13:15 EEST - 18.117.73.223

Chapter 6. Mobility-aware Caching 127

0 2 4 6 8 10
0.5

0.6

0.7

0.8

0.9

1

Constant bit−rate (mbps)

P
ro

b
a

b
ili

ty
 o

f
m

a
c
ro

−
c
e

ll
s
e

rv
ic

e
 J

Max−popularity
Femtocaching
Mobility−aware

(a)

8~8 6~10 4~12 2~14 0~16
0.55

0.6

0.65

0.7

Diverse bit−rate (mbps)

P
ro

b
a

b
ili

ty
 o

f
m

a
c
ro

−
c
e

ll
s
e

rv
ic

e
 J

Max−popularity Femtocaching Mobility−aware

(b)

4−days old 3−days old 2−days old 1−day old perfect
0.55

0.56

0.57

0.58

0.59

Learning period

P
ro

b
a

b
ili

ty
 o

f
m

a
c
ro

−
c
e

ll
s
e

rv
ic

e
 J

Mobility−aware

(c)

Figure 6.8: Probability that a request is served by the macro-cell network for (a)
constant and (b) diverse bit-rate between SBSs and users. (c) The impact of learning

period.

the bit-rate from 2 to 10 mbps. As expected, increasing the bit-rate decreases the prob-

ability J achieved by Max-popularity and Femtocaching, since the SBSs can transfer

more data during the contacts with users. For low bit-rates, i.e., when the system is

in overloaded conditions, storing the most popular files at all SBSs offloads more the

macro-cell than the Femtocaching algorithm does. In contrast, as the bit-rate increases,

the need for diversing the cached content becomes more apparent and, hence, Fem-

tocaching outperforms Max-popularity. Interestingly, Mobility-aware outperforms the

Max-popularity and Femtocaching algorithms for all bit-rates, a gap being up to 27%

and 36% respectively.

The numerical results presented so far assume constant bit-rate between SBSs and users.

Nevertheless, the bit-rate often varies over time, e.g., due to variations in channel quality,

temporal interference, congestion effects, etc. To capture the above dynamics of the

wireless medium, we synthesize a variety of scenarios that differ in the way that the bit-

rate is set. Specifically, the bit-rate value is randomly drawn from a range. We denote

with a ∼ b the scenario when the bit-rate is randomly generated within [a, b]. Figure

6.8(b) compares the performance of the three presented algorithms for the scenarios

that a ∼ b is 8 ∼ 8, 6 ∼ 10, 4 ∼ 12, 2 ∼ 14 and 0 ∼ 16 (mbps). We observe that the

probability J increases more-or-less for all the algorithms as the bit-rate becomes more

diverse. This can be explained by the fact that, for diverse bit-rates, some users are

served with very low bit-rate by the SBSs, while others are served with higher bit-rate

than they need. Interestingly enough, we notice that the performance of Femtocaching

is rather sensitive to the diversity of bit-rates, while that of the Max-popularity and

Mobility-aware is quite stable. Mobility-aware is always better than the rest algorithms,

with the gains being up to 14.2% and 12.8% when compared to the Max-popularity and

Femtocaching algorithm respectively.

Impact of learning period: The numerical results presented so far assume perfect

Institutional Repository - Library & Information Centre - University of Thessaly
11/05/2024 18:13:15 EEST - 18.117.73.223

Chapter 6. Mobility-aware Caching 128

knowledge of user mobility behavior, i.e., the exact probability values pl and qll′ ∀l, l′ ∈ L
are known. In practice though, these values are predicted by analyzing statistics of a

previous time period (learning period). Clearly, the accuracy of such predictions impacts

the efficiency of the Mobility-aware caching algorithm. Figure 6.8(c) aims to shed light

on this issue by evaluating the performance of Mobility-aware on October 16th, 2002

for different learning periods. Here, statistics are taken from each one of the previous

four days; these are referred to as 1-, 2-, 3- and 4-days old. Interestingly, we see that

the performance of Mobility-aware is rather stable within these days (less than 3%

loss compared to the case of perfect knowledge), which indicates that the user mobility

behavior changes slowly in time. This is very important as it shows that, for an operator

periodically tracking user movements in the small-cell network, substantial performance

benefits can be realized from applying our algorithm.

Main takeaways: User mobility impacts the efficiency of caching policies in hyper-

dense SBS deployments. The proposed mobility-aware caching algorithms leverage pred-

ications about the user mobility patterns to effectively cache file segments to multiple

SBSs. Trace-driven numerical results show that the proposed approach can offload up

to 65% more traffic of the macro-cells than existing caching algorithms.

Institutional Repository - Library & Information Centre - University of Thessaly
11/05/2024 18:13:15 EEST - 18.117.73.223

Chapter 7

Conclusions and Future work

Contents

7.1 Conclusions . 130

7.2 Future work . 131

7.2.1 Incomplete information . 131

7.2.2 Communication overhead . 132

7.2.3 Conflicting objectives . 132

7.1 Conclusions

In this thesis, we studied the problem of caching content in wired and wireless networks

aimed at optimizing network operator costs and user performance. Our work combines

strong theoretical contributions with a careful empirical data analysis from real operators

and users.

Specifically, in Chapter 2, we proved the NP-Hardness of the caching problem in multiple-

level hierarchical networks, uncovered a tractable special case of caches installed on a

single hierarchy path, and developed an algorithm achieving a provably better approxi-

mation ratio than the best-known counterparts. Numerical results for typical popular-

ity distributions demonstrated significant performance improvements over conventional

caching schemes, which are more pronounced when the content popularity distribution

is steep and the cache capacities at the upper hierarchy levels are large.

In Chapters 3-6, we moved to emerging architectures that enable caching at the wireless

edge (macro-cell, pico-cell, femto-cell base stations and WiFi APs). We first showed how

the presence of massive content demand perplexes the problem and developed approxi-

mation algorithms that make caching decisions jointly with the routing of content among

129

Institutional Repository - Library & Information Centre - University of Thessaly
11/05/2024 18:13:15 EEST - 18.117.73.223

Chapter 7. Conclusions and Future work 130

caches (Chapter 3). Then, we extended our framework for supporting diverse requests

for video contents, where each video can be delivered in different qualities (Chapter 4).

Finally, we proposed caching algorithms that exploit the broadcast nature of wireless

medium (Chapter 5) and the predictability of user mobility (Chapter 6). Simulation

results indicated that for an operator having at his disposal a few days-old statistics of

content requests and user mobility, thus being able to infer future request and mobility

patterns, our approach can serve as an important tool for removing bottlenecks on the

wired backbone networks and extracting maximum benefit in network performance.

7.2 Future work

Our goals for future work include further research on cache management and routing

methods, as well as evaluating them on new, larger datasets of content request patterns.

Specifically, we intend exploring the following open issues:

7.2.1 Incomplete information

First, we emphasize that the caching schemes presented in this thesis assume the presence

of a bounded-size library of content files (e.g., movies, TV shows, news) that is refreshed

relatively slowly (e.g., on a daily or weekly basis) and the respective user demand is

perfectly known. Hence, the effectiveness of our caching schemes depends on our ability

to understand and predict demand across users. A method to achieve this is by analyzing

previous-time user preferences/ratings for content to infer on future events. This is even

more challenging when considering video content, since often some newly generated

videos become viral within a very short time, and hence the history of preferences/ratings

is limited. The classical techniques for making such inferences are based on hierarchical

Bayesian models and require high computational costs which render them infeasible for

large-scale applications. This process can be fastened by leveraging tools from machine

learning, such as collaborative filtering techniques [53], [54]. Alternatively, the average

demand can be learned online based on the instantaneous demand on a base station, in

which case the caching problem can be modeled as a multi-armed bandit problem [55].

Clearly, additional methods are needed to further reduce the computational time of

demand forecasting.

Institutional Repository - Library & Information Centre - University of Thessaly
11/05/2024 18:13:15 EEST - 18.117.73.223

Chapter 7. Conclusions and Future work 131

7.2.2 Communication overhead

There is also an overhead of cooperation and coordination among cache-nodes that

needs to be taken into account when implementing caching mechanisms. In fact, if

multiple nodes collaborate to cache some content segments, this requires extra metadata

management and may increase user experienced delay. This is more crucial in highly-

mobile networks where users are rapidly handed-off between the base stations. This

issue is outside the scope of our study, and we leave it as a future work.

7.2.3 Conflicting objectives

Finally, we emphasize that operators and users have conflicting objectives; operators aim

at reducing their servicing costs, whereas user satisfaction degrades with increasing the

content delivery delay. Due to the close proximity between users and caches, the delay is

typically lower for users served by the caches than the rest. Following this observation,

in Chapters 2-3 we maximized the portion of requests that are served by the caches

(cache hit rate). In Chapter 4, we explicitly considered a balanced objective function of

user delay and operator cost. In Chapter 5, we captured the minimum acceptable level

of user satisfaction by the time period of the multicast service within which all pending

user requests were collected and served by the multicast stream. Finally, in Chapter 6,

we associated all user requests with a time deadline. When this deadline expired, all

requests left unserved by the encountered base stations were redirected to the macro-

cell network. Despite our analysis, a more detailed study of the tradeoff between the

aggregate transmission cost of a packet and the delay of its delivery is still necessary.

Institutional Repository - Library & Information Centre - University of Thessaly
11/05/2024 18:13:15 EEST - 18.117.73.223

Institutional Repository - Library & Information Centre - University of Thessaly
11/05/2024 18:13:15 EEST - 18.117.73.223

Appendix

[A. Proof of Lemma 2.1]

Lemma 2.1. In the optimal caching policy, the files stored on Pn path are disjoint, i.e.,

no two nodes on Pn store the same file, ∀n ∈ L.

Proof. Let us consider an optimal caching policy xo with two nodes on Pn storing the

same file, say file f . Since the two nodes belong to the same path, they are located in

different levels in the hierarchy, with one of them being higher than the other. We denote

with nh the higher-level node and with nl the lower-level node. Due to the hierarchical

network structure, all the requests for file f that traverse nl node pass through nh node

before reaching servers. Hence, removing file f from the cache of nl node has no impact

on the server load as long as file f is stored at nh node. Leveraging the cache space

freed after removal to add another file f ′, where f ′ was not previously stored in any of

the caches in Pn, would decrease server load at least by λnf ′ > 0. This contradicts the

assumption of optimality of xo and completes the proof.

[B. Proof of Theorem 2.12]

Theorem 2.12. In a two-level hierarchy with two leaves, Algorithm 2.1 finds the optimal

solution to the caching problem in 2F logF + C0F (C1 + C2 + 2C0) time.

At the first iteration, Algorithm 2.1 places in the root cache the file that results the

highest value of the objective function in (2.16). Clearly, if the root cache is of size

C0 = 1, Algorithm 2.1 will output the optimal solution. For the general case of C0 > 1,

Algorithm 2.1 will place in the root additional files in a similar manner, restricting at

each iteration that the files placed in the root at previous iterations will be also part of

the current solution. Therefore, in order for Algorithm 2.1 to be optimal, it suffices to

show that this restriction does not result in a degradation of overall performance. This

is proved in the following lemma.

Lemma .1. Consider two instances of the caching problem in a two-level hierarchy with

L = 2 leaves, differing only in the size of the root cache; k for the first instance and k+1

133

Institutional Repository - Library & Information Centre - University of Thessaly
11/05/2024 18:13:15 EEST - 18.117.73.223

Appendix 134

for the second instance. Then, the set of files stored in the root cache by the optimal

caching policy for the first instance is a subset of the files stored for the second instance.

Proof. Without loss of generality, we set k = 1. Let α be the file stored in the root cache

according to the optimal caching policy for the first problem instance. Also, let Mn(s)

be the Cn most popular files with respect to λn in F excluding the files in subset s, for

n = 1, 2. Then, based on Lemma 2.1, leaf 1 stores the files in M1(α) and leaf 2 the files

in M2(α). Hence, the total number of requests served by the caches is given by:

hit1 = λ1α + λ2α +
∑

f∈M1(α)

λ1f +
∑

f∈M2(α)

λ2f (1)

Let us consider two files β and γ, such as β is stored in the leaf cache 1 and γ in the

leaf cache 2. In other words, β ∈M1(α) \M2(α) and γ ∈M2(α) \M1(α). Consider also

a third file δ that is not stored in any of the leaf caches, i.e., δ /∈M1(α) and δ /∈M2(α).

Due to the optimality of the caching policy the following three inequalities hold:

hit1 ≥ λ1β + λ2β +
∑

f∈M1(β)

λ1f +
∑

f∈M2(β)

λ2f (2)

hit1 ≥ λ1γ + λ2γ +
∑

f∈M1(γ)

λ1f +
∑

f∈M2(γ)

λ2f (3)

hit1 ≥ λ1δ + λ2δ +
∑

f∈M1(δ)

λ1f +
∑

f∈M2(δ)

λ2f (4)

We now consider the second problem instance with root cache size 2. We assume that

the Lemma does not hold, i.e., there exists a policy storing two different to α files in the

root cache that offloads more requests than a policy storing α and any other file in it.

We distinguish the following two cases depending on whether files β and γ are stored in

the root cache:

Case 1: at most one of the files β and γ is stored in the root cache. Without loss of

generality, let β be that file, and denote with δ the second file stored in the root cache.

Then, the total number of requests served by the caches is given by:

hit2 = λ1β + λ2β + λ1δ + λ2δ +
∑

f∈M1(β,δ)

λ1f +
∑

f∈M2(β,δ)

λ2f (5)

Institutional Repository - Library & Information Centre - University of Thessaly
11/05/2024 18:13:15 EEST - 18.117.73.223

Appendix 135

Since δ is not included in any of the sets M1(α) and M2(α), we infer that:

M1(α) = M1(α, δ) (6)

M2(α) = M2(α, δ) (7)

Then, we use equality (5) to obtain:

hit2 ≤ λ1β + λ2β + λ1δ + λ2δ +
∑

f∈M1(β)

λ1f +
∑

f∈M2(β)

λ2f

≤ λ1α + λ2α + λ1δ + λ2δ +
∑

f∈M1(α)

λ1f +
∑

f∈M2(α)

λ2f

= λ1α + λ2α + λ1δ + λ2δ +
∑

f∈M1(α,δ)

λ1f +
∑

f∈M2(α,δ)

λ2f (8)

where the first inequality is due to the definition of M1(.) and M2(.) sets. The second

inequality is due to inequalities (1) and (2). The last equality is due to equalities (6)-(7).

Based on inequality (8), the policy storing files α and δ in the root cache outperforms

the policy storing files β and δ, which contradicts the assumption made.

Case 2: both files β and γ are stored in the root cache. Then, the total number of

requests served by the caches is given by:

hit2 = λ1β + λ2β + λ1γ + λ2γ +
∑

f∈M1(β,γ)

λ1f +
∑

f∈M2(β,γ)

λ2f (9)

If file α is stored at both the leaf caches, it is equivalent (in terms of performance) of

having it stored in the root cache. To see this, notice that swapping file α from the leaf

caches with a file stored in the root cache, will result the same server load. To avoid

such trivial cases, we distinguish the following two subcases:

Subcase 1: File α is not stored in leaf 1, i.e., α /∈M1(β, γ).

By definition of M1(.), it should be also: α /∈ M1(γ). Given that we chose γ so as

γ /∈M1(α), we obtain:

M1(α) = M1(γ) (10)

Using (1) and (10), inequality (3) becomes:

λ1γ + λ2γ ≤ λ1α + λ2α +
∑

f∈M2(α)

λ2f −
∑

f∈M2(γ)

λ2f (11)

Institutional Repository - Library & Information Centre - University of Thessaly
11/05/2024 18:13:15 EEST - 18.117.73.223

Appendix 136

Then, we use equality (9) to obtain:

hit2 ≤ λ1β + λ2β + λ1γ + λ2γ +
∑

f∈M1(β,γ)

λ1f +
∑

f∈M2(γ)

λ2f

≤ λ1β + λ2β + λ1α + λ2α +
∑

f∈M1(β,γ)

λ1f +
∑

f∈M2(α)

λ2f

= λ1β + λ2β + λ1α + λ2α +
∑

f∈M1(α,β,γ)

λ1f +
∑

f∈M2(α)

λ2f

= λ1β + λ2β + λ1α + λ2α +
∑

f∈M1(α,β,γ)

λ1f +
∑

f∈M2(α,β)

λ2f (12)

where the first inequality is due to the definition of M2(.). The second inequality is due to

inequality (11). The first equality is because in this subcase it holds that α /∈M1(β, γ),

which results to M1(β, γ) = M1(α, β, γ). The second equality is because we chose γ so

as β /∈ M2(α). Based on inequality (12), the policy storing files α and β in the root

cache outperforms the policy storing files β and γ, which contradicts the assumption

made.

Subcase 2: File α is not stored in leaf 2, i.e., α /∈M2(β, γ).

Similarly to subcase 1, we obtain:

M2(α) = M2(β) (13)

and

λ1β + λ2β ≤ λ1α + λ2α +
∑

f∈M1(α)

λ1f −
∑

f∈M1(β)

λ1f (14)

Then, we use equality (9) to obtain:

hit2 ≤ λ1α + λ2α + λ1γ + λ2γ +
∑

f∈M1(α,γ)

λ1f +
∑

f∈M2(α,β,γ)

λ2f (15)

which shows that the policy storing files α and γ in the root cache outperforms the

policy storing files β and γ, which contradicts the assumption made.

Hence, for every case, we showed that one of the two files stored in the root cache by

the optimal caching policy is the same file stored in it when the size of the root cache is

1, which completes the proof.

[C. Proof of Lemma 4.3]

Lemma 4.3. The problem Pn is polynomial-time reducible to the MCK problem.

Institutional Repository - Library & Information Centre - University of Thessaly
11/05/2024 18:13:15 EEST - 18.117.73.223

Appendix 137

Proof. Given an instance of the Pn problem, we construct the equivalent instance of the

MCK problem as follows: There is a knapsack of size equal to Sn and the item classes

E1, E2, ..., EV , each with Q items. The ith item in class Ev has a weight
i∑
l=1

ovl and a

value
∑
q∈Q

λnvqdn
q∑
l=1

(ovl − ovl+1)
l∏

j=1
(1{j∈{1,2,...,i}}), where 1{.} is the indicator function,

i.e. it is equal to 1 if the condition in the subscript is true; otherwise it is zero, and

ovl+1 = 0 for l = q.

Each maximum-value solution to the MCK instance can be mapped to a solution to

the Pn instance of the same value as follows: For each item i in class Ev packed in the

knapsack, place the i first layers of video v to the cache-node n. Clearly, the obtained

solution stores no more data than the cache capacity.

Conversely, for every feasible solution to the Pn problem there is a feasible solution to

the MCK instance of the same value. That is, for each sequence of i layers of video v

placed in the cache-node n, we pack the item i of class v in the knapsack. Clearly, the

obtained solution packs no more item weight than the knapsack capacity, and at most

one item from each class is packed in the knapsack.

[D. Proof of Theorem 4.4]

In order to prove Theorem 4.4, we first present the following lemma, which is proved in

[122]: 4 For any set of arbitrary positive numbers p1, p2, ..., pT , w1, w2, ..., wT , T ∈ Z+,

if p1
w1
≥ p2

w2
≥, ...,≥ pT

wT
, then

j∑
i=1

pi ≥

j∑
i=1

wi

T∑
i=j+1

wi

T∑
i=j+1

pi, ∀j ∈ {1, 2, ..., T − 1}.

Then, we note that at stage 2 of the LCC algorithm, the cache-nodes are asked to

optimize their local demand, given that a portion of their cache space is already occupied

by globally popular content (stage 1). Clearly, the latter constrains the optimization that

takes place at each node, while it may introduce a loss to the local demand objective.

The following lemma provides a bound to this loss.

Lemma 5. Let P ∗n and P ∗n(An) be the optimal solution values of the problems Pn and

Pn(An) respectively. Then, P ∗n(An) ≥ (1− |An|+sSn
) · P ∗n

Proof. For a video v placed in the cache n, a sequence of layers {1, 2, ..., i} will be

cached. We define the weight wv =
i∑
l=1

ovl and the value pv =
∑
q∈Q

λnvqdn
q∑
l=1

(ovl −

ovl+1)
l∏

j=1
(1{j∈{1,2,...,i}}), where ovl+1 = 0 for l = q. Here, wv and pv capture the cache

space occupied by video v and the delay savings respectively.

Institutional Repository - Library & Information Centre - University of Thessaly
11/05/2024 18:13:15 EEST - 18.117.73.223

Appendix 138

We denote with Vn = {1, 2, ..., T} the set of videos placed in the cache of node n according

to the P ∗n solution in descending order of their pv
wv

values. Then, we find an element

j ∈ Vn such that:

Sn − |An| − s ≤
j∑

v=1

wv ≤ Sn − |An| (16)

We also define the sets Γj = {1, ..., j} and ∆j = {j + 1, ..., T}. We can show that:

P ∗n(An) ≥
∑
v∈Γj

pv (17)

This is because the total size of the videos in Γj is less or equal to Sn−|An| and Pn(An)

is the optimal solution value for node n when the available cache space of n is Sn−|An|.
Then, we show that:

∑
v∈Γj

pv ≥
∑

v∈Γj
wv∑

v∈∆j
wv
·
∑
v∈∆j

pv

≥ Sn − |An| − s
|An|+ s

·
∑
v∈∆j

pv = (
Sn

|An|+ s
− 1) ·

∑
v∈∆j

pv (18)

where the first inequality is because of lemma 7. The second inequality is because of

inequality (16) and the fact that
∑
v∈∆j

wv = Sn −
∑
v∈Γj

wv.

For any positive constant c it holds that: if y ≥ x ≥ 0, then y
y+c ≥

x
x+c [122]. Hence,

replacing with y = P ∗n(An), x = (Sn
|An|+s − 1) ·

∑
v∈∆j

pv and c =
∑

v∈∆j
pv and using

inequalities (17) and (18), we obtain that:

P ∗n(An)

P ∗n(An) +
∑

v∈∆j
pv
≥

(Sn
|An|+s − 1) ·

∑
v∈∆j

pv

(Sn
|An|+s − 1) ·

∑
v∈∆j

pv +
∑

v∈∆j
pv

=

Sn
|An|+s − 1

Sn
|An|+s

= 1− |An|+ s

Sn
(19)

Finally, we have:

P ∗n(An)

P ∗n
=

P ∗n(An)∑
v∈Γj

pv +
∑

v∈∆j
pv

(17)

≥ P ∗n(An)

P ∗n(An) +
∑

v∈∆j
pv

(19)

≥ 1− |An|+ s

Sn
(20)

where the first equality holds by the definition of P ∗n .

Institutional Repository - Library & Information Centre - University of Thessaly
11/05/2024 18:13:15 EEST - 18.117.73.223

Appendix 139

Lemma 5 serves as a building block for bounding the overall performance of LCC al-

gorithm, and therefore it facilitates the derivation of Theorem 4.4. To show this, we

start by denoting with SLCC and SOPT the delay savings achieved by the LCC and

the optimal solution to the Rm problem respectively. Then, we divide SLCC into two

parts; (i) SLCCl that captures the delay savings incurred when user requests are served

by their local cache node instead of another cache-node, and (ii) SLCCg that stands for

the additional delay savings incurred when requests are served by any of the cache nodes

instead of a content server. Similarly, we introduce the values SOPTl and SOPTg for the

optimal solution. Then, we prove that:

SLCCl ≥
∑
n∈Nm

P ∗n(An)

dn
min

n′∈Nm\n
dnn′

≥
∑
n∈Nm

(1− F − 2s

Sn
)
P ∗n
dn

min
n′∈Nm\n

dnn′

≥ (1− F − 2s

min
n∈Nm

Sn
)
∑
n∈Nm

min
n′∈Nm\n

dnn′

max
n′∈Nm\n

dnn′

P ∗n
dn

max
n′∈Nm\n

dnn′

≥ ρ′µ′SOPTl (21)

where the first inequality is because on its right hand side we always consider the min-

imum possible delay savings per request, i.e., the case that the closest to n node has

cached the requested layer. The second inequality is based on Lemma 5 and the fact

that |An| in stage 2 of LCC algorithm is upper-bounded by F · Sn + s, ∀n ∈ Nm. The

third inequality is obtained after simple algebra, and the last inequality is because we

always consider the maximum possible delay savings per request on the left hand side.

Similarly, we can show that:

SLCCg ≥ ρ · µ · SOPTg (22)

where we have applied Lemma 5 for a single cache-node, indexed by n = 0, of capacity

C0 =
∑

n∈Nm Sn and |A0| = (1− F) ·
∑

n∈Nm Sn (according to the stage 1 of LCC). By

summing (21) and (22) we complete the proof of theorem 4.4.

Institutional Repository - Library & Information Centre - University of Thessaly
11/05/2024 18:13:15 EEST - 18.117.73.223

Institutional Repository - Library & Information Centre - University of Thessaly
11/05/2024 18:13:15 EEST - 18.117.73.223

Bibliography

[1] Cisco, Visual Networking Index: The Zettabyte Era—Trends and Anal-

ysis, May 2015, http://www.cisco.com/c/en/us/solutions/collateral/

service-provider/visual-networking-index-vni/VNI_Hyperconnectivity_

WP.html

[2] J. Wang. 1999. A survey of web caching schemes for the internet. ACM SIGCOMM

Computer Communication Review, vol. 29, no. 5, pp. 36-46.

[3] B. Ahlgren, C. Dannewitz, C. Imbrenda, D. Kutscher, and B. Ohlman. 2012. A

survey of information-centric networking. IEEE Communications Magazine, vol. 50,

no. 7, pp. 26-36.

[4] V. Sourlas, L. Gkatzikis, P. Flegkas and L. Tassiulas. 2013. Distributed Cache Man-

agement in Information-Centric Networks. IEEE Transactions on Network and Ser-

vice Management, vol. 10, no. 3, pp. 286-299.

[5] Hewlett Packard, “HP 3PAR StoreServ Storage”, Primary Storage Architecture

Products, http://www8.hp.com/uk/en/products/data-storage/3parstoreserv.

html , Nov. 2014.

[6] Disk Drive Prices (1955-2014). See http://www.jcmit.com/diskprice.htm.

[7] Ericsson Media Delivery Network Universal Cache, http://www.ericsson.com.

[8] X. Wang, M. Chen, T. Taleb, A. Ksentini, and V. C. M. Leung, “Cache in the

Air: Exploiting Content Caching and Delivery Techniques for 5G Systems”, IEEE

Communications Magazine, vol. 52, no. 2, 2014.

[9] B. Kaufman and B. Aazhang. 2008. Cellular networks with an overlaid device to de-

vice network. Proc. IEEE Asilomar Conference on Signals, Systems and Computers.

[10] Mobile Europe, Altobridge debuts intel-based network edge small cells caching

solution, 2013, http://www.mobileeurope.co.uk/Press-Wire/altobridge-debuts-intel-

based-hierarchical-network-edge-caching-solution.

141

Institutional Repository - Library & Information Centre - University of Thessaly
11/05/2024 18:13:15 EEST - 18.117.73.223

http://www.cisco.com/c/en/us/solutions/collateral/service-provider/visual-networking-index-vni/VNI_Hyperconnectivity_WP.html
http://www.cisco.com/c/en/us/solutions/collateral/service-provider/visual-networking-index-vni/VNI_Hyperconnectivity_WP.html
http://www.cisco.com/c/en/us/solutions/collateral/service-provider/visual-networking-index-vni/VNI_Hyperconnectivity_WP.html
http://www8.hp.com/uk/en/products/data-storage/3parstoreserv.html
http://www8.hp.com/uk/en/products/data-storage/3parstoreserv.html
http://www.jcmit.com/diskprice.htm
http://www.ericsson.com
http://www.mobileeurope.co.uk/Press-Wire/altobridge-debuts-intel-based-hierarchical-network-edge-caching-solution
http://www.mobileeurope.co.uk/Press-Wire/altobridge-debuts-intel-based-hierarchical-network-edge-caching-solution

Bibliography 142

[11] Light Reading, NSN Adds ChinaCache Smarts to Liquid Applications,

2014, http://www.lightreading.com/mobile/4g-lte/-nsn-adds-chinacache-smarts-to-

liquid-applications-/d/d-id/708280.

[12] Saguna, Saguna Open-RAN, 2015, http://www.saguna.net/news-events/press-

releases/saguna-expands-open-ran-platform-bringing-cdns-content-caching-and-

otts-together-in-the-mobile-radio-edge.

[13] Linksys, “Smart Wi-Fi routers”, http://www.linksys.com/en-us/smartwifi.

[14] HiWiFi, http://www.hiwifi.com/j2.

[15] J. Erman, A. Gerber, M.T. Hajiaghayi, “To Cache or Not to Cache - The 3G Case”,

IEEE Internet Computing, vol. 15, no. 2, pp. 27-34, 2011.

[16] B.A. Ramanan, L.M. Drabeck, M. Haner, N. Nithi, T.E. Klein, C. Sawkar,

“Cacheability Analysis of HTTP traffic in an Operational LTE Network”, Wireless

Telecommunications Symposium, 2013.

[17] J. Dai, Z. Hu, B. Li, J. Liu, and B. Li, “Collaborative Hierarchical Caching with

Dynamic Request Routing for Massive Content Distribution”, IEEE Conference on

Computer Communications (Infocom), pp. 2444-2452, 2012.

[18] S. Borst, V. Gupta, and A.Walid, “Distributed Caching Algorithms for Content

Distribution Network”, IEEE Conference on Computer Communications (Infocom),

pp. 1-9, 2010.

[19] K. Poularakis, L. Tassiulas, “On the complexity of Optimal Caching in Hierarchical

Networks”, IEEE Transactions on Communications, 2015, subject to major revision.

[20] J. G. Andrews, “Seven ways that hetnets are a cellular paradigm shift”, IEEE

Communications Magazine, vol. 51, no. 3, pp. 136-144, 2013.

[21] K. Poularakis, G. Iosifidis, L. Tassiulas, “Approximation Algorithms for Mobile

Data Caching in Small Cell Networks”, IEEE Transactions on Communications, vol

62, no. 10, pp. 3665-3677, 2014.

[22] K. Poularakis, G. Iosifidis, I. Pefkianakis, L. Tassiulas, Martin May, “Mobile Data

Offloading through Caching in Residential 802.11 Wireless Networks”, IEEE Trans-

actions on Network and Service Management, 2015, subject to major revision.

[23] K. Poularakis, G. Iosifidis, A. Argyriou, I. Koutsopoulos, L. Tassiulas, “Caching and

Operator Cooperation Policies for Layered Video Content Delivery”, IEEE Interna-

tional Conference on Computer Communications (INFOCOM), 2016, to appear.

Institutional Repository - Library & Information Centre - University of Thessaly
11/05/2024 18:13:15 EEST - 18.117.73.223

http://www.lightreading.com/mobile/4g-lte/-nsn-adds-chinacache-smarts-to-liquid-applications-/d/d-id/708280
http://www.lightreading.com/mobile/4g-lte/-nsn-adds-chinacache-smarts-to-liquid-applications-/d/d-id/708280
http://www.saguna.net/news-events/press-releases/saguna-expands-open-ran-platform-bringing-cdns-content-caching-and-otts-together-in-the-mobile-radio-edge
http://www.saguna.net/news-events/press-releases/saguna-expands-open-ran-platform-bringing-cdns-content-caching-and-otts-together-in-the-mobile-radio-edge
http://www.saguna.net/news-events/press-releases/saguna-expands-open-ran-platform-bringing-cdns-content-caching-and-otts-together-in-the-mobile-radio-edge
http://www.linksys.com/en-us/smartwifi
http://www.hiwifi.com/j2

Bibliography 143

[24] K. Poularakis, G. Iosifidis, A. Argyriou, L. Tassiulas, “Video Delivery over Hetero-

geneous Cellular Networks: Optimizing Cost and Performance”, IEEE Conference

on Computer Communications (Infocom), pp. 1078-1086, April 2014.

[25] K. Poularakis, G. Iosifdis, V. Sourlas, L. Tassiulas, “Exploiting Caching and Mul-

ticast for 5G Wireless Networks”, IEEE Transactions on Wireless Communications,

2015, to appear.

[26] K. Poularakis, L. Tassiulas, “Code, Cache and Deliver on the Move: A Novel

Caching Paradigm in Small-cell Networks”, IEEE Transactions on Mobile Comput-

ing, 2015, to appear.

[27] N. Laoutaris, V. Zissimopoulos and I. Stavrakakis, “On the optimization of storage

capacity allocation for content distribution’, Computer Neworks, vol. 47, no. 3, pp.

409-428, 2005.

[28] I. Baev, R. Rajaraman, C. Swamy, “Approximation Algorithms for Data Placement

Problems. SIAM Journal on Computing, vol.38, no.4, pp. 1411-1429, 2008.

[29] M.R. Korupolu, C.G. Plaxton, R. Rajaraman, “Placement algorithms for hierar-

chical cooperative caching”, ACM-SIAM Symposium on Discrete Algorithms.

[30] A. Leff, J. Wolf, and P. Yu, “Replication algorithms in a remote caching architec-

ture”, IEEE Transactions on Parallel and Distributed Systems, vol. 4, no. 11, pp.

1185-1204, 1993.

[31] K. Poularakis, L. Tassiulas, “Optimal Cooperative Content Placement Algorithms

in Hierarchical Cache Topologies”, Proc. Annual Conference on Information Sciences

and Systems, 2012

[32] J. W. Jiang, S. Ioannidis, L. Massoulie, and F. Picconi, “Orchestrating Massively

Distributed CDNs”, ACM International Conference on emerging Networking EX-

periments and Technologies, 2012.

[33] K. Shanmugam, N. Golrezaei, A.G. Dimakis, A. Molisch, G. Caire, “FemtoCaching:

Wireless Content Delivery Through Distributed Caching Helpers”, IEEE Transac-

tions on Information Theory, vol. 59, no. 12, pp. 8402-8413, 2013.

[34] M. M. Amble, P. Parag, S. Shakkottai, and L. Ying, “Content-Aware Caching and

Traffic Management in Content Distribution Networks”, in Proc. IEEE Infocom, pp.

2858-2866, 2011.

[35] M. Dehghan, A. Seetharam, B. Jiang, T. He, T. Salonidis, J. Kurose, D. Towsley

and R. Sitaraman, “On the Complexity of Optimal Routing and Content Caching in

Institutional Repository - Library & Information Centre - University of Thessaly
11/05/2024 18:13:15 EEST - 18.117.73.223

Bibliography 144

Heterogeneous Networks”, IEEE International Conference on Computer Communi-

cations, 2015.

[36] J. Hachem, N. Karamchandani, S. Diggavi, “Content Caching and Delivery over

Heterogeneous Wireless Networks”, IEEE International Conference on Computer

Communications, 2015.

[37] F. Pantisano, M. Bennis, W. Saad, and M. Debbah, “In-Network Caching and

Content Placement in Cooperative Small Cell Networks”, International Conference

on 5G for Ubiquitous Connectivity (5GU), pp. 128-133, 2014.

[38] K. Hamidouche, W. Saad and M. Debbah, “Many-to-Many Matching Games for

Proactive Social-Caching in Wireless Small Cell Networks”, International Symposium

on Modeling and Optimization in Mobile, Ad Hoc, and Wireless Networks, 2014.

[39] P. Ostovari, A. Khreishah, J. Wu, “Cache Content Placement Using Triangular Net-

work Coding”, Proc. IEEE Wireless Communications and Networking Conference,

2013.

[40] A. Kumar and W. Saad, “On the Tradeoff between Energy Harvesting and Caching

in Wireless Networks”, IEEE International Conference on Communication Workshop

(ICCW), pp. 1976-1981, 2015.

[41] B. Blaszczyszyn and A. Giovanidis, “Optimal geographic caching in cellular net-

works”, IEEE International Conference on Communications, June 2015.

[42] J. Dai, F. Liu, B. Li, B. Li, and J. Liu, “Collaborative caching in wireless video

streaming through resource auctions”, IEEE Journal on Selected Areas in Commu-

nications, vol. 30, no. 2, pp. 458-466, 2012.

[43] J. Yue, B. Yang, C. Chen, X. Guan, W Zhang, “Femtocaching in video content

delivery: Assignment of video clips to serve dynamic mobile users”, Computer Com-

munications, vol. 51, pp. 60-69, 2014.

[44] A. Liu and V. K. N. Lau. 2013. Mixed-timescale precoding and cache control in

cached MIMO interference network. IEEE Transactions on Signal Processing, vol.

61, no. 24, pp. 6320-6332.

[45] B. Zhou, Y. Cui and M. Tao, “Optimal Dynamic Multicast Scheduling for Cache-

Enabled Content-Centric Wireless Networks”, IEEE International Symposium on

Information Theory (ISIT), pp. 1412-1416, 2015.

[46] C. Su and L. Tassiulas, “Joint broadcast scheduling and user’s cache management

for efficient information delivery”, Wireless Networks, vol. 6, no. 4, pp 279-288, 2000.

Institutional Repository - Library & Information Centre - University of Thessaly
11/05/2024 18:13:15 EEST - 18.117.73.223

Bibliography 145

[47] MA. Maddah-Ali and U. Niesen. “Fundamental Limits of Caching”, IEEE Interna-

tional Symposium on Information Theory, 2013.

[48] V.A. Siris, X. Vasilakos, G. C. Polyzos, “Efficient Proactive Caching for Supporting

Seamless Mobility”, arXiv:1404.4754, 2014.

[49] Y. Guan, Y. Xiao, H. Feng, C-C. Shen, L. J. Cimini Jr, “MobiCacher: Mobility-

Aware Content Caching in Small-Cell Networks”, IEEE Global Communications

Conference, 2014.

[50] Miroslav Chleb́ık and Janka Chleb́ıková, “Inapproximability Results for Bounded

Variants of Optimization Problems”, Fundamentals of Computation Theory, vol.

2751, pp. 27-38, 2003.

[51] G. L. Nemhauser, L. A. Wolsey, “Best Algorithms for Approximating the Maximum

of a Submodular Set Function”, Mathematics of Operations Research, vol. 3, no. 3,

1978.

[52] A. Schrijver, “Combinatorial optimization: polyhedra and efficiency”, Springer, vol.

24, 2003.

[53] E. Bastug, M. Bennis, and M. Debbah, “Living on the edge: The role of proactive

caching in 5g wireless networks”, IEEE Communications Magazine, vol. 52, no. 8,

pp. 82-89, 2014.

[54] E. Bastug, M. Bennis, and M. Debbah, “Anticipatory caching in small cell networks:

A transfer learning approach”, 1st KuVS Workshop on Anticipatory Networks, 2014.

[55] P. Blasco and D. Gunduz, “Learning-Based Optimization of Cache Content in a

Small Cell Base Station”, IEEE International Conference on Communications, pp.

1897-1903, 2014.

[56] D. Bertsimas and J. N. Tsitsiklis, “Introduction to Linear Optimization”, Belmont,

MA: Athena Science, 1997.

[57] Mosek Optimization Software, [online] http://www.mosek.com

[58] A. J. Hoffman and J. B. Kruskal, “Integral boundary points of convex polyhedra”,

in 50 Years of Integer Programming 1958-2008, Springer, pp. 49-76, 2010.

[59] Michael J. Quinn, “Parallel computing (2nd ed.): theory and practice”, McGraw-

Hill, Inc., New York, NY, 1994.

[60] P. Goundan and A. Schulz, “Revisiting the greedy approach to submod-

ular set function maximization”, preprint 2009, available at http://www.

optimization-online.org.

Institutional Repository - Library & Information Centre - University of Thessaly
11/05/2024 18:13:15 EEST - 18.117.73.223

http://www.mosek.com
http://www.optimization-online.org
http://www.optimization-online.org

Bibliography 146

[61] M. Hefeeda and O. Saleh, “Traffic Modeling and Proportional Partial Caching for

Peer-to-Peer Systems”, IEEE/ACM Trans. Netw., vol. 16, no. 6, pp. 1447-1460, 2008.

[62] P. Gill, M. Arlitt, Z. Li, and A. Mahanti, “YouTube traffc characterization: A view

from the edge”, in Proc. ACM SIGCOMM, pp. 15-28, 2007.

[63] A. Ghosh, J. Zhang, J. Andrews, and R. Muhamed, “Fundamentals of LTE”, Pren-

tice Hall Communications Engineering and Emerging Technologies Series, 2010

[64] D. B. Shmoys, E. Tardos, and K. Aardal, “Approximation Algorithms for Facility

Location Problems”, in Proc. of ACM STOC, 1997.

[65] M. Korupolu, C. Plaxton, R. Rajaraman, “Analysis of a Local Search Heuristic for

Facility Location Problems”, in Proc. of SODA, 1998

[66] J. Zhang, B. Chen, and Y. Ye, “A Multi-Exchange Local Search Algorithm for the

Capacitated Facility Location Problem”, Mathematics of Operations Research, vol.

30, no. 2, 2005.

[67] A. Aggarwal, L. Anand, M. Bansal, N. Garg, N. Gupta, S. Gupta, S. Jain, “A

3-Approximation for Facility Location with Uniform Capacities”, in Proc. of IPCO,

2010.

[68] M. Bateni, and M. Hajiaghayi, “Assignment Problem in Content Distribution Net-

works: Unsplittable Hard-Capacitated Facility Location”, ACM Transactions on

Algorithms, vol. 8, no. 3, 2012.

[69] B. Behsaz, M. R. Salavatipour, Z. Svitkina “New Approximation Algorithms for

the Unsplittable Capacitated Facility Location Problem”, in Proc. of SWAT, 2012.

[70] D. Astely, E. Dahlman, A. Furuskar, Y. Jading, M. Lindstrom, and S. Parkvall,

“LTE: The Evolution of Mobile Broadband”, IEEE Communications Magazine, vol.

47, no. 4, 2009.

[71] Y. Bartal, “Probabilistic approximations of metric spaces and its algorithmic ap-

plications”, in IEEE Symposium on Foundations of Computer Science, 1996, pp.

184-193

[72] C. Courcoubetis, R.R. Weber, “Pricing Communication Networks:Economics, Tech-

nology and Modelling”, Wiley Europe, 2003.

[73] N. Choi, K. Guan, D. C. Kilper, and G. Atkinson, “In-network caching effect on

optimal energy consumption in content centric networking”, IEEE International Con-

ference on Communications (ICC), pp. 2889-2894, June 2012.

Institutional Repository - Library & Information Centre - University of Thessaly
11/05/2024 18:13:15 EEST - 18.117.73.223

Bibliography 147

[74] Google Drive, “Buy and manage storage plans”, 2015, www.support.google.com/

drive.

[75] M. El-Sayed, A. Mukhopadhyay, C. Urrutia-Valdes, and Z.J. Zhao, “Mobile Data

Explosion: Monetizing the Opportunity Through Dynamic Policies and QoS Pipes”,

Bell Labs Technical Journal, vol. 16, no. 2, pp. 79-100, 2011.

[76] C. Joe-Wong, S. Seny, S. Ha, “Offering Supplementary Wireless Technologies:

Adoption Behavior and Offloading Benefits”, IEEE Conference on Computer Com-

munications (Infocom), pp. 1061-1069, April 2013.

[77] GIGAOM, October 2011, https://gigaom.com/2011/10/04/

2013-the-year-mobile-data-stops-being-profitable

[78] H. Schwartz, D. Marpe, and T. Wiegand, “Overview of the Scalable Video Coding

Extension of the H.264/AVC Standard”, IEEE Trans. on Circ. and Sys. for Video

Tech., vol. 17, no. 9, 2007.

[79] F. Hartanto, J. Kangasharju, M. Reisslein, K. W. Ross, “Caching video objects:

layers vs versions?”, Multimedia Tools Appl., vol. 31, no. 2, 2006.

[80] D. P. Bertsekas, R. Gallager, “Data Networks”, Athena Scientific, 2003.

[81] W. Jiang, R. Zhang-Shen, J. Rexford and M. Chiang, “Cooperative content distri-

bution and traffic engineering in an ISP network”, in Proc. of ACM SIGMETRICS,

2009

[82] D. Bertsekas, A. Nedic, and A. Ozdaglar, “Convex Analysis and Optimization”,

Athena Scientific Press, 2003.

[83] T. Bektas, et al., “Exact Algorithms for the Joint Object Placement and Request

Routing Problem in Content Distribution Networks”, Comp. and OR, vol. 35, no.

12, 2008.

[84] K. Son, H. Kim, Y. Yi, and B. Krishnamachari, “Base Station Operation and User

Association Mechanisms for Energy-Delay Tradeoffs in Green Cellular Networks”,

IEEE JSAC, vol. 29, no. 8, 2011.

[85] Video Trace Library: http://trace.eas.asu.edu.

[86] L. Peterson, B. Davie, R. van Brandenburg, “Framework for Content Distribution

Network Interconnection (CDNI)”, IETF, 2014, https://tools.ietf.org/html/

rfc7336

Institutional Repository - Library & Information Centre - University of Thessaly
11/05/2024 18:13:15 EEST - 18.117.73.223

www.support.google.com/drive
www.support.google.com/drive
https://gigaom.com/2011/10/04/2013-the-year-mobile-data-stops-being-profitable
https://gigaom.com/2011/10/04/2013-the-year-mobile-data-stops-being-profitable
http://trace.eas.asu.edu
https://tools.ietf.org/html/rfc7336
https://tools.ietf.org/html/rfc7336

Bibliography 148

[87] M.S. Bansal, V.C. Venkaiah, “Improved Fully Polynomial time Approximation

Scheme for the 0-1 Multiple-choice Knapsack Problem”, in Proc. of SIAM Conference

on Discrete Mathematics, 2004.

[88] OFweek, ‘China Telecom successfully deployed LTE eMBMS”, June 2014,

http://global.ofweek.com/news/China-Telecom-successfully-deployed-LTE-eMBMS-13100.

[89] Alcatel-Lucent, “eMBMS for More Efficient Use of Spectrum”, November 2011,

http://www2.alcatel-lucent.com/techzine/embms-for-more-efficient-use-of-spectrum.

[90] 3GPP releases, http://www.3gpp.org/specifications/releases/

71-release-9.

[91] Ericsson, http://www.ericsson.com/res/thecompany/docs/press/

backgrounders/lte-broadcast-press-backgrounder.pdf

[92] J. Erman, K.K. Ramakrishnan, “Understanding the super-sized traffic of the super

bowl”, ACM IMC, pp. 353-360, October 2013.

[93] M.Z. Shafiq, L. Ji, A.X. Liu, J. Pang, S. Venkataraman, J. Wang, “A First Look at

Cellular Network Performance during Crowded Events”, ACM SIGMETRICS, pp.

17-28, June 2013.

[94] V. Tokekar, A. K. Ramani, and S. Tokekar, “Analysis of Batching Policy in View

of User Reneging in VoD System”, IEEE Indicon, pp. 399-403, December 2005.

[95] M. Garey, D. Johnson, “Computers and Intractability: A Guide to the Theory of

NP-Completeness”, W. Freeman & Comp., San Francisco, 1979.

[96] S.Tombaz, P. Monti, K.Wang, A. Vastberg, M. Forzati, J. Zander, “Impact of Back-

hauling Power Consumption on the Deployment of Heterogeneous Mobile Networks”,

IEEE Global Communications Conference (Globecom), pp. 1-5, December 2011.

[97] A. Damnjanovic, J. Montojo, Y. Wei, T. Ji, T. Luo, M. Vajapeyam, T. Yoo, O.

Song, and D. Malladi, “A survey on 3GPP heterogeneous networks”, IEEE Trans-

actions on Wireless Communications, vol. 18, no. 3, pp. 10-21, June 2011.

[98] B. Prabhakar, E. Uysal-Biyikoglu and A. El Gamal, “Energy-efficient transmission

over a wireless link via lazy packet scheduling”, IEEE Conference on Computer

Communications (Infocom), pp. 386-394, April 2001.

[99] C. Peng, S. Lee, S. Lu, H. Luo, H. Li, “Traffic-Driven Power Saving in Operational

3G Cellular Networks”, ACM International Conference on Mobile Computing and

Networking (Mobicom), pp. 121-132, September 2011.

Institutional Repository - Library & Information Centre - University of Thessaly
11/05/2024 18:13:15 EEST - 18.117.73.223

http://global.ofweek.com/news/China-Telecom-successfully-deployed-LTE-eMBMS-13100
http://www2.alcatel-lucent.com/techzine/embms-for-more-efficient-use-of-spectrum
http://www.3gpp.org/specifications/releases/71-release-9
http://www.3gpp.org/specifications/releases/71-release-9
http://www.ericsson.com/res/thecompany/docs/press/backgrounders/lte-broadcast-press-backgrounder.pdf
http://www.ericsson.com/res/thecompany/docs/press/backgrounders/lte-broadcast-press-backgrounder.pdf

Bibliography 149

[100] N. Choi, K. Guan, D. C. Kilper, and G. Atkinson, “In-network caching effect

on optimal energy consumption in content-centric networking”, IEEE International

Conference on Communications, pp. 2889-2894, June 2012.

[101] A. Patro, S. Govindan, S. Banerjee, “Observing Home Wireless Experience

through WiFi APs”, ACM International Conference on Mobile Computing and Net-

working (Mobicom), pp. 339-350, September 2013.

[102] K. Lee, J. Lee, Y. Yi, I. Rhee, S. Chong, “Mobile data offloading: how much can

WiFi deliver?”, IEEE/ACM Transactions on Networking, vol. 21, no. 2, pp. 536-551,

April 2013.

[103] A. Hayrapetyan, D. Kempe, M. Pál, Z. Svitkina, “Unbalanced graph cuts”, Euro-

pean Symposium on Algorithms (ESA), pp. 191-202, October 2005.

[104] Y. Zhu, Z. Zhang, Z. Marzi, C. Nelson, U. Madhow, B.Y. Zhao, H. Zheng, “De-

mystifying 60GHz Outdoor Picocells”, ACM International Conference on Mobile

Computing and Networking (MobiCom), pp. 5-16, 2014.

[105] Qualcomm, “Enabling Hyper-Dense Small Cell Deploy-

ments with UltraSON”, https://www.qualcomm.com/documents/

enabling-hyper-dense-small-cell-deployments-ultrason

[106] JPL’s Wireless Communication Reference Website, Cell Sizes, http://www.

wirelesscommunication.nl/reference/chaptr04/cellplan/cellsize.htm

[107] S. Gambs, M. Killijian, M. Cortez, “Next Place Prediction using Mobility Markov

Chains”, Workshop on Measurement, Privacy, and Mobility, pp. 3:1-3:6, 2012.

[108] D. Leong, A. G. Dimakis, and T. Ho, “Distributed storage allocations”, IEEE

Transactions on Information Theory, vol. 58, no. 7, pp. 4733-4752, 2012.

[109] V. Ntranos, G. Caire, A. Dimakis, “Allocations for Heterogenous Distributed Stor-

age”, IEEE International Symposium on Information Theory (ISIT), pp. 2761-2765,

2012.

[110] CPLEX: Linear Programming Solver. [Online]. Available: http://www.ilog.com.

[111] D. Ashbrook, T. Starner, “Learning Significant Locations and Predicting User

Movement with GPS”, International Symposium on Wearable Computers (ISWC),

pp. 101-108, 2002.

[112] A. J. Nicholson and B. D. Noble, “Breadcrumbs: Forecasting mobile connectivity”,

ACM International Conference on Mobile Computing and Networking (MobiCom),

pp. 46-57, 2008.

Institutional Repository - Library & Information Centre - University of Thessaly
11/05/2024 18:13:15 EEST - 18.117.73.223

https://www.qualcomm.com/documents/enabling-hyper-dense-small-cell-deployments-ultrason
https://www.qualcomm.com/documents/enabling-hyper-dense-small-cell-deployments-ultrason
http://www.wirelesscommunication.nl/reference/chaptr04/cellplan/cellsize.htm
http://www.wirelesscommunication.nl/reference/chaptr04/cellplan/cellsize.htm
http://www.ilog.com

Bibliography 150

[113] J. Pang, B. Greenstein, M. Kaminsky, D. McCoy, and S. Seshan, “Wifi- reports:

Improving wireless network selection with collaboration”, IEEE Transactions on Mo-

bile Computing, vol. 9, no. 12, pp. 1713-1731, 2010.

[114] K. Chung, H. Lam, Z. Liu, M. Mitzenmacher, “Chernoff-Hoeffding Bounds for

Markov Chains: Generalized and Simplified”, International Symposium on Theoret-

ical Aspects of Computer Science (STACS), pp. 124-135, 2012.

[115] G. Dantzig, “Discrete-Variable Extremum Problems”, Operations Research Vol.

5, No. 2, pp. 266-288, 1957.

[116] 3GPP Specification, “Access Network Discovery and Selection Function Manage-

ment Object”, http://www.3gpp.org/dynareport/24312.htm

[117] P. Xia, Jo Han-Shin, J.G. Andrews, “Fundamentals of Inter-Cell Overhead Signal-

ing in Heterogeneous Cellular Networks”, IEEE Journal of Selected Topics in Signal

Processing, pp. 257-269, 2011.

[118] I. Sodagar, “The mpeg-dash standard for multimedia streaming over the internet”,

IEEE MultiMedia, vol. 18, no. 4, pp. 62-67, 2011.

[119] M. McNett and G. M. Voelker, “Access and mobility of wireless pda users”, ACM

SIGMOBILE Mobile Computing and Communications Review, vol. 9, no. 2, pp.

40-55, Apr. 2005.

[120] M. Zink, K. Suh, Y. Gu, and J. Kurose, “Watch global, cache local: YouTube

network traffic at a campus network-measurements and implications”, SPIE/ACM

Multimedia Computing and Networking Conference (MMCN), 2008.

[121] Cisco Visual Networking Index: Global Mobile Data Traffic Forecast Update

2014–2019, White Paper, February 2015.

[122] Y. Lien, “Some Properties of 0-1 Knapsack Problems”, in Proc. of Conference on

Combinatorics and Complexity, 1987.

Institutional Repository - Library & Information Centre - University of Thessaly
11/05/2024 18:13:15 EEST - 18.117.73.223

http://www.3gpp.org/dynareport/24312.htm

	Declaration of Authorship
	Abstract
	Greek Abstract
	Acknowledgements
	Publications
	Contents
	1 Introduction
	1.1 Motivation
	1.2 Outline and Contributions
	1.3 Literature Review
	1.3.1 Wired network caching
	1.3.2 Wireless network caching

	2 Hierarchical Caching
	2.1 Introduction
	2.2 System model and problem formulation
	2.3 Complexity of HCP problem
	2.3.1 Hardness of general case
	2.3.2 Special case: caches installed on a single hierarchy path

	2.4 Approximation algorithms
	2.4.1 An 1.582-approximation algorithm for two-level hierarchies
	2.4.2 Extension to multiple-level hierarchies

	2.5 Performance evaluation

	3 Joint Caching and Routing in Wireless Networks
	3.1 Introduction
	3.2 System Model and Problem Formulation
	3.2.1 System Model
	3.2.2 Motivating Example
	3.2.3 Problem Formulation

	3.3 Reduction to Facility Location Problem
	3.3.1 The Reduction
	3.3.2 The Reduction Proof

	3.4 Approximation Algorithms
	3.4.1 Approximation Ratios for the UHCMFL Problem
	3.4.2 Approximation Ratios for the JRC-UR Problem
	3.4.3 The Case of Uniform-capacity SBSs

	3.5 Performance Evaluation
	3.5.1 Simulation Setup and Methodology
	3.5.2 Parameter Impact Analysis
	3.5.2.1 Impact of the Cache Sizes
	3.5.2.2 Impact of the Transmission Bandwidth Capacities
	3.5.2.3 Impact of the File Request Pattern

	3.6 Extension to the Case of Residential User-owned Caches
	3.6.1 Dataset Analysis
	3.6.2 Residential User Model
	3.6.3 MNO Model
	3.6.4 Dataset-driven Evaluation

	4 Caching Layered Video
	4.1 Introduction
	4.2 System Model and Problem Statement
	4.2.1 System Model
	4.2.2 Problem Statement

	4.3 Delivering Versions
	4.3.1 MVD Problem Formulation
	4.3.2 MVD Solution Method

	4.4 Delivering Layers and Video Streaming
	4.4.1 Layered Encoding
	4.4.2 Video Streaming Concerns

	4.5 Performance Evaluation
	4.6 Cooperative Caching of Layered Video
	4.6.1 Cooperative Caching Model
	4.6.2 Cooperative Caching Policies
	4.6.3 Evaluating Cooperative Caching

	5 Multicast-aware Caching
	5.1 Introduction
	5.2 System Model and Problem Formulation
	5.2.1 System Model
	5.2.2 Motivating Example
	5.2.3 Problem Formulation

	5.3 Complexity and Solution Algorithms
	5.3.1 Complexity
	5.3.2 Algorithm with performance guarantees
	5.3.3 Heuristic algorithm

	5.4 Performance Evaluation
	5.4.1 Algorithms and evaluation setup
	5.4.2 Evaluation results

	6 Mobility-aware Caching
	6.1 Introduction
	6.2 System model and problem formulation
	6.2.1 System model
	6.2.2 Motivating example
	6.2.3 Problem formulation

	6.3 Complexity and centralized small-scale solution
	6.3.1 Complexity
	6.3.2 MIP formulation

	6.4 Distributed large-scale solution
	6.4.1 Relation to the Markov chain model
	6.4.2 Upper bound on the objective function
	6.4.3 Distributed algorithm
	6.4.4 Implementation considerations

	6.5 Performance evaluation
	6.5.1 Algorithms
	6.5.2 Mobility model
	6.5.3 Demand model
	6.5.4 Evaluation results

	7 Conclusions and Future work
	7.1 Conclusions
	7.2 Future work
	7.2.1 Incomplete information
	7.2.2 Communication overhead
	7.2.3 Conflicting objectives

	Appendix
	Bibliography

