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Summary 
 

The present PhD thesis focuses on the modelling of alternative plasma facing components 

in the form of liquid metals in order to circumvent problems generated by plasma-wall 

interaction, namely handling the excessive heat and electric current loads generated in the 

bulk of the reactor and directed towards the divertor. The self-cooling and self-annealing 

properties of flowing liquids increase their life cycle as they interact with the scrape-off-

layer of the fusion reactor. 

 

In particular, since the concept of employing a jet-drop curtain was among the first to be 

investigated, a first-principle magnetohydrodynamic study was conducted for the purpose 

of predicting the trajectory of a liquid metal jet travelling inside an electromagnetic field. 

Thus, the effect of Lorentz forces, gravity and pressure drop were accounted for in a 

unidirectional model that assumes a small jet radius in comparison with the trajectory 

length. The effect of external electric potential gradients on jet deflection was ascertained 

in conjunction with the importance of electric stresses in modulating the jet speed and 

radius. Moreover, the trajectory of the ensuing droplets, by virtue of the jet break-up as a 

capillary instability, was also modelled in the presence of Lorentz forces as a means to 

capture and quantify the deflection process reported in the ISTTOK experiments under 

the plasma influence. Droplets, due to their small size and spherical shape, experience a 

stronger deflection as the analytical investigation indicated. The above picture conforms, 

within the proper order of magnitude, to the findings of ISSTOK experiments. 

 

The second concept that was studied seems to be the most mature path for liquid surface 

plasma facing components, namely the Capillary Porous System (CPS). The CPS concept 

is based on the use of a porous construction with a capillary-pore “pumping” system to 

supply the liquid metal that coats and protects the divertor material, normally tungsten, 

from corrosion and thermal stresses. As a first step the CPS is modelled as a thin 

cylindrical disk being in contact with a reservoir that provides liquid lithium. The design 

provides sufficient working pressure in the supply system without applying external 

pressure by using solely capillary pressure as the driving force. Thus, capillarity, wetting 

and surface forces on the porous substrate are expected to stabilize the liquid metal 

against electromagnetic and thermal forces as well as drop ejection, which is a key issue 

for the reliability of the concept itself. Until now, lithium seems to make this proposed 

divertor concept highly efficient. However, liquid Ga, Sn and Sn-Li have also been 

considered.  
  

Nevertheless, thus far, CPS has not been the subject of extensive modelling activity partly 

due to the complex flow arrangement of the limiter containing the liquid metal. In the 

present dissertation, a first principle approach was employed concerning the 

understanding of the operation of the CPS as plasma facing component. Initially, lithium 

is in solid state at room temperature within the mesh. The wafer is in contact with the 

surrounding medium via the top surface that is initially covered. Upon heating, the 

lithium liquefies and as a result the top cover breaks by the expanding liquid and liquid 

metal covers the top surface forming a protective coating. Performing a simple mass 

balance on lithium, relating its initial solid state to its final liquid state, the film thickness 

was estimated to be on the order of several microns. The numerical results, derived by 
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fixing the mass of the contained liquid metal, the size of the wafer and the contact point 

while satisfying the normal force balance confirm the above results.  

  

The static arrangement is difficult to be achieved and more difficult to be maintained at 

high enough heat fluxes. Hence, once the machine is “turned on”, a strong external heat 

pulse is expected to deplete the ultra-thin film covering the top of the porous matrix via 

the evaporation process. Initially, first principle heat transfer considerations were 

conducted by taking into account heat exhaust via thermal conduction, convection and 

evaporation and ignoring non-coronal radiation shielding. It was seen that an oncoming 

heat flux of 10 MW/m
2
 would evaporate the liquid lithium film from the top of the CPS 

structure very quickly, thus, depleting it almost immediately. As a consequence, 

conduction, convection and evaporation alone cannot exhaust the high heat fluxes 

occurring in real experiments and some form of radiation shielding will be necessary to 

this end.  

  

Capillary driven replenishment of the liquid metal film is anticipated to take place by 

pumping the liquid metal from the reservoir. Thus, the capillary flow of a liquid metal 

within a single cylindrical pore was examined as a first attempt to provide an upper 

bound of the convective effects within the CPS matrix. This simplified investigation 

overestimates the permeability of the CPS but provides the framework for studying the 

interplay between the different forces that act towards pushing liquid lithium out of the 

porous matrix or resist its motion. In the present study, the hydrodynamic problem was 

examined in the context of axisymmetry in order to obtain an understanding of the 

operation principle of the capillary pump. The finite element methodology was employed 

in order to assess how the pore radius affects the seepage velocity of liquid lithium. These 

seepage velocities along with the time needed for the liquid metal to exit the pore are 

going to give an estimation of the liquid metal replenishment which is of major 

importance during plasma operation. The numerical results indicated that upon 

decreasing the pore radius, the capillary rise velocity decreases linearly owing to the 

emergence of viscous effects along the radial direction. Since the inertial effects are 

insignificant for the relative small pore radius considered in this study, the numerical 

results considering and neglecting inertia are approximately the same with a small 

difference as the pore radius increases. These discrepancies occur because as the pore 

radius increases inertia comes into the force interplay.    

 

The current study focuses principally on the static arrangement of the liquid metal resting 

onto the CPS top surface. More specifically, the effect on the static film arrangement of 

the reservoir overpressure, electric stresses and, the more relevant to fusion applications, 

jxB effects was investigated. Furthermore, since, according to the experiments, the film 

thickness reduces down to micron or even submicron sizes, the nature of the micro-scale 

liquid-solid interactions was also considered. Isothermal conditions were considered and 

a liquid metal layer was assumed to have been established on top of the CPS and reached 

an axisymmetric static arrangement. The finite element methodology was used to solve 

the Young-Laplace equation, which incorporates surface tension, gravity, pressure and 

surface forces. The layer thickness was predicted at static equilibrium as a function of the 

imposed pressure drop across the wafer and the wetting properties of the liquid metal. It 

was seen that at relatively large reservoir overpressures surface tension balances pressure 

forces and the liquid metal assumes the form of an almost spherical-cap drop of small 

radius. Gravity is out of the picture in this regime. As the pressure drop decreases the 

drop assumes an oblate shape and a thin film is gradually formed that entirely covers the 
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CPS. In this range, gravity balances pressure drop and surface tension and the film 

thickness is on the millimeter range, which is relatively large and has negative 

implications on the stability of the liquid metal layer. As the pressure drop was further 

decreased, the contact length exceeds any reasonable wafer length and such a balance 

could not be maintained for fixed contact angle. The film ends in a sharp edge, in which 

case a fixed contact point condition was imposed rather than a fixed contact angle. In this 

fashion, a static solution for even lower overpressures was obtained until ΔP almost 

vanishes with the film achieving submicron-size thickness and near zero contact angle. 

Such static arrangements have been reported in the literature and are favoured in terms of 

stability of the CPS against electromagnetic effects.  

 

The nature of surface forces between the liquid metal film and the solid substrate was 

also considered. In this study, the classic partial wetting case, of liquid lithium with a dry 

substrate beyond the contact point, cannot be assumed. The envisioned static 

configuration at near vacuum conditions is characterized by full coverage of the CPS 

outer surface with the reservoir overpressure being slightly positive or negative. This 

consideration pertains to the situation after replenishment has taken place but without 

taking into account the Lorentz forces. A purely repulsive potential and a long range 

attractive short range repulsive potential were introduced into the previous numerical 

model in order to simulate the effect of the topography of the porous substrate on the 

static arrangement of the liquid metal.  

 

Based on the investigation of a purely repulsive potential, no static solution was possible 

for positive reservoir overpressures because this kind of interaction potential cannot 

counterbalance a positive pressure drop across the interface. However, it is anticipated 

that the presence of Lorentz forces may lead to positive and very large effective reservoir 

overpressures, especially during off-normal events. Thus, a purely repulsive potential 

cannot exert a stabilizing force and is considered inappropriate for the real case of CPS 

static configuration. 

 

Concerning the case of a long range attractive short range repulsive potential, since 

gravity is insignificant in this regime, three main regions were observed, namely the 

inner, the outer and the transition region with different dominant force balances. 

Matching between the contact and transition regions provide an estimate of the static 

contact angle during adhesion. For low overpressures the interface acquires a shape with 

fixed contact point at the pore edge and a gradually increasing contact angle in that 

region. Beyond a certain threshold in overpressure, corresponding to the formation of the 

characteristic contact angle at the pore edge that is predicted based on the interaction 

potential,  a solution could not be obtained and a limit point was formed. The arc length 

continuation was used instead of simple continuation which showed the existence of a 

second branch of solutions which evolves towards lower overpressures and corresponds 

to spherical-cap film shapes of the type captured in the parametric study for relatively 

large overpressures. For larger overpressures than the critical one dynamic analysis is 

required in order to study the response pattern, that will involve the onset of a dynamic 

contact angle. 

 

As a first attempt to capture the electromagnetic effects on the static arrangement, an 

external electric field was applied. Using the static equilibrium obtained with the top of 

the porous matrix fully covered and gradually increasing the electric field intensity while 

keeping the mass of the liquid metal within the layer constant, a sequence of shapes was 

Institutional Repository - Library & Information Centre - University of Thessaly
12/05/2024 03:57:40 EEST - 52.15.35.194



   

   4 
 

obtained. As a result of the electric stresses, the pole section of the layer is elongated in 

the field direction while the contact angle at the equator decreases in order to maintain the 

same amount of liquid lithium. The liquid layer thickness increases away from the 

contact line and its curvature increases as well. Eventually, a conical angle forms at the 

pole region, as a manifestation of the dominant balance between electric stresses and 

capillarity that determines the size of the conical angle, and a solution could not be 

obtained for stronger electric fields. Despite the simplified model employed here, this is a 

valid description of the static equilibrium at extreme conditions. It has been observed in 

the literature that jetting can be initiated at the pole region as a result of the dynamic 

evolution of this singular behavior. This process is also known to generate small droplets 

once the jet speed reaches a certain threshold.  

 

Regarding the effect of the more relevant to fusion applications jxB effects, as long as the 

liquid metal is within the pore, jxB effects generate an additional effective overpressure 

that tends to pull liquid lithium out of the pore. This is called magnetic pressure whose 

magnitude depends on the intensity of the magnetic field, the electric current that enters 

the liquid metal layer and the pore radius. For small enough electric current densities the 

Lorentz forces only affect the static arrangement and nearly static flow conditions prevail 

in the porous system. In fact, the dimensionless magnetic Bond number, Bondm, that 

relates the Lorentz forces to the surface tension forces can be viewed as a dimensionless 

magnetic pressure  that controls this process. Based on the definition of Bondm, bigger 

plasma currents can be tolerated by decreasing the pore radius, for fixed magnetic field 

strength and the liquid metal that is used as the operating fluid of the CPS, a fact that 

intensifies the reliability of CPS as plasma facing component. Furthermore, a critical 

Bondm can be found as a function of a given interaction potential which sets an upper 

limit in the contact angle that can be achieved at the pore edge. Below this critical value 

static solutions with a fixed contact point are obtained. Beyond this critical value of 

Bondm a new solution family was found that evolves towards lower values of Bondm, 

with the liquid metal forming a drop outside the pore for fixed contact angle prescribed 

by the micro-scale liquid-solid interactions and found via an asymptotic analysis. It 

probably emerges after a limit point in the solution branch. Above the critical magnetic 

Bond number static solutions with a fixed contact point were only possible whereas a 

dynamic approach is required to capture the dynamic contact angle evolution in this 

regime.  
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Summary (In Greek) 
 

Στα πλαίσια του προγράμματος της ελεγχόμενης θερμοπυρηνικής σύντηξης, ως καίριο 

ζήτημα αναδεικνύεται η τεχνολογία που σχετίζεται με την αλληλεπίδραση του 

πλάσματος και των τοιχωμάτων του αντιδραστήρα. Σε συνθήκες λειτουργίας, οι τιμές 

του θερμικού φορτίου αναμένονται πολύ υψηλές, κυρίως κατά την διάρκεια των 

ασταθειών του πλάσματος. Έτσι, τα τοιχώματα εμφανίζουν προβλήματα που σχετίζονται 

με την διάβρωση, τις θερμικές τάσεις κ.α. Για αυτούς τους λόγους, μια διαφορετική 

προσέγγιση που έχει προταθεί και διερευνάται, τόσο πειραματικά όσο και στο επίπεδο 

της μοντελοποίησης, είναι η αντικατάσταση των στερεών στοιχείων που έρχονται σε 

επαφή με το πλάσμα από υγρά μέταλλα. Η παρούσα διδακτορική διατριβή σχετίζεται με 

την μοντελοποίηση των προαναφερθέντων εναλλακτικών στοιχείων που καλούνται να 

αντιμετωπίσουν το πλάσμα και τα οποία είναι σε μορφή υγρού μετάλλου.  

 

Μία από τις πρώτες ιδέες ήταν η χρησιμοποίηση συστοιχίας από τζετ ή σταγόνες υγρού 

μετάλλου. Έτσι, πραγματοποιήθηκε μία μαγνητοϋδροδυναμική μελέτη για την πρόβλεψη 

της τροχιάς ενός τζετ καθώς και μίας σταγόνας που κινείται μέσα σε ένα 

ηλεκτρομαγνητικό πεδίο. Στο μονοδιάστατο αριθμητικό μοντέλο που δημιουργήθηκε για 

το τζετ λήφθηκε υπόψη η επίδραση των δυνάμεων Lorentz, η βαρύτητα και η πτώση 

πίεσης και θεωρήθηκε ότι η ακτίνα του τζετ είναι πολύ μικρότερη από το μήκος του. 

Επιπλέον, μελετήθηκε η επίδραση της εξωτερικής βαθμίδας του ηλεκτρικού δυναμικού 

πάνω στην τροχιά του καθώς επίσης και ο ρόλος που διαδραματίζουν οι ηλεκτρικές 

τάσεις στην διαμόρφωση της ακτίνας του τζετ και της ταχύτητάς του. Επιπροσθέτως, 

αναμένονται να δημιουργηθούν σταγόνες ως αποτέλεσμα της απόσπασής τους από το 

τζετ εξαιτίας τριχοειδών ασταθειών. Γι` αυτό το λόγο, διερευνήθηκε αναλυτικά η τροχιά 

μίας σταγόνας υγρού μετάλλου παρουσία δυνάμεων Lorentz έτσι ώστε να προσομοιωθεί 

η εκτροπή της σταγόνας που παρατηρείται λόγω της επιρροής του πλάσματος σε 

πειράματα όπως αυτά στο ISTTOK. Σε αυτή τη μελέτη, η σταγόνα από υγρό μέταλλο, 

θεωρούμενη ως σφαιρική συνεχώς, εισέρχεται σε μία περιοχή, παρόμοια με αυτή που 

περιγράφθηκε προηγουμένως για το τζετ, όπου υφίστανται ένα ομοιόμορφο μαγνητικό 

πεδίο και μία εξωτερικά επιβαλλόμενη βαθμίδα του ηλεκτρικού δυναμικού. Στην 

περίπτωση των σταγόνων, όπως έδειξαν τα αναλυτικά αποτελέσματα, εξαιτίας του 

μικρού μεγέθους και του σφαιρικού σχήματός τους εμφανίζουν μεγαλύτερη απόκλιση 

από την αρχική τους πορεία σε σχέση με το τζετ. Η προαναφερθείσα εικόνα συμφωνεί σε 

τάξη μεγέθους με τα ευρήματα των πειραμάτων στο ISTTOK. 
 

Η δεύτερη ερευνητική μελέτη, που καλύπτει και το μεγαλύτερο μέρος της διδακτορικής 

διατριβής, σχετίζεται με μία άλλη διάταξη που φαντάζει ως την επικρατέστερη, λόγω του 

πολύ μικρού μεγέθους της και των πειραματικών ευρημάτων. Αυτή η διάταξη καλείται 

CPS και είναι το ακρωνύμιο του «Capillary Porous System». Η ιδέα για το CPS 

βασίζεται στη χρησιμοποίηση μίας πορώδους κατασκευής, η οποία λειτουργεί ως 

«τριχοειδή αντλία» ώστε να παρέχει το υγρό μέταλλο που επικαλύπτει και προστατεύει 

τον «divertor». Η διάταξη είναι κατασκευασμένη έτσι ώστε να παρέχει την απαραίτητη 

βαθμίδα πίεσης (μέσω τριχοειδών δυνάμεων) για την άντληση του υγρού μετάλλου από 

μία δεξαμενή χωρίς την επιβολή επιπλέον εξωτερικής βαθμίδας πίεσης. Έτσι, οι 

τριχοειδείς και οι επιφανειακές δυνάμεις καθώς και η διαβροχή του υγρού μετάλλου στο 

πορώδες υπόστρωμα αναμένεται να σταθεροποιούν το υγρό στρώμα ενάντια στις 

ηλεκτρομαγνητικές και θερμικές δυνάμεις καθώς και να αποτρέπει την δημιουργία 

σταγόνων, γεγονός που αποτελεί καίρια παράμετρο για την αξιοπιστία αυτής της 
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προτεινόμενης διάταξης. Μέχρι στιγμής, το Λίθιο εμφανίζεται ως το επικρατέστερο υγρό 

μέταλλο για να υποστηρίξει αυτή την διάταξη. Παρόλα αυτά, και άλλα υγρά μέταλλα 

όπως το Γάλλιο, ο Κασσίτερος και κράματα Λιθίου-Κασσίτερου έχουν προταθεί και 

διερευνώνται πειραματικά.  

 

Μέχρι στιγμής, το CPS, όσο αναφορά την μοντελοποίησή του, δεν έχει αποτελέσει 

αντικείμενο εκτενούς μελέτης κυρίως εξαιτίας της πολυπλοκότητας της πορώδους 

διάταξης που εμπεριέχει το υγρό μέταλλο. Στην παρούσα διδακτορική διατριβή, 

πραγματοποιήθηκε μία προσπάθεια ώστε να κατανοηθεί η λειτουργία του CPS ως 

διάταξη για την αντιμετώπιση του πλάσματος.  

 

Ξεκινώντας την ανάλυση για το CPS, αρχικά το μέταλλο (θεωρήθηκε το Λίθιο ως 

αντιπροσωπευτικό μέταλλο) βρίσκεται σε στερεή μορφή μέσα στο πλέγμα σε 

θερμοκρασία δωματίου. Η πορώδης διάταξη είναι σε επαφή με το περιβάλλον ρευστό 

μέσω της εξωτερικής άνω επιφάνειας η οποία είναι αρχικά καλυμμένη. Κατόπιν, η 

άνοδος της θερμοκρασίας οδηγεί σε τήξη του στερεού Λιθίου που έχει ως αποτέλεσμα το 

σπάσιμο του εξωτερικού περιβλήματος από το διαστελλόμενο Λίθιο και την δημιουργία 

ενός πολύ λεπτού υγρού υμένα στην εξωτερική άνω επιφάνεια του CPS. Εφαρμόζοντας 

ένα ισοζύγιο μάζας μεταξύ της αρχικής στερεής και τελικής υγρής φάσης του Λιθίου 

υπολογίστηκε προσεγγιστικά ότι το πάχος του προαναφερθέντος υγρού υμένα είναι 

τάξεως μικρομέτρων. Τα αριθμητικά αποτελέσματα που αποκομίστηκαν, 

σταθεροποιώντας την μάζα του υγρού υμένα, το μέγεθος της διάταξης και θεωρώντας 

σταθερό το σημείο επαφής, ενώ ταυτόχρονα ικανοποιούταν το κάθετο ισοζύγιο τάσεων, 

επιβεβαιώνουν τα προηγούμενα αποτελέσματα.  

 

Η προαναφερθείσα στατική διαμόρφωση είναι πολύ δύσκολο να διατηρηθεί σε πολύ 

μεγάλα θερμικά φορτία. Μόλις η μηχανή «ανοίξει» τα εξωτερικά θερμικά φορτία 

εξατμίζουν τον υγρό υμένα που βρίσκεται στην άνω επιφάνεια του CPS. Προκειμένου να 

προσομοιωθεί η διαδικασία της μεταφοράς θερμότητας θεωρήθηκε ότι στην απαγωγή 

θερμότητας συμμετέχουν η αγωγή, η συναγωγή και η εξάτμιση, ενώ αγνοήθηκε η 

επίδραση της ασπίδας ακτινοβολίας. Παρατηρήθηκε ότι η προσπίπτουσα θερμοροή 

(θεωρήθηκε ως παράδειγμα αυτή των 10 MW/m
2
) θα εξατμίσει τον υγρό υμένα από την 

άνω επιφάνεια του CPS πάρα πολύ γρήγορα. Ως αποτέλεσμα, η αγωγή, η συναγωγή και η 

εξάτμιση από μόνες τους δεν επαρκούν για την απαγωγή των μεγάλων θερμικών φορτίων 

που αναμένονται σε πραγματικά πειράματα. Συνεπώς, και η επίδραση της ασπίδας 

ακτινοβολίας πρέπει να ληφθεί υπόψη. 
 

Ο ανεφοδιασμός του υγρού υμένα στην άνω επιφάνεια του CPS λαμβάνει χώρα μέσω 

των τριχοειδών δυνάμεων αντλώντας το υγρό μέταλλο από μία δεξαμενή που βρίσκεται 

σε επαφή με την πορώδη διάταξη. Για αυτό το λόγο, εξετάσθηκε η τριχοειδής ροή του 

υγρού μετάλλου μέσα σε ένα κυλινδρικό πόρο σαν μία πρώτη προσπάθεια να βρεθεί ένα 

άνω όριο των φαινομένων συναγωγής μέσα στο πλέγμα του CPS. Αυτή η απλοποιημένη 

μελέτη υπερεκτιμάει την διαπερατότητα του CPS, αλλά παρέχει το πλαίσιο πάνω στο 

οποίο μπορεί να διερευνηθεί η αλληλεπίδραση μεταξύ των διαφορετικών δυνάμεων που 

βοηθούν στην άντληση του υγρού μετάλλου ή επιβραδύνουν την ροή του. Στην παρούσα 

έρευνα διερευνήθηκε το υδροδυναμικό πρόβλημα υπό αξονική συμμετρία έτσι ώστε να 

κατανοηθεί η λειτουργία του CPS ως τριχοειδής αντλία. Η μέθοδος των πεπερασμένων 

στοιχείων εφαρμόστηκε με σκοπό να εκτιμηθεί πώς επιδρά η ακτίνα του πόρου πάνω 

στην ταχύτητα διαρροής του υγρού μετάλλου. Η προαναφερθείσα ταχύτητα μαζί με το 

χρόνο που χρειάζεται για να εξέλθει το υγρό μέταλλο από τον πόρο δίνουν μία πρώτη 
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εκτίμηση της διαδικασίας του ανεφοδιασμού του υγρού υμένα στην άνω επιφάνεια του 

CPS, κάτι που είναι πολύ σημαντικό κατά την διάρκεια της λειτουργίας του πλάσματος. 

Τα αριθμητικά αποτελέσματα έδειξαν ότι μειώνοντας την ακτίνα του πόρου η ταχύτητα 

της ροής του υγρού μετάλλου μέσα σε αυτόν μειώνεται γραμμικά εξαιτίας της εμφάνισης 

ιξωδών φαινομένων κατά μήκος της ακτινικής διεύθυνσης. Εφόσον, οι αδρανειακές 

δυνάμεις δεν είναι σημαντικές για τις σχετικά μικρές διαστάσεις που θεωρήθηκαν στην 

παρούσα μελέτη, τα αποτελέσματα διατηρώντας και αγνοώντας τους αδρανειακούς 

όρους είναι σχεδόν όμοια με μία μικρή διαφορά καθώς μεγαλώνει η διάσταση του πόρου. 

Αυτή η διαφοροποίηση συμβαίνει λόγω της εισόδου της αδράνειας στο ισοζύγιο 

δυνάμεων καθώς η ακτίνα του πόρου μεγαλώνει. 

 

Η παρούσα διδακτορική διατριβή επικεντρώνεται κυρίως στη στατική διαμόρφωση του 

υμένα από υγρό μέταλλο που διαμορφώνεται στην άνω επιφάνεια της διάταξης του CPS. 

Πιο συγκεκριμένα, μελετήθηκε η επίδραση πάνω στην στατική διαμόρφωση του υγρού 

μετάλλου της διαφοράς πίεσης μεταξύ της δεξαμενής και του περιβάλλοντος ρευστού, 

των ηλεκτρικών τάσεων και των ηλεκτρομαγνητικών δυνάμεων, οι οποίες είναι πιο 

σχετικές για τις εφαρμογές της σύντηξης. Επιπροσθέτως, σύμφωνα με τα πειράματα, το 

πάχος του υγρού υμένα φτάνει διαστάσεις μικρομέτρων και λιγότερο. Έτσι, 

διερευνήθηκε και η επίδραση των επιφανειακών δυνάμεων μεταξύ του υγρού μετάλλου 

και του πορώδους υποστρώματος.  

 

Το CPS μοντελοποιήθηκε ως ένας λεπτός κυλινδρικός δίσκος ευρισκόμενος σε επαφή με 

μία δεξαμενή που παρέχει το υγρό Λίθιο. Θεωρήθηκαν ισοθερμικές συνθήκες και ένα 

λεπτό στρώμα υγρού Λιθίου θεωρήθηκε ότι έχει διαμορφωθεί στην άνω επιφάνεια του 

CPS και έχει στατική αξονική συμμετρία. Η μέθοδος των πεπερασμένων στοιχείων 

χρησιμοποιήθηκε για την επίλυση της εξίσωσης Young-Laplace στην διεπιφάνεια 

αερίου-υγρού μετάλλου, η οποία περιλαμβάνει δυνάμεις λόγω επιφανειακής τάσης, 

διαφοράς πίεσης, βαρύτητας και ενδομοριακών αλληλεπιδράσεων. Αρχικά, αγνοώντας 

τις ενδομοριακές δυνάμεις, το πάχος του υγρού υμένα εκτιμήθηκε ευρισκόμενο σε 

στατική ισορροπία ως συνάρτηση της επιβαλλόμενης βαθμίδας πίεσης κατά μήκος της 

διάταξης και των ιδιοτήτων σχετιζόμενων με την διαβροχή του υγρού μετάλλου στο 

στερεό υπόστρωμα. Παρατηρήθηκε ότι για σχετικά μεγάλες τιμές της βαθμίδας πίεσης, 

οι δυνάμεις λόγω επιφανειακής τάσης εξισορροπούν αυτές λόγω διαφοράς πίεσης με το 

υγρό μέταλλο να έχει την μορφή μιας σχεδόν ημισφαιρικής σταγόνας μικρής ακτίνας. Η 

βαρύτητα εδώ δεν παίζει σημαντικό ρόλο. Καθώς, όμως, η διαφορά πίεσης ελαττώνεται, 

η υγρή σταγόνα παίρνει πεπλατυσμένη μορφή και δημιουργείται ένας λεπτός υγρός 

υμένας που σταδιακά καλύπτει όλη την άνω επιφάνεια του CPS. Σε αυτό το στάδιο, η 

βαρυτικές δυνάμεις εξισορροπούν τις δυνάμεις λόγω διαφοράς πίεσης και επιφανειακής 

τάσης και το πάχος του υγρού υμένα είναι τάξεως χιλιοστών, η οποία είναι σχετικά 

μεγάλη και έχει αρνητικές επιπτώσεις στην ευστάθεια του υγρού υμένα. Καθώς η 

διαφορά πίεσης ελαττώνεται περισσότερο, το μήκος επαφής υπερβαίνει κάθε ρεαλιστικό 

μήκος σχετικό με την διάταξη και η στατική ισορροπία δεν μπορεί να επιτευχθεί για μία 

φιξαρισμένη γωνία επαφής. Έτσι, φιξάροντας το μήκος επαφής αντί για την γωνία 

επαφής, η  στατική ισορροπία μπορεί να επιτευχθεί για ακόμα μικρότερες βαθμίδες 

πίεσης συγκριτικά με την προηγούμενη προσέγγιση έως ότου η διαφορά πίεσης 

εκμηδενίζεται και ο υγρός υμένας έχει πάχος τάξεως μικρομέτρων και γωνία επαφής 

σχεδόν μηδενική. Τέτοιου είδους στατικές διαμορφώσεις έχουν αναφερθεί στην 

βιβλιογραφία και παρουσιάζονται πιο ευσταθείς ενάντια στις ηλεκτρομαγνητικές 

δυνάμεις.  
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Κατόπιν, διερευνήθηκε η επίδραση των επιφανειακών δυνάμεων μεταξύ του υγρού 

μετάλλου και του πορώδους υποστρώματος. Στην παρούσα μελέτη, η κλασική 

περίπτωση μερικής διαβροχής του υγρού μετάλλου στο στερεό υπόστρωμα δεν μπορεί να 

εφαρμοστεί. Εκτιμάται ότι η στατική διαμόρφωση του υγρού μετάλλου σε συνθήκες 

κενού χαρακτηρίζεται από πλήρη κάλυψη της άνω επιφάνειας του CPS με την διαφορά 

πίεσης μεταξύ της δεξαμενής και του περιβάλλοντος πλάσματος να είναι πάρα πολύ 

μικρή και οι τιμές της θετικές ή αρνητικές ανάλογα με τις δυνάμεις που ασκούνται. Αυτή 

η μελέτη δεν λαμβάνει υπόψη τις πεδιακές δυνάμεις και σχετίζεται με την φάση στην 

οποία ο ανεφοδιασμός του υγρού μετάλλου που αναφέρθηκε προηγουμένως έχει ήδη 

λάβει χώρα. Δύο είδη δυναμικών αλληλεπίδρασης μεταξύ του υγρού μετάλλου και του 

πορώδους υποστρώματος διερευνήθηκαν: αρχικά ένα αμιγώς απωστικό δυναμικό και εν 

συνεχεία ένα δυναμικό το οποίο είναι ελκτικό ή αρνητικό ανάλογα με το αν υπερβεί ή όχι 

η τιμή της ευκλείδειας απόστασης μεταξύ του στερεού υποστρώματος και της 

διεπιφάνειας υγρού μετάλλου-αερίου κάποια συγκεκριμένη τιμή. Ο ρόλος της βαρύτητας 

και στις δύο περιπτώσεις δεν είναι σημαντικός. 

 

Αναφορικά με την περίπτωση ενός αμιγώς απωστικού δυναμικού, με την διαφορά πίεσης 

μεταξύ δεξαμενής και περιβάλλοντος ρευστού να είναι μηδέν, η γενική εικόνα είναι αυτή 

ενός ομοιόμορφου υπέρλεπτου υγρού υμένα τάξεως λίγο μικρομέτρων στην άνω 

επιφάνεια του CPS με μικρές εσοχές στην περιοχή του πόλου. Επίσης, όσο η άπωση 

μεγαλώνει, το πάχος του υγρού υμένα αυξάνεται. Για πιέσεις της δεξαμενής μεγαλύτερες 

από τις πιέσεις του περιβάλλοντος ρευστού δεν μπορεί να επιτευχθεί στατική ισορροπία, 

επειδή αυτού του είδους το δυναμικό είναι μόνο απωστικό. Σε περιπτώσεις που 

λαμβάνονται υπόψη οι δυνάμεις Lorentz το παρών δυναμικό αλληλεπίδρασης δεν πρέπει 

να θεωρείται κατάλληλο για την προσομοίωση της διεργασίας αφού η παρουσία τους 

πιθανόν να οδηγήσει σε θετική βαθμίδα πίεσης, ιδιαίτερα κατά την εμφάνιση των 

ασταθειών του πλάσματος. Παρόλα αυτά, η χρησιμοποίηση αυτού του δυναμικού μας 

έδωσε κάποια πρώτη εικόνα για την καλύτερη κατανόηση της διεργασίας.   

 

Όσο αναφορά την δεύτερη περίπτωση δυναμικού αλληλεπίδρασης, παρατηρήθηκαν τρεις 

βασικές υποπεριοχές με διαφορετικά κυρίαρχα ισοζύγια δυνάμεων (η εσωτερική, η 

εξωτερική και η μεταβατική περιοχή που υφίσταται μεταξύ των δύο προηγούμενων 

περιοχών). Ο συσχετισμός της μεταβατικής περιοχής με την περιοχή της επαφής μπορεί 

να δώσει μία εκτίμηση της στατικής γωνίας επαφής. Για σχετικά μικρές τιμές της 

διαφοράς πίεσης η διεπιφάνεια υγρού-αερίου λαμβάνει ένα σχήμα με φιξαρισμένο 

σημείο επαφής στο χείλος του πόρου και μία σταδιακά αύξουσα γωνία επαφής σε αυτή 

την περιοχή. Πέρα από κάποια οριακή τιμή της βαθμίδας πίεσης, που αντιστοιχεί στη 

διαμόρφωση μίας χαρακτηριστικής γωνίας επαφής στο χείλος του πόρου και προβλέπεται 

με βάση το δυναμικό αλληλεπίδρασης, παρουσιάστηκε ένα οριακό σημείο και η στατική 

διαμόρφωση δεν μπορούσε να επιτευχθεί. Σε αυτή την περίπτωση εφαρμόστηκε μία 

άλλου είδους αριθμητική διαδικασία αντί για την απλή συνέχεια (simple continuatιon), η 

arc length continuation που έδειξε την εμφάνιση ενός δεύτερου κλάδου λύσεων που 

αντιστοιχεί σε υγρούς υμένες με μεγαλύτερο πάχος. Αυτός ο δεύτερος κλάδος 

εξελίσσεται προς μικρότερες βαθμίδες της πίεσης και το σχήμα των υγρών υμένων 

αντιστοιχεί σε σχεδόν ημισφαιρικές σταγόνες παρόμοιες με αυτές που λήφθηκαν στην 

παραμετρική μελέτη που προαναφέρθηκε και μελετά την επίδραση σχετικά μεγάλων 

διαφορών της πίεσης.  Για αυτές τις μεγάλες πιέσεις, μεγαλύτερες της κρίσιμης τιμής που 

εμφανίζεται οριακό σημείο, χρειάζεται να μελετηθεί δυναμικά το πρόβλημα. 
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Ως μία πρώτη προσπάθεια να προσομοιωθεί η επίδραση των δυνάμεων Lorentz στην 

προαναφερθείσα στατική διαμόρφωση, μελετήθηκε η επίδραση ενός εξωτερικά 

επιβαλλόμενου ηλεκτρικού πεδίου. Χρησιμοποιώντας την στατική διαμόρφωση του 

υγρού μετάλλου που υπολογίστηκε προηγουμένως για την περίπτωση που αυτό καλύπτει 

πλήρως την άνω επιφάνεια του CPS και σταδιακά αυξάνοντας την ένταση του 

ηλεκτρικού πεδίου, ενώ η μάζα του υγρού μετάλλου διατηρήθηκε σταθερή, λήφθηκαν 

μία σειρά από σχήματα που απεικονίζουν το σχήμα της στατικής διαμόρφωσης. Ως 

συνέπεια της επίδρασης των ηλεκτρικών τάσεων στη διεπιφάνεια, η περιοχή του πόλου 

επιμηκύνεται στην κατεύθυνση του ηλεκτρικού πεδίου, ενώ η γωνία επαφής μειώνεται 

ώστε να διατηρηθεί η ίδια ποσότητα υγρού Λιθίου. Το πάχος του υγρού υμένα αυξάνεται 

μακριά από την γραμμή επαφής όπως και η καμπυλότητα. Τελικά, μία κωνική γωνία 

δημιουργείται στην περιοχή του πόλου και καμία στατική λύση δεν μπορεί να επιτευχθεί 

για ισχυρότερα ηλεκτρικά πεδία. Σε αυτό το στάδιο, η βαρύτητα εξισορροπεί τις 

ηλεκτρικές τάσεις και αυτό το ισοζύγιο δυνάμεων καθορίζει την τιμή της κωνικής γωνίας 

στον πόλο. Παρά το γεγονός ότι το μοντέλο που αναπτύχθηκε είναι σχετικά 

απλοποιημένο, τα αποτελέσματα που αποκομίστηκαν θεωρήθηκαν έγκυρα και 

αντιστοιχούν σε ακραία σενάρια κατά τη διάρκεια των ασταθειών του πλάσματος. Έχει 

παρατηρηθεί στην βιβλιογραφία ότι στην περιοχή του πόλου μπορεί να δημιουργηθεί 

υγρή δέσμη υψηλής ταχύτητας (jet). Αυτή η διεργασία, όπως αναφέρεται στην 

βιβλιογραφία, μπορεί να δημιουργήσει μικρές σταγόνες μόλις η ταχύτητα της υγρής 

δέσμης υψηλής ταχύτητας υπερβεί κάποια οριακή τιμή.      

 

Όσο αναφορά την επίδραση των πιο σχετικών με τις εφαρμογές της σύντηξης 

ηλεκτρομαγνητικών δυνάμεων (επίδραση jxB), όσο το υγρό μέταλλο βρίσκεται εντός του 

πόρου οι ηλεκτρομαγνητικές δυνάμεις δημιουργούν μία βαθμίδα πίεσης που τείνει να 

τραβήξει το υγρό μέταλλο έξω από τον πόρο. Αυτή η μαγνητική πίεση εξαρτάται από την 

ένταση του εξωτερικά επιβαλλόμενου μαγνητικού πεδίου, το ηλεκτρικό ρεύμα που 

εισέρχεται στο υγρό μέταλλο και την ακτίνα του πόρου. Στην πράξη ο αδιάστατος 

αριθμός Bondm που προέκυψε από την αδιαστατική ανάλυση και σχετίζει τις δυνάμεις 

Lorentz με αυτές λόγω επιφανειακής τάσης φαίνεται να ελέγχει την όλη διεργασία. 

Βασιζόμενοι στην σχέση για την εύρεση του Bondm, ελαττώνοντας την ακτίνα του πόρου 

μεγαλύτερα ρεύματα πλάσματος μπορούν να ανεχθούν, γεγονός που ενισχύει την 

αξιοπιστία του CPS ως στοιχείο αντιμετώπισης του πλάσματος. Επιπροσθέτως, μία 

κρίσιμη τιμή του Bondm μπορεί να βρεθεί ως συνάρτηση του δυναμικού 

αλληλεπίδρασης, το οποίο εισάγει ένα ανώτατο όριο στην τιμή της γωνίας επαφής που 

μπορεί να επιτευχθεί στο χείλος του πόρου. Πέρα από αυτή την κρίσιμη τιμή του Bondm 

μία καινούργια οικογένεια λύσεων, που εξελίσσεται προς μικρότερα Bondm, βρέθηκε με 

το υγρό μέταλλο να σχηματίζει μία σταγόνα έξω από τον πόρο με φιξαρισμένη γωνία 

επαφής που καθορίζεται από τις αλληλεπιδράσεις στην μικροκλίμακα μεταξύ του υγρού 

μετάλλου και του στερεού υποστρώματος. Η προαναφερθείσα γωνία επαφής μπορεί να 

προβλεφθεί από μία ασυμπτωτική ανάλυση που πραγματοποιήθηκε στα πλαίσια της 

παρούσας διδακτορικής διατριβής. Η καινούργια λύση ίσως να εμφανίζεται μετά από την 

εμφάνιση κάποιου οριακού σημείου στο διάγραμμα διακλάδωσης. Μία δυναμική μελέτη 

του προβλήματος χρειάζεται έτσι ώστε να εκτιμηθεί η εξέλιξη της δυναμικής γωνίας 

επαφής σε αυτή την περιοχή. 
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Novelty and scientific contribution of the PhD dissertation 
 

The free surface plasma facing components constitute one of the most critical 

technological challenges of future fusion reactors. As can be gleaned by the relevant 

studies, this topic has been the subject of extensive ongoing R&D. Out of the proposed 

liquid metal concepts, this PhD dissertation dealt with the jet/drop curtain and, primarily, 

the Capillary Porous System (CPS) concepts. 

 

Regarding the jet/drop concept pertaining to the ISTTOK experiments, the simplified 

model developed in the context of the present study provided a proof of principle 

explanation for the observed deflection from the original trajectory in a Tokamak 

environment. As a consequence, the results obtained corroborate the belief that 

employment of liquid metal drops/jets cannot be regarded as an optimal alternative 
plasma facing component mainly due to their strong deflection as they interact with the 

surrounding plasma. In addition, the results based on this first principle study reasonably 

conform to the findings of ISSTOK experiments. 

 

The second concept that was investigated in the present thesis, namely the CPS concept, 
is the most mature path for liquid surface plasma facing components as can be deduced 

from the relevant literature. In this concept, capillary action is of central importance for 

renewing the liquid metal which is in contact with plasma. Thus far, CPS has been the 

subject of extensive experimental activity with encouraging findings. Nevertheless the 

CPS, until now, has not been the subject of extensive modelling activity partly due to the 

complex flow arrangement of the limiter containing the liquid metal.   

  

This is the first time, in our knowledge, that such an in-depth theoretical analysis is 

presented concerning the CPS concept. As a matter of fact, this PhD dissertation tries, 

through first-principles studies, to deal with the major phases of the CPS operation. More 

specifically, it models-explains what happens during the preparation phase, that is to say 

before the machine is “turned on”. Furthermore, a heat balance is performed pertaining to 

the power exhaust capabilities of the CPS configuration ignoring the non-coronal 

radiation shielding. Subsequently, it delves into how the replenishment occurs identifying 

the interplay between the different forces that act towards pushing liquid lithium out of 

the porous matrix or resist its motion. Finally, the current PhD dissertation studies 

extensively the static arrangement of the ultra-thin liquid metal film that rests onto the 

CPS outer surface, as a function of the reservoir overpressure, external field forces and 

wetting properties of the working liquid metal on the substrate.  

 

Focusing on the vented lamp concept for a capillary porous system with capillary wicking 

channels for the supply of liquid metal from an internal reservoir, an extensive parametric 

study is performed on the effect of reservoir overpressure on the static film thickness. For 

large overpressures the size of the liquid meal layer decreases and the balance between 

surface tension and pressure drop determines the shape of the interface. Subject to nearly 

vacuum conditions the thickness of the protective layer was found to be on the order of 

micron or submicron meters in agreement with experimental observations. In this regime, 

the shape of the interface depends on the substrate nature and topography and assumes 

the form of a protrusion series, when the interpore distance is much larger than the pore 

radius. As the reservoir overpressure increases the liquid metal layer that coats the pore 

assumes a static arrangement with a fixed contact point at the pore’s edge. When the 
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contact angle at the pore edge reaches a critical value predicted by the interaction 

potential between the liquid metal and substrate a limit point arises and the solution 

family turns to lower overpressures. The coating assumes the shape of a drop that has 

escaped the pore and coats the substrate with the above critical contact angle. Beyond the 

overpressure corresponding to the critical contact angle, the threshold value depends on 

the strength of the interaction potential, a static arrangement does not exist and a transient 

analysis is necessary to describe the spreading process of the operating fluid on the CPS 

response, possibly introducing the concept of dynamic contact angle. 

 

The importance of the above analysis becomes evident when the effect of Lorentz forces 

on the static arrangement is investigated. More specifically, when an electric current 

enters the liquid metal layer from the surrounding plasma then, in the presence of an 

azimuthal magnetic field component, a Lorentz force arises whose effect is incorporated 

in the Maxwell stresses. The latter is decomposed in the magnetic pressure and a 

rotational part and the relative strength of Lorentz forces with respect to capillarity is 

determined by a magnetic Bond number, Bondm, that acts as a dimensionless magnetic 

pressure.  For relatively small values of Bondm the rotational part of the stresses is 

negligible and the effect of the magnetic pressure on the static arrangement is similar to 

the situation described above for the same overpressure. In particular, for small values of 

Bondm shapes with fixed contact point are obtained at the pore’s edge with increasing 

contact angle and increasing length of protrusion into the plasma. Provided the interaction 

potential with the substrate is known, in the presence of Lorentz forces, a critical contact 

angle can be derived in the manner shown for the case of a general overpressure.  

 

Upon reaching the critical value for the contact angle at the pore’s edge the onset of 

shapes with fixed contact angle is anticipated for Bondm values lower than the 

corresponding critical value, Bondm, as a result of a limit point in the parameter space of 

overpressure for fixed strength of the interaction potential. Static solutions with a fixed 

contact angle do not exist for larger magnetic pressures and a dynamic analysis is 

required in order to investigate the response at large electric currents or larger magnetic 

Bondm. More specifically, dynamic contact angle effects should be investigated during 

the spreading process of the liquid metal on the substrate, in order to investigate different 

dynamic patterns that occur at large magnetic Bond numbers. To this end, the proper 

interaction potential pertaining to the liquid metal and substrate has to be introduced. The 

above critical Bondm number is a first threshold for the establishment of a static 

arrangement.  For fixed operating medium, e.g. liquid lithium, magnetic field intensity 

and strength of the interaction potential, the above critical value is achieved for larger 

electric current densities as the pore size decreases. In this fashion, the critical magnetic 

Bond number, derived via the above analysis, can be used as a control parameter in order 

to interpret experimental observations of capillary porous systems. 
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Outline of the PhD Thesis 
 

The PhD Thesis is divided into seven chapters. More specifically: Chapter 1 presents the 

motivation of the current study and the basic principles of Controlled Thermonuclear 

Fusion as well as the approaches to achieve it on Earth. Besides, the governing concepts, 

concerning the use of liquid metal as free surface plasma facing components, are 

presented with more details on Capillary Porous System (CPS). In Chapter 2 the basic 

aspects of wetting phenomena along with the surface forces due to the micro-scale liquid-

solid interactions are discussed. In Chapter 3 the deflection of a liquid metal jet/drop in a 

tokamak environment is investigated with the modelling section and the main results 

being assembled within the same chapter since the next Chapters (4-6) are referred to the 

CPS configuration. In Chapter 4, the step-by-step effort is described concerning the 

analysis of the operation of the CPS as plasma facing component. Moreover, the 

modelling as well as its mathematical formulation of CPS is analyzed for all the cases 

considered. Chapter 5 contains the finite element methodology, the basis functions and 

the discretized equations which were used. In Chapter 5, the Newton-Raphson method is 

presented along with continuation techniques. At the end of the chapter, a subsection 

exists focusing on benchmark calculations and comparison with available results from the 

literature. The main results are demonstrated in Chapter 6 while the main conclusions 

based on this work are drawn in Chapter 7 along with recommendations for future work. 
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Chapter 1:  Introduction  
 

In this chapter, a literature survey is presented concerning the case of thermonuclear 

fusion in a Tokamak with an emphasis on liquid surfaces for fusion plasma facing 

components and the progress which has been achieved so far. The Capillary Porous 

System (CPS) is analyzed mostly because it is the subject of the current PhD dissertation. 

Besides, it seems to be the most mature path for liquid surface PFCs. Finally, since this 

work has been carried out within the framework of the EUROfusion Consortium and has 

received funding from the Euratom research a brief description of the program`s main 

objectives is presented.  

 

1.1 The European fusion program 
 

The European fusion program is based on the Roadmap to the realization of fusion 

energy. EUROfusion funds the Research Units in accordance with their participation to 

the mission-oriented Work Packages outlined in the Consortium Work Plan [1].  

 

In general the program has two aims: Preparing for ITER experiments and developing 

concepts for the fusion power demonstration plant DEMO. 

 

ITER 

The objectives of the EUROfusion ITER Physics Program for ITER lie in the 

development of plasma regimes of operation for ITER and in investigating solutions to 

manage the plasma’s heat exhaust. The second issue is connected with concepts for the 

divertor, which is the area of the reactor wall that experiences the highest heat and 

particle fluxes. ITER Physics also studies divertor configurations that could reduce this 

heat loads. 

 

DEMO 

Laying the foundation for a Demonstration Fusion Power Reactor (DEMO) to follow 

ITER by 2050 is the objective of the EUROfusion Plant Physics and Technology Work 

Program. The central requirements for DEMO lie in its capability to generate several 100 

Megawatt of net electricity to the grid and to operate with a closed fuel-cycle (i.e. to 

produce and burn tritium in a closed cycle). A number of outstanding technology and 

physics integration issues must be resolved before a DEMO plant concept selection is 

made. Each of them has very strong interdependencies. One is the selection of the 

concept for the breeding blanket. Blankets are the internal components of the reactor wall 

that absorb the energy from the fusion reaction, ensure the tritium breeding process and 

shield the components outside the reaction chamber from the fast fusion neutrons. The 

choice of cooling fluid flowing through the blanket is closely connected to the selection 

of the Balance of Plant. The latter denotes the sum of all systems that transform the 

fusion energy into electricity – mainly cooling fluid, turbine and generator. Another 

matter is the selection of the divertor concept and its layout configuration. The design of 

the first-wall (i.e. the innermost lining of the reactor wall) and its integration into the 

blanket is a further issue, since it must take into account that the first-wall might see 

higher heat loads than assumed in previous studies. Furthermore, there is the selection of 

the minimum pulse duration of DEMO and of the corresponding mix of plasma heating 
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systems (i.e. heating and current-drive systems). DEMO must be designed in a way that 

all maintenance work can be carried out remotely via manipulators and therefore reliable 

and fast maintenance schemes must be selected. The impact of the various system design 

options on the overall plant reliability and availability are analyzed in an integrated 

approach. The development of DEMO requires many technological advances and 

innovations in several areas. One example is structural materials that withstand both 

extreme heat loads and the bombardment with neutrons of unprecedented energy. 

Another issue is the heat load – not only on the divertor, but also on areas of the reactor 

wall. 
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1.2 Motivation 
 

It is widely known that the world economy runs on fossil fuel. However, the world 

resources of oil, coal and gas are diminishing. If no action is taken, an energy crisis is 

imminent in the next couple of centuries, maybe decades. Apart from the inevitable fact 

that we will run out of fuel, the burning coal, oil and gas also has an impact on the 

environment. The signs of global warming due to carbon dioxide and the accompanying 

climate change become increasingly more alarming. 

 

Nevertheless, mankind will not give up the present standard of living, so the energy 

consumption is not expected to be reduced, it will rather be increased. Sources of energy, 

other than fossils, are therefore needed. Those that are presently available, however, are 

of very low energy density (solar, wind and bio-energy) or produce long term radioactive 

waste (nuclear fission). Thermonuclear fusion holds the promise of an abundant supply of 

energy, without affecting the climate and with minimal short-term radioactive waste.  

  

Nuclear fusion is the reaction in which two or more nuclei combine together in order to 

form a new element with higher atomic number (more protons in the nucleus). The 

energy released in fusion is related to E = mc
2 

(Einstein’s famous energy-mass equation). 

On Earth, the most likely fusion reaction is Deuterium–Tritium reaction. Deuterium and 

Tritium are both isotopes of Hydrogen. 

 

       17.6   D T He n Mev     (1.1) 

 

In this reaction two Hydrogen isotopes, Deuterium and Tritium, fuse resulting in a 

Helium nucleus and a neutron. The produced energy is divided over the fusion products: 

the neutron receives kinetic energy of 14.1 MeV, the helium nucleus (also called α-

particle) has energy of 3.5 MeV. Deuterium is largely available in the oceans of the 

Earth. Tritium is not freely available, but can be produced by a nuclear reaction of 

Lithium – also widely available – and an energetic neutron. The ‘waste’ of this fusion 

reaction is Helium: a non-toxic, non-radioactive gas.  

 

In order to achieve fusion on the Earth, some serious matters should be taken into 

account. First of all, the nuclei of Deuterium and Tritium do not fuse spontaneously. 

Since they both have a positive charge, the repelling Coulomb force prevents their fusion. 

A sufficiently high kinetic energy of the nuclei is needed to overcome the Coulomb force, 

see Fig. 1.1. This high kinetic energy is achieved in a gas with temperature T of about 

100 million degrees centigrade. At this level of temperature gases are ionized. We do no 

longer call them gas, but “plasma”. It is common to express temperatures in a plasma 

with eV, where 1 eV=12000
o
C.  
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Fig. 1.1 A sufficiently high kinetic energy of the nuclei is needed to overcome the Coulomb force 

 

Unfortunately, a high temperature is not all that is needed to achieve the fusion of nuclei. 

In order to have enough collisions between the highly energetic nuclei, the density, n, of 

the particles should be also high enough. A third important parameter is the energy loss. 

If fusion plasma loses its energy to the outside world faster than it can gain energy from 

fusion reactions and/or from external heating, then the process will die out. The rate at 

which plasma loses its energy is given by 1/τE, where τE is the energy confinement time. 

A fusion reaction will be self-sustained if the product of the above three parameters - 

temperature T, density n and confinement time τE is sufficiently high. For the Deuterium 

– Tritium fusion reaction the following relationship has been proposed: 
 

21 3  5  10 /En T keVs m    (1.2) 

 

The above inequality is the so-called “Lawson criterion”. The triple product nTτΕ is a 

figure-of-merit for a fusion reactor: the higher it is the better. 

 

To produce energy from fusion, scientists must control the temperature, density and 

lifespan of the plasma fuel. Since all deuterium/tritium fueled fusion takes place at 150 

million degrees Celsius, the two variables that can be controlled to produce fusion are 

plasma density and lifespan. There are three different lines of research that deal with this 

problem.  

 

At one end of the spectrum is low density, long lifespan fusion, in which the low density 

produces a relatively small number of energy producing collisions, but the plasma is long 

lived enough to achieve sufficient interactions to generate energy. Because the plasma is 

held stable (confined) for these long periods using magnetic fields, this technique is 

referred to as Magnetic Confinement Fusion (MCF). Some commonly studied 

configurations for magnetic confinement are the magnetic mirror, the z-pinch, the 

stellarator and the Tokamak, Figs. 1.2-1.5, respectively.  

 

At the other end of the spectrum is very high density plasma with very short lifespans, 

referred to as Inertial Confinement Fusion (ICF). Using extremely rapid compression to 

heat a capsule of fuel to fusion temperatures, inertial confinement fusion takes place in a 

matter of nanoseconds and produces a short lived burst of energy. The National Ignition 

Facility (NIF) is the world’s largest inertial confinement fusion research facility, and uses 

the world’s most powerful laser to compress and heat a fuel capsule. 
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In the mid-ground between these two approaches is Magnetized Target Fusion (MTF). 

Magnetized target fusion starts with medium density plasma and compresses it to fusion 

conditions. The compression phase takes place in microseconds (a thousand times slower 

than in Inertial Confinement Fusion), allowing for more conventional compression 

methods such as pistons to be employed. General Fusion and Helion Energy are 

companies that use this approach in order to develop the world’s first commercially 

viable fusion power plant, [2,3]. 

 

Finally, the most important accomplishments concerning the above three different lines 

of research, namely MCF, ICF and MTF, are shown in Fig. 1.6a-d.  

 

 
Fig. 1.2 Gas dynamic trap (GDT) magnetic mirror configuration, [4] 

 

 
Fig. 1.3 Schematic illustrating the formation of a flow Z-pinch in the ZaP experiment, [5] 

 

Institutional Repository - Library & Information Centre - University of Thessaly
12/05/2024 03:57:40 EEST - 52.15.35.194



   

   28 
 

  
Fig. 1.4 Stellarator configuration, [6] 

 

                
    Fig. 1.5 Tokamak configuration, [6] 

 

 
(a) 

 
(b) 
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(c) 

 
(d) 

Fig. 1.6 The most important accomplishments concerning the three different lines of research regarding 

fusion, namely (a) MCF (JET Tokamak), (b) ICF (National Ignition Facility) and (c, d) MTF (General 

Fusion and Helion Energy) 

 

1.2.1 Magnetic Confinement: The Tokamak 

The Tokamak is the most widely studied magnetic confinement configuration. The term 

“Tokamak” comes to us from a Russian acronym that stands for “toroidal chamber with 

magnetic coils". For toroidal plasma confinement, both poloidal and toroidal fields are 

necessary. The poloidal field is provided by external coils and the plasma current. Fig. 

1.5 shows the basic principles of magnetic confinement in a tokamak. 

 

The movement of a charged particle parallel to the magnetic field is not restricted. 

Therefore, in order to confine plasma effectively, the field lines should close in 

themselves and, hence, they form a toroidal geometry. However, just a torus shaped 

vacuum vessel with a toroidal magnetic field is insufficient to confine the plasma. The 

curvature of the magnetic field causes electrons and ions to drift to the bottom and top of 

the torus, respectively, resulting in an electric field. This electric field in its turn leads to 

an outward drift of all particles and, thus, to a loss of confinement. To neutralize this 

electric field, particles that drifted to the top of the machine should be brought to the 

bottom and vice versa. This can be achieved by adding a poloidal component to the 

magnetic field. In a tokamak configuration the poloidal magnetic field is generated by 

toroidal plasma current. This plasma current is induced by a transformer, using the 

plasma as the secondary winding. On top of these poloidal and toroidal field components 

radial and vertical components are added to the magnetic field by external positioning 

and shaping coils.  
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1.3 Literature review on the present status of liquid metal research for a 
fusion reactor 
 

The highest loaded element of a tokamak fusion reactor is its divertor. While the neutron 

load in the divertor zone is lower than on the first blanket wall, its specific thermal loads 

are many times higher; their values incorporate flows of high-energy particles carried out 

of the plasma zone. Thus, high power magnetically confined fusion devices have very 

high heat and particle loads on the walls that face their plasmas. Handling this heat is a 

big challenge, in present and future devices, e.g., DEMO. Based on available data from 

fusion reactors that are in operation, e.g. JET, divertor walls made of tungsten can 

withstand heat loads up to 20 MW/m
2
. Beyond this level the plasma-wall interaction that 

is generated by such events is seen to cause problems such as erosion, thermal stresses, 

thermal fatigue and plasma contamination which may irreversibly impair the operation of 

the reactor.  

 

Designs using realistic materials capable of tolerating such high stationary and especially 

pulsed heat flows without mechanical damage and sputtering under the influence of 

particle flows during an extended period of time do not exist [7]. In order to circumvent 

the above problems liquid metals are considered as alternative plasma facing components 

(PFCs) [8-10].  

 

The self-cooling and self-annealing properties of flowing liquids increase their life cycle 

as they interact with the scrape-off-layer of the fusion reactor. The suggested solutions 

include the following concepts: 

  

 Organization of liquid-metal films quickly flowing along a cooled substrate 

 Creation of a “screen” by a liquid-metal flow 

 Creation of drops for a liquid-metal screen  

 Creation of a screen of dropping solid balls 

 Placement of rotating cylinders in the divertor 

 Capillary Porous System (CPS) 

 

These ideas seem simple and convincing since they are based on well-known principles 

of divertor target plate cooling. Nevertheless, it turns out to be difficult to implement 

them due to the necessity to combine, in one device, a number of new technical 

approaches that have not been demonstrated separately. Like solid PFCs, the support 

structure in a liquid surface PFC will be damaged by neutrons, while proper attention to 

tritium retention, removal and handling is a requirement for any fusion system. 

Furthermore, it requires the use of diverse constructional materials, various heat-carriers 

and coolers and a combination of static and dynamic conditions involving instabilities in 

the working zone. Besides, the flow pattern of liquid metals employed for protection of 

the divertor region is characterized by the formation of a free surface that is subjected to 

the electromagnetic field and heat load generated by the plasma.  As a consequence, a 

basic problem persists. Liquid metal magneto-hydrodynamics (MHD) severely constrains 

solutions that use flowing liquid metals. The related issues have in large part driven the 

directions for R&D with liquid surface PFCs. Table 1.1 lists confinement devices using 

liquid surfaces. Moreover, International Symposia on Lithium Applications in Fusion 

have extensive information on Li R&D [11-14]. Jaworski [15,16] and Nygren and 

Tabarés [17] have provided reviews of liquid surfaces with an emphasis on Li, as have 

Lyublinski et al. [18] but with a focus on capillary pore systems. In addition, Coenen 
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summarized considerations for several liquid metals for power exhaust systems in future 

fusion devices [19]. A more recent paper by Jaworski et al. [20] focused on issues related 

to flowing Li divertor targets and their integration into NSTX-U. 
 

Table 1.1 

Confinement devices using liquid surfaces, [17] 

Device Type Location 

NSTX-U spherical tokamak United States 

NSTX spherical tokamak United States 

LTX tokamak United States 

CDXU tokamak United States 

DIII-D tokamak United States 

T-11 spherical tokamak Russia 

T-10 spherical tokamak Russia 

T3-M spherical tokamak Russia 

TJ-II stellerator Spain 

RFX-mod tokamak Italy 

FTU tokamak Italy 

EAST tokamak China 

HT-7 tokamak China 

ISSTOK reverse field pinch Portugal 

KTM tokamak Kazakhstan 

Aditya tokamak India 

 

The basic areas of research on liquid surfaces performed in confinement devices 

presented in Table 1.1 are briefly described below.  

 

 LTX, the only device with a full liquid Li wall, has extremely encouraging results 

on confinement [21]. 

 HT-7 deployed 2 flowing Li modules developed by US researchers plus other 

ways to expose liquid Li to plasmas. Free Li surfaces produced high Li emission 

and many shots were conjectured to be disrupted from J×B forces dislodging Li 

[22]. 

 NSTX operated with the Liquid Li Divertor (LLD) and coated it using two 

previously developed LITER Li evaporators. The upgraded NSTX-U is starting 

operation in 2015–16 [23]. 

 CDXU is the 1st tokamak with a large area of liquid Li which used heated SS 

trays as a floor limiter filled from an injector nozzle. Earlier experiments had a 

mesh-covered rail limiter fed with Li by a tube [24]. 

 T-3 and T-11 used liquid Ga early in the Russian program. Researchers used 

flowing Ga limiters, attempted a flowing sheet of Ga, and successful tests in T-3 

M compared the impurity influx of a Ga droplet limiter with that from a graphite 

limiter [25]. 

 ISTTOK, with a free surface jet of Ga, showed trapping of H and saturation of the 

effect, but also hydrocarbons and hydroxides in the near surface region [26]. 

 T-11M and T-10 operated with CPS-LLLs (liquid Li limiters), extracted H and D 

and Li with cryogenic targets without venting chamber, and collected ∼60 mg Li 

in 200 regular shots. T-15 plans [27]. 

 FTU had improved plasma performance with a rail type CPS-LLL built in a 

Russian collaboration with ENEA-Frascati [28]. 

 HT-7 operation with modular CPS-LLL, developed by Russian researchers, 

improved the retention of Li on its surface [29]. 
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 TJ-II utilized a CPS-LLL with positive or negative bias and had devoted 

experiments on recycling, and also exposed Sn-Li [30]. 

 KTM has an uncooled module. Tests on a CPS module with Na-K confirmed 

reliable operation over temperature range of 20–200 °C [31].  

 Li pellets and Li spray in DIII-D resulted in enhanced confinement correlated with 

recycling. Motion of liquid Li was observed using the DIII-D DiMES probe [32]. 

 Researchers at EAST used Li injection for ELM control and various methods to 

expose liquid Li to the plasma [33]. 

 Researchers at TJ-II studied the combined effects of Li evaporated onto walls and 

boronization. Lithitization enabled routine operation using 2 neutral beams, clear 

transitions to H-mode and doubled confinement times [30]. 

 Experiments in TJ-II and in ISSTOK also exposed SnLi [34]. 

 The extensive Russian program on liquid surfaces has included analysis of Li 

droplet deformation, lab experiments with Ga waterfalls, testing of droplet flow 

and a flowing Ga sheet, and measuring the sputtering of Ga. R&D in Latvia tested 

the suppression of splashing in a 1T magnetic field. Li dust injected in T-10 [35]. 

 

1.3.1 Critical issues for liquid metals PFCs 
The goal is to address the following question: What is the potential of liquid surfaces? 

The approach is to identify critical issues that need to be solved. To do this, several 

further questions are posed below, and the answers used to deduce key issues and how 

the present status of R&D permits an assessment. 

 

Can these provide viable solutions for PFCs for a fusion reactor, or at least for a fusion 

component test facility? The path forward for Li PFCs may differ from that for other 

metals or a molten salt. Also, a fusion component test facility must have a high duty 

factor but could have lower temperatures for the structure than a reactor.  

What must a liquid surface PFCs do? Fusion reactor PFCs receive power from the 

plasma, transfer heat to a coolant that connects to the power conversion system, maintain 

structural integrity and minimize tritium retention. The plasma configuration and 

feedback into the plasma from the PFCs must permit sustained confinement and adequate 

power production in the core plasma. Concepts with full liquid walls (and divertor) have 

been developed. Systems with a mix of liquid and solid surfaces are also possible. 
 

Surface stability and MHD 
The surface of any liquid PFC must remain stable when exposed to the plasma and must 

accommodate or recover rapidly from conditions that could destabilize the surface, e.g., 

gross motion that would compromise its function or ejection of droplets. Electrical 

currents in a PFC can arise from currents in the scrape-off-layer, eddy currents induced 

by plasma disruptions, or thermionic emission when the surface temperature is high 

enough. These currents and the Lorentz force from the toroidal field can produce body 

forces that can be destabilizing.  

Rayleigh-Taylor instabilities, which arise when a body force directs a dense material into 

a less dense material, can promote the ejection of droplets, as can Kelvin Helmholtz 

instabilities, Jaworski et al. [20]. Reference [41] explains Kelvin Helmholtz instabilities 

in the ejection of droplets from melted layers of tungsten in tests in the plasma gun 

QSPA-T. Other papers describe experiments on surface motion of liquids in ASDEX-U 

[37] and ISSTOK. In particular, Gomes and coworkers at ISSTOK performed extensive 
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studies of Ga jets [26,38,39] with various nozzle sizes and flow rates in preparation for 

tests in ISSTOK with a Ga jet and a graphite limiter. They noted the minimum time to 

equilibrate flow increased with the nozzle size and that stability was lost for nozzles with 

diameter larger than 2.5mm. Fig. 1.7 is given below, in order to illustrate an image of the 

phenomena existing in ISSTOK. More specifically, Fig. 1.7 depicts a sequence of frames 

showing the evolution of the gallium droplets position when both negative and positive 

shifts are present [26]. 
 

 
Fig. 1.7 Frames sequence from a movie showing the dynamic behavior of gallium droplets due to the 

influence of an ISTTOK discharge, [26] 

 

In a nutshell, open films are subject to interfacial and shear instabilities at the speed and 

thickness required, namely few cms, to exhaust large heat fluxes at DEMO relevant 

conditions. Besides, liquid metal drops and jets have size on the order of mms which 

results in their deflection as they interact with the surrounding plasma. Finally, the 

thickness of the liquid metal film resting on top of the CPS wafer is anticipated to be on 

the order of μms at near vacuum conditions. Generally speaking, the smaller the 

thicknesses of the liquid metal arrangement the smaller effect of MHD instabilities are 

expected.   
 

1.3.2 Protection of tokamak plasma facing components by a Capillary Porous 
System  
The examples above demonstrated the complexity that arises from MHD concerns even 

in nominally static liquid metal systems. Such concerns in their long history of R&D on 

liquid metal PFCs led Russian researchers to develop and prefer the CPS as the path 

forward for liquid surface PFCs. 

 

The CPS concept is based on the use of evaporation cooling for eliminating high thermal 

loads. Evaporation-condensation devices with liquid metals as the heat carrier are known 

to be the most effective means of power/energy removal in high temperature facilities.  

 

If the design of the target substrate is done properly, such a way of eliminating thermal 

loads can provide very good performance, which achieves hundreds of MW/m
2 

[40]. To 

supply the evaporation surface with liquid metal, a porous construction of the target plate 

with a capillary-pore “pumping” system for the liquid metal is used. The characteristics 

of the capillary pore system (changing porosity, permeation anisotropy, working surface 

geometry, etc.) are maintained in broad ranges by using appropriate manufacturing 

technologies.  

 

The design provides sufficient working pressure in the supply system without applying 

external pressure by using only capillary force pressure. This system is self-sustaining 

and self-regulating because the pressure distribution of the liquid-metal coolant in the 

capillary-pore structure reacts to local changes of the thermal load distribution on its 

surface.  
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The use of such a technological approach satisfies all of the critical requirements that 

designers might have when selecting materials and ITER divertor design and construction 

approaches. 

 

The CPS seems to be the most mature path for liquid surface PFCs and the result of 

extensive prior and ongoing R&D [41-43]. Excerpts are paraphrased here to acknowledge 

the continuing contributions from the Russian program. 

 

 Surface tension suppressed splashing of Li splashing, and regenerated the surface 

during the long experimental campaign [44]. 

 Erosion of liquid Li from the PFC is a strong function of Li temperature with a 

rate nearly the same as ion beam sputtering of liquid Li [44]. 

 Li non-coronal radiation cools the edge plasma, can protect the PFC structure 

from high power loads in quasi-steady state and from disruptions [45]. 

 Hydrogen isotopes implanted in liquid Li by the plasma can be recovered at 

temperatures of 320–500 
o
C with the range of Tritium being 400–500 

o
C [25]. 

 

Lyublinski, Vertkov, Mirnov, Evtikhin and other scientists have summarized the ongoing 

program. For example, the reference [44] has useful discussions of the reaction of Li with 

various gases and capillary forces and deployments of Li CPS applications. The more 

recent reference [17] includes a set of questions and related criteria by which the progress 

and readiness of liquid surface PFCs are judged. 

 

In the development of liquid surface PFCs, new ideas are emerging and some concepts 

are being deployed in early trials. The CPS development is more mature, with continuing 

development and many deployments targeted at resolving specific issues. Studies in 

plasma confinement devices began with a Li CPS limiter experiments on T-11M in 1998 

with the goals of a) testing of how well the CPS stabilized the liquid Li stabilization and 

b) investigating the mechanisms of Li influx into the plasma chamber. While much of the 

recent CPS applications are with Li, examples with Sn are also included below. 

 

The CPS is a liquid delivery system with an architecture engineered to stabilize liquid 

surfaces on PFCs. The capillary forces in a CPS depend on the wetting properties of the 

liquid and size of the pores in the host structure. These must be matched for the chosen 

liquid. Capillarity is expected to provide the necessary driving force to replenish the 

depleted liquid metal/plasma interface, as a result of evaporation, by drawing liquid from 

a reservoir. Tabarés [46] noted that the pore size for flow in the supply passages is not 

always the same as that for retaining the liquid on the surface of the PFC, which further 

complicates modelling of the CPS arrangement. 

 

In 2005–2006, CPS limiters were deployed in the Italian tokamak FTU at Frascati and in 

the Russian T-10 tokamak [47]. Fig. 1.8 and Fig. 1.9 illustrate upgraded versions of the 

FTU CPS. The original CPS liquid Li limiter (LLL) in FTU successfully delivered Li to 

host mesh at the plasma-wetted surface (Fig. 1.10) even to the point of depleting the Li in 

the reservoir at the bottom of the module. The LLL was initially vacuum-canned. Its thin 

SS seal was peeled away under vacuum in the port with the LLL in its retracted position. 
 

Institutional Repository - Library & Information Centre - University of Thessaly
12/05/2024 03:57:40 EEST - 52.15.35.194



   

   35 
 

 
Fig. 1.8 CPS system deployed in the upgraded liquid Li limiter in FTU, [17] 

 

 
Fig. 1.9 View of complete assembled LLL before installation in FTU, [17] 

 

 
Fig. 1.10 SS mesh wetted by Li as in CPS for first LLL in the Frascati tokamak, [17] 

 

Lyublinski et al. [18] indicated the possibility of PFC protection from the high power 

load related to cooling of the tokamak boundary plasma by radiation of non-fully stripped 

lithium ions, an effect supported by experimental results. This approach demonstrated in 

scheme of closed loops of Li circulation in the tokamak vacuum chamber and realized in 

a series of design of tokamak in-vessel elements. Fig. 1.11 depicts a view of targets 

irradiated in MK-200UG with a) V alloy, b) CPS without Li and c) CPS with Li. 
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Fig. 1.11 View of targets irradiated in MK-200UG: (a) V alloy after 1 plasma pulse, (b) 

CPS without Li after 1 plasma pulse, (c) CPS with Li at 250 °C after 17 plasma pulses, [18] 

 

Power exhaust capabilities of CPS 

High power density is a design goal for fusion reactors that implies a smaller fusion core 

and lower capital cost, but also that more power goes into PFCs with a smaller area. 

Power handling is a challenge. 

 

The highest heat and particle loads flow along magnetic field lines into the divertor. 

There, flux expansion and the inclined target spread the heat load, and some power in the 

charged particles converts to radiation. Ions (and electrons) approach the divertor surface 

at small angles, so protruding edges have unacceptably high heat loads. The presence of 

hot spots, e.g., protruding diver or tiles, with much higher local heating is a common and 

well- recognized issue that is exacerbated with higher power density. 

 

Heat fluxes to the first walls are typically lower than the divertor, but we now understand 

that significant convected power reaches some locations on the first walls. This brings 

two important changes for the first walls. The first is higher power and particle loads. 

Second, the hot spot issue well known in divertors now applies also the first walls. Solid 

close-fitting walls must now have tight requirements for alignment and shaping, a 

requirement that was not recognized in past design studies [17]. 

 

Evaporation and relocating the heat, as with a flowing stream or droplet curtain, are ways 

liquid surfaces can transfer locally from a heated area. In most cases, and certainly for 
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PFCs with a slow moving liquid surface, the PFC must conduct heat through the liquid 

and its host structure, and through a portion of the underlying support structure to the 

primary coolant. The surface temperature depends on the coolant temperature and the 

temperature gradients in the materials along this path. In this conduction dominated 

scheme, the upper temperature limit is controlled by the allowable heat flux to the PFC. 

The thermal conductance in the layer with the host structure and liquid itself is a non-

trivial analysis. The recent paper by Coenen [19] has a discussion of the heat removal 

challenge for liquid surface PFCs. 

 

In the case of a Li PFC, with its relatively high evaporation rate at temperatures of 

interest for PFCs and without a process that stems the influx of Li, the limits for the 

surface temperature appear to be rather low. For example, early edge modeling by 

Rognlien and Rensink [48] to find limits for a Li wall using UEDGE and a simple 

expression for Li evaporation found very low values and computational issues. Later, 

with further study, base limits of ∼400 °C and ∼450 °C for low and high recycling were 

obtained and ∼490 °C in the divertor with better screening. The hope is that vapor 

shielding may increase the allowable limit for Li. Rates for Sn and Ga are much higher. 

 

Non-coronal discharge and vapor shielding are ways the plasma edge, under some 

circumstances, can dissipate and transfer power from local areas otherwise subject to 

overheating. Unless evaporation rates are high, as in those associated with vapor 

shielding, evaporation itself provides relatively little cooling compared to the incoming 

power from the plasma [17].  

 

Non-coronal radiation 

Historically, the long standing research program in Russia provided the largest body of 

early experimental work on liquid surfaces for fusion applications and included the 

introduction of Li into both the T-11M and T-10 tokamaks. In T-11, researchers observed 

non-coronal radiation in a prolonged circulation of Li ions between the plasma and wall 

that dissipated almost 80% of the total ohmic heating power to the wall by Li UV 

radiation [25]. 

 

Evaporative cooling, conduction to substructure, and physical relocation in fast-flowing 

systems, including droplets, are all processes that remove heat from where it was 

deposited. Evaporation and ionization are important in determining the limits for Sn or 

Ga as moderate-Z plasma impurities. And the main issue is how to maintain operation 

with a tolerable amount in the plasma edge. 

 

For liquid Li PFCs, non-coronal radiation (and vapor shielding) in the plasma edge can 

improve plasma performance and enhance heat transfer. The objective in exploiting Li 

non-coronal radiation (Li
+
 or Li

2+ 
not Li

3+
) is to cool the boundary plasma and protect the 

PFC during quasi-steady state and disruption events. Here the issue is whether robust 

operational regimes are possible to exploit these processes. 

 

Fig. 1.12 shows an example by Mirnov and collaborators [25,45] proposing sets of 

limiters that separately emit and collect Li. Li non-coronal radiation cools the plasma 

edge and protects the PFC itself from high transient power loads. The objective is 

continuous circulation of Li
+ 

and Li
++ 

between the plasma and PFC that produces much 

enhanced power dissipation through non-coronal radiation.  
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More specifically, the cooled horizontal lithium rod touches the plasma column. The 

plasma contact area of the limiter (hot spot) is the main source of the Li atom influx (Li 

emitter) into plasma. Sputtering and evaporated Li atoms are ionized and excited by 

electron impact and are diffused as ions (Li
+
 or Li

2+ 
not Li

3+
) into the SOL and hot plasma 

column. Some parts of the outward ion flux can go back to the cold ends of the Li rod and 

collect there (Li collector). The capillary forces return this amount of lithium to the hot 

spot again. As a result the Li ions travelling in a SOL can recycle. If the travelling (or 

life) time τ of lithium ions is lower compared with their transient time to stationary 

ionized coronal balance, the total lithium radiation can significantly surpass the coronal 

limit and play a role as the main coolant of the plasma SOL. In this model the main 

radiated power flux goes to the broad area of the tokamak vessel surface (first wall) and 

spreads the limiter heat load. Secondary limiters should work as additional collectors of 

lithium atoms and as a secondary emitter, which can multiply the lithium non-coronal 

radiation due to a decrease in lithium confinement time τ. In the particular case of one Li-

limiter (Li emitter) the vessel wall plays the role of the lithium and hydrogen flux 

collector (first wall lithization). 
 

 
Fig. 1.12 A principal scheme of lithium-limiter interaction with a tokamak plasma, [44] 

 

Vapor shielding 

Vapor shielding is a general term not specific to Li. Modelers of high power disruptions 

on solid surfaces (e.g., W and Be in ITER) described vapor shielding over melt layers as 

the initial evaporation producing a dense cloud of neutrals that interact with the incoming 

plasma and reduced the erosion of the surface [49].  

 

The formation of Li vapor-clouds has some rich underlying physics in its PSI. 

Researchers at FTU noted a highly radiating Li cloud over the CPS liquid Li limiter 

during its operation in 2006-2007.  

 

Finally, in a recent experimental investigation, utilized in DIFFER [50], a steady-state 

high-flux H or He plasma beam was balanced against the pressure of a Sn vapor cloud for 

the first time, resulting in a self-regulated heat flux intensity near the liquid surface. The 

plasma heat flux impinging on the target was found to be mitigated, as heat was partially 

dissipated by volumetric processes in the vapor cloud rather than wholly by surface 

effects. 
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1.3.3 Lithium CPS 

The work for the ITER reactor showed that conventional design solutions of divertor and 

divertor plates for plasma burning practically in steady state in a tokamak of such a scale, 

meet with serious difficulties. At the same time, high Z materials were rejected in 

classical tokamaks because of plasma contamination by dust resulting from limiter 

erosion in MHD-unstable discharge conditions. There is a principal possibility to move 

lower in the low Z range, namely, to develop a lithium divertor where dust and 

contamination problems would be solved naturally. 

 

It is known that the most efficient means of heat transfer in high temperature machines 

for energy conversion are evaporation–condensation elements with liquid metal as a 

coolant. This method of heat removal provides the highest performance with an 

appropriate choice of the working fluid; for lithium it is hundreds of MWm
−2 

at 

temperatures below the boiling point. The second efficient mechanism to decrease local 

heat loads is lithium radiation. While puffing of (heavy) gases is envisaged in the gas 

target concept, in a lithium divertor such a target is formed naturally by appropriate 

temperature control. Thus, energy is redistributed over a larger area by radiation, and the 

heat flux to the divertor plate is decreased. Finally, power removal from the divertor is 

carried out by thermal conductivity and convective effects to cooling loops and further to 

energy conversion system without overheating.  

 

Lithium makes the proposed divertor concept highly efficient and it has a number of 

principally new features. The concept is feasible for the following reasons, as described 

in [45]: 

 

 Lithium has a low Z that determines its minimal effect on the main plasma in 

comparison with any other materials. 

 High latent heat of lithium evaporation, radiation and ionization of lithium vapour 

lead to redistribution of the important part of incoming energy, thus decreasing 

power load density on the divertor. 

 Lithium fits well the reactor design with self-cooled lithium–lithium blanket; 

service systems could be used both for the blanket and the divertor; tritium 

extraction technology can be the same for both components; the same structure 

material can be used in those systems - low activated vanadium alloys that are 

well compatible with lithium at temperatures below 700˚C. 

 Helium and other noble gases do not interact with lithium in ordinary conditions.  

 For low melting metals, lithium has the best physical and thermal properties for 

application in a liquid metal reactor.  

 

On the other hand, the use of liquid lithium causes some other problems as presented in 

[42]:  

 

 Mechanical stability of liquid lithium films. 

 Ion sputtering and evaporation (thermal emission) of lithium.  

 Accumulation of lithium in plasma column. 

 Lithium deposition on the surface of vacuum chamber.  
 

Research and development on plasma surface interactions and liquid surface plasma 

facing components has included liquid gallium (Ga), tin (Sn), lithium (Li) and Sn-Li. The 

use of liquid tin as both a first wall PFC and in the divertor looks promising so far from 
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an erosion/redeposition and plasma contamination standpoint. The primary advantage of 

liquid Sn over other liquid metals is the tremendous drop in evaporative flux and the 

subsequent increase in the evaporation-limited.  
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Chapter 2:  Basic aspects of wetting 
phenomena 
 

In this chapter, a brief description is given concerning the theory of the action of surface 

forces, i.e. forces needed to account for phenomena occurring near surfaces, very thin 

layers, corners, borders, contact lines, etc. All forces do originate at the microscopic 

level, but the phenomenological, macroscopic manifestations of those forces are 

accentuated. In particular, the role of the so-called disjoining pressure is emphasized, 

which is considered to be the manifestation of the surface forces. The disjoining pressure 

acts in the vicinity of the three-phase contact line, and its action becomes dominant as a 

liquid profile approaches a solid substrate. 

 

2.1 Wetting and Young’s equation 
 

Droplets of different liquids deposited on identical solid substrates behave differently. 

For example, the mercury layer immediately forms a droplet on a glass surface, which is a 

spherical cap with the contact angle bigger than 90
o
 (Nonwetting case: Fig. 2.1). 

However, it is easy to make an oil layer on the same glass surface; for this purpose an oil 

droplet can be deposited on the same glass substrate, and it will spread out completely. In 

this case, the contact angle decreases with time down to a zero value (Complete wetting 

case: Fig. 2.2). Finally, a water droplet deposited on the same glass substrate spreads out 

only partially down to some contact angle, θ, which is in between 0 and 90
o
 (Partial 

wetting case: Fig. 2.3). Thus, an aqueous droplet on a glass surface behaves in a way that 

is intermediate between the behavior of the mercury and oil. In broader terms, complete 

wetting, partial wetting, and nonwetting behavior are determined by the nature of both the 

liquid and the solid substrate. 
 

 
Fig. 2.1 Nonwetting case: contact angle is bigger than 90

o  

 

 
Fig. 2.2 Complete wetting case: the contact angle decreases with time down to a zero value 
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Fig. 2.3 Partial wetting case: contact angle is smaller than 90

o 

 

Liquid Li partially wets the solid substrate as will be discussed later in the PhD Thesis. 

As a consequence, let us consider the picture presented in Fig. 2.3. In the processes of 

wetting three phases (air, liquid and solid) meet along a line, which is referred to as a 

three-phase contact line. Consideration of forces in the tangential direction at the three-

phase contact line results in the well-known Young’s equation, Eq. 2.1, which connects 

three interfacial tensions, γsl, γsv and γ with the value of the equilibrium contact angle, θ, 

where γsl, γsv and γ  stand for solid–liquid, solid–vapor, and liquid–vapor interfacial 

tensions, respectively: 

 

cos ( ) /sv sl      (2.1) 

 

According to Fig. 2.2, the complete wetting case corresponds to the case when all forces 

cannot be compensated in the tangential direction at any contact angle, that is, if γsv  > γsl 

+ γ. Partial wetting case, according to Eq. 1.1, corresponds to 0 < cos θ < l. That is, Eq. 

2.1 reduces complete wettability, partial wettability, and nonwettability cases to the 

determination of the three aforementioned interfacial tensions.  

 

At equilibrium, the following three equilibrium considerations should be held: 

 

1. Liquid in the droplet must be in equilibrium with its own vapor. 

2. Liquid in the droplet must be in equilibrium with the solid. 

3. Vapor must be in equilibrium with the solid substrate. 

 

The first requirement in the list above results in the equality of chemical potentials of the 

liquid molecules in vapor and inside the droplet. This results that the droplets can be at 

equilibrium only with oversaturated vapor. 

 

As far as the second requirement is concerned, it is unavoidable as the liquid molecule 

adsorption on the solid substrate and the presence of liquid molecules on the surface 

changes the initial surface tension. This means that the liquid molecules from the vapor 

must be adsorbed on the solid substrate outside the liquid droplet under consideration. 

The latter consideration results in the formation of an adsorption liquid film on the 

surface as can be depicted in Fig. 2.4a. 

 

Let us consider the third requirement. In Fig. 2.4a, an equilibrium liquid droplet is 

presented in contact with an equilibrium-adsorbed liquid film on the solid surface. 

However, the situation presented in Fig. 2.4a is not possible since such sharp transition 

from the liquid droplet to the liquid film is impossible. On the line shown by the arrow, 

the capillary pressure will be infinite. Hence, it should be a smooth transition from the flat 

equilibrium liquid film on the solid surfaces to the spherical droplet, as shown in Fig. 
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2.4b, where this smooth transition is shown. The arrow in Fig. 2.4b shows the point to 

the right where the liquid profile is concave and to the left where the profile is convex. 

 

(a) 

(b) 
Fig. 2.4 (a) Cross section of an equilibrium liquid droplet (at oversaturation) in contact with an equilibrium-

adsorbed liquid film on the solid substrate and (b) Transition zone from the flat equilibrium liquid film on a 

solid surface to the liquid droplet 

 

In the case of partial wetting, as have already been seen, liquid droplets cannot be in 

equilibrium with a bare solid surface. They should always be at equilibrium with an 

adsorption layer of the liquid molecules on the solid substrate in front of the droplet on 

the bare solid surface. If the liquid is volatile, then this layer is created by means of 

evaporation and adsorption. However, if the liquid is nonvolatile, the same layer should 

be created by means of flow from the droplet edge onto the solid substrate. As a result, at 

equilibrium the solid substrate is covered by an equilibrium liquid layer of thickness, h. 

The thickness of the equilibrium liquid film, h, is determined by the potential of action of 

some special forces, referred to as surface forces. The characteristic time scale of this 

process is hours, because it is determined by the flow in the thinnest part in the vicinity of 

the apparent three-phase contact line, where the viscose resistance is very high.  
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2.2 Surface forces and disjoining pressure  
 

It looks like the profile presented in Fig. 2.4b cannot be in equilibrium because capillary 

pressure should change the sign inside the transition zone, and it is in contradiction with 

the requirement of the constancy of the capillary pressure everywhere inside the droplet. 

Some additional forces are missing. The mentioned problem was under consideration by 

a number of scientists for more than a century. Their efforts resulted in considerable 

reconsideration of the nature of wetting phenomena and the introduction of surface 

phenomena, which are determined by the special forces acting in thin liquid films or 

layers in the vicinity of the apparent three-phase contact line. They determine the stability 

and behavior of colloidal suspensions and emulsions. The theory which was developed is 

widely referred to as the DLVO theory [51] after the names of the four scientists: 

Derjaguin, Landau, Vervey, and Overbeek. 

 

It has been established that the range of action of surface forces is usually of the order of 

0.1 µm [51]. As Middleman [52] and, in more detail, Starov et al. [53] analyzed, in the 

vicinity of a three-phase contact line, the thickness of the liquid film becomes very thin 

tending to zero. This thickness means that close to the three-phase contact line, surface 

forces come into play and their influence cannot be ignored. These forces can depend on 

the thickness, h, in a very peculiar way. A manifestation of the action of surface forces is 

the disjoining pressure [53]. Note that this term is a bit misleading, because the 

mentioned force can be both disjoining (repulsion between surfaces) and conjoining 

(attraction between surfaces). 
 

Let us consider the liquid–air interface of Fig. 2.5. It is obvious that the physical 

properties of the very first layer on the interface are substantially different from the 

properties of the liquid (in bulk) far from the interface. It is understandable that the 

physical properties do not change by jumping from the very first layer on the interface to 

the subsequent layers, but the change proceeds in a continuous way. This continuous 

change results in the formation of a special layer, which is referred to as the boundary 

layer, where all properties differ from corresponding bulk properties. Such boundary 

layers exist in proximity to any interface: solid–liquid, solid–air, or liquid–air. In the 

vicinity of the apparent three-phase contact line, these boundary layers overlap. The 

overlapping of boundary layers is the physical phenomenon that results in existence of 

surface forces. The surface force per unit area has a dimension of pressure and is referred 

to as disjoining pressure, as we have already mentioned in the preceding section. Let the 

thickness of the boundary layers be δ. In the vicinity of the three-phase contact line, the 

thickness of a droplet, h, is small enough, that is, h ~ δ, and hence boundary layers 

overlap, Fig. 2.5, which results in the creation of disjoining pressure. The above 

mentioned characteristic scale, δ, determines the characteristic thickness where the 

disjoining pressure acts. In Fig. 2.5 region 1 represents the bulk liquid and region 2 the 

boundary layer in the vicinity liquid–air and liquid–solid interfaces where, in both cases, 

boundary layers do not overlap. In region 3 the boundary layers overlap while region 4 

represents a flat thin equilibrium film. The latter two are the regions where disjoining 

pressure acts. Thus, the main conclusion is that the pressure in thin layers close to the 

three-phase contact line is different from the pressure in the bulk liquid, and it depends on 

the thickness of the layer, h, and also varies with the thickness, h. 
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Fig. 2.5 The liquid profile in the vicinity of the apparent three-phase contact line 

 

Fig. 2.5 will aid our definition of terms relevant to the forces acting on and within 

ultrathin films. When a planar liquid film intervenes between a solid and a vapor, there is 

a free energy per unit of interfacial surface area, the magnitude of which is a sum of 

contributions from the solid-liquid surface tension, γsl, and the liquid-vapor surface 

tension, γ. We may write this in the form: 

 

slF     (2.2) 

 

Since the energies involved are those of the interfaces, the free energy F does not depend 

upon the film thickness itself. This is a macroscopic view. It treats the boundaries of the 

liquid film as mathematical interfaces. In fact, as it has already been mentioned these 

boundaries separate physical interphases within which the liquid molecules exhibit 

variations in density and orientation as one moves from each interface into the liquid 

phase. If the film thickness h is small enough, these interphases overlap in the sense that 

there can be molecular interactions between the molecules in these interphases.  

 

2.2.1 Molecular Component 
Calculation of the molecular contribution to disjoining pressure, Π, has been approached 

in two ways; from the approximation of interactions as a pairwise additive, and from a 

field theory of many-body interactions in condensed matter [53].  

 

In ultra-thin films, F can be a function of the film thickness, and we can define a 

contribution to the free energy due to these molecular interactions by adding a term to Eq. 

2.2: 

 

( )slF W h     (2.3) 

 

The form taken by the function W depends upon the nature of the liquid. The simpler 

and, historically, earlier approach followed a theory based on summing individual 

London–van der Waals interactions between molecules pair-by-pair, undertaken by 

Hamaker [51]. One of the commonest representations of the function W is: 

 

2
(h)

12

A
W

h
  

(2.4)  

 

The constant A is the so-called Hamaker constant, and it depends upon the properties of 

the three phases shown in Fig. 2.5. The constant A can be either positive indicating a 

purely repulsive potential or negative, thus, indicating a purely attractive potential. A 
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detailed discussion of the various types of molecular interactions of interest is given by 

Teletzke et al. [54]. 

 

The corresponding disjoining pressure, Π, can be calculated from: 

 

3

(h)
(h)

6

dW A

dh h
    

(2.5) 

 

The potential W is the free energy of a film of thickness h relative to that of the bulk 

liquid on that surface, that is, relative to that of a very thick film such that Π→0. For 

films that satisfy such an expression, and for A > 0, Π increases as the film thickness 

grows small. This corresponds to an increase in the free energy, and so very thin films 

(i.e., of nearly atomic dimensions) of this liquid are energetically disfavored. Thus, van 

der Waals forces could support a finite film thickness under conditions that classical 

continuum physics would not permit. 

 

2.2.2 Other components of the disjoining pressure  
The overlapping of the boundary layers results in the existence of surface forces 

originated not only from the intermolecular interactions but from other reasons as well.  

 

The electrostatic component of the disjoining pressure can be explained as follows. Let us 

examine two charged surfaces (not necessarily of the same nature) as illustrated in Fig. 

2.6. The surfaces are assumed to have equal charges or opposite charges, i.e., there are 

electrical double layers near each of them. The sign of the charge of the diffusive part of 

each electrical double layer is opposite to the sign of the charge of the corresponding 

surface. If the width of clearance between surfaces is h >> Rd, where Rd stands for the 

Debye length, the electrical double layers of surfaces do not overlap, Fig. 2.6a, and there 

is no electrostatic interaction of surfaces. However, if the thickness of the clearance, h, is 

comparable with the thickness of the electrical double layer, then electrical double layers 

overlap, Fig. 2.6b, and this results in an interaction between the surfaces. In Fig. 2.6 ζ1 

and ζ2 represent the electrical potentials of the charged surfaces. 

 

If the surfaces are equally charged, their diffusive layers are equally charged as well, i.e., 

the repulsion appears as a result of their overlapping (the electrostatic component of the 

disjoining pressure, Πe, is positive in this case). If the surfaces have opposite charges, an 

attraction would ensue as a result of the overlapping of opposite charges (The 

electrostatic component of the disjoining pressure, Πe, is negative in this case). There are 

a number of approximate expressions for the electrostatic component of the disjoining 

pressure [53] which are beyond the scope of this Thesis. 
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Fig. 2.6 (a) The electrical double layers of surfaces do not overlap (no electrostatic interaction of surfaces) 

and (b) The electrical double layers of surfaces overlap (electrostatic interaction of surfaces) 

 

As a reminder, the layer, where the concentration of cations and anions differ from their 

bulk values, is referred to as a diffusive part of the electrical double layer. The 

characteristic thickness of the diffusive part of electrical double layer is the Debye length, 

Rd. The characteristic value of the Debye length is 

 
83 10

d cmR
C


  

(2.6) 

 

where C is the electrolyte concentration. 

 

The theory for the calculation of the disjoining pressure based on the two indicated 

components, i.e., molecular and electrostatic is referred to as the DLVO theory. 

According to the DLVO theory, the total disjoining pressure is the sum of the two 

components. The DLVO theory made possible the explanation of a range of experimental 

data on the stability of colloidal suspensions/emulsions as well as the static and the 

kinetics of wetting. However, it has been understood later that only these two components 

are insufficient for explaining the phenomena in thin liquid films, layers and in colloidal 

dispersions. There is a requirement of a third important component of disjoining pressure, 

which becomes equally important in aqueous electrolyte solutions.  
 

This component of the disjoining pressure is caused by the orientation of water molecules 

in a vicinity of aqueous solution–solid interface or aqueous solution–air interface. If two 

interfaces with hydration layers are close to each other, then at a close separation, 

comparable with the thickness of the hydration layer, these surfaces “feel each other,” 

that is, hydration layers overlap, Fig. 2.7. This overlapping results either in attraction or 

repulsion of these two surfaces. This is the structural component of the disjoining 

pressure for which, until now, there is no firm theoretical background [53]. There is only 

a semi-empirical expression which gives the dependence of the structural component of 

disjoining pressure on the thickness of the liquid film: 
 

(h) h

s K e     (2.7) 
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where K and λ are constants. There is a clear physical meaning of the parameter 1/λ, 

which is the correlation length of water molecules in aqueous solutions. This parameter 

further gives 1/λ ~ 10–15 Å, which is the characteristic thickness of the hydration layer. 

However, we are still far from a complete understanding of the pre-exponential factor K, 

which can be extracted on the current stage only from experimental measurements of the 

disjoining pressure. 

 

Currently, it is assumed, as referred in [53], that the disjoining pressure of thin aqueous 

films is equal to the sum of the three components: 

 

(h) (h) (h) (h)m e s     (2.8) 

 

where Πm, Πe and Πs represent the molecular, the electrostatic and the structural 

components of the disjoining pressure, respectively. 

 

 

Fig. 2.7 Formation of a hydration layer of water dipoles in the vicinity of a negatively charged interface. 

The darker part of water dipoles is positively charged, whereas the lighter part is negatively charged, [53] 

 

Apart from DLVO theory and the more general form described via Eq. 2.8, other forms 

of the micro-scale liquid-solid interaction potential have been also proposed such as  the 

modified embedded-atom potential [55] and N-body potential [56]. 
 

2.2.3 Disjoining pressure terms used in the current PhD dissertation 
For the purpose of the PhD dissertation only the aforementioned intermolecular 

interactions and the forces originated from overlapping of the electrical double layers 

were assembled in a disjoining pressure term. Two different simplified kinds of potentials 

were investigated, namely, a purely repulsive potential and a long range attractive short 

range repulsive potential.  

 

Purely repulsive potential 

As far as the purely repulsive potential is concerned, it is described via Eq. 2.9: 

 

212

A
W


  

(2.9)  

 

Besides, only positive values of the Hamaker constant were selected. As a consequence, 

only repulsion between the liquid and solid interfaces exists, if the thickness of the 

boundary layers is less than a critical value. 
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Long range attractive short range repulsive potential 

The idea is to use a Lennard–Jones type potential as a simple way to approximate strong 

repulsion at short distances between the liquid and the solid phases, and attraction at 

intermediate distances [57-62]. The action of the potential is taken into account only 

along the interface and its range is small compared to both droplet radius and the scale of 

solid structures.  

 

Thus, micro-scale liquid-solid interactions result in a disjoining pressure for the purpose 

of stabilizing an intermediate thin layer between the liquid and solid phases. The 

aforementioned potential is given by the following equation: 
 

4 2

.0 2A AW W
 

 

    
    
     

   
(2.10) 

 

Eq. 2.10 provides a standard form of such an interaction potential [57,58] with W0 

signifying the wetting parameter, which is directly related with the solid wettability (an 

increase of W0 indicates stronger liquid-solid interaction) and δΑ denoting a characteristic 

length scale for which the energy is minimized and the interaction force vanishes. 

Constants 4 and 2, were selected so that the disjoining pressure Π is positive at distances 

δ < δΑ, indicating repulsion, and negative at distances δ from the substrate that are larger 

than the characteristic scale δΑ, indicating attraction. The constants 4 and 2 are typical 

selections that can be modified based on the nature of the interacting materials. For 

relatively small δ, Eq. 2.10 models the overlapping of the electrical double layers while it 

models the van der Waals interactions for relatively large δ. The interaction potential W 

is not affected by displacements parallel to the substrate and becomes negligibly small at 

distances that are significantly larger than δΑ.  
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2.3 Augmented Young-Laplace equation 
 

The usual Young-Laplace equation, which relates the pressure difference to the shape of 

the interface, is given by: 

 

1 2

1 1
2

 
    

 
     nin out m skp P P

R R
  

 

(2.11) 

 

where Δp is the pressure gradient across the fluid-gas interface, γ is the surface tension, n 

is the unit normal vector pointing out of the surface, km is the mean curvature, in the 

manner shown in Fig. 2.5, while R1 and R2 signify the principal radii of curvature. 

 

In the absence of an external field force, the normal force balance, which is described by 

Eq. 2.11, is augmented with microscale interactions between the solid and the liquid 

phases using a disjoining pressure term, Π: 

 

 0

1 2

,
1 1

in outP
W

P W
R R n


 

   
 


     


 

(2.12) 

 

where the disjoining pressure terms, which were used in the present study, have already 

been mentioned in subsection 2.2.3.  It should be stressed that the disjoining pressure acts 

so that it minimizes energy due to interaction between the liquid and substrate.  
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2.4 Wetting properties of liquid lithium on several fusion relevant 
materials 
 

When implementing a Capillary Porous System, it should be guaranteed that the CPS is 

actually wetted by the lithium. The experiments, conducted in Illinois by Filfis et al. [63], 

investigated the wetting behavior of liquid lithium on several fusion relevant surfaces, 

namely stainless steel, Tungsten, Molybdenum, TZM (99.4% Mo, 0.5% Ti, 0.08% Zr), 

and Tantalum. 

 

Lithium droplets were injected via a lithium injector onto the material to be tested. The 

lithium injector consisted of a reservoir, tube and nozzle. To inject lithium, lithium is 

placed in the reservoir, the chamber is pumped to vacuum, the injector is heated past the 

melting point of the lithium and a pressure of Argon is applied to the backside of the 

lithium reservoir, forcing it down the tube and out the nozzle. The material to be 

investigated is placed on a moveable stainless steel stage, actuated by a stainless steel rod 

welded to the stage which passes through an Ultra-Torr vacuum feedthrough. The 

temperature of the stage is variable and can be adjusted via a plate heater situated below 

the stage. A photo and schematic of the experimental setup can be seen in Figs. 2.8a and 

2.8b, respectively. The procedure utilized was to place a drop, record images of the 

droplet, and heat the sample while taking still frames at various temperatures. Though the 

oxidation rate is suppressed by the vacuum, it is still significant at the temperatures 

investigated. To combat this, at set intervals, the stage was moved and a new droplet was 

placed to ensure that the surface of the lithium would be fresh. A diagram of this process 

is shown in Figs 2.9. The still frames were then analyzed to determine the contact angle. 

This was done via a program which employed image processing. Thus, when a droplet is 

placed, the contact angle is measured optically and registered in a plot such as this 

illustrated in Fig. 2.10. The surface is considered wetted when the contact angle is below 

90°. As can be gleaned from the latter figure there is a distinct drop in the contact angle, 

or increase in substrate wettability, with rising temperature. This effect warrants closer 

attention to the possibility for Marangoni convection to arise at more realistic conditions 

of operation of the CPS, [63]. 

 

 
(a) 
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(b) 

Fig. 2.8 (a) Photo and (b) schematic of experimental setup, [63] 

 

 
Fig. 2.9 Experimental procedure, [63] 

 

 
Fig. 2.10 Contact angle of lithium on stainless steel, [63] 
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Chapter 3: Deflection of a liquid metal jet/drop 
in a tokamak environment 
 

In this chapter, the steady flow of a liquid metal jet is modelled inside an electromagnetic 

field in the presence of inertia and capillary forces. Due to the jet break-up as a capillary 

instability, also the trajectory of the ensuing droplets is modelled in the presence of 

Lorentz forces. The aforementioned proof of principle studies were performed in 

reference to experimental observations of jet and drop, deflection because of jxB effects 

in the ISTTOK tokamak. 

 

3.1 Introduction 
 

As analyzed in detail in the first chapter, in large size tokamaks plasma facing 

components (PFC) are going to be submitted to high power loads that could even reach 

the GW/m
2
 range during off-normal events in the divertor region. The free surface plasma 

facing components, which have initially been proposed by Christofilos [8], offer the 

potential to solve the lifetime issues limiting current solid surface designs by eliminating 

the problems of erosion and thermal stresses accompanying solid surfaces.  

 

The concept of employing a jet or a drop curtain was among the first to be investigated in 

order to assist power exhaust from fusion reactors. The drop motion was employed as a 

means to minimize ponderomotive forces arising due to spatial and time variations of the 

electric field. Moreover, experimental studies focusing on the magnetic field induction 

effect [64] showed that even a mild intensity magnetic field could suppress spraying of 

the liquid metal flow. A representative drop curtain configuration is that of T3-M which 

was tested with a gallium alloy [65], with encouraging preliminary results in terms of 

plasma contamination. However, especially when a liquid metal sheet was employed in a 

plasma environment, the reactor’s chamber walls were sprayed by small drops.    

 

The interaction of free flying, fully formed liquid gallium jets with the plasma was 

studied in ISTTOK tokamak [26,38,39,66], in Portugal. These experiments indicated that 

gallium not only has high heat removal capacity, but it has negligible effect on plasma 

operation as well. Beyond a certain length, the jet decomposes into droplets due to 

Rayleigh instability [67,68]. Once plasma was turned on jet break-up was seen to be 

postponed over a longer distance, possibly as a result of magnetic braking and, more 

importantly, the emerging drops were deflected from their original trajectory as a result 

of their interaction with the surrounding plasma. The deflection increased with increasing 

magnetic field intensity and drops were observed to hit the collector walls. Several 

interpretations of this effect were considered in relevance to (a) the mechanical stress on 

the injector due to chamber compression, which was ruled out, (b) the shift due to 

magnetic induction and the 3-D magnetic field gradient along the jet length which was 

also ruled out and (c) the plasma kinetic pressure change along the jet width which was 

also negligible. Consequently, the interaction between electric currents generated along 

the advancing jet, in response to electric potential gradients within different plasma 

regions, and the toroidal magnetic field, identified as jxB effect in the literature, seems to 
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be the most plausible explanation for the observed deflection of both the jet and drop 

considerations.  

 

Finally, the results obtained in this study corroborated the belief that employment of 

liquid metal drops/jets cannot be regarded as an optimal alternative plasma facing 

component mainly due to their strong deflection as they interact with the surrounding 

plasma, see also [115]. 
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3.2 Brief description of the liquid metal loop experimental setup and 
operating conditions in ISTTOK 
 

ISTTOK is a small size tokamak (major radius R = 0.46 m and minor radius a = 0.085 

m), with typical plasma parameters: toroidal magnetic field Bt = 0.45 T, electron 

temperature at the center Te(0) = 150 eV, center chord-average electron density ne(0) = 

5×10
18

m
−3

, plasma current Ip ∼ 6 kA and loop voltage Vp ∼ 3 V. The ohmic power 

deposition in the plasma is within the 9-18 kW range. This feature can be taken as a 

benefit, since it allows a controlled power deposition in jets and subsequently controlled 

gallium evaporation. Fig. 3.1 presents a schematic of the liquid metal loop that has been 

installed in ISTTOK to perform the injection of liquid gallium jets at the plasma edge. 

The design of the setup had to obey to some restrictions, due to gallium specific physical 

properties and compatibility with tokamak operation which were described in [38].  

 

The most critical issue for tokamak operation is to avoid currents in the jet that would 

lead to perturbation owing to Lorentz forces. The entire injector part of the setup was 

designed to float at the plasma potential, while the isolation from tokamak vessel and 

other grounds is ensured by ceramic isolators located at suitable places. Due to its high 

density, gallium flows have typically high Weber number (We = ρu
2
d/γ, where ρ is the 

fluid density, u the flow velocity, d a characteristic length and γ is the surface tension). 

One of the consequences of this effect is the reflection of gallium droplets scattered from 

the bottom of the collector. This effect can be seen from movies like the one depicted in 

Figs. 3.2 and 3.3. 

 

Since the jet crosses plasma regions with different electric potentials and gallium is a 

good electrical conductor, a net current will be generated along the jet with the plasma 

acting as an electron source. The interaction of this current with the toroidal magnetic 

field provides a force along the radial direction that is believed to explain the observed   

shift [38,115].  
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Fig 3.1 Cross-section of the experimental setup in the vicinity of the plasma–jet interaction region [38] 

 

 

 
Fig 3.2 Frames sequence from a movie showing the dynamic behavior of gallium droplets due to the 

influence of an ISTTOK discharge, [39] 
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Fig 3.3 Gallium droplets appearing during plasma-liquid metal interaction, [36] 

 

Several nozzle sizes (1.45, 1.80, 2.09 and 2.30 mm diameter) have been tested to 

determine the best choice for ISTTOK application. These have been characterized by 

measuring the jet break-up length parameter, flow rate curves and jet flow velocity. Fig. 

3.4 shows a picture of a typical jet, produced in this experiment for the 2.30 mm nozzle. 

Besides in Fig. 3.5 it is possible to observe the break-up length (L), as a function of the 

jet diameter, measured using a fast frame camera, for all the tested nozzles. The observed 

increase in break-up-length is almost linear with jet diameter. The stability of a viscous 

jet in vacuum has been theoretically investigated by Rayleigh [67] and, later, by Weber 

[69].  

 

 
Fig 3.4 Picture of the jet produced using the 2.3 mm nozzle, [38] 
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Fig 3.5 Break-up length (L) for several nozzles sizes and also L/d as a function of Weber 

number, [38] 
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3.3 Prediction of jet propagation  
 

Initially, an investigation, concerning the prediction of the trajectory of a jet travelling 

inside an electromagnetic field, was conducted in order to capture and, possibly, quantify 

the effect of the observed deflection due to jxB effects in ISTTOK experiments.  
 

3.3.1 Modelling and mathematical formulation 
This study assumes a cylindrical liquid metal jet that is moving at speed of u0 = -u0ez 

entering a region, z < 0, where a uniform magnetic field, B0 = B0ex, exists along with an 

externally imposed electric potential gradient, / ap pd dz    
z z

e e  , where u0 > 0, B0 > 

0, a > 0 and subscript “p” stands for plasma i.e. the surrounding medium, as illustrated in 

Fig. 3.6. 

 

 
Fig 3.6 Schematic of cylindrical liquid metal jet 

 

The jet cross-section is taken to be circular as a first approximation. Due to the small size 

of the jet, the magnetic Reynolds is quite small and consequently we can neglect 

magnetic induction. 

 

Once the jet enters a region, where fluctuations of the electric potential are present due to 

the surrounding plasma, the electromagnetic forces induce displacement in the horizontal 

plane and the electric stresses developed on the interface result in deforming the jet.  

 

Before the tackling of the aforementioned flow problem, the electric potential in the jet 

should be established. To a first approximation, both the jet and the surrounding medium 

can be treated as perfect dielectrics, i.e. no bulk or surface electric charges. As a 

consequence, the following conditions hold on their interface:  

 

p

p p,
n n


 


  

 
 

(3.1) 

 

with   and φ representing the electric permittivity of Ga and the electric potential, 

respectively. For a sufficiently thin jet the flow inside it can be assumed to remain 

unidirectional and electric potential variations can be neglected in the direction normal to 

the interface, d / dn d / ds,   with s signifying the arc length along the jet trajectory 

and n the unit normal vector pointing out of the surface. Thus, electric potential 
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variations along the jet passively follow variations in the surrounding medium based on 

its trajectory, with s
e its unit vector: 

 

p dydz dz
a

s s ds ds ds




s s y z
e e e e

 
 
 


     

 
 

(3.2) 

 

As it has already been mentioned, the jet cross-section is assumed to remain circular with 

its center of mass inscribing a trajectory within the yz plane with z(s), y(s) constituting its 

parametric representation as can be illustrated in Fig. 3.7a.  

 

 
(a) 

 
(b) 

Fig 3.7 Schematic diagram of: (a) Liquid metal jet trajectory and (b) 

Trajectory of the center of mass of jet 

 

The currents induced within the liquid Gallium are in the following form: 

 

  j u B     (3.3) 

 

As a consequence, the resulting Lorentz force is of the form: 
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2

L 0 0 s

dydz dz
aB uB

ds ds ds
 

z y
F j B e e e

 
 
 

       
(3.4) 

 

In the above analysis, u·ex = 0 at all times. In other words, the trajectory of the jet center 

of mass lies entirely within yz plane at the base state. Besides, Fig. 3.7b helps 

understanding Eq. 3.4 better. 

 

The second term in the Eq. 3.4 stands for the jet deceleration due to the part of the 

Lorentz force that arises because of the induced electric currents in the jet, whereas the 

first term corresponds to the part of the Lorentz force that arises due to the interaction 

between the external magnetic and electric fields. Obviously, the latter term is 

responsible for the deflection of the jet. Thus, based on the constant volumetric flow rate 

Q and assuming a circular cross section of radius R, mass and momentum conservation 

within the jet read for unidirectional flow: 

 
2

A

0 Q dA u R
s

u u e       (3.5) 

p pdu u
u g g

dt s s s
   s L s s L se F e e F e

 
           

  
 

(3.6) 

 

where FL represents the Lorentz forces estimated via Eq. 3.4. 

 

When the radius of curvature of the trajectory is much larger than the jet radius pressure 

variations within the jet cross-section can be neglected and pressure in the jet is 

determined by the following interfacial stress balance: 

 

   p

se e
pI n 2 n 0 at r r s,n, 

 
         

c
H  (3.7) 

 

where the viscous stresses have been neglected. In the above equations σ, γ and ρ 

represent the electrical conductivity, the surface tension and the density of Ga, 

respectively, Hc the mean curvature, Δp the pressure difference, I the unit tensor. Finally, 

p

e e
,     are the electric stress tensors of Ga and plasma, respectively: 

 

p

pe ei j ij i j i j ij i j

1 1
E E E E , E E E E

2 2
 

   
        
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(3.8) 
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
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                        


 

         
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(3.9) 

 

Averaging around the periphery of the jet cross-section and accounting for capillary and 

electric stresses, electric potential variations along the tangential, φ, and normal, n, 

direction cancel out and the pressure drop across the interface reads: 
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(3.10) 

 

Combining equations 3.5-3.7 with the velocity decomposition along the y and z 

directions: 

 
2 2z y u y z

dyds dz
u , y , z

dt dt dt

z yu e e    
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(3.11) 

 

provides the time evolution of the jet radius, R, pressure, p, and y, z coordinates of its 

trajectory. Upon introducing dimensionless quantities, using the jet length, L, and initial 

jet radius, R0, as characteristic length scales, and the balance between the Lorentz force 

and inertia for the characteristic velocity û  
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0
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
  

   
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(3.12) 

 

the dimensionless formulation for unidirectional jet motion can be derived. Thus, 

dropping bars for simplicity: 
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R
u


  

(3.16) 

 

with equations 3.13-3.15 corresponding to the s, z, y momentum equations and Eq. 3.16 

to continuity. The first term on the right hand side of equation 3.15 represents the Lorentz 

force component responsible for jet deflection perpendicular to its original trajectory, 

provided it has acquired a certain longitudinal velocity. The dimensionless variables that 

arise in the above formulation and determine the jet trajectory are: 
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(3.17) 
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The above dimensionless numbers provide the relative strength of the different forces 

affecting the jet development and can be estimated from values that are available in the 

literature and from the geometry of the particular experimental setup. More specifically, 

Bo relates gravitational to inertial forces, Fm magnetic to inertial forces, We inertial to 

surface tension forces and Boel electric stresses to inertia.  
 

3.3.2 Results 
According to the ISTTOK experiment, B0=0.4 T, R0=2.3 mm, L=13 cm, u0= 2.5 m/s, 

whereas Gallium properties are set to ρ=6.1 g/cm3, σ=4.0x10
6
 Ohm

-1
 m

-1
. Besides, the 

surface tension, γ, of Ga is approximately equal to 0.661 N/m for a temperature of 100 
ο
C. The value L=13 cm was selected as characteristic for jet length since it was observed 

in [38] that a gallium jet with radius and speed as those above prescribed, breaks-up to 

drops at a distance of 13 cm from the nozzle when plasma activity is off.  Moreover, the 

electric permittivity of plasma and gallium are estimated to, p=590 and =16.2, 

respectively. Finally, two cases were considered with a=0.13V/m and 1100V/m. 

 

Based on the time integration of the model equations (3.13-3.16) the jet trajectory may 

exhibit a significant shift and is progressively accelerated along the y direction due to the 

action of the electric potential gradient part of the Lorentz force, .  B    Clearly, the 

terms of Eqs. 3.14 and 3.15 are mainly responsible for the relative motion in the z and y 

directions, respectively, and the resulting jet deflection. The latter intensifies as the 

electric potential gradient increases. The deflection of the jet trajectory is illustrated in 

Fig. 3.8a and 3.8b, when the parameter a is set to 0.13 and 1100 V/m respectively, for a 

jet that is initially aligned with the negative z axis and travels at a velocity u0=2.5m/s, 

along the z direction.  

 

When plasma is absent no deflection is observed since there are no disturbances of the 

external electric potential that can generate currents within the jet. When the magnetic 

field is only present the length required for capillary break-up to take place increases due 

to the retardation of the flow induced by the Lorentz force. These effects were verified in 

the experiments presented in [38,39] and conform with Weber’s theory for capillary jet 

break-up [70]. 

 

The jet trajectory was calculated based on the above model for a flight time of 30 ms for 

two different values of electric potential gradient. Thus, it was seen that jet deflection 

commences earlier as the magnetic field intensity increases, as illustrated in Figs. 3.8.   
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(a) 

 

(b) 

Fig. 3.8 Trajectories for a jet that is initially aligned with the negative z axis, for a range of magnetic field 

intensities while the electric potential gradient set to (a) 0.13 V/m and (b) 1100 V/m.  

 

This is a result of the intensification of the Lorentz force that causes deflection mainly in 

the y direction, ~σaB0. In addition, the amount of deflection increases as the electric 

potential gradient increases, as can be gleaned by the comparison between Figs 3.8a and 

3.8b. 

 

The importance of electric stresses is indicated by the magnitude Boel. As the electric 

potential gradient, a, increases Boel increases as well and affects pressure drop in the jet 

via the interfacial force balance. As can be inferred by examining Eq. 3.18 and illustrated 

in Fig 3.9b, a=1100 V/m, the electric stresses generate a pressure gradient in the jet that 

accelerates it while at the same time suppressing its radius due to incompressibility. This 

is a result of the gradual subsidence of the z-component of the jet velocity in favor of the 

deflected y component: 

 

el

2

el

p 2

Bo dp1 1 z Bo 1p p 1
We R 2 dzu


     

(3.18) 

 

However, as the jet velocity builds up in both directions, the part of the Lorentz force that 

retards the jet motion dominates, ~σuB0
2
, thereby decelerating the jet to the point of 

almost arresting its motion. Consequently, the jet speed starts decreasing and this reflects 

in the gradual increase of the radius. This is a rather extreme case of a very large gradient, 

a=1100 V/m, that generates unrealistic deflections and jet speeds on the order of meters, 

Fig. 3.8b, and hundreds of meters per second, Fig. 3.9b, respectively. 
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When a more realistic value of the electric potential gradient is used, a=0.13 V/m, the 

electric stresses at the interface are not as important. A certain small amount of jet 

deflection is captured, Fig. 3.8a, whereas magnetic damping dominates, Fm=7, right from 

the outset of the jet motion. As a result, the jet speed decreases in the simulations 

throughout the jet motion, Fig. 3.10, and this effect is intensified as the magnetic field 

intensity increases. 

 

At the same time, the jet radius inflates in order to accommodate mass balance, Fig. 3.9a. 

The extent of deflection is realistically small, ~5 mm for a jet length of 25 mm. However, 

the jet development length remains relatively small in comparison with the 7.5 cm of jet 

length that were reported in the experimental measurements presented in [38,39]. This 

discrepancy can be attributed to the unidirectional nature of the flow arrangement studied 

here. 
 

 
(a) 

 
(b) 

Fig. 3.9 Evolution of jet velocity and radius when B0=0.42 T and (a) a=0.13 V/m and (b) a=1100 V/m 

 

Institutional Repository - Library & Information Centre - University of Thessaly
12/05/2024 03:57:40 EEST - 52.15.35.194



   

   66 
 

 
Fig. 3.10 Evolution of the jet velocity as a function of the magnetic field intensity for the first 30 ms; 

a=0.13 V/m 

 

As the jet radius increases in order to accommodate continuity, since the jet decelerates 

due to magnetic damping, a point is reached where, due to capillary action, shape 

undulations will appear at the jet/plasma interface. This has been observed in the 

ISTTOK experiments [38,39]. In this context, it should be pointed out that, based on 

Weber’s theory the jet break-up length scales like L/R0 ~ (We
1/2

)
0..85 

in the laminar 

regime[70]. Consequently, since the jet radius and speed vary in such a way as to satisfy 

mass conservation, jet inflation results in shortening the break-up length thus accelerating 

drop formation. Once the jet interface starts deforming, growth of its radius is arrested 

along with the process of deceleration. This probably explains the fact that in our 

simulations the jet does not reach a comparable length with the experiments after a flight 

time of 30 ms. Therefore, in order to accurately recover the jet break-up length shape 

oscillations of the jet have to be accounted for. Nevertheless, the above presented model 

serves as a first principle illustration of the mechanism behind the observed jet deflection, 

as a result of the interaction between the magnetic and electric fields, i.e. the jxB effect, 

that the jet encounters  as it interacts with plasma. 
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3.4 Prediction of drop propagation  
 

As was discussed above, it is certain that beyond a certain length, depending on the jet 

speed, drop formation will take place. Thus, as an alternative flow arrangement the 

motion of a drop is examined in a similar environment as that described above for the 

case of a jet. 
 

3.4.1 Modelling and mathematical formulation 
In this consideration we are interested in studying the trajectory of a droplet regarded as 

spherical all the time. The droplet enters a region, similar to the previous one, z < 0, at a 

speed of u0 = -u0ez, where a uniform magnetic field B0 = B0ex exists along with an 

externally imposed electric potential gradient, / ap pd dz    
z z

e e , where u0 > 0, B0 > 

0, a > 0 and subscript “p” stands for plasma i.e. the surrounding medium, as illustrated in 

Fig. 3.11. 

 

 
Fig. 3.11 Schematic of the droplet trajectory. The thick circle depicts the drop outline and the small dark 

circles the trajectory of its center of mass 

 

Once a droplet enters the area where fluctuations of the electric potential are present due 

to the surrounding plasma, the Lorentz force induces displacement in the horizontal 

plane. In order to obtain the magnitude of this force a calculation of the electric potential 

distribution inside the drop and the surrounding medium is needed, taking them both as 

perfect dielectrics, to a first approximation, assuming a spherical drop in one dimensional 

irrotational motion. We solve the Laplacian in both media using spherical coordinates, 

with the interfacial conditions provided in Eq. 3.1 and the far field condition: 

 

pr : arcos     (3.19) 

 

This is a standard problem in electrodynamics [72]. The derivation of the mathematical 

form concerning the electrical potential inside and outside the drop is presented in 

Appendix A. Thus, according to equations A.10 and A.11:  

 
3a

cos
/ 2p

r  
  

 
(3.20) 
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3
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/ 1 a cos
a cos

/ 2
p

out

p

R
r

r


 

  
  

  
 

(3.21) 

 

Based on the above distribution and due to spherical symmetry the electric stresses cancel 

out at the drop interface leaving gravity, inertia and the Lorentz force as the main factors 

of the drop motion. Moreover, the inertia is 34

3
R r and gravity is 34

3
R g  ze . 

 

The Lorentz force is: 

 

 

 

 
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     
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                                             (3.22) 
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 (3.23) 

and 
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                       (3.24) 

 

 

In order to find the total Lorentz force that is eventually applied, an integration of the 

electromagnetic forces around the droplet should be done on each component: 
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Similarly, 
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3
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3
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(3.26) 

 

Thus, by adding Eqs.(3.25, 3.26), 
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(3.27) 

 

The first term represents the force due to interaction between the external electromagnetic 

fields that is responsible for the drop deflection, whereas the last two terms represent the 

force that retards the drop motion as a result of the induced electric currents inside it.  

 

Assuming that 

 

y zx y z  xr e e e                                                        (3.28) 

 

the force balances in y and z directions, respectively read as: 
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(3.30) 

 

Upon introducing the dimensionless length scale via the drop radius R and time scale via 

the balance between the deflective part of the Lorentz force and inertia: 
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(3.31) 

0/u R t

 

 

 

and dropping the bars for simplicity the equations describing the drop trajectory on the 

y,z plane are derived: 
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(3.33) 

 

where the two dimensionless numbers:  

 
2 2

0 0
0 2
,  

B gt gR
Fm t Bo

R u




    

                                                                     

(3.34) 

 

provide the relative strength of electromagnetic to inertial forces and the gravitational to 

inertial forces, respectively.  

 

The part of the Lorentz force that arises as a result of the interaction between the external 

electric and magnetic fields appears as unity in the above dimensionless formulation, 

because it is through the balance between this force and inertia that we make things 

dimensionless. It is this term that is responsible for drop deflection.  

 

The electric potential gradient, a, is set to 0.13 V/m in the present study. The latter 

variable may vary significantly inside the reactor chamber. Here we use an indicative 

value in an effort to capture the experimentally obtained drop deflection as close as 

possible, based on this qualitative model.  In particular, parameter a was determined so 

that the deflection of 10 mm that was observed after a flight time of 30 ms for the 

droplets emerging after jet break-up in the presence of a magnetic field with intensity 

B0=0.42 T [38,39], is recovered. In order to examine the effect of electric potential 

variations also the value of a=1100 V/m was used in the parametric study that follows. 

 

3.4.2 Results 
The droplet trajectory can be found analytically by integrating the nonhomogeneous 

differential equations 3.32 and 3.33: 
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(3.37) 

 

(3.38) 

 

Thus, the parametric form of the aforementioned trajectory can be described via the 

system of Eqs. 3.36 and 3.38. 

 

Since, in this investigation, gallium is considered to be dielectric, when the droplet travels 

through regions with different electrical potentials, because of the existence of plasma, an 

electric field with variable strength will be generated in the drop. This field in 

conjunction with the magnetic field, which corresponds to the toroidal one in the 

ISTTOK experiments, is expected to generate drop deflection, in the manner discussed 

above for the jet consideration. Based on the analytical solution of the model equations 

(Eqs 3.36 and 3.38.) and the parameter values when a=0.13 V/m and B0=0.42 T, 

Fm=0.76 and Bo=0.18, the deflection is more intense as the magnetic field increases, as 

can be depicted in Fig 3.12. In fact, it is more severe in comparison with the one 

predicted, and observed in experiments [38,39], in the case of jet motion. This is a result 

of the dominating action of the gradient of the electric potential which, owing to the small 

drop size in comparison with the length of the jet, generates a force that acts solely along 

the y direction. This action is intensified as the magnitude of the magnetic field increases, 

Fig. 3.12. It should also be stressed that the experimentally observed [38,39] drop 

deflection of 10 mm after a flight time of 30 ms subject to a field intensity of 0.42 T, is 

recovered in the simulations, as expected, since the gradient, a, was selected to match that 

value.  

 

 
Fig. 3.12 Gallium droplet trajectories during the first 30 ms, for a droplet that its center of mass is 

initially aligned with the negative z axis; a=0.13 V/m 
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The important effect of the magnetic field intensity is also illustrated via the magnetic 

damping on the drop velocity over the same time interval, as shown in Fig. 3.13 below; 

Fm=0.8. Eventually, the droplet motion is almost arrested due to the retarding effect of 

the magnetic field, which dominates owing to the relatively small value of the electric 

potential gradient, and its trajectory is shifted entirely towards the y axis. 

 

 
Fig. 3.13 Evolution of the gallium droplet velocity during the first 30 ms; a=0.13 V/m 

 

As can be gleaned from Figs. 3.8a and 3.12 deflection is much stronger on the same time 

scale for the case of a drop, when B0=0.4 T and a=0.13 V/M. Similarly, based on Figs 

3.10 and 3.13, the drop acquires a much larger velocity than the jet over the same time 

scale. The significant difference in deflection and speed perhaps explains events of drop 

spraying in the walls of fusion reactors when liquid metal limiters in the form of a jet-

drop curtain are employed. 

It should also be pointed out that during the experiments the radius of the droplet will not 

be constant at all times but it must be determined by a stability analysis of both the jet 

and the emerging droplets. Finally, if the shape of the droplet is not spherical, electric 

stresses must then be taken into account since they might affect the acceleration of the 

gallium droplet. It is known from the literature of free surfaces [73] that accelerating 

drops generate shape modes in the direction of the interface facing away from that of the 

acceleration. Subsequently, they may generate the translational mode via nonlinear 

interaction of pulsating shape modes. The latter effect has been well documented for 

pulsating bubbles [74]. It may then be possible, based on the dynamic response of 

specific shape modes [75], to dynamically excite drops, perhaps by vibrating the nozzle 

that introduces the liquid metal with the proper frequency, which will follow the desired 

trajectory. 

 

Concluding, it was seen by a proof of principle study that when a jet moves inside an 

electromagnetic field deflection arises due to the 
0~  j B B     interaction between 

the external electric potential gradients and the magnetic field. As a result the jet 

accelerates and eventually decays into drops. The latter, due to their small size and 

spherical shape, experience a stronger deflection. Jet and drop stability to shape 

oscillations, subject to jxB effects and electric stresses, is essential in capturing realistic 

dynamics of the jet/drop motion. The above picture conforms, within the proper order of 

magnitude, with the findings at ISSTOK [26,38,39]. Improved modeling of the jet/drop 

motion is required in order to obtain a quantitative comparison. 
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Chapter 4: Capillary Porous System (CPS): 
Modelling and mathematical formulation 
 

In this chapter, the step-by-step effort is described concerning the analysis of the 

operation of the CPS as plasma facing component. In particular, the modelling as well as 

its mathematical formulation of CPS is analyzed for both the preparation and static 

configuration phases. The latter phase arises after liquid metal depletion has taken place 

due to a large external heat flux, and the replenishment of the evaporated liquid metal 

film at the CPS/plasma interface has completed as a result of capillary activity within the 

porous matrix. The current study focuses principally on the static arrangement of the 

liquid metal resting onto the CPS top surface. More specifically, the effects of the 

reservoir overpressure, electric stresses and, the more relevant to fusion applications, 

jxB effects are investigated on the static film arrangement. Moreover, since, according to 

the experiments, the film thickness reduces down to micron or even submicron sizes, the 

nature of the micro-scale liquid-solid interactions is taken into account. In addition, the 

capillary fluid motion within a single pore is investigated providing the framework for 

studying the interplay between the different forces that act towards pushing liquid lithium 

out of the porous matrix or resist its motion. Finally, a first-principles study is performed 

pertaining to the power exhaust capabilities of the CPS configuration. 

 

4.1 Introduction 
 

As detailed in the Chapter 1, CPS is a capillary pumping system engineered to stabilize a 

protective liquid metal film against electromagnetic and thermal forces as well as drop 

ejection which is a key issue concerning the reliability of a free surface plasma facing 

component. 

 

Thus, in order to allow for stable operation, the liquid metal should be confined within a 

mesh or porous structure as already demonstrated in devices such as T11, T10 [76], FTU 

[77] and NSTX [78]. The CPS and its potential application under tokamak relevant 

conditions as well as its heat-exhaust capabilities with respective liquid metal choices has 

been the subject of extensive experimental research during the last two decades. In 

addition, experiments related to material compatibility [50] and wetting [63] as well as 

plasma impact [19] have been performed. Up to now, Lithium seems to make the 

proposed concept highly efficient. However, due to some problems accompanied 

Lithium, described in 1.3.3, also the use of Ga, Sn and Sn-Li has been investigated. Table 

4.1 lists their properties and also those ones for solid tungsten (W), often used in DEMO 

designs. 
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Table 4.1 

Properties of fusion liquid metals and W, [17] 

Symbol (units) Li Sn Ga W 

Atomic no. Z 3 50 31 74 

Atomic weight 6.94 118.7 69.72 183.84 

Density, ρ (g/cm
3
) 0.512 6.99 6.095 17.6 

Melting point, Tm (
o
C) 180.5 231.9 29.8 3695 

Heat of melting, Hmelt (J/g) 0.021 0.83 0.39 6.49 

Boiling point, Tb (
o
C) 1347 2270 2403 5828 

Latent heat of vaporization, 

Hvap (J/g) 

1.02 35.15 17.86 1429 

Dynamic viscosity, η (10
−3

 Pa-

s) at Tm 

0.25 1.85 0.95  

Surface tension, σ (N/m) at Tm 0.4 0.55 0.69  

Thermal conductivity, k 

(W/mm-K) at Tm 

0.045 0.030 0.051 0.072 

Heat capacity, Cp (J/g-K) 4.30 0.250 0.380 0.140 

Volumetric heat capacity, ρ 

Cp (MJ/m
3
-K) 

2.30 1.83 2.25 2.70 

Ionization energy, 1st (10
6
 J/g) 3.61 84.1 40.4 141.6 

Ionization energy, 2nd (10
6
 

J/g) 

50.6 167.6 138.0 312.5 

Ionization energy, 3rd (10
6
 

J/g) 

82.0 349.3 206.6  

 

Thus far, CPS has not been the subject of extensive modelling activity partly due to the 

complex flow arrangement of the limiter containing the liquid metal. Available studies 

[40,79,80] focus on the importance of the capillary forces to supply a mass flow rate of 

lithium through the CPS system via a balance between pressure drop and resistance to 

flow [80], while qualitatively emphasizing the relative merits of the arrangement [79,81]. 

Modelling of the power exhaust capabilities of such a system requires knowledge of the 

flow arrangement, if at all present. 

 

For a better understanding of the process and before presenting the CPS modelling, some 

images of an example of a tokamak with a CPS installed in it, namely the FTU tokamak, 

are depicted. First of all, the whole configuration, located in Frascati, is shown, Fig. 4.1. 

During the FTU operation, a radiative cloud, limiting the power load on the surface of 

liquid lithium limiter, was also observed, Fig. 4.2. More specifically, when the heat load 

is increased, a radiative cloud of lithium is formed all around the limiter produced by 

enhanced evaporation due to the increase of surface temperature. This self-protecting 

mechanism is considered to be useful for solving the problem of heat removal in a future 

reactor and, at the same time, to give a limit to lithium production by evaporation [47]. 

Finally, in Fig. 4.3 an image is given shown the liquid lithium limiter taken after the last 

experimental campaign. 
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Fig. 4.1 Top view of FTU, [82] 

 

 
Fig. 4.2 Image taken in FTU: Evidence of a radiative cloud, [47] 

I 

 
Fig. 4.3 Image of the three units after exposition on FTU at more than hundred discharges, [47] 

 

 

 

 

 

 

Institutional Repository - Library & Information Centre - University of Thessaly
12/05/2024 03:57:40 EEST - 52.15.35.194



   

   76 
 

4.2 Outline of the envisioned CPS operation 
 

This section deals with the step-by-step effort in order to understand the CPS 

configuration as plasma facing component. As a consequence, it focuses on the 

qualitative analysis of the different concepts underpinning operation of the CPS 

configuration. 

 

4.2.1 Preparation Phase 
Firstly, the CPS configuration during the preparation phase, in the absence of thermal and 

Lorentz forces, is investigated. In the preparation phase lithium, or some other material 

such as those presented in Table 4.1, is in solid state which, for simplicity, is represented 

in the form of cylindrical rods with density ρs, placed within the porous wafer as shown 

in Fig. 4.4. The wafer is in contact with the surrounding medium via the top surface that 

is initially covered (green layer in Fig. 4.4). Initially, it is assumed that there is no 

additional reservoir of lithium for simplicity, hr=0. If there was additional reservoir of 

lithium, it would also liquefy, thus, offering additional mass that would end up at the top 

of the wafer. The porous matrix thickness h0 is taken to be on the order of 1 mm. 

Moreover, to a first order, the volume of the wafer is considered not to change 

significantly in the process of heating and expansion of the liquid metal. Upon heating, 

the lithium liquefies at density ρl < ρs, with the subscripts “l” and “s” standing for the 

liquid and the solid state, respectively. Consequently, the top cover breaks by the 

expanding liquid and liquid metal covers the top surface forming a protective coating. In 

the schematic provided below, Fig. 4.5, the thickness of the liquid metal film is drawn out 

of scale. In qualitative Figs. 4.4 and 4.5 red colour represents the solid state of Lithium 

while the blue one its liquid phase. 

 

  
Fig. 4.4 Schematic arrangement of CPS in the preparation phase before heating and melting of lithium 

takes place 
 

 
Fig. 4.5 Schematic of the liquid lithium film that covers the CPS once melting has taken place; the 

thickness of the liquid metal film is sketched out of scale 
 

4.2.2 Depletion and replenishment 
A more relevant to plasma operation situation is described below. In particular, a 

qualitative description is provided of the depletion process of liquid metal covering the 
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CPS, due to an external heat flux, followed by the replenishment process that is 

dominated by capillary activity. The final static arrangement is difficult to be achieved 

and more difficult to be maintained at high enough heat fluxes. Nevertheless an attempt 

was made in the present Thesis to obtain the basic characteristics of such a static 

configuration. 
 

Heat transfer considerations 

Once the machine is “turned on”, an external heat pulse depletes the ultra-thin film 

existing on top of the porous matrix due to the evaporation process. Depending on the 

intensity and duration of the oncoming heat load, part of the liquid metal located within 

the porous structure also evaporates as illustrated in Fig. 4.6. Finally, capillary driven 

replenishment of the liquid metal film will take place, Fig. 4.7, by pumping the liquid 

metal from the reservoir. In this fashion, the CPS concept can provide sufficient working 

pressure in the supply system without applying external pressure, by means of the 

capillary pressure. This system is self-sustaining and self-regulating as mentioned in 

Chapter 1.  

 

Once the liquid metal layer on the top of the wafer evaporates, a different operating 

regime emerges, i.e. transpiration cooling. The oncoming heat flux will be balanced by 

(a) evaporation of Li captured within the pores, (b) heat conduction within the porous 

matrix but also (c) by convective heat transfer due to the preheating of liquid lithium, 

from the reservoir temperature up to the temperature of the interface, that is drawn out of 

the reservoir by capillary forces once the top of the CPS is depleted of liquid metal. In 

view of the above, convective heat transfer is not to be excluded from a comprehensive 

analysis of CPS. 

 

 
Fig. 4.6 Schematic of the depletion and replenishment process of the liquid metal film during plasma 

operation 
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Fig. 4.7 Reestablishment of static arrangement via capillary driven motion, after depletion 

 

Capillary fluid motion within a pore 

As a first attempt to provide an upper bound of the convective effects within the CPS 

matrix, the flow within a cylindrical pore is also examined. This simplified geometry, 

shown in Fig. 4.8, overestimates the permeability of the CPS, but provides the framework 

for studying the interplay between the different forces that act towards pushing liquid 

lithium out of the porous matrix or resist its motion. As a first approximation, the pore is 

considered to be isothermal and evaporation effects are neglected. Emphasis is placed in 

studying the potential of the CPS system to act as a capillary pump against gravity and 

viscosity.  

 

The static configuration is sought for fixed height, h, of the liquid metal column. The 

volumetric flow rate of liquid lithium is obtained, along with the meniscus shape at the 

interface, for known interfacial tension and contact angle, known pressure drop and 

material properties. The hydrodynamic problem is examined in the context of 

axisymmetry in order to obtain an understanding of the operation principle of the 

capillary pump. 

 

 
Fig. 4.8 Schematic arrangement of the flow arrangement within a single pore via capillary action 

 

In a more general situation the window of CPS proper operation is determined by the 

following inequality: 

 

c L G F MHDP P P P P                                                      (4.1) 
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where Pc represents the CPS capillary pressure, ΔPL the hydraulic pressure drop in CPS, 

ΔPG the hydrostatic pressure drop, ΔPF the pressure drop on the evaporating surface due 

to liquid-vapor phase transition, ΔPMHD the pressure drop due to the MHD effect on 

flowing Li in a magnetic field. Pc values for reasonable pore sizes can reach the values of 

0.2 - 0.3 MPa and exceeds the sum of pressure drops estimated as 10 kPa for the tokamak 

with a magnetic field of about 6 T, [18]. Finally, ΔPMHD can push liquid lithium out of the 

porous matrix or resist its motion depending on the direction of the externally applied 

magnetic field. 

 

4.2.3 Static arrangement of the CPS after depletion and replenishment 
Once the liquid metal reaches the pore`s “mouth”, driven mainly due to capillary action, 

it is anticipated to coat the top surface of the CPS matrix forming a static ultra-thin film. 

It is of major interest to investigate the static arrangement of the protective liquid metal 

layer and identify the important forces that participate in the equilibrium. 

 

The static film thickness established after depletion has taken place is a more relevant 

situation to plasma operation. This is a different process from the one that takes place 

during the preparation phase and will be drastically affected by the overpressure between 

the reservoir and the surrounding medium, as explained below.  

 

Keeping in mind that when the reservoir is in contact with the surrounding medium the 

respective pressures are more or less equal [83,84] and consequently capillary activity 

acts on its own in order to replenish the liquid metal. The kind of force helping the liquid 

layer adhere onto the porous matrix is very important in establishing the static 

equilibrium but also in stabilizing the film against jxB effects and drop ejection. 

 

Effect of reservoir overpressure 

In this fashion, the static arrangement of CPS is studied as a function of the overpressure, 

Pr-Pout, between the reservoir and the surrounding medium and the physical properties of 

the employed liquid metal. The flow arrangement resembles the experimental study 

performed in DIFFER by Rindt [83,84]. In particular, it is similar to the “vented oil 

lamp” concept, as mentioned in [83] and illustrated in Fig 4.9, which works like an oil 

lamp. Briefly, the liquid lithium rests in a reservoir of arbitrary shape and is transported 

to the surface through a channel. As a result of the vent, the pressure of the gas in the 

reservoir is equal to the outside pressure. As the meniscus of liquid metal in the reservoir 

descents, different cases of reservoir overpressures take place reflecting the height 

difference between the top and bottom menisci. The scope of the present study was not to 

model the process occurring in DIFFER. However, the latter experimental set-up was 

useful in developing the modeling concepts employed herein and is mentioned because it 

is a similar instrumental in visualizing the flow arrangement examined. 
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Fig. 4.9 Schematic of the “vented oil lamp” concept design. A wick provides lithium from the reservoir to 

the textured surface, which faces the plasma. Space for heaters is provided so the lithium can be liquified 

beforehand. A T-shaped slot is available for fastening. The slot is electrically and thermally insulated on the 

inside, [84] 

 

In the present investigation a more simplified model was used, as will be elaborated in 

the modelling section below. The porous system is considered to be a circular disk of 

small thickness h0, on the order of 1 mm. In addition, it is in contact with a reservoir that 

provides the liquid metal via a thin wick. Static arrangements are obtained with partial or 

full coverage of the top surface of the porous structure, depending on the reservoir 

overpressure, Fig. 4.10a and b, respectively. 

  

Effect of an externally applied electric field  

As a first step to assess the impact of field forces on the liquid metal layer that covers the 

porous system, the effect of an external electric field is taken into account that is aligned 

with the axis of symmetry of the porous wafer in the far field, Fig. 4.10c. The evolution 

of the shape of the interface is of interest as the intensity of the electric field increases, 

aiming at identifying conditions for which electric stresses overwhelm adhesion forces 

and conical angle formation is obtained [85].  

 

 
(a) 
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(b) 

 
(c) 

Fig. 4.10 Schematic of the present studied geometry and the anticipated static configurations for (a) partial 

and (b) full coverage of the top surface depending on the reservoir overpressure and (c) anticipated static 

configuration in the presence of an external electric field 

 

Effect of Lorentz forces  

The impact of the more relevant Lorentz forces was also investigated in the present study. 

The so-called “jxB effects” are anticipated to generate an additional effective 

overpressure leading to similar or even more deformed static configurations, depending 

on the magnitude of the magnetic field and the electric currents that enter the liquid metal 

layer. Thus, an externally applied constant magnetic field is added, B. In general, the 

liquid metal is anticipated to occupy the region within the pore, Fig. 4.11a, and, 

depending on the intensity of the Lorentz force, extend over a certain portion of the 

substrate, Fig. 4.11b. As a first approximation, the precursor layer and the surface forces, 

which were discussed in Chapter 1, are neglected. However, as will be detailed below, 

the latter are implicitly taken into account by fixing the contact angle rather than the 

contact point when the liquid metal exits from the pore and forms a thin “drop” on top of 

the CPS matrix. 

 
(a) 
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(b) 

Fig. 4.11 Schematic of the anticipated static configurations for the liquid metal (a) trapped in the pore and 

(b) extended over the pore 

 

Effect of the topography of the porous substrate 

At near vacuum conditions, the film thickness reduces down to micron or even submicron 

sizes. In this regime, the interfaces overlap and, as a consequence, the nature of micro-

scale interactions between the liquid metal film and the solid substrate cannot be ignored 

and needs to be considered. To this end, different forms of the interaction potential have 

to be tested in order to accommodate different types of surface forces. This kind of 

interactions has already been discussed in Chapter 2 which deals with wetting 

phenomena. 

 

Hence, the envisioned static configuration is characterized by an almost uniform 

coverage of the CPS outer surface, Fig. 4.12, with the reservoir overpressure being 

slightly negative or positive. In the first consideration, i.e. when the overpressure is 

slightly negative, small indentations are expected near the pore region, while small 

swellings are anticipated for the second case as can be shown in Figs. 4.13a and 4.13b, 

respectively. Such effects have been registered in experimental observations [86]. In this 

investigation, the distance between the pores is considered to be much greater than the 

pore radius. As a consequence, the static arrangement of the liquid metal can be studied 

in the vicinity of a single pore, Fig. 4.14. 

 

 
Fig. 4.12 Anticipated schematic arrangement of the CPS static configuration with an almost uniform 

coverage of the CPS outer surface 
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(a) 

 
(b) 

Fig. 4.13 Blow up of the region near the pores` “mouth” for (a) slightly negative or (b) slightly positive 

reservoir overpressures 

 

 
(a) 

 
(b) 

Fig. 4.14 Static arrangement of the liquid metal in the vicinity of a single pore for (a) slightly negative and 

(b) slightly positive reservoir overpressures 
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4.3 Modelling and mathematical formulation of the Replenishment 
Process 
 

This section deals with the modelling as well as the mathematical formulation of the 

study of the flow in a single pore as a first attempt to provide an upper bound of the 

convective effects within the CPS matrix.  
 

Liquids in general provided that they wet the material, of which the capillary is made, 

will be spontaneously and rapidly drawn into small-diameter tubes upon contact of one 

end of the open tube with the liquid. The driving force for this phenomenon is the surface 

tension, and the term "capillarity" as a synonym for surface tension effects was born of 

this observation, [70].  

 

"Wicking" is the term that is used in literature for the spontaneous penetration of a liquid 

into a capillary under the action of surface tension. The simplest model of wicking is 

based upon flow into a long straight capillary, as depicted in Fig. 4.15a. The meniscus of 

the liquid-gas interface is a section of a sphere of radius Rs which is related to the 

capillary radius Rp and the contact angle, θd, as shown in Fig. 4.15b. A number of models 

of the wicking process are available in literature such as [87-90]. 

 

 
                                                  (a)                                                        (b) 

Fig 4.15 (a) Schematic of wicking into a single capillary and (b) The meniscus of the liquid-gas interface 

 

The driving force for wicking is the capillary pressure Pc, which, for a small diameter 

capillary, is well approximated by using the Young-Laplace equation, namely the normal 

stress balance that holds on the liquid-gas interface. Assuming, as mentioned above, that 

the meniscus is a section of a spherical surface that intersects the capillary at a finite 

contact angle θd: 

 
2

cosc d

p

P
R


   

 

(4.2) 
 

(15a) 

 

where γ is the surface tension of the liquid. Note the sign on the pressure. The pressure is 

reduced by the (negative) curvature of this meniscus as one passes from the ambient 

medium just above the meniscus into the liquid. The dynamic contact angle θd may be 
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different from the equilibrium contact angle θc. Joos et al. [90] presented an experimental 

relationship between the dynamic contact angle and the equilibrium one. Besides, it is 

known that the dynamic contact angle depends upon the rate of flow of the liquid through 

the capillary, [90]. An elaborated literature review concerning capillary penetration 

dynamics can be found in [70]. 

 

Assuming that the capillary is vertical, as in Fig. 4.15a, and that the flow is opposed by 

gravity, the net pressure driving force is given by: 

 
2

cos d

p

P gh
R


      

 

(4.3) 
 

(15a) 

 

Returning to the problem under investigation, a steady delivery of liquid metal via the 

porous matrix is investigated in this section. The pore is considered to be a long straight 

cylindrical capillary and in contact with a reservoir that provides the liquid metal, as 

shown in Fig. 4.15a. In this fashion, no external field forces are taken into account 
besides gravity. As mentioned above, this first principle analysis overestimates the 

permeability of the CPS. Nevertheless, it provides the framework for studying the 

interplay between the different forces that act towards pushing liquid lithium out of the 

porous matrix or resist its motion. Besides, it provides the replenishment speed on top of 

the porous structure which is considered to be in contact with plasma. 

 

The pore is considered to be isothermal and evaporation effects are neglected. Emphasis 

is placed in studying the potential of the CPS system to act as a capillary pump against 

gravity and viscosity. A steady state configuration is sought for fixed height of the liquid 

metal column. The volumetric flow rate of liquid lithium is obtained along with the 

meniscus shape at the interface, for known interfacial tension, γ, and equilibrium contact 

angle, θc, known pressure drop and material properties. Hence, the hydrodynamic 

problem is examined in the context of axisymmetry in order to obtain an understanding of 

the operation principle of the capillary pump.  

 

To this end the momentum equation is solved by neglecting the transient terms, assuming 

a quasi-steady pattern with the dynamics of the rising fluid passively following the time 

evolution of the meniscus: 

 

  vP         u u g  (4.4) 

 

along with continuity equation: 

 

 
1

0z
r

u
ru

r r z


 

 
 

 

(4.5) 

 

the kinematic condition stating that the normal velocity of the interface is the same as the 

normal fluid velocity evaluated at the interface: 

 

2 2

1

1 1

z r

r z

r r

f
u u

f f fru n u u
t t rz z




       
   

 

 

(4.6) 
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and the normal stress balance on the liquid-gas interface: 

 

in v out sP I P I     n  (4.7) 

 

In the above system of Eqs.4.4-4.7, ρ, μ and γ denote the fluid density, the dynamic 

viscosity and the surface tension of liquid lithium. Moreover, u is the vector of fluid 

velocity with ur, uz being its radial and axial components. Besides g represents the vector 

of gravity acceleration, f stands for the axial distance between the bottom of the capillary 

and the liquid-gas interface and v  the viscous stress tensor. This mathematical 

formulation incorporates the cylindrical coordinates due to the cylindrical geometry of 

the capillary. Thus, r and z denote the radial and axial coordinates, respectively. Note that 

0






 due to the axial symmetry around z axis. Thus, the flow arrangement is 

unchanged if rotated around z axis. 

 

The dimensionless quantities are introduced: 

 

0

,  z ,  P ,  
/

ˆ  

ˆor 

p p p

p

p

r z P
r

R R R

R
u

h

u
R











  





 

 

(4.8a) 

(4.8b) 

 

(4.8c) 

 

Eqs. 4.8b,c regarding û are derived via a force balance between surface tension forces and 

viscous or inertial forces, respectively. Besides, û derived via Eq. 4.8b is used when no 

inertial effects are taken into account while Eq. 4.8c when inertia forces dominate. The 

use of this discrimination is related to the dominant forces acting to the liquid metal 

capillary rise and is going to be discussed in detail in subsection 6.3. 

  

Dropping bars for simplicity, the governing system of equations reads: 

 

    vWe P Bond z Ca       u u  (4.9) 

 

along with continuity equation: 

 

 
1

0z
r

u
ru

r r z


 

 
 

(4.10) 

 

and kinematic condition: 

 

r z

f f
u u

t r

 
 
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(4.11) 
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and the normal stress balance on the liquid-gas interface: 

  

in v out sP I Ca P I    n  (4.12) 

where 

2 2

,  
ˆ ˆ

,  
p pu R gRu

We Ca Bond
 

  
    are the Webber, Capillary and Bond 

numbers representing the relative strength of inertial, viscous and gravitational forces to 

surface tension forces, respectively.  

 

Multiplying both legs of Eq. 4.12 by n and using the following geometrical relationship 

in order to decrease the order of differentiation: 

 

 
2

2 sH
s R


     


t n
n n n  

(4.13) 

 

Eq. 4.12 results in: 

 

 
2

in v outP I Ca P I
s R


 

     
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t n
n  

(4.14) 

 

 where: 

 
2

2
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1
,  ,  
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rr r
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r ff f
R

ff f

  
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 

r z r ze e e e
n t  

(4.15) 

 

which have been derived in Appendix B. 

 

The pressure in the reservoir is set to Pr while symmetry conditions prevail at the axis of 

symmetry: 

 

( 0, ) 0, / ( 0, ) 0r zu r z u r r z       (4.16) 

 

Finally the transverse velocity is set to zero at the pore entrance,  0, 0r zu r  , whereas 

at the pore wall a slip length, , is allowed near the meniscus tip in order to 

accommodate the rise velocity of the liquid metal: 

 

     
1

1, ; 0, 1, ; 1; ,
x

r z

p

f
u r z t u r z t r t e

t R
 



     


 

(4.17) 

 

The above relationship ensures that the no-slip condition pertaining to the axial velocity 

at the wall is reinstated after a very small slip length . Variable x is introduced in order 

to fix the size of the mesh in the r, x plane within 0 and 1, as will be discussed in Chapter 

5. 
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4.4 Static arrangement of the CPS: Modelling and mathematical 
formulation  
 

This section deals with the modelling and the mathematical formulation of the static 

arrangement of the liquid metal in the context of CPS configuration. Each study, 

pertaining to the effects of reservoir overpressure, external field forces and topography of 

the porous substrate is modelled in a different subsection for a better understanding.  

 

4.4.1 Effect of reservoir overpressure 
First of all, the static arrangement of CPS is investigated as a function of the pressure 

difference between the reservoir and the surrounding medium and the physical properties 

of the employed liquid metal. In this study, a porous system is considered, shaped as a 

circular disk of small thickness, h0, on the order of 1 mm. It is in contact with a reservoir 

that provides the liquid metal via a thin wick. Furthermore, isothermal conditions are 

considered and a liquid metal layer is assumed to have been established on top of the 

CPS, while the entire configuration has reached an axisymmetric static arrangement. As a 

first approximation, the CPS top surface is assumed to be flat. Nevertheless, in real 

experiments the topography of the top of the porous wafer is going to play an important 

role in the accomplishment of the static arrangement, as will be discussed later.  

 

In the present study, the possibility is investigated for a static arrangement to be 

established with the liquid metal covering the top of the porous wafer. Moreover, the 

prediction of the thickness of the film which is formed on top of the porous structure, at 

static equilibrium, as well as the extent of its coverage, constitutes the scope of this 

analysis. 

 

Fig. 4.16 illustrates the anticipated static arrangement as well as the interplay of the 

different forces acting on the liquid metal “drop”. The surface tension forces, in the 

vicinity of the three phase contact line, tend to “pin” the liquid metal onto the solid 

substrate and, thus, stabilize it against pressure forces. In this context, the prevailing static 

arrangement will be a function of reservoir overpressure. In particular, for very large 

overpressures, or small liquid metal “drops”, gravity is out of the picture. However, as the 

size of the “drop” increases, gravity becomes significant. 

 

 
Fig. 4.16 Schematic of the anticipated static arrangement and depiction of the governing forces 

 

As depicted in Fig. 4.16, the porous layer is assumed to be saturated with liquid metal 

before the liquid metal “drop” spreads to reach static equilibrium. This assumption is 
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corroborated by previous studies accounting for the spreading dynamics of a liquid drop 

on a saturated porous substrate [91] where the spreading process is shown to take place in 

a fashion similar to spreading on a dry solid. Moreover, for a thin enough porous 

substrate, the saturation process of the substrate takes place much faster than drop 

spreading, owing to the much larger capillary pressure inside a partly filled porous matrix 

in comparison with the drop; γ / Rp  >> γ /Rf; since Rp << Rf with γ, Rp, Rf denoting the 

surface tension of the liquid metal, the pore radius and the radial extent of the liquid film, 

respectively. As a consequence, it can be safely assumed that static equilibrium will be 

achieved over a saturated substrate. Once the static arrangement is achieved, the pore size 

and the number of the pores do not affect the shape of the liquid metal layer, provided the 

thickness remains larger than a characteristic length δΑ determining the range of the 

interaction potential with the porous substrate. 

 

The normal stress balance holds on the interface between the liquid metal and the 

surrounding medium at equilibrium: 

 

  2 0in out cP P I H   n n                                                  (4.18) 

 

where n is the normal unit vector of the interface in cylindrical coordinates obtained in 

Appendix B:  

 

21

r

r

z

z






z re e
n  

                                                (4.19) 

 

Hc signifies the mean curvature and I  the unit tensor. Finally, Pout represents the pressure 

at the surrounding medium and 

 

0 0 0,  in rP P gz P P gh                                                     (4.20) 

 

with Pr standing for the reservoir pressure and P0 the pressure at top of the porous wafer, 

as shown in Fig. 4.16, whereas ρ signifies the fluid density of the liquid metal and g is the 

gravitational acceleration. 

 

The governing boundary conditions concerning the shape of the interface z = z(r) for 

cylindrical coordinates read: 

 

0:  0rr z                                                   (4.21) 

:  0fr R z                                                   (4.22) 

 

As long as the liquid metal “drop” partially covers the top of the porous substrate the 

contact angle is fixed to 30
o
, an angle in the range of those presented in [63]. As a 

consequence, partial wetting has been considered between the liquid metal and the 

substrate. This contact angle is set at the three phase contact line which has the form of 

circle in the present case due to axisymmetry. However, when the liquid metal covers the 

entire top surface a fixed contact point is imposed at r = Rc, with Rc denoting the CPS 

radius, rather than a fixed contact angle. 

 

Institutional Repository - Library & Information Centre - University of Thessaly
12/05/2024 03:57:40 EEST - 52.15.35.194



   

   90 
 

The normal stress balance, Eq. 4.18, and the corresponding boundary conditions, Eqs. 

4.21 and 4.22, constitute the problem formulation. The z coordinate of the interface and 

the radial position of the contact point, Rf, are the unknowns of the problem that are 

obtained as a function of the imposed overpressure. Once the liquid metal covers the 

entire top surface of the wafer a fixed contact point condition is imposed and the z 

coordinate of the interface is the only unknown of the problem. 

 

4.4.2 Effect of an externally applied electric field 

As a first approach to assess the impact of field forces on the liquid metal layer covering 

the porous system, the effect of an external electric field is also considered that is aligned 

with the axis of symmetry of the porous wafer in the far field, Fig. 4.10c: 

 

  0,  r   
z

E E e                                                  (4.23) 

 

with Φ denoting the electric potential. The evolution of the shape of the interface is of 

interest as the intensity of the electric field increases, aiming at identifying conditions for 

which electric stresses overwhelm adhesion forces and conical angle formation is 

obtained, [85,92].  

 

The liquid metal is treated as a very electrically conducting material in comparison with 

the external medium, in which case the electric potential is constant inside it and we set 

/ 1out in   , with , ,in out   representing the electric permittivity of the liquid metal and 

surrounding medium, respectively. 

 

The normal stress balance on the interface between the liquid metal layer and the 

surrounding medium which holds at equilibrium, Eq. 4.18, is augmented with the electric 

stresses term,
el

 : 

 

    2 0
out in

in out cel el
P P I H       

 
n n                  (4.24) 

 

where the terms “in” and “out” stand for the liquid metal and the surrounding medium, 

respectively. 

 

The electric stresses can be expressed via the following relationship: 
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i

el i i i i i
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     

      

n

n n t

   

 

               

 

  (4.25) 

 

with the index “i” representing the “in” and “out” cases mentioned above. When an 

external electric field is applied, taking the “drop” to be very thin, i.e. z / Rf  <<  1: 

 

0 ,
d d dz

E
n dz s dz ds

   
  

 
 

                (4.26) 
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The above assumption loses validity in the vicinity of the “drop” equator where the 

normal potential gradient, / n  , is much smaller than its value at the pole, Eo. For 

comparable film thickness and length the boundary element method may be used to 

calculate the electric potential inside and outside the film [92-94] more accurately. 

 

Upon the subtraction 
out in

el el
   the tangential component becomes zero. Finally, in 

agreement with previous studies [85,92], the electric stresses term reads as: 

   

 
2

2 0

2

1 1

8 8 1

out in

el el el n

r

E
E

z
  

 
    


n n n n  

                (4.27) 

 

Once the static arrangement is obtained, then the mass of the liquid metal that is pinned 

onto the substrate, m, is estimated via: 

 

 
0

2

fR

m z r rdr   
                (4.28) 

  

Then, the effect of the electric field on the static configuration is captured by setting the 

contact point at r = Rf while leaving the contact angle as an unknown. The latter is 

calculated in the post-processing phase of the numerical solution. In this fashion, the 

pressure difference is treated as an unknown and is obtained as part of the solution, for a 

given mass m of the adhered drop. 

 

As mentioned before, via this investigation, a first attempt is made to capture the effect of 

external electromagnetic field forces on the liquid metal layer and, possibly, obtain 

plausible conjectures regarding its stability once plasma activity is “turned on” [95]. 

 

4.4.3 Effect of Lorentz forces 

As mentioned in Chapter 1, the surface of any liquid metal PFC must remain stable when 

exposed to the plasma. Electrical currents in a PFC can arise from currents in the scrape-

off-layer, eddy currents induced by plasma disruptions, or thermionic emission when the 

surface temperature is high enough.  

 

Thus, in a tokamak environment, Lorentz forces arise due to the interaction of the 

currents entering into the liquid metal layer, with the magnetic field, which are referred as 

“jxB effects” in the literature. The CPS configuration aims to stabilize the liquid metal 

film, resting on top of the wafer, against these body forces mainly due to the surface 

tension forces mentioned before and illustrated in Fig. 4.16. CPS static film thickness is 

very small, on the order of μm`s, thus, decreasing the effects of electromagnetic forces in 

favor of film stability.   

In order to incorporate the jxB effects in the formulation, an externally applied constant 

magnetic field is added in the azimuthal direction, B=B0eθ, along with currents which 

“hit” on the liquid-plasma interface, as can be illustrated in Fig. 4.17. The magnetic field 

was added in the azimuthal direction as a first effort to capture and understand the 

mechanism via which even more deformed static configurations can be obtained leading 

to destabilization of the static liquid metal film or even drop ejection. Finally, at near 
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vacuum conditions the pressure in the reservoir is anticipated to be approximately equal 

to the pressure in the surrounding medium, thus, Pr = Pout. 

 

 
Fig. 4.17 Schematic of the studied geometry and the resulting anticipated static configuration in the 

presence of an externally applied magnetic field 

 
According to Maxwell there are no magnetic monopoles. Consequently, and assuming 

also that the constant magnetic field is in the azimuthal direction: 

 

  0
0

1
0 0

B
B

r 


    


θB e  

                (4.29) 

 

However, the curl of the vector field B is nonzero: 

 

  0
0

1
0

B
rB

r r r


   


z zB e e  

                (4.30) 

 
This may pose problems in the formulation by introducing fictitious currents. In order to 

circumvent this issue, following the analysis of Gao and Morley [96-97] the magnetic 

field can be decomposed into an applied and an induced magnetic field B0 and Bi, 

respectively: 

 

 
Using the Ampere`s Law in order to determine the electric current we get: 

 

 

where H serves as a stream function for the emerging electric current, so that we can 

avoid any spurious currents associated with a rotational applied magnetic field. 

Moreover, μm stands for the magnetic permeability of the liquid metal. 

 
The Lorentz force then reads: 

 

i 0B B B                  (4.31) 

i

m


  

B
J H  

                (4.32) 
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Both H and B0 are considered to lie along eθ. Then, H H e  and 

 

 

The above form of the Lorentz forces can be viewed as a manifestation of the Maxwell 

stresses [98] decomposed in the magnetic pressure and rotational parts. Equating the 

electric currents provided by Ampere`s and Ohm`s Law:  

 

 

where σ is a material-dependent parameter called electrical conductivity. 

 

For static equilibrium u=0. As a consequence: 

 

 

When there is motion: 

 

  0    LF J B H B                  (4.33) 
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However, if 
0 mB H then: 

 

 
Lithium is a paramagnetic material. Paramagnetic materials are slightly attracted by a 

magnetic field and the material does not retain the magnetic properties when the external 

field is removed. Finally, they have a small, positive susceptibility to magnetic 

field (χm,Li=1.4 ∙10
-5

). Thus, μm = μ0 (χm,Li +1)= 4.000056π∙10
-7

 Ν/Α
2
, where  μm, μ0 are the 

magnetic permeabilities of liquid lithium and free space, respectively. In view of the 

above very small value of the magnetic permeability of lithium, the assumption of small 

magnetic induction is validated for a magnetic field intensity, B0, on the order of several 

Tesla. 

 

Returning to the flow arrangement that is the subject of this consideration, as a first 

approach the rotational part of the magnetic stress is neglected so that emphasis can be 

placed on the effect of Lorentz forces on the static arrangement.  It should be stressed, 

however, that this static arrangement is not strictly valid as it suffers from the drawback 

that it does not account for the recirculation triggered by the rotational part of the Lorentz 

force. Clearly, as the external electric current increases the importance of convective 

effects and the resulting rotational motion increases and has to be taken into 

consideration. Nevertheless, it is anticipated that the location of the interface predicted in 

this fashion will not be significantly different from the one obtained by incorporating the 

equations of motion within the pore in the model. In fact, for relatively small electric 

current intensities the emerging rotational motion will be very weak to affect the final 

result which will be determined by the magnetic pressure component of the Maxwell 

stresses.   

 

In this context, the interfacial normal stress balance reads: 

 

 
where P is the pressure on the liquid-gas interface and 

outP the external pressure, as can 

be shown in Fig. 4.17. 

 

In the bulk of the liquid metal a Poisson-type equation holds, Eq. 4.36, while the Navier-

Stokes equations augmented with the Lorentz Forces, estimated in Eq. 4.34 are: 
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Hence, upon neglecting the rotational part of the Lorentz force we obtain in the z 

direction: 

 

 

where 
0zP   represents the pressure on z = 0 plane and 

0z  and 
int denote the value of H 

on z=0 plane and on the liquid-gas interface, respectively. 

 
Eventually, the normal stress balance at the interface reads: 

 

 

where  0 0 intzB   is an extra pressure related to Lorentz forces. 

 

Davidson [98] gives one other aspect of Lorentz forces via Maxwell stresses 

representation. In his analysis he expresses Lorentz forces as: 

 

 

The second term on the right of Eq. 4.43 acts on the fluid in exactly the same way as the 

pressure force. If the magnetic field is irrotational, it makes no contribution to the 

vorticity equation. In flows without a free surface its role is simply to augment the fluid 

pressure. Its absence from the vorticity equation implies that it cannot influence the flow 

field. For this reason, 2 2 mB is called the magnetic pressure and in many, if not most, 

problems it is of no dynamical significance. 

 

Considering the first term on the right of Eq. 4.33 the ith component of this force is: 

 

 

where there is an implied summation over the index j. From this, according to Davidson, 

it can be shown that the effect of the body force in Eq. 4.44 is exactly equivalent to a 

distributed set of fictitious stresses,
i j mB B  , acting on the surface of fluid elements. 

One approach is simply to compare Eq. 4.44 with the viscous forces, 
ij jx   in 

momentum balance equation. Davidson deduces that Lorentz forces can be replaced by 

an imaginary set of stresses: 

 

 

where δi,j denotes that if i = j then δi,j = 1 while if i ≠ j then δi,j = 0. These stresses, 

describing by Eq. 4.44, are called the Maxwell stresses and their utility lies in the fact that 

 

 

0 0 int 0 0 0

0 0 0 int

0 z z

z z

P gz B P gz B P B
z

P P gz B

 



 

 


           



     

 

                 

 

(4.41) 
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we can represent the integrated effect of a distributed body force via stresses exerted on 

the surface of fluid elements. 

 

A more general form of Maxwell stress tensor, in S.I. units, including also electric 

stresses, is given by: 

 

 

However, when the Maxwell stresses include a rotational part, as in our case, Eq. 4.34, 

the resulting Lorentz force may drive a recirculating flow preventing static configuration 

to be established. As a matter of fact, this recirculating flow can act in favor of power 

exhaust in the divertor region via the convection heat transfer mechanism. 

 

Returning to the static problem under investigation, as mentioned above, the liquid metal 

layer is anticipated to occupy the region within the pore and, depending on the intensity 

of the external magnetic field, B0, and the electric currents entering the liquid metal layer 

from the surrounding plasma, extend over a certain portion of the substrate, as depicted in 

Fig. 4.11. In both considerations, i.e. static configuration for the liquid metal (a) being 

trapped within the pore and (b) extended over the pore, the system of equations to be 

solved are formed by the Poison-type Eq. 4.36 and the normal stress balance equation, 

Eq. 4.42, along with the boundary conditions which are going to be discussed below. 

 

(a) Static configuration for the liquid metal trapped in the pore 

In this context, the axisymmetric static arrangement of the liquid metal being “trapped” 

within the pore, Fig. 4.11a, is investigated imposing a fixed contact point at the pore`s 

edge. The cylindrical coordinates are used in order to conform with the geometry of the 

problem. The line, surface and volume elements, the del operator as well as the derivation 

of the unit vectors and curvatures concerning cylindrical coordinates are elaborated in 

Appendix B.  

 

The boundary conditions concerning the current density J are summarized below. As a 

first approximation, insulated walls are considered: 

 

 
Also, due to symmetry at r = 0: 

 

 

Finally, on the interface z = z(r) a known current density exists: 

 

 

At z = -h0 J can be calculated based on the conservation of the electric current: 
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Assuming a very large pore length compared to its radius, at z = - h0: 

 

 
Hence, at r = Rp and -h0 ≤ z ≤ 0 we have that: 

 

 

while at r = 0: 

 

 
Finally, a Robin-type boundary condition holds on the interface: 

 

 

The boundary conditions described by Eqs. 4.47a-4.47d along with the depiction of the 

fixed contact point discussed above are illustrated in Fig. 4.18. As was above mentioned 

this simplified study is a first attempt to obtain the effect of the Lorentz forces on the 

liquid metal/plasma interface. 

 

 
Fig. 4.18 Schematic of the studied geometry with the liquid metal being trapped in the pore along with the 

boundary conditions pertaining to H 
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(b) Static configuration for the liquid metal covering the pore 

Secondly, the axisymmetric static arrangement of the liquid metal extended over the pore, 

Fig. 4.11b, is investigated imposing a fixed contact angle rather than a fixed contact 

point. As a matter of fact, the value of this contact angle is prescribed by the interaction 

potential between the liquid metal and the solid substrate as will be discussed in detail in 

the results section. Hence, the micro-scale surface forces are implicitly taken into account 

by fixing the contact angle. The spherical coordinates are used due to the geometry of the 

problem. The line, surface and volume elements, the del operator as well as the derivation 

of the unit vectors and curvatures concerning the spherical coordinate system are 

described in Appendix C.  

 

The studied geometry along with the boundary conditions pertaining to H are illustrated 

in Fig. 4.19.  

 

 
Fig. 4.19 Schematic of the studied geometry with the liquid metal extended over the pore along with the 

boundary conditions pertaining to H 

 

4.4.4 Effect of the topography of the porous substrate 
In this study, we do not assume the classic partial wetting case, i.e. liquid lithium with a 

dry substrate beyond the contact point, as presented in Chapter 2. The classic partial 

wetting case cannot be assumed, because it is not possible to obtain such a static solution 

at near vacuum conditions (Pr ≈ Pout.) for a CPS thickness of 1mm, a pore size on the 

order of 30 μm and a contact angle θ = 30
ο
. Such a static configuration would require an 

unrealistically tall liquid metal column of, roughly,  2 cos / ( ) 4.5ph gR m     that 

would not be useful, in terms of stability, in protecting the CPS structure and the divertor 

below.  

   

As mentioned above, the envisioned static configuration is characterized by full coverage 

of the CPS outer surface whether the pressure difference ΔP= P0-Pout is slightly positive 

or slightly negative. The latter case pertains to the situation after replenishment has taken 

place but without considering the Lorentz forces. In this regime, coatings rather than 

films should be considered covering the entire CPS wafer and, thus, micro-scale liquid-

solid interactions, known as surface forces, need to be accounted for as analyzed in 

Chapter 2. In particular, in terms of finding a proper interaction potential fitting with the 

current study, firstly a purely repulsive potential was incorporated, which was found not 
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to be compatible with the current investigation, and secondly a long range attractive short 

range repulsive potential.  

  

A manifestation of the action of surface forces is the disjoining pressure, Π [53,54,57]. 

Although this term is a bit misleading, since the surface force can be either disjoining 

(repulsion between surfaces) or conjoining (attraction between surfaces), it is used for 

historical reasons. 

 

Purely repulsive potential 

The aforementioned purely repulsive potential, based on summing individual London–

van der Waals interactions between molecules pair-by-pair, is described via: 

 

2
( )

12

A
W 


  

(4.48)  

 

The constant A is the so-called Hamaker constant and it depends upon the properties of 

the three phases. The constant A can be positive indicating a purely repulsive potential, 

incorporated in this study, or negative, thus, indicating a purely attractive potential.  
 

The corresponding disjoining pressure, Π, can be calculated from: 

 

3

( )
( )

6

dW A

d




 
    

(4.49) 

 

For films satisfying such an expression, and for A > 0, Π increases as the film thickness 

grows small. Thus, van der Waals forces could support a finite film thickness under 

conditions that classical continuum physics would not permit. 

 

The interaction potential along with the corresponding disjoining pressure as a function 

of the film thichness, for the case of a perfectly flat solid surface, are illustrated in Fig. 

4.20 for a typical Hammaker constant value, A = 10
-18 

Nm : 

 

  
Fig 4.20 Case of purely repulsive potential: Interaction potential, W, and the corresponding disjoining 

pressure, Π, as a function of the film thickness for A=10
-18

 Nm  

 

Long range attractive short range repulsive potential 

A Lennard–Jones type potential, as a simple way to approximate strong repulsion at short 

distances between the liquid and the solid phases, and attraction at intermediate distances, 

is considered in this subsection. This consideration seems to give more realistic results 
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comparing to the previous one. However, certainly better forms of the potential of the 

liquid-solid interactions may be incorporated based on the available literature.  

 

Hence, this kind of micro-scale liquid-solid interactions results in a disjoining pressure 

for the purpose of stabilizing a thin liquid metal layer upon the porous wafer. This 

interaction potential is described via: 
 

4 2

.0 2A AW W
 

 

    
    
     

   
(4.50) 

 

with W0 signifying the wetting parameter, which is directly related with the solid 

wettability (an increase of W0 indicates stronger liquid-solid interaction) and δΑ 

representing a characteristic length scale for which the energy is minimized and the 

interaction force vanishes. Constants 4 and 2, were selected so that the disjoining pressure 

Π is positive at distances δ < δΑ, indicating repulsion, and negative at distances δ from the 

substrate that are larger than the characteristic scale δΑ, indicating attraction. The 

constants 4 and 2 are typical selections that can be modified based on the nature of the 

interacting materials. The interaction potential W becomes insignificant at distances that 

are significantly larger than δΑ.  

 

The corresponding disjoining pressure, Π, can be calculated from: 

 
5 3

.04( )
( ) A A

A

WdW

d

  


   

    
     

     

   
(4.51) 

 

The interaction potential of this kind along with the corresponding disjoining pressure as 

a function of the film thichness, for the case of a perfectly flat solid surface, are 

illustrated in Fig. 4.21 for W0 = 0.05
 
N/m and δΑ = 50

 
nm. 

  

 
Fig 4.21 Case of long range attractive short range repulsive potential: Interaction potential, W, and the 

corresponding disjoining pressure, Π, as a function of the film thickness for W0 = 0.05 N/m and δΑ = 50 nm 

 

In the case of a perfectly flat solid surface, the distance δ is defined as the vertical 

distance of the liquid surface from the solid boundary, see also the configuration depicted 

in Fig 2.5. For non-flat, rough, solid surfaces, the definition of distance, δ, requires 

special consideration. Here, δ represents the Euclidean distance between the liquid-

plasma interface and the solid substrate. As mentioned in Chapter 2, this quantity can also 
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be obtained via the solution of the Eikonal equation, as proposed by studies such as 

[60,62]. 

The disjoining pressure term in both cases investigated in this study (purely repulsive 

potential and a long range attractive short range repulsive potential) was calculated via 

Eq. 4.52:  

 

W W W


 
   

        
   

n
n n

 
(4.52) 

 

where n represents the normal unit vector pointing out of the liquid-gas interface and 

away from the solid substrate, see also Fig 2.5, in such a way that / n 1   for a flat 

substrate. As deduced in Appendix B, for cylindrical coordinates and Eulerian 

representation for the liquid-gas interface the normal vector assumes the form: 

 

21

r

r

z

z

 




r ze e
n  

(4.53) 

 

Hence, in the absence of an external field forces, the surface forces enter the normal force 

balance on the interface in the form of a disjoining pressure Π: 

 

 0 0 2out cP gz P W H      (4.54) 

 

Note that if the case of Lorentz forces is to be considered, the left hand side of Eq. 4.54 

can be augmented with the magnetic pressure term,  0 0 intzB   . Moreover, if the 

case of electric stresses is to be taken into account the left hand side of Eq. 4.54 can be 

augmented with the electric stresses term,

2

0

2

1

8 1 r

E

z 
. 

 

Using Lagrangian rather than Eulerian representation for the liquid-gas interface the 

normal unit vector reads:  

 

2 2,  
z r

S r z
S

 

  



 
  

r ze e
n  

(4.55) 

 
Furthermore, Hc in Eq. 4.54 is the mean curvature which is, according to Appendix B, 

defined by: 

 

, ,

3
2 c s

z r z r z
H

rS S

      

 

 
    n  

(4.56) 

 

The system of the governing equations of the problem comprises the Eq. 4.54 along with 

the condition for generating an equidistant mesh along the interface. The boundary 

conditions imposed in this problem are going to be elaborated in subsection 5.4.5. 

 

 

 

Institutional Repository - Library & Information Centre - University of Thessaly
12/05/2024 03:57:40 EEST - 52.15.35.194



   

   102 
 

 

 

 

 

 

  

Institutional Repository - Library & Information Centre - University of Thessaly
12/05/2024 03:57:40 EEST - 52.15.35.194



   

   103 
 

Chapter 5:  Numerical Analysis 
 

In this chapter, a brief description is given concerning the numerical methodology that 

was employed in order to solve selected problems related to the CPS static and dynamic 

configuration as modelled in Chapter 4. In particular, the Finite Element Methodology is 

used for the purpose of discretizing the governing nonlinear differential equations, while 

the resulting set of algebraic equations is solved via the Newton-Raphson method until 

convergence. Simple or arc-length continuation is utilized depending on the existence or 

not of a limit point in the emerging solution family. Finally, benchmark calculations are 

conducted in order to investigate the validity of the above numerical models. 

 

5.1 Finite Element Methodology 
 

The Finite Element Method is a technique in which a given domain is represented as a 

collection of simple domains, called finite elements, so that it is possible to systematically 

construct the approximation functions needed in a variational or weighted-residual 

approximation of the solution of a problem over each element. For a typical problem, 

according to Reddy [99], the basic steps involved in the finite element analysis of a 

problem are the following ones: 

 

1. Discretization of the given domain into a collection of preselected finite elements. 

a. Construct the finite element mesh of preselected elements. 

b. Number the nodes and elements. 

c. Generate the geometric properties (e.g., coordinates and cross-sectional 

areas) needed for the problem. 

2. Derivation of element equations for all typical elements in the mesh. 

a. Construct the variational formulation of the given differential equation 

over the typical element. 

b. Assume that a typical dependent variable u is of the form 
i i

i

u u  

and substitute it into Step 2a to obtain element equations in the form 

   e e eK u F     

c. Derive or select element interpolation functions ψi and compute the 

element matrices. 

3. Assembly of element equations to obtain the equations of the whole problem. 

a. Identify the interelernent continuity conditions among the primary 

variables by relating element nodes to global nodes. Construct the 

variational formulation of the given differential equation over the typical 

element. 

b. Identify the "equilibrium" conditions among the secondary variables.  

c. Assemble element equations using Steps 3a and 3b. 

4. Imposition of the boundary conditions of the problem. 

a. Identify the specified global primary degrees of freedom. 

b. Identify the specified global secondary degrees of freedom. 

5. Solution of the assembled equations. 

6. Post-processing of the results. 
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5.2 Approximation of the solution - Basis Functions 
 

The approximation solution u
e
 should fulfill certain requirements in order to be 

convergent to the actual solution u as the number of elements is increased. These are: 

 

1. The approximate solution should be continuous over the element, and 

differentiable, as required by the weak form. 

2. It should be a complete polynomial, i.e., include all lower-order terms up to the 

highest order used. 

3. It should be an interpolant of the primary variables at the nodes of the finite 

element. 

 

5.2.1 The Lagrangian quadratic shape functions 
A quadratic approximation is of the form: 

 
2

1 2 3e

e e e e

hu c c x c x    (5.1) 

 

where he stands for the length of the element, e, which requires three nodes. Two of the 

nodes are identified as the endpoints of the element to define the geometry, and the third 

node is taken interior to the element. In this study, the midpoint of the element, being 

equidistant from the end nodes, was selected. In terms of the three nodal values, (u1, u2, 

u3) we have: 

 
2

1 1 2 1 3 1u c c x c x    (5.2) 
2

2 1 2 2 3 2u c c x c x    (5.3) 
2

3 1 2 3 3 3u c c x c x    (5.4) 

 

Solving the algebraic system of Eqs. 5.2-5.4 c1, c2, c3 can be found. Hence, 
e

e

hu can be 

written as: 

 
3

1
e

e

h i i

i

u u b


  
(5.5) 

 

where: 
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 

 
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(5.6) 

 

The reference element can be converted from the global to the local coordinate system, as 

depicted in Fig. 5.1, using the formula: 
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 2

2 2

e

a b

b a

h

e a b

x x x

x x

h x x
x





 
 




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(5.7) 

 

 
Fig. 5.1 Typical 3-node finite element and its conversion from the global to the local coordinate system 

 

Thus, the Lagrangian quadratic shape functions in terms of ξ (0 < ξ < 1) are: 
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


 

 

 

 

(5.8) 

 

and can be illustrated in Fig. 5.2: 

 

 
Fig. 5.2 The Lagrangian quadratic shape functions 

 

5.2.2 The 4-node rectangular element and bilinear basis functions 
In this study rectangular elements are used for the discretization of the domain. The 

bilinear basis functions can easily be derived by multiplying the linear basis functions, 

depicted in Fig. 5.3 for one direction, in local ξ- and η- directions (0 < ξ < 1, 0 < η < 1):  
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(5.9) 
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Fig. 5.3 The Lagrangian linear shape functions 

 

Hence, 
e

e

hu can be written as: 

 
4

1
e

e

h i i

i

u u


   
(5.10) 

 

where Ψi represent the bilinear basis functions : 
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(5.11) 

 

The 4-node rectangular element and its conversion from the global to the local coordinate 

system are illustrated in Fig. 5.4. 

 

 
Fig. 5.4 The 4-node rectangular element and its conversion from the global (right) to the local (left) 

coordinate system 
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5.2.3 The 9-node rectangular element and biquadratic basis functions 
Similarly, the biquadratic basis functions can easily be derived by multiplying the 1D 

quadratic basis functions (Eqs. 5.8) in local ξ- and η- directions (0 < ξ < 1, 0 < η < 1):  
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(5.12) 

 

Hence, 
e

e

hu can be written as: 
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(5.13) 

 

The 9-node rectangular element and its conversion from the global to the local coordinate 

system are illustrated in Fig. 5.5. 

 

 
Fig. 5.5 The 9-node rectangular element and its conversion from the global (right) to the local (left) 

coordinate system 
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5.2.4 Spline representation 
The b-cubic splines are used for the investigation concerning the effect of the porous 

topography on the static arrangement. This kind of basis functions are cubic curves which 

guarantee continuity of the function and its first and second derivatives [100,101]. For the 

interpolation of a function, which is known in N+1 nodes, two extra fictitious nodes are 

demanded outside the domain. As a consequence, if we use N elements, we have N+3 

unknown coefficients, u cj
, which is also the total number of the nodes. Thus, we have to 

calculate all these coefficients of the variable corresponding to the nodes of the 

computational mesh. A basic difference between the b splines and the usual Lagrangian 

basis functions is that in the former case, the unknowns are not the actual nodal values of 

the function they represent. The b-cubic splines basis functions have the following form: 
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(5.14) 

 

with h representing the element thickness. As can be illustrated in Fig. 5.6a a spline 

polynomial is a non-zero function on the inside of four continuous elements and therefore 

the Kronecker delta identity is not satisfied. More specifically: 
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(5.15) 

 

Finally, the value of a variable at ξi can be computed via: 
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(a) 
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(b) 

Fig. 5.6 (a) Schematic representation of b spline and (b) Spline representation into one element 
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5.3 Replenishment of the CPS: Weak form and Newton-Raphson method 
 

As mentioned in Chapter 4, the replenishment process of the CPS following depletion of 

the liquid metal layer due to an intense external heat load, can be studied by considering 

the flow of a liquid metal in a single cylindrical pore. A variable x z / f (r)  is introduced 

in order to fix the size of the mesh in the z direction within 0 and 1. In this fashion, the 

shape of the interface, z=f(r), is introduced in the problem formulation that now becomes 

more complicated, but the process of following the dynamic evolution in the shape of the 

interface is facilitated [102,103], Fig. 5.7. 

 

 
(a) 

 
(b) 

Fig. 5.7 (a) Computational mesh and (b) real mesh, at the same time instant 

 

The axial and radial velocities, ux, ur, respectively and pressure field P along with the 

shape of the interface f constitute the unknown parameters of the problem as a function of 

the cylindrical coordinates (r, x = z / h) and time t. The finite element representation is 

employed for the discretization of the unknowns:  
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1 1 1
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(5.17) 

 

with the biquadratic, Bi, bilinear, Ψi and quadratic bi basis functions used for the velocity, 

pressure field and the shape of the interface, respectively, in the standard staggered mesh 

approach. Besides, nxel and nrel are the number of elements used in x and r directions of 
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the computational mesh, Fig. 5.7a, and nnr and nnx are the total number of the nodes 

used in the horizontal and axial direction, respectively. 

 

In this fashion, the weak form and the corresponding residuals of the momentum equation 

are obtained: 
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(5.18a) 

                                   
with k=1, 2 standing for the z and r components of momentum.  iB  ke  and 

 :v iB   ke are calculated in Appendix D. 

 

The second term of Eq. 5.18a, namely the boundary integral term for the liquid-gas 

interface, can be estimated via the following calculations where the dynamic boundary 

condition is incorporated: 
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(5.18b) 

 

Taking into account that 𝑑𝐴 = 𝑟dsdφ = r√1 + 𝑓𝑟
2drdφ, and after the elimination of dφ:  
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(5.18c) 

 

The weak form of the z and r components of momentum balance are recovered: 
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(5.18d) 
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(5.18e) 

 

Furthermore, the weak forms of the continuity equation and the kinematic condition are: 
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 (5.19) 
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(5.20) 

 

The latter is discretized in time using a fully implicit scheme. 

 

In addition, as mentioned in subsection 4.3, symmetry conditions are imposed at the axis 

of symmetry ( 0, ) 0, / ( 0, ) 0r zu r z u r r z      , while the transverse velocity is set to 

zero at the pore entrance ( 0, r) 0ru z   , whereas at the pore wall we impose 0ru   with 

a slip length allowed near the meniscus tip in order to accommodate the rise velocity of 

the liquid metal    
1

0

1, ; 1; ,
x

z

f
u r z t r t e

t R
 



   


. This relationship ensures that 

the no-slip condition pertaining to the axial velocity at the wall is reinstated after a very 

small slip length . 

 

Finally, the known pressure Pr in the reservoir is incorporated in the z component of Eq. 

5.18b. In particular, the external pressure Pout in 5.18b is really ΔP=Pout-Pr so that the 

major forces driving the motion of the meniscus explicitly appear in the boundary term of 

the weak form of the z-momentum balance.   

 

The Jacobian matrix of the coordinate’s transformation reads:  

 

   
 

r
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r r
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J f r

r f rz z
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(5.21) 
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Thus using, 

 

rf 1

z r

x

r z r f x f x

     
      

     
r z r ze e e e  

 

(5.22) 

 

and Eq. 5.17, 5.21, Eqs. 5.18-5.20 and the boundary conditions are transformed into r, x 

coordinate system.  

 

The final system of equations to be solved has the following form: 

 

(x) 0R    (5.23) 

 

where x represents the unknown vector and  R x  the residual vector. Seeking for 

solutions of the Eqs. 5.18-5.20 the Newton-Raphson method is used and Eq. 5.23 can be 

written in the form: 

 

  xA R    (5.24) 

 

where [A] stands for the Jacobian matrix that contains the derivatives of all the residuals 

with respect to each unknown vector x and x new oldx x    is the correction of the unknown 

vector, x , during each iteration. The new potential solution is updated via: 

 

xnew oldx x    (5.25) 

 

and the whole process is iterated until convergence. 

 

If nxel and nrel are the number of elements used in x and r directions of the computational 

mesh, respectively, depicted in Fig. 5.7a, then the total nodes in these directions are: 

 

2 1,  2 1xel relnnx n nnr n     (5.26) 

 

Thus, the total nodes are: 

 

totaln nnx nnr   (5.27) 

 

As a consequence, the total number of equations required for both the axial and radial 

velocity, ux and ur respectively, is 2 totaln while for the pressure field, P, 

   1 1xel reln n   equations are needed. Finally, we used nnr equations for the shape of 

the interface, f. Hence, if we define    2 1 1 ,band ntotal xel reln n n n      the total number 

of equations is: 

 

total bandneq n nnr   (5.28) 

 

The aforementioned system of equations produces a set of nonlinear equations with the 

Jacobian matrix, A, being in the form of an arrowhead matrix, [104]. An arrow matrix has 

Institutional Repository - Library & Information Centre - University of Thessaly
12/05/2024 03:57:40 EEST - 52.15.35.194



   

   114 
 

nonzero elements only in a narrow band centered on the main diagonal and in the last few 

columns and rows. Hence, A matrix can be divided into four sub-matrices: 

 

1. A banded Jacobian matrix (J) of dimension
band bandn n  with derivative entries of 

the residuals relating to momentum balances (in both directions) and continuity 

equation with respect to uxi, uri and Pi, 

2. A matrix in the form of a column (COL) of dimension 
bandn nnr  with derivative 

entries of the residuals relating to momentum balances (in both directions) and 

continuity equation with respect to fi, 

3. A matrix in the form of a row (ROW) of dimension 
bandnnr n  with derivative 

entries of the residual relating to the kinematic condition with respect to uxi, uri 

and P and 

4. A matrix in the square arrowhead at the bottom right (HEAD) of dimension 

nnr nnr  with derivative entries of the residual relating to the kinematic 

condition with respect to fi. 

 

A schematic illustration of the arrowhead matrix used in this study can be shown in 

Fig. 5.8: 

 

 
Fig. 5.8 Schematic illustration of the arrowhead matrix 

 

After storing the equations in the above form, A matrix is inversed by a standard routine, 

written for arrow matrices. Consequently, the unknown vector is calculated via the 

Newton-Rapson, as discussed above.  
 

Concerning this problem, a previously converged solution is used as initial guess for a 

new solution corresponding to a new value of the control parameter. Thus, simple 

continuation is performed since the solutions are smooth and without limit points. 
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5.4 Static arrangement of the CPS: Weak forms  
 

5.4.1 Effect of reservoir overpressure 
The normal stress balance on the liquid-gas interface described via: 

 

 

0

2 0in out c

in r

P P I H

P P gh gz



 

  

  

n n
 

(5.29a) 

(5.29b) 

 

is discretized using the finite element methodology, with the unknown z coordinate of the 

liquid metal layer interface with the surrounding medium described via a number of 

quadratic Lagrangian basis functions bi: 

 

1

totaln

i i

i

z z b


  
 

(5.30) 

  

where zi represent the axial position of the nodes. The total interfacial nodes, with nel 

denoting the total number of elements, are: 

  

2 1total eln n    (5.31) 

 

Multiplying Eq. 5.29a by the quadratic basis functions while employing Eq. 5.30, the 

weak form is obtained:  
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(5.32) 

 

In the above calculations it has been taken into account that: 
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(5.33) 

 

Eq. 5.32 is made dimensionless by using the radial position of the liquid metal, Rf as a 

characteristic length scale. Thus, upon dividing both legs of Eq. 5.32 by γ∙Rf : 
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(5.34) 

where: 
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(5.35) 
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are the dimensionless numbers relating the relative strength of pressure and gravitational 

forces to surface tension forces, respectively. Furthermore, we impose 
0

0,r r
z


  z(r=1) 

= 0, while the contact angle is implicitly fixed via the last term of Eq. 5.34. It should be 

stressed that θc is the angle of the liquid metal drop that rests on the CPS surface and is 

equal to the negative of the angle between the tangent vector  and the r axis at the contact 

point. 

 

The resulting set of nonlinear algebraic equations is solved in an iterative fashion via the 

Newton-Raphson method until convergence, as described in the previous subsection. 

Each iteration involves an inversion of a banded matrix. The banded Jacobian matrix (J) 

has dimension 
total totaln n with derivative entries of the residuals relating to Eq. 5.34 with 

respect to zi and Rf/h0 for fixed reservoir over or under pressure, ΔP=Pr-Pout. Finally, 

simple continuation is used as in the previous study. 

 

5.4.2 Preparation phase: Estimation of the static film arrangement 
As mentioned in Chapter 4, in the preparation phase lithium is in a solid state with 

density ρs, placed within the porous wafer. Upon heating the lithium it liquefies at density 

ρl < ρs, the top cover breaks by the expanding liquid and the liquid metal covers the top 

surface forming a protective coating, Fig. 4.5.  
 

Performing a simple mass balance on lithium, relating its initial solid state to its final 

liquid state, it turns out that, for a given porosity, α, and CPS radius, Rc, the total mass is:  
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(5.36) 

 

where h0 and hr denote the thickness of the porous wafer and that of the reservoir, 

respectively. If no additional reservoir of lithium is considered hr = 0. Besides, Mfilm and 

Vfilm represent the mass and the volume of the liquid metal film that rests on top of the 

porous substrate upon heating the CPS. The final static arrangement is a result of the 

pressure driven flow due to density change of heated lithium.  Adhesive forces are needed 

in order to pin the film onto the substrate and are implicitly incorporated in the model by 

fixing the contact point.  

 

The static calculations pertaining to this study need to satisfy the normal stress balance on 

the liquid-gas interface, Eq. 5.29a. In this investigation, the contact point is fixed, Rf = Rc, 

rather than the contact angle and the pressure on the porous top surface P0 = Pr - ρgh0 in 

now an extra unknown parameter. Hence, the resulting residual concerning the interfacial 

normal stress balance reads:  
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(5.37) 

 

where the unknown z coordinate of the liquid metal layer interface with the surrounding 

medium is described via a number of quadratic Lagrangian basis functions, Eq. 5.30. 
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Consequently, Eq. 5.37 is made dimensionless by using the fixed radial position of the 

liquid metal, Rc as a characteristic length scale and γ/Rc as a characteristic pressure: 
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(5.38) 

 

All the variables in the residual R1i are dimensionless and no bars or other symbols are 

used for simplicity. The boundary term that arises in Eq. 5.34 describing the interfacial 

shape subject to an imposed reservoir overpressure, does not appear in this case since the 

contact point is fixed and the contact angle is calculated once the shape of the interface is 

known. Also, the Bond number here is: 
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(5.39) 

 

and relates the relative strength of gravitational to surface tension forces.  

 

Residuals described via Eq. 5.38 are used along with the dimensionless fixed volume of 

the liquid metal, 

1

3
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2
film

film

c

M
V rzdr

R



    

 

If nel is the total number of elements, then the total nodes are: 

 

2 1total band eln n n     (5.40) 

 

As a consequence, the total number of equations required is: 

 

1total totalneq n   (5.41) 

 

i.e. 
totaln equations for z and one equation for P0. 

 

The aforementioned system of equations produces a set of nonlinear equations with the 

matrix, A, similar to Fig. 5.8. Hence, A matrix can be divided into four sub-matrices: 

 

1. A banded Jacobian matrix (J) of dimension
band bandn n  with derivative entries of 

the residuals relating to Eq. 5.38 with respect to zi, 

2. A matrix in the form of a column (COL) of dimension 
bandn  with derivative 

entries of the residuals relating to Eq. 5.38 with respect to P0, 

3. A matrix in the form of a row (ROW) of dimension 
bandn  with derivative entries 

of the residual relating to the fixed volume of the liquid metal with respect to zi 

and 

4. A matrix in the square arrowhead at the bottom right (HEAD) of dimension 1 1  

with derivative entries of the residual relating to the fixed volume of the liquid 

metal with respect to P0. 
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After storing the equations in the above form, A matrix is inversed by a standard routine, 

written for arrow matrices. Consequently, the unknown vector is calculated via the 

Newton-Rapson, as discussed above.  

 

A previously converged solution is used again, as in the previous study, as initial guess 

for a new solution corresponding to a new value of the control parameter. 

 

5.4.3 Effect of an externally applied electric field 
As mentioned in Chapter 4 in order to assess the impact of field forces on the liquid metal 

layer covering the porous system, the effect of an external electric field was firstly 

considered that is aligned with the axis of symmetry of the porous wafer in the far field, 

Fig. 4.10c. 

 

Hence, once the static arrangement is obtained, via the investigation presented in 5.4.1, 

then the mass of the liquid metal that is pinned onto the substrate, m, is known via: 

 

 
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(5.42) 

 

The interfacial normal stress balance which was used in this Chapter, Eq. 5.29a, is 

augmented with the electrostatic part of the Maxwell stresses [98] 
el

 , Eq. 4.27: 
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 
n n                  (5.43) 

 

In this investigation, the contact point is fixed, Rf = Rc, rather than the contact angle and 

the pressure on the porous top surface P0 = Pr - ρgh0 in now an extra unknown parameter. 

Hence, the resulting residual concerning the interfacial normal stress balance reads:  

 
2

0i i
1 i 0 i i 22

0 0 0 0 0

b b
b b b

8 11

c c c c cR R R R R

r
i out

rr
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




    

 
      

 

(5.44) 

 

where again the unknown z coordinate of the liquid metal layer interface is described via 

Eq. 5.30. Consequently, Eq. 5.44 is made dimensionless by using the fixed radial position 

of the liquid metal, Rc, as a characteristic length scale and γ/Rc as a characteristic 

pressure: 

 
1 1 1 1

i i
1 i 0 i i 22
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b b
b b b

8 11

cR

elr
i out

rr

Bondz r r
R P rdr P rdr Bond zrdr dr dr

r zz 


    

 
      

 

(5.45) 

  

All the variables of the residual R1i are now dimensionless and no bars or other symbols 

are used for simplicity.  The contact angle is not prescribed in this calculation. Rather the 

contact point is fixed at the edge Rc of the CPS surface, while the contact angle θc is 

recovered in the post processing phase of the calculation as shown below. Thus, the 

relevant dimensionless numbers here are: 
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2

0 ,  
/ /

c
el

c c

gR E
Bond Bond

R R



 
   

(5.46) 

 

relating the gravitational and electric forces to surface tension forces, respectively, and 

identifying the contact angle of the drop.  

 

The numerical procedure followed here is exactly the same as that discussed in 

subsection 5.4.2 with the extra term i

2

0

b

8 1

cR

el

r

Bond r
dr

z  added in R1i expressing the electric 

stresses on the interface. One more difference is that in the preparation phase the volume 

of the liquid film resting upon the porous substrate is derived analytically via Eq. 5.36, 

while in this investigation it is calculated numerically from the study pertaining to 

subsection 5.4.1. 

 

5.4.4 Effect of Lorentz forces 
Static configuration for the liquid metal trapped in the pore 

In this study, which was modelled in subsection 4.4.3, cylindrical coordinates are used, 

Appendix B, due to the cylindrical shape of the capillary. Besides, a variable x is 

introduced in order to fix the size of the mesh in the r, x plane within 0 and 1 similar to 

the investigation pertaining to the fluid motion within a single pore, which was analyzed 

in subsection 5.3. The resulting form of the computational mesh can be shown in Fig. 

5.7a.  

 

The stream function of current, H(r,x), along with the shape of the interface f(r) constitute 

the unknown parameters of the problem as a function of the cylindrical coordinates (r, x = 

z / f(r)).  

 

The finite element representation is employed for the discretization of the unknown 

parameters:  

 

1 1

,  
nnx nnr nnr

i i i i

i i

H H B f f b


 

    
 

(5.47a) 

 

with the biquadratic, Bi, and quadratic, b i, basis functions used for H and the shape of the 

interface, f, respectively, in the standard staggered mesh approach. Besides, nnr and nnx 

are the total number of the nodes used in the horizontal and axial direction, respectively. 

 

Finally, an extra unknown parameter of the problem is the current density, J, existing on 

the bottom of the pore, which according to Eq. 4.46d is given by: 

 

 
0

2

2

pR

z r r

p

J J z rdr

J
R






 

 

(5.47b) 

 

In this fashion, the weak form, and the corresponding residuals corresponding to the 

Poisson-type Eq. 4.36 are obtained: 
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(5.48) 

 

Substituting Eqs. 5.21 and 5.22 into Eq. 5.48: 
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(5.49) 

 

The final term is going to be written only at the liquid-gas interface. Thus: 
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i i r

s

H H
B rds B r f dr

n n

 
   
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(5.50) 

 

Hence, substituting Eq. 4.47d into 5.50: 

 

 

The normal stress balance on the liquid-gas interface is described via: 
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(5.52a) 

 

Multiplying by n each leg of Eq. 5.52a: 
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(5.52b) 

 

where the identity from Eq. 4.13 has been used. 

 

The weak form, and the corresponding residuals corresponding to normal stress balance 

can be obtained similar to the derivation described when Eq. 5.32 was obtained: 
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       (5.51) 
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(5.53) 

                                  
Consequently, R1i and R2i, described via Eqs. 5.49 and 5.53, respectively, are made 

dimensionless by using the pore radius, Rp, γ/Rp, Jr and Jr·Rp as a characteristic length 

scale, pressure, current density and stream function of current, respectively. Hence: 
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(5.54) 
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(5.55) 

 

Also, the dimensionless numbers here are: 

 

0
 ,  

/ /

p r p
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p p

gR B J R
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(5.56) 

 

relating the gravitational and magnetic forces to surface tension forces, respectively.  

 

The third dimensionless residual is given by: 

 

 
1

3

0

2 z rR J J f rdr    
(5.57) 

 

Besides, if nxel and nrel are the number of elements used in x and r directions of the 

computational mesh depicted in Fig. 5.7a, then the total nodes in these directions are: 

 

2 1,  2 1xel relnnx n nnr n     (5.58) 

 

Thus, the total nodes are: 

 

totaln nnx nnr   (5.59) 

 

As a consequence, the total number of equations required for H is 
totaln while nnr

equations are required for the shape of the interface, f and one equation for J. Hence, if 

we define 
band totaln n the total number of equations is: 
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1total bandneq n nnr    (5.60) 

 

The aforementioned system of equations produces a set of nonlinear equations with a 

matrix, A, similar to Fig. 5.8.  

 

After storing the equations in the above form, A matrix is inversed by a standard routine, 

written for arrow matrices. Consequently, the unknown vector is calculated via the 

Newton-Rapson, as discussed in subsection 5.3.  
 

A previously converged solution is used as initial guess for a new solution corresponding 

to a new value of the control parameter.  

 

Static configuration for the liquid metal extended over the pore 
In this study, which was modelled in subsection 4.4.3, spherical coordinates are used in 

order to mathematically formulate the problem of a liquid metal layer fully covering 

while extending beyond a cylindrical pore, see Fig 4.19 for a schematic diagram of the 

arrangement and Appendix C for a short description of vectorial quantities in spherical 

coordinates. We assume that the induced magnetic field H is negligible within the pore 

and consequently there is no motion in it, an assumption that is expected to be more or 

less valid as the liquid metal is pushed out of the pore with increasing magnitude of the 

electric current density. Consequently, variable η = r/f(θ) is introduced in order to fix the 

size of the mesh in the η, θ plane within 0 and 1. In this fashion, the shape of the 

interface, f(θ), is introduced throughout the problem formulation. Hence, the spine 

method is used in order to generate the present computational mesh, Fig. 5.9a from the 

real one, Fig. 5.9b. The natural boundaries S1, S2, S3 and S4 of Fig. 5.9b have been 

transformed to the simple computational boundaries depicted in Fig. 5.9a.  

 

 
(a) 
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(b) 

Fig. 5.9 (a) Computational and (b) real mesh 

 

The stream function of current, H, along with the shape of the interface, f, constitute the 

unknown parameters of the problem as a function of the spherical coordinates (θ, η = r / 

f(θ)). The finite element representation is employed for the discretization of the unknown 

parameters:  

 

1 1

,  
nn nn nn

i i i i

i i

H H B f f b
  

 

    
(5.61) 

 

with the biquadratic, Bi, and quadratic, b i, basis functions used for H and the shape of the 

interface, f, respectively, in the standard staggered mesh approach. Besides, nnθ and nnη 

are the total number of the nodes used in the horizontal and vertical direction of the 

computational mesh, respectively. 

 

In this fashion, the weak form, and the corresponding residuals corresponding to the 

Poisson-type Eq. 4.36 are obtained: 
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(5.62) 

 

where H stands for the azimuthal component of H.  

 

The Jacobian matrix of the coordinate’s transformation reads:  
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 
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 
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(5.63) 

 

Thus using, 
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(5.64) 

 

and Eqs. 5.61 and 5.63, Eq. 5.62 is transformed into the (θ, η) coordinate system: 
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(5.65) 

 

Moreover, 

 

The final term is going to be written only at the liquid-gas interface, thus, η = 1. In order 

to find the Robin-type boundary condition holding on the interface we should firstly 

estimate H . Hence, taking into account that H = Hφ and 0






(axisymmetry): 

 

 

Substituting Eq. 5.67 to Eq. 5.66: 

 

 

the boundary integral term of Εq. 5.62 becomes: 

 

 

Thus, the first residual is: 
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(5.70) 

2 2 2 2

1

rH H
r

r rH H H r rH
n r r r r r r





 




 


           
     

r θ
r θ

e e
n e e  

 

(5.66) 

1
cot

1
cot ,  

r

r

H H H
J J H

r r r

H H H
J H J

r r r











    
           

    

    
        

    

r θ r θ
H J e e e e

 

                 

 

(5.67) 

2 2 2 2

cotcot rr

HH H fJ f J fH rJ r J r
H fr

n r r f f

    

 

       


 
  

 

 

(5.68) 

 
/2

2

0

sin cot sin  i i r

s

H
B r ds B Hf J f J ff H f d

n



     


    
  

      (5.69) 

Institutional Repository - Library & Information Centre - University of Thessaly
12/05/2024 03:57:40 EEST - 52.15.35.194



   

   126 
 

 

As far as the normal stress balance on the liquid-gas interface is concerned, it is described 

via: 
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Multiplying by n each leg of Eq. 5.71: 
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where the identity in Eq. 4.13 has been used. Then, multiplying by ez each leg of Eq. 5.72 
we obtain: 
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(5.73) 

 

Multiplying Eq. 5.73 by the quadratic basis functions, bi, while employing Eq. 5.61 the 

weak form is derived:  
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(5.74) 

       

Consequently, R1i and R2i, described via Eqs. 5.70 and 5.74, respectively, are made 

dimensionless by using the pore radius, Rp, γ/Rp and Jr·Rp as a characteristic length scale, 

pressure and stream function of current, respectively while θ is getting dimensionless by 

dividing by π/2. Again, no bars or other symbols are used for simplicity: 
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(5.76) 

 

where 2 2 S r r 
; the last term in the above equation fixes the contact angle at the 

edge of the liquid metal drop. Also, the dimensionless numbers here are: 

 

0
 ,  

/ /

p r p

m

p p

gR B J R
Bond Bond

R R



 
   

(5.77) 

 

relating the gravitational and magnetic forces to surface tension forces, respectively.  

 

The aforementioned system of equations, Εqs. 5.75 and 5.76, produces a set of nonlinear 

equations with the matrix, A, to be inversed being in the form of an arrowhead matrix, 

similar to Fig. 5.8.  

 

After storing the equations in the above form, A matrix is inversed by a standard routine, 

written for arrow matrices. Consequently, the unknown vector is calculated via the 

Newton-Rapson, as discussed in subsection 5.3. Simple continuation is used in order to 

capture the evolution of the solution in the parameter space defined by the contact angle 

and the magnetic Bond number.  

 

5.4.5 Effect of the topography of the porous substrate and arc-length 
continuation 
Assuming that Rp >> δΑ (RP ≈ 1000 δΑ in the present study), analysis of the topography in 

the vicinity of a single pore is performed in order to estimate the Euclidean distance 

between the liquid-gas interface and the solid substrate. In this investigation, which was 

modelled in subsection 4.4.4, the domain is divided into three main regions, depending on 

the evaluation of the minimum distance, δ, from a point on the interface and the pore 

wall, as depicted in Fig. 5.10: 
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(5.78a) 

 

Institutional Repository - Library & Information Centre - University of Thessaly
12/05/2024 03:57:40 EEST - 52.15.35.194



   

   128 
 

 
 

 

 

 

2
2

2
2

2 2
2 2

: (r R , z 0): δ= z r , ,  

z r

rr

z r z r

p p

r
p

pp

z
p p

z
R

z
R

R zR

r
R R







    


 

 
  


   

r z

region ii

e e
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(5.78c) 

 

 
Fig 5.10 Pore geometry along with the division of the main domain into three subregions 

 

In general, according to Eq. 4.52:  
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(5.79) 

 
(12) 

 

where 
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0
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6
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     

     





for the case of a purely repulsive potential or a 

long range attractive short range repulsive potential, respectively, described in Chapter 2 

and also in subsection 4.4.4. 

 

Using the Lagrangian representetion for the liquid-gas interface, the normal unit vector 

reads:  
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S

 

  



 
  

r ze e
n  

(5.80) 

 

Thus, in region i the disjoining pressure, considering Eq. 5.78a, assumes the form: 
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(15a) 

 

and the normal stress balance reads in this region: 
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(5.82a) 

 

Similarly, in region ii the normal stress balance, considering Eq.5.78b, assumes the form: 
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(5.82b) 

 

Finally, in region iii the normal stress balance, considering Eq.5.78c,  reads: 
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(5.82d) 

 

The system of the governing equations of the problem consists of Eqs. 5.82a-5.82c along 

with: 

  

2 2
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(5.83) 

 

and the following boundary conditions: 
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(5.84) 
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Eq. 5.83 essentially fixes the nodes along the interface so that they form an equidistant 

mesh. The boundary condition   max1r r    constitutes the third residual as will be 

shown below with Smax representing the total length of the generator of the axisymmetric 

liquid-gas interface; rmax is set to a multiple of the pore radius in order to signify a large 

distance from the axis of symmetry. 

 

Eqs. 5.82-5.84 are discretized using the finite element methodology, with the unknown z 

and r coordinates described via: 
 

   
2

1

, ,
totaln

ci ci i

i

z r z r




   

 

(5.85) 

(8) 

 

where ,ci ciz r are the unknown coefficients of the spline representation and ntotal is the total 

number of nodes. The coefficients that correspond to the fictitious nodes outside the 

domain, i.e. (1),  (1)ci ciz r  and ( 2),  ( 2)ci total ci totalz n r n  are calculated by the boundary 

conditions as will be discussed next. Also, b cubic splines,
i , maintain smoothness and 

continuity of higher order derivatives, as mentioned in subsection 5.2.4.  

  

The total interfacial nodes, with nel denoting the total number of elements, are: 

   

1total eln n   (5.86) 

 

From now on, only the case of the long range attractive short range repulsive potential is 

going to be considered for the mathematical formulation. However, the same procedure 

was followed also for the case of purely repulsive potential. Next, the final equations in 

their weak form are written for each equation: 
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(5.87) 

 

Converting Eq. 5.87 into Lagrangian representation we get: 

 

 

3 51

.0
1 i 0

0

1
, ,

i 0 3

0

4
Φ

Φ

A A
i r out

A

W
R P gh gz P rr d

z r z r z
W rr d

rS S



      



 

  
  

  

 

      
          

       

 
    

 





n
 

 

 

(5.88) 

 

Consequently, Eq. 5.88 is made dimensionless by using the pore radius, Rp as a 

characteristic length scale and γ/Rp as a characteristic pressure: 
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(5.89) 

 

All the variables in the residual R1i are dimensionless and no bars or other symbols are 

used for simplicity. The dimensionless numbers that control the problem are: 
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(5.90) 

 

relating the relative strength of gravitational and surface forces to surface tension forces. 

Finally, 


n
depends on the sub-region, Eqs. 5.78a-5.78c. 

 

The second and third residuals read as: 
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2 2

2 max
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i iR r z S d       
 

(5.91) 

 3 max1R r r    (5.92) 

 

If nel is the total number of elements, then the total nodes are: 

 

2totaln    (5.93) 

  

with “+2” corresponding to the two fictitious nodes outside the domain. As a 

consequence, the total number of equations required is: 

 

 2 2 1total totalneq n    (5.94) 

 

i.e. 2totaln  equations for z(ξ), 2totaln  equations for r(ξ) and one equation for Smax. 

 

The aforementioned system of equations produces a set of nonlinear equations with the 

matrix, A, similar to Fig. 5.8. Hence, if  2 2 ,band totaln n  A matrix can be divided into 

four sub-matrices: 

 

1. A banded Jacobian matrix (J) of dimension
band bandn n , with derivative entries of 

the residuals R1i and R2i with respect to zci and rci. This part of the matrix has non-

zero entries in a zone with bandwidth 15, 

2. A matrix in the form of a column (COL) of dimension 
bandn  with derivative of the 

residuals R1i and R2i with respect to Smax, 
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3. A matrix in the form of a row (ROW) of dimension 
bandn  with derivative entries 

of the residual R3 to zci and rci and 

4. A matrix in the square arrowhead at the bottom right (HEAD) of dimension 1 1  

with derivative entries of the residual R3 with respect to Smax. 

 

Next, for a better understanding of how the boundary conditions are imposed on the 

fictitious nodes and how the arc length continuation technique is tackled, which is going 

to be elaborated below, the matrix form of the present problem is given in Fig. 5.11:  

 

 
Fig. 5.11 Schematic illustration of the matrix form of the present problem 

 

The matrices [J], [ROW], [COL] and [HEAD] constitute the A matrix to be inversed 

while [SOL] being the matrix which contains the solutions of the problem, with 

dimension ,totalneq and [RHS] containing the aforementioned residuals, with dimension 

also
totalneq . The boundary conditions are incorporated in the [RHS] matrix as follows: 

 

 
Fig. 5.12 Schematic illustration of the [RHS] matrix augmented with the boundary conditions 
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In this problem, solutions are derived for different values of the control parameter, 

namely
0 outp P P  . Thus, a previously converged solution can be used as initial guess 

for a new solution corresponding to a new value of the parameter. This idea can be 

illustrated in the Fig. 5.13a. Simple continuation is performed when the solution is 

smooth and without limit points, as in the previous presented studies. In this case the 

control parameter, p, changes independently by a step Δp: 

 
1    n np p p     (5.95) 

 

However, if the solution has a limit point, Fig. 5.13b, a solution in the direction that Δp 

predicts does not exist, especially near the limit point. As a matter of fact, at the limit 

point the Jacobian matrix becomes singular and the simulation breaks. As a consequence, 

the simple continuation is not appropriate to proceed along the solution family. In order 

to overcome this problem the arc-length continuation was used which is a standard 

technique for detection of instabilities in shells and drops [105-107]. In this 

consideration, one more equation is added in the mathematical formulation and the 

control parameter, p, is now part of the solution. The extra Residual to be taken into 

account is: 
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     (5.96) 

 

with i standing for the corresponding node of the computational mesh and n denoting the 

old converged solution for the parameter
1np 
and n+1 the current solution. Besides, Δλ is 

a constant parameter representing the arc-length of the solution branch. In order to 

estimate the value of the arc-length Δλ, as a first step simple continuation is performed 

before the limit point for a relative small value of Δp starting from the solution vector 
0x

and moving to solution vector 
1x as depicted in Fig. 5.13c.  

 
Fig. 5.13 (a) Simple and (b) Arc-length continuation around a limit point and (c) estimation of the arc-

length Δλ 

 

Consequently, by adding Eq. 5.96 in A matrix, it has one more row and one more column 

corresponding to the unknown parameter p. The augmented A matrix has the following 

form:  
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Fig. 5.14 Schematic illustration of the matrix form of the present problem including the augmented A 

matrix 

 

It should be stressed that even if [A] becomes singular, the augmented matrix [A] remains 

non-singular and therefore the simulation continues around limit point. 

 

After solving the system of equations described in Fig. 5.14 with the Newton-Rapson 

method, the initial guess for the next solution is made by solving the following set of 

equations: 

 

 
Fig. 5.15 Schematic illustration of the matrix form of the present problem required to be solved for the 

initial guess of the next solution 
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. Subsequently, the initial guess for the 

next solution is: 

 

1

n

n n i
i i

x
x x 



 
  


 

(5.97) 

 

and the corresponding parameter is: 
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(5.98) 
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where for the first continuation, the initial guess of the derivatives is  
 

2 21 0 1 0

,  i i i i ix x x p pp

   

  
 
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(5.99) 

 

Finally, the steps in terms of an algorithm are outlined in Fig. 5.16. 

 

 
Fig. 5.16 Flow chart of the numerical procedure 
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5.5 Benchmark case studies 
In order to validate the numerical model pertaining to the static arrangement of the liquid 

metal arrangement, a parametric study was conducted on the static arrangement as a 

function of the reservoir overpressure. For relatively large overpressure in favor of the 

reservoir, i.e 500r outP P P Pa     and larger the drop size decreases, the dominant 

balance is between the pressure drop and the surface tension, 

0 0 02 / ,out m rP P P R P P gh       , and gravity is of minor importance in achieving 

static equilibrium. In this context an 1 mm thick porous matrix is considered with h0 = 

1mm, P0 = Pr - 5 Pa, lithium density ρ  500 kg/m
3
, γ = 0.4 N/m, g=10 m/s

2
, while the 

contact angle is set to 30
o
 and ΔP = 500 Pa. In Fig. 5.17 below the drop shape that rests 

on the CPS surface is calculated numerically by solving the problem formulation 

provided in section 5.4.1 for fixed contact angle θ=30
o
. The shape obtained is that of a 

spherical cap with radius Rm ~ 2γ/ΔP, that is pinned onto the substrate with a contact 

angle of 30
o
 and contact length of Rmsinθ  0.8 mm and whose center of curvature lies 

below the CPS surface. As illustrated by Fig 5.17 shown below the numerically obtained 

static shape confirms the above prediction, resembling part of the aforementioned circle 

whose center of curvature lies below the z = 0 line. 

 

 
Fig. 5.17 Comparison of the current static numerical model against the circle of radius Rm= Rf,numerical/sinθc 

 

In order to validate the model presented in section 5.3 regarding the capillary rise of a 

liquid within a single cylindrical pore, it was tested for the case of a pore with a radius of 

1mm that is gradually filled with water from a reservoir held at atmospheric pressure, 

solely via capillary forces. The simulation was performed until either a static arrangement 

within the pore is established or the liquid has risen to the top of pore. More specifically, 

when Δp=0 Pa, Rp = 1mm, γ = 0.073 N/m, ρ = 1000 Κg/m
3
 and g = 9.81m/s

2
. Fig. 5.18a 

provides a sequence of shapes for the rising water meniscus during the process of 

capillary rise. As can be gleaned from the final stages of capillary rise, and more clearly 

in Fig.5.18b, the meniscus shape, obtained with and without inertial effects (We = 0 and 

We ≠ 0, respectively), is in good agreement with the static arrangement of liquid water 

within a cylindrical pore with a radius of 1 mm obtained independently via solution of the 

Young Laplace equation at static equilibrium without the viscous terms, i.e. via the above 

static numerical code. Our numerical results were also tested against the Washburn 

equation as will be discussed in subsection 6.3. 
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(a) 

 
(b) 

Fig. 5.18 (a) Time evolution of the meniscus shapes during the process of capillary rise and (b) Comparison 

of the numerical model concerning the capillary flow within a single cylindrical pore (with and without 

inertial terms) against the static arrangement of liquid water within a pore 

 

As far as the electrostatic model is concerned, comparison of the present numerical 

approach for the static arrangement of a polymeric droplet that rests on a solid surface 

with a fixed contact angle θc = 60
o
, Bondel = 5.06 and Bond = 0.33, against the boundary 

element solution obtained by Reznik et al., [92], indicates that our results agree with the 

maximum and minimum values of z and r, respectively, for the case of negligible electric 

stress [108], Fig 5.19. However, partial agreement is observed, when the case with an 

external electric field is studied. This is caused by our modelling assumption, that for a 

very thin film on top of the porous substrate, electrical potential variations at the interface 

can be estimated via , ,
   

 
 

d d dz

n dz s dz ds
where normal derivatives are estimated 

based on longitudinal variations. 
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Hence, for comparable film thickness and length, the electric potential in the region 

surrounding the film can be calculated with the boundary element method [106]. 

Nevertheless, this simplified model gives the qualitatively correct trend of the process 

which captures the gradual deformation of an initial droplet under the action of the 

electric stresses. In particular, when a fixed contact point is assumed rather than a fixed 

contact angle, formation of a conical angle is captured in the pole region at large BondEl 

indicating possible jetting originated from this region. In Fig. 5.19 the initial and final 

static arrangements are portrayed, in the parameter range slightly before the conical angle 

formation. t stands for the dimensionless time, which was made dimensionless upon 

dividing the real time by μRp/γ that uses as a characteristic time scale, Rp represents the 

capillary radius while μ and γ are the dynamic viscosity and the surface tension of the 

working fluid, respectively [92]. 

 

 
Fig. 5.19 Comparison of the current electrostatic numerical model against the droplet evolution 

corresponding to contact angle θc = 60
o
, Bondel = 5.06, Bond = 0.33 derived by Reznik et al., [92] 

 

Conical angle formation as an effect of the electrostatic part of the Maxwell stress on the 

static arrangement and the implied impact on the dynamic response of the droplet, will be 

extended in Chapter 6 to include the magnetic part of the Maxwell stress in an effort to 

provide a plausible mechanism for drop ejection during operation of the CPS. 

 

The problem formulation, regarding the effects of the Lorentz forces ignores the 

rotational part of the Maxwell stress for simplicity in these calculations. Thus, for the 

comparison, the case of the liquid lithium was chosen again with fixed contact point at 

the pore`s edge. In this context, the computational solution that accounts for magnetic 

induction H was tested against a simplified analytical solution, which was derived in 

Appendix E. In particular, the analytical solution for dimensionless H is compared with 

the computational one, where the interface approaches a line segment at the pore`s mouth 

for the case of Bondm = 1.44·10
-3

 and Bond = 1.11∙10
-5

 and H = 0 at the bottom of the 

pore, at the wall and at the left boundary, see also Fig. 4.18. The analytical results are in 

quite good agreement with the numerical ones, as can be seen in Fig. 5.20. The small 

discrepancies exist because the shape of the aforementioned computationally obtained 

interface is not a perfect line segment. 

 

Institutional Repository - Library & Information Centre - University of Thessaly
12/05/2024 03:57:40 EEST - 52.15.35.194



   

   139 
 

 
Fig. 5.20 Comparison of dimensionless Η derived analytically for a rectangular domain with the 

computational solution, for Bondm = 1.44∙10
-3

 and Bond = 1.1∙10
-5

, when Jz=0 

 

Finally, regarding the static analysis augmented with the interaction potential, for 

relatively small positive overpressures, the liquid metal was seen not to escape the pore. 

As ΔP increases it forms a drop that protrudes from the pore and meets the pore at a fixed 

contact point, i.e. the pore radius Rp, with a macroscopic angle estimated via sinθ = 

Rp/Rm, where Rm is the radius of curvature of the drop and is given by the relation Rm ~ 

2γ/ΔP. For W0 = 0.05 N/m the angle at the contact point is seen to gradually increase as 

ΔP increases until a limit point arises when ΔP ≈ 11500 Pa and θ ≈ 27
ο
. It was shown by 

an asymptotic analysis of the above regions that, especially when W0 << γ, the angle at 

which the transition layer leaves the substrate matches the solution from the pore region 

and is given by the relation cosθ = 1-W0/γ. Thus, for the case considered above, namely 

when W0=0.05 N/m, θ is equal to 29
ο
 which is very close to 27

o
 obtained via the 

numerical analysis. The derivation of the asymptotic solution along with the 

aforementioned comparison is presented in subsection 6.4.2. 
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Chapter 6: Results 
 

In this chapter, the results are presented related to the simulations of the numerical 

models described in Chapter 5. First, results pertaining to the preparation phase of the 

CPS are presented. Then, a first principles heat transfer analysis is presented, 

introducing the various factors affecting the response of the CPS to an external heat load. 

Subsequently, numerical results of the study of capillary flow within a single cylindrical 

pore are presented and discussed in the context of the replenishment problem. Finally, 

the results of the parametric study on the static arrangement of the CPS are presented, 

under the influence of the reservoir overpressure, external field forces, namely the 

electric and Lorentz forces, and the topography of the porous substrate at near vacuum 

conditions.  

 

6.1 Preparation Phase 
 

The numerical methodology, which was described in subsection 5.4.2, was implemented 

in order to perform a parametric study on the effect of the additional reservoir of lithium, 

hr, on the shape and thickness of the liquid metal layer that coats the porous layer at static 

equilibrium. Liquid lithium was used as the operating fluid. Molten Li physical properties 

at 300
o
C were used according to [109]. More specifically, the density of liquid and solid 

lithium is set to ρl = 504.419 and ρs = 535 Kg/m
3
 while surface tension γ = 0.314 N/m. 

Furthermore, the CPS wafer thickness and width are set to h0 = 1mm and Rc = 10cm, 

respectively and g = 9.81 m/s
2
. Finally, 300 quadratic Lagrangian elements were tested 

with sufficient accuracy for these calculations. 

 

The eventual static arrangement is a result of the pressure driven flow due to density 

change of heated lithium. The static film thickness can be approximated as:  

 

  02
/

film

film r s l l

c

V
h h h

R
   


     

 

(6.1) 

 

Thus, when no additional reservoir of lithium exists, i.e. for hr = 0 mm, and for CPS 

porosity α = 0.3 and 0.5 the static film thickness is estimated to be approximately equal to 

21.5 μm and 35.8 μm, respectively.  

 

Static calculations fixing the mass of the liquid metal film, via Eq. 5.36, the size of the 

wafer, h0 = 1mm and the contact point at r = Rc, while satisfying the normal force balance 

confirm this picture as can be gleaned from Fig. 6.1.  

Institutional Repository - Library & Information Centre - University of Thessaly
12/05/2024 03:57:40 EEST - 52.15.35.194



   

   142 
 

 
Fig. 6.1 Numerical prediction of the static film arrangement for α = 0.3 and 0.5 with no additional reservoir 

of lithium existing 

 

On the other hand, if there is additional reservoir of lithium it is also expected to liquefy, 

thus offering additional mass that would end up at the top of the wafer. For α = 0.5 and 

for hr = 1mm, 4mm, 7mm and 10 mm,  the static film thicknesses are estimated via Eq. 

6.1, to be approximately equal to 107 μm, 322 μm, 537 μm and 751 μm, respectively. 

Static calculations fixing the mass of the liquid metal film, via Eq. 5.36, the size of the 

wafer, h0 = 1mm and the contact point at r = Rc while satisfying the normal force balance, 

confirm this picture as the reservoir thickness varies, see also Fig. 6.2. Based on the 

above simulations, in the absence of a reservoir a micron size initial film thickness is 

anticipated, which is a correct order of magnitude estimate based on preliminary 

experimental observations. 

 

 
Fig. 6.2 Numerical prediction of the static film thickness arrangement for α = 0.5 and with an additional 

reservoir of lithium equal to hr = 1mm, 4mm, 7mm and 10 mm 
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6.2 Depletion and replenishment - Proof of principle study of heat 
transfer mechanisms in the CPS 
 

6.2.1 Heat exhaust via thermal conduction and evaporation 
As emphasized in subsection 4.2.2, the static arrangement is difficult to be achieved and 

more difficult to be maintained at high enough heat fluxes. Once the machine is “turned 

on” an external heat pulse is expected to “hit” the CPS configuration. In such a situation, 

especially for the near vacuum conditions that prevail in the divertor region, a certain 

amount of the protective lithium layer is expected to evaporate. Provided that the liquid 

metal film is still intact and covers the CPS surface while no external field forces are 

considered, the extent of convection is limited and a quasi-static arrangement exists in the 

CPS. As a first approximation, upon subtracting the amount of heat, ,
r

q that is radiated 

back due to non-coronal radiation shielding, the amount of heat that impinges at the CPS 

surface is 
t r

q q q  , Fig. 6.3.  

  

 
Fig. 6.3 Simplified model of heat transfer problem assuming static arrangement  

 

As a consequence, only conduction (within the CPS mesh and liquid metal film) and 

evaporation participate in heat exhaust. Thus, 

 

out r
T T

q k LW

h


   

 

(6.2) 

 

where q  is the oncoming heat flux, k the thermal conductivity, Τr, Τout the temperature of 

liquid lithium within the reservoir and at the outer surface of the wafer, h is the 

summation of the CPS height, hCPS, and the film thickness formed upon the solid 

substrate, hf, L is the lithium latent heat of evaporation and W the rate of evaporation.  

 

We assume that Τr = 200
o
C, Τout = 500

o
C, hCPS = hf = 1mm while k, L are estimated as the 

average of their values at Τr and Τout according to [40]. Equilibrium is assumed with the 

near vacuum conditions of the surrounding medium, Pv(500
o
C) ≈ 0.4 Pa. Thus, 

considering the oncoming heat flux to be equal to 10 MW/m
2
 the rate of evaporation can 

be found: 
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(6.3) 

 

Hence, an oncoming heat flux of 10 MW/m
2
 would evaporate the liquid lithium film from 

the top of the CPS structure at a rate of: 

 

0.25 / s
fh W

mm
t 


 


 

 

(6.4) 

 

thus depleting it almost at once. As a consequence, conduction alone cannot exhaust the 

high enough heat fluxes occurring in real experiments. As mentioned in Chapter 1, JET 

divertor walls made of tungsten can withstand heat loads up to 20 MW/m
2
. Beyond this 

level the plasma-wall interaction is seen to cause problems such as erosion, thermal 

stresses, thermal fatigue and plasma contamination which may irreversibly impair the 

operation of the reactor.  

 

6.2.2 Heat exhaust via transpiration cooling 
As stressed in the previous sub-section the liquid metal layer on the top of wafer will 

soon evaporate leading to a different operating regime, namely the transpiration cooling, 

Fig. 6.4. In this process the oncoming heat flux is going to be balanced by (a) evaporation 

of Li captured within the pores, (b) heat conduction within the porous matrix but also (c) 

by convective heat transfer due to the preheating of liquid lithium, from the reservoir 

temperature up to the temperature of the interface. The latter volumetric flow rate is 

drawn out of the reservoir by capillary forces once the top of the CPS is depleted of liquid 

metal. 

 

 
Fig. 6.4 Simplified model of the transpiration cooling mode 

 

Taking the height of the CPS to be much smaller than its width, steady one dimensional 

heat transfer can be assumed within the CPS structure and a steady heat balance can be 

established where the above mechanisms balance each other. At the interface with 

plasma, evaporation takes place while inside the porous matrix conduction and 

convection co-exist. In this fashion, a steady state can be established producing the 

necessary liquid metal elevation H within the CPS structure in order to balance the 
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oncoming heat flux 𝑞̇. Thus, energy balances are used at liquid-plasma interface and 

across the portion of the CPS which contains the liquid metal. At the liquid plasma 

interface the oncoming heat flux is equal to the convection/diffusion heat flux from the 

liquid side of the interface plus the convection heat flux that enters the plasma as a result 

of evaporation at the interface: 

 

,

, ,,

, ,

in out
g

g
l x H

p pl x H x Hl x H

p px H l x Hx H x H

T
q q q q C uT k C uT

x

T T
q k C uT C uT q k L u

x x

 
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 

   


 

  


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

 
  

 

 

 

 

 

(6.5) 

 

Establishing an energy balance across the portion of the CPS that contains the liquid 

metal, ranging from the reservoir located at x=0 up to the plasma interface located at 

x=H, gives: 

 

 

0

0

0

Eq. 6.5

p p
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(6.6) 

 

It is obvious, via Eq. 6.6, that the main heat transfer mechanisms governing this process 

are evaporation, convection and conduction, which are represented by the first, second 

and third term, respectively. As a matter of fact, the conduction and convection terms are 

known from the analytical solution of the advection-diffusion equation and read as: 

  

 0
/

1
1

p

H
p C uH k

q L u C u T T

e
  

 
   

 
 

 

(6.7) 

 

where T0, TH are the temperatures at x = 0 and x = H, Cp is the specific heat capacity and 

Η the height of the liquid metal column within the mesh. Finally, indices l, g represent the 

liquid and gas phase of lithium, respectively. 

 

As a first approximation, the seepage velocity, u, of the liquid metal through the CPS is 

obtained via Darcy’s law where capillarity is considered to be the only driving force 

through the porous matrix: 

 

0

2

p

p p

gh
R

u k
H









  

 

(6.8) 
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where φp, kp, h0, Rp denote the porosity, the permeability, the height and the average pore 

radius of the porous structure, μ, ρ, γ the dynamic viscosity, the fluid density and the 

surface tension of lithium and g the gravitational acceleration. We assume γ ≈ 0.4 N/m, kp 

 10
-11

 m
2
, φp  0.3, Rp  10μm while k, L, ρ, Cp are estimated as the average of their 

values at Τr and Τout according to [40]. 

 

Solving the heat and momentum balances, Eqs. 6.7 and 6.8, respectively, provides the 

liquid metal thickness required to exhaust an increasing amount of heat flux as a function 

of the properties of the porous matrix. Fig. 6.5 shows how the thickness of the film 

decreases in response to the increasing amount of the external heat flux. In this operation 

mode, evaporation is the main mechanism of heat exhaust. As can be illustrated in Fig. 

6.6 large heat fluxes can be accommodated at the cost of large evaporation rates. The 

properties of the porous matrix are essential in delivering the amount of liquid metal that 

is required for exhausting large amounts of heat flux. Beyond, a certain heat flux, the 

thickness decreases significantly and the integrity of the reservoir itself is an issue.  

 

 
Fig. 6.5 Liquid metal thickness as a function of the external heat flux 

 

 
Fig. 6.6 Evaporation rate as a function of the external heat flux 

 

As a result of the above heat balance, and for the anticipated external heat flux levels, 

very large lithium vapor concentration levels are anticipated in the SOL with possible 
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reactor lithization. Therefore, a threshold in evaporation rate should be established in 

order to avoid plasma contamination.  

 

According to Van Eden et al., [50], who took into account the case of Sn as a PFC, an 

approximately steady-state surface temperature was reached after ∼0.5s on the liquid 

surface. Besides, the temperature ramp in the Sn case did not follow a conduction-based 

cooling curve, where the temperature increases following Newton’s law of cooling until 

the conducted heat equals the received plasma heating. As a result, they concluded that 

the steady-state temperature of liquid metal reduces significantly, due to vapor shielding 

and also that other power-loss processes are important.  

 

Hence, as stated in [50], the plasma heat flux is dissipated via a number of processes. 

Firstly, power is dissipated by vaporization if evaporated neutrals do not return to the 

surface. Secondly, power is lost by radiation of Sn neutrals and ions in the vapor cloud 

and mass transport from the plasma as a result of recombination processes. The 

remaining heat is transferred to the Mo cup (and, subsequently, cooling water) via 

conduction and convection of the liquid Sn. 
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6.3 Replenishment of the CPS:  Capillary flow of a liquid metal within a 
single cylindrical pore 
 

As analyzed in detail in subsection 4.3, the flow within a cylindrical pore is examined as 

a first attempt to provide an upper bound of the convective effects within the CPS matrix. 

This simplified investigation overestimates the permeability of the CPS but provides the 

framework for studying the interplay between the different forces that act towards 

pushing liquid lithium out of the porous matrix or resist its motion. In the present study 

the hydrodynamic problem is examined in the context of axisymmetry in order to obtain 

an understanding of the operation principle of the capillary pump.  

 

The numerical methodology, which was described in subsection 5.3, is employed in order 

to assess how the pore radius affects the seepage velocity of liquid lithium, whose 

properties derived via [40,109], for a cylindrical pore of h0 = 1mm in height. These 

seepage velocities along with the time needed for the liquid metal to exit the pore are 

going to give an estimation of the liquid metal replenishment speed which is of major 

importance during plasma operation. 

 

When a capillary is brought into contact with a liquid surface existing within the 

reservoir, the liquid spontaneously wets the interior part of the capillary. The driving 

force for this phenomenon in a vertical capillary is given by
p d ,P 2 / R cos gh     as 

mentioned in subsection 5.3, with h denoting the height of the liquid column in the 

capillary. In this study, the contact angle, θd, is considered to be invariable from the 

beginning and equal to its equilibrium value, θc = 30
o
, similar to studies such as [87]. The 

liquid reaches an equilibrium height, heq, where the capillary pressure equals the 

hydrostatic pressure. Thus, considering for example a pore radius Rp= 30μm, the 

equilibrium height is heq = 6.28m >> h0 and therefore the equilibrium arrangement is far 

from being accomplished. Hence, the seepage velocities are expected to be relatively high 

giving an overestimation of the replenishment speed, since the rambling geometry of the 

porous matrix is not taken into account. 

 

If the case of a Newtonian liquid is to be considered and the flow is very slow then 

according to [52] the average velocity of liquid rising in the capillary can be expressed 

via Poiseuille's law as: 

 
2 2

p p d pR P R cos R gdx
U

dt 8 x 4 x 8

  

  



    

 

(6.9) 

 

Thus, regarding the dynamic contact angle as a constant parameter and independent of 

velocity, the dynamic equation for capillary rise can be solved analytically with a 

dimensionless relation:  

 

2 X X
T H ln 1

H H

  
  

  
     

 

(6.10) 

 

where the following parameters and variables have been defined: 
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(6.11) 

 

Eq. 6.10 is often called the WRL equation, which is an acronym standing for Washburn, 

Rideal and Lucas who derived this equation, [87]. Besides, many authors refer to this 

simply as the Washburn equation. If gravity is negligible, a simpler relation is obtained 

according to [52]: 
 

 
1/2

X 2T  (6.12) 

 

Hence, the liquid column height increases continuously with time until the static 

equilibrium is established. Furthermore, Eqs. 6.10-6.12 have been tested against data on 

the rate of capillary rise into single capillaries. The data reveal a number of discrepancies 

relative to this simple model. One problem is that the dynamic contact angle is an 

unknown function of the rate of rise itself. Another is that the results depend upon 

whether the capillary has been preweted with the liquid, or instead is dry prior to the 

intrusion of the liquid into the capillary, [110].  

 

Our numerical results obtained in this context, indicate that upon decreasing the pore 

radius the capillary rise velocity, us, is seen to decrease linearly owing to the dominating 

effect of viscous dissipation along the radial direction, Fig. 6.7. This scaling qualitatively 

agrees with the viscous scale employed for making the velocity dimensionless. It 

corresponds to a balance between the axial pressure drop, generated due to capillary 

wetting of the interface, and radial momentum diffusion via viscosity: 

 

 
2

p p

22
0 0p

/ R Rˆˆ uu P
û

z h hRr
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


 

  
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(6.13) 

 

Since the inertial effects are insignificant for the relative small pore radius considered in 

this study, [52], the numerical results both considering and neglecting inertia are 

approximately the same with a small difference as the pore radius increases. These 

discrepancies occur because as Rp increases inertia enters the dominant force balance: 

 
2

2

p pp

û
ˆp u

R RR

  



u u      

(6.14) 

 

When the balance between inertia and capillarity dominates, a reduction in the pore 

radius leads to an increase of the characteristic velocity. Hence, the simulations with 

inertial effects tend to reduce the seepage velocity as Rp increases in comparison with the 

simulations assuming purely Stokes flow (We = 0). As a consequence, the time needed 

for the liquid metal to exit the pore tents to be slightly bigger for the case where the 

inertial terms are taken into account, Fig. 6.8. The importance of transient effects at the 

pore level seems to play an important role at relatively large pore sizes. Relatively large 

pore sizes are not employed in the literature of CPS, however this transition from pû R  
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to
p

1
û

R
 qualitative dependence can be used as a design parameter for future concepts. 

Furthermore, as illustrated by Fig. 6.8 the dimensionless time required to reach the pore 

exit, for fixed height of the capillary, decreases with Rp
1/2

 in agreement with the 

dimensional form of Eq. 6.12.    

 

 
Fig. 6.7 Seepage velocity at the exit of the pore as a function of the pore radius both with and without the 

inertial terms included  

 

 
Fig. 6.8 Time needed for the liquid metal to exit the pore as a function of the pore radius both with and 

without the inertial terms included  

 

Focusing on the case of a pore radius Rp = 30μm, as a reference study, the dimensional 

height of the rising liquid metal column at the axis of symmetry, namely z0 in this 

investigation, increases like t
1/2

, as illustrated in Fig. 6.9a, in agreement with the 

simplified WRL equation Eq. 6.12, as expected, based on the impact of viscous effects 

and the small height of the column. As a result, the rise velocity is relatively large at the 

beginning of the process while being reduced as the height of the column increases, Fig. 

6.9b. However, as illustrated in Fig. 6.10, the numerical values tend to be smaller than 

the prediction of Eq. 6.12, due to the impact of inertia effects that are accounted for in the 

numerical simulation. However, the observed deviation was never significant indicating 

the reliability of the WRL model in estimating the time required to achieve wicking into a 

capillary in the absence of inertial effects.  
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(a) 

 
(b) 

Fig. 6.9 (a) Height of the liquid metal column and (b) Seepage velocity at the exit of the pore as a function 

of time for the case of Rp = 30 μm 

 

 
Fig. 6.10 Comparison of the numerical results with the approximate WRL equation (Eq. 6.12) for the case 

of Rp = 30 μm 
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A similar deviation between simulations and experimental observations was captured in 

the experimental investigation presented in [90]. In the latter study silicone oils of 

varying viscosities were used and the measurements also consistently lied below the 

prediction of WRL equation. This tendency was attributed to the fact that the contact 

angle that arises dynamically will not be constant all the time, in the manner assumed in 

the simulations and the WRL theory. Rather it is going to change with time depending on 

the velocity of the liquid column. Joos et al [90] provided an experimentally fitted 

relationship for the dynamic contact angle in the form of 

  1/2

d c c ,cos cos 2 1 cos Ca      where Ca=μu/γ represents the capillary number 

presented above with the characteristic velocity u being the average velocity of the liquid 

meniscus rising in the capillary. Based on the above relationship, the dynamic contact 

angle, θd, is much larger than the equilibrium contact angle, θc, at the beginning of the 

process while being decreased until the static arrangement is reached and the equilibrium 

contact angle is established. The modified theory fits the experimental rise data better at 

short times than does the WRL theory due to the smaller rise velocity it predicts as a 

result of the smaller capillary pressure. Furthermore, experimental relationships for the 

estimation of the dynamic contact angle have also been introduced by other studies 

indicating the importance of short range forces in establishing the variation described by 

empirical formulas, see also the relevant analysis presented in [52]. 

 

Finally, entrance and exit effects may be significant in our investigation since the 

capillary height is very small compare to the equilibrium height. As a matter of fact, most 

of the viscous friction would lie within the region where the parabolic velocity profile is 

being developed from the entrance condition and in the pore`s mouth where the liquid 

exits to cover the top surface. Moreover, Rillaerts and Joos, [110], demonstrated the 

importance of prewetting of the capillary on the dynamic contact angle. During real CPS 

operation the porous matrix is going to be pre-wetted since the liquid metal layer is 

already present and evaporates due to the external heat flux. In the following section 

6.4.2, an effort will be made to account for the effect of wetting and adhesion in the final 

static arrangement of the liquid metal layer covering the pore. 
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6.4 Static arrangement of the CPS 
 

6.4.1 Effect of reservoir overpressure 
The numerical methodology, which was analyzed in subsection 5.4.1, was implemented 

in order to perform a parametric study on the effect of external overpressure on the shape 

and thickness of the liquid metal layer that coats the porous substrate at static 

equilibrium. Liquid lithium was used as the operating fluid. The fluid density, ρ, is set 

equal to 500kg/m
3
 while its surface tension γ = 0.4N/m. The contact angle θc is set to 30

o 

and the gravity acceleration g=10 m/s
2
. The geometric configuration envisioned is the one 

depicted in Figs. 4.10a,b. A porous disk of 10 cm radius and 1 mm thickness is assumed. 

The reservoir overpressures considered in this study are expected to be relatively small 

and positive, however for the sake of completeness a parametric study is conducted in 

this section of the static arrangement, by varying the reservoir overpressure, ΔP=Pr-Pout, 

over a wide range of values starting from large positive overpressures until small negative 

pressure differences. Pout signifies the pressure exerted on the liquid metal film by the 

surrounding plasma in the divertor region and is not expected to be large since almost 

vacuum conditions prevail in this region. The reservoir pressure is reduced by the 

hydrostatic pressure ρgh0 ≈ 5 Pa based on the thickness of the porous layer, h0, plus the 

additional pressure drop, ρgz, due to the local thickness, z, of the liquid metal layer that 

rests on top of the porous wafer. For relatively large overpressures the contact angle of 

the liquid metal drop on the porous matrix is fixed and the contact length emerges as part 

of the numerical solution. Converged solutions of the drop shape were obtained with a 

finite element mesh ranging between 500 and 4000 quadratic elements in order to capture 

abrupt changes in the curvature of the interface. 

 

In this fashion, it was seen that as the reservoir overpressure (ΔP = Pr - Pout) increases, ΔP 

> 500 Pa, the “drop” size decreases. In this regime, gravity is of minor importance and 

the dominant force balance in achieving static equilibrium is between pressure drop and 

surface tension, 
0 2 /out mP P R  . Rm is the radius of the circular arc which constitutes 

the interface between the liquid metal and plasma, Fig. 6.11, and decreases with 

increasing reservoir overpressure. The liquid metal “drop” arrangement that rests on the 

outer CPS surface is calculated numerically as a function of the reservoir overpressure. 

Due to axisymmetry and the geometry of the static arrangement, the shape obtained is 

that of a spherical cap with a contact angle of 30
o
 on the solid substrate that constitutes 

the porous matrix, and a contact length of Rf = Rmsinθc. The center of curvature of this 

“drop” that protrudes from the porous matrix lies below the CPS surface, and the position 

of its center is equal to Rmcosθc while the contact length is Rf = Rmsinθc. Finally, the 

thickness of the liquid metal film at the axis of symmetry is z0 = Rm - Rmcosθc = Rm(1-

cosθc). 
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Fig. 6.11 Schematic of the center and radius of curvature, O and Rm, respectively, the radial extent of liquid 

metal “drop” (depicted by the blue region), Rf and contact angle, θc 

 

As illustrated in Fig. 6.12, as the overpressure decreases, the “drop” spreads out while 

more or less retaining its spherical cap shape. Fig. 6.13 provides a comparison between 

the numerically obtained contact length and the above prediction based on the assumption 

of a spherical cap shape, that confirms the validity of the relation Rf,apr ≈ Rmsinθc for large 

overpressures, where Rf,apr is the approximate value of contact length. For example, when 

the case of ΔP = 500 Pa is taken into account Rf,apr = 2γ/ΔPsinθc = 0.8mm ≈ Rf,c, with Rf,c 

representing the computational obtained contact length. 

 

 
Fig. 6.12 Liquid metal drop shape evolution with decreasing pressure drop 

 

 
Fig. 6.13 The approximate values estimated via Rf,apr ≈ Rmsinθc agree with the computational ones as the 

pressure drop increases 
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As pressure drop is further decreased, a liquid metal film forms that almost entirely 

covers a 10 cm long disk when ΔP30Pa, in which case the spherical cap shape 

assumption does not hold any more and significant deviations are registered in Fig. 6.13. 

Fig. 6.14 illustrates the gradual formation of a thin film as the reservoir overpressure 

decreases. In this regime, the structure of the solution is different since gravity becomes 

important in the region around the axis of symmetry, while a very thin boundary layer is 

generated near the contact point. As a result, a very large number of elements is required, 

on the order of 4000, in order to capture this transition. 

 

 
Fig. 6.14 Liquid metal film shape as the overpressure decreases  

 

In fact, upon further decreasing the reservoir overpressure, the contact length increases 

extremely and exceeds any reasonable wafer length, Fig. 6.15. As mentioned above, the 

importance of gravity increases and forms the dominant force balance along with 

pressure drop, especially away from the contact point which determines the liquid metal 

layer thickness in the pole region. For example, when Pr - P0 = 28.2 Pa in the region near 

the pole the balance between gravity and pressure forces provides the maximum film 

thickness z0, see also Fig. 6.16a: 

 

 0 0 0
4.6

r out
P P g h z z mm      (6.16) 

 

On the contrary, near the contact point it is the surface tension that balances pressure 

drop. The shape is almost part of a sphere, see also Fig. 6.16b. As a consequence, for a 

given contact angle the critical pressure drop beyond which a solution cannot be obtained 

can be predicted: 
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(6.17) 

 

In the above analysis, the mean curvature at the contact point is decomposed in the 

azimuthal and polar components with two distinct radii of curvature equal to Rf and z0/(1-

cosθc), respectively. As ΔP0 decreases the contact length rc = Rf increases abruptly until it 

becomes infinite for a critical pressure drop, ΔP0 ≈ 17 ≈ Pr-ρgh0, in which case a static 
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solution cannot be obtained when Pr ≈ 22 Pa since capillarity cannot balance pressure 

drop anymore due to the large film size.  

 

 
Fig. 6.15 Liquid metal film shape as the overpressure decreases approaching a threshold value 

 

 
(a) 

 
(b) 

Fig 6.16 Film shape for a small pressure drop, Pr-Pout=28.2 Pa, (a) near the pole and (b) near the contact 

point 

 

Static simulations conform with this pattern and fail to provide a solution for a reservoir 

pressure Pr ≈ 28 Pa, Fig. 6.16. The film size in this process exceeds any reasonable wafer 

length, e.g. ~10 cm, and consequently it ends in a sharp edge, the wafer’s edge, in which 

case we have to impose a fixed contact point rather than a fixed contact angle in order to 

proceed with the parametric study. In this fashion, a static solution can be obtained for 

even lower overpressures until ΔP almost vanishes with the film achieving micron-size 

thickness and near zero contact angles as can be shown in Fig. 6.17. 

 

 

Institutional Repository - Library & Information Centre - University of Thessaly
12/05/2024 03:57:40 EEST - 52.15.35.194



   

   157 
 

 

Fig. 6.17 Evolution of film with decreasing overpressure, ΔP=Pr-Pout, and fixed contact point at R=10 cm; 

when ΔP=5 Pa the pressure drop between the top of the CPS and the plasma is almost zero 

 

In this process gravity gradually gets out of the picture and micron or even sub-micron 

film thicknesses are obtained. The contact length is fixed at the wafer’s length and the 

contact angle gradually decreases to accommodate the continuous reduction of the film 

thickness. Furthermore, film formation subject to negative overpressures as well as the 

effect of the substrate topography, e.g. pore radius, cannot be captured. However such 

effects have been registered in experimental observations [81,86,111], especially as the 

pressure drop between the liquid lithium reservoir and the surrounding plasma is 

expected to be negligible in the actual application of the CPS. Therefore, as the film 

thickness reduces down to submicron sizes, i.e. for very small positive or negative 

overpressures, the nature of intermolecular or surface adhesion forces between the liquid 

metal film and the solid substrate needs to be considered. The numerical results 

concerning the effect of negative overpressures and also the substrate topography on the 

static arrangement are presented in the following subsection 6.4.2. 

 

6.4.2 Effect of the topography of the porous substrate  
At the end of subsection 6.4.1 it was stressed that at near vacuum conditions, namely 

considering slightly positive or negative reservoir overpressures, the film thickness 

reduces down to micron or even submicron sizes. In this regime, the surface forces 

developed between the liquid metal film and the solid substrate should be considered.  

 

In the following we do not assume the classic partial wetting case, of liquid lithium with a 

dry substrate beyond the contact point, illustrated in Fig. 2.3. As emphasized in 

subsection 6.4.1, it is not possible to obtain such a solution at static equilibrium for Pr ≈ 

Pout, a CPS thickness of 1mm, a pore size on the order of 30 μm and a contact angle θc = 

30
ο
. Such a static configuration would require a liquid metal column of, roughly: 

 
2 cos / ( ) 4.6c ph gR m     (6.18) 

 

A size of liquid metal column of this order would not be useful in protecting the CPS 

structure and the divertor below since it would be unstable and susceptible to MHD 

instabilities. The envisioned static configuration is characterized by full coverage of the 

CPS outer surface whether the pressure difference, ΔP = P0 - Pout, is slightly positive or 

negative. The latter case pertains to the situation after replenishment has taken place but 
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without taking into account the Lorentz forces. In this fashion, we are dealing with 

coatings rather than films and micro-scale liquid-solid interactions need to be accounted 

for. In particular, the cases with a purely repulsive and a long range attractive short range 

repulsive potential are investigated in order to model the effect of the topography and 

nature of the porous substrate on the static arrangement of the liquid metal. As pointed 

out above these surface, or intermolecular, forces enter the normal force balance in the 

form of a disjoining pressure, Π, which arises by differentiating the aforementioned 

potentials with respect to the local Euclidean distance between the liquid metal-gas 

interface and the solid substrate.   

 

Asymptotic analysis of the film shape barely existing the pore 

The analysis here, as Rp >> δΑ, assumes the splitting of the film interface in the inner (r > 

Rp), outer (r < Rp) and the transition (among inner and outer regimes) regions as can be 

depicted in Fig. 6.18. In this subsection we are looking for solutions whose thickness is 

on the order of δΑ in the inner region and 2γ/ΔP in the outer region. Gravity is 

insignificant while the pressure differences are considered to be on the order of ΔP = P0 - 

Pout ~ 1 in which case an almost flat precursor layer is developed.  

 

 
Fig. 6.18 Schematic of the anticipated static configuration with the film barely existing the pore and 

illustration of the main subregions 

 

In general, the normal stress balance holds on the interface:  

 

 0 0 02out cP P W H     (6.19) 

 

Taking into account the case of a long range attractive short range repulsive potential, 

analyzed in the subsection 2.2.3, and also the relationships concerning curvature and 

normal unit vector derived in Appendix B, Eq. 6.19 results in: 
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(6.20) 

 

Inner region 

In this region the dominant force balance is between pressure forces and intermolecular 

forces. Besides, regarding the thickness of the inner region, zI, to be on the order of δΑ, 

and also r R ,  R ,  S R .p A p p  By defining a new dimensionless parameter 

ˆ
I Az   the normal stress balance reads at the interface: 
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(6.21) 

 

Assuming 
0

1
4

AP

W


, we set ˆ 1z    . Thus, Eq. 6.21 results in: 
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(19) 
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The intermolecular potential W in the inner region results in: 
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(6.24) 

 

The above eq. Eq. 6.24 is valid provided that 
0
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Transition region 

In this region the dominant force balance is between the surface tension forces and the 

intermolecular forces. Moreover, 
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(6.25) 

 

where is the length of the transition region and Rf = Rmsinθc = (2γ/ΔP)sinθc. 
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Consequently, assuming that the transition takes place entirely on top of the substrate 

rather than the pore: 
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and the normal stress balance reads at the interface: 
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Upon recognizing that: 
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Eq. 6.27 is recast in the form: 
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Setting again ˆ 1z    Eq. 6.29 results in: 
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(6.30) 

 

Eq. 6.30 is similar to the equation produced by Starov et al. [112,113] for a partially 

wetting fluid resting on a substrate where a precursor layer is formed, and predicts the 

equilibrium contact angle established at the edge of the coating when the limit point 

occurs in the above calculations.  

 

Outer region 

In this region pressure forces balance surface tension forces. Hence, the normal stress 

balance reads at interface: 

 

0 out sP P    n  (6.31) 

 with an almost spherical shape to be formed with radius 

0

2
m

out

R
P P




that meets the 

transition layer at an angle according to Eq. 6.30. In this fashion, thicker coatings are 

obtained with thickness  1 cos ,m cR   and radial length sinm cR  . As W0 approaches γ, the 

contact angle, θc, approaches π/2. Beyond this value a contact angle 0 < θc < π/2 cannot 

be obtained. This is a result of the form of the interaction potential employed in the 

present study. Thus, a more realistic form should be introduced. Furthermore, it is 

important to verify that the above presented static configurations will persist in the 

presence of dynamic effects and other field forces such as Lorentz forces. To this end, 

careful stability analysis is required. 

 

It should also be stressed that the above relation Eq. 6.30 is different from the relation 

0 1 cos c

W



   derived for a closed volume of liquid resting on top of an otherwise dry 

substrate. 

 

The reason for this discrepancy is that for the case of poor wetting, Eq. 6.30 is recovered 

with the supplementary angle of contact angle in place of the contact angle. 

Consequently, upon substitution of the above consideration in Eq. 6.30 we recover the 

well known formula 0 1 cos c

W



  . On the contrary, when partial wetting is considered 

a gas layer underneath the contact region cannot be envisioned, since it would be 

incompatible with the concept of good wetting. Furthermore, carrying out analysis 

generates problems with asymptotic matching when θ < π/2, [114]. 
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Numerical Results 

Case of Pure Repulsion 
As a first attempt to capture the effect of surface forces and the topography of the porous 

substrate on the static arrangement, a repulsive interaction potential in the form of 

2
( )

12


A
W 


 was investigated, illustrated in Fig. 4.20, corresponding to a liquid metal 

film that establishes full contact with the solid substrate, see also Fig. 2.2. This, 

corresponds to the case when all forces cannot be compensated in the tangential direction 

at any contact angle, that is, if γsv  > γsl + γ, where γsv,γsl, γ denote the interfacial tensions 

between the solid, liquid and gas phases. Assuming the case of liquid lithium again and 

focusing in the vicinity of a single pore since we have considered that the interpore 

distance is much larger than the pore radius, useful conclusions can be drawn by the 

numerical model described in subsection 5.4.5. Assuming that Pr ≈ Pout, which 

corresponds to P0 ≈ 5 Pa and therefore ΔP= P0 - Pout = -5 Pa, the general picture for a CPS 

thickness of 1mm and a pore size on the order of 30 μm is that of an almost uniform 

coating of size on the order of submicron’s over the substrate, with an indentation in the 

pore region as can be gleaned from Fig. 6.19. In addition, as the strength of the repulsion 

increases, that is to say that as A increases, the liquid metal film thickness increases as 

well. Similarly, as the external overpressure increases the coating thickness decreases as 

well, Fig. 6.20. For relatively large values of external overpressures the liquid metal-gas 

interface enters the pore region and the indentation seems to be bigger. 

 

 
Fig. 6.19 Evolution of the shape of the interface for Hammaker constants A = 10

-20 
and 10

-18
 Nm for fixed 

external overpressure ΔP= P0 - Pout = -5 Pa and a pore size of 30 μm 
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Fig. 6.20 Evolution of the shape of the interface for Hammaker constants A = 10

-18
 Nm for various external 

overpressure ΔP= P0 - Pout and a pore size of 30 μm 

 

As far as the investigation of purely repulsive potential is concerned, no static solution is 

possible for positive reservoir overpressures, P0 > Pout because this kind of interaction 

potential cannot counterbalance a positive pressure drop across the interface. However, it 

is anticipated that the presence of Lorentz forces may lead to positive and very large 

effective reservoir overpressures, in the form of magnetic pressure, especially during off-

normal events such as edge-localized modes and disruptions. In such a situation a purely 

repulsive potential cannot exert a stabilizing attractive force that would pin the film onto 

the substrate and is considered inappropriate for the real case of CPS static configuration. 

This type of material and the resulting interaction can only sustain a dynamic coating 

process with the liquid metal gradually spreading over the substrate. Nevertheless, it gave 

us beneficial results in order to understand the process of coating over dry or prewetted 

surfaces.   

 

Case of a long range attractive short range repulsive potential 

As was shown in the context of the analysis on the evolution of the film thickness as a 

function of the external overpressure, when near vacuum conditions prevail the film 

thickness decreases significantly and the details of the substrate topography and 

interaction with the liquid film emerge as determining factors for predicting the static 

configuration. The envisioned static arrangement of the CPS, in the absence of 

electromagnetic field forces, is shown in Fig. 6.21 where an undulated interface forms 

following the topography of the porous structure. 

 

 
                       (a)                                                 (b)                                                  (c) 

Fig. 6.21 (a) Anticipated schematic arrangement of the CPS static configuration with an almost uniform 

coverage of the CPS outer surface, Blow up: (b) of the CPS outer surface and (c) in the vicinity of a single 

pore 
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Assuming that the interpore distance is much larger than the pore radius, the analysis can 

focus on the static arrangement in the pore level, Figs. 6.21b,c. Τhe effect of a long range 

attractive short range repulsive potential in the form of 
4 2

.0 2A AW W
 

 

    
    
     

   that is 

depicted in Fig. 4.21 was also investigated, corresponding to a liquid metal film that 

establishes partial wetting with the solid substrate, Fig. 2.3. This, corresponds to the case 

when γsv  < γsl + γ, where γsv, γsl, γ denoting the interfacial tensions between the solid, 

liquid and gas phases. 

 

The numerical analysis described in subsection 5.4.5 provides the shape of the interface 

as a function of 0 0 ,  , ,,  
/ /


 pout

p p p

gRP P W

R R R



  
 namely the dimensionless pressure drop, 

wetting parameter, gravitational Bond number, and the ratio between the characteristic 

scale for surface forces and pore radius, the former is the length for which the interaction 

force changes sign becoming repulsive  as the distance between the liquid metal interface 

and the solid substrate decreases,  respectively. In real experiments P0 - Pout is anticipated 

to be very small since the operation takes place at near vacuum conditions. Besides, 

gravitational effects are negligible compared to surface tension forces in this context,  

1,
/

p

p

gR

R




 due to the small pore radius and film thickness. Finally, 0 1W   since Li 

exhibits partial wetting. In the absence of any reliable data an estimation of the 

interaction potential W0 can be obtained by employing the formula provided by the 

analysis of the static configuration of a drop that partially wets a dry substrate, see also 

the relevant subsection below concerning the asymptotic analysis, in conjunction with the 

contact angle of 30
o
 reported in the literature for lithium: 

 

0

300 01 cos 1.866
o

c

sv sl
c W

W W

  


   
    

(6.32) 

 

However, the above value is not entirely appropriate in the context of the present problem 

where a precursor layer exists that proceeds the adhered drop, as illustrated in Fig. 2.4 

and elaborated in Chapter 2. Hence, a parametric study is conducted in order to assess the 

effect of pressure drop and adhesion forces on the shape and thickness of the coating 

layer. We want to establish conditions for an almost uniform coating to be developed. 

 

As a general trend, as W0 increases the attraction between the liquid metal and the pore 

increases as well and the pore, without the imposition of an extra overpressure, tends to 

drag the liquid metal inside it and, thus, a small indentation is noted in the vicinity of 

pore`s “mouth”,  as can be shown in Fig. 6.22.  
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Fig. 6.22 Evolution of the shape of the interface as a function of the interaction potential when ΔP = P0 -Pout 

= 0, Rp=30 μm and δΑ=50 nm 

 

The static solution consists of the following regions, with the corresponding dominant 

balances. It should also be stressed that gravity remains subdominant in this regime 

owing to the very small film thickness. The region with r > Rp constitutes the “inner 

region” where the intermolecular forces balance pressure forces, and is characterized by 

the formation of a precursor layer of almost constant thickness. The region with r < Rp 

constitutes the “outer region” where the pressure forces balance the surface tension 

forces. The precursor layer is smoothly matched with the outer region via an intermediate 

regime, namely the transition region. The latter intermediate regime is characterized by 

the dominant force balance between intrmolecular forces and surface tension forces and 

has to appropriately match with both the outer and inner regimes. It was shown by the 

asymptotic analysis of the above regions, in the subsection above, that the angle at which 

the transition layer leaves the substrate to match the solution from the outer region is 

given by the relationship: 

 

inner

2 4

0 A A
W

c 1
( ) W

2o 1s
     

      
      


 






 
 

(6.33) 

 

Eq. 6.33 constitutes a relationship that is more pertinent than Eq. 6.32 which corresponds 

to cases of partial wetting on a dry substrate. Eq. 6.33 applies for the case of liquid 

lithium resting on a prewet CPS for which a precursor layer is formed on the substrate 

surface that is prewet during the preparation process. Furthermore, when the liquid metal 

layer has not escaped the pore, the contact length is expected to be on the order of the 

pore radius. In this case, either a negative overpressure exists, in which case the outer 

region of the interface points its concave part towards the surrounding medium, or a small 

positive overpressure exists with its concave part pointing towards the interior of the 

pore.  

 

For the case of a weak interaction potential such as the one depicted in Fig. 6.22 

corresponding to W0 = 0.01 N/m, when the liquid metal arrangement is subject to zero 

overpressure an almost flat film is produced based on the static model presented in 

section 4.4.4 and the numerical simulations with the methodology outlined in section 

5.4.5. Performing a parametric study, by varying the reservoir overpressure, it was seen 

that for negative and non-zero values of ΔP in the pore region the prevailing force 

balance in the bulk of the film is between surface tension and pressure forces and this 
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determines the curvature in that region via 2γ/ΔP = Rm. For a relatively weak interaction 

potential W0 = 0.05 N/m and Rp = 30μm, δΑ = 150μm it can be clearly seen that over a 

wide range of negative and positive overpressures the liquid metal has not escaped the 

pore, Figs. 6.23a,b and 6.24a,b, and the contact point is nearly fixed at the pore “mouth” 

at r = Rp. Fig. 6.23b focuses on the transition region of Fig. 6.23a, illustrating the smooth 

transition from the outer region in the vicinity of the axis of symmetry to the contact 

region where the film thickness acquires a length determined by the balance between 

overpressure and the attractive disjoining pressure, 

 
3 5

0 A A
0 out

A

4WW
P P g

n

      
         

        

 
 

(6.34) 

 

i.e. the film thickness δ in the contact region remains constant and larger than the 

characteristic length δΑ.  

 

  
(a) 

 
(b) 

Fig. 6.23 (a) Film shape as a function of relative small overpressures, ΔP = P0 -Pout, for W0=0.05 N/m, 

Rp=30 μm, δΑ=150 nm and (b) Blow up of the transition and contact regions 

 

As ΔP increases the liquid metal film forms a drop, Fig. 6.24a,b, that protrudes from the 

pore meeting the pore side walls with a macroscopic angle estimated via sinθ = Rp/Rm. In 

Fig. 6.25 that focuses on the transition region merging the drop with the precursor layer 

in the contact region, the angle at the contact point is seen to gradually increase as ΔP 

increases until a limit point arises when ΔP≈11500 Pa and θ≈27
ο
. It was shown by 

asymptotic analysis of the above regions that, especially when W0 << γ, the angle at 

which the transition layer leaves the substrate to match the solution from the pore region 

is given by the relation cosθ =1-W0/γ. Thus, for the case considered above, namely when 
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W0=0.05 N/m, θ is equal to 29
ο
, which is very close to 27

o
 obtained via the numerical 

analysis. It should also be stressed that the critical overpressure for which the solution 

family obtained with increasing overpressure exhibits a limit point is the one for which 

the above angle θ at which the liquid metal drop contacts the substrate is equal to the 

angle at which the drop shape leaves the pore mouth to match the drop in the bulk of the 

film. The latter angle is given by the following relationship:  

 

p m pSin R / R R )2(P / .      (6.35) 

 

  
(a) 

 
(b)  

Fig. 6.24 (a) Film shape as a function of relative big overpressures, ΔP = P0 -Pout, for W0=0.05 N/m, Rp=30 

μm, δΑ=150 nm and (b) Blow up of the transition region 

 

 

Fig. 6.25 Film shape as a function of overpressures, ΔP = P0 -Pout, for W0=0.05 N/m, Rp=30 μm, δΑ=150 

nm; blow up of the transition region  

 

As was mentioned in the above analysis,  no static solution was obtained for larger values 

of the interaction potential or larger overpressures than the critical one. A similar result 

has been reached by Starov [112,113] where it was seen that the static arrangement is 

Blow up of the transition region 
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stable as long as 0





. In the present study the limit point occurs earlier for a value of 

δ smaller than the one coresponding to maximum Π as the distance from the wall δ 

varies. In order to provide better understanding an asymptotic analysis was conducted and 

shown above, on the structure of the static solution when the drop is in contact with a dry 

solid or with a precursor layer. It describes the structure of the solution right at the point 

for which, in terms of overpressure, the film starts escaping the pore and the solution 

branch turns to the classical spherical cap. In fact, this is also very close to the film shape 

at the limit point which occurs right at the point for which the pore ceases to bear an 

influence on it. In this fashion Eq. 6.33 was recovered as a necessary condition for the 

solution in the contact region to match the one in the transition region, in agreement with 

the analysis presented in [112,113] in a slightly different context. It should also be 

pointed out that to obtain such a result the form of the interaction potential should be 

such, i.e. one that prescribes good adhesive properties of the liquid metal, that supports 

the structure of a coating with a precurson layer covering the substrate. Such a functional 

relationship is not always available for the studied system of liquid-vapour-substrate and 

requires additional effort in establishing the type of interaction that adequatrely decsribes 

the interaction of the specific materials involved in the design of the CPS. 

 

Beyond this critical overpressure, a static solution could not be obtained and the solution 

family turned to lower values with the film establishing an almost spherical shape with 

contact length larger than then pore radius and the contact angle fixed at the above critical 

value. These are shapes that have escaped the pore and cover the entire porous structure. 

The overall shape is that of a spherical cap and the solution family merges with the one 

obtained for relatively large overpressures in section 6.4.1. The critical point essentially 

reveals the change from a fixed contact point to a fixed contact angle behavior of the 

adhered liquid metal layer as a certain angle is reached. For larger overpressures, a static 

solution could not be obtained and it is conjectured that a dynamic analysis may provide 

the response of the CPS in this parameter range, in the same fashion that inclusion of the 

disjoining pressure provides the dynamic contact angle of a drop spreading over a dry 

substrate that is fully wet by it. Nevertheless, further research is required in order to 

verify this conjecture and is left for a suggestion for a future study. 
 

The above type of static response persists until W0 ~ γ, see also Figs. 6.26a,b, in which 

case  a limit point arises with the contact angle  θ~ 45
o
, which is very close to the angle 

provided via relationship sinθ = Rp/Rm = RpΔP/2γ, when the overpressure approaches the 

critical value, ΔP=ΔPcr. Consequently, the numerical calculations fail to provide static 

solutions for interaction potentials that are quite larger than surface tension. It should be 

stressed in this point that as the interaction potential increases the level of overpressure 

required to “force” the liquid metal out the pore increases and this attests to the 

stabilization that the CPS structure provides against drop ejection and splashing in the 

presence of Lorentz forces. To first order the effect of Lorentz forces can be incorporated 

in the static arrangement in the form of a magnetic pressure that effectively increases the 

apparent reservoir overpressure. 
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(a) 

 
(b) 

Fig. 6.26 (a) Film shape as a function of overpressures, ΔP = P0 -Pout, for W0 ~ γ, Rp=30 μm, δΑ=150 nm 

and (b) blow up of the transition region  

 

As stressed above for relatively large values of Δp, the numerical solution exhibits a limit 

point. In order to continue the solution, the Arc Length Continuation was used instead of 

Simple Continuation in the manner described in subsection 5.4.5. This kind of 

continuation revealed the existence of a second branch of solutions, for the same 

overpressure range as the original branch, characterized by a fixed contact angle. In Fig. 

6.27 a bifurcation diagram is presented for Rp=30μm and δΑ=50nm, where z0 represents 

the maximum height of the liquid metal drop at r = 0 while ΔP = P0 - Pout. In this graph, 

the position of the limit point is seen to be displaced to lower values of z0 and ΔP as W0 

decreases. Fig. 6.27 also includes graphs depicting the evolution of the shape of the 

interface around the limit point. As an illustrative example the case of W0 = 0.05 N/m is 

depicted in Fig. 6.28. The numerical solution corresponding to the first branch is 

represented via the black solid line, while the solution corresponding to the second 

branch is represented via the purple solid line. Finally, the black dotted line corresponds 

to the solution at the limit point. As a general trend solutions past the limit point 

correspond to thicker films with spherical cap shapes identical to those obtained in the 

standard analysis of a drop that adheres on a solid substrate at fixed contact angle and 

relatively large pressure difference between the drop interior and the surrounding 
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medium, see also the discussion in section 6.4.1. Furthermore, the drop shape and 

thickness as a function of overpressure in a bifurcation diagram of this kind is more or 

less independent of δA. Moreover, the position of the limit point has weak dependence of 

δA with a small shift backwards as δA increases, see also Fig. 6.29. Hence, the fact that 

Fig 6.27 was drawn for a different value of δΑ, namely 50nm as opposed to 150 nm that 

was used in the previous graphs of this subsection, does not play a role in the calculated 

response pattern. The extended blue line in Fig. 6.27 corresponds to the case where W0 ~ 

γ for which no limit point was observed for the range of ΔP values that was investigated. 

Finally, no static numerical solution was obtained for larger values of the interaction 

potential. 

 

 
Fig. 6.27 Bifurcation diagram for Rp=30μm and δΑ=50nm and evolution of the shape of the interface 

around the limit point 

 

 
Fig. 6.28 Bifurcation diagram for W0 = 0.05 N/m, Rp=30μm and δΑ=50nm and evolution of the shape of the 

interface around the limit point 
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Fig. 6.29 Bifurcation diagram for Rp=30μm and δΑ=50, 100 and 150nm  

 

As mentioned above, the solutions past the limit point correspond to thicker films with 

longer contact lengths and fixed contact angle. They essentially constitute a continuation 

of the spherical shapes obtained for relatively large overpressures, shown in subsection 

6.4.1, and they are obtained once the pore influence on the static arrangement weakens. It 

is of interest to study the relative stability of such shapes in order to ascertain the static 

arrangement that will eventually prevail. Suffice to say at this point that the Jacobian 

matrix obtained for thicker films contains no unstable eigenvalues, whereas the shapes 

with pore influence contain an unstable eigenvalue. Perhaps this is associated with the 

value adopted for the interaction potential  W0 < γ and corresponds to a liquid with not 

very strong adhesion properties on the particular substrate. Dynamic analysis of the above 

obtained static arrangement, one that couples transient effects and fluid motion with 

surface and capillary and pressure forces, is necessary to verify its stability. 

 

6.4.3 Effect of an externally applied electric field 
Despite the relatively small thickness of the coating film that was obtained in the 

previous subsection, it may still be subject to instabilities and drop ejection in the 

presence of large enough electromagnetic forces, the mechanism of which strongly 

depends on the size of the original layer and its adhesion properties. As a first 

approximation towards assessing the effect of external field forces on the static 

arrangement of the liquid metal layer that covers the porous system, an external electric 

field is introduced that is aligned with the axis of symmetry of the porous wafer, Fig. 

4.10c, in the far field;   0 ,, r   
z

E E e  with Φ denoting the electric 

potential. In order to compare with similar studies from the literature [92] the contact 

point and the volume of the adhered liquid metal layer is fixed to the values calculated in 

the absence of an electric field, and the contact angle is calculated as part of the post-

processing of the numerical solution. 

 

Upon introduction of electric stresses in the normal stress balance due to the external 

electric field, the effective internal pressure is affected, thus, rearranging the shape of the 

drop. This is better illustrated when, 1out

in




 in which case a perfectly conducting 

liquid metal can be assumed. Using the static equilibrium obtained in Fig. 6.14 with the 

top of the porous matrix fully covered, i.e. Rf = 10 cm and contact angle θc=30
o
, and 
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gradually increasing the electric field intensity while keeping the mass of the liquid metal 

within the layer constant, the sequence of the shapes shown in Fig. 6.30 is  captured. As a 

result of the electric stresses, the pole section of the layer is elongated in the field 

direction while the contact angle at the equator decreases in order to maintain the same 

amount of liquid lithium. The liquid metal layer thickness increases away from the 

contact line and its curvature increases as well. Eventually, a conical angle tends to form 

at the pole with angle θc~75
o
 and a solution could not be obtained for stronger electric 

fields. In this limit capillarity balances the electric stresses in the pole region and this 

determines the size of the conical angle at the pole. Gravity cannot participate in the 

dominant balance in the pole region as the intensity of the electric field increases, because 

it would lead to excessively large axial displacements in this region that would violate the 

mass balance. As a result, when Bondel increases, beyond a certain point, the layer 

thickness at the pole is not affected. Rather the curvature increases until a conical angle 

forms. When the initial size of the lithium layer decreases, e.g. when Rf = 5 mm and 

Bond=0.33, while the contact angle in the absence of electric forces is set to 60
o
, beyond 

a certain range of electric field intensities, Bondel > 500,  the solution does not change 

significantly except for the curvature in the pole region where eventually  a conical angle 

of  θc ~ 47
ο
 is formed, Fig. 6.31. The above angle is very close to the angle of 49

o
 

predicted by Taylor [85] for conductive cylinders elongated by the action of electric 

stresses. Overall, it is the interaction between capillarity that pins the drop onto the 

substrate and electric stresses that determines the coherence and stability of the adhered 

drop. 

 

 

Fig. 6.30 Evolution of the shape of the interface with the porous layer fully covered, with increasing 

electric field intensity and / 1in out   , Bond=134
 

 

 
Fig. 6.31 Evolution of the shape of the interface with the liquid metal drop pinned at 5mm, with increasing 

electric field intensity and / 1in out   , Bond=0.33 
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This pattern is verified by more recent studies in the literature [93], where the dynamics 

of this process was also studied and was seen to alter the value of the eventual conical 

angle. It was thus predicted that the contact angle that is formed dynamically is smaller 

than the Taylor angle. Moreover, Reznik et al. [92] stated that depending on the static 

contact angle and the field intensity, along with the appearance of the dynamic conical 

angle, jetting is initiated at the pole region. This process is known to generate small 

droplets once the jet speed reaches a certain threshold. In the same study it was observed 

that, depending on the static contact angle and the extent of wetting, dislocation of the 

entire layer may take place instead of jetting. The electric field strength required for such 

instabilities to arise increases with decreasing thickness of the liquid metal layer. In 

particular, as the size of the layer increases the intensity of the electric field required for 

the formation of the conical angle decreases, as suggested by 2 /el fBond gR   since the 

critical Bondel for conical angle formation is fixed for fixed static contact angle and 

electric permittivity ratio. Clearly, this places a limit in the thickness of the liquid metal 

layer that can be placed on a certain substrate, if unwanted instabilities are to be avoided.  

 

The above mechanism of destabilization of a drop that adheres onto a solid substrate, via 

the onset of electric stresses provides a plausible analogy for the stability of the capillary 

porous system. In the latter arrangement, however, it is the Lorentz forces (jxB effects) 

that will be responsible for the destabilization of the CPS, or equivalently the magnetic 

part of the Maxwell stresses. As a consequence, it is of central importance concerning the 

feasibility of capillary porous systems in power exhaust of fusion reactors, to ascertain 

the actual static arrangement of the structure and perform dynamic studies where the 

more relevant Lorentz forces are incorporated in the analysis, along with the surface 

forces that act so as to pin the liquid metal layer onto the substrate. The results of this 

investigation are presented below in the following subsection. The dynamic interaction of 

these forces will determine the stability window of such an arrangement. 

 

6.4.4 Effect of Lorentz forces 
As analyzed in subsection 4.4.3 the film is going to occupy the region within the pore 

and, depending on the intensity of the Lorentz force and the micro-scale solid-liquid 

interactions, extend over a certain portion of the substrate.  

  

If the Lorentz force is not very large, then the film remains within the pore and we can 

focus on the region in the pore, 0 pr R  , while fixing the contact point to the top of the 

pore at position, r = Rp and z = 0. Furthermore, in the same regime of relatively weak 

Lorentz force in comparison with capillarity (i.e. small Bondm), we can neglect the 

rotational part of the Maxwell stress and concentrate on the effect imposed by the 

magnetic pressure on the location of the interface between the liquid metal and plasma. In 

this context, a static arrangement can be obtained where the magnetic pressure plays the 

role of reservoir overpressure postulated in subsection 6.4.2, where the static arrangement 

was investigated in the pore level as a function of the strength of the interaction potential 

relatively to capillarity and pressure forces.  

 

As long as the liquid metal is within the pore, the above mentioned effective overpressure 

tends to pull liquid Li out of the pore. The analysis in section 4.4.3 showed that this kind 

of effective pressure is depended on the magnitude of the magnetic field, the electric 

current that enters the liquid metal layer and the pore radius. As a result the magnetic 

pressure scales like 0m prP B J R . Since no extra overpressure exists, considering vacuum 
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conditions, surface tension balances the magnetic pressure while gravity remains 

insignificant in this regime. Hence, the whole process is controlled via the dimensionless 

number 
0

2 /m r pBond B J R   which correlates the relative strength of magnetic pressure 

forces comparing to surface tension forces. 

 

A 2-D finite element mesh consisting of 50 biquadratic rectangular elements in both the 

horizontal and vertical direction was tested and seen to provide accurate results for the 

model of static arrangement in the presence of Lorentz forces presented in section 5.4.4. 

In Figs. 6.32a,b, the case of Lithium is studied with its standard physical properties that 

were used in the present study, while the Bond and Bondm were set to 1.13∙10
-5

  and  

3.96, respectively. As the computational mesh becomes finer, the numerical solution, in 

terms of the shape of the interface f and the stream function H of the electric current, was 

seen to converge. In particular, a mesh of 50x50 biquadratic elements was seen to provide 

a converged and acceptable numerical solution upon comparing it with even finer 

meshes.  

 

 
(a) 

 
(b) 

Fig. 6.32 Grid independence study for (a) the shape of the interface with the liquid metal drop pinned at the 

top of the pore and (b) the stream function of current, H, at the interface when Bond = 1.13∙10
-5

 and Bondm 

= 3.96 

 

In this context, fixing the pore radius Rp = 30 μm, surface tension γ = 0.4 N/m, and the 

external magnetic field B0 = 0.8T, the shape of the interface as well as the stream 

function of current, H, at the interface is captured for increasing Jr, or , increasing Bondm, 

as illustrated in Figs. 6.33a,b, respectively. 
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(a) 

 
(b) 

Fig. 6.33 (a) Evolution of the shape of the interface and (b) the stream function of current, H, at the 

interface with increasing electric current density, thus, increasing Bondm while Rp = 30 μm, γ = 0.4 N/m, B0 

= 0.8T and Bond = 1.13∙10
-5 

 

The angle, θ, at which the interface approaches the wall is increased with increasing 

electric current density, while the liquid metal interface registers positive excursions from 

the pore entrance, albeit continuing to be pinned at the pore`s edge. This process evolves 

until θ reaches a critical value prescribed by the strength of the interaction potential of the 

liquid metal with the substrate. For relatively weak interactions it is provided by the 

following relation, 0 1 cos .c

W



   Τhe aforementioned relation is derived via an 

asymptotic analysis which was presented in subsection 6.4.2 concerning the effect of the 

topography of the porous substrate and the adhesive properties of the liquid metal on the 

static arrangement. Fig. 6.34a  illustrates the evolution of the shape of the interface with 

increasing the electric current density until θ ≈ 29
o
, which is a critical angle obtained for 

W0 ≈ 0.05 N/m and γ = 0.4 N/m. This contact angle is obtained for the critical Bondm = 

3.96 and corresponds to the angle for which the liquid metal starts exiting the pore in the 

manner explained in section 6.4.2. The corresponding values of stream function H along 

the interface are shown for increasing Bondm in Fig. 6.34b. Bondm ranges from 1.8 to 

3.96 corresponding to Jr values from 1∙10
9
 A/m

2
 to 2.2∙10

9
 A/m

2 
for the case of 

 
Rp = 30 

μm, γ = 0.4 N/m and B0 = 0.8T that was mentioned above. Since a specific value for the 

interaction potential is not known, calculations can proceed for larger electric current 

densities keeping the contact point fixed at the pore entrance. In this fashion, the above 

trend of expanding interfaces as a result of the magnetic pressure continues. 
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(a) 

 
(b) 

Fig. 6.34 Evolution of (a) the shape of the interface and (b) H along the interface with increasing Bondm 

until θ ≈ 29
o
 which is a critical angle obtained for W0 ≈ 0.05 N/m and γ = 0.4 N/m while Bond = 1.13∙10

-5 
 

Alternatively, based on the analysis presented in section 6.4.2 for the static arrangement, 

as a function of overpressure and interaction potential, the contact angle may be fixed to 

the above critical value via 0 1 cos c

W



  . In this case, upon increasing the magnetic 

Bond number, Bondm, the liquid metal forms a drop with a contact length smaller than 

the pore radius, Rc = 2γ/Pm < Rp, which meets the precursor layer with the above 

macroscopic contact angle θc. Fig. 6.35 illustrates the evolution of the shape of the 

interface in this process when W0 ≈ 0.05 N/m and γ = 0.4 N/m. Moreover, Bondm ranges 

from 1.8 to 9 corresponding to Jr values from 1∙10
9 

A/m
2
 to 5∙10

9
 A/m

2
. Fig. 6.35 

illustrates a process that is similar to the one presented in subsection 6.4.1 pertaining to 

the effect of the reservoir overpressure. In this investigation, as the Bondm increases 

(similar to the reservoir overpressure regarded in 6.4.1), the drop is expected to shrink. 

The main difference is that in the absence of reservoir overpressure (Pr ≈ Pout) only 

magnetic pressure, Pm = B0JrRp, exists in order to balance the surface tension forces. 

Hence, Rf roughly scales like 2 / mP  and consequently as Pm increases, the radial contact 

length decreases. As a result, the drop shrinks and reenters the pore (Rp < 30μm) and the 

solutions obtained via the numerical analysis (namely for Bondm = 9 in Fig. 6.35) give 

unrealistic values in view of the existence of the pore. Thus, it can be concluded that no 

static solution can be obtained by further increasing Bondm while at the same time fixing 

the contact angle.  
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Fig. 6.35 Evolution of (a) the shape of the interface with increasing Bondm until the radial contact length 

becomes less than the pore radius  
 

On the other hand, as the electric current density decreases, thus, reducing the magnetic 

bond number, Bondm, a new solution is found with the liquid metal forming a drop 

outside the pore for fixed contact angle θc. This solution probably emerges after a limit 

point in the solution branch in the manner spherical cap shapes emerged beyond the limit 

point towards smaller overpressures in the static analysis without Lorentz forces. In Fig. 

6.35 the case of Bondm = 3.96 represents the threshold value in Bondm corresponding to 

the onset of the limit point leading to larger drops, as the magnetic Bond decreases, that 

adhere on the substrate with a fixed contact angle.  

 

In Fig. 6.36 the ratio of the contact length, Rf, over the maximum drop size, z0, namely 

z(r = 0), is given as a function of Bondm. The first branch of solutions, derived by fixing 

the contact point at the pore`s edge and depicted via black squares, corresponds to the 

pore solution emerging as a result of increasing Bondm and illustrated in Figs. 6.33a, 

6.34a. Moreover, the second branch  of solutions, depicted via red squares, corresponds 

to the alternatively derived liquid metal drop forming outside the pore by fixing the 

contact angle, θc, prescribed by the liquid metal-solid substrate interaction potential, Fig. 

6.35. As far as the first branch solutions are concerned, the radial length is always fixed 

and equal to the pore radius, Rf = Rp. As a consequence, as Bondm increases, z0 also 

increases and therefore Rf/z0 decreases, Fig. 6.36. On the other hand, regarding the 

second branch of solutions, based on Fig. 6.35 z0 increases by decreasing Bondm, 

however the contact length Rf decreases as well and it is not constant as before. In 

particular, in this consideration sinf m cR R   and  0 1 cosm cz R   , thus, 

0

sin

1 cos

f c

c

R

z







 and so Rf/z0 is expected to be constant and a function only of θc. 
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Fig. 6.36 Bifurcation diagram showing the aspect ratio Rf/z0  as a function of Bondm  

 

Based on the above analysis and for the solution family obtained for fixed contact point, 

the evolution of contact angle θ at the contact point can be obtained as a function of  

Bondm until the critical value Bondm,cr is reached for which the contact angle θc is 

captured, prescribed by a given liquid-solid interaction potential W0: 

 
2

p m 0 r p m
R P B J R Bond

sin
2 2 2

   
 

 
(6.36) 

 

For small values of Bondm, a linear dependence is expected between contact angle θc and 

Bondm and this is validated by the numerical calculations of the contact angle as the 

solution family with fixed contact point evolves with increasing Bondm as illustrated in 

Fig. 6.37. 

 

 
Fig. 6.37 Critical Bondm, Bondm,cr, as a function of θc  

 

Moreover, the liquid metal which is going to be used as a plasma facing component is 

going to play a key role in the static arrangement, since different Bond and Bondm 

numbers are going to appear. For example, in Fig. 6.38 the shape of the interface is 
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depicted for Rp = 30μm, B0 = 0.8T, Jr = 2.2∙10
9
 A/m

2
 and for the cases of Lithium (Li), 

Tin (Sn) and Galium (Ga) with the properties of liquid metals derived via Table 4.1 in 

Chapter 4. Consequently, for lithium Bond and Bondm are set to 1.13∙10
-5

 and 3.96, 

respectively whereas for tin and galium Bond and Bondm are set to 1.12∙10
-4

, 2.88 and 

7.8∙10
-5

, 2.3, respectively. Assuming a fixed contact point solution, Ga exhibits the lower 

positive excursion out of the pore and smaller contact angle, owing to its larger surface 

tension among the three materials.  

 

 
Fig. 6.38 The shape of the interface for B0 = 0.8T, Jr = 2.2∙10

9
 A/m

2
, Rp = 30μm concerning the liquid 

metals proposed as PFCs, namely Li, Ga and Tin  
 

 

Based on the above discussion, a first criterion for the stability of the static arrangement 

of the CPS in the presence of Lorentz forces is obtained. As was discussed in the context 

of Fig. 6.35, once the contact angle of the liquid metal layer is fixed, a static solution 

cannot be calculated beyond a certain critical magnetic Bond number that depends on the 

strength of the interaction potential. This critical value increases with increasing 

interaction potential W0, or equivalently with increasing contact angle θc. Beyond the 

later critical value, i.e. as the electric current density increases, dynamic considerations 

should be introduced in the model and this might entail jet formation, break-up of the 

protective layer and drop ejection. Hence, the dimensionless Bondm controls the static 

arrangement and can be used as a key factor for future applications; it can be expressed as 

the relative strength of Lorentz and adhesion forces as follows: 

 
2

0magnetic pressure forces

surface tension forces

r p

m

B J R
Bond


   

 

(6.37) 

 

Thus, in terms of the CPS reliability as plasma facing component, for a given Bondm,cr 

bigger plasma currents can be tolerated via decreasing the pore radius. Alternatively, for 

fixed critical Bondm number, the pore radius controls the maximum electric current for 

which a static equilibrium can be established.  
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Chapter 7: Concluding remarks and future 
directions 
 

In this chapter, the main results from the research concerning the PhD dissertation are 

summarized. In particular, the current investigation pertaining to the jet/drop deflection 

in a simplified Tokamak environment managed to give a reasonable explanation of the 

experimentally observed trajectory shift. As a matter of fact, the numerical results 

conform, within the proper order of magnitude, to the findings of ISSTOK experiments. 

Besides, the novel research regarding the CPS static configuration accomplishes, 

through first-principles studies, to deal with the major phases of the CPS operation. More 

specifically, it models-explains what happens during the preparation phase, that is to say 

before the machine is “turned on”. Furthermore, a heat balance is performed pertaining 

to the power exhaust capabilities of the CPS configuration ignoring the non-coronal 

radiation shielding. Subsequently, this thesis delves into how the replenishment occurs 

identifying the interplay between the different forces that act towards pushing liquid 

lithium out of the porous matrix or resist its motion. Besides, the current PhD 

dissertation studies extensively the static arrangement of the ultra-thin liquid metal film 

that rests onto the CPS outer surface, as a function of the reservoir overpressure and 

wetting properties of the working liquid metal on the substrate. Finally, as a first attempt 

to capture the electromagnetic effects on the static arrangement, an external electric field 

was applied. Then, the more relevant to fusion applications jxB effects were incorporated 

and interesting results were conducted that generated new scientific queries that are 

going to constitute the main proposals for future directions of this PhD dissertation.  

 

7.1 Deflection of a liquid metal jet/drop in a tokamak environment 
 

In this analysis, the effect of Lorentz forces, gravity and pressure drop were accounted for 

in a unidirectional model that assumes a small jet radius in comparison with the trajectory 

length. The effect of external electric potential gradients on jet deflection was ascertained 

in conjunction with the importance of electric stresses in modulating the jet speed and 

radius. Moreover, the trajectory of the ensuing droplets, by virtue of the jet break-up as a 

capillary instability, was also modelled in the presence of Lorentz forces as a means to 

capture and quantify the deflection process reported in the ISTTOK experiments under 

the plasma influence. Droplets, due to their small size and spherical shape, experience a 

stronger deflection as the analytical investigation indicated.  

 

The simplified model developed in the context of the present study provided a proof of 

principle explanation for the observed jet/drop deflection from the original trajectory in a 

simplified Tokamak environment. As a consequence, the results obtained corroborate the 

belief that employment of liquid metal drops/jets cannot be regarded as an optimal 

alternative plasma facing component mainly due to their strong deflection as they interact 

with the surrounding plasma. In addition, the results based on this first principle study 

reasonably conform to the findings of ISSTOK experiments, see also [115]. 
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7.2 Static arrangement of the CPS 
 

The Capillary Porous System operates like a capillary pump replenishing the liquid metal 

on the interface with plasma by utilizing the capillary pressure. The static film thickness 

is an important parameter that will definitely affect the reliability of the CPS during 

plasma operation. In this PhD dissertation, estimation of the static configuration both at 

preparation phase and after depletion and replenishment of the liquid metal was 

accomplished using the finite element numerical methodology. More specifically, 

parametric studies were performed regarding the effect of reservoir overpressure and 

external field forces, namely the electric stresses and the Lorentz forces. Besides, the 

effect of the topography of the porous substrate on the static configuration was also taken 

into account, since the liquid metal film which is formed at near vacuum conditions is on 

the order of micrometers and sub-micrometers. As a consequence, in the vicinity of the 

three-phase contact line the film thickness approaches zero and thus the overlapping of 

the boundary layers results in the existence of surface forces. Hence, the micro-scale 

liquid-solid interactions were also considered.  

 

7.2.1 Effect of reservoir overpressure 
The parametric study pertaining to the effect of the reservoir overpressure on the static 

arrangement gave the following results: 

 

 For relatively large overpressures, very small almost hemispherical drops are 

obtained and the governing force balance is between the pressure and surface 

tension forces. Consequently, as the reservoir overpressure decreases, the drop 

spreads out forming a liquid metal film.  

 As the drop further spreads out, the liquid metal film gradually covers the entire 

CPS outer surface, while the importance of gravity increases and balances 

pressure forces in this regime. In the region near the contact point, capillary 

pressure balances pressure drop. 

 As the pressure drop is further decreased (below 29 Pa), the contact length 

approaches exceed any reasonable wafer length and the numerical results 

indicated that such a balance cannot be maintained for fixed contact angle. 

 By imposing a fixed contact point rather than a fixed contact angle, static 

solutions for even lower reservoir overpressures can be obtained until ΔP almost 

vanishes with the film achieving micron-size thicknesses and near zero contact 

angles. 

 

7.2.2 Effect of the topography of the porous substrate 
As was stressed above, at near vacuum conditions, namely considering slightly positive 

or negative reservoir overpressures, the film thickness reduces down to micron or even 

submicron sizes. We did not assume the classic partial wetting case, of liquid lithium 

with a dry substrate beyond the contact point. In this fashion, we are dealing with 

coatings rather than films and micro-scale liquid-solid interactions need to be accounted 

for. In particular, the cases with a purely repulsive and a long range attractive short range 

repulsive potential are investigated in order to model the effect of the topography and 

nature of the porous substrate on the static arrangement of the liquid metal.  

 

The repulsive interaction potential was in the form of 
2

( )
12


A

W 


. Assuming that Pr ≈ 

Pout and a CPS thickness of 1mm and a pore size on the order of 30 μm: 
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 An almost uniform coating of size on the order of submicron’s over the substrate, 

with an indentation in the pore region is obtained. 

 As the strength of the repulsion increases, the liquid metal film thickness 

increases as well.  

 Similarly, as the external overpressure increases the coating thickness decreases.  

 For relative large external overpressures, the liquid metal-gas interface enters the 

pore region and the indentation seems to be bigger. 

 No static solution is possible for positive reservoir overpressures, because this 

kind of interaction potential cannot counterbalance a positive pressure drop across 

the interface. 

 As anticipated in real experiments, the presence of Lorentz forces may lead to 

positive and very large effective reservoir overpressures, in the form of magnetic 

pressure, especially during off-normal events. In such a situation a purely 

repulsive potential cannot exert a stabilizing attractive force that would pin the 

film onto the substrate. Thus, a purely repulsive potential is considered 

inappropriate for the real case of CPS static configuration. 

 

On the other hand, in the absence of any reliable data, a long range attractive short range 

repulsive potential in the form of 
4 2

.0 2A AW W
 

 

    
    
     

  gave us more useful results. 

 As a general trend, as the interaction potential increases, the attraction between 

the liquid metal and the pore increases as well and the pore tends to drag the 

liquid metal inside it and, thus, a small indentation is noted in the vicinity of 

pore`s “mouth”. 

 Three main region are identified: the “inner region” (intermolecular forces 

balance pressure forces and as a result a precursor layer is formed), “the outer 

region” (surface tension forces balance pressure forces). Finally, the precursor 

layer is smoothly matched with the outer region via an intermediate regime, 

namely the “transition region” (intermolecular forces balance surface tension 

forces). 

 It was shown by an asymptotic analysis of the above regions, in the subsection 

6.4.2, that the angle at which the transition layer leaves the substrate to match the 

solution from the outer region is given by the relationship: 

 

inner

2 4

0 A A
W

c 1
( ) W

2o 1s
     

      
      


 






 

 

(7.1) 

 

 The above equation applies for the case of liquid lithium resting on a prewet CPS 

for which a precursor layer is formed on the substrate surface that is prewet 

during the preparation process. 

 For negative and non-zero values of ΔP in the pore region the dominant force 

balance between surface tension and pressure forces determines the curvature in 

that region via 2γ/ΔP = Rm. 

 As the reservoir overpressure increases, the liquid metal layer that coats the pore 

assumes a static arrangement with a fixed contact point at the pore’s edge.  

 When the contact angle at the pore edge reaches a critical value predicted by the 

interaction potential between the liquid metal and substrate, a limit point arises 

and the solution family turns to lower overpressures. The coating assumes the 
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shape of a drop that has escaped the pore and coats the substrate with the above 

critical contact angle.  

 Beyond the overpressure corresponding to the critical contact angle, depending on 

the strength of the interaction potential, a static arrangement does not exist and a 

transient analysis is necessary to describe the CPS response, possibly introducing 

the concept of dynamic contact angle. 

 

7.2.3 Effect of external field forces 
(a) Effect of electric field 

Although the film generated is thin enough, it may be subject to instabilities and drop 

ejection in the presence of electromagnetic forces. As a first approach to capture the jxB 

effects on the static arrangement, an external electric field was applied. Using the static 

equilibrium obtained with the top of the porous matrix fully covered and gradually 

increasing the electric field intensity while keeping the mass of the liquid metal within 

the layer constant, a sequence of shapes was obtained. The main results related to this 

study are summarized as follows: 

 

 The pole section of the layer is elongated in the field direction, as a result of the 

electric stresses while the contact angle at the equator decreases in order to 

maintain the same amount of liquid lithium. 

 The liquid layer thickness increases away from the contact line and its curvature 

increases as well. Eventually, a conical angle tends to be formed at the pole and a 

solution could not be obtained for stronger electric fields. In this limit, gravity is 

balanced by electric stresses and this determines the size of the conical angle at 

the pole. 

 It has been seen in the literature that jetting can be initiated at the pole region. 

This process is known to generate small droplets once the jet speed reaches a 

certain threshold. Thus, the present study may give a reasonable explanation for 

the experimentally observed drop ejection. 

 

(b) Effect of Lorentz forces 

In this consideration, the more relevant to fusion applications jxB effects are taking into 

account. The Lorentz forces are anticipated to generate an additional overpressure, 

depending on the magnitude and direction of the magnetic field and the electric current 

that enters the liquid metal layer. In this study, the externally applied magnetic field was 

considered to be in the azimuthal direction as a first attempt to find out under which 

circumstances drop ejection can be provoked. The effect of Lorentz forces is incorporated 

in the Maxwell stress that is decomposed in the magnetic pressure and the rotational part. 

The relative strength of Lorentz forces with respect to capillarity is determined by a 

magnetic Bond number, Bondm, which acts as a dimensionless magnetic pressure: 

 
2

0 r p

m

B J R
Bond


  

 

(7.2) 

 

As a first approximation, the micro-scale surface forces are not taken into account and as 

a result the precursor layer is neglected. The key results are highlighted as follows: 
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 For relatively small values of Bondm the rotational part of the stress is negligible 

and the effect of the magnetic pressure on the static arrangement is similar to the 

situation described above for the same overpressure. 

 For small values of Bondm shapes with fixed contact point are obtained at the 

pore’s edge with increasing contact angle and increasing protrusion into the 

plasma.  

 Provided that the interaction potential with the substrate is known, in the presence 

of Lorentz forces, the critical contact angle is also known. Upon reaching this 

value for the contact angle at the pore’s edge, the onset of shapes with fixed 

contact angle is anticipated for smaller values of Bondm as a result of a limit point 

in the parameter space that includes the interaction potential with the substrate. 

 Static solutions with a fixed contact angle do not exist for larger magnetic 

pressures and a dynamic analysis is required in order to investigate the response at 

large electric currents or larger Bondm. 

 The above critical Bondm number is a first threshold for the establishment of a 

static arrangement. For fixed operating medium, e.g. liquid lithium, magnetic field 

intensity and strength of the interaction potential, the above critical value is 

achieved for larger electric current densities as the pore size decreases. 

 Solutions can be obtained for larger values of Bondm but they require imposition 

of the fixed contact point condition. The stability of such solutions is questionable 

in the presence of transient effects.  

 In order to investigate different dynamic patterns that occur at large Bondm, the 

dynamic contact angle effects can be investigated during the spreading process of 

the liquid metal on the substrate. 

 To this end, the proper interaction potential pertaining to the liquid metal and 

substrate has to be introduced. 
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7.3 Directions for future work 
 

In this section, the future perspectives of the present research are presented. These 

perspectives are associated with the framework of the European fusion program [1] 

analyzed in subsection 1.1. In a nutshell, the possibility for a modified steady state to 

emerge in the pore level is intended to be investigated by Dr. Pelekasis and his 

colleagues. This steady state is going to take into account an external heat load, where a 

liquid metal flux out of the reservoir is established balancing evaporation at the interface 

with plasma. The effect of Lorentz forces will also be investigated via an extensive 

numerical study in the context of axisymmetry when the contact point between the liquid 

metal and the substrate is fixed at the pore mouth. Capturing the dynamic evolution of the 

interface, preliminary stability criteria for the loss of cohesion of the liquid metal 

protective coating and drop ejection will be obtained. Furthermore, the onset of a three 

dimensional swirling motion will be introduced, and its impact on the emerging steady 

state and heat transfer will be investigated, when an appreciable axial component of the 

magnetic field is present. 
 

In order to assess the impact of adhesion in the dynamic response of a capillary porous 

system, the effect of intermolecular forces is going to be introduced in the above studies, 

in the context of axisymmetry. The onset of a dynamic contact angle will be examined 

and its impact on the nature of the final steady state or dynamic response will be 

captured. Pore replenishment will be examined on a more realistic basis and the range of 

validity of the stability threshold for the collapse of the interface and drop ejection, 

obtained assuming a fixed contact point, will be cross-checked and corrected. 

 

More specifically, the proposed future work is focused mainly on three directions: 

 

7.3.1 Axisymmetric analysis of flow and heat transfer in the pore level – 
Criteria for stability and drop ejection 
As a continuation of the above studies, the assumption of isothermal conditions is 

intended to be relaxed. Instead, the introduction of an external heat load is intended to the 

static arrangement obtained thus far or the steady state that emerges in the presence of 

Lorentz and viscous forces, in the pore level. In this fashion, a modified steady state is 

anticipated to emerge in which evaporation is going to be balanced by the liquid metal 

being supplied from the reservoir. To this end, the assumption of fixed contact point and 

contact angle will be explored. The dynamic evolution towards the steady flow 

arrangement will also be investigated in order to assess criteria for destabilization and 

drop ejection, in the presence of intense jxB effects. The finite element methodology will 

be employed to this end with the spine method for mesh generation. 

 

7.3.2 3-D analysis of flow and heat transfer in the pore level 
The above steady flow arrangement and stability criteria will be obtained in the 

framework of axisymmetry assuming a planar magnetic field for the estimation of 

Lorentz forces. However, in the presence of an appreciable vertical magnetic field the 

onset of a strong swirling motion is anticipated as a result of an appreciable azimuthal 

force component that will consume a large portion of the kinetic energy of the liquid 

metal. There are indications for such flow effects in experiments with linear devices. 

Furthermore, assuming more realistic magnetic field arrangements will allow for a more 

accurate evaluation of the induced magnetic field and the resulting Maxwell stresses. 

Coupling, with heat transfer effects will assess the extent of temperature rise sustained by 
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the CPS in response to large external heat loads in the effect of evaporation and 

convection, at steady state conditions. This will require development of a three 

dimensional methodology that will couple the finite element method with the spectral 

method for capturing three dimensional variations of the unknown quantities. 

Parallelization strategies will also be employed in order to optimize CPU time and storing 

requirements. 

 

7.3.3 Dynamic analysis of pore replenishment as a function of the overpressure and 

interaction potential with the substrate 
In order to assess the validity of the fixed contact point or contact angle boundary 

condition and investigate the response pattern at large overpressures, dynamic 

simulations will be performed based on the static arrangement obtained in the absence of 

Lorentz forces or thermal loads. Introduction of the interaction potential will allow the 

study of dynamic evolution of the liquid metal coating over a large range of 

overpressures, and address the issue of different response patterns such as the stick-slip 

type of flow out of the pore, as well as the possibility for a finite time singularity to 

emerge that will destroy the coherence of the coating. In this context it is important to 

select an interaction potential that provides the good adhesion properties in terms of 

contact angle and allows for the formation coherent coatings. The finite element 

methodology will be employed in order to develop a solver for the Navier Stokes 

including the effects of intermolecular, viscous, capillary and pressure forces for 

axisymmetric geometry, coupled with elliptic mesh generation techniques in order to 

provide optimal domain decomposition pertaining to areas with varying intensity of the 

intermolecular forces. Such techniques were originally developed for coating problems 

and are appropriate for studying the dynamic evolution of the contact problem studied 

herein. 

 

Finally, the schematics of the flow arrangements described above are illustrated in Figs. 

7.1-7.3. 

 

 
Fig. 7.1 Schematic of the flow arrangement in the pore level in the presence of heat and momentum 

transfer and Lorentz forces 
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Fig. 7.2 Schematic of the onset of 3-D swirling motion for realistic magnetic fields 

 

 
Fig. 7.3 Schematic of the spreading process in the pore level taking into account dynamic contact angle 

effects 
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Appendices 
 

Appendix Α: A dielectric sphere in a uniform electric field 
 

A dielectric sphere of radius a and dielectric constant   is placed in an initially uniform 

electric field which at large distances from the sphere is directed along the z axis and has 

magnitude E0 as illustrated in Fig. A.1: 

 

 
Fig. A.1 Schematic of a dielectric sphere placed in an initially uniform electric field 

 

We take the solution to be of the form: 

 

 
1

cosn

in n n

n

A r P 




  
                                                                      

(A.1) 

    1

0

cos
nn

out n n n

n

B r C r P 


 



   
                                                                       

(A.2) 

  

At infinity: 

 

0E z                                               (A.3) 

 

Due to the boundary condition described via Eq. A3, the only non-vanishing Bn is: 

  

1 0  B E                                              (A.4) 

 

For n=1 Eqs A.1, A.2 result in: 

 

1

1

cosin

n

A r 



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(A.5) 

1
0 2
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C
E r
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 
   
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(A.6) 

 

The other coefficients are determined via the boundary conditions at r = a: 

 

Institutional Repository - Library & Information Centre - University of Thessaly
12/05/2024 03:57:40 EEST - 52.15.35.194



   

   198 
 

   

a a

: 

1 1

a a

in outt t

in out

r r

E E

 

  



 
  

 

Tangential

 

                                                                       

(A.7) 

 

   

a a

: in outn n

in out

r rp

D D

r r

 

 



 
  
  

Normal

 

                                                                       

(A.8) 

 

Substituting Eqs. (A.5, A.6) to Eqs. (A.7, A.8) the following equations are derived: 

 

1
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(A.8) 

 

Thus, 

 

1 0

3

2
p
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
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(A.9) 

 

As a consequence Eqs. A.5 and A.6 describing the electric potentials inside and outside 

the sphere result in: 
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(A.11) 

 

The potential inside the sphere describes a constant electric field parallel to the applied 

one with magnitude: 

 

0

3

/ 2
in

p

E E
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                                              (A12) 

 

Outside the sphere the potential is equivalent to the applied field plus the field of an 

electric dipole at the origin with dipole moment: 
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                                              (A.13) 
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oriented in the direction of the applied field. The dipole moment can be interpreted as the 

volume integral of the polarization P: 

 

/ 1 / 13

4 4 / 2

p p

p 

     
 

  
0P E E  

                                              (A.14) 

 

According to Jackson [72] an internal electric field is produced that is directed oppositely 

to the applied field as can be depicted in Fig. A.2. 

 

 
Fig. A.2 Dielectric sphere in a uniform electric field E0, showing the polarization on the left and the 

polarization charge with its associated, opposing, electric field on the right 
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Appendix B: Cylindrical coordinates: Derivation of unit vectors and 
curvatures 
 

 
Fig. B.1 Cylindrical coordinate system 

 

A cylindrical coordinate system is a three-dimensional coordinate system that specifies 

point positions by the distance from a chosen reference axis, the direction from the axis 

relative to a chosen reference direction, and the distance from a chosen reference plane 

perpendicular to the axis. The origin of the system is the point where all three coordinates 

can be given as zero. This is the intersection between the reference plane and the axis. 

The distance from the axis is called radial distance or radius, while the angular coordinate 

is sometimes referred to as the angular position or as the azimuth. The radius and the 

azimuth are together called the polar coordinates, as they correspond to a two-

dimensional polar coordinate system in the plane through the point, parallel to the 

reference plane. The third coordinate may be called the height axial position. 

 

Relationship between Cylindrical and Cartesian coordinates 

 

For the conversion between cylindrical and Cartesian coordinates, it is convenient to 

assume that the reference plane of the former is the Cartesian xy-plane (with equation z = 

0), and the cylindrical axis is the Cartesian z-axis. Then the z-coordinate is the same in 

both systems, and the correspondence between cylindrical (r, φ) and Cartesian (x, y) are 

the same as for polar coordinates, namely: 

 
cosx r   (B.1) 

siny r   (B.2) 

 

The line element is: 

 
dr rd dz  r φ zdr e e e  (B.3) 

 

where: 
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cos sin  r x ye e e  (B.4) 

sin cos   φ x ye e e  (B.5) 

z ze e  (B.6) 

 

The surface element in a surface of constant radius is: 

 

rdA rd dz  (B.7) 

 

The surface element in a surface of constant azimuth φ is: 

 
dA drdz   (B.8) 

 

Finally, the surface element in a surface of constant height z is: 

 

zdA rdrd  (B.9) 

 

Moreover, the volume element is: 

 

dV rdrd dz  (B.10) 

 

Furthermore, the del operator in the cylindrical coordinate system leads to the following 

expression for the gradient: 

 

1f f f
f

r r z

  
   
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r φ z

e e e  
(B.11) 

 

Derivation of unit vectors and curvatures (Eulerian specification) 

 

The covariant tangent vectors along r and φ directions are defined as: 
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(B.13) 

 

The normal unit vector is: 
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z
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(B.14) 

 

The tangent unit vector is: 
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In addition, the contravariant vectors along r and φ directions are defined as: 
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Thus, the surface gradient operator is: 

 

s
r 

 
    
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r φ
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(B.18) 

 

As a consequence: 

 

 
3/2 22 11

rr r
s

rr

z z

r zz
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(B.19) 

 

The mean curvature (Hc) of a surface is an extrinsic measure of curvature that comes 

from differential geometry and that locally describes the curvature of an embedded 

surface in some ambient space such as Euclidean space. 

For a surface defined in 3D space, the total curvature is related to a unit normal of the 

surface: 

 

1 2

1 2

1 1
2 c sH

R R
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(B.20) 

 

The maximal curvature κ1 and minimal curvature κ2 are known as the principal curvatures 

of the surface. Moreover, R1 and R2 are the principal radii of curvature. 

 

Therefore,  
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Lagrangian specification 

Using Lagrangian representation for the interface: 

  

( ),  ( )r r z z   , (B.23) 

 

As a consequence: 

 
 dr r d   (B.24) 
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The normal unit vector becomes: 

 

2 2 2 21
1

r

r

z

r z rz

z r zz

r



  

 




 
  

  
  

   
 

r z

r zr z

e e
e ee e

n  

 

 

(B.26) 

 

The tangent unit vector is: 
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The total curvature using the Lagrangian representation is: 
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Appendix C: Spherical coordinates: Derivation of unit vectors and 
curvatures 
 

 
Fig. C.1 Spherical coordinate system 

 

In mathematics, a spherical coordinate system is a coordinate system for three-

dimensional space where the position of a point is specified by three numbers: the radial 

distance of that point from a fixed origin, its polar angle measured from a fixed zenith 

direction, and the azimuth angle of its orthogonal projection on a reference plane that 

passes through the origin and is orthogonal to the zenith, measured from a fixed reference 

direction on that plane. It can be seen as the three-dimensional version of the polar 

coordinate system. The radial distance is also called the radius or radial coordinate. The 

polar angle may be called colatitude, zenith angle, normal angle, or inclination angle. In 

the spherical coordinate system (r, θ, φ) gives the radial distance, polar angle, and 

azimuthal angle.  

 

Relationship between Spherical and Cartesian coordinates 

 

The spherical coordinates (r, θ, φ) of a point can be obtained from its Cartesian 

coordinates (x, y, z) by the formulae: 

 
2 2 2r x y z    (C.1) 

2 2 2
arccos

z

x y z


 
 
   

 

 

(C.2) 

 arctan y x   (C.3) 

 

Conversely, the Cartesian coordinates may be retrieved from the spherical coordinates: 

 

sin cosx r    (C.4) 

sin siny r    (C.5) 

cosz r   (C.6) 
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These formulae assume that the two systems have the same origin and same reference 

plane, measure the azimuth angle φ in the same sense from the same axis, and that the 

spherical angle θ is inclination from the cylindrical z-axis. 

 

The line element for an infinitesimal displacement from (r, θ, φ) to (r + dr, θ + dθ, φ + 

dφ) is: 

 
sindr rd r d    r θ φdr e e e  (C.7) 

 

where: 
sin cos sin sin cos      r x y ze e e e  (C.8) 

cos cos cos sin sin      θ x y ze e e e  (C.9) 

sin cos   φ x ye e e  (C.10) 

 

are the local orthogonal unit vectors in the directions of increasing r, θ, and φ, 

respectively, and ex, ey, and ez are the unit vectors in Cartesian coordinates. 

 

The surface element spanning from θ to θ + dθ and φ to φ + dφ on a spherical surface at 

(constant) radius r is: 

 
2 sindA r d d    (C.11) 

 

Moreover, the volume element spanning from r to r + dr, θ to θ + dθ, and φ to φ + dφ is: 

 
2 sindV r drd d    (C.12) 

 

Furthermore, the del operator in the spherical coordinate system leads to the following 

expressions for gradient, divergence and curl: 
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Derivation of unit vectors and curvatures (Eulerian specification) 

 

The covariant tangent vectors along θ and φ directions are defined as: 

  r
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 
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(C.17) 

 

The normal unit vector is: 
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The tangent unit vector is: 
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In addition, the contravariant vectors along θ and φ directions are defined as: 
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Thus, the surface gradient operator is: 

 

s
 
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(C.22) 

 

The mean curvature (Hc) of a surface is an extrinsic measure of curvature that comes 

from differential geometry and that locally describes the curvature of an embedded 

surface in some ambient space such as Euclidean space. 

For a surface defined in 3D space, the mean curvature is related to a unit normal of the 

surface: 

 

1 2
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1 1
2 c sH

R R
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(C.23) 

 

The maximal curvature κ1 and minimal curvature κ2 are known as the principal curvatures 

of the surface. Moreover, R1 and R2 are the principal radii of curvature. 

 

Therefore,  
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Appendix D: Derivation of 𝛁(𝜝𝒊 ∙ 𝒆𝒌) and 𝝉𝒗
=

: 𝛁(𝜝𝒊 ∙ 𝒆𝒌) 

 

D.1 Derivation of ∇(𝛣𝑖 ∙ 𝑒𝑘) 
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D.2 Derivation of v

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r component: 
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Appendix E: Analytical solution within the pore assuming a rectangular 
geometry 
 

In this subsection, a simplification is used for the pore problem described above and an 

analytical solution of 
2 2

2

2 2 2 2

1H H H H H
H

r rr r z r

  

    
 

 is obtained. The simplified 

geometry is depicted in Fig. E.1 along with the boundary conditions pertaining to H 

which were discussed in subsection 4.4.3.  

 

 
 Fig. E.1 Schematic of the studied rectangular geometry and the boundary conditions pertaining to H 

 

First of all, the following assumptions are made: 
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Thus, 
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with F(r,z) satisfying: 
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F(r,z) can be expressed as: 

 

 , ( ) (r)F r z Z z R   (E.8) 
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Thus, substituting Eqs. E.15 and E.16 to Eq. E.8: 
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Hence Eq. E.4 results in: 
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Based on the above solution, when Jz=J=0 the magnetic pressure is:  
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Plots of dimensionless H ˆ
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are 

provided in Figs. E.2a,b, respectively, when J = 0 for reference.  
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(a) 

 
(b) 

Fig. E.2 (a) Dimensionless Η and (b) M11agnetic pressure for a rectangular domain when Jz=0  
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