

Data Replication and Virtual Machine

Migrations to Minimize Network

Overhead
 (Moving data to computation or computations to data)

by Georgia Troumpoutza

and

Areti Mpachtsevani

 A dissertation submitted to the

University of Thessaly

in partial fulfillment to the requirements of the degree of

 Diploma of Science in

 Computer and Communication Engineering

Accepted on the recommendation of:

Advisor : Georgios Stamoulis, Professor

Co-Advisor: Athanasios Loukopoulos, Lecturer

 VOLOS, GREECE

 JULY 2015

Copyright © Georgia Troumpoutza and Areti Mpachtsevani, 2015

 “The copyright of this thesis rests with the authors. No quotations from it should be

 published without the authors’ prior written consent and information derived from

 it should be acknowledged”.

This page intentionally left blank

ACKNOWLEDGEMENTS

First and foremost I would like to thank my advisors, Dr. Georgios Stamoulis and Dr.

Athanasios Loukopoulos for the great collaboration and their guidance in all the time

of writing this thesis.

ABSTRACT

Although several virtual machine (VM) placement algorithms have been proposed and

studied in the literature, little research has been done so far on capturing and minimizing

the network overhead when combining the VM assignment problem on clusters with

the problem of replicating the files accessed by the VMs hosted within the system. We

also study the aforementioned problem when clusters have limited storage and

computing capacity. We propose an algorithm based on hyper-graph partitioning to

solve the aforementioned problem when there are no computing and storage capacity

constraints on clusters. The proposed algorithm is extended to capture the storage and

computing capacity constraints on clusters within the system. An experimental

evaluation is given to compare the behavior of the proposed algorithm. The results

shown that the proposed algorithm yields a network overhead reduction of up to 50%

compared to state-of-the-art algorithms found in the literature.

ΠΕΡΙΛΗΨΗ

Παρ’όλο που αρκετοί αλγόριθμοι τοποθέτησης ιδεατών μηχανών (VM) έχουν προταθεί

και μελετηθεί στη βιβλιογραφεία, ελάχιστη έρευνα έχει γίνει μέχρι στιγμής πάνω στην

αποτύπωση και ελαχιστοποίηση της επιβάρυνσης δικτύου όταν συνδυάζουμε το

πρόβλημα ανάθεσης VM σε συστάδες με το πρόβλημα της αντιγραφής αρχείων που

προσπελαύνονται απο τις VM που φιλοξενούνται στο σύστημα. Επιπλέον μελετούμε

το προαναφερθέν πρόβλημα όταν οι συστάδες έχουν μειωμένη χωρητικότητα και

υπολογιστική ικανότητα.Προτείνουμε έναν αλγόριθμο βασισμένο στη διαίρεση υπερ-

γράφων για να επιλύσουμε το προαναφερθέν πρόβλημα όταν δεν υπάρχουν

περιορισμοί υπολογιστικής και χωρητικής ικανότητας στις συστάδες.Ο προτεινόμενος

αλγόριθμος επεκτείνεται για να καλύψει τους περιορισμούς υπολογιστικής και

χωρητικής ικανότητας των συστάδων στο σύστημα.Δίνεται μια πειραματική εκτίμηση

για τη συγκριση της συμπεριφοράς του προτεινόμενου αλγόριθμου.Τα αποτελέσματα

δείχνουν οτι ο προτεινόμενος αλγόριθμος αποφέρει μείωση επιβάρυνσης δικτύου μέχρι

και 50% συγκριτικά με αλγόριθμους τελευταίας λέξης της τεχνολογίας που βρίσκονται

στη βιβλιογραφεία.

TABLE OF CONTENTS

1 Introduction and background ... 8

2 System Model and Problem Formulation .. 11

2.1 System model .. 11

2.2 Problem Formulation .. 12

3 Hypergraph Partitioning Algorithm without Considering Storage and Computing

Capacity Constraints ... 14

3.1 Reducing the Problem to a Hypergraph Partitioning Problem of two clusters . 14

3.2 Initial Assignment of VMs and Data Replicas .. 17

3.2.1 Hyper-edge transformation into a set of regular edges 17

3.2.2 Solving the problem with two clusters ... 18

3.2.3 Extending the solution to a tree of clusters ... 21

4 Hypergraph Partitioning Algorithm when Considering Storage and Computing Capacity

Constraints .. 28

4.1 Extending HPA for the Two Cluster Case when Considering Capacity

Constraints……………………………………………………………………………...28

4.2 Extending HPA for the Tree Cluster Case when Considering Capacity

Constraints…………………………………………………………………………….. 30

5 Evaluation .. 32

5.1 Uncapacitated Clusters .. 32

5.2 Capacitated Clusters .. 33

6 Related work .. 36

7 Conclusions and outlook.. 38

References .. 39

Appendix-A .. 42

8

1. Introduction and background

During the last decade, there have been many scientific projects generating enormous

amounts of data ranging from a few dozen terabytes to petabytes. Such is the case with

the Compact Muon Solenoid experiment [34] at CERN (European Organization for

Nuclear Research), the Human Genome Project [37] the Sloan Digital Sky Survey

experiment [40] and the Human Brain Project [39]. Besides the insatiable demands of

such scientific projects in data storage and management, there are also voracious

demands for computing resources by a huge number of scientific applications that need

to process the generated datasets.

Many data- and compute-intensive middleware solutions do exist in the literature,

namely, Hadoop [33], Apache HAMA [32], Stork [10], Pegasus [38], Swift [36] and

StorkCloud [9]. A general approach of those initiatives is to move computations close

to data. The above is corroborated by the Hadoop community [33] stating the following:

“A computation requested by an application is much more efficient if it is executed near

the data it operates on. HDFS provides interfaces for applications to move themselves

closer where the data is located.”

9

d1

d2

d3

900MB

400MB

500MB

Application

Set of VMs
needing access to

data objects d1
and d2

Figure 1. Application of VMs and their access to data objects

In the aforementioned example, there were no communication dependencies between

VMs. However, it is of paramount importance to also take into account communication

dependencies between VMs, because otherwise we may result in network and

application performance degradation. It is evident that when considering communication

between VMs, decisions for VM placement and data replication become more

complicated. The problem belongs to the NP-Complete class for general structured

networks, even when there are no decisions for replicating data [3].

10

s1 s2 s3 s4

d1d2 d3

Cluster Network link
between s1 and s2

Figure 2. Application placement without replication

In this thesis, we address the problem of simultaneously taking VM placement and

replica placement decisions in tree-structured networks to reduce the overall network

overhead incurred due to the communication dependencies between VMs and data. The

reason that we focus in tree-structured networks is justified by the following: (a) It is

well known that Fat-tree topology is a network topology that has been widely adopted

in clouds [2]. (b) Elastic tree is also a network-wide optimizer that chooses a set of

network elements that must be active such that the network topology forms a tree [5].

It has been shown that elastic-tree can save up to 50% of network energy. Therefore, it

is evident the usefulness of algorithms working in tree-structured networks for cloud

environments.

The rest of this thesis is organized as follows. In Section 2, we describe our system

model, and give respective formulations of the problem we tackle. In Section 3, we give

an algorithm based on hyper-graph partitioning for solving the problem without

considering storage and computing capacity constraints on clusters. In Section 4, we

extend the proposed algorithm to solve the problem when considering computing and

storage capacity constraints on clusters. In Section 5 we evaluate the performance of

the proposed algorithm against state-of-the-art algorithms found in the literature. In

Section 6 we discuss related work. Finally, Section 7 concludes the thesis, identifies

open issues and points towards possible future research directions.

11

2. System Model and Problem Formulation

This section is split into two parts. The first part includes the notations for the

description of application and network structures, while the second one extends the

notations for the formulation of the problem.

 2.1 System model

The application is structured as a general graph with a number of V and D datasets. Let

vi and dj denote the ith VM and jth dataset, respectively. The size of jth data object and

ith VM (measured in bytes) is captured by δ(dj) and δ(vi), respectively. It must be noted

that each time a VM is needed to be migrated from one cluster to another one, we

transfer only its state to avoid redundant network overhead. Therefore, it is assumed

that each cluster is equipped with all of the VM types. The computing requirements of

ith VM is captured by r(vi). The data exchanged for the access of VMs to data objects is

encoded by a matrix 𝐶 ∈ 𝑍≥0
(𝑉+𝐷)×(𝑉+𝐷)

. Specifically, there are three cases for an entry

cij of C: (i) when both i and j are less than V+1, then cij captures the data exchanged

between ith and jth VM; (ii) when i is less than or equal to V (or more than V,

respectively) and j is more than V (or less than V+1, respectively), then cij captures the

data transferred from dj towards vi (or from di towards vj, respectively); and (iii) when

both i and j are more than V, then cij is always zero because there is no communication

between datasets. We must note that C is symmetric.

The network is structured as a tree, with S being the number of clusters within the

system. Let sx signify the xth cluster within the system, while rx denote the total

computing resources of sx. The distance between clusters is captured by a matrix 𝑊 ∈

𝑍≥0
𝑆×𝑆. Each entry of W is captured by wxy denoting the distance (measured in hops)

between sx and sy.

12

2.2 Problem Formulation

Before proceeding to the problem formulation, we will extend the notations. The

placement of VMs and data on clusters is captured by an [(V+D)×S] matrix denoted by

F. Let fix whether the xth cluster hosts the ith object (fix equals 1) or otherwise (fix equals

zero). If i is less than or equal to V, then the ith object represents a VM, otherwise data.

Given a placement 𝐹, Eq.1 captures the network overhead incurred within the system

due to the communication between VMs.

Let R(j) encode the clusters hosting replicas of jth data object. The variable 𝜑𝑥𝑗(captured

by Eq. 2) denotes the minimum distance among the distances between a cluster sx and

clusters hosting the jth data object. Eq. 3 splits into two cases: (a) if a cluster sx hosts

one or more VMs that need access to jth data object, then the network overhead equals

the bytes of jth data object multiplied by the distance between sx and the nearest cluster

hosting the jth data object; (b) if a cluster sx does not host any VM needing access to jth

data object, then there is no network overhead. Eq. 4 signifies the total network

overhead due to the needs of VMs to access data.

𝛥1(𝐹) =∑∑∑∑𝑐𝑖𝑗 ×

𝑆

𝑦=1

𝑓𝑖𝑥 × 𝑓𝑗𝑦 × 𝑤𝑥𝑦

𝑆

𝑥=1

𝑉

𝑗=1

𝑉

𝑖=1

(1)

𝜑𝑘𝑥(𝐹) = min
∀𝑦∈𝑅(𝑗)

𝑤𝑥𝑦
(2)

𝜆𝑘𝑥(𝐹) =

{

 ∑ 𝑓𝑖𝑥 × 𝑐𝑖𝜅 × 𝜑𝑘𝑥(𝐹)

𝑉
𝑖=1

∑ 𝑓𝑖𝜒
𝑉
𝑖=1

, 𝑚𝑖𝑛 (1,∑𝑓𝑖𝑥𝑐𝑖𝑘

𝑉

𝑖=1

) = 1

0 , 𝑚𝑖𝑛 (1,∑𝑓𝑖𝑥

𝑉

𝑖=1

𝑐𝑖𝑘) = 0

(3)

𝛥2(𝐹) = ∑ ∑𝜆𝑘𝑥(𝐹)

𝑆

𝑥=1

𝑉+𝐷

𝑘=𝑉+1

(4)

𝛥(𝐹) = 𝛥1(𝐹) + 𝛥2(𝐹)
(5)

13

The total network overhead within the network is captured by Eq. 5, which equals the

sum of Eq. 1, Eq. 4. The constraint expressed by Eq. 6 signifies that the total storage

space of a cluster cannot be exceeded by the sum of the storage requirements of data

and VMs hosted by the respected cluster. On the other hand, Eq. 7 denotes that the total

computing capacity of a cluster cannot be exceeded by the sum of the computing

requirements of VMs hosted by the respective cluster.

The problem is formally stated as follows: Given a set of VMs along with their

computing requirements, a set of data objects along with their initial assignment on

clusters, and a set of clusters along with their computing capacities, find an initial

assignment of VMs onto clusters as well as a data object replica scheme (recorded by

F) such that the total network overhead expressed by Eq. 5 is minimized while the

computing capacity constraints (Eq. 9 and Eq. 10, respectively) are not violated.

∑𝑓𝑖𝑥 × 𝛿(𝑣𝑖) +

𝑉

𝑖=1

∑𝑓𝐷+𝑗,𝑥 × 𝛿(𝑑𝑗) ≤ 𝛿(𝑠𝑥)

𝐷

𝑗=1

, 1 ≤ 𝑥 ≤ 𝑆

(6)

∑𝑓𝑖𝑥 × 𝑟(𝑣𝑖) ≤ 𝑟(𝑠𝑥)

𝑉

𝑖=1

, 1 ≤ 𝑥 ≤ 𝑆

(7)

14

3. Hypergraph Partitioning Algorithm without

Considering Storage and Computing Capacity

Constraints

Firstly, we will reduce the problem to a hypergraph partitioning problem. In the sequel,

to address the problem we will employ a hypergraph partitioning technique that is based

on the maximum flow problem.

3.1 Reducing the Problem to a Hypergraph Partitioning

Problem of two clusters

The application graph along with its access on data is transformed in a hyper-graph as

follows. For each data object, we find the set of VMs needing access on it. The

aforementioned set of VMs and the respective data object form a hyper-edge. The

weight of the hyper-edge equals the size of the corresponding data object. Such a weight

signifies the overhead that will be incurred within the network if the VMs belonging to

the respective hyper-edge are not co-located with the data object in question. The above

is justified by that fact that when splitting a hyper-edge into two parts, then the

corresponding data object must be replicated towards the side of VMs that are not co-

located with it. Each regular edge between two VMs denotes the data exchanged

between the VMs. When we split a regular edge or a hyper-edge, then the network

overhead is burdened by the weight of the respective edge. Therefore, by partitioning

(cutting) the graph into two parts, we result in a network overhead equaling the weight

of the cut in question. Such a partition encodes the VM assignment and data replication

onto two clusters. By finding the minimum cut, we result in an assignment of VMs as

well as a replication of data onto two clusters with the minimum network overhead.

The aforementioned is illustrated through the following example. Consider the

application shown in Fig. 3. The application consists of four VMs that access two

different data objects (d1, d2). An edge between a VM vi and data object dj denotes that

vi needs to access dj. An edge between two VMs represents the exchange of data

between the respective VMs, with the weight of the edge signifying the size of data

15

being exchanged. Consider also the network shown in Fig. 4 consisting of two clusters

(s1, s2), with s1 hosting d1, while s2 hosting d2.

v1

v2

d2

80 MB

v3v4

d1

140 MB

Figure 3. Application and data graph

s1 s2

d2d1

Figure 4. Network graph

In the sequel, we find all of the hyper-edges within the application graph. The hyper-

edges are shown in Fig. 5. For each data object, we create a hyper-edge that contains

the respective data object, as well as the VMs needing access to the data object in

question. As stated in the preceding text, the weight of a hyper-edge signifies the least

overhead that will be incurred within the network if the VMs belonging to the respective

hyper-edge are not co-located with the data object in question. For example, when v3,

v4, and d1 are not co-located, then the network will be burdened with a network overhead

of 140 MB. For instance, consider the following three cases: (a) both v3 and v4 are

placed on s2 and the blue hyper-edge is split, with the network being burdened by 140

MB due to the replication of d1 on s2. Note that without replication and assuming that

v4 and v5 access d1 at different points in time, then v4 and v5 must separately access data

16

through a network connection incurring 280 MB (140 + 140); (b) v3 is placed on s2,

while v4 on s1, with the blue hyper-edge being split. Therefore, we can either replicate

d1 on s2, or we can assume that v3 remotely accesses d3 through a network connection,

with the network being burdened in both cases by 140 MB; (c) both v3 and v4 are placed

on s1, whereby there will be no network overhead because both v3 and v4 access locally

d1.

Therefore, to minimize the network overhead, we must bi-partitioning the hyper-graph

shown in Fig. 5. The minimum cut is achieved by assigning all of the VMs on s1, and

then replicating d1 on s1. The total network overhead of the above assignment becomes

80 MB. The above result is explained by the fact that the red hyper-edge is split,

incurring 80 MB within the network due to the replication of d2 on s1. The final VM

placement and data replicas are shown in Fig. 6. It must be stressed that by not applying

the concept of hyper-edges, then the partitioning of the application would be as follows.

The VMs v4 and v3 would have been assigned onto s1, while the rest ones onto s2,

incurring a network overhead of 130 (80+50).

v1

v2

d2

80 MB

hyper-edge of
weight 80 MB

v3v4

d1

140 MB

hyper-edge of
weight 140 MB

Figure 5. Hyper-edges

17

s1 s2

d1

v4v3
v2

v1

d2d2

Figure 6. Final VM placement and data replicas

3.2 Initial Assignment of VMs and Data Replicas

In this section we consider that the VMs have not been assigned to any cluster within

the system. Therefore we examine the initial VM placement as well as the data object

replicas. According to [2] the problem of hyper-graph bi-partitioning can be solved

optimally by reducing to the problem of finding a cut of minimum capacity. The

reduction of the problem takes place through the transformation of hyper-edges into

regular edges.

3.2.1. Hyper-edge transformation into a set of regular edges

Consider a hyper-edge e of weight w along with n vertices (u1,..,un) participating in the

respective hyper-edge, then the hyper-edge can be transformed into a set of regular

edges as follows: (a) we add two auxiliary vertices (ux and uy) as well as a bridging edge

of weight w between them; (b) for each vertex ui belonging to e, we add two directed

edges of infinite weight. The first one originates from ui and ends on ux, while the

second one originates from uy and ends on ui.

18

An example is shown below where a hyper-edge consisting of five vertices and its

weight equaling 80 (Fig. 7) is transformed into a set of regular edges (Fig. 8). As can

be seen the weight of bridging edge between ux and uy equals 80, while the weight of

the remaining edges equals infinity.

u2

u3

u1

u4

u5

ux uy
80

∞ ∞

∞

∞

∞

∞

∞
∞

∞

∞

Figure 8. Hyper-edge transformation

3.2.2 Solving the problem with two clusters

Given an application that needs access to some data objects hosted by two clusters, then

the VM placement and data replication problem is solved by employing the {s-t}

minimum cut algorithm as follows: (i) add two vertices s1 and s2, representing the

corresponding two clusters; (ii) for each hyper-edge perform the transformation

u1

u3

hyper-edge of
weight 80

u2

u4

u5

Figure 7. Hyper-edge of weight 80 with five vertices

19

explained in the previous section, with the bridging edge equaling the size of the data

object (di) belonging to the respective hyper-edge. Note that instead of using an abstract

name for the auxiliary vertex ux, we use the name of the data object (di) belonging to

the respective edge; (iii) add a directed edge of δ(di) weight originating from di’s

hosting cluster and ending on di, as well as an edge of infinite weight originating from

uy and ending on di’s hosting cluster; (iv) if there is any regular edge within the

application graph, then add this edge as is to the new resultant graph called minimum-

cut graph; (v) we apply on the resultant graph the maximum flow minimum cut

algorithm for undirected edges [2] , considering that s1 and s2 play the role of source

and terminal, respectively. Note that any undirected edge is transformed into a pair of

directed ones; (vi) the set of vertices that is reachable from s1 in the resulting residual

network are assigned to s1, while the rest ones are assigned on s2. The main concept

behind the minimum cut maximum flow algorithm is to obtain individual augmenting

paths that can be used to increment an existing flow. An augmenting path is a directed

path from source to sink that increases the existing flow. It must be noted that the

minimum cut is not affected by incorporating in the minimum cut graph regular edges

residing within hyper-edges.

Subsequently, we give an example to illustrate the aforementioned process. Consider

an application that needs to access two data objects (d1 and d2). The application

structure and the access of the data by the VMs are shown in Fig. 5. As can be seen,

there are two hyper-edges of weight 140 and 80. Assume that there are two clusters (s1

and s2) that are directly connected, with d1 and d2 being hosted by s1 and s2, respectively.

According to step (i), we first add the vertices s1 and s2. Then, by following the hyper-

edge transformation procedure as stated earlier, the blue hyper-edge is transformed into

the set of vertices {d1, vy, v4, v5} with regular edges, while the red one is transformed

into the set of vertices {d2, vy’, v1, v3, v4} with regular edges. Even though v4 belongs to

both hyper-edges, it does not appear twice in the minimum cut graph. Next, we add in

the graph the regular edges between VMs appearing in the application graph. Therefore,

we add an edge between v1 and v3, as well as an edge between v3 and v4. The resultant

minimum cut graph is shown in Fig. 9.

20

In the sequel, we apply the minimum cut maximum flow algorithm for undirected edges

and find that the minimum cut is achieved by removing the edge between vy’ and d2,

with the cost of cut being 80 MB. Specifically, we have chosen the augmenting path

{s1, d1, vy, v4, d2, vy’, s2} to increase the flow by 80 MB, resulting in the maximum flow.

According to the above augmenting path, the final residual graph is shown in Fig. 10.

From the final residual graph, we observe that the set of vertices that are reachable from

s1 is {d1, d2, vy, v1, v3, v4, v5}. Consequently, the only vertex that is reachable from s1 is

vy’. Therefore, all of the VMs are assigned on s1, with d2 being replicated on s1. Note

that s2 continues hosting d2. By performing the aforementioned assignment of VMs and

data replicas, we result in a total network overhead of 80 MB.

s1

v3

v4

d1 vy
140

∞

∞

∞

∞

∞

140 s2d2

v1

vy'
80v2

8050

1

∞

∞

∞

∞

∞

∞
∞ source terminal

Figure 9. Minimum cut graph

s1

v3

v4

d1 vy
60

∞

∞

∞

∞

∞

60
s2d2

v1

vy' 80
v2

8050

1

∞

∞

∞

∞

∞

∞
∞

220220

60

80

80

Figure 10. Final residual graph

21

3.2.3 Extending the solution to a tree of clusters

In this section we extend the aforementioned algorithm for the problem of two clusters

to a more general algorithm for a tree of clusters. The pseudocode of the extended

algorithm (called HPA) is shown in Table I. Below we give an explanation of the

pseudocode: (a) All of the clusters are marked as unexplored (line 1). In the sequel, a

cluster is randomly chosen and marked as explored (line 2). All of the VMs are

temporarily assigned on the aforementioned cluster (line 3). (b) Choose an unexplored

cluster si that is 1-hop away from any explored cluster sj (line 4); (c) si is marked as

explored and a new minimum cut graph is drawn by adding si and sj (line 5-6). (d) For

each data object dk, identify the VMs hosted by sj and access dk (line 7). In case of

exactly one VM, draw a regular edge between the respective VM and either si if dk’s

hosting cluster is closer to si, or otherwise sj (line 8-9). In case of more than one VM,

identify the respective hyper-edge and transform it into a set of regular edges as

explained in Section 3.2.1, with the vertex ux being declared as dk; add a directed edge

of δ(dk) weight originating from either si provided that si is closer to the dk’s hosting

cluster against sj, or otherwise sj, and ending on dk; add also an edge of infinite weight

originating from uy and ending on si provided that si is closer to the di’s hosting cluster

against sj, otherwise on sj (line 12-15). (e) For any edge e between a VM vg hosted by

sj and a VM vf not hosted by it, we draw an edge between vg and sj’ with the same

weight as that of e. The above is because if vg is assigned on si, then it distances itself

away from vf (line 18-20). (f) Apply the maximum flow minimum cut algorithm to

temporarily re-assign the VMs onto clusters as explained in Section 3.2.2 (line 21).

(g) If there is any vi accessing a dk, with the vi distancing itself away from the cluster

hosting the original copy of dk, replicate dk at the cluster hosting vi (line 22) The steps

from (b) to (g) are repeated until there is no unexplored cluster. (h) The last step is to

revoke a replication in case a decision has been made for replicating a data object dk

at a cluster si, provided that there is no VM hosted by si that accesses dk (line 24).

Table I. Pseudocode of HPA

1:

2:

3:

4:

5:

6:

7:

mark all of the clusters as unexplored

choose randomly a cluster and mark it as explored

assign all of the VMs on the aforementioned cluster

for each unexplored cluster si that is 1-hop away from any explored cluster sj

 mark si as explored

 draw a new min-cut graph and add si and sj

 for each data object dk belonging to D

22

To illustrate the functionality of HPA, we set forth the following example. Consider

an application, shown if Fig. 11, consisting of five VMs accessing three data objects

(d1, d2, and d3). As can be seen from Fig. 12, the network is consisted of three clusters

s1, s2, and s3 hosting d1, d2, and d3, respectively.

v1 v5

d1

v2

d2

80 MB

220 MB

v3v4

d3

140 MB

Figure 11. Application structure

8:

9:

10:

11:

12:

13:

14:

15:

16:

17:

18:

19:

20:

21:

22:

23:

24:

 identify a hyper-edge/regular edge e for dk considering only VMs assigned on sj

 if e is a regular edge

 draw an edge between the respective VM and si/sj

 else

 transform the hyper-edge into a set of regular edges as explained in §3.2.1

 declare ux as dk

 add a directed edge of infinite weight from si/sj towards dk

 add a directed edge of infinite weight from uy towards si/sj

 end if

 end for

 for each edge e between a VM vg hosted by sj and a VM vf not hosted by it

 draw an edge between vg and sj with the same weight as that of e

 end for

 apply max-flow min-cut algorithm to re-assign VMs according to §3.2.2

 if there is any vi accessing a dk, with the vi distancing itself away from

 the cluster hosting the original copy of dk, replicate dk at the cluster hosting vi.

end for

if there has been a decision for replicating dk at si, but there is no VM hosted by si

that accesses dk, then revoke the respective replication

23

s1 s2

d2d1 d3

s3

Figure 12. Network structure

The algorithm begins by marking all of the clusters as unexplored. In the sequel, it

marks randomly s1 as explored and assigns all of the VMs onto s1. Because s1 has s2

as the only one 1-hop neighbor, s2 is chosen and marked as explored. Initially, the

minimum cut graph is empty, with s1 and s2 being added on it. Three hyper-edges are

identified regarding the objects d1, d2, and d3 (see Fig. 13).

v1 v5

d3

v2

d2

80 MB

220 MB

hyper-edge of
weight 80 MB hyper-edge of

weight 220 MB

v4v5

d1

140 MB

hyper-edge of
weight 140 MB

Figure 13. Hyper-edges identified when considering s1 and s2

The transformation of each hyper-edge into a set of regular edges takes place

according to Section 3.2.1. Because the hosting cluster of d1 and d2 is s1 and s2,

respectively, an infinite edge is drawn from s1 towards d1 and another one from s2

towards d2. On the other extreme, the hosting cluster of d3 is closer to s2 than s1, as a

result an edge of infinite weight is draw from s2 towards d3.

24

Since all of the VMs have been temporarily assigned on s1, the lines 18-20 are not

executed. The minimum cut graph that has been created is shown in Fig. 14.

s1

v3

v4

d1 vy
140

∞
∞

140 s2d2

v1

vy'
80v2

80 10

40

∞

∞

∞

∞

∞
∞

d3
vy''

∞

v5
∞

∞

source terminal

Figure 14. Min-cut graph when considering s1 and s2

After executing the maximum flow minimum cut algorithm regarding the graph of

Fig. 13, we result in the residual graph shown in Fig. 15. It is observed that the

minimum cut equals 90 (80+10), with the reachable set of vertices from s1 being {d1,vy,

v3, v4, d2}. Therefore, v3 and v4 are assigned onto s1, while d2 is replicated at s1. On the

other extreme, v1, v2, and v5 are assigned onto s2, while there is no decision for

replicating d3 at s2. According to the line 22 of HPA, there is no decision for replicating

d3 at s2, because there is no VM accessing d3 and distancing itself away from s3 (the

host of the original copy of d3). The aforementioned assignment and replication

decisions are shown in Fig. 16. It must be noted that they are temporary because s3 has

not been explored yet.

25

s1

v3

v4

d1 vy
50

∞
∞

50 s2d2

v1

vy'
160v2

80

40

∞

∞ ∞

∞

∞
∞

d3
vy''

∞

v5
∞

∞

90 230

80

80

40

Figure 15. Residual graph when considering s1 and s2

s1 s2

d1 d2

v5v4 v3
v2

v1

d2

s3

d3

Figure 16. Temporary VM assignments and data replications

In the sequel, s3 is the next (and last) cluster that is marked unexplored, which is 1-

hop away from s2. Considering the VMs hosted by s2 (which plays the role of sj in the

pseudocode), two hyper-edges are identified shown in Fig. 17. The transformation of

each hyper-edge into a set of regular edges takes place according to Section 3.2.1.

Because the hosting cluster of d2 is s2, an infinite edge is drawn from s2 towards d2.

On the other extreme, the hosting cluster of d3 is s3, as a result an edge of infinite

weight is draw from s3 towards d3. Due to the fact that there exists an edge between v2

(hosted by s2) and v4 (hosted by s1), an edge is drawn between v2 and s2. The reason

we chose s2 and not s3 as the one end of the edge is that the hosting cluster of v4 is

closer to s2 than s3. The aforementioned are according to the lines 18-20 of HPA’s

pseudocode. The minimum cut graph is depicted in Fig. 18.

26

v1 v5

d3

v2

d2

80 MB

220 MB

hyper-edge of
weight 80 MB hyper-edge of

weight 220 MB

Figure 17. Hyper-edges identified when considering s2 and s3

s2

v1

v2

d2 vy
80

∞

∞

∞

∞

80 s3d3vy'
220v5

220∞

∞

∞

∞
∞

1

50

source terminal

Figure 18. Min-cut graph when considering s2 and s3

By applying the minimum cut maximum flow algorithm for the graph shown in Fig.

18, we result in the residual graph depicted in Fig. 19. As can be seen, the minimum

cut equals 90 (80+10), with the reachable set of vertices from s2 being {∅}. As a result,

the set of vertices that are reachable from s3 is {d2, vy, v1, v2, v5, vy’, d3}. Consequently,

the set of VMs {v1, v2, v5} is assigned onto s3, with d2 being replicated at s3. The final

VM assignments and data replications are shown in Fig. 20, with the total network

overhead being 180 MB. On the other extreme, by not exploiting the hyper-edge

partitioning technique with data replication and considering only regular edges, the

minimum cut algorithm would result in the following assignment.

27

The VMs v3 and v4 would have been assigned onto s1, v2 onto s2, while v1 and v5 onto

s3. Such an assignment would incur a total network overhead of 250 MB.

s2

v1

v2

d2 vy
160

∞

80 s3d3vy'
310

v5
220∞

∞

∞

∞
∞

40

20

13040

Figure 19. Residual graph when considering s2 and s3

s1 s2

d1 d2

v5v4

d2

s3

d3

v3
v2

v1

d2

Figure 20. Final VM assignment and data replication

28

4. Hypergraph Partitioning Algorithm when

Considering Storage and Computing Capacity

Constraints

This section discusses the extension of the algorithm proposed in Section 3 to consider

storage and capacity constraints.

4.1 Extending HPA for the Two Cluster Case when

Considering Capacity Constraints

In this section, the VM assignment and data object replication problem is solved for a

system consisting of two clusters (s1, s2). We assume that there is at least one

assignment of VMs onto clusters such that the computing capacity of both clusters is

not violated. Initially, the problem is solved in the same way as that described in Section

3.2.2. After resulting in the solution for the un-capacitated case, we perform the

following steps:

Step 1. If there is no storage capacity violation in any cluster within the system, then

the replication takes place as dictated by the solution for the un-capacitated case.

Otherwise, we replicate in an iterative fashion the object that its replication reduces the

network overhead as much as possible.

Step 2. The problem is solved again by replacing a hyper-edge with normal edges iff

its involved data object is not able to be replicated according to step 1. Specifically, the

replacement takes place as follows. For each VM participating in such a hyper-edge we

add a normal edge of weight equal to the involved data object between the respective

VM and the cluster hosting the corresponding data object. After obtaining the solution

of this step, we investigate whether any cluster’s computing capacity is violated when

performing the new assignment. When no violation takes place, the algorithm

terminates and the solution of this step is considered as the final solution. In case of

violation, step 3 takes place.

29

Step 3. In this step, we assume that the computing capacity of the one cluster (let s1) is

violated under the VM assignment obtained in step 2. Note that there cannot be a case

where the computing capacity of both clusters is violated. The above is because of the

assumption that there is at least one VM assignment that does not violate the computing

capacity of both clusters. For each VM hosted by s1 (according to the assignment

obtained from step 2), we calculate which is the impact in the network overhead if the

corresponding VM is re-assigned onto s2. (The calculation of the impact is described in

next paragraph). The VM re-assignment that burdens the system with the least network

overhead is decided to be performed. The aforementioned re-assignment process

iterates itself until either there is no violation of s1’s computing capacity or there is no

VM re-assignments that does not violate s2’s computing capacity. In case of violation

of s2’s computing capacity, we run knapsack twice as follows. In terms of the first

knapsack instance, knapsack plays the role of s1, with its computing capacity reflecting

knapsack’s size. The set of VMs hosted by both s1 and s2 plays the role of knapsack

objects, with their computing requirements representing the weight of knapsack objects.

The benefit of knapsack objects is assumed of one unit. Regarding the second knapsack

instance, knapsack plays the role of s2, while the knapsack objects that were not

assigned on first knapsack instance represent the knapsack objects of the second

knapsack instance.

VM re-assignment impact. The impact of re-assigning a VM vi from sx to sy is the

difference, in terms of network overhead, between hosting the corresponding VM on sx

and sy. The aforementioned impact is expressed by Eq. 11 and split into two

components:

1) The first component (expressed by Eq. 8) concerns the difference (when

assigning vi onto sy and sx) in network overhead due to the data exchanged

between vi and the VMs it communicates with. Note that Fold and Fnew captures

the placement before and after the re-assignment of vi from sx to sy. Therefore,

it holds that 𝑓𝑖𝑥
𝑜𝑙𝑑 = 1 and 𝑓𝑖𝑦

𝑛𝑒𝑤 = 1.

2) The second component (expressed by Eq. 9) represents the difference (when

assigning vi onto sy and sx) in network overhead due to the need of vi to access

the data involved in hyper-edges. The variable 𝐻𝑖𝑘 equals one if vi is contained

30

in the hyper-edge that involves dk, otherwise equals zero. Note that when

calculating the impact in network overhead when re-assigning vi from sx to sy

the following take place: (a) if 𝐻𝑖𝑘 equals 1, vi was the only VM hosted by sx

that needed access to dk which was also hosted by sx, then dk is deleted from sx

(i.e., 𝑓𝑘𝑥
𝑛𝑒𝑤 = 0); and (b) if 𝐻𝑖𝑘 equals 1 and sy has available storage capacity to

host dk, then sy will host dk (i.e., 𝑓𝑘𝑦
𝑛𝑒𝑤 = 1).

𝐼𝑖𝑥𝑦
𝑉𝑀 =∑𝑐𝑖𝑗 × (1 − 𝑓𝑗𝑦

𝑛𝑒𝑤)

𝑉

𝑗=1

−∑𝑐𝑖𝑗 × (1 − 𝑓𝑗𝑦
𝑜𝑙𝑑)

𝑉

𝑗=1

 Eq. 8

𝐼𝑖𝑥𝑦
𝐻 = ∑ 𝜆𝑘𝑦(𝐹

𝑛𝑒𝑤)

𝑉+𝐷

𝑘=𝑉+1

× 𝐻𝑖𝑘 − ∑ 𝜆𝑘𝑥(𝐹
𝑜𝑙𝑑)

𝑉+𝐷

𝑘=𝑉+1

× 𝐻𝑖𝑘 +

 ∑ 𝛿(𝑑𝑘)

𝑉+𝐷

𝑘=𝑉+1

× 𝐻𝑖𝑘 × (1 − 𝑓𝑘𝑦
𝑜𝑙𝑑)

Eq. 9

𝐼𝑖𝑥𝑦
𝑇𝑜𝑡𝑎𝑙 = 𝐼𝑖𝑥𝑦

𝑉𝑀 + 𝐼𝑖𝑥𝑦
𝐻 Eq. 10

4.2. Extending HPA for the Tree Cluster Case when

Considering Capacity Constraints

In this section, the VM assignment and data object replication problem is solved for a

system consisting of N clusters structured as a tree. We assume that there is at least one

assignment of VMs onto clusters such that there is no violation in their computing

capacities. The procedure is identical with that of Section 4.1 up to step 2. Regarding

step 3 the following take place. For each cluster that its computing capacity is violated,

we attempt to find a re-assignment of its VMs towards other clusters such that its

computing capacity is not violated. Among all of the feasible hosts for the re-

assignment of a VM, we choose the one that burdens the system with the least network

overhead. The above process is iterated until there is no computing capacity violation

or there is no feasible VM re-assignment. In case of the former case, the algorithm

terminates. Otherwise, the knapsack is solved (for more information, the reader is

referred to Section 4.1 in step 3) between all possible cluster pairs until there is no

computing capacity violation in any cluster.

31

VM re-assignment impact. The impact of re-assigning a VM vi from sx to sy is the the

same as that described in Section 4.1, with the differences being that here (a) there are

also other clusters within the system other than sx and sy, and (b) the distance between

sx and sy may be more than one. The aforementioned impact is expressed by Eq. 13 and

split into two components:

1) The first component is the same as its counterpart depicted in Eq. 8, with the

difference being that here the distance between the clusters hosting

communicating VMs varies according to W.

2) The second component is a little bit different against its counterpart depicted in

Eq. 9. Here we take into account all of the servers within the system instead of

only sx and sy. The above is because when deleting or creating a replica, there is

an impact in network overhead regarding the VMs contained in the hyper-edge

that involves the respective data object.

𝐼′𝑖𝑥𝑦
𝑉𝑀 =∑∑𝑐𝑖𝑗

𝑆

𝑧=1

× 𝑓𝑗𝑧 × 𝑤𝑦𝑧

𝑉

𝑗=1

−∑∑𝑐𝑖𝑗

𝑆

𝑧=1

× 𝑓𝑗𝑧 × 𝑤𝑥𝑧

𝑉

𝑗=1

 Eq. 11

𝐼′𝑖𝑥𝑦
𝐻 = ∑ ∑𝜆𝑘𝑧(𝐹

𝑛𝑒𝑤)

𝑆

𝑧=1

𝑉+𝐷

𝑘=𝑉+1

× 𝐻𝑖𝑘
𝑦
− ∑ ∑𝜆𝑘𝑧(𝐹

𝑜𝑙𝑑)

𝑆

𝑧=1

𝑉+𝐷

𝑘=𝑉+1

× 𝐻𝑖𝑘
𝑥

+ ∑ 𝛿(𝑑𝑘)

𝑉+𝐷

𝑘=𝑉+1

× 𝐻𝑖𝑘 × (1 − 𝑓𝑘𝑦
𝑜𝑙𝑑) × 𝜑𝜅𝜒(𝐹

𝑜𝑙𝑑)

Eq. 12

𝐼′𝑖𝑥𝑦
𝑇𝑜𝑡𝑎𝑙 = 𝐼𝑖𝑥𝑦

′𝑉𝑀 + 𝐼𝑖𝑥𝑦
′𝐻

Eq. 13

32

5. Evaluation

The experimental evaluation has been conducted on NS-2 [35]. Five different network

topologies were generated with the number of clusters being fixed at 30. The networks

are generating by placing randomly the nodes in a plane of 60×60 distance units.

Clusters are assumed to be in range of each other if their Euclidean distance was less

than ρ distance units (with ρ being uniformly distributed between 30 and 40). The

corresponding tree-based routing topology is obtained by constructing a spanning tree,

whereby each pair of clusters is connected via a single path. Ten different general-

structured application graphs were constructed, with the number of VMs ranging

between 400 and 600 (uniformly distributed). The generation of application graphs

takes place in the same way as that of network generation. The only difference is that

we do not apply the part of applying the spanning tree.

The evaluation was split into two parts. The first part involved clusters without

computing and storage capacity constraints, while the second one took into

consideration computing and storage capacity constraints on clusters. The comparison

was conducted among HPA, DRA, and DBA.

5.1 Uncapacitated Clusters

The first set of experiments was conducted without considering computing and storage

capacity constraints on clusters. It must be noted that HPA solves the initial VM

placement problem, while DBA and DRA decide the transition from an old VM

assignment scheme towards a new one. Therefore, for comparison reasons, we first

assigned randomly the VMs onto clusters and then we applied DBA and DRA on top

of the random VM assignment. On the other extreme, we executed HPA without

needing an initial random VM assignment. It must be noted that the results were

normalized according to the algorithm yielded the worst performance (i.e., DBA). As

observed in Fig. 21, HPA achieves superior performance against DRA and DBA.

Specifically, HPA achieves a network overhead reduction of 50% and 30% against

DBA and DRA, respectively. The reason that DBA results in the worst performance is

that for the decision of the VM migrations from an old assignment scheme to the new

33

one, it considers only single VM migrations. On the other hand, DRA takes into

consideration the migration of VMs in a grouped manner resulting in better results

against DBA. The superiority of HPA is attributed to the following facts: (a) HPA

considers replicating data objects, with the VMs having the option to access those

objects from any cluster holding their replicas. In that way, the network overhead can

be significantly reduced since a cluster can access an object from the nearest cluster

holding the replica of that object instead of accessing it from the cluster holding the

initial replica of the respective object. And (b) the assignment of VMs takes place in a

way such that the co-located VMs needing access to the same data object can share the

transfer of the corresponding data.

Figure 21. Network overhead

5.2. Capacitated Clusters

In this section, we conducted experiments for the comparison of HPA with DRA and

DBA under computing and storage capacity constraints. Initially, the computing

capacity of each cluster within the system was fixed to the amount of the total

computing capacity requirements needed to host the VMs under a random VM initial

assignment. The results were normalized according to the algorithm yielded the worst

performance (i.e., DBA). In the first set of experiments, we varied the surplus

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

HPA DRA DBA

N
et

w
o

rk
 o

ve
rh

e
ad

34

computing capacity of each cluster within the system from 10 to 50 VMs. As we can

see from Fig. 22, HPA achieves the best performance even when the surplus computing

capacity of each cluster is tight. Specifically, when the surplus computing capacity of

each cluster equaled 10 VMs, HPA yielded a network overhead reduction of roughly

7% and 4% against DBA and DRA, respectively. On the other extreme, when the

surplus computing capacity of each cluster was relaxed, the HPA achieved a bigger

network overhead reduction against DBA and DRA.

Specifically, when the surplus computing capacity of each cluster was equal to 50, the

network overhead reduction of HPA compared to DBA and DRA was 42% and 20%,

respectively.

Figure 22. Network overhead when varying surplus computing capacity of each

cluster within the system.

The second set of experiments was conducted to investigate the behavior of HPA

when varying the storage capacity. Initially, the storage capacity of each cluster within

the system was fixed to the amount of the total storage capacity requirements needed

for hosting within the system the initial replica of all of the data objects. We varied the

surplus storage capacity of each cluster from 10 to 30 data objects, with each of them

having size equal to the average data object size. It is seen in Fig. 23 that the

performance of DRA is stable against DBA when varying the surplus storage capacity.

0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

10 20 30 40 50

N
et

w
o

rk
 O

ve
rh

ea
d

ag

ai
n

st
 D

B
A

Surplus computing capacity

DRA

HPA

35

The above is because DBA and DRA do not consider the replication of data objects. It

is noteworthy to mention that the network overhead reduction of HPA against DBA and

DRA was roughly equal to 35% and 11%, respectively, when the surplus storage

capacity of each cluster was equal to 10 data objects. On the other extreme, the network

overhead reduction of HPA against DBA and DRA was roughly equal to 49% and 30%,

respectively, when the surplus storage capacity of each cluster was equal to 30 data

objects.

Figure 23. Network overhead when varying surplus storage capacity of each cluster

within the system.

0.4

0.5

0.6

0.7

0.8

0.9

1

10 15 20 25 30

N
et

w
o

rk
 O

ve
rh

ea
d

ag

ai
n

st
 D

B
A

Surplus storage capacity

HPA

DRA

36

6. Related work

The replica placement problem has been researched quite extensively, and a variety of

problems definitions have been proposed [15]. In [6] client-replica distance is

considered as the optimization target, whereas the primary goal of [31] is load

balancing. Read access cost is the focus in [8] and [11], while [12] considers client

traffic that includes both read and update requests. In [13] and [14] the authors tackle

the problem of minimizing the network overhead during the transition from an old

replica assignment scheme to a new one. On the other hand, ref. [27] and [28] tackle

the problem of minimizing the time needed for the transition from an old replica

assignment scheme to a new one. Other issues taken into account in conjunction with

the replica placement problem formulations are server storage capacity [8] and [12],

processing capacity [17] and bandwidth [6] to name a few. In this dissertation we have

adopted a model similar to [8]. Although our problem definition is related with

replicating data objects, it is quite different from the aforementioned problems since

our problem combines replication and VM assignment on clusters.

There are also interesting problems that are closely related to our work in the field of

virtual machine (VM) placement [4]. The VM placement problem is addressed in [7],

whereby the objective is to minimize the network congestion within the system. The

same problem is also tackled in [1], with the objective being to minimize the maximum

access latency between the communicating VMs. The dynamic service placement

problem is tackled in [30], with the objective being to reduce the hosting cost over time

according to both demand and resource price fluctuation. In [16] and [29], the authors

target the VM placement problem with their objective being the same with that of our

problem. A fully distributed algorithm is proposed in [19], called DBA, to solve the

same problem tackled in this paper under the context of clouds. DBA works for general-

structured graphs and takes into account capacity constraints on nodes. The difference

with our approach is that DBA does not consider migrating group of VMs, resulting in

that way in sub-optimal placements. On the other hand, DRA ([25] and [26]) is an

optimal fully distributed algorithm working also for general-structured application

graphs and taking into consideration capacity constraints on nodes.

37

The problem is also related with the agent placement problem [18], [23], [24], [22],

[20], and [21]. In the agent placement problem, the application is consisted of generic

and non-generic agents. The generic agents are hosted by any node within the wireless

sensor network, while the non-generic agents are hosted only by nodes that fulfill the

sensing/actuating requirements of the respective agents. Therefore, a generic agent

plays the role of a VM, while a non-generic agent plays the role of data object.

38

7. Conclusions and outlook

In this thesis we have formulated the joint problem of replicating data objects and

assigning the virtual machines onto clusters. An algorithm is proposed to solve the

aforementioned problem that is based on hyper-graph partitioning. An extension of the

algorithm has also been designed to tackle the problem when considering storage and

computing capacity constraints on clusters. The proposed technique was compared to

two state-of-the-art algorithms found in the literature, named DBA [19] and DRA [25].

The experimental evaluation showed that HPA can achieve a network overhead

reduction of up to 50% and 30% against DBA and DRA, respectively. Our future

directions include addressing the problem for the transition of an old replica and VM

assignment scheme to a new one. We also plan to prove that HPA is optimal when there

are no storage and capacity constraints on clusters.

39

References

[1] M. Alicherry, T. V. Lakshman, “Network Aware Resource Allocation in

Distributed Clouds,” IEEE Conference on Computer Communications

(INFOCOM), pp. 963-971, 2012.

[2] M. Al-Fares, A. Loukissas, A. Vahdat, “A Scalable Commodity Data Center

Network Architecture,” SIGCOMM, pp. 63-74, 2008.

[3] O. Goldschmidt, D. S. Hochbaum, “A Polynomial Algorithm for the k-cut

Problem for Fixed k,” Mathematics of Operations Research, vol. 19, no. 1, pp.

24-37, 1994.

[4] A. Hameed, A. Khoshkbarforoushha, R. Ranjan, P. P. Jayaraman, J. Kolodziej, P.

Balaji, S. Zeadally, Q. M. Malluhi, N. Tziritas, A. Vishnu, S. U. Khan, and A. Y.

Zomaya, “A Survey and Taxonomy on Energy Efficient Resource Allocation

Techniques for Cloud Computing Systems,” Computing.

[5] B. Heller, et al., “Elastic Tree: Saving Energy in Data Center Networks,” NSDI,

vol. 10, pp. 249-264, 2010.
[6] S. Jamin, C. Jin, A. R. Kurc, D. Raz, and Y. Shavitt, “Constrained mirror placement on

the Internet,” in Proc. IEEE INFOCOM, April 2001, pp. 31–40.

[7] J. W. Jiang, T. Lan, S. Ha, M. Chen, M. Chiang, “Joint VM Placement and

Routing for Data Center Traffic Engineering,” IEEE INFOCOM, pp. 2876-2880,

2012.
[8] J. Kangasharju, J. Roberts, and K. Ross, “Object replication strategies in content

distribution networks,” Computer Communications, vol. 25, no. 4, pp. 367–383, 2002.

[9] T. Kosar, E. Arslan, B. Ross, B. Zhang, “StorkCloud: Data Transfer Scheduling

and Optimization as a Service,” in 4th ACM Workshop on Scientific Cloud

Computing (ScienceCloud), New York, NY, USA, June 2013, pp. 29-36.

[10] T. Kosar, M. Balman, E. Yildirim, S. Kulasekaran, B. Ross, “Stork Data

Scheduler: Mitigating the Data Bottleneck in E-science,” The Phil. Transactions

of the Royal Society, pp. 3254-3267, 2011.
[11] N. Laoutaris, G. Smaragdakis, A. Bestavros and I. Stavrakakis, “Mistreatrment in

Distributed Caching Groups: Causes and Implications,” in Proc. IEEE INFOCOM 2006,

Barcelona, Spain.

[12] T. Loukopoulos and I. Ahmad, “Static and adaptive distributed data replication using

genetic algorithms,” in J. Parallel and Distr. Comp. (JPDC), Vol. 64(11), pp. 1270-

1285, 2004.

[13] T. Loukopoulos, N. Tziritas, P. Lampsas and S. Lalis, “Investigating the Replica

Transfer Scheduling Problem,” in 18th International Conference on Parallel and

Distributed Computing Systems (PDCS), 2006.

[14] T. Loukopoulos, N.Tziritas, P. Lampsas and S. Lalis, “Implementing Replica

Placements: Feasibility and Cost Minimization,” in 21st International Parallel

and Distributed Processing Symposium (IPDPS 2007), March 2007.

[15] S. U. R. Malik , S. U. Khan, S. J. Ewen, N. Tziritas, J. Kolodziej, A. Y. Zomaya,

S. A. Madani, N. Min-Allah , L. Wang, C. Xu, Q. M. Malluhi, J. E. Pecero, P.

Balaji, A. Vishnu, R. Ranjan, S. Zeadally, and H. Li, "Performance Analysis of

Data Intensive Cloud Systems Based On Data Management and Replication: A

Survey," Distributed and Parallel Databases.

[16] X. Meng, V. Pappas, and L. Zhang, “Improving the Scalability of Data Center

Networks with Traffic-aware Virtual Machine Placement,” IEEE Conference on

40

Computer Communications (INFOCOM), pp. 1-9, 2010.
[17] M. Rabinovich, I. Rabinovich, R. Rajaraman, and A. Aggarwal, “A dynamic object

replication and migration protocol for an Internet hosting service,” in Proc. ICDCS’99,

May 1999, pp. 101–113.

[18] I. Rentifis, N. Tziritas, S. Lalis, P. Lampsas, T. Loukopoulos, “Improving

Application Availability in Wireless Sensor Networks with Energy-Harvesting

Capability,” in 13th International Conference on Parallel and Distributed

Computing, Applications and Technologies (PDCAT), December 2012.

[19] J. Sonnek, J. Greensky, R. Reutiman, A. Chandra, “Starling: Minimizing

Communication Overhead in Virtualized Computing Platforms Using

Decentralized Affinity-Aware Migration,” International Conference on Parallel

Processing (ICPP), pp. 228-237, 2010.

[20] N. Tziritas, S. U. Khan, T, Loukopoulos, S. Lalis, C.-Z. Xu, P. Lampsas, “Single

and Group Agent Migration: Algorithms, Bounds, and Optimality Issues,” IEEE

Transactions on Computers, vol. 63, no. 12, pp. 3143-3161, 2014.

[21] N. Tziritas, S. Lalis, S. U. Khan, T, Loukopoulos, C.-Z. Xu, P. Lampsas,

“Distributed Online Algorithms for the Agent Migration Problem in WSNs,”

ACM/Springer Mobile Networks and Applications, vol. 18, no. 5, pp. 622-638,

2013.

[22] N. Tziritas, T. Loukopoulos, S. Lalis and P. Lampsas, “Algorithms for energy-

driven agent placement in wireless embedded systems with memory constraints,”

Simulation Modelling Practice and Theory (Elsevier), vol. 19, no. 6, 1445-1464,

2011.

[23] N. Tziritas, P. Lampsas, S. Lalis, T. Loukopoulos, S.U. Khan, C.-Z. Xu,

“Introducing Agent Evictions to Improve Application Placement in Wireless

Distributed Systems”, in 41st IEEE International Conference on Parallel

Processing (ICPP), Pittsburgh, September 2012.

[24] N. Tziritas, G. Georgakoudis, S. Lalis, T. Paczesny, J. Domaszewicz, P. Lampsas,

T. Loukopoulos, “Implementation and Evaluation of Agent Mobility for Wireless

Networks of Home Objects,” in 4th International Conference on Sensor Systems

and Software (S-CUBE), June 2012.

[25] N. Tziritas, S. U. Khan, C.-Z. Xu, T, Loukopoulos, S. Lalis, “On Minimizing the

Resource Consumption of Cloud Applications Using Process Migrations,”

Elsevier Journal of Parallel and Distributed Computing, vol. 73, no. 12, pp. 1690-

1704, 2013.

[26] N. Tziritas, S. U. Khan, C.-Z. Xu, J. Hong, “An Optimal Fully Distributed

Algorithm to Minimize the Resource Consumption of Cloud Applications”, in

18th IEEE International Conference on Parallel and Distributed Systems

(ICPADS), December 2012.

[27] N. Tziritas, T. Loukopoulos, P. Lampsas and S. Lalis, “Formal model and

scheduling heuristics for the replica migration problem,” in 14th International

Euro-Par Conference (EUROPAR), August 2008.

[28] N. Tziritas, T. Loukopoulos, P. Lampsas and S. Lalis, “Using Multicast Transfers

in the Replica Migration Problem: Formulation and Scheduling Heuristics,” in

15th International Euro-Par Conference (EUROPAR), August 2009.

[29] N. Tziritas, C.-Z. Xu, T. Loukopoulos, S. U. Khan, Z. Yu, “Application-aware

Workload Consolidation to Minimize both Energy Consumption and Network

Load in Cloud Environments,” IEEE International Conference on Parallel

Processing (ICPP), pp. 449-457, 2013.

[30] Q. Zhang, Q. Zhu, M. F. Zhani, R. Boutaba, J. L. Hellerstein, “Dynamic Service

http://www.informatik.uni-trier.de/~ley/db/indices/a-tree/t/Tziritas:Nikos.html
http://www.informatik.uni-trier.de/~ley/db/indices/a-tree/l/Lalis:Spyros.html
http://www.informatik.uni-trier.de/~ley/db/indices/a-tree/l/Lampsas:Petros.html
http://www.informatik.uni-trier.de/~ley/db/indices/a-tree/t/Tziritas:Nikos.html

41

Placement In Geographically Distributed Clouds,” IEEE Journal on Selected

Areas in Communications (JSAC), 2013.
[31] L. Zhuo, C. Wang, and F. Lau, “Load balancing in distributed web server systems with

partial document replication,” in Proc. ICPP’02, August 2002, pp. 305–312.

[32] http://hama.apache.org/

[33] http://hadoop.apache.org/

[34] http://home.web.cern.ch/about/experiments/cms

[35] Network Simulator2 (ns2), http://www.isi.edu/nsnam/ns/

[36] http://swiftstack.com/openstack-swift/architecture/

[37] http://www.genome.gov/

[38] http://www.hpcwire.com/jobs.html

[39] https://www.humanbrainproject.eu/

[40] http://www.sdss.org/

http://hadoop.apache.org/
http://home.web.cern.ch/about/experiments/cms
http://www.isi.edu/nsnam/ns/
http://swiftstack.com/openstack-swift/architecture/
http://www.genome.gov/
https://www.humanbrainproject.eu/
http://www.sdss.org/

42

Appendix-A

The most important notations used in this thesis are summarized in the table below.

Table 1

Symbol Meaning

M total number of servers

N total number of objects

iS the ith server

kO the kth object

)(iSs storage capacity of iS (in data units)

)(kOs size of kO (in data units)

ijl communication cost (per data unit) between iS and jS

X, oldX , newX The (old, new) replication matrix / placement

kP primary server of kO

X
ikN replicator of kO nearest to iS in replica placement X

ikr read volume arriving at iS for kO

ikjT transfer of kO from iS to
jS

ikD deletion of kO on iS

H schedule of transfer/delete actions

uH
C cost of the uth action of schedule H

',XX
HI cost of a valid schedule H that leads from X to

'X

