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ABSTRACT

Although several virtual machine (VM) placement algorithms have been proposed and
studied in the literature, little research has been done so far on capturing and minimizing
the network overhead when combining the VM assignment problem on clusters with
the problem of replicating the files accessed by the VMs hosted within the system. We
also study the aforementioned problem when clusters have limited storage and
computing capacity. We propose an algorithm based on hyper-graph partitioning to
solve the aforementioned problem when there are no computing and storage capacity
constraints on clusters. The proposed algorithm is extended to capture the storage and
computing capacity constraints on clusters within the system. An experimental
evaluation is given to compare the behavior of the proposed algorithm. The results
shown that the proposed algorithm yields a network overhead reduction of up to 50%

compared to state-of-the-art algorithms found in the literature.



TIEPIAHYH

[Top’6Lo ov apketol adydpiBpotl tomobEétong weatdv unyavav (VM) éxovv tpotadel
Kot pere el o Pphoypageia, eAdylotn Epevva £xeL Yivel LEYPL OTIYUNG TAV® GTNV
AmOTUTMOY Kot ghaylotomoinon g emPdpovvong diktoov Otav cvvdvdlovpe To
npoPAnua avédbeong VM ce cvotddeg pe 1o mpdPAnuo TG aviypagns apyeiov mov
npoonelavvovtal amo Tic VM mov gtlo&evovvtal 6to chotnua. EmmAéov pehetovpe
10 poavaPePHEV TPOPANUO OTOV Ol GLGTAOEG £YOVV UEIWUEVT] XOPNTIKOTNTO KOt
vroAoyloTikn tKavotnta. Ilpoteivoope Evav adyopiBpo Paciopévo otn daipeor vrep-
YPAP®V Yoo Vo EMAVGOLUE TO TpoavapepBEV mPOPAnUa Otav deV  VIAPYOLV
TEPLOPIGLOTL VITOAOYIGTIKNG KOl YOPNTIKNG IKAVOTNTAG OTIG GVOTANES. O TPOTEWVOUEVOG
alyoplOpog emexktelvetol Yy vo KOAOWEL TOLG TEPLOPIGUOVE VTOAOYICTIKNG KO
YOPNTIKNG IKOVATNTOS TOV GLGTAO®MY GTO GUCTNUAL.AIVETL [0 TEPAUATIKY EKTIUNON
Y10, T} GLYKPIOT) TNG GUUTEPIPOPAG TOV TPOTEWVOUEVOL aAyOp1Bpov. Ta amotedéopata
delyvouv 0Tt 0 TPOTEWVOUEVOS aAYOP1OLOG amopépet peimon emPdpouvong OkTOov péypt
Kot 50% cvykprrkd pe adydpiBpovg tedevtaiog AEENG TG e vOoAOYiag Tov PpickovTon
ot Biproypapeia.
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1. Introduction and background

During the last decade, there have been many scientific projects generating enormous
amounts of data ranging from a few dozen terabytes to petabytes. Such is the case with
the Compact Muon Solenoid experiment [34] at CERN (European Organization for
Nuclear Research), the Human Genome Project [37] the Sloan Digital Sky Survey
experiment [40] and the Human Brain Project [39]. Besides the insatiable demands of
such scientific projects in data storage and management, there are also voracious
demands for computing resources by a huge number of scientific applications that need

to process the generated datasets.

Many data- and compute-intensive middleware solutions do exist in the literature,
namely, Hadoop [33], Apache HAMA [32], Stork [10], Pegasus [38], Swift [36] and
StorkCloud [9]. A general approach of those initiatives is to move computations close
to data. The above is corroborated by the Hadoop community [33] stating the following:
“A computation requested by an application is much more efficient if it is executed near
the data it operates on. HDFS provides interfaces for applications to move themselves

closer where the data is located. ”
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Figure 1. Application of VMs and their access to data objects

In the aforementioned example, there were no communication dependencies between
VMs. However, it is of paramount importance to also take into account communication
dependencies between VMs, because otherwise we may result in network and
application performance degradation. It is evident that when considering communication
between VMs, decisions for VM placement and data replication become more
complicated. The problem belongs to the NP-Complete class for general structured

networks, even when there are no decisions for replicating data [3].
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Figure 2. Application placement without replication

In this thesis, we address the problem of simultaneously taking VM placement and
replica placement decisions in tree-structured networks to reduce the overall network
overhead incurred due to the communication dependencies between VMs and data. The
reason that we focus in tree-structured networks is justified by the following: (a) It is
well known that Fat-tree topology is a network topology that has been widely adopted
in clouds [2]. (b) Elastic tree is also a network-wide optimizer that chooses a set of
network elements that must be active such that the network topology forms a tree [5].
It has been shown that elastic-tree can save up to 50% of network energy. Therefore, it
is evident the usefulness of algorithms working in tree-structured networks for cloud

environments.

The rest of this thesis is organized as follows. In Section 2, we describe our system
model, and give respective formulations of the problem we tackle. In Section 3, we give
an algorithm based on hyper-graph partitioning for solving the problem without
considering storage and computing capacity constraints on clusters. In Section 4, we
extend the proposed algorithm to solve the problem when considering computing and
storage capacity constraints on clusters. In Section 5 we evaluate the performance of
the proposed algorithm against state-of-the-art algorithms found in the literature. In
Section 6 we discuss related work. Finally, Section 7 concludes the thesis, identifies

open issues and points towards possible future research directions.
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2. System Model and Problem Formulation

This section is split into two parts. The first part includes the notations for the
description of application and network structures, while the second one extends the

notations for the formulation of the problem.

2.1 System model

The application is structured as a general graph with a number of V and D datasets. Let
vi and d; denote the i"" VM and j™ dataset, respectively. The size of j™ data object and
i VM (measured in bytes) is captured by o(d;) and J(vi), respectively. It must be noted
that each time a VM is needed to be migrated from one cluster to another one, we
transfer only its state to avoid redundant network overhead. Therefore, it is assumed
that each cluster is equipped with all of the VM types. The computing requirements of
i" VM is captured by r(vi). The data exchanged for the access of VMs to data objects is

(V+D)x(V+D)

encoded by a matrix C € Z;,

. Specifically, there are three cases for an entry
cij of C: (i) when both i and j are less than V+1, then cjj captures the data exchanged
between i and j" VM; (ii) when i is less than or equal to V (or more than V,
respectively) and j is more than V (or less than V+1, respectively), then cj; captures the
data transferred from d; towards vi (or from d; towards vj, respectively); and (iii) when
both i and j are more than V, then c;; is always zero because there is no communication

between datasets. We must note that C is symmetric.

The network is structured as a tree, with S being the number of clusters within the
system. Let s signify the x" cluster within the system, while rx denote the total
computing resources of sx. The distance between clusters is captured by a matrix W €
7355, Each entry of W is captured by wy, denoting the distance (measured in hops)

between sx and sy.
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2.2 Problem Formulation

Before proceeding to the problem formulation, we will extend the notations. The
placement of VMs and data on clusters is captured by an [(V+D)xS] matrix denoted by
F. Let fix whether the x™ cluster hosts the i" object (fix equals 1) or otherwise (fix equals
zero). If i is less than or equal to V, then the i™ object represents a VM, otherwise data.
Given a placement F, Eqg.1 captures the network overhead incurred within the system

due to the communication between VMs.

Let R(j) encode the clusters hosting replicas of j" data object. The variable ¢, j(captured
by Eq. 2) denotes the minimum distance among the distances between a cluster sy and
clusters hosting the j™ data object. Eq. 3 splits into two cases: () if a cluster sx hosts
one or more VMs that need access to j" data object, then the network overhead equals
the bytes of j data object multiplied by the distance between sy and the nearest cluster
hosting the j"" data object; (b) if a cluster sx does not host any VM needing access to j"
data object, then there is no network overhead. Eq. 4 signifies the total network

overhead due to the needs of VMs to access data.

v v § S (1)
Al(F) = ZZZZCU Xfix Xf}-y Xny
i=1j=1x=1y=1
)
(ka(F) - v;I/Ié}?rgj) ny
, ©)
(Zlilzlfix X Cige X x(F) .
2}/:1 fi Pk , min l,zﬁxcik =1
A (F) = 1%
l\ 0 ,min<1,;fixcik> ~0
ViD S @)
2= ) D Al
k=V+1x=1
®)
A(F) = A1(F) + A2(F)
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14 D (6)
Zfix X 6(v;) +ZfD+,-,x X 8(d;) <8(sy), 1<x<S
i=1 j=1

v (7)
Zfzx Xxr(W) S7(s,),1<x<S
i=1

The total network overhead within the network is captured by Eq. 5, which equals the
sum of Eq. 1, Eq. 4. The constraint expressed by Eq. 6 signifies that the total storage
space of a cluster cannot be exceeded by the sum of the storage requirements of data
and VMs hosted by the respected cluster. On the other hand, Eq. 7 denotes that the total
computing capacity of a cluster cannot be exceeded by the sum of the computing

requirements of VMs hosted by the respective cluster.

The problem is formally stated as follows: Given a set of VMs along with their
computing requirements, a set of data objects along with their initial assignment on
clusters, and a set of clusters along with their computing capacities, find an initial
assignment of VMs onto clusters as well as a data object replica scheme (recorded by
F) such that the total network overhead expressed by Eq. 5 is minimized while the

computing capacity constraints (Eq. 9 and Eq. 10, respectively) are not violated.
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3. Hypergraph Partitioning Algorithm without
Considering Storage and Computing Capacity
Constraints

Firstly, we will reduce the problem to a hypergraph partitioning problem. In the sequel,
to address the problem we will employ a hypergraph partitioning technique that is based

on the maximum flow problem.

3.1 Reducing the Problem to a Hypergraph Partitioning
Problem of two clusters

The application graph along with its access on data is transformed in a hyper-graph as
follows. For each data object, we find the set of VMs needing access on it. The
aforementioned set of VMs and the respective data object form a hyper-edge. The
weight of the hyper-edge equals the size of the corresponding data object. Such a weight
signifies the overhead that will be incurred within the network if the VMs belonging to
the respective hyper-edge are not co-located with the data object in question. The above
is justified by that fact that when splitting a hyper-edge into two parts, then the
corresponding data object must be replicated towards the side of VMs that are not co-
located with it. Each regular edge between two VMs denotes the data exchanged
between the VMs. When we split a regular edge or a hyper-edge, then the network
overhead is burdened by the weight of the respective edge. Therefore, by partitioning
(cutting) the graph into two parts, we result in a network overhead equaling the weight
of the cut in question. Such a partition encodes the VM assignment and data replication
onto two clusters. By finding the minimum cut, we result in an assignment of VMs as

well as a replication of data onto two clusters with the minimum network overhead.

The aforementioned is illustrated through the following example. Consider the
application shown in Fig. 3. The application consists of four VMs that access two
different data objects (d1, d2). An edge between a VM v; and data object d; denotes that
Vi needs to access dj. An edge between two VMs represents the exchange of data

between the respective VMs, with the weight of the edge signifying the size of data
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being exchanged. Consider also the network shown in Fig. 4 consisting of two clusters

(s1, S2), with s hosting d1, while sz hosting d>.

@ N

d,

80 MB

ds

140 MB

Figure 3. Application and data graph

Figure 4. Network graph

In the sequel, we find all of the hyper-edges within the application graph. The hyper-
edges are shown in Fig. 5. For each data object, we create a hyper-edge that contains
the respective data object, as well as the VMs needing access to the data object in
question. As stated in the preceding text, the weight of a hyper-edge signifies the least
overhead that will be incurred within the network if the VMs belonging to the respective
hyper-edge are not co-located with the data object in question. For example, when vs,
v4 and di are not co-located, then the network will be burdened with a network overhead
of 140 MB. For instance, consider the following three cases: (a) both vz and v4 are
placed on sz and the blue hyper-edge is split, with the network being burdened by 140
MB due to the replication of di on s2. Note that without replication and assuming that

v4 and vs access d; at different points in time, then va and vs must separately access data
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through a network connection incurring 280 MB (140 + 140); (b) vz is placed on s,
while vs on s, with the blue hyper-edge being split. Therefore, we can either replicate
d1 on sy, or we can assume that vs remotely accesses ds through a network connection,
with the network being burdened in both cases by 140 MB; (c) both vs and v are placed
on s1, whereby there will be no network overhead because both vz and v4 access locally
di.

hyper-edge of
hyper-edge of weight 80 MB
weight 140 MB

\140 MB/

—

Figure 5. Hyper-edges

Therefore, to minimize the network overhead, we must bi-partitioning the hyper-graph
shown in Fig. 5. The minimum cut is achieved by assigning all of the VMs on s1, and
then replicating di1 on si. The total network overhead of the above assignment becomes
80 MB. The above result is explained by the fact that the red hyper-edge is split,
incurring 80 MB within the network due to the replication of d2 on s1. The final VM
placement and data replicas are shown in Fig. 6. It must be stressed that by not applying
the concept of hyper-edges, then the partitioning of the application would be as follows.
The VMs vs and vz would have been assigned onto si1, while the rest ones onto s,
incurring a network overhead of 130 (80+50).
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Figure 6. Final VM placement and data replicas

3.2 Initial Assignment of VMs and Data Replicas

In this section we consider that the VMs have not been assigned to any cluster within
the system. Therefore we examine the initial VM placement as well as the data object
replicas. According to [2] the problem of hyper-graph bi-partitioning can be solved
optimally by reducing to the problem of finding a cut of minimum capacity. The
reduction of the problem takes place through the transformation of hyper-edges into

regular edges.

3.2.1. Hyper-edge transformation into a set of regular edges

Consider a hyper-edge e of weight w along with n vertices (us,..,un) participating in the
respective hyper-edge, then the hyper-edge can be transformed into a set of regular
edges as follows: (a) we add two auxiliary vertices (ux and uy) as well as a bridging edge
of weight w between them; (b) for each vertex u; belonging to e, we add two directed
edges of infinite weight. The first one originates from u; and ends on ux, while the

second one originates from uy and ends on ui.
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Figure 7. Hyper-edge of weight 80 with five vertices

An example is shown below where a hyper-edge consisting of five vertices and its
weight equaling 80 (Fig. 7) is transformed into a set of regular edges (Fig. 8). As can
be seen the weight of bridging edge between ux and uy equals 80, while the weight of

the remaining edges equals infinity.

Figure 8. Hyper-edge transformation

3.2.2 Solving the problem with two clusters

Given an application that needs access to some data objects hosted by two clusters, then
the VM placement and data replication problem is solved by employing the {s-t}
minimum cut algorithm as follows: (i) add two vertices s; and sz, representing the

corresponding two clusters; (ii) for each hyper-edge perform the transformation
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explained in the previous section, with the bridging edge equaling the size of the data
object (d;) belonging to the respective hyper-edge. Note that instead of using an abstract
name for the auxiliary vertex ux, we use the name of the data object (di) belonging to
the respective edge; (iii) add a directed edge of d(d;) weight originating from di’s
hosting cluster and ending on di, as well as an edge of infinite weight originating from
uy and ending on di’s hosting cluster; (iv) if there is any regular edge within the
application graph, then add this edge as is to the new resultant graph called minimum-
cut graph; (v) we apply on the resultant graph the maximum flow minimum cut
algorithm for undirected edges [2] , considering that s1 and s2 play the role of source
and terminal, respectively. Note that any undirected edge is transformed into a pair of
directed ones; (vi) the set of vertices that is reachable from s: in the resulting residual
network are assigned to si, while the rest ones are assigned on s;. The main concept
behind the minimum cut maximum flow algorithm is to obtain individual augmenting
paths that can be used to increment an existing flow. An augmenting path is a directed
path from source to sink that increases the existing flow. It must be noted that the
minimum cut is not affected by incorporating in the minimum cut graph regular edges

residing within hyper-edges.

Subsequently, we give an example to illustrate the aforementioned process. Consider
an application that needs to access two data objects (d: and d.). The application
structure and the access of the data by the VMs are shown in Fig. 5. As can be seen,
there are two hyper-edges of weight 140 and 80. Assume that there are two clusters (s1
and s2) that are directly connected, with di and d2 being hosted by s and sz, respectively.
According to step (i), we first add the vertices s; and s. Then, by following the hyper-
edge transformation procedure as stated earlier, the blue hyper-edge is transformed into
the set of vertices {d1, vy, V4, vs} with regular edges, while the red one is transformed
into the set of vertices {d2, v, v1, v3, va} with regular edges. Even though v4 belongs to
both hyper-edges, it does not appear twice in the minimum cut graph. Next, we add in
the graph the regular edges between VMs appearing in the application graph. Therefore,
we add an edge between vi and vs, as well as an edge between vz and v4. The resultant

minimum cut graph is shown in Fig. 9.
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Figure 9. Minimum cut graph

In the sequel, we apply the minimum cut maximum flow algorithm for undirected edges
and find that the minimum cut is achieved by removing the edge between v,  and d,
with the cost of cut being 80 MB. Specifically, we have chosen the augmenting path
{s1, d1, vy, Vs, d2, v,, S2} to increase the flow by 80 MB, resulting in the maximum flow.
According to the above augmenting path, the final residual graph is shown in Fig. 10.
From the final residual graph, we observe that the set of vertices that are reachable from
sy is {dy, d2, vy, V1, V3, V4, Vs}. Consequently, the only vertex that is reachable from s is
v,~. Therefore, all of the VMs are assigned on s, with d2 being replicated on s;. Note
that so continues hosting d2. By performing the aforementioned assignment of VMs and

data replicas, we result in a total network overhead of 80 MB.

Figure 10. Final residual graph
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3.2.3 Extending the solution to a tree of clusters

In this section we extend the aforementioned algorithm for the problem of two clusters
to a more general algorithm for a tree of clusters. The pseudocode of the extended
algorithm (called HPA) is shown in Table I. Below we give an explanation of the
pseudocode: (a) All of the clusters are marked as unexplored (line 1). In the sequel, a
cluster is randomly chosen and marked as explored (line 2). All of the VMs are
temporarily assigned on the aforementioned cluster (line 3). (b) Choose an unexplored
cluster s; that is 1-hop away from any explored cluster s; (line 4); (c) si is marked as
explored and a new minimum cut graph is drawn by adding si and s; (line 5-6). (d) For
each data object dx, identify the VMs hosted by s; and access dk (line 7). In case of
exactly one VM, draw a regular edge between the respective VM and either s; if di’s
hosting cluster is closer to s;, or otherwise s; (line 8-9). In case of more than one VM,
identify the respective hyper-edge and transform it into a set of regular edges as
explained in Section 3.2.1, with the vertex ux being declared as dk; add a directed edge
of o(dk) weight originating from either si provided that s; is closer to the dk’s hosting
cluster against s;j, or otherwise s;j, and ending on dk; add also an edge of infinite weight
originating from uy and ending on s; provided that s; is closer to the di’s hosting cluster
against s;j, otherwise on s;j (line 12-15). (e) For any edge e between a VM vg hosted by
sj and a VM vz not hosted by it, we draw an edge between vg and s; with the same
weight as that of e. The above is because if vg is assigned on s;, then it distances itself
away from v (line 18-20). (f) Apply the maximum flow minimum cut algorithm to
temporarily re-assign the VMs onto clusters as explained in Section 3.2.2 (line 21).
(9) If there is any vj accessing a dk, with the v; distancing itself away from the cluster
hosting the original copy of dx, replicate dk at the cluster hosting v; (line 22) The steps
from (b) to (g) are repeated until there is no unexplored cluster. (h) The last step is to
revoke a replication in case a decision has been made for replicating a data object dx

at a cluster s;, provided that there is no VM hosted by s; that accesses dk (line 24).

Table I. Pseudocode of HPA
mark all of the clusters as unexplored
choose randomly a cluster and mark it as explored
assign all of the VMs on the aforementioned cluster
for each unexplored cluster s; that is 1-hop away from any explored cluster s;
mark s; as explored
draw a new min-cut graph and add s; and ;
for each data object dx belonging to D

NogkRkwdnkE
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10:
11:
12:
13:
14.
15:
16:
17:
18:
19:
20:
21:
22.

23:
24:

identify a hyper-edge/regular edge e for dx considering only VMs assigned on s;
if e is a regular edge
draw an edge between the respective VM and si/s;
else
transform the hyper-edge into a set of regular edges as explained in §3.2.1
declare uy as dk
add a directed edge of infinite weight from si/s; towards dk
add a directed edge of infinite weight from uy, towards si/s;
end if
end for
for each edge e between a VM vg hosted by s; and a VM vt not hosted by it
draw an edge between vq and s; with the same weight as that of e
end for
apply max-flow min-cut algorithm to re-assign VMs according to §3.2.2
if there is any vj accessing a dx, with the v; distancing itself away from
the cluster hosting the original copy of dy, replicate dx at the cluster hosting vi.
end for
if there has been a decision for replicating d at si, but there is no VM hosted by s;
that accesses dx, then revoke the respective replication

To illustrate the functionality of HPA, we set forth the following example. Consider

an application, shown if Fig. 11, consisting of five VMs accessing three data objects

(d1, d2, and d3). As can be seen from Fig. 12, the network is consisted of three clusters

S1, S2, and sz hosting dy, do, and ds, respectively.

Figure 11. Application structure
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Figure 12. Network structure

The algorithm begins by marking all of the clusters as unexplored. In the sequel, it
marks randomly s; as explored and assigns all of the VMs onto si. Because s1 has sz
as the only one 1-hop neighbor, s is chosen and marked as explored. Initially, the
minimum cut graph is empty, with s1 and sz being added on it. Three hyper-edges are
identified regarding the objects di, d2, and ds (see Fig. 13).

hyper-edge of
hyper-edge of weight 80 MB  hyper-edge of
weight 140 MB / weight 220 MB

Figure 13. Hyper-edges identified when considering s: and s

The transformation of each hyper-edge into a set of regular edges takes place
according to Section 3.2.1. Because the hosting cluster of di and d. is s1 and sy,
respectively, an infinite edge is drawn from s; towards d: and another one from s
towards dz. On the other extreme, the hosting cluster of ds is closer to sz than si, as a

result an edge of infinite weight is draw from s; towards da.
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Since all of the VMs have been temporarily assigned on sz, the lines 18-20 are not

executed. The minimum cut graph that has been created is shown in Fig. 14.

terminal

source

Figure 14. Min-cut graph when considering s; and s,

After executing the maximum flow minimum cut algorithm regarding the graph of
Fig. 13, we result in the residual graph shown in Fig. 15. It is observed that the
minimum cut equals 90 (80+10), with the reachable set of vertices from s; being {d1,vy,
vs, V4, d2}. Therefore, vz and v4 are assigned onto s1, while d is replicated at s1. On the
other extreme, vi, V2, and vs are assigned onto sz, while there is no decision for
replicating ds at so. According to the line 22 of HPA, there is no decision for replicating
ds at s, because there is no VM accessing ds and distancing itself away from sz (the
host of the original copy of ds). The aforementioned assignment and replication
decisions are shown in Fig. 16. It must be noted that they are temporary because sz has

not been explored yet.
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Figure 15. Residual graph when considering s1 and s,

di| | dy
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Figure 16. Temporary VM assignments and data replications

In the sequel, s3 is the next (and last) cluster that is marked unexplored, which is 1-
hop away from s,. Considering the VMs hosted by s (which plays the role of s;j in the
pseudocode), two hyper-edges are identified shown in Fig. 17. The transformation of
each hyper-edge into a set of regular edges takes place according to Section 3.2.1.
Because the hosting cluster of d is sz, an infinite edge is drawn from s, towards do.
On the other extreme, the hosting cluster of ds is s3, as a result an edge of infinite
weight is draw from sz towards ds. Due to the fact that there exists an edge between v
(hosted by s2) and v4 (hosted by s1), an edge is drawn between v, and s2. The reason
we chose s; and not sz as the one end of the edge is that the hosting cluster of vs is
closer to s> than ss. The aforementioned are according to the lines 18-20 of HPA’s

pseudocode. The minimum cut graph is depicted in Fig. 18.
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hyper-edge of
weight 80 MB  hyper-edge of
S weight 220 MB

(=

Figure 18. Min-cut graph when considering sz and S3

By applying the minimum cut maximum flow algorithm for the graph shown in Fig.
18, we result in the residual graph depicted in Fig. 19. As can be seen, the minimum
cut equals 90 (80+10), with the reachable set of vertices from s, being {@}. As a result,
the set of vertices that are reachable from sz is {d2, vy, v1, V2, vs, v, d3}. Consequently,
the set of VMs {v1, vz, vs} is assigned onto sz, with d2 being replicated at s3. The final
VM assignments and data replications are shown in Fig. 20, with the total network
overhead being 180 MB. On the other extreme, by not exploiting the hyper-edge
partitioning technique with data replication and considering only regular edges, the

minimum cut algorithm would result in the following assignment.
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The VMs vz and v4 would have been assigned onto si, v2 onto sz, while vi and vs onto

s3. Such an assignment would incur a total network overhead of 250 MB.

Figure 19. Residual graph when considering sz and ss
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Figure 20. Final VM assignment and data replication
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4. Hypergraph Partitioning Algorithm when
Considering Storage and Computing Capacity
Constraints

This section discusses the extension of the algorithm proposed in Section 3 to consider
storage and capacity constraints.

4.1 Extending HPA for the Two Cluster Case when
Considering Capacity Constraints

In this section, the VM assignment and data object replication problem is solved for a
system consisting of two clusters (s1, S2). We assume that there is at least one
assignment of VMs onto clusters such that the computing capacity of both clusters is
not violated. Initially, the problem is solved in the same way as that described in Section
3.2.2. After resulting in the solution for the un-capacitated case, we perform the
following steps:

Step 1. If there is no storage capacity violation in any cluster within the system, then
the replication takes place as dictated by the solution for the un-capacitated case.
Otherwise, we replicate in an iterative fashion the object that its replication reduces the
network overhead as much as possible.

Step 2. The problem is solved again by replacing a hyper-edge with normal edges iff
its involved data object is not able to be replicated according to step 1. Specifically, the
replacement takes place as follows. For each VM participating in such a hyper-edge we
add a normal edge of weight equal to the involved data object between the respective
VM and the cluster hosting the corresponding data object. After obtaining the solution
of this step, we investigate whether any cluster’s computing capacity is violated when
performing the new assignment. When no violation takes place, the algorithm
terminates and the solution of this step is considered as the final solution. In case of

violation, step 3 takes place.
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Step 3. In this step, we assume that the computing capacity of the one cluster (let s1) is
violated under the VM assignment obtained in step 2. Note that there cannot be a case
where the computing capacity of both clusters is violated. The above is because of the
assumption that there is at least one VM assignment that does not violate the computing
capacity of both clusters. For each VM hosted by s: (according to the assignment
obtained from step 2), we calculate which is the impact in the network overhead if the
corresponding VM is re-assigned onto s,. (The calculation of the impact is described in
next paragraph). The VM re-assignment that burdens the system with the least network
overhead is decided to be performed. The aforementioned re-assignment process
iterates itself until either there is no violation of s1’s computing capacity or there is no
VM re-assignments that does not violate s»’s computing capacity. In case of violation
of s2’s computing capacity, we run knapsack twice as follows. In terms of the first
knapsack instance, knapsack plays the role of s, with its computing capacity reflecting
knapsack’s size. The set of VMs hosted by both s1 and s> plays the role of knapsack
objects, with their computing requirements representing the weight of knapsack objects.
The benefit of knapsack objects is assumed of one unit. Regarding the second knapsack
instance, knapsack plays the role of sy, while the knapsack objects that were not
assigned on first knapsack instance represent the knapsack objects of the second

knapsack instance.

VM re-assignment impact. The impact of re-assigning a VM v; from sy to sy is the
difference, in terms of network overhead, between hosting the corresponding VM on sx
and sy. The aforementioned impact is expressed by Eg. 11 and split into two

components:

1) The first component (expressed by Eq. 8) concerns the difference (when
assigning vi onto sy and sx) in network overhead due to the data exchanged
between vi and the VMs it communicates with. Note that F!¢ and F™*" captures
the placement before and after the re-assignment of vi from sy to sy. Therefore,
it holds that £3'¢ = 1 and f}° = 1.

2) The second component (expressed by Eq. 9) represents the difference (when

assigning vi onto Sy and sx) in network overhead due to the need of v; to access

the data involved in hyper-edges. The variable H;, equals one if v; is contained
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in the hyper-edge that involves dk, otherwise equals zero. Note that when
calculating the impact in network overhead when re-assigning vi from sy to sy
the following take place: (a) if H;, equals 1, vi was the only VM hosted by sx
that needed access to dk which was also hosted by sy, then d is deleted from s
(i.e., fi¥™ = 0); and (b) if H;;, equals 1 and sy has available storage capacity to

host dx, then sy will host dk (i.e., fi,” = 1).

|4 |4
IKCI;I:ZCU’X(l—fjgl,ew)—zcin(l—fjg}d Eq8
j=1 j=1
V+D V+D
Igy = Z Ay (F™Y) X Hy, — Z Aiex (FO'%) X Hy, + Eq.9
k=V+1 k=V+1
V+D
> 6 x Hy x (1 £
k=V+1
IRyt =105 + 13, Eq. 10

4.2. Extending HPA for the Tree Cluster Case when
Considering Capacity Constraints

In this section, the VM assignment and data object replication problem is solved for a
system consisting of N clusters structured as a tree. We assume that there is at least one
assignment of VMs onto clusters such that there is no violation in their computing
capacities. The procedure is identical with that of Section 4.1 up to step 2. Regarding
step 3 the following take place. For each cluster that its computing capacity is violated,
we attempt to find a re-assignment of its VMs towards other clusters such that its
computing capacity is not violated. Among all of the feasible hosts for the re-
assignment of a VM, we choose the one that burdens the system with the least network
overhead. The above process is iterated until there is no computing capacity violation
or there is no feasible VM re-assignment. In case of the former case, the algorithm
terminates. Otherwise, the knapsack is solved (for more information, the reader is
referred to Section 4.1 in step 3) between all possible cluster pairs until there is no

computing capacity violation in any cluster.
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VM re-assignment impact. The impact of re-assigning a VM v; from sx to sy is the the
same as that described in Section 4.1, with the differences being that here (a) there are
also other clusters within the system other than sy and sy, and (b) the distance between
sx and sy may be more than one. The aforementioned impact is expressed by Eq. 13 and

split into two components:

1) The first component is the same as its counterpart depicted in Eq. 8, with the
difference being that here the distance between the clusters hosting
communicating VMs varies according to W.

2) The second component is a little bit different against its counterpart depicted in
Eqg. 9. Here we take into account all of the servers within the system instead of
only sy and sy. The above is because when deleting or creating a replica, there is
an impact in network overhead regarding the VMs contained in the hyper-edge

that involves the respective data object.

o = zzcuxsznyZ zz%xszxwxz Eq. 11

j=1z= j=1z=

V+D V+D

I, = z lek (F™") x HY, Z Z/lk (Fo19) x HE, Eq. 12

k=V+1z= k=V+1z=
V+D

+ Z §(di) X Hye X (1= fig®) X @y (FO'4)

k=V+1

IlTotal — I’VM + I’H
ixy ixy ixy Eq. 13
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5. Evaluation

The experimental evaluation has been conducted on NS-2 [35]. Five different network
topologies were generated with the number of clusters being fixed at 30. The networks
are generating by placing randomly the nodes in a plane of 60x60 distance units.
Clusters are assumed to be in range of each other if their Euclidean distance was less
than p distance units (with p being uniformly distributed between 30 and 40). The
corresponding tree-based routing topology is obtained by constructing a spanning tree,
whereby each pair of clusters is connected via a single path. Ten different general-
structured application graphs were constructed, with the number of VMs ranging
between 400 and 600 (uniformly distributed). The generation of application graphs
takes place in the same way as that of network generation. The only difference is that

we do not apply the part of applying the spanning tree.

The evaluation was split into two parts. The first part involved clusters without
computing and storage capacity constraints, while the second one took into
consideration computing and storage capacity constraints on clusters. The comparison
was conducted among HPA, DRA, and DBA.

5.1 Uncapacitated Clusters

The first set of experiments was conducted without considering computing and storage
capacity constraints on clusters. It must be noted that HPA solves the initial VM
placement problem, while DBA and DRA decide the transition from an old VM
assignment scheme towards a new one. Therefore, for comparison reasons, we first
assigned randomly the VMs onto clusters and then we applied DBA and DRA on top
of the random VM assignment. On the other extreme, we executed HPA without
needing an initial random VM assignment. It must be noted that the results were
normalized according to the algorithm yielded the worst performance (i.e., DBA). As
observed in Fig. 21, HPA achieves superior performance against DRA and DBA.
Specifically, HPA achieves a network overhead reduction of 50% and 30% against
DBA and DRA, respectively. The reason that DBA results in the worst performance is

that for the decision of the VM migrations from an old assignment scheme to the new
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one, it considers only single VM migrations. On the other hand, DRA takes into
consideration the migration of VMs in a grouped manner resulting in better results
against DBA. The superiority of HPA is attributed to the following facts: (a) HPA
considers replicating data objects, with the VMs having the option to access those
objects from any cluster holding their replicas. In that way, the network overhead can
be significantly reduced since a cluster can access an object from the nearest cluster
holding the replica of that object instead of accessing it from the cluster holding the
initial replica of the respective object. And (b) the assignment of VMs takes place in a
way such that the co-located VMs needing access to the same data object can share the

transfer of the corresponding data.
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Figure 21. Network overhead

5.2. Capacitated Clusters

In this section, we conducted experiments for the comparison of HPA with DRA and
DBA under computing and storage capacity constraints. Initially, the computing
capacity of each cluster within the system was fixed to the amount of the total
computing capacity requirements needed to host the VMs under a random VM initial
assignment. The results were normalized according to the algorithm yielded the worst

performance (i.e., DBA). In the first set of experiments, we varied the surplus
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computing capacity of each cluster within the system from 10 to 50 VMs. As we can
see from Fig. 22, HPA achieves the best performance even when the surplus computing
capacity of each cluster is tight. Specifically, when the surplus computing capacity of
each cluster equaled 10 VMs, HPA yielded a network overhead reduction of roughly
7% and 4% against DBA and DRA, respectively. On the other extreme, when the
surplus computing capacity of each cluster was relaxed, the HPA achieved a bigger
network overhead reduction against DBA and DRA.

Specifically, when the surplus computing capacity of each cluster was equal to 50, the
network overhead reduction of HPA compared to DBA and DRA was 42% and 20%,

respectively.
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Figure 22. Network overhead when varying surplus computing capacity of each
cluster within the system.

The second set of experiments was conducted to investigate the behavior of HPA
when varying the storage capacity. Initially, the storage capacity of each cluster within
the system was fixed to the amount of the total storage capacity requirements needed
for hosting within the system the initial replica of all of the data objects. We varied the
surplus storage capacity of each cluster from 10 to 30 data objects, with each of them
having size equal to the average data object size. It is seen in Fig. 23 that the

performance of DRA is stable against DBA when varying the surplus storage capacity.
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The above is because DBA and DRA do not consider the replication of data objects. It
is noteworthy to mention that the network overhead reduction of HPA against DBA and
DRA was roughly equal to 35% and 11%, respectively, when the surplus storage
capacity of each cluster was equal to 10 data objects. On the other extreme, the network
overhead reduction of HPA against DBA and DRA was roughly equal to 49% and 30%,
respectively, when the surplus storage capacity of each cluster was equal to 30 data

objects.
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Figure 23. Network overhead when varying surplus storage capacity of each cluster
within the system.
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6. Related work

The replica placement problem has been researched quite extensively, and a variety of
problems definitions have been proposed [15]. In [6] client-replica distance is
considered as the optimization target, whereas the primary goal of [31] is load
balancing. Read access cost is the focus in [8] and [11], while [12] considers client
traffic that includes both read and update requests. In [13] and [14] the authors tackle
the problem of minimizing the network overhead during the transition from an old
replica assignment scheme to a new one. On the other hand, ref. [27] and [28] tackle
the problem of minimizing the time needed for the transition from an old replica
assignment scheme to a new one. Other issues taken into account in conjunction with
the replica placement problem formulations are server storage capacity [8] and [12],
processing capacity [17] and bandwidth [6] to name a few. In this dissertation we have
adopted a model similar to [8]. Although our problem definition is related with
replicating data objects, it is quite different from the aforementioned problems since

our problem combines replication and VM assignment on clusters.

There are also interesting problems that are closely related to our work in the field of
virtual machine (VM) placement [4]. The VM placement problem is addressed in [7],
whereby the objective is to minimize the network congestion within the system. The
same problem is also tackled in [1], with the objective being to minimize the maximum
access latency between the communicating VMs. The dynamic service placement
problem is tackled in [30], with the objective being to reduce the hosting cost over time
according to both demand and resource price fluctuation. In [16] and [29], the authors
target the VM placement problem with their objective being the same with that of our
problem. A fully distributed algorithm is proposed in [19], called DBA, to solve the
same problem tackled in this paper under the context of clouds. DBA works for general-
structured graphs and takes into account capacity constraints on nodes. The difference
with our approach is that DBA does not consider migrating group of VMs, resulting in
that way in sub-optimal placements. On the other hand, DRA ([25] and [26]) is an
optimal fully distributed algorithm working also for general-structured application

graphs and taking into consideration capacity constraints on nodes.
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The problem is also related with the agent placement problem [18], [23], [24], [22],
[20], and [21]. In the agent placement problem, the application is consisted of generic
and non-generic agents. The generic agents are hosted by any node within the wireless
sensor network, while the non-generic agents are hosted only by nodes that fulfill the
sensing/actuating requirements of the respective agents. Therefore, a generic agent

plays the role of a VM, while a non-generic agent plays the role of data object.
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7. Conclusions and outlook

In this thesis we have formulated the joint problem of replicating data objects and
assigning the virtual machines onto clusters. An algorithm is proposed to solve the
aforementioned problem that is based on hyper-graph partitioning. An extension of the
algorithm has also been designed to tackle the problem when considering storage and
computing capacity constraints on clusters. The proposed technique was compared to
two state-of-the-art algorithms found in the literature, named DBA [19] and DRA [25].
The experimental evaluation showed that HPA can achieve a network overhead
reduction of up to 50% and 30% against DBA and DRA, respectively. Our future
directions include addressing the problem for the transition of an old replica and VM
assignment scheme to a new one. We also plan to prove that HPA is optimal when there

are no storage and capacity constraints on clusters.
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Appendix-A

The most important notations used in this thesis are summarized in the table below.

Table 1

Symbol Meaning
M total number of servers
N total number of objects
S the ith server
O, the kth object
s(S;) storage capacity of S, (in data units)
s(O,) size of O, (in data units)
Iij communication cost (per data unit) between S; and S;
X, xold = xnew The (old, new) replication matrix / placement
P, primary server of O,
N replicator of O, nearestto S, in replica placement X
M read volume arriving at S; for O,
T transfer of O, from §; to S,
D, deletion of O, on S,

schedule of transfer/delete actions
c cost of the uth action of schedule H
I.Z('X' cost of a valid schedule H that leads from X to X'




