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SUMMARY 

 

The subject of the current diploma thesis is the development of methods that predict the 

fatigue damage accumulation of any metallic structure using a limited number of response 

time histories. For this, a dual Kalman filter (DKF) is used. It is shown that using acceleration 

and displacement measurements from a limited number of degrees of freedom it is possible 

to predict the acceleration, displacement, force, strain and stress time histories all over the 

structure using the DKF. In order to take excellent predictions, tuning methods for the 

covariance matrices of observation, load and state are studied and presented. The strain 

predictions that are taken from the DKF are used in order to calculate the stresses all over 

the structure. After that, the fatigue damage accumulation and lifetime is calculated for the 

metallic structure and decisions are taken for the safety of the system. Furthermore, 

emphasis is given on the model uncertainties and their effects on the acceleration, 

displacement and strain prediction and lifetime prognosis. After that, a metallic base from 

the power plant of AHS Melitis in Florina is studied and the dual Kalman filter approach is 

applied. Using acceleration measurements from some DOFS of the system it will be shown 

that it is possible to predict the unknown force, displacement and acceleration time histories 

everywhere in the system. The second part of diploma thesis herein is concerned with the 

optimal location and the appropriate number of sensors which are used, in order to take 

excellent predictions in the DKF. Also it is assumed that there are different kinds of 

uncertainties, which are also studied herein.  
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CHAPTER 1                     Introduction  

 

 

1.1 Content of the diploma thesis  

 

    The oscillation of dynamic systems due to external excitations such as wind and 

earthquake is a very important issue for the safety of the mechanical structures and the 

protection of the people who use these structures. Nowadays, the large development of 

the technology results in the evolution of accurate computational models and reliable 

simulations techniques which can analyze complicated dynamic systems and predict 

fatigue damage accumulation of many complex metallic structures such as buildings, 

bridges and turbines etc.  

    At first, the diploma thesis herein is dealing with the prediction of acceleration and 

displacement time histories in every spot of a linear spring-mass chain-like model, by 

using the Dual Kalman Filter technique. Note that the input load of the system is 

unknown and that acceleration measurements are taken from a sensor network 

attached to the structure. This type of filter is used by Eftekhar Azam, Chatzi and 

Papadimitriou for state estimation by using only acceleration measurements [1] and by 

Eftekhar Azam, Chatzi and Papadimitriou in experimental validation of the Kalman-type 

filters for online and real-time state and input estimation. Kalman Filter techniques have 

also studied from Lourens and Papadimitriou, who used a Kalman filter technique for 

jointly estimating the input and state of a structure from a limited number of 

acceleration measurements [14] and from Papadimitriou and Fritzen [3]. For nonlinear 

models the extended Kalman filter is used. The work of S. Mariani and A. Ghisi has been 

study and examined [31].  

    An important issue is the selection of the values of the covariance matrices, which 

depends on the model of the system. Unfortunately, the computational models and the 

results from the simulations will be incorrect due to the drift effect, if appropriate values 

for the covariance of the process noise and the covariance of input force are not chosen 

carefully. This crucial section of the Kalman Filter has been studied from Bittanti and 

Savaresi [7] and Rajamani and Rawlings [8]. In the last years, there are important studies 

for automatically tuning the covariances of process and observation noise in Kontoroupi 

and Smyth [26].  

    In addition, another problem that arises from the study of a dynamic system is that 

there may be some uncertainties that are associated with the model of the system. 

These uncertainties are usually arising due to simplified assumptions made by the 

analyst concerning the choice of elements, the behavior of the structure, the loads that 

are applied on the structure etc. Furthermore, there are uncertainties that are 

correlated with the stiffness of the material, the damping ratio and the mass of the 

model. Generally, there are three types of uncertainties: 

 Modeling uncertainties: uncertainties due to the behavior of materials, friction 

mechanism, the type of material processing etc. 



[11] 
 

 Loading uncertainties: uncertainties that arise due to the behavior of the applied 

force, the dynamics of the structures in detail, spatial and temporal variability of 

earthquake induced excitations on civil engineering structures, turbulent wind 

loads affecting the design of aircrafts etc.  

 Numerical uncertainties: rounding-off errors in numerical solutions due to 

computer inaccuracies. 

 

In this diploma thesis emphasis is given on the model uncertainties; namely, 

uncertainties that are related to the stiffness of the material are examined. 

As it is mentioned above, the fatigue damage accumulation for the entire examined 

structure is very important for maintenance strategies. The predicted strain time 

histories for all the hotspots locations of the structure are used to calculate the stress 

response time histories in the entire body of the structure using the output-only 

vibration measurements. Recombining the predicted stress time histories, the linear 

Palmgren-Miner damage accumulation law [27],[28], S-N curves and stress cycle 

counting method, such as the Rainflow cycle-counting method it is easy to predict the 

fatigue damage accumulation for a structure and find the crucial and most dangerous 

hotspots of the system. Here it must be emphasized again the important role of the Dual 

Kalman Filter to this study since having limited sensor network, it is possible to obtain 

measurements of the stress time history and thus the fatigue at all hotspot locations of 

the structure. Using the DKF it is possible to take predictions from all over the structure. 

Important study in this field has been done by Papadimitriou & Fritzen [3], Lourens, 

Papadimitriou, Lombaert, Roeck & Liu [22]. 

    In addition another important issue that it is studied herein is how to choose the 

optimal location for the sensors in the examined structure. This part of the study is very 

crucial because by finding the optimal sensor placement in structural dynamics one can 

minimize the error in the predictions made using the information in the measurements. 

Previous studies in this field have been done by F. E. Udwadia [20], C. Papadimitriou [18] 

and Eric Hernandez [21]. Moreover, in this diploma thesis the effects of different types 

of model uncertainties on the optimal selection of the sensors’ location are studied, 

since the quality of the information that it is taken from the measurements depends on 

the model (Papadimitriou [18]).  

    A real-life example is studied in Chapter 6. Using acceleration measurements from a 

limited number of sensors located on some points of the system it is possible to make 

predictions for the acceleration, displacement and unknown force time histories for all 

the DOFS of the system using the DKF. The stiffness, mass and damping matrices as well 

as the measurements are taken by studying the work of D. Giagopoulos et all in the 

paper [32]. First, in the aforementioned paper, a discrete model of steel base is 

developed. The DKF use information from a high fidelity FE model of the structure. 

Additionally, measured FRFs are used for estimating the natural frequencies and the 

damping ratios of the system. Structural identification methods are used for estimating 

the parameters of the FE model, based on minimizing the discrepancy between the 

experimental and analytical modal characteristics, in order to develop a high fidelity FE 

model. To optimize the FE model of the structure, structural model updating methods 
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have been proposed in order to reconcile the numerical FE model with experimental 

data. 

    It is assumed that passive systems include a primary 10-DOF spring-mass chain like 

model and a secondary 1-DOF spring-mass chain like model. The secondary system is 

attached on the primary system in a certain location and a general spring mass system is 

created. In the context of this diploma thesis the effects that the secondary system and 

its uncertainties have on the optimal sensor placement will be studied and discussed.  

 

 

 

1.2 Organization of the diploma thesis 

    In this diploma thesis the following different areas of research are studied: 

(1) The mathematical presentation of the dual Kalman Filter for predicting accelerations  

displacements and strains in various structural locations using acceleration, 

displacement and strain measurements at a limited number of structural locations. 

The appropriate formulations of the covariances of noise and state are covered in 

Chapter 2. 

(2)  The study of uncertainties in dual Kalman filter for a spring-mass chain-like model is 

presented in Chapter 3 and the study and the effects of uncertainties in fatigue 

damage accumulation for the system in Chapter 4 

(3) The optimal sensor placement and the effects of different types of uncertainties are 

studying in the first part of Chapter 5. In the second part of Chapter 5 the effects of 

the secondary system on the optimal sensor placement are studied and different kinds 

of uncertainties are examined.  

(4) The effectiveness of the Dual Kalman Filter for predictions of acceleration, 

displacement and unknown force time histories for a metallic base from Meliti PPC 

power plant are investigated in Chapter 6. 
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CHAPTER 2              A Dual Kalman Filter Approach with Unknown Input Force  

 

 

2.1 Mathematical formulation of the problem-Theoretical approach  

Consider the linear structural dynamics problem that is formulated using the following 

continuous time second order equation discretized in space  

𝐌𝐮 (𝐭) + 𝐂𝐮 (𝐭) + 𝐊𝐮(𝐭) = 𝐟(𝐭) =Sp (t)𝐩(𝐭),                                                           (1) 

where u (t) is a matrix ϵRnxn stands for the displacement, K, M and C ϵRnxn are  symmetric 

matrices that stand for stiffness ,damping and mass respectively. The n symbol stands for 

the degrees of freedom of the system.  The vector f (t) is defined as the excitation force. 

Also, the influence matrix Sp(t) ϵRnpxn gives the distribution of the load time history in some 

degrees of freedom on the structure . Finally, p (t) is the time history of the load.  

To solve the aforementioned equation, consider the eigenvalue problem KΦ = ΜΦΩ2. Also 

the orthogonality equations  ΦΤΜΦ=Ι , ΦΤΚΦ=Ω2 and ΦΤCΦ=Γ are used, where Φ ϵRnxn is a 

matrix containing the eigenvectors Φi for each degree of freedom , Ω ϵRnxn  is a diagonal 

matrix containing the eigenfrequencies, ΓϵRnxnis a diagonal matrix with 2ξiωi diagonal 

components and ξi stands for the modal damping ratio of each degree of freedom. 

Furthermore by introducing the coordinate transformation u(t)=Φz(t) ,the equation (1) 

becomes  

ΦΤΜΦ𝐳 (t)+ΦΤCΦ𝐳 (t)+ ΦΤΚΦz(t)=ΦΤ Sp (t)𝐩(𝐭)                                                     (2) 

Using the aforementioned orthogonality conditions, the equation above is transformed to  

𝐳 (t)+Γ𝐳 (t)+Ω2z(t)=ΦΤ Sp (t)𝐩(𝐭)                                                                                   (3) 

Introducing the state vector x(t)=[u(t) 𝐮 (t)], with x(t) ϵR2nx2n the equation (1) can be 

transformed into a first order continuous-time state equation  

𝐱 (t)= Ac x(t) + Bcp(t)                                                                                                 (4) 

where  Ac ϵR2nx2n and Bc ϵR2nxnp are the following  matrices 

   Ac= 
𝟎 𝐈

–𝐊/𝐌 −𝐂/𝐌
  

   Bc= 
𝟎

−𝐒𝐩𝚳
−𝟏  

The measurements of the displacement, velocity and acceleration are imported in the 

system through the measurement vector d(t) ϵR𝑛𝑜x1 

d(t) =Sa𝐮 (𝐭)+Sv𝐮 (𝐭)+Sdu(t)                                                                                                        (5) 
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where Sa, Sd, Sv ϵR𝑛𝑑x𝑛  are selection matrices for acceleration, displacement and velocity 

respectively. The parameter nd stands for the number of acceleration, displacement or 

velocity measurements.  These matrices are used to identify the degrees of freedom where 

the measurements are taken. In this diploma thesis acceleration measurements are usually 

used.  

It follows that the state-space form of the equation (5) is given by  

          d (t) = Gcx(t) + Jcp(t)                                                                                                                  (6) 

where the matrices Gc ϵR𝑛𝑑x2𝑛  and Jc ϵR𝑛𝑑x𝑛𝑝   are defined as 

         Gc= [Sd -SaM
-1K Sv –SaM

-1C] and  

         Jc= [SaM
-1Sp] 

Note that the combination of equations (4) and (6) gives the continuous-time state –space 

model for the equation of motion (1). If a reduced order state-space model is needed, the 

modal analysis is taken place and the following transformation must be done 

         x(t) = 
𝛷𝑟 0
0 𝛷𝑟

 ζ(t)  

where ζ(t) ϵR2m is the reduced state for the m modes, m is the number of modes that are 

used in the analysis and Φr ϵRnx1 are the eigenvectors of the modes. Here, the reduced 

modal state vector z(t) ϵRm is introduced  ,where  

ζ(t) =  
z(t)
z (t)

  

As a result, the continuous-time state-space equation could take the following reduced 

order form 

𝜁 (t)=Acζ(t) + Bcp(t) 

d(t)=Gcζ(t) + Jcp(t) 

We can prove that the four matrices above have the following form  

Ac= 
0 I

−Ω2 −Γ
 , 

Bc= 
0

−SpΦ
Τ , 

Gc= 

SdΦr 0
0 SvΦr

SaΦrΩ
2 𝑆aΦrΓ

 , 

Jc= 

0
0

SaΦrΦr
TSp
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Under the assumption that the sampling rate is 1/dt, the continuous time equations (4) ,(6)  

can be discretized in time as follows : 

xk+1= Axk + Bpk + wk 

dk= Gxk + Jpk + vk 

where A= 𝒆𝐀𝐜𝐝𝐭 , B=[A-I]𝐀𝐜
−𝟏Bc, Gc = G, Jc = J  and  xk=x(kdt), pk = p(kdt), dk= d(kdt) , assuming 

that k=1,…,N. Hence, N is equal to T/dt. The J is the direct transmission matrix and G is the 

output influence matrix. Furthermore, wk and vk are random vectors for the stochastic 

system and measurement noise respectively. We assume that these two aforementioned 

vectors are mutually uncorrelated, zero mean and white Gaussian noise processes with the 

following covariance matrices Q=E[wkwk
T] and R= [vkvk

T]. 

2.2 Algorithm of the Dual Kalman filter and state estimation 

In this section, a dual Kalman filter is proposed in order to estimate the partially observed 

state xκ. Let’s take the aforementioned discrete-time state space equation  

xk+1= Axk + Bpk + vk
x 

dk= Gxk + Jpk +  wk                                                                                                                  (7) 

Regarding the state space form of the unknown force, we introduce  

     pk+1= pk + vp
k                                                                                                                                     (8) 

where vp
k is zero mean and white, with Qp covariance matrix. 

Combining the equations (7) and (8) a new state-space equation can be obtained  

pk+1= pk + vp
k                                                                                                                                                                        (9) 

dk= Gxk + Jpk +  wk                                                                                                                      (10) 

By using the equation (9) the unknown force could be calculated and then, by recombining 

equations (7) and (8) we could estimate the unknown state xk. It is assumed that the input pk 

is unknown, but the observation vector dk can be calculated if the equation (5) is taken into 

account. At this point, a two-stage Kalman filter is introduced, based on the filter proposed 

on S. Eftekhar Azam et al [1]. The first part is the stage for estimating the unknown input 

force and the second is the stage for the predicting and updating the observed state xk. At 

first the algorithm deals with the calculation of the input force. The first move is to initialize 

the state estimate 𝐱   and the error covariance matrix of the state Px
0, where  

x 0= E[x 0] and  

Px
0= E[(xk - xk )(xk − xk )T] 

With the same procedure, the input estimate 𝐩  and its covariance Pp
0 are initialized  

p 0= E[p0] and  
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Pp
0=E [(p0 - p 0)(p0 - p 0)

T] 

It follows the second step of this algorithm, the prediction stage for the input, where  

p-
k= pk-1 

Pp-
k=Pp

k-1 + Qp 

Furthermore, the last step for the input is the update stage, where the Kalman gain for input 

is calculated  

Gp
k= Pp-

k J
T(JPp-

kJ
T+R)-1 

and also the predictions of input are improved, using the latest observation  

p k=p-
k + Gp

k (dk -Gx k-1-Jp-
k) 

Pp
k= Pp-

k –Gp
k JP

p-
k 

It follows the prediction stage for the state and for the error covariance  

x-
k= Ax k-1 + Bp k 

P-
k=APk-1A

T+Qx 

And the calculation of Kalman gain for state  

Gx
k=P-

kG
T (GP-

kG
T +R)-1 

Finally, the last step of the Dual Kalman filter procedure is to improve the predictions of 

state using latest observation: 

x k= x-
k + Gx

k (dk- Gx-
k -Jp k) 

The same procedure is done for the covariance of the state 

Pk= P-
k –Gx

kGP-
k 

2.3 Simulated example of the dual Kalman filter using only acceleration data 

At this point, the effectiveness of the DKF is illustrated using a 10 DOF spring-mass chain-like 

model. Also, the input forces are assumed unknown, and the states, forces and accelerations 

are jointly estimated from experimental acceleration data for all the degrees of freedom of 

the system. The experimental acceleration data are simulated from an algorithm that uses 

force input time histories. Modal damping is set to 5%, the nominal mass for every degree of 

freedom is 0.35 kg and the nominal stiffness is set to 650 N/m. The diagonal components of 

covariances matrices are set to QP=0.01, Qx=10-27 and R=0.0005. It is assumed that QP and Qx 

are equal to the initial values of the covariance of input and state. Acceleration 

measurements are taken from the 3 & 7 DOF and the unknown input force is applied on 3 & 

7 DOF.  
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Next, the natural frequencies of the 10 modes of a 10-DOF model are represented in the 

following table after the simulation. Regarding the measurements, let us consider that only 

acceleration measurements of the response of the structure at the masses are available 

Number of Mode Frequency (Hz) 

1 1.0251 

2 3.0524 

3 5.0115 

4 6.8587 

5 8.5527 

6 10.0556 

7 11.3339 

8 12.3590 

9 13.1080 

10 13.5642 

Table 2.1: The eigenvalues of the 10-DOF model. 

The spectral analysis for the two acceleration measurements from 3 & 7 DOF is presented in 

Figures 2.1 & 2.2, one for each measurement. 

 

 

Figure 2.1: Spectrum of the acceleration measurement at 3rd DOF. 

 

 

 

 Figure 2.2: Spectrum of the acceleration measurement at 7th DOF. 
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As it is shown in Figure 2.1 & Figure 2.2 some of the modes are influenced by the 

acceleration measurements. These modes will determine how the system will move.  

Simulated data of the DKF is generated for two cases. In the first case, the problem is 

simulated by solving the typical second order differential equation (1) using the matrices K, 

M and C. In the second case, one could use only few modes from the model by using the 

equation (3) and the eigenvalues, the eigenvectors and the damping ratio of the problem. 

Displacement predictions for all the DOFS of the model are taken using the conversion 

u(t)=Φz(t). At the end of the simulations, responses of the acceleration, force and 

displacement are available for all degrees of freedom, regardless of where the measures are 

taken.  Furthermore, at the end of the section, a comparison between the first and the 

second case is performed, in order to analyze any possible variation.  

The test was performed without uncertainties. It is assumed, that the unknown force is 

applied to the third and seventh degree of freedom.   

 
 

 

Figure 2.3: Time histories for t=0-25 sec, for the first case, when the measures are taken 

from the third and the seventh dof. 
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Figure 2.4: Time histories for t=0-25 sec, for the second case, when the measures are taken 

from the third and the seventh dof. 

The results of the acceleration and displacement time histories are plotted in Figure 2.3 & 

2.4 for two unmeasured location of the model. It can be seen from the comparison of 

Figures 2.3 and 2.4, that the results of the acceleration and displacement time histories are 

the same for the two cases. As a result, one can take the same outcome from the DKF, 

regardless the case that he will use to solve the problem. Note that solving the problem with 

the second case, one can take the same predictions for acceleration, displacement and force 

in less simulation time. Moreover, as shown in Figure 2.3 and 2.4, there are some anomalies 

in the acceleration time histories for the third DOF. This is because the unknown input force 

location is applied to the third DOF.  It is seen that the results that are obtained from the 

DKF procedure for unmeasured locations are matching good enough with the experimental 

time histories, as one can see from the aforementioned figures. Despite this, low drifts are 

observed mainly in the first 2 seconds of the displacement time histories. This problem is 

studied in another section of the thesis. 
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Furthermore, the prediction of the unknown applied force is shown in Figure 2.5. The 

unknown input force is applied to the 3 & 7 DOF of the spring-mass chain like model. It is 

assumed that the experimental force which is applied to the model is random.  

 

 

Figure 2.5: Force time history for t=0-25 sec, when the measures are taken from the third 

and the seventh DOF. 

It is seen in Figure 2.5 that, the input force estimation time histories has minimum drifts and 

it is very accurate with experimental force time histories. As a result, one can conclude that 

the dual Kalman filter is a very useful and accurate tool in prediction of the unknown input 

force. 

2.4 Simulated example of the dual Kalman filter using displacement and acceleration data 

In the last paragraph of this chapter, the dual Kalman filter is used in order to predict the 

unknown force, acceleration and displacement time histories all over the system using 

acceleration data from two DOFS of the system. Here, the same model and parameters of 

the system are used in order to take results using displacement and acceleration data from 

the 5 DOF and the 3 & 7 DOF respectively. The unknown force is also applied on the 3, 5 and 

7 DOFS of the system. The predicted acceleration and displacement time histories for some 

DOFS are compared with the experimental time histories in Figure 2.6.  
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Figure 2.6: acceleration and displacement time histories for two unmeasured location of the 

model. Comparison between the predicted and experimental time histories is taken place.  

 

 

Figure 2.7: prediction of the unknown input force. 
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For the case that one can have acceleration and displacement measurements the 

predictions are very satisfying. Namely, in Figure 2.6 one could see that there is a low drift 

for the first seconds of the simulation. As the time goes by, these drifts are minimized and 

the predicted acceleration and displacement time histories coincide with the experimental 

time histories. In Figure 2.7 one could see that the prediction of the unknown applied force 

is very accurate. 

2.5 Estimation of the noise covariance matrices  

The objective of this part is to study and demonstrate the influence of the noise covariance 

matrices Qx, QP, R. For this, it is vital to remind the following equations: 

xk+1= Axk + Bpk + vx
k 

dk= Gxk + Jpk + wk 

where vx
k and wk are assumed to be white, mutually uncorrelated stochastic processes, zero 

mean with covariance matrix Qx and R respectively, where Qxδkl=E[wkwl] and Rδkl=E[vkvl]. 

Also, the unknown input force is following the form  

pk+1=pk + vp
k 

where vp
k is a zero mean white Gaussian process with covariance matrix QP.  

The diagonal elements of the covariance matrices Qx, QP, R must be chosen deliberately in 

order to take excellent estimations for the accelerations, displacement and force time 

histories by disappearing the drifts in the estimates. That’s why it is important to make the 

tuning knob of the system. It is well known that the lower the process covariance matrix is, 

the more accurate the model is consider to be.  

 

2.6 Simulated example 

It follows the estimation of the mean square error MSE=  𝐝𝐤 −  𝐆𝐱𝐤
−  −  𝐉𝐩𝐤  𝟐

𝟐 /Nt of the 

measure and the prediction of the acceleration time histories in the Dual Kalman Filter for 

different values of the Qx, QP, R. The model that it is used is a 10 DOF spring-mass chain-like 

model with k=650 N/m, m=0.35 kg and damping ratio=5%. Thereby, the effects of the 

fluctuation of the covariance matrices on the predicted acceleration time histories will be 

shown. 
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Figure 2.8: 80 simulations for two different values of the diagonal components of input (QP) 

and the effects on the acceleration of the DOF=2. 

 

Figure 2.9: 50 simulations for two different values of the diagonal components of state (Qx) 

and the effects on the acceleration of the DOF=2.  
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Figure 2.10: 50 simulations for two different values of the diagonal components of the 

observation noise (R) and the effects on the acceleration of the DOF=2.  

Figure 2.8 shows that after 80 simulations, the MSE is increased when the value of QP is 

decreased from QP=0.008 to QP=0.0008. In Figure 2.9 it is found that when the value of the 

covariance Qx is decreased from Qx=10-10 to Qx=10-35, the values of the acceleration MSE are 

increasing. On the contrary, Figure 2.10 shows the reduction of the MSE values after 50 

simulations, while the diagonal components of observation noise covariance are decreasing 

from R=0.0005 to R=5*10-8.  

After studying the effects of tuning the covariance matrices, the values of the matrices are 

chosen as following, Qx=10-60, QP=0.008, R=0.0005.  

2.7 Tuning the covariance matrices 

In this section, a methodology for tuning the covariance matrices is proposed. It is reminded, 

that in previous sections the problem of determine the appropriate covariance matrices was 

faced. In order to choose proper values for the covariance of input, the L-curve is used. A 10-

DOF spring mass model is used and acceleration measurements are taken from the 2nd DOF. 

Also it is assumed that the unknown force is applied on the 2nd DOF. The first step is to 

calculate the mean square error MSE =
𝟏

𝐍𝐭
 //𝐝𝐤

𝑵𝒕
𝒌=𝟏 − 𝐆𝐱𝐤

− − 𝐉𝐩 𝐤//2
2 , where dk are the 

acceleration measurements of the measured DOFS, Nt are the points of the acceleration 

time histories and the terminal Gxk
−+Jp k is the prediction of acceleration time histories using 

the dual Kalman filter procedure. The MSE is calculated using DKF for the acceleration time 

history of the 2nd DOF, for different values of the covariance input matrix Qp. Note that the L-

curve technique is used only for the DOFS where measurements are taken. Input covariance 

amplitude between 1020 and 10-20 is studied, and the results are presented in Figure 2.11. 

The turning point in L-curve is chosen to be the best option for the QP initial value. It is 

assumed that the diagonal components of Qx are set 10-60. 
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Figure 2.11: L-curve for the 2nd DOF.  

Figure 2.11 shows that the acceleration MSE is steady until the input covariance matrix takes 

the crucial value QP= 0.01. For values between 0.01 and 0.00001 the MSE is increased 

rapidly. Until QP takes the value 10-10, the MSE is downscaled and finally is steady when the 

QP>10-10. As a result, one could choose for the particular example the crucial value QP=0.01.  

Consequently, the selected value for the input covariance matrix of the DOF2 is used in 

order to calculate the MSE and compare it with another value of the input covariance 

matrix.  

 

Figure 2.12: acceleration mean square error for the 2 DOF for Qp=0.01 and Qp=0.001, after 

50 simulations. 
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Figure 2.13: acceleration mean square error for the 2 DOF for QP=0.01 and QP=0.0001, after 

50 simulations. 

 As we can see in figure 2.11 and figure 2.12, the L-curve provides an elegant initial 

estimation for the good-tuning of QP, because the acceleration MSE for DOF2 for QP=0.01 is 

better than the MSE for QP=0.001 and QP=0.0001. Furthermore, it is noted that there is an 

important improvement for the MSE, when the input covariance matrix takes the value of 

QP=0.001 than QP=0.0001. Notwithstanding, this improvement on the MSE is not as good as 

the improvement for QP=0.01. Thereupon the two values for the input covariance are used 

and results for the acceleration and displacement time histories are taken, in order to study 

the effects that QP has on the prediction of the acceleration and displacement by using Dual 

Kalman Filter. The model that it is used is the same as before and the diagonal components 

of R and Qx are selected 0.0005 and 10-60 respectively. Measurements are taken from the 2 

& 7 DOFS and the unknown force is applied on the 7 DOF.  
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Figure 2.14: acceleration time histories for DOFS 2&9 from 2.5 to 5 seconds for QP=0.01 and 

QP=0.0001 by using Dual Kalman Filter. 

 

 

 

 

Figure 2.15: displacement time histories for DOFS 2&9 from 0 to 25 seconds for QP=0.01 and 

QP=0.0001 by using Dual Kalman Filter. 
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Comparing the results from the Figures 2.13 and 2.14, it becomes clear that the estimated 

acceleration and displacement time histories for input covariance QP=0.01 converge to its 

experimental time histories. On the contrary, one can see that for QP=0.0001 both time 

histories diverge off the acceleration and displacement experimental time histories that are 

calculated from the dynamics of the system. Note that, as it is shown in Figures 2.13 & 2.14, 

there are important issues like the so-called drift that affects the quality of acceleration and 

displacement estimates when the diagonal components of QP are set 0.0001. After the 

aforementioned study, one can come to the conclusion that QP= 0.01 is the best value for 

the input covariance matrix for the 10-DOF spring-mass chain like model that it is used in the 

analysis and as a result the L-curve can provide a suitable initial guess for the fine tuning of 

Qp. Here, one can see that the values for the diagonal components of the covariance matrix 

of state that they were selected give a good predictions for acceleration and displacement 

time histories when the QP=0.01.  

As it is shown in Figures 2.16 & 2.17 it is possible to take 100% accuracy for the acceleration 

predictions of the DOF where measurements are taken. Now the same 10-DOF model is 

used and the covariance of state is set 10-5. Measurements are taken from the 2nd DOF.  

 

 

Figure 2.16: L-curve for the 2nd DOF. 

From the Figure 2.16, one can easily observe that the error norm for Qx=10-5 has decreased 

to 10-4. This value is very small in respect off the error that it was taken in Figure 2.11 when 

Qx was set 10-60. Here, by studying the L-curve in Figure 2.16, the diagonal components of 

the covariance matrix of load is set 10-2. The predictions that are taken for these values of 

the covariance matrix of state and load are presented in Figure 2.17 
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Figure 2.17: Acceleration and displacement time histories for the 2nd DOF. Comparison with 

the experimental time histories. 

In Figure 2.17 it is seen that excellent predictions for the acceleration time histories are 

taken when the diagonal components of the matrices Qx and QP are set 10-5 and 10-2 

respectively. On the contrary, the predictions for the displacement time histories are worse 

from the predictions that were taken in Figure 2.15.  

Generally the L-curve is used in order to take excellent acceleration predictions. On the 

contrary, as it is shown above it is possible to take very bad predictions for the displacement 

time histories when 100% accuracy in acceleration predictions are taken. The best way to 

take very good predictions for both acceleration and displacement is to choose a value near 

the best optimal value that someone finds with L-curve. Also it is very important to choose 

carefully the diagonal components of the covariance matrix of state because it affects the 

predictions as it was seen above. 

2.8 Tuning the observation noise covariance matrix 

In the last section of this chapter the L-curve is studied in order to estimate the appropriate 

diagonal components of the QP. Now, a methodology is discussed in order to tune the 

observation noise matrix R. For this, the acceleration measurements time histories are used. 

Also the standard deviation of each acceleration measurement yini= 
 dk

2N
k=1

N
  is introduced, 

where N is the number of values of each measurement and dk are the acceleration 

measurements. Furthermore it is assumed that the standard deviation is approximately 

1.25% of acceleration peak for each measurement. For the measurements in this example it 

is decided that s=
1

100
 yini. Finally, the observation error covariance is estimated from the 

equation R=s2I, where I is an identity matrix with appropriate dimensions. In this example 

the acceleration measurements peaks are near to 5 m/sec2. As a result, for the first 

measurement s1=0.03 and for the second measurement s2=0.05 where s= 
s1

s2
 . 
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CHAPTER 3  Robust Response Prediction in the Spring-Mass Chain- Like Model 

 

 

3.1 Introduction 

In the analysis herein, an attempt is made to consider the uncertainties when the precise 

values of the stiffness are unknown. Conversely, the mean and the standard deviation of the 

uncertainties are known, making the assumption that the stiffness follow a Gaussian 

distribution, such as ki= k0(1+ei), where ei~N(m,si
2), ki is the stiffness values for each spring, 

where index i is the number of the spring. The objective in this part is to demonstrate the 

simulations and the results for the robust response prediction of the acceleration and 

displacement time histories and also to display the boundaries for the acceleration and 

displacement that arise from the quantiles of the samples. 

3.2 Simulated example 

Hence the 10 DOF spring-mass chain-like model is used. In this section, it is assumed that the 

stiffness follows a Gaussian distribution with mean=650 N/m and si=0.1*mean and the 

uncertainties are inserted in the first and the fifth degree of freedom. The number of the 

samples of the uncertainties which are produced from the Gaussian distribution is 20 and 

herein two samples are selected for demonstration. Measurements are taken from the 

second and the seventh DOF. The unknown input force is applied to DOF 7. The diagonal 

components of the covariances QP, Qx, R could be set to 0.02, 10-40 and 0.001 respectively. It 

is assumed that QP and Qx are equal to the initial values of the covariance of input and state.  
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Figure 3.1: Acceleration and displacement time histories estimated by the Dual Kalman Filter 

at DOF 1, using two samples. 

 

 

 

Figure 3.2: Acceleration and displacement time histories estimated by the Dual Kalman Filter 

at DOF 5, using two samples. 
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In Figure 3.1 and 3.2, time histories at DOF 1 and 5 are estimated by using acceleration 

measurements from the DOF 2 and 7. It is observable, that the prediction of acceleration 

time histories is very accurate. On the contrary, the predicted displacement time histories 

diverge from the experimental displacement time histories for the same DOF, mainly at the 

first two seconds of the simulation. As time goes by, the deviations are minimized. That drift 

is happening, because the value of QP, Qx and R must be chosen carefully so that highly 

accurate predictions could be done. This problem is studied in different section. 

Furthermore in Figures 3.3 – 3.5 the acceleration, displacement and force prediction for the 

1st DOF of the system for three stiffness uncertainties are presented. Note that the stiffness 

of the 7st and 8th spring has a constant value of 650 N/m. The objective in this part is to find 

if the uncertainties in the 1rd and 5th spring affect the predictions of the 7th DOF.  

 

Figure 3.3: Acceleration time history estimated by the Dual Kalman Filter at DOF 7, using 

three samples. 

 

 

 

Figure 3.4: Displacement time history estimated by the Dual Kalman Filter at DOF 7, using 

three samples. 
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Figure 3.5: Force time history estimated by the Dual Kalman Filter at DOF 7, using three 

samples. 

In Figure 3.3, 3.4 & 3.5 it can be observed that for the 7th DOF where the 7th and 8th spring’s 

stiffness has constant value the prediction divergences for the acceleration, displacement 

and force prediction for three stiffness cases are small. The biggest divergences are 

observed in the displacement time histories. In the acceleration and force time histories the 

divergences are almost zero. It is safe to extrapolate that the uncertainties in some springs 

are crucial mainly for the prediction of the displacement time histories and affect all the 

system. 

3.3 Boundaries by using quartile theory  

For each point of the 2500 that are used for the simulation, the samples for acceleration or 

displacement prediction time histories are used in order to estimate the uncertainty as a 

function of time. By applying the quartile theory, the samples’ Gaussian distribution is 

divided into four groups with equal probabilities. By applying this theory, we were able to 

find the upper, mean and lower quartile for each data point, by combining all the samples of 
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the uncertainty. As a result, three curves in time are taken, one for each quartile.

 

Figure 3.6: quartiles application in a Gaussian distribution. 

This procedure is demonstrated for acceleration, displacement and force time histories and 

it is used to place boundaries in the experimental value. The DKF procedure is used here. It is 

assumed that stiffness uncertainties are inserted in the 5th spring. The uncertainties are 

produced from a Gaussian distribution with mean=650 N/m and standard deviation 

s=0.1*mean. The samples of the uncertainties are 100. These samples are used in order to 

calculate the quartiles of the 5th spring. The 5% 50% and 95% quartile prediction bounds of 

the acceleration and displacement prediction time histories are shown in Figures 3.7 – 3.9. 

a 
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b 

 

Figure 3.7: (a) Complete and (b) detail acceleration boundaries and experimental 

acceleration time history for DOF 5. 

a 

 

b 

 

 

Figure 3.8: (a) Complete and (b) detail displacement boundaries and experimental 

displacement time history for DOF 5. 
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Figure 3.9: 5%, 50%, 95% quartiles of the predicted time histories and the experimental 

force time history for 15-16 sec. 

It can be seen in Figure 3.7 and 3.8, that there are some points where the experimental 

acceleration or the displacement excitation exceeds the 5% and 95% bounds. Generally, one 

can say that the experimental time histories are inside the boundaries of 5% and 95% and 

they almost coincide with the predicted acceleration and displacement time histories. Also 

in Figure 3.9 one can see that the experimental and predicted force time histories are inside 

the boundaries which are defined form the quartile theory. It must be noted the fact that 

the difference between the upper and the lower quartile as the time pass is minimized.  

3.4 Conclusion 

In this section the uncertainties in the stiffness of the 10 DOF spring-mass chain-like model 

are considered. At the first part of this section simulated examples for two DOFS of the 

system are presented. It can be seen that the uncertainties of each spring affect the 

acceleration and displacement response of the two adjacent degrees of freedom. According 

to the final conclusions, it is easy to tell that the uncertainties in a system play a crucial role 

for the safety of the system and structure. Secondly, it is shown that by applying the quartile 

theory for the predicted acceleration and displacement time histories it is convenient to put 

boundaries for the experimental time histories. Furthermore, one can conclude that the 

experimental responses for acceleration, displacement and force are inside the 5% and 95% 

quartile, except some occasions. It is safe to tell that the noise that is added in the Dual 

Kalman Filter is responsible for these occasions. If the tuning of the noise covariances 

matrices is badly scaled, then the experimental acceleration and displacement time histories 

will exceeds the boundaries that are set from the 5% & 95 quartiles.   
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Chapter 4                Prediction of Fatigue Damage Accumulation in Metallic Structures  

 

4.1 Introduction 

In this section, a fatigue lifetime prognosis of a metallic structure under uncertainties is 

taken place. Assume that there is a metallic structure that is subjected to varying load events 

and let fi(t) be the excitation time history for the load event i. Furthermore, let di be the 

fatigue damage due to i-th load event. In order to make the fatigue lifetime prognosis at any 

point of the structure, a dual Kalman filter is used in order to predict strain and stress time 

histories where measurements are not available. For example, it is impossible to install 

sensors to underwater structures. Specifically, taking output-only measurements from a 

limited number of measured locations, one can use the aforementioned dual Kalman filter 

to predict the stress at all hotspots locations, without knowing the distribution of the load 

applied on the structure. It is well known that, in such systems uncertainties are involved. 

For example, one could introduce uncertainties in the parameters involved in the S-N 

models, the prediction error from these models and finally, in the model associated with the 

linear damage accumulation rule. These types of uncertainties and their effects on the 

fatigue damage accumulation will be studied herein. The objective of this chapter is to 

calculate the remaining fatigue life at every location of a spring-mass chain-like model. For 

this purpose the distribution of the load and the structural and fatigue model parameters 

are given. Also the effects of the uncertainties on the fatigue damage accumulation and 

lifetime is studied and discussed herein. 

 

4.2 Stresses and fatigue damage-general methodology  

As it is said above, to calculate the fatigue damage accumulation in a metallic structure, one 

has to use the stress time histories which are obtained by the dual Kalman Filter procedure. 

Once the stress time histories are calculated for all the hotspots of the metallic structure, 

fatigue damage accumulation models will be used, to estimate the fatigue and the remaining 

life at all points or at some points (hotspots) of the system. Note that, a Rainflow stress cycle 

counting methods are also used for the fatigue prediction. To predict and estimate di, one 

has to use the Palmgren-Miner rule (Plamgren1924, Miner 1945). Defining, k as the future 

events, D the linear damage accumulation, ni is the number of cycles at a stress level si and 

Ni is the number of cycles required for failure at a stress level si, the damage accumulation D 

at a point in the structure is given by  

D= 
𝐧𝐢

𝐍𝐢

𝒌
𝒊=𝟏                                                                                                                                    (1) 

Damage occurs when D=1. Alternative, the structure is safe when  𝑑𝑖
𝑘
𝑖=1 <1 

Moreover, in order to calculate the number of cycles required for failure, the S-N fatigue 

curves are adopted. The curves are obtained from laboratory experiments on simple 

specimens that are subjects to constant loads. Recombining them with stress cycle counting 
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method, such as the Rainflow cycle-counting method, the number of cycles ni at a stress 

level si is determined. Next, the Goodman relationship is defined, in order to determine the 

modified stress cycle range 

ΔsRt= ΔsR(1 - 
𝐬𝐦

𝐬𝐮
)                                                                                                                  (2) 

where ΔsR is the stress cycle range, sm is the mean stress and su is the static strength of the 

material. Recombining the equations (1) and (2), the following rule for the estimation of the 

fatigue damage is estimated: 

D= 
𝐧𝐢

𝐍𝐟

𝚫𝐬𝐢
𝐦

𝚫𝐬𝐃
𝐦

𝐤𝟏
𝒊=𝟏  +  

𝐧𝐣

𝐍𝐟

𝐤𝟐
𝐣=𝟏

𝚫𝐬𝐣
𝐦+𝟐

𝚫𝐬𝐃
𝐦+𝟐 

The first term of the rule above applies for Δsi ≥ ΔsD and the second term applies for ΔsL ≤ Δsj 

≤ ΔsD. Ni and nj correspond to the number of cycles in each stress range respectively, Δsi and 

Δsj are the ith and jth stress ranges, k1 and k2 are the number of the different stress range 

blocks above or below the constant amplitude fatigue limit ΔsD. Finally, ΔsD and ΔsL is the 

constant amplitude fatigue limit and the cut-off limit respectively. According to the 

Eurocode for detail category 36, m, ΔsD and ΔsL are defined 3, 26.5 and 14.5 respectively. 

4.3 Fatigue damage accumulation without uncertainties 

In Figure 4.1 is presented the fatigue damage accumulation for a 20 DOF spring-mass chain-

like system, using stresses which are calculated from the data predicted by the DKF’s 

simulations and stresses from the experimental time histories. For the dual Kalman filter 

prediction, it is assumed that k=650 N/m and m=0.35 kg. Acceleration measurements for the 

dual Kalman filter are taken from the 3 & 7 DOF and the force is applied on the 7 DOF. The 

diagonal components of the covariance matrices QP, Qx, R are selected 10-3, 10-27, 0.003 

respectively. Furthermore it is assumed that there is no uncertainty in the model and that 

k1=k2=…=k20=650 N/m. 

 

 
Figure 4.1: Fatigue damage accumulation of the 20 DOF spring-mass chain-like model. 
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It can be seen in Figure 4.1 that the 3, 5 and 7 springs suffer the most from fatigue damage 

and these are the three crucial hotspots of the system. It seems that most of the damage is 

around the area where the force is applied. It is remind that the force is applied to the 7th 

DOF. The springs which are further from the area of force are the safest. Note that the 

estimation’s accuracy of the fatigue damage is very high and that means that the algorithm 

for estimation the fatigue damage accumulation is a valuable tool for designing optimal 

fatigue-based maintenance strategies in a wide variety of structures. 

4.4 Robust Fatigue Damage Accumulation 

The objective in this part is to examine and study how the fatigue damage in a 10-DOF 

spring-mass chain-like model is affected, when the uncertainties of the model is taken into 

account. Uncertainties in this problem arise from the fact that we don’t know precise the 

values of the stiffness, mass or the damping matrix of the model.  It is assumed that 

uncertainties are imported in the 1st and 4th springs of the system. Let ki be the stiffness 

values for each spring, where index i is the number of the spring. Also, it is assumed that ki 

have the following form: ki=k0,i(1+ei), where k0,i are the nominal values used in DKF 

algorithm, and that ei are the samples of the uncertainties that follow a Gaussian 

distribution, such that ei~N(k0,i , s
2). Hence, for the sake of simplicity, assume that k0, 1=…. =k0, 

ndof=k0=650 N/m. Combining this procedure with the general methodology of the fatigue 

damage that is shown above, we run simulations at any degree-of-freedom of our system. 

By using acceleration measurements from a limited number of locations in the structure, 

one can estimate the fatigue damage accumulation di at different points or at all locations. 

Hence, we must point that first we use the displacement time histories from the DKF in 

order to estimate the stresses at any location of the system. These stress time histories are 

used in the fatigue algorithm, to find the damage values and the fatigue lifetime anywhere 

in the system. In addition, the values of the di are used to obtain an estimate of the PDF, 

p(di).  

In Figures 4.2-4.5, histograms of fatigue estimations are shown from DKF simulations. It is 

assumed that all fatigue histograms follow Gaussian distribution. Two springs are chosen 

randomly and their pdf are presented herein. For the first two PDFs 200 samples drawn from 

an assumed normal distribution with mean=k0=650 N/m and standard deviation=s=0.1*k0. 

The spring mass chain system is made of steel, and each spring has length L0=0.3, tensile 

modulus 2.1*103.  To estimate the stress time histories everywhere in the system, the 

equation ki=
Ei A i

L0
 is used in order to find the Ai for each spring. It can be shown that the p(di) 

for the selected springs of the system follow a Gaussian distribution.  



[40] 
 

 

 

Figure 4.2: Histograms of fatigue estimates (200 samples) with s=0.0001*k0 

For the second two PDFs 850 samples drawn from an assumed normal distribution with 

mean=k0=650 and standard deviation=s=0.1*k0. 
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Figure 4.3: Histograms of fatigue estimates (900 samples) with s=0. 1*k0 

Furthermore, if the standard deviation of the uncertainties is changed, the results for a 

certain spring is shown. 

 

Figure 4.4: Histograms of fatigue estimates (200 samples) for the 1st spring, with s=0.0001*k0 
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Figure 4.5: Histograms of fatigue estimates (200 samples) for the 4st spring, with s=0.0001*k0 

Note that when the standard deviation of the samples is diminished, the amplitude of the 

fatigue is reduced. From the Figures 4.2, 4.3, 4.4 and 4.5 can be seen that the fatigue 

damage curve seems like a Gaussian distribution when the uncertainty is produced from a 

Gaussian distribution. Moreover, could be shown that when the number of samples is 

increased, the fatigue histograms seem better like a Gaussian distribution. 

The aforementioned analysis can be used to calculate the fatigue damage accumulation and 

the fatigue lifetime everywhere in the 10 DOF chain-like model. It is assumed that 

uncertainties are inserted in the 1st , 3rd, 5th,7th and 9th spring and the force is applied on the 

3 DOF of the model. We choose 2 samples for the 1, 3, 5, 7, 9 springs, with k=mean=1000 

N/m and s=0.1*mean. The results are computed and reported in Table 4.1. 

   Number of spring Sample Fatigue                     
accumulation 

Fatigue lifetime 
(days) 

1 1000 0.0022 12.9153 

 1100 0.0021 134725 

3 1000 0.0032 9.1202 

 1100 0.0034 8.5101 

5 1000 0.000971 29.7859 

 1100 0.000835 34.6409 

7 1000 0.000851 34.0036 

 1100 0.000638 45.3096 

9 1000 0.000486 59.5283 

 1100 0.000988 29.2820 

Table 4.1: Fatigue accumulation and fatigue lifetime for two samples of the stiffness, for 5 

springs.  

It can be seen that damage due to fatigue will occur first at the third spring, and then at the 

first spring. It seems logical because the force is applied to the 3rd DOF of the model. Also, it 

is reminded that the aforementioned analysis can be used at every point in the structure. 

The lasts springs of the system seems to be the safest, because the fatigue lifetime is bigger 

in these springs.   
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In the last part of this section the possible effects that stiffness uncertainties have on the 

fatigue damage accumulation of a spring are studied. It is assumed that a 10-DOF spring-

mass chain like model is used and stiffness uncertainties are introduced only in the 4th 

spring. The uncertainties follow a Gaussian distribution with mean=650 N/m and standard 

deviation s=0.1*mean. It is chosen that the samples of the uncertainties are 100. All the 

other springs of the system have stiffness k=650 N/m. The force is applied on the 4 DOF and 

the acceleration measurements are taken from the 4 DOF. In the following two figures the 

stiffness samples and the fatigue damage for its sample are presented for the 4th spring.  

 

Figure 4.6: the stiffness samples which are produced from a Gaussian distribution. 

 

Figure 4.7: fatigue damage accumulation for each stiffness sample.  

By seeing the Figure 4.6 and Figure 4.7 it is safe to conclude that the fatigue damage 

accumulation for a particular spring does not follow the increased trend of the stiffness 

uncertainties. On the contrary it seems that there is a random distribution in the fatigue 

damage accumulation.  
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In the last part of this section it is assumed that a 10-DOF spring-mass chain like model is 

used. It is assumed that acceleration measurements are taken from the 3rd and 7th DOF. 

Force is applied on the 3rd and 7th DOF. Additionally we choose to insert uncertainties to all 

the springs of the system. The uncertainties follow a Gaussian distribution with mean=650 

N/m and standard deviation s=0.1*mean. The samples of the uncertainties are 300. In order 

to find an average for the fatigue damage accumulation for all the samples and spring, the 

following equation is used: fatigue for a spring= 𝐟𝐚𝐭𝐢𝐠𝐮𝐞𝐢
𝟑𝟎𝟎

𝐢=𝟏
/300, where samples=300. 

The results for the fatigue damage accumulation and lifetime prognosis are presented in the 

following table. 

Spring number Average of fatigue damage 
accumulation 

Average of lifetime  
Prognosis 

1 0.00365 9.6736 

2 0.0022 26.5625 

3 0.0036 10.9557 

4 0.00322 12.2244 

5 0.0032 12.9669 

6 0.0025 23.8965 

7 0.0029 19.2125 

8 0.0012 40.5083 

9 0.0018 31.7525 

10 0.0031 17.4712 

Table 4.2: Average of fatigue damage accumulation and lifetime for all the springs of the 

system when there are uncertainties. 

It can be seen in Table 4.2 that the first three most damaged springs are the 1st, 3rd and 4th 

spring. On the contrary the safest springs are the 8th, 9th and 2nd spring. With this 

methodology one can easily predict the fatigue damage accumulation and lifetime all over 

the metallic structure when the stiffness of the springs is not known and we know only the 

mean and the standard deviation of the stiffness.  

4.5 Conclusion 

The study of the aforementioned chapter was focused on the calculation of the fatigue 

damage accumulation for a linear N-DOF spring-mass chain-like model. Firstly, in section 4.2 

the basic mathematical relationships were presented and a method was proposed in order 

to calculate the fatigue damage accumulation in a linear model using stress time histories for 

all over the structure. In section 4.3 a 20-DOF spring-mass chain like model was used and the 

fatigue damage for all the springs of the model was calculated. Finally, in section 4.4 

uncertainties of the stiffness were taken into account and simulations were done in order to 

study how the uncertainties affect the fatigue damage of the system. It was seen that 

damage is greater in the area where the force is taken place. It becomes clear that the 

uncertainties of the springs are crucial for the study of the fatigue damage of a linear 

system.  
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Chapter 5                    Robust Sensor Optimization Placement 

 

 

5.1 Introduction 

In this section, a method is presented to determine the optimal sensor placement in the 

linear system which was used in the previous chapters.  Additionally, the effects of the 

uncertainties associated with stiffness and the errors on the sensor’s optimal placements are 

investigated. The uncertainties follow a Gaussian distribution with ei~N(m,s2
i)  and 

covariance Q. Herein, by assuming the aforementioned second order linear structural 

dynamics problem, the sensor location that minimizes the trace and the determinant of the 

state error covariance is determined. It will be shown that, by solving the Ricatti equation for 

P =0, we are able to find the optimal sensor placement for the linear problem. 

5.1.1. Mathematical approach  

By following the work of Eric M. Hernandez [21], we propose the following methodology. 

The first step is to introduce the state error covariance matrix, which is estimated by the 

Ricatti equation  

𝐏 (t) = AP(t) + P(t)AT – K(t)R(t)K(t)T + Q(t)                                                                                       (1) 

where K(t) is the Kalman gain of the state estimate x (t) and 

K(t) = P(t)CTR(t)-1 

Furthermore, the covariance matrices QP=Q0 and R=R0 are reminded. By applying the 

aforementioned Ricatti equation, the equation (1) is solved for P =0 and for steady-state 

condition P=Ps. 

0 = APs + PsA
T - PsC

TR0
-1CTPs + Q0                                                                                                           (2) 

where A,C are the system matrices from the state-space equation in continuous time and R0 

and Q0 are the R= [vkvk
T] and Q=E[wkwk

T].  

It is important to indicate that we use a n=ndof linear model with m sensors, where m<n. In 

the algorithm here, it is assumed that the first sensor is placed at the optimal random 

location and for each single additional sensor the optimal location is estimated. In the first 

place, consider the equation (2) for the first sensor location 

0 = AP1 + P1A
T – P1𝐂𝟏

𝑻𝐑𝟎
𝑻𝐂𝟏

𝑻P1 + Q0 

By adding a new sensor, a new Ricatti equation arise 

0 = AP2 + P2A
T – P2 [𝐂𝟏

𝐓𝐂𝟐
𝐓]  

𝐑𝟏
−𝟏 𝟎

𝟎 𝐑𝟐
−𝟏

  
𝐂𝟏

𝐂𝟐
  P2 + Q0 
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where P2is the new steady-state solution  

By following the same procedure for every sensor which is adding in the system, the 

subsequence equation is taken 

0 = (A – P1C
TR-1C)ΔP + ΔP(AT – P1C

TR-1C) – ΔPCTR-1C ΔP – P1𝐂𝟐
𝐓 𝐑𝟐

−𝟏C2P1                                   (3)               

where ΔP=P2 – P1 and C =  
𝐂𝟏

𝐂𝟐
  , R =  

𝐑𝟏 𝟎
𝟎 𝐑𝟐

  

Every time where a new measurement is added in the system, the matrix C is estimated. By 

applying the equation (3), ΔP in the new location of the sensor is calculated and its trace is 

compared with the trace ΔP of the previous location. The location with the minimum trace 

of ΔP is retained.  

Note that following the aforementioned procedure and solving the equation (3) the possible 

combinations for the optimal sensor placement are reduced from  
n
m

  =  
n!

m!(n−m)! 
 to 

 (n − i)𝑚
𝑖=1 . It is important to note that the measurement noise in the added sensor must 

be uncorrelated with the measurement noise in all the initial sensors.  

 

5.1.2. Optimal sensor placement without uncertainties-simulated example 

5.1.2.1. A 10-DOF spring-mass model 

The second step of this chapter is to present results by changing some important parameters 

of the system, like the standard deviation of uncertainties and the objective parameter.  At 

first, results for a 10 DOF spring-mass chain-like model without uncertainties are presented. 

The masses that are used are 0.35 kg and the stiffness of the springs is 650 N/m. Here, the 

objective parameter is to minimize the trace of the change in the covariance matrix ΔP. The 

number of sensors is 5 and the components of the observation noise and the covariance of 

load are 0.0005 and 10-60 respectively. Furthermore one sensor at a time is placed in such a 

way that the selected position (along with the previously placed sensors) results the 

minimum trace of ΔP.  

 

Figure 5.1: the location of the five sensors in the 10 DOF system. 
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As it is shown in Figure 5.1, the five sensors are located on the 1st, 2nd, 5th, 6th and 8th DOF.  

Additionally, the trace (ΔP) is presented bellow for every sensor in the free DOFs. For each 

sensor the DOF with the minimum trace (ΔP) is selected. The DOF with the minimum trace 

(ΔP) is underlined with bold. It is assumed that the first sensor is placed always at the 1st 

DOF. 

 1DOF 2DOF 3DOF 4DOF 5DOF 6DOF 7DOF 8DOF 9DOF 10DOF 

1stsensor -9.7*107 
- - - - - - - - - 

2ndsensor - 7.48 -9.05 -1.36 5.06 -129 -31 19 17.4 1.70 

3rdsensor - -5.8 -10.2 -1.28 -2.85 - 31.1 -25.7 11.7 6.99 

4thsensor - 169 -24.3 2.85 -134 - 5.20 - -0.112 -3.26 

5thsensor - -1.23 1.66 0.543 - - 20.1 - 5.10 -0.75 

 

Table 5.1: optimal sensor placement for five sensors with objective parameter trace(Pi+1-Pi). 

All the values are multiplied with 10-32. 

It is shown in Table 5.1 that the selected optimal location of one sensor isn’t examined as 

possible optimal location for next sensors. The same thing is done for the first sensor too. 

For the spring-mass chain like model herein, the first sensor is placed on the 1st DOF, the 

second sensor on the 6th DOF, the third sensor on the 8th DOF, the fourth sensor is placed on 

the 5th DOF and finally the fifth sensor is placed on the 2nd DOF.  

5.1.2.2. A 40-DOF spring-mass model 

Now a 40-DOF system is used in order to show how the trace of the state error covariance P 

is affected when the number of sensors is increasing. In this section 20 sensors are used. The 

parameters are remaining the same as in the previous section of this chapter.  

 

Figure 5.2: The reduction in the trace(P) as a function of the number of sensors.  

As it is shown in Figure 5.2, the trace of the state error covariance matrix is reduced when a 

new sensor is placed in the system. Additionally, it can be noticed that increasing the 

number of sensors beyond a certain number results that little estimation accuracy is gained 
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by adding more sensors.  The critical number for this simulated example is eight. As a result, 

it is safe to say that for the certain 40-DOF spring-mass chain-like model the optimal number 

of sensors that one could use is eight sensors.  

 

5.1.3. Optimal sensor placement with uncertainties-simulated example 

The same procedure is followed for the optimal sensor placement with uncertainties. It is 

decided that the stiffness springs 4 and 8 follow a Gaussian distribution with mean=m=650 

and standard deviation s. The samples of uncertainties are 1000. The methodology that is 

followed remain the same as previous and for all the samples the trace for each added 

sensor is estimated using the following equation trace(ΔP)=  𝑡𝑟(𝛥𝑃)𝑖
𝑀
𝑖=1 /𝑀, where M is 

the number of samples that produced from the Gaussian distribution. Herein, four cases of 

different standard deviation are studied and results are presented bellow. The four cases 

are i) s=0*k0 ii) s=0.1*k0 iii) s= 0.2*k0  iv) s=0.3*k0.  

 

Figure 5.3: the optimal sensor location for each of the 4 cases for 1000 samples, where: i)=+ 

,ii)=square ,iii)=triangle ,iv)=o. 

The Figure 5.3 shows the sensor location for each standard deviation. The four 

aforementioned groups are: 

i) [1 6 3 7 10] 

ii) [1 6 3 8 9] 

iii) [1 6 4 7 10] 

iv) [1 7 6 8 5] 

It can be seen that when the standard deviation of the uncertainty is changed, the optimal 

location for each sensor is also changed. To be more specific, as the standard deviation of 

the uncertainty is increased, new sensors are located in higher DOFS, except the last one 

which is located at the fifth DOF. One can seen in Figure 5.3 that for the first three cases the 

second sensors is placed at the 6th DOF and  that the third sensor is placed at lower DOFS. 
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Also the 4th sensor is placed at the 7th and 8th DOF and the 5th sensor is placed at the 9th and 

10th DOF for the first three cases and at 5th for the last case.  

5.1.4. Optimal sensor placement with uncertainties and objective det (ΔP)-simulated 

example 

The objective in this part is to demonstrate the results when the objective parameter of the 

algorithm is the determinant of the ΔP, det (ΔP) and not the trace of ΔP. The same four 

aforementioned cases of the standard deviation of the uncertainty are used and it was 

assumed that stiffness of the springs 4 and 8 are uncertain. The results of this analysis are 

presented beneath. 

 

Figure 5.4: the optimal sensor location for each of the four cases for 1000 samples, where: 

i)=+ ,ii)=square ,iii)=triangle ,iv)=o. 

It can be seen in Figure 5.4 that the optimal sensor placement for each case is: 

i) [1 2 3 4 5], for s=0*k0 

ii) [1 2 3 4 5], for s=0.1*k0 

iii) [1 2 3 4 5], for s=0.2*k0 

iv) [1 8 7 4 9], for s=0.3*k0 

For the first three cases, the optimal sensor location for five sensors is exactly the same. 

Only for standard deviation s = 0.3*k0, the sensors sequence is changed. Note that the 

fourth sensor is placed on the same location for every standard deviation. In addition, one 

can notice that the sensors at the fourth case are placed on higher DOFS. 

5.2. Optimal sensor placement by using a secondary system 

In the previous section of this chapter the optimal sensors’ location in a 10 DOF and 40 DOF 

spring-mass chain-like model was examined and the effects of the model uncertainties on 

the location of the sensors were studied. In this part of the chapter the primary 10 DOF 
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spring-mass chain-like model and the secondary 1-DOF spring-mass chain-like model are 

introduced. The spring’s stiffness for the secondary system has the following form  

Ks= λ𝛚𝟏
𝟐m                                                                                                                                               (1) 

where λ is a parameter, ω1 is the minimum eigenvalue of the primary system and m is the 

mass of the secondary system. The secondary system is attached with each location of the 

primary system and the optimal sensor placement for each location is studied in the 

following section. By that means, the primary and the secondary system create a general 11 

DOF system. In section 5.2.1 a simulated example without uncertainties in stiffness or in λ is 

presented and the optimal sensor placement for each location of the secondary system in 

the general system is examined. In section 5.2.2 uncertainties in stiffness of the primary 

system are inserted and the same procedure as previous is followed. Finally in section 5.2.3, 

it is assumed that parameter λ follows a Gaussian distribution and the effects of this type of 

uncertainty on the optimal sensor placement are examined. The objective here is to find 

how the different locations of the secondary system influence the optimal sensor placement 

that minimizes the trace of the state error covariance as it was described in the previous 

section.  

 

5.2.1. Simulated example without uncertainties 

Assume that for primary and secondary system the masses are equal to 0.35 kg, the springs’ 

stiffness for the primary system is equal to 650 N/m and the damping ratio is set 1%. Five 

sensors are used in the general 11 DOF system and the force is applied to the second DOF of 

the general system. For this section, it is assumed that λ=1. The objective of this part is to 

find the optimal sensor placement for 5 sensors for each location of the secondary in the 

general system without uncertainties in stiffness or in λ parameter. In the following table the 

optimal sensor placement for the five sensors is presented. 

location of the secondary system Location of the 5 sensors 

1 1 2 6 11 9 

2 1 6 8 4 9 

3 1 7 2 5 9 

4 1 9 10 11 6 

5 1 7 4 9 6 

6 1 10 2 5 8 

7 1 2 8 3 7 

8 1 10 3 8 4 

9 1 2 9 7 4 

10 1 10 7 4 3 

11 1 5 10 7 8 

Table 5.2: optimal sensor placement for each location of the secondary system in the 

general system. 
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It can be seen that the different locations of the secondary system affect the optimal sensor 

placement. It can be noticed that when the secondary system is placed at the 4th DOF, the 

sensors are located in higher DOFS.  

 

5.2.2. Simulated example with uncertainties in springs’ stiffness of the primary system 

In this part of the study it is assumed that the stiffness of all the primary system’s springs 

follows a Gaussian distribution with mean=650 N/m and standard deviation s=0.1*mean. 

The objective here is to minimize  𝐏𝐢
𝑵
𝒊=𝟏 /N, where N is the number of the stiffness samples 

which are produced from a Gaussian distribution and Pi is the state error covariance given by 

the Ricatti equation as it is introduced in section 5.1. For this study the samples number are 

100. The secondary system is attached to every one of the 11 DOFS of the general system 

and the procedure of section 5.2 is followed. The results of the optimal sensor placement 

are shown in the next table.   

Location of the secondary system Location of the 5 sensors 

1 1 9 7 10 4 

2 1 2 3 4 11 

3 1 8 3 9 7 

4 1 6 8 10 4 

5 1 10 9 11 2 

6 1 7 3 9 10 

7 1 8 11 9 2 

8 1 9 7 5 4 

9 1 4 10 2 9 

10 1 10 3 4 8 

11 1 3 2 10 9 

Table 5.3: optimal sensor placement for each location of the secondary system in the 

general system. 

By seeing the Table 5.3 it is noted that when the secondary system is placed at the 2nd DOF 

the first four sensors are located on the first four DOFS and the fifth sensor is placed at the 

last DOF. On the contrary, when the 1-DOF secondary system is placed at the 5th DOF the 

second, third and fourth sensor is installed at the last three DOFS and the fifth sensor is 

placed at the 2nd DOF. Also it can be seen that by placing the secondary system at the last 

DOF the second and the third sensor are installed on the 3rd and 2nd DOF respectively and 

the two last sensors are placed at the 10th and 9th DOF respectively. Overall, one can notice 

the inclination of the sensors to be placed at higher DOFS.  

5.2.3. Simulated example with uncertainties in parameter λ 

The objective in this part is to examine how the uncertainties in parameter λ affect the 

optimal location of the 5 sensors in the general system. For this, it is assumed that the 

parameter λ is not known but it follows a Gaussian distribution with mean=1 and standard 

deviation s=0.1. Defining ωs= λω1, where ωs is the eigenvalue of the secondary system, it is 

possible to examine the effects that the uncertainties of the parameter λ have on the sensor 



[52] 
 

location. Additionally, 5 sensors are used and the force is applied to the second DOF of the 

general system. The model parameters are remaining the same as in paragraph 5.2.1. The 

results of the optimal sensor location are presented in the next table 

Location of the secondary system Location of the 5 sensors 

1 1 9 2 8 4 

2 1 6 10 11 9 

3 1 2 8 10 9 

4 1 8 3 10 4 

5 1 11 8 10 2 

6 1 10 9 7 2 

7 1 3 2 4 5 

8 1 3 6 9 10 

9 1 10 9 8 7 

10 1 11 4 7 6 

11 1 9 4 3 2 

Table 5.4: optimal sensor placement for each location of the secondary system in the 

general system. 

Table 5.4 shows the optimal sensor placement when uncertainties are inserted in parameter 

λ. It can be noticed that the fourth sensor is general placed at higher DOFS such as 8, 9, 10 

and 11. Additionally one can notice that when the secondary system is placed at the 2, 5, 6 

or 9 DOF the sensors are installed on the last degrees of freedom. On the contrary when the 

1-DOF system is placed at the 7th DOF, the five sensors are placed at the first five DOFS. 

Additionally it is assumed that the secondary system is attached on the 11th DOF of the 

general system. Using 100 samples from a Gaussian distribution for the parameter λ, four 

cases for different standard deviation are examined. The four cases are:  

 Standard deviation=0.01. 

 Standard deviation=0.02. 

 Standard deviation=0.05. 

 Standard deviation=0.1. 

For each of the four cases, the optimal sensor placement is calculate, when the objective 

function is the trace of ΔP and when the objective function is the determinant of ΔP. The 

optimal sensors placement for 5 sensors is presented in Table 5.5. 

Standard deviation Objective(trace(ΔP)) Objective(determinant(ΔP)) 

0.01 1 8 10 11 4 1 2 3 4 8 

0.02 1 9 7 10 5 1 2 3 4 8 

0.05 1 8 3 6 9 1 2 3 4 8 

0.1 1 9 4 3 2 1 2 3 4 8 

Table 5.5: Optimal sensor placement for each of the four standard deviation cases. 

As it is seen in Table 5.5, when the objective function is to minimize the trace of ΔP, the 

optimal sensor location is changed for the 4 different standard deviations. It is observed 

that, when the standard deviation is decreased, the five sensors are located in higher 

degrees of freedom. On the contrary, when the objective function is to minimize the 
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determinant of ΔP for each sensor, the optimal sensor placement does not change. In this 

case can be conclude that the optimal sensor location is not influenced by the change of the 

standard deviation of the uncertainties in parameter λ. 

5.2.4. Conclusion 

In this particular chapter the optimal sensor placement was studied. The criterion for the 

optimal sensor placement was the minimization of the trace or the determinant of the 

covariance of state error. First the mathematical formula of the sensor’s analysis was 

presented in section 5.1.1. It was shown that solving the Ricatti equation for every sensor 

which is adding in the system and minimizing the trace of the ΔP it is possible to find the 

optimal location for every sensor available. Simulated examples using the NDOF spring-mass 

chain like model were presented.  Also by using a 40 DOF spring-mass chain-like model with 

20 sensors it was observed that the trace of the state error covariance matrix was reduced       

when a new sensor was placed in the system. There is a crucial number where the new 

sensors did not affect the trace of the state error covariance matrix. Afterwards the effects 

the different kinds of uncertainties have on the optimal sensor placement were studied and 

analyzed. It was shown that when the standard deviation of the stiffness uncertainty is 

changed, the optimal locations of the sensors are changed too. Also it was noted that when 

the objective parameter of the algorithm is the determinant of the ΔP, the different 

standard deviation did not affect the sensor placement, except the last case, when the 

standard deviation was 0.3*k0. Lastly in section 5.2 a 1-DOF spring-mass secondary system 

was introduced. It was shown that the different locations of the secondary system in the 

general system and the uncertainties that were inserted in stiffness and in parameter λ 

affected the optimal sensor placement. Finally, it was seen that different standard 

deviations of the uncertainties in parameter λ do not affect the optimal sensor placement 

when the objective function is the determinant of ΔP. On the contrary, these changes in 

standard deviation affect the optimal sensor location when the objective function is the 

trace of ΔP. 
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CHAPTER 6            The Study of a Lignite Grinder Assembly Base in a Power Plant 

 

6.1 Introduction 

The effectiveness of the dual Kalman filter that was presented in Chapter2 is checked, by 

applying it to a more complex mechanical system. The mechanical system is a lignite grinder 

assembly base that it is used to support the lignite grinder assembly in the power plant of 

the city of Florina, Greece. The upper part of the base is connected with a metallic bearing 

box and a metallic shaft. The shaft is rotating with different speeds and it is swaying the 

base. Due to this oscillation, the base is suffering from damage accumulation and it fails. The 

geometrical shape of the base is presented in Fig 6.1. The main base includes a lower and an 

upper base. In order to measure the acceleration time histories, 10 sensors are used and 

placed in different locations on the base. Four of the sensors are placed at the lower base, 

four on the upper base and the two remaining are placed on locations at the upper base 

where the base is connected with the bearing box. Specifically, the points 1, 2, 3, 4 are the 

four points of the lower base which is located to the ground. The points 5, 6, 7, 8 are placed 

to the beams which support the bearing box and the base. Finally the points 9 and 10 

support the bases’ setscrew that connects the base and the bearing box. Each point includes 

three DOFS, each for one of the three dimensions x, y, z.  

Figure 6.1: the metallic base of the Meliti power plant. 

The metallic base that is studied is a complex structure, so sophisticated numerical models 

such as Finite Elements are used in order to calculate and calibrate the matrices for stiffness, 

mass and damping. Accurate finite elements are very important nowadays, since they are 
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used in the dynamic design of the structures in computer level and saving time and money. 

The measurements and the discrete FE model is based on the work of Prof. D. Giagkopoulos 

et all [32]. Here the assumption is made that in the lower base there are four springs with 

very big stiffness value and that unknown forces are applied on the points where 

measurements are taken. 

6.2 Predictions using real-life acceleration measurements 

Using the acceleration measurements from 8 sensors the DKF is used in order to predict the 

acceleration time histories all over the system and find the unknown forces. It is assumed 

that the unknown forces are applied to the DOFS where measurements are taken. The 

number of freedom for this model is 105 and the damping ratio is chosen 1%. The L-curve 

technique is used in order to tune the covariance of state and noise. Additionally the 

observation noise covariance matrix is tuned by following the tuning technique from section 

2.8. Note that there are many sources of force in the system which are not taken into 

consideration. In the following figures the predicted acceleration time histories of some 

DOFS of the system where measurements are taken are presented. The first three DOFS are 

located on the lower basis and the other three DOFS are located on the upper basis.  
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Figure 6.2: Predicted and measured acceleration time histories for 3 DOFS of the lower base. 
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Figure 6.3: Predicted and measured acceleration time histories for 3 DOFS of the upper 

base. 

In Figure 6.2 and 6.3 can be seen that using the DKF procedure the predicted acceleration 

time histories for the measured DOFS are very accurate. It seems that the dual Kalman filter 

works excellent for the acceleration prediction of the measured DOFS. As it is said above, 

the L-curve technique is used in order to tune properly the covariance matrix of state and 

load. The L-curve for all the acceleration measurements of the system is presented in the 

following figure. The diagonal components of the covariance of state are set 10-5. 

 

Figure 6.4: L-curve technique for all the measurements of the system. 

It seems that the error between the measured and the predicted acceleration time histories 

for the points where measurements are taken is minimized to the value of 10-25. The values 

of the diagonal components of the covariance of load for perfect accuracy when the 

covariance of state is 10-5 are set 10-3. In previous chapter it was seen that if the predictions 

of the acceleration time histories has perfect accuracy, the predicted displacement time 

histories are not so accurate. Hence, in order to take good predictions for acceleration and 

displacement time histories, the diagonal components of the covariance of state and load 

are set 10-22 and 10-3 respectively.  
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The previous predictions are done using the M-K-C matrices. As it is said in previous chapter, 

it is possible to use the modal analysis and take the same predictions from the DKF. In Figure 

6.5 it is proved that the predictions using the M-K-C and modal analysis give exactly the 

same results. 

 

Figure 6.5: Comparison between the modal analysis and M,K,C analysis for a certain DOF of 

the lower base. 

In Figure 6.4 the predicted acceleration time history that it is calculated for a certain DOF of 

the system is exactly the same using modal analysis and M-K-C analysis. The differences here 

are minimized.  

As it was said above, unknown forces are applied on the DOFS where acceleration 

measurements are taken. Using the DKF it is possible to find these unknown forces. By 

finding an average for the predicted forces of the lower base and an average for the 

predicted forces of the upper base it is possible to find where the unknown forces are 

maximized.  

Figure 6.6: An average prediction of the unknown forces for the lower and upper base. 
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In Figure 6.6 it is observable that the forces that applied on the upper base are smaller than 

the forces that applied on the lower base.  

In the Figures 6.7 & 6.8 the predicted acceleration time histories for six unmeasured DOFS 

are presented, three for each point. The points 9th and 10th are studied. These points are 

located to the upper base. Also a comparison is made between the acceleration 

measurements and acceleration predictions for these points in order to see how accurate 

the model is. 
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Figure 6.7: Acceleration predictions for the 9th point which include the 82, 83 and 84 DOFS. 
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Figure 6.8: Acceleration predictions for the 10th point which include the 94, 95 and 96 DOFS. 

In Figures 6.7 and 6.8 can be seen that most of acceleration predictions are not accurate. 

This is due to the fact that maybe the model is inappropriate for the DKF procedure, or it is 

insufficient. By choosing a more sufficient model, it is expected to take very good predictions 

for the unmeasured points. In the following section the acceleration measurements are 

taken through simulated experiments. 

6.3 Predictions using simulated experiments 

In this section the acceleration measurements from the real-life sensors are now used in 

order to produce simulated acceleration measurements. The model that it is used is the 

same with the model in the previous section. The diagonal components of the covariance 

matrices of state and load are set 10-60 and 10-3 respectively and the observation covariance 

matrix is chosen 1% of the acceleration peak. It is assumed that the unknown forces are 

applied on the DOFS where measurements are taken. By using the DKF procedure the 

predicted acceleration and displacement time histories for the unmeasured DOFS are 

presented in Figures 6.9 & 6.10. 
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Figure 6.9: Acceleration and displacement time histories using DKF for the 9th point. 

 



[63] 
 

 

 

Figure 6.10: Acceleration and displacement time histories using DKF for the 10th point. 

It can be seen in Figures 6.9 and 6.10 that the predicted acceleration and displacement time 

histories are very accurate. By choosing appropriate values for the covariance of state and 

input it is possible to take perfect predictions for the acceleration time histories. On the 

contrary in this simulated example the covariance of state and input are chosen in order to 

take perfect predictions for the displacement time histories and very good predictions for 

the acceleration time histories.  

6.4 Conclusions 

In this chapter a study is done in order to predict the acceleration and displacement time 

histories of a metallic base. In the first section of this chapter it is assumed that acceleration 

measurements are taken from a limited number of sensors that are attached at some points 

of the base. Using the DKF predictions are made for the acceleration, displacement and 

force time histories at selected locations of the metallic structure. It is found that the 

accelerations predictions for the measured points have perfect accuracy. On the contrary, 

the predictions for the unmeasured points are much less accurate. This is due to the fact 

that this certain model used is not accurate enough for this DKF procedure. In the section 
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6.3 the acceleration measurements taken from the sensors are used in order to produce 

new acceleration measurements through a simulated generator program. The model that it 

is used remains the same. It is found that by tuning the covariance matrices of load and state 

with the appropriate values it is possible to make perfect predictions for the acceleration 

and displacement time histories.  
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CHAPTER 7                                                  Conclusions & Future Work 

 

7.1 Conclusions  

In this diploma thesis a dual implementation of the Kalman filter, namely the DKF is applied. 

At first, the DKF methodology was applied for a simple spring-mass chain like model. By 

using the DKF, it was possible to find the acceleration and displacement time histories all 

over the system, using measurements from few DOFS. Also the unknown force time history 

was calculated from the dual Kalman implementation. It is important to note that the 

acceleration or the displacement measurements was produced from a simulated 

experiment. The linear dynamics problem was solved using two methodologies. First, the 

matrices M, K, C were used in the DKF analysis and results are taken. The second way to 

solve the problem is the modal analysis. By using the normalized eigenvectors, the 

eigenvalues and the damping ratio it was shown that is possible to take the same results as 

the first methodology. Furthermore, by utilizing the modal analysis it is feasible to use few 

modes in the DKF analysis. That makes the analysis faster and simpler. Additionally the 

tuning of the covariance matrices was studied and methodologies are examined. The L-curve 

technique was shown to be very accurate for the estimation of the covariance of input. Also 

a methodology was studied in order to tune the diagonal components of the observation 

noise covariance.  

Next the stiffness uncertainties in the prediction of the acceleration, displacement and force 

time histories using DKF were studied. Uncertainties may arise in the system due to 

assumptions that are done in order to construct the model. By assuming that the stiffness 

uncertainties follow a Gaussian distribution, it was observed that they play an important role 

in the prediction of the performance and safety of structural systems. Furthermore using the 

quartile theory boundaries are set in order to show how small are the divergences between 

the experimental and the predicted acceleration and displacement time histories. These 

boundaries are created using the samples of stiffness uncertainties. The results that were 

taken show that the experimental time histories are inside the 5% and 95% boundaries.  

In Chapter 4 linear damage accumulation law, Rainflow cycle-counting algorithms and S-N 

fatigue curves are used in order to predict the fatigue damage accumulation of a spring-

mass chain like model. Stress time histories for all the hotspots of the model were calculated 

using the predicted displacement time histories from the DKF. These stress time histories are 

used in the program in order to predict the fatigue damage accumulation all over the 

system. As a result, it was possible to find which spring suffers the most from damage. 

Additionally the effects that model uncertainties have on the fatigue damage accumulation 

were examined. It was assumed that stiffness uncertainties were inserted in some springs of 

the system. It was shown that if the uncertainties follow a Gaussian distribution, the fatigue 

damage accumulation for this particular spring seems like a Gaussian curve. When the 

number of the uncertainty’s samples which are produced from a Gaussian distribution is 

increased, the aforementioned fatigue damage curve can be adequately represented by a 

Gaussian distribution. Also the fatigue damage accumulation and fatigue lifetime for two 
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samples of a spring with stiffness uncertainties was presented. It was observed that the 

fatigue damage is more important in the area where the force was applied. Finally it was 

shown that the fatigue damage accumulation does not follow the increased or decreased 

trend of the samples of the spring’s stiffness and it is completely independent. The 

methodology which is used in this chapter could be a very useful tool for the prognosis of 

the damage in many metallic structures such as buildings, ships, steel bridges, turbines etc. 

The optimal sensor placement was also studied in Chapter 5. By solving the Ricatti equation 

for the change of the covariance matrix ΔP for each adding sensor and minimizing the trace 

of the ΔP, it was possible to find the optimal sensor location for a spring mass chain like 

model. Also it was proved that the trace of the state error covariance matrix is reduced 

when a new sensor is placed in the system and that there is a critical number of sensors 

after which little estimation accuracy is gained by adding new sensors. Furthermore model 

uncertainties of the stiffness were studied and the effects on the optimal sensor placement 

were examined. It was observed that when the standard deviation of the stiffness 

uncertainty changed in the case that the objective function is the trace of ΔP, the optimal 

sensor placement changed too. On the contrary, when the objective function was the 

determinant of ΔP, the optimal sensor placement did not change for the first three cases of 

standard deviation of uncertainty.  

In the second part of Chapter 5 a passive system was introduced. It was assumed that the 

general system contained a 10-DOF spring mass system which was called the primary system 

and a 1-DOF spring mass system which was called the secondary system. By locating the 

secondary system in every DOF of the primary system it was possible to examine how the 

different locations of the secondary system affect the optimal sensor placement. It was 

observed that sensors were placed in the highest DOFS of the general system. Moreover it 

was assumed that uncertainties were inserted in the stiffness of some springs and in the 

parameter λ which it defined the eigenvalue of the secondary system. The results that were 

taken are presented and studied in Chapter 5, section 5.2.2 & 5.2.3. Finally, it was seen that 

different standard deviation of the uncertainty in parameter λ does not affect the optimal 

sensor placement when the objective function is the determinant of ΔP. On the contrary, 

these changes in standard deviation affect the optimal sensor location when the objective 

function is the trace of ΔP. 

Finally, in Chapter 6 a metallic base from Meliti PPC power plant was studied and predictions 

are done. First it was assumed that acceleration measurements were taken from sensors 

that were located on different hotspots of the base. It was found that acceleration 

predictions for the measured points of the structure have 100% accuracy and for the 

unmeasured points the predictions were less accurate. On the contrary, by using the real 

acceleration measurements in order to produce new measurements from a simulated 

generator program, it was found that it is possible to make very good predictions for the 

acceleration and displacement time histories. 
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Summarizing the current diploma thesis, the contributions are the following: 

 An automatic procedure is proposed for predicting the fatigue accumulation of 

any metallic structure using acceleration measurements from a limited number 

of sensors.  

 Methodologies for tuning the covariance matrices of observation noise, input 

and state are proposed.  

 The DKF is modified in order to take acceleration and displacement predictions 

all over the structure using acceleration and displacement measurements from a 

limited number of locations. 

 The effects of the stiffness uncertainties on the prediction of acceleration, 

displacement, force time histories and on the fatigue damage accumulation for a 

spring-mass chain like model are studied. 

 The effects of different kinds of uncertainties on the optimal sensor placement 

are examined. 

 The optimal sensor placement when the objective is the determinant of ΔP is 

studied. 

 Methodologies where the optimal number of sensors is decided. 

 How the secondary 1-DOF spring-mass system and his uncertainties in 

parameter λ and stiffness affects the optimal sensor placement if it is placed in 

different position of the primary system.  

 The DKF is used to make predictions for a more complex metallic structure. 

 

7.2 Future Work 

The developed strategies and issues of this thesis certainly open the door for future research 

activities. An interesting issue that is not investigated in the context of this thesis is how to 

connect the optimal sensor placement technique that is discussed in this diploma thesis with 

the DKF procedure. By doing that, it will be possible to achieve great prediction and perfect 

accuracy. Another recommendation for future work could be the study of new tuning 

techniques (concerning the model and the measurements) for the optimal predictions of 

acceleration and displacement time histories using the DKF.  Finally, a very interesting issue 

is to modify the DKF procedure in order to use known and unknown input force and make 

predictions for acceleration, displacement and unknown force time histories.  
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