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ABSTRACT 
 

Although several virtual machine (VM) placement algorithms have been proposed and 

studied in the literature, little research has been done so far on capturing and minimizing 

the network overhead when combining the VM assignment problem on clusters with 

the problem of replicating the files accessed by the VMs hosted within the system. We 

also study the aforementioned problem when clusters have limited storage and 

computing capacity. We propose an algorithm based on hyper-graph partitioning to 

solve the aforementioned problem when there are no computing and storage capacity 

constraints on clusters. The proposed algorithm is extended to capture the storage and 

computing capacity constraints on clusters within the system. An experimental 

evaluation is given to compare the behavior of the proposed algorithm. The results 

shown that the proposed algorithm yields a network overhead reduction of up to 50% 

compared to state-of-the-art algorithms found in the literature.  

  



 

 

ΠΕΡΙΛΗΨΗ 

Παρ’όλο που αρκετοί αλγόριθμοι τοποθέτησης ιδεατών μηχανών (VM) έχουν προταθεί 

και μελετηθεί στη βιβλιογραφεία, ελάχιστη έρευνα έχει γίνει μέχρι στιγμής πάνω στην 

αποτύπωση και ελαχιστοποίηση της επιβάρυνσης δικτύου όταν συνδυάζουμε το 

πρόβλημα ανάθεσης VM σε συστάδες με το πρόβλημα της αντιγραφής αρχείων που 

προσπελαύνονται απο τις VM που φιλοξενούνται στο σύστημα. Επιπλέον μελετούμε 

το προαναφερθέν πρόβλημα όταν οι συστάδες έχουν μειωμένη χωρητικότητα και 

υπολογιστική ικανότητα.Προτείνουμε έναν αλγόριθμο βασισμένο στη διαίρεση υπερ-

γράφων για να επιλύσουμε το προαναφερθέν πρόβλημα όταν δεν υπάρχουν 

περιορισμοί υπολογιστικής και χωρητικής ικανότητας στις συστάδες.Ο προτεινόμενος 

αλγόριθμος επεκτείνεται για να καλύψει τους περιορισμούς υπολογιστικής και 

χωρητικής ικανότητας των συστάδων στο σύστημα.Δίνεται μια πειραματική εκτίμηση 

για τη συγκριση της συμπεριφοράς του προτεινόμενου αλγόριθμου.Τα αποτελέσματα 

δείχνουν οτι ο προτεινόμενος αλγόριθμος αποφέρει μείωση επιβάρυνσης δικτύου μέχρι 

και 50% συγκριτικά με αλγόριθμους τελευταίας λέξης της τεχνολογίας που βρίσκονται 

στη βιβλιογραφεία.  
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1. Introduction and background 

During the last decade, there have been many scientific projects generating enormous 

amounts of data ranging from a few dozen terabytes to petabytes. Such is the case with 

the Compact Muon Solenoid experiment [34] at CERN (European Organization for 

Nuclear Research), the Human Genome Project [37] the Sloan Digital Sky Survey 

experiment [40] and the Human Brain Project [39]. Besides the insatiable demands of 

such scientific projects in data storage and management, there are also voracious 

demands for computing resources by a huge number of scientific applications that need 

to process the generated datasets. 

 

Many data- and compute-intensive middleware solutions do exist in the literature, 

namely, Hadoop [33], Apache HAMA [32], Stork [10], Pegasus [38], Swift [36] and 

StorkCloud [9]. A general approach of those initiatives is to move computations close 

to data. The above is corroborated by the Hadoop community [33] stating the following: 

“A computation requested by an application is much more efficient if it is executed near 

the data it operates on. HDFS provides interfaces for applications to move themselves 

closer where the data is located.”
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d1

d2

d3

900MB

400MB

500MB

Application

Set of VMs 
needing access to 

data objects d1 
and d2

 

Figure 1. Application of VMs and their access to data objects 

In the aforementioned example, there were no communication dependencies between 

VMs. However, it is of paramount importance to also take into account communication 

dependencies between VMs, because otherwise we may result in network and 

application performance degradation. It is evident that when considering communication 

between VMs, decisions for VM placement and data replication become more 

complicated. The problem belongs to the NP-Complete class for general structured 

networks, even when there are no decisions for replicating data [3]. 
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s1 s2 s3 s4

d1d2 d3

Cluster Network link 
between s1 and s2  

Figure 2. Application placement without replication  

 

 

In this thesis, we address the problem of simultaneously taking VM placement and 

replica placement decisions in tree-structured networks to reduce the overall network 

overhead incurred due to the communication dependencies between VMs and data. The 

reason that we focus in tree-structured networks is justified by the following: (a) It is 

well known that Fat-tree topology is a network topology that has been widely adopted 

in clouds [2]. (b) Elastic tree is also a network-wide optimizer that chooses a set of 

network elements that must be active such that the network topology forms a tree [5]. 

It has been shown that elastic-tree can save up to 50% of network energy. Therefore, it 

is evident the usefulness of algorithms working in tree-structured networks for cloud 

environments. 

  

The rest of this thesis is organized as follows. In Section 2, we describe our system 

model, and give respective formulations of the problem we tackle. In Section 3, we give 

an algorithm based on hyper-graph partitioning for solving the problem without 

considering storage and computing capacity constraints on clusters. In Section 4, we 

extend the proposed algorithm to solve the problem when considering computing and 

storage capacity constraints on clusters. In Section 5 we evaluate the performance of 

the proposed algorithm against state-of-the-art algorithms found in the literature.  In 

Section 6 we discuss related work. Finally, Section 7 concludes the thesis, identifies 

open issues and points towards possible future research directions. 
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2. System Model and Problem Formulation 

This section is split into two parts. The first part includes the notations for the 

description of application and network structures, while the second one extends the 

notations for the formulation of the problem.  

 2.1  System model  

The application is structured as a general graph with a number of V and D datasets. Let 

vi and dj denote the ith VM and jth dataset, respectively. The size of jth data object and 

ith VM (measured in bytes) is captured by δ(dj) and δ(vi), respectively. It must be noted 

that each time a VM is needed to be migrated from one cluster to another one, we 

transfer only its state to avoid redundant network overhead. Therefore, it is assumed 

that each cluster is equipped with all of the VM types. The computing requirements of 

ith VM is captured by r(vi). The data exchanged for the access of VMs to data objects is 

encoded by a matrix 𝐶 ∈ 𝑍≥0
(𝑉+𝐷)×(𝑉+𝐷)

. Specifically, there are three cases for an entry 

cij of C: (i) when both i and j are less than V+1, then cij captures the data exchanged 

between ith and jth VM; (ii) when i is less than or equal to V (or more than V, 

respectively) and j is more than V (or less than V+1, respectively), then cij captures the 

data transferred from dj towards vi (or from di towards vj, respectively); and (iii) when 

both i and j are more than V, then cij is always zero because there is no communication 

between datasets. We must note that C is symmetric. 

 

The network is structured as a tree, with S being the number of clusters within the 

system. Let sx signify the xth cluster within the system, while rx denote the total 

computing resources of sx. The distance between clusters is captured by a matrix 𝑊 ∈

𝑍≥0
𝑆×𝑆. Each entry of W is captured by wxy denoting the distance (measured in hops) 

between sx and sy. 

 



12 

 

2.2  Problem Formulation   

Before proceeding to the problem formulation, we will extend the notations. The 

placement of VMs and data on clusters is captured by an [(V+D)×S] matrix denoted by 

F. Let fix whether the xth cluster hosts the ith object (fix equals 1) or otherwise (fix equals 

zero). If i is less than or equal to V, then the ith object represents a VM, otherwise data. 

Given a placement 𝐹, Eq.1 captures the network overhead incurred within the system 

due to the communication between VMs.  

 

Let R(j) encode the clusters hosting replicas of jth data object. The variable 𝜑𝑥𝑗(captured 

by Eq. 2) denotes the minimum distance among the distances between a cluster sx and 

clusters hosting the jth data object. Eq. 3 splits into two cases: (a) if a cluster sx hosts 

one or more VMs that need access to jth data object, then the network overhead equals 

the bytes of jth data object multiplied by the distance between sx and the nearest cluster 

hosting the jth data object; (b) if a cluster sx does not host any VM needing access to jth 

data object, then there is no network overhead. Eq. 4 signifies the total network 

overhead due to the needs of VMs to access data.  

𝛥1(𝐹) =∑∑∑∑𝑐𝑖𝑗 ×

𝑆

𝑦=1

𝑓𝑖𝑥 × 𝑓𝑗𝑦 × 𝑤𝑥𝑦

𝑆

𝑥=1

𝑉

𝑗=1

𝑉

𝑖=1

 

(1) 

𝜑𝑘𝑥(𝐹) = min
∀𝑦∈𝑅(𝑗)

𝑤𝑥𝑦 
(2) 

𝜆𝑘𝑥(𝐹) =

{
 
 

 
 ∑ 𝑓𝑖𝑥 × 𝑐𝑖𝜅 × 𝜑𝑘𝑥(𝐹)

𝑉
𝑖=1

∑ 𝑓𝑖𝜒
𝑉
𝑖=1

, 𝑚𝑖𝑛 (1,∑𝑓𝑖𝑥𝑐𝑖𝑘

𝑉

𝑖=1

) = 1

0                                 , 𝑚𝑖𝑛 (1,∑𝑓𝑖𝑥

𝑉

𝑖=1

𝑐𝑖𝑘) = 0 

 

(3) 

𝛥2(𝐹) = ∑ ∑𝜆𝑘𝑥(𝐹)

𝑆

𝑥=1

𝑉+𝐷

𝑘=𝑉+1

 

(4) 

𝛥(𝐹) = 𝛥1(𝐹) + 𝛥2(𝐹) 
(5) 
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The total network overhead within the network is captured by Eq. 5, which equals the 

sum of Eq. 1, Eq. 4. The constraint expressed by Eq. 6 signifies that the total storage 

space of a cluster cannot be exceeded by the sum of the storage requirements of data 

and VMs hosted by the respected cluster. On the other hand, Eq. 7 denotes that the total 

computing capacity of a cluster cannot be exceeded by the sum of the computing 

requirements of VMs hosted by the respective cluster. 

 

The problem is formally stated as follows: Given a set of VMs along with their 

computing requirements, a set of data objects along with their initial assignment on 

clusters, and a set of clusters along with their computing capacities, find an initial 

assignment of VMs onto clusters as well as a data object replica scheme (recorded by 

F) such that the total network overhead expressed by Eq. 5 is minimized while the 

computing capacity constraints (Eq. 9 and Eq. 10, respectively) are not violated. 

∑𝑓𝑖𝑥 × 𝛿(𝑣𝑖) +

𝑉

𝑖=1

∑𝑓𝐷+𝑗,𝑥 × 𝛿(𝑑𝑗) ≤ 𝛿(𝑠𝑥)

𝐷

𝑗=1

, 1 ≤ 𝑥 ≤ 𝑆 

(6) 

∑𝑓𝑖𝑥 × 𝑟(𝑣𝑖) ≤ 𝑟(𝑠𝑥)

𝑉

𝑖=1

, 1 ≤ 𝑥 ≤ 𝑆 

(7) 
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3. Hypergraph Partitioning Algorithm without 

Considering Storage and Computing Capacity 

Constraints 

Firstly, we will reduce the problem to a hypergraph partitioning problem. In the sequel, 

to address the problem we will employ a hypergraph partitioning technique that is based 

on the maximum flow problem. 

3.1  Reducing the Problem to a Hypergraph Partitioning 

Problem of two clusters 

The application graph along with its access on data is transformed in a hyper-graph as 

follows. For each data object, we find the set of VMs needing access on it. The 

aforementioned set of VMs and the respective data object form a hyper-edge. The 

weight of the hyper-edge equals the size of the corresponding data object. Such a weight 

signifies the overhead that will be incurred within the network if the VMs belonging to 

the respective hyper-edge are not co-located with the data object in question. The above 

is justified by that fact that when splitting a hyper-edge into two parts, then the 

corresponding data object must be replicated towards the side of VMs that are not co-

located with it. Each regular edge between two VMs denotes the data exchanged 

between the VMs. When we split a regular edge or a hyper-edge, then the network 

overhead is burdened by the weight of the respective edge. Therefore, by partitioning 

(cutting) the graph into two parts, we result in a network overhead equaling the weight 

of the cut in question. Such a partition encodes the VM assignment and data replication 

onto two clusters. By finding the minimum cut, we result in an assignment of VMs as 

well as a replication of data onto two clusters with the minimum network overhead. 

 

The aforementioned is illustrated through the following example. Consider the 

application shown in Fig. 3. The application consists of four VMs that access two 

different data objects (d1, d2). An edge between a VM vi and data object dj denotes that 

vi needs to access dj. An edge between two VMs represents the exchange of data 

between the respective VMs, with the weight of the edge signifying the size of data 
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being exchanged. Consider also the network shown in Fig. 4 consisting of two clusters 

(s1, s2), with s1 hosting d1, while s2 hosting d2.  

v1

v2

d2

80 MB

v3v4

d1

140 MB
 

Figure 3. Application and data graph 

 

s1 s2

d2d1

 

Figure 4. Network graph 

 

In the sequel, we find all of the hyper-edges within the application graph. The hyper-

edges are shown in Fig. 5. For each data object, we create a hyper-edge that contains 

the respective data object, as well as the VMs needing access to the data object in 

question. As stated in the preceding text, the weight of a hyper-edge signifies the least 

overhead that will be incurred within the network if the VMs belonging to the respective 

hyper-edge are not co-located with the data object in question. For example, when v3, 

v4, and d1 are not co-located, then the network will be burdened with a network overhead 

of 140 MB. For instance, consider the following three cases: (a) both v3 and v4 are 

placed on s2 and the blue hyper-edge is split, with the network being burdened by 140 

MB due to the replication of d1 on s2. Note that without replication and assuming that 

v4 and v5 access d1 at different points in time, then v4 and v5 must separately access data 
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through a network connection incurring 280 MB (140 + 140); (b) v3 is placed on s2, 

while v4 on s1, with the blue hyper-edge being split. Therefore, we can either replicate 

d1 on s2, or we can assume that v3 remotely accesses d3 through a network connection, 

with the network being burdened in both cases by 140 MB; (c) both v3 and v4 are placed 

on s1, whereby there will be no network overhead because both v3 and v4 access locally 

d1. 

Therefore, to minimize the network overhead, we must bi-partitioning the hyper-graph 

shown in Fig. 5. The minimum cut is achieved by assigning all of the VMs on s1, and 

then replicating d1 on s1. The total network overhead of the above assignment becomes 

80 MB. The above result is explained by the fact that the red hyper-edge is split, 

incurring 80 MB within the network due to the replication of d2 on s1. The final VM 

placement and data replicas are shown in Fig. 6. It must be stressed that by not applying 

the concept of hyper-edges, then the partitioning of the application would be as follows. 

The VMs v4 and v3 would have been assigned onto s1, while the rest ones onto s2, 

incurring a network overhead of 130 (80+50). 

v1

v2

d2

80 MB

hyper-edge of 
weight 80 MB

v3v4

d1

140 MB

hyper-edge of 
weight 140 MB

 

Figure 5. Hyper-edges 
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s1 s2

d1

v4v3
v2

v1

d2d2

 

Figure 6. Final VM placement and data replicas 

3.2 Initial Assignment of VMs and Data Replicas 

In this section we consider that the VMs have not been assigned to any cluster within 

the system. Therefore we examine the initial VM placement as well as the data object 

replicas. According to [2] the problem of hyper-graph bi-partitioning can be solved 

optimally by reducing to the problem of finding a cut of minimum capacity. The 

reduction of the problem takes place through the transformation of hyper-edges into 

regular edges. 

3.2.1. Hyper-edge transformation into a set of regular edges 

Consider a hyper-edge e of weight w along with n vertices (u1,..,un) participating in the 

respective hyper-edge, then the hyper-edge can be transformed into a set of regular 

edges as follows: (a) we add two auxiliary vertices (ux and uy) as well as a bridging edge 

of weight w between them; (b) for each vertex ui belonging to e, we add two directed 

edges of infinite weight. The first one originates from ui and ends on ux, while the 

second one originates from uy and ends on ui.  
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An example is shown below where a hyper-edge consisting of five vertices and its 

weight equaling 80 (Fig. 7) is transformed into a set of regular edges (Fig. 8). As can 

be seen the weight of bridging edge between ux and uy equals 80, while the weight of 

the remaining edges equals infinity. 

u2

u3

u1

u4

u5

ux uy
80

∞ ∞ 

∞ 

∞ 

∞ 

∞ 

∞ 
∞ 

∞ 

∞ 

 

Figure 8. Hyper-edge transformation 

 

3.2.2  Solving the problem with two clusters 

Given an application that needs access to some data objects hosted by two clusters, then 

the VM placement and data replication problem is solved by employing the {s-t} 

minimum cut algorithm as follows: (i) add two vertices s1 and s2, representing the 

corresponding two clusters; (ii) for each hyper-edge perform the transformation 

u1

u3

hyper-edge of 
weight 80

u2

u4

u5

 

Figure 7. Hyper-edge of weight 80 with five vertices 
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explained in the previous section, with the bridging edge equaling the size of the data 

object (di) belonging to the respective hyper-edge. Note that instead of using an abstract 

name for the auxiliary vertex ux, we use the name of the data object (di) belonging to 

the respective edge; (iii) add a directed edge of δ(di) weight originating from di’s 

hosting cluster and ending on di, as well as an edge of infinite weight originating from 

uy and ending on di’s hosting cluster; (iv) if there is any regular edge within the 

application graph, then add this edge as is to the new resultant graph called minimum-

cut graph; (v) we apply on the resultant graph the maximum flow minimum cut 

algorithm for undirected edges [2] , considering that s1 and s2 play the role of source 

and terminal, respectively. Note that any undirected edge is transformed into a pair of 

directed ones; (vi) the set of vertices that is reachable from s1 in the resulting residual 

network are assigned to s1, while the rest ones are assigned on s2. The main concept 

behind the minimum cut maximum flow algorithm is to obtain individual augmenting 

paths that can be used to increment an existing flow. An augmenting path is a directed 

path from source to sink that increases the existing flow. It must be noted that the 

minimum cut is not affected by incorporating in the minimum cut graph regular edges 

residing within hyper-edges.     

 

Subsequently, we give an example to illustrate the aforementioned process. Consider 

an application that needs to access two data objects (d1 and d2). The application 

structure and the access of the data by the VMs are shown in Fig. 5. As can be seen, 

there are two hyper-edges of weight 140 and 80. Assume that there are two clusters (s1 

and s2) that are directly connected, with d1 and d2 being hosted by s1 and s2, respectively. 

According to step (i), we first add the vertices s1 and s2. Then, by following the hyper-

edge transformation procedure as stated earlier, the blue hyper-edge is transformed into 

the set of vertices {d1, vy, v4, v5} with regular edges, while the red one is transformed 

into the set of vertices {d2, vy’, v1, v3, v4} with regular edges. Even though v4 belongs to 

both hyper-edges, it does not appear twice in the minimum cut graph. Next, we add in 

the graph the regular edges between VMs appearing in the application graph. Therefore, 

we add an edge between v1 and v3, as well as an edge between v3 and v4. The resultant 

minimum cut graph is shown in Fig. 9.  



20 

 

In the sequel, we apply the minimum cut maximum flow algorithm for undirected edges 

and find that the minimum cut is achieved by removing the edge between vy’ and d2, 

with the cost of cut being 80 MB. Specifically, we have chosen the augmenting path 

{s1, d1, vy, v4, d2, vy’, s2} to increase the flow by 80 MB, resulting in the maximum flow. 

According to the above augmenting path, the final residual graph is shown in Fig. 10. 

From the final residual graph, we observe that the set of vertices that are reachable from 

s1 is {d1, d2, vy, v1, v3, v4, v5}. Consequently, the only vertex that is reachable from s1 is 

vy’. Therefore, all of the VMs are assigned on s1, with d2 being replicated on s1. Note 

that s2 continues hosting d2. By performing the aforementioned assignment of VMs and 

data replicas, we result in a total network overhead of 80 MB. 

 

 

s1

v3

v4

d1 vy
140

∞ 

∞ 

∞ 

∞ 

∞ 

140 s2d2

v1

vy'
80v2

8050

1

∞ 

∞ 

∞ 

∞ 

∞ 

∞ 
∞ source terminal

 

Figure 9. Minimum cut graph 

s1

v3

v4

d1 vy
60

∞ 

∞ 

∞ 

∞ 

∞ 

60
s2d2

v1

vy' 80
v2

8050

1

∞ 

∞ 

∞ 

∞ 

∞ 

∞ 
∞ 

220220

60

80

80

 

Figure 10. Final residual graph 
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3.2.3 Extending the solution to a tree of clusters 

In this section we extend the aforementioned algorithm for the problem of two clusters 

to a more general algorithm for a tree of clusters. The pseudocode of the extended 

algorithm (called HPA) is shown in Table I. Below we give an explanation of the 

pseudocode: (a) All of the clusters are marked as unexplored (line 1). In the sequel, a 

cluster is randomly chosen and marked as explored (line 2). All of the VMs are 

temporarily assigned on the aforementioned cluster (line 3). (b) Choose an unexplored 

cluster si that is 1-hop away from any explored cluster sj (line 4); (c) si is marked as 

explored and a new minimum cut graph is drawn by adding si and sj (line 5-6). (d) For 

each data object dk, identify the VMs hosted by sj and access dk (line 7). In case of 

exactly one VM, draw a regular edge between the respective VM and either si if dk’s 

hosting cluster is closer to si, or otherwise sj (line 8-9). In case of more than one VM, 

identify the respective hyper-edge and transform it into a set of regular edges as 

explained in Section 3.2.1, with the vertex ux being declared as dk; add a directed edge 

of δ(dk) weight originating from either si provided that si is closer to the dk’s hosting 

cluster against sj, or otherwise sj, and ending on dk; add also an edge of infinite weight 

originating from uy and ending on si provided that si is closer to the di’s hosting cluster 

against sj, otherwise on sj (line 12-15). (e) For any edge e between a VM vg hosted by 

sj and a VM vf not hosted by it, we draw an edge between vg and sj’ with the same 

weight as that of e. The above is because if vg is assigned on si, then it distances itself 

away from vf (line 18-20). (f) Apply the maximum flow minimum cut algorithm to 

temporarily re-assign the VMs onto clusters as explained in Section 3.2.2 (line 21). 

(g) If there is any vi accessing a dk, with the vi distancing itself away from the cluster 

hosting the original copy of dk, replicate dk at the cluster hosting vi (line 22) The steps 

from (b) to (g) are repeated until there is no unexplored cluster. (h) The last step is to 

revoke a replication in case a decision has been made for replicating a data object dk 

at a cluster si, provided that there is no VM hosted by si that accesses dk (line 24). 

Table I. Pseudocode of HPA 

1: 

2: 

3: 

4: 

5: 

6: 

7: 

mark all of the clusters as unexplored 

choose randomly a cluster and mark it as explored 

assign all of the VMs on the aforementioned cluster 

for each unexplored cluster si that is 1-hop away from any explored cluster sj 

  mark si as explored 

  draw a new min-cut graph and add si and sj 

  for each data object dk  belonging to D 
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To illustrate the functionality of HPA, we set forth the following example. Consider 

an application, shown if Fig. 11, consisting of five VMs accessing three data objects 

(d1, d2, and d3). As can be seen from Fig. 12, the network is consisted of three clusters 

s1, s2, and s3 hosting d1, d2, and d3, respectively. 

v1 v5

d1

v2

d2

80 MB

220 MB

v3v4

d3

140 MB
 

Figure 11. Application structure 

 

8: 

9: 

10: 

11: 

12: 

13: 

14: 

15: 

16: 

17: 

18: 

19: 

20: 

21: 

22: 

 

23: 

24: 

    identify a hyper-edge/regular edge e for dk considering only VMs assigned on sj 

    if e is a regular edge 

     draw an edge between the respective VM and si/sj   

    else 

      transform the hyper-edge into a set of regular edges as explained in §3.2.1 

      declare ux as dk 

      add a directed edge of infinite weight from si/sj towards dk 

      add a directed edge of infinite weight from  uy towards si/sj 

    end if 

  end for 

  for each edge e between a VM vg hosted by sj and a VM vf  not hosted by it 

    draw an edge between vg and sj with the same weight as that of e  

  end for 

  apply max-flow min-cut algorithm to re-assign VMs according to §3.2.2 

  if there is any vi accessing a dk, with the vi distancing itself away from  

  the cluster hosting the original copy of dk, replicate dk at the cluster hosting vi.  

end for 

if there has been a decision for replicating dk at si, but there is no VM hosted by si 

that accesses dk, then revoke the respective replication 
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s1 s2

d2d1 d3

s3

 

Figure 12. Network structure 

 

The algorithm begins by marking all of the clusters as unexplored. In the sequel, it 

marks randomly s1 as explored and assigns all of the VMs onto s1. Because s1 has s2 

as the only one 1-hop neighbor, s2 is chosen and marked as explored. Initially, the 

minimum cut graph is empty, with s1 and s2 being added on it.  Three hyper-edges are 

identified regarding the objects d1, d2, and d3 (see Fig. 13).  

v1 v5

d3

v2

d2

80 MB

220 MB

hyper-edge of 
weight 80 MB hyper-edge of 

weight 220 MB

v4v5

d1

140 MB

hyper-edge of 
weight 140 MB

 

Figure 13. Hyper-edges identified when considering s1 and s2 

 

The transformation of each hyper-edge into a set of regular edges takes place 

according to Section 3.2.1. Because the hosting cluster of d1 and d2 is s1 and s2, 

respectively, an infinite edge is drawn from s1 towards d1 and another one from s2 

towards d2. On the other extreme, the hosting cluster of d3 is closer to s2 than s1, as a 

result an edge of infinite weight is draw from s2 towards d3.  
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Since all of the VMs have been temporarily assigned on s1, the lines 18-20 are not 

executed. The minimum cut graph that has been created is shown in Fig. 14. 

 

s1

v3

v4

d1 vy
140

∞ 
∞ 

140 s2d2

v1

vy'
80v2

80 10

40

∞ 

∞ 

∞ 

∞ 

∞ 
∞ 

d3
vy''

∞ 

v5
∞ 

∞ 

source terminal

 

Figure 14. Min-cut graph when considering s1 and s2 

 

 

After executing the maximum flow minimum cut algorithm regarding the graph of 

Fig. 13, we result in the residual graph shown in Fig. 15. It is observed that the 

minimum cut equals 90 (80+10), with the reachable set of vertices from s1 being {d1,vy, 

v3, v4, d2}. Therefore, v3 and v4 are assigned onto s1, while d2 is replicated at s1. On the 

other extreme, v1, v2, and v5 are assigned onto s2, while there is no decision for 

replicating d3 at s2. According to the line 22 of HPA, there is no decision for replicating 

d3 at s2, because there is no VM accessing d3 and distancing itself away from s3 (the 

host of the original copy of d3). The aforementioned assignment and replication 

decisions are shown in Fig. 16. It must be noted that they are temporary because s3 has 

not been explored yet.  
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s1

v3

v4

d1 vy
50

∞ 
∞ 

50 s2d2

v1

vy'
160v2

80

40

∞ 

∞ ∞ 

∞ 

∞ 
∞ 

d3
vy''

∞ 

v5
∞ 

∞ 

90 230

80

80

40

 

Figure 15. Residual graph when considering s1 and s2 

 

s1 s2

d1 d2

v5v4 v3
v2

v1

d2

s3

d3

 

Figure 16. Temporary VM assignments and data replications 

In the sequel, s3 is the next (and last) cluster that is marked unexplored, which is 1-

hop away from s2. Considering the VMs hosted by s2 (which plays the role of sj in the 

pseudocode), two hyper-edges are identified shown in Fig. 17. The transformation of 

each hyper-edge into a set of regular edges takes place according to Section 3.2.1. 

Because the hosting cluster of d2 is s2, an infinite edge is drawn from s2 towards d2. 

On the other extreme, the hosting cluster of d3 is s3, as a result an edge of infinite 

weight is draw from s3 towards d3. Due to the fact that there exists an edge between v2 

(hosted by s2) and v4 (hosted by s1), an edge is drawn between v2 and s2. The reason 

we chose s2 and not s3 as the one end of the edge is that the hosting cluster of v4 is 

closer to s2 than s3. The aforementioned are according to the lines 18-20 of HPA’s 

pseudocode. The minimum cut graph is depicted in Fig. 18. 
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v1 v5

d3

v2

d2

80 MB

220 MB

hyper-edge of 
weight 80 MB hyper-edge of 

weight 220 MB

 

Figure 17. Hyper-edges identified when considering s2 and s3 
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Figure 18. Min-cut graph when considering s2 and s3 

 

By applying the minimum cut maximum flow algorithm for the graph shown in Fig. 

18, we result in the residual graph depicted in Fig. 19. As can be seen, the minimum 

cut equals 90 (80+10), with the reachable set of vertices from s2 being {∅}. As a result, 

the set of vertices that are reachable from s3 is {d2, vy, v1, v2, v5, vy’, d3}. Consequently, 

the set of VMs {v1, v2, v5} is assigned onto s3, with d2 being replicated at s3. The final 

VM assignments and data replications are shown in Fig. 20, with the total network 

overhead being 180 MB. On the other extreme, by not exploiting the hyper-edge 

partitioning technique with data replication and considering only regular edges, the 

minimum cut algorithm would result in the following assignment.  
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The VMs v3 and v4 would have been assigned onto s1, v2 onto s2, while v1 and v5 onto 

s3. Such an assignment would incur a total network overhead of 250 MB. 

s2

v1

v2

d2 vy
160

∞ 

80 s3d3vy'
310

v5
220∞ 

∞ 

∞ 

∞ 
∞ 

40

20

13040

 

Figure 19. Residual graph when considering s2 and s3 
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Figure 20. Final VM assignment and data replication 
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4. Hypergraph Partitioning Algorithm when 

Considering Storage and Computing Capacity 

Constraints 

This section discusses the extension of the algorithm proposed in Section 3 to consider 

storage and capacity constraints. 

4.1 Extending HPA for the Two Cluster Case when 

Considering Capacity Constraints  

In this section, the VM assignment and data object replication problem is solved for a 

system consisting of two clusters (s1, s2). We assume that there is at least one 

assignment of VMs onto clusters such that the computing capacity of both clusters is 

not violated. Initially, the problem is solved in the same way as that described in Section 

3.2.2. After resulting in the solution for the un-capacitated case, we perform the 

following steps: 

 

Step 1. If there is no storage capacity violation in any cluster within the system, then 

the replication takes place as dictated by the solution for the un-capacitated case. 

Otherwise, we replicate in an iterative fashion the object that its replication reduces the 

network overhead as much as possible.  

 

Step 2. The problem is solved again by replacing a hyper-edge with normal edges iff 

its involved data object is not able to be replicated according to step 1. Specifically, the 

replacement takes place as follows. For each VM participating in such a hyper-edge we 

add a normal edge of weight equal to the involved data object between the respective 

VM and the cluster hosting the corresponding data object. After obtaining the solution 

of this step, we investigate whether any cluster’s computing capacity is violated when 

performing the new assignment. When no violation takes place, the algorithm 

terminates and the solution of this step is considered as the final solution. In case of 

violation, step 3 takes place.  
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Step 3. In this step, we assume that the computing capacity of the one cluster (let s1) is 

violated under the VM assignment obtained in step 2. Note that there cannot be a case 

where the computing capacity of both clusters is violated. The above is because of the 

assumption that there is at least one VM assignment that does not violate the computing 

capacity of both clusters. For each VM hosted by s1 (according to the assignment 

obtained from step 2), we calculate which is the impact in the network overhead if the 

corresponding VM is re-assigned onto s2. (The calculation of the impact is described in 

next paragraph). The VM re-assignment that burdens the system with the least network 

overhead is decided to be performed. The aforementioned re-assignment process 

iterates itself until either there is no violation of s1’s computing capacity or there is no 

VM re-assignments that does not violate s2’s computing capacity. In case of violation 

of s2’s computing capacity, we run knapsack twice as follows. In terms of the first 

knapsack instance, knapsack plays the role of s1, with its computing capacity reflecting 

knapsack’s size. The set of VMs hosted by both s1 and s2 plays the role of knapsack 

objects, with their computing requirements representing the weight of knapsack objects. 

The benefit of knapsack objects is assumed of one unit. Regarding the second knapsack 

instance, knapsack plays the role of s2, while the knapsack objects that were not 

assigned on first knapsack instance represent the knapsack objects of the second 

knapsack instance. 

 

VM re-assignment impact. The impact of re-assigning a VM vi from sx to sy is the 

difference, in terms of network overhead, between hosting the corresponding VM on sx 

and sy. The aforementioned impact is expressed by Eq. 11 and split into two 

components: 

 

1) The first component (expressed by Eq. 8) concerns the difference (when 

assigning vi onto sy and sx) in network overhead due to the data exchanged 

between vi and the VMs it communicates with. Note that Fold and Fnew captures 

the placement before and after the re-assignment of vi from sx to sy. Therefore, 

it holds that 𝑓𝑖𝑥
𝑜𝑙𝑑 = 1 and 𝑓𝑖𝑦

𝑛𝑒𝑤 = 1. 

2) The second component (expressed by Eq. 9) represents the difference (when 

assigning vi onto sy and sx) in network overhead due to the need of vi to access 

the data involved in hyper-edges. The variable 𝐻𝑖𝑘  equals one if vi is contained 
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in the hyper-edge that involves dk, otherwise equals zero. Note that when 

calculating the impact in network overhead when re-assigning vi from sx to sy 

the following take place: (a) if 𝐻𝑖𝑘  equals 1, vi was the only VM hosted by sx 

that needed access to dk which was also hosted by sx, then dk is deleted from sx 

(i.e., 𝑓𝑘𝑥
𝑛𝑒𝑤 = 0); and (b) if 𝐻𝑖𝑘  equals 1 and sy has available storage capacity to 

host dk, then sy will host dk (i.e., 𝑓𝑘𝑦
𝑛𝑒𝑤 = 1).  

 

 

𝐼𝑖𝑥𝑦
𝑉𝑀 =∑𝑐𝑖𝑗 × (1 − 𝑓𝑗𝑦

𝑛𝑒𝑤)

𝑉

𝑗=1

−∑𝑐𝑖𝑗 × (1 − 𝑓𝑗𝑦
𝑜𝑙𝑑)

𝑉

𝑗=1

 Eq. 8 

𝐼𝑖𝑥𝑦
𝐻 = ∑ 𝜆𝑘𝑦(𝐹

𝑛𝑒𝑤)

𝑉+𝐷

𝑘=𝑉+1

× 𝐻𝑖𝑘 − ∑ 𝜆𝑘𝑥(𝐹
𝑜𝑙𝑑)

𝑉+𝐷

𝑘=𝑉+1

× 𝐻𝑖𝑘 + 

               ∑ 𝛿(𝑑𝑘)

𝑉+𝐷

𝑘=𝑉+1

× 𝐻𝑖𝑘 × (1 − 𝑓𝑘𝑦
𝑜𝑙𝑑) 

Eq. 9 

𝐼𝑖𝑥𝑦
𝑇𝑜𝑡𝑎𝑙 = 𝐼𝑖𝑥𝑦

𝑉𝑀 + 𝐼𝑖𝑥𝑦
𝐻  Eq. 10 

4.2. Extending HPA for the Tree Cluster Case when 

Considering Capacity Constraints 

In this section, the VM assignment and data object replication problem is solved for a 

system consisting of N clusters structured as a tree. We assume that there is at least one 

assignment of VMs onto clusters such that there is no violation in their computing 

capacities. The procedure is identical with that of Section 4.1 up to step 2. Regarding 

step 3 the following take place. For each cluster that its computing capacity is violated, 

we attempt to find a re-assignment of its VMs towards other clusters such that its 

computing capacity is not violated. Among all of the feasible hosts for the re-

assignment of a VM, we choose the one that burdens the system with the least network 

overhead. The above process is iterated until there is no computing capacity violation 

or there is no feasible VM re-assignment. In case of the former case, the algorithm 

terminates. Otherwise, the knapsack is solved (for more information, the reader is 

referred to Section 4.1 in step 3) between all possible cluster pairs until there is no 

computing capacity violation in any cluster.   
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VM re-assignment impact. The impact of re-assigning a VM vi from sx to sy is the the 

same as that described in Section 4.1, with the differences being that here (a) there are 

also other clusters within the system other than sx and sy, and (b) the distance between 

sx and sy may be more than one. The aforementioned impact is expressed by Eq.  13 and 

split into two components: 

 

1) The first component is the same as its counterpart depicted in Eq. 8, with the 

difference being that here the distance between the clusters hosting 

communicating VMs varies according to W. 

2) The second component is a little bit different against its counterpart depicted in 

Eq. 9. Here we take into account all of the servers within the system instead of 

only sx and sy. The above is because when deleting or creating a replica, there is 

an impact in network overhead regarding the VMs contained in the hyper-edge 

that involves the respective data object. 

 

 

𝐼′𝑖𝑥𝑦
𝑉𝑀 =∑∑𝑐𝑖𝑗

𝑆

𝑧=1

× 𝑓𝑗𝑧 × 𝑤𝑦𝑧

𝑉

𝑗=1

−∑∑𝑐𝑖𝑗

𝑆

𝑧=1

× 𝑓𝑗𝑧 × 𝑤𝑥𝑧

𝑉

𝑗=1

 Eq. 11 

𝐼′𝑖𝑥𝑦
𝐻 = ∑ ∑𝜆𝑘𝑧(𝐹

𝑛𝑒𝑤)

𝑆

𝑧=1

𝑉+𝐷

𝑘=𝑉+1

× 𝐻𝑖𝑘
𝑦
− ∑ ∑𝜆𝑘𝑧(𝐹

𝑜𝑙𝑑)

𝑆

𝑧=1

𝑉+𝐷

𝑘=𝑉+1

× 𝐻𝑖𝑘
𝑥

+ ∑ 𝛿(𝑑𝑘)

𝑉+𝐷

𝑘=𝑉+1

× 𝐻𝑖𝑘 × (1 − 𝑓𝑘𝑦
𝑜𝑙𝑑) × 𝜑𝜅𝜒(𝐹

𝑜𝑙𝑑) 

Eq. 12 

𝐼′𝑖𝑥𝑦
𝑇𝑜𝑡𝑎𝑙 = 𝐼𝑖𝑥𝑦

′𝑉𝑀 + 𝐼𝑖𝑥𝑦
′𝐻  

Eq. 13 
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5. Evaluation 

The experimental evaluation has been conducted on NS-2 [35]. Five different network 

topologies were generated with the number of clusters being fixed at 30. The networks 

are generating by placing randomly the nodes in a plane of 60×60 distance units. 

Clusters are assumed to be in range of each other if their Euclidean distance was less 

than ρ distance units (with ρ being uniformly distributed between 30 and 40). The 

corresponding tree-based routing topology is obtained by constructing a spanning tree, 

whereby each pair of clusters is connected via a single path. Ten different general-

structured application graphs were constructed, with the number of VMs ranging 

between 400 and 600 (uniformly distributed). The generation of application graphs 

takes place in the same way as that of network generation. The only difference is that 

we do not apply the part of applying the spanning tree.  

 

The evaluation was split into two parts. The first part involved clusters without 

computing and storage capacity constraints, while the second one took into 

consideration computing and storage capacity constraints on clusters. The comparison 

was conducted among HPA, DRA, and DBA. 

5.1 Uncapacitated Clusters  

The first set of experiments was conducted without considering computing and storage 

capacity constraints on clusters. It must be noted that HPA solves the initial VM 

placement problem, while DBA and DRA decide the transition from an old VM 

assignment scheme towards a new one. Therefore, for comparison reasons, we first 

assigned randomly the VMs onto clusters and then we applied DBA and DRA on top 

of the random VM assignment. On the other extreme, we executed HPA without 

needing an initial random VM assignment. It must be noted that the results were 

normalized according to the algorithm yielded the worst performance (i.e., DBA). As 

observed in Fig. 21, HPA achieves superior performance against DRA and DBA. 

Specifically, HPA achieves a network overhead reduction of 50% and 30% against 

DBA and DRA, respectively. The reason that DBA results in the worst performance is 

that for the decision of the VM migrations from an old assignment scheme to the new 
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one, it considers only single VM migrations. On the other hand, DRA takes into 

consideration the migration of VMs in a grouped manner resulting in better results 

against DBA. The superiority of HPA is attributed to the following facts: (a) HPA 

considers replicating data objects, with the VMs having the option to access those 

objects from any cluster holding their replicas. In that way, the network overhead can 

be significantly reduced since a cluster can access an object from the nearest cluster 

holding the replica of that object instead of accessing it from the cluster holding the 

initial replica of the respective object. And (b) the assignment of VMs takes place in a 

way such that the co-located VMs needing access to the same data object can share the 

transfer of the corresponding data. 

 

Figure 21. Network overhead 

 

5.2. Capacitated Clusters  

In this section, we conducted experiments for the comparison of HPA with DRA and 

DBA under computing and storage capacity constraints. Initially, the computing 

capacity of each cluster within the system was fixed to the amount of the total 

computing capacity requirements needed to host the VMs under a random VM initial 

assignment. The results were normalized according to the algorithm yielded the worst 

performance (i.e., DBA). In the first set of experiments, we varied the surplus 
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computing capacity of each cluster within the system from 10 to 50 VMs.  As we can 

see from Fig. 22, HPA achieves the best performance even when the surplus computing 

capacity of each cluster is tight.  Specifically, when the surplus computing capacity of 

each cluster equaled 10 VMs, HPA yielded a network overhead reduction of roughly 

7% and 4% against DBA and DRA, respectively. On the other extreme, when the 

surplus computing capacity of each cluster was relaxed, the HPA achieved a bigger 

network overhead reduction against DBA and DRA.  

Specifically, when the surplus computing capacity of each cluster was equal to 50, the 

network overhead reduction of HPA compared to DBA and DRA was 42% and 20%, 

respectively. 

 

Figure 22. Network overhead when varying surplus computing capacity of each 

cluster within the system. 

 

The second set of experiments was conducted to investigate the behavior of HPA 

when varying the storage capacity. Initially, the storage capacity of each cluster within 

the system was fixed to the amount of the total storage capacity requirements needed 

for hosting within the system the initial replica of all of the data objects. We varied the 

surplus storage capacity of each cluster from 10 to 30 data objects, with each of them 

having size equal to the average data object size. It is seen in Fig. 23 that the 

performance of DRA is stable against DBA when varying the surplus storage capacity. 
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The above is because DBA and DRA do not consider the replication of data objects. It 

is noteworthy to mention that the network overhead reduction of HPA against DBA and 

DRA was roughly equal to 35% and 11%, respectively, when the surplus storage 

capacity of each cluster was equal to 10 data objects. On the other extreme, the network 

overhead reduction of HPA against DBA and DRA was roughly equal to 49% and 30%, 

respectively, when the surplus storage capacity of each cluster was equal to 30 data 

objects.     

 

 

 

 

Figure 23. Network overhead when varying surplus storage capacity of each cluster 

within the system. 
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6. Related work 

The replica placement problem has been researched quite extensively, and a variety of 

problems definitions have been proposed [15]. In [6] client-replica distance is 

considered as the optimization target, whereas the primary goal of [31] is load 

balancing. Read access cost is the focus in [8] and [11], while [12] considers client 

traffic that includes both read and update requests. In [13] and [14] the authors tackle 

the problem of minimizing the network overhead during the transition from an old 

replica assignment scheme to a new one. On the other hand, ref. [27] and [28] tackle 

the problem of minimizing the time needed for the transition from an old replica 

assignment scheme to a new one. Other issues taken into account in conjunction with 

the replica placement problem formulations are server storage capacity [8] and [12], 

processing capacity [17] and bandwidth [6] to name a few. In this dissertation we have 

adopted a model similar to [8]. Although our problem definition is related with 

replicating data objects, it is quite different from the aforementioned problems since 

our problem combines replication and VM assignment on clusters.  

 

There are also interesting problems that are closely related to our work in the field of 

virtual machine (VM) placement [4]. The VM placement problem is addressed in [7], 

whereby the objective is to minimize the network congestion within the system. The 

same problem is also tackled in [1], with the objective being to minimize the maximum 

access latency between the communicating VMs. The dynamic service placement 

problem is tackled in [30], with the objective being to reduce the hosting cost over time 

according to both demand and resource price fluctuation. In [16] and [29], the authors 

target the VM placement problem with their objective being the same with that of our 

problem. A fully distributed algorithm is proposed in [19], called DBA, to solve the 

same problem tackled in this paper under the context of clouds. DBA works for general-

structured graphs and takes into account capacity constraints on nodes. The difference 

with our approach is that DBA does not consider migrating group of VMs, resulting in 

that way in sub-optimal placements. On the other hand, DRA ([25] and [26]) is an 

optimal fully distributed algorithm working also for general-structured application 

graphs and taking into consideration capacity constraints on nodes. 
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The problem is also related with the agent placement problem [18], [23], [24], [22], 

[20], and [21]. In the agent placement problem, the application is consisted of generic 

and non-generic agents. The generic agents are hosted by any node within the wireless 

sensor network, while the non-generic agents are hosted only by nodes that fulfill the 

sensing/actuating requirements of the respective agents. Therefore, a generic agent 

plays the role of a VM, while a non-generic agent plays the role of data object. 
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7. Conclusions and outlook 

In this thesis we have formulated the joint problem of replicating data objects and 

assigning the virtual machines onto clusters. An algorithm is proposed to solve the 

aforementioned problem that is based on hyper-graph partitioning. An extension of the 

algorithm has also been designed to tackle the problem when considering storage and 

computing capacity constraints on clusters. The proposed technique was compared to 

two state-of-the-art algorithms found in the literature, named DBA [19] and DRA [25]. 

The experimental evaluation showed that HPA can achieve a network overhead 

reduction of up to 50% and 30% against DBA and DRA, respectively. Our future 

directions include addressing the problem for the transition of an old replica and VM 

assignment scheme to a new one. We also plan to prove that HPA is optimal when there 

are no storage and capacity constraints on clusters. 
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Appendix-A 

The most important notations used in this thesis are summarized in the table below. 

Table 1 

Symbol Meaning 

M total number of servers 

N total number of objects  

iS  the ith server 

kO  the kth object 

)( iSs  storage capacity of iS  (in data units) 

)( kOs  size of kO  (in data units) 

ijl  communication cost (per data unit) between iS  and jS   

X, oldX , newX  The (old, new) replication matrix / placement 

kP  primary server of kO  

X
ikN  replicator of kO nearest to iS  in replica placement X 

ikr  read volume arriving at iS  for kO  

ikjT  transfer of kO  from iS  to 
jS  

ikD  deletion of kO  on iS  

H schedule of transfer/delete actions 

uH
C  cost of the uth action of schedule H 

',XX
HI  cost of a valid schedule H that leads from X to 

'X  

 

 


