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Abstract 

TRansformation Induced Plasticity (TRIP) steels have been found to offer significant 

advantages in their mechanical behaviour such as high strength and formability due to a 

gradual strain hardening mechanism induced by the transformation effect. Their fatigue 

performance has also been found to be influenced by the TRIP effect, specifically under low 

cycle fatigue conditions, which are accompanied by cyclic plastic strains assisting retained 

austenite transformation. Despite the existing research attempts there is still insufficient 

experimental evidence on the influence of transformation on the mechanical behaviour, 

specifically under elastic and plastic cyclic strains. In the present Thesis a thorough 

experimental investigation is carried out to investigate the TRIP effect on the monotonic and 

cyclic performance of Al-containing TRIP steels. The materials' fatigue behaviour is 

examined in the Low and High Cycle fatigue regimes and specific attention is given to the 

fatigue crack initiation problem. The experimental results are supported by measurements of 
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ii 

 

retained austenite transformation using the saturation magnetization technique. The role of 

TRIP steel microstructure is considered in the investigation, which includes examination of 

TRIP steels with differences in heat treatment conditions and/or chemical composition. 

The experimental findings suggest that fatigue performance is related to the amount of 

transformation during cyclic loading and the effect is different under elastic or plastic cyclic 

straining. Regarding the microstructure, the influence of transformation on mechanical 

behaviour is mainly related to the particle size of retained austenite and ferrite. 

In the second part of the Thesis an analytical approach is developed for the assessment of 

crack initiation life at the root of a notch under cyclic loading. In the analysis, the localized 

stress strain field at the tip of the notch is calculated numerically with the use of the finite 

element method. Consequently, the numerical results are used as input in well established 

fatigue models, to predict the fatigue cycles for the development of a small crack at the notch 

root of 250μm length. The analytical results are compared with the experiments to assess the 

reliability of the method to predict fatigue crack initiation in TRIP steels and the findings are 

satisfactory.  

  

Institutional Repository - Library & Information Centre - University of Thessaly
11/06/2024 07:15:29 EEST - 3.128.168.227



 

iii 

 

TTaabbllee  ooff  ccoonntteennttss  

CChhaapptteerr  11::  IInnttrroodduuccttiioonn  

1.1   Motivation .......................................................................................................................... 1 

1.2   Scope of the thesis .............................................................................................................. 4 

1.3   Methodology ...................................................................................................................... 4 

1.4   Layout of the dissertation ................................................................................................... 6 

CChhaapptteerr    22::  LLiitteerraattuurree  RReevviieeww  

2.1   TRIP steels ......................................................................................................................... 7 

2.1.1   Processing and microstructure .................................................................................... 7 

2.1.2   Applications .............................................................................................................. 11 

2.1.3   TRIP effect ............................................................................................................... 13 

2.1.3.1   Stability of retained Austenite .......................................................................... 14 

2.2   TRIP effect and mechanical behaviour ............................................................................ 17 

2.2.1   Monotonic behaviour ................................................................................................ 17 

2.2.2   Low cycle fatigue behaviour .................................................................................... 18 

2.2.3   High cycle fatigue behaviour .................................................................................... 21 

2.2.4   Crack initiation and propagation .............................................................................. 22 

CChhaapptteerr    33::  EExxppeerriimmeennttaall  PPrrooggrraamm  

3.1   Materials ........................................................................................................................... 24 

3.2   Material characterization techniques ................................................................................ 25 

3.2.1   Microstructure evolution .......................................................................................... 26 

3.2.1.1   Etching solution and procedure ........................................................................ 26 

3.2.1.2   Quantitative image analysis .............................................................................. 27 

3.2.2   Saturation magnetization method (SM) .................................................................... 28 

3.2.3.1   Sampling of specimens ..................................................................................... 29 

3.3   Mechanical Testing .......................................................................................................... 30 

3.3.1   Tensile testing ........................................................................................................... 31 

3.3.2   Fatigue testing .......................................................................................................... 32 

3.3.2.1   Strain controlled fatigue tests ........................................................................... 32 

3.3.2.2   Stress controlled fatigue tests ........................................................................... 33 

3.3.3   Crack initiation Monitoring ...................................................................................... 34 

Institutional Repository - Library & Information Centre - University of Thessaly
11/06/2024 07:15:29 EEST - 3.128.168.227



 

iv 

 

CChhaapptteerr    44::  EExxppeerriimmeennttaall  RReessuullttss  

4.1   Microstructural characteristics ......................................................................................... 35 

4.2   Tensile behaviour ............................................................................................................. 39 

4.2.1 Yield strength ............................................................................................................. 40 

4.2.2   Strain hardening ........................................................................................................ 41 

4.2.3   Elongation ................................................................................................................. 41 

4.2.4   RA transformation during tensile testing ................................................................. 42 

4.3   Cyclic stress-strain behaviour .......................................................................................... 45 

4.3.1   Strain-life data .......................................................................................................... 45 

4.3.2   Cyclic stress-strain curves ........................................................................................ 48 

4.3.3 Cyclic hardening/softening ......................................................................................... 51 

4.3.4   Cyclic behaviour and RA transformation ................................................................. 54 

4.4   High cycle fatigue behaviour ........................................................................................... 55 

4.4.1   RA transformation under HCF conditions ............................................................... 57 

4.5   Fatigue crack initiation ..................................................................................................... 60 

4.5.1   Effect of notch machining on fatigue crack initiation .............................................. 63 

4.5.2   Fractographic observations ....................................................................................... 65 

CChhaapptteerr    55::  EEssttiimmaattiioonn  ooff  ffaattiigguuee  ccrraacckk  iinniittiiaattiioonn  

5.1   Problem Definition ........................................................................................................... 69 

5.2   Notch strain analysis: The strain-life approach ................................................................ 70 

5.2.1   Local strain approach ............................................................................................... 70 

5.2.2   Notch stress-strain estimation ................................................................................... 72 

5.2.2.1   Neuber method .................................................................................................. 72 

5.2.2.2   Strain energy density criterion (SED) ............................................................... 74 

5.3   Fatigue crack initiation analysis ....................................................................................... 76 

5.3.1   Assumptions of the methodology ............................................................................. 78 

5.4   Numerical simulation of the local stress-strain behaviour at the notch tip ...................... 79 

5.4.1   Finite element model ................................................................................................ 80 

5.4.2   Numerical results ...................................................................................................... 82 

5.5  Notched fatigue analysis ................................................................................................... 85 

5.6   Prediction of crack initiation based on a fracture mechanics approach: A case study ..... 89 

5.6.1 Crack initiation (onset of 50μm crack at the notch tip) .............................................. 89 

5.6.2 Crack propagation....................................................................................................... 90 

5.6.2.1   LEFM limitations in fatigue crack growth behavior from notches .................. 90 

Institutional Repository - Library & Information Centre - University of Thessaly
11/06/2024 07:15:29 EEST - 3.128.168.227



 

v 

 

5.6.2.2   LEFM correlative model of notched specimen and crack propagation ............ 91 

5.6.3   RA transformation and fatigue crack growth ........................................................... 94 

CChhaapptteerr    66::  CCoonncclluussiioonnss  aanndd  RReeccoommmmeennddaattiioonnss  ffoorr  ffuurrtthheerr  ssttuuddyy  

6.1   Recommendations for further study ................................................................................. 98 

RReeffeerreenncceess  

Institutional Repository - Library & Information Centre - University of Thessaly
11/06/2024 07:15:29 EEST - 3.128.168.227



 

vi 

 

Nomenclature 

Af : elongation at fracture 

Ag : elongation at ultimate tensile strength 

b : fatigue strength exponent 

c : fatigue ductility exponent 

C : parameter of Paris equation 

E : Young's modulus 

FL : fatigue limit 

FLN : notched fatigue limit 

K : strength coefficient 

K' : cyclic strength coefficient 

Kf : fatigue notch factor 

Kmax : maximum applied stress intensity factor 

Kt : elastic stress concentration factor 

m : Paris equation exponent 

n : strain hardening exponent 

n' : cyclic strain hardening exponent 

N
* : transition fatigue life 

Nf : fatigue life 

Nini : number of cycles required for detection of a 250μm crack 

q : notch sensitivity factor 

ry : monotonic plastic zone 

rcy : cyclic plastic zone 

R : stress/strain ratio 
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Y : geometrical correction factor 

α : crack length 

αin : initial crack length 

αf : final crack length 

Δσ : stress range 

Δε : strain range 

εae : elastic strain amplitude 

εf' : fatigue ductility coefficient 

εap : plastic strain amplitude 

εatotal : total strain amplitude 

εyy : normal strain in the loading direction 

εzz : transverse strain 

ν : Poisson's ratio 

σ : gross section nominal stress 

σa : stress amplitude 

σf' : fatigue strength coefficient 

σmax : maximum stress 

σmin : minimum stress 

σUTS : ultimate tensile strength 

σyy : normal stress in the y direction 

σzz : normal stress in the z direction 

σy0.2 : yield strength (offset 0.2%) 

σy' : cyclic yield strength 
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CCHHAAPPTTEERR  11  

IInnttrroodduuccttiioonn  

1.1   Motivation 

Over the last decade, the need for increasing passenger safety, vehicle performance and 

fuel economy [1] in the automotive industry is growing rapidly. Towards this direction, in the 

materials sector, the aim is to develop light metallic alloys with attractive mechanical 

properties, which has led to the rapid development of Advanced High Strength Steels (AHSS) 

combining superior properties with the ability to produce highly formable structural 

members.  

The multi-phase “TRansformation Induced Plasticity” aided steels, offer high strength 

and formability which are attractive properties for automotive applications towards a 

lightweight design structural frame. In the characteristic plot of Fig. 1.1, TRIP steels exhibit a 

better combination of formability with strength compared to traditional high-strength steels. 
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Figure 1.1 Strength - formability balance for TRIP and traditional steels [2]. 

TRIP steels have a multi-phase microstructure which includes a metastable retained 

austenite (RA), along with intercritical ferrite and bainitic ferrite. Under deformation the 

austenite transforms into martensite, which is a stronger phase and the mechanism is 

associated with energy absorption [3] resulting in a hardening of the material. This hardening 

effect, combined with the volume increase of the martensite transformation [4-6], delays 

plastic instability (necking) in the material, resulting in an increase in uniform elongation and 

ductility (Fig. 1.2), making it suitable for sheet forming procedures. When the austenite 

transforms during deformation, the resulting microstructure is toughened by the hard 

martensitic phase. An important parameter related to this transformation is the mechanical 

stability of RA, which is affected by parameters such as the initial austenite volume fraction, 

the carbon concentration in the austenite grains and the grain size of RA. Other factors that 

affect the transformation, are the specific conditions of deformation, such as the strain rate [7, 

8], the mode of deformation [9] and the temperature [10, 11]. 

Because of the increased formability, TRIP steels can be used to produce more complex 

components than other high strength steels, thus allowing the design of thin metallic parts 

targeting in weight reduction and optimization of the structural performance. 
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Figure 1.2 Superior mechanical properties of TRIP steels [12]. 

As a result of their high ductility, energy absorption capacity and strength, TRIP steels 

are particularly well suited for automotive structural and safety parts such as cross members, 

longitudinal beams, B-pillar reinforcements, sills and bumper reinforcements [13]. 

While the development of low alloyed TRIP steels often focuses on microstructural 

parameters that improve the mechanical strength and ductility, application-wise to expand 

their potential use to critical structural components is the understanding of the fundamental 

mechanisms controlling their fatigue behaviour. Specifically, it is important to recognize the 

role of RA transformation on the cyclic behaviour of TRIP steels, which includes cyclic 

deformation under elastic and plastic strains as well as fatigue crack initiation aspects. 

Research efforts on fatigue behaviour of TRIP steels have mainly focused on the Low Cycle 

Fatigue (LCF) problem, where bulk transformation under plastic cyclic straining is triggered 

[14-20], while limited are the references concerning the elastic cyclic behaviour of TRIP 

steels [7, 21-25]. More importantly, a systematic effort to correlate the fatigue behaviour with 

characteristics of the retained austenite phase and transformation during cyclic deformation is 

missing. Also, little experimental evidence exists on the fatigue crack initiation behaviour of 

TRIP steels and how this behaviour is influenced by the transformation effect [26-29]. 
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1.2   Scope of the thesis 

The experimental program carried out in the present thesis aims at providing a clearer 

understanding of the role of RA transformation on the cyclic behaviour of Al-containing 

TRIP steels. To obtain a wider knowledge of material behaviour, different aspects of 

mechanical behaviour are examined, which include monotonic material behaviour, cyclic 

deformation under elastic and plastic strains, notched fatigue behaviour and fatigue crack 

initiation.  

In the second part of the Thesis an analytical methodology is developed for the 

assessment of fatigue crack initiation. The methodology, which can be applied in notched 

members to predict the number of cycles for the development of a short crack at the notch 

root, is compared against experimental results produced in the Thesis to assess its suitability.  

The results obtained in the frame of this investigation, provide valuable insights for the 

mechanical behaviour of Al-containing TRIP steels, regarding the relationship between RA 

transformation, microstructure and mechanical behaviour. 

1.3   Methodology 

The dissertation is divided in two main sections. In the first section the experimental 

program is analyzed and in the second part the analytical methodology for the estimation of 

fatigue crack initiation life in TRIP steels is developed. 

The experimental part of the investigation includes descriptions of the materials, testing 

procedures and experimental results of the tensile, high cycle (unnotched and notched), low 

cycle fatigue and fatigue crack initiation experiments. The techniques for material 

microstructure characterization for the observation and evaluation of microstructural 

characteristics of the materials are analyzed, along with appropriate non-destructive 

inspection techniques for fatigue crack growth monitoring.  
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In the analytical part of the thesis, a methodology for estimation of the fatigue crack 

initiation life in notched TRIP steel specimens is proposed. The methodology developed, is 

able to predict the fatigue life required for the formation of a short crack from the notch root 

of the specimen under mode I type of fracture. For this purpose a numerical model is 

implemented for the calculation of the local stress-strain response at the notch root during 

initial loading. The numerical results, which take into account the elastoplastic material 

behaviour, are incorporated into established notched fatigue models for crack initiation 

prediction. Apart from the above fatigue analysis, a separate analytical approach based on a 

fracture mechanics concept is included, for the prediction of fatigue crack initiation. In the 

final part of the Thesis, the analytical predictions for crack initiation are correlated with the 

experimental results from the first segment of the dissertation.  

A schematic representation of the methodology used and the interactions between the 

steps in the investigation is shown in Fig. 1.3. 

 
Figure 1.3 Methodology used in the thesis. 
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1.4   Layout of the dissertation 

The dissertation is developed in 6 Chapters. In Chapter 2 a literature review on TRIP 

steels is provided, with emphasis paid on the TRIP effect and its influence on mechanical 

behaviour with respect to the fatigue performance of steels. In Chapter 3 the details about 

the materials selection and processing, experimental methodology and characterization 

techniques are given. The material characterization techniques include metallographic 

characterization, grain size and aspect ratio measurements with image analysis software and 

measurements of RA transformation with the saturation magnetization technique. Mechanical 

testing includes tensile tests, LCF tests, HCF tests in notched and un-notched specimens and 

fatigue crack initiation tests. The details about crack initiation and growth monitoring, which 

has been performed with the replica technique, are also discussed here. Chapter 4 is engaged 

with the presentation of experimental results and their significance is discussed with respect 

to existing literature. In Chapter 5 the analytical concept for fatigue crack initiation 

assessment of TRIP steels is developed and the analytical results obtained are correlated with 

the experimental results presented in Chapter 4. The important findings of the investigation as 

well as suggestions for future work in this field are summarized in Chapter 6. 
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CCHHAAPPTTEERR    22    

LLiitteerraattuurree  RReevviieeww  

2.1   TRIP steels  

2.1.1   Processing and microstructure 

TRIP steels, formally referred to as "TRIP-assisted multiphase steels," are materials that 

contain small volume fractions of RA in a ferrite-bainite matrix in the final microstructure. 

TRIP steels were first introduced by Matsumura et al. in 1987 [30]. Although in 1970's era 

Dual Phase steels often contained appreciable quantities of retained austenite and showed 

some TRIP-like effects, the term TRIP is probably best reserved to steels with intentionally 

introduced retained austenite, rather than the accidental retained austenite in DP steels.  

There are two categories of commercially produced steels that present the TRIP effect. 

The fully austenitic steels and steels that contain dispersed particles of RA in the 

microstructure. TRIP steels where the RA is dispersed in a matrix of ferrite and bainite 

belong in the category of multi-phase TRIP steels, which are of interest in the present study. 
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To obtain the typical multi-phase TRIP steel microstructure, a two-step heating treatment is 

required. The heat treatment process consists of intercritical annealing followed by an 

isothermal bainitic holding and finally quenching to room temperature. The heat 

treatment procedure and the steel's chemical composition are designed is such a way to 

promote the formation of carbon enriched austenite, which can be retained in the 

microstructure when the steel is quenched to room temperature [31] and will be transformed 

to martensite during straining. A schematic representation of the standard heat treatment 

procedure in shown in Fig. 2.1.  

 
Figure 2.1 Schematic representation of the heat treatment performed for TRIP steels 

(A:austenite,F:ferrite,B:bainite). 

The steel is firstly heated at a temperature range of 700-900
o
C (in most industrial cases 

for 3-4 min) where intercritical annealing takes place. The temperature and time of 

intercritical annealing are chosen in order to result in a mixture of 50% ferrite and 50% 

austenite in the microstructure. After this step, quenching to an intermediate temperature 

above the martensite start temperature, Ms, (analyzed in detail in section 2.1.3) is performed, 

which allows the bainite transformation to occur during isothermal holding. Bainite 

isothermal transformation (BIT) takes place at a temperature range of 350-450
o
C for 200-600s 
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in most cases, leading to the partial transformation of austenite to bainite. The amount of 

austenite transformed to bainite is strongly influenced by the BIT temperature and time. 

Therefore, after BIT the steel's microstructure consists of 50% ferrite, 35-45% bainite and 5-

15% austenite. In this step, the remaining austenite is further enriched with carbon, which 

shifts the sM temperature below the room temperature. However, over-carbon enriched 

austenite becomes susceptible to cementite precipitation, so an optimum annealing 

temperature must be found that promotes the best carbon-enrichment levels in the austenite 

[32, 33]. Finally, the steel is cooled down to room temperature (preferably without austenite 

transformed to martensite) and the desirable multiphase microstructure with dispersed 

austenite retained is developed. A typical TRIP microstructure is shown in Fig. 2.2. 

 
Figure 2.2 Microstructure of TRIP700(A) steel used in the present study. 

The alloying elements in TRIP steels play a significant role in the production stages and 

the resulting mechanical performance [34]. One of the most important alloying elements in 

TRIP steels is carbon. Carbon acts as an austenite stabilizer, which means that it slows the 

transformation of austenite to ferrite or bainite [35]. It also slows the transformation to 

martensite by lowering the sM  temperature and thereby increasing the austenite’s thermal 
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stability. In other words, an increased amount of carbon in the steel would allow for more 

austenite to be retained in the microstructure. Through alloying, the fraction of retained 

austenite can be optimized [36] and the precipitation of cementite can be controlled. However, 

TRIP steels are limited to carbon compositions at or below 0.2wt.% because of weldability 

issues, as large amounts of carbon make the steel difficult to be welded [37]. Manganese is 

another austenite stabilizer that is commonly found in all AHSS compositions. It improves the 

potential for carbon enrichment by increasing the solubility of carbon in the austenite phase 

and helps to solid-solution strengthen the steel [37].  

Other common alloying elements in TRIP steels that act as ferrite stabilizers such as 

silicon, aluminum, phosphorus and chromium, are generally used to delay carbide 

precipitation. Traditionally, silicon is used to delay carbide precipitation during the formation 

of bainite when heat treating. Preventing carbide formation ensures that the carbon is 

available for stabilizing the remaining austenite [38]. While silicon plays an important role 

during the processing of TRIP steels, it has detrimental effects on the final product. High 

levels of silicon lead to poor surface quality on rolled products, which leads to galvanizing 

problems [39]. To overcome the problems associated with large quantities of silicon [31], new 

compositions of TRIP steel have been investigated in which silicon is either partially or fully 

replaced by another element such as aluminum. A general design principle concerning the 

composition of TRIP steels, where aluminum is partially added with silicon, is based on the 

formulation: Si+Al ≈ 2wt% in order to suppress the carbide precipitation and shorten the BIT 

time. While aluminum is insoluble in cementite, it is able to suppress the carbide formation 

[40]. It also increases the potential maximum carbon concentration that can be reached by 

increasing the carbon solubility in austenite, thereby further stabilizing the austenitic phase. 

The most important industrial aspect concerning the addition of aluminum in TRIP steels, is 

that it offers the advantage of non-forming surface oxides, hence improving the coatability 
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and galvanizing properties [41], resulting in a significant improvement of structural life of the 

component. 

2.1.2   Applications 

The development of high strength steels for the automotive industry is motivated by the 

need to reduce vehicle weight in order to improve fuel efficiency while continually improving 

the passengers' safety. The incremental usage of TRIP steels in the chassis of the vehicle (Fig. 

2.3), may assist in the production of lightweight car structures and make them competitive 

materials with regard to new aluminum alloys for use in automotive industry. The reason is 

that TRIP steels have been shown to have excellent balance of strength-ductility. Their 

excellent formability and strength properties [42, 43] allow the design of components with 

complex geometries of reduced thickness, retaining the required strength properties. 

Moreover they are well suited for the design of structural parts containing geometrical 

discontinuities which act as stress raisers.  

Regarding the fatigue performance, TRIP steels exhibit high cyclic yield strength along 

with high fatigue limit values. Their superior fatigue performance compared to other 

conventional high strength steels (Fig. 2.4), may be partly attributed to the TRIP effect, and 

makes them potential attractive materials for highly stressed components subjected to cyclic 

loading. Nevertheless their fatigue resistance potential is not yet fully exploited and the 

present Thesis aims to contribute on this area.  
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Figure 2.3 TRIP steels in automotive industry. 

 
Figure 2.4 Effect of cyclic yield stress on fatigue limit of advanced high strength steels [44]. 
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2.1.3   TRIP effect 

The unique properties of TRIP steels are attributed to the RA transformation, a 

phenomenon known as the TRIP effect. Transformation of the metastable austenitic phase 

into the hard and brittle martensitic phase is a result of applied stress or strain [45-48], which 

makes the TRIP steel behave like a unique type of smart material by adjusting its mechanical 

behaviour during straining. 

It is useful here to describe the conditions influencing the martensitic nucleation process 

under elastic stresses or plastic strains. As indicated schematically in Fig. 2.5, application of a 

stress not far above the Ms and below the Ms
σ
 temperature can include martensitic nucleation 

even though the stress may be well below the normal yield strength of the austenitic phase. 

This transformation is called stress-assisted because the existing nucleation sites are simply 

aided mechanically by the thermodynamic contribution of the applied stress. In other words, 

the critical driving force for nucleating the sites that normally operate without any external 

stress at Ms can be attained at temperatures above Ms since the mechanical driving force 

makes up for the reduced chemical driving force at such higher temperatures. Due to this 

interrelationship, the higher the temperature stress-induced nucleation requires higher stresses, 

in accordance with the slope of line AC in Fig. 2.5. It may be mentioned that the 

transformational- mechanical interactions described above are representative of athermal 

kinetics. For isothermal kinetics the corresponding effects of elastic stress and plastic strain 

are described by line A'B. 

At a temperature designated as Ms
σ
 , the stress required for nucleation reaches the yield 

strength of the austenitic phase. Above Ms
σ
 significant plastic flow precedes the 

transformation, and an additional contribution to transformation can arise from the creation of 

new and more potent nucleating sites accompanied by plastic deformation. This 

transformation is defined as strain-induced. Under these conditions, the nucleating stresses at 
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temperatures above Ms
σ
 do not fall on the extension of line AC, but rather along the line CD. 

The temperature Ms
σ
 thus defines an approximate boundary between the temperature regimes 

where the two modes of nucleation dominate, while near Ms
σ
 both modes will operate. Md is 

the temperature above which the chemical driving force becomes so small that nucleation 

cannot be mechanically induced, even in the plastic strain regime. Often there is an overlap 

between the stress-assisted and strain-induced temperature ranges, and so the temperature 

may not be defined sharply. The line ACE designates the stress temperature conditions where 

the TRIP phenomenon takes place. 

 
Figure 2.5 Schematic representation of the interrelationships between stress-assisted and strain-induced 

transformation. 

2.1.3.1   Stability of retained Austenite 

In general by controlling the morphology, distribution, and stability of the RA, the 

mechanical properties of the TRIP-assisted steels can be improved to achieve both high 

strength and high ductility [49-52]. 
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The stability of RA refers to its resistance to transformation with stress, strain and 

temperature, so that for a given temperature more stable retained austenite will transform to 

martensite at higher stresses and strains. The RA can also be thermally decomposed into 

martensite (thermodynamically more stable phase) as a consequence of temperature changes, 

which is referred to as the thermal stability of RA. The rate at which RA transforms during 

deformation influences the mechanical behaviour of TRIP steels. An "optimum" stability of 

austenite may contribute to a gradual strain hardening during straining, thus shifting the 

necking effect to high uniform elongation values, promoting formability [53]. If the austenite 

is too stable it will not transform during deformation and thus it will not contribute to the 

TRIP effect. If the austenite is very unstable it will transform at very low strains and the TRIP 

effect will be triggered too early to contribute to the delay of necking. Consequently, the RA 

stability should be such that it transforms progressively during deformation, so that damage 

can be accommodated at all stages of deformation. According to Reisner et al. [54] for the 

transformation of austenite to martensite, carbon determines the chemical driving force stress-

free transformation strain (via its influence on the lattice parameter) and the flow behaviour of 

the retained austenite. 

As mentioned earlier the most important alloying element affecting the stabilization of 

RA is carbon which delays the transformation to martensite on cooling, by lowering the sM  

temperature [35], while at the same time an increase of the carbon content increases the 

obtainable amount of RA [55] in the final microstructure. Besides the carbon content, 

austenite stability is also affected by the RA size [46, 56], where fine RA grain size is found 

to increase its stability. The effects of RA grain size can be attributed to the probability of 

martensitic nucleation and the energy barrier to the growth of martensite. Fine RA grains 

possess fewer pre-existing martensite nucleating sites and therefore a lower probability of 

transformation. This is due to the absence of substructures in the austenite, for example 
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stacking faults and other defects that provide nucleation sites for martensitic transformation 

[15, 57]. RA in TRIP-assisted steels can be found in two forms, isolated austenite grains in 

ferrite away from the bainitic phase and films of austenite in-between bainitic ferrite plates. 

The latter type of austenite is generally observed to be more stable during deformation than 

the former types [58-60]. It is thus thought that isolated small austenite grains dispersed in 

ferrite actually contribute to the TRIP effect. 

The shape of RA grains and the interaction between the phases in the microstructure is 

another factor affecting the RA stability [61]. Ultrafine RA lamellae grains have been found 

very beneficial for a steady and gradual martensitic transformation, retarding the initiation of 

local strain concentrations, hence providing a continuous work-hardening effect, while on 

contrary the blocky type RA grains may play a significant role for the initiation of voids and 

cracks, due to the low stability facilitating an abrupt transformation of RA into martensite 

[49]. The higher RA stability for the lamellar microstructure of an Al-containing TRIP steel 

examined in [62] is primarily due to the stress shielding effect of RA grains by the 

surrounding bainite while a secondary contributing factor in the enhanced RA stability was 

the elongated shape of the RA grains. 

Besides the RA microstructural characteristics and the carbon content, the austenite to 

martensite transformation is also strongly affected by deformation mode [63, 64], stress state 

[65] and strain rate [7]. Unlike uniaxial tension or compression, deformation-induced 

martensitic transformation is always known to be suppressed by hydrostatic pressure. The 

stability of RA can therefore be enhanced by applying hydrostatic pressure during tensile test, 

resulting in higher uniform elongation [9]. This may be an important aspect in hydro-forming 

operations where the RA in the microstructure in such a case would not be fully transformed 

during forming, thereby allowing the TRIP effect to be utilized for crash-worthiness in 

finished components. 
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Moreover, at a macroscopic level, the hardening of TRIP steels significantly depends on 

the stress state. The transformation behaviour of RA under different deformation modes for 

low alloyed TRIP steels was examined in [66]. It was demonstrated that the strain-induced 

martensitic transformation is promoted under plain-strain and biaxial conditions relative to 

uniaxial loading. Furthermore, faster transformation rates -corresponding to higher hardening 

levels at smaller strains, were obtained for stress states at an intermediate stage between 

uniaxial and biaxial tension in [63]. In [67] it has been proposed that by a properly adjustment 

of the stability of RA with respect to the stress state that will be present in the forming 

application, a remarkable strength/ductility balance can be attained. 

2.2   TRIP effect and mechanical behaviour 

2.2.1   Monotonic behaviour 

The plasticity that accompanies martensitic transformation in the presence of applied 

stress has been found to influence the mechanical behaviour of the material. The effect is 

mainly influenced by the amount of retained austenite and its stability controlling the amount 

of transformation, which amongst other factors, depends mainly on the carbon content [68]. In 

[34], the strength-ductility balance was found to increase with the amount of RA and its 

carbon content. Important aspects influenced by the stability of retained austenite are the 

strain hardening behaviour and the onset of necking, which are significant parameters 

controlling the formability of the material. In [31] it was demonstrated that the uniform 

elongation, a mechanical property related to the onset of necking, is dependent on the strain-

induced transformation of retained austenite to martensite. Also as it has been shown in [3] 

the work-hardening capacity of the steel can be improved due to the energy absorbed during 

transformation. In [31, 37, 69] it was found that the TRIP effect was responsible for 

generating new sources of dislocations through the dilatational deformation in the surrounding 
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ferritic matrix, increasing the strain hardening capacity during straining and finally provoking 

higher uniform and total elongation to the material. Furthermore, work-hardening rate is 

directly compared with the volume fraction of retained austenite [56]. Confirming the above 

influences on the material behaviour, in [24] it has been shown that increased austenite 

stability is associated with a progressive strain hardening behaviour during plastic 

deformation and a delay of onset of necking in Al-containing TRIP steels. 

To summarize, the strain-induced transformation of retained austenite has been 

considered to be a significant factor influencing the mechanical performance and a 

moderately stable austenite appears to be the key to optimize ductility [42] along with 

chemical composition aspects such as carbon content, which influences retained austenite 

stability controlling the mechanical performance [70].  

2.2.2   Low cycle fatigue behaviour 

Under cyclic loading, the austenite to martensite transformation has been found to 

influence the material’s performance especially under LCF conditions, where strain induced 

transformation occurs under cyclic plastic strains. Ιn numerous studies it has been reported 

that when the plastic strain component is dominant the TRIP effect influences the fatigue 

behaviour [7, 14, 16-20, 28, 71-79].  

Regarding the transformation mechanism, in [77] it has been found that the formation of 

martensite at a given plastic strain amplitude leads to a substantial cyclic hardening and to a 

decrease of the fatigue life of a stainless steel. The above result confirms the findings of a 

previous work of Franke et al. [80], where the austenitic stainless steels which exhibited high 

amounts of transformation demonstrated inferior fatigue life compared to steels with less 

transformation potential. Fatigue life has been shown to be dependent also on the volume 

fraction of RA. In [28] high levels of retained austenite lead to an increase in fatigue life, due 
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to a delay in crack initiation and the retardation of crack propagation, both resulting from the 

strain-induced transformation of austenite to martensite. 

With regard to the cyclic hardening/softening behavior of TRIP steels there are mixed 

results reported in literature depending on the material. In the austenitic cast TRIP steels 

examined in [17] it was found that with increasing strain amplitude the amount of martensite 

inside the deformation bands increases, resulting in significant cyclic hardening, and in a 

recent study performed by Ackermann et al. [72] the pronounced cyclic hardening observed 

was found to be dependent on the martensite formation rate and dependent on the plastic 

strain amplitude. 

In several of the aforementioned studies [14, 16, 79] it was reported that cyclic hardening 

or softening phenomena in TRIP steels, are not necessarily related to the strain induced 

austenite to martensite transformation. The TRIP590 and TRIP980 steels were examined in 

[14] and showed initial cyclic hardening followed by cyclic softening until failure at various 

strain amplitudes. It was concluded that the high initial cyclic hardening with increasing strain 

amplitude observed in TRIP980 despite the lack of austenite transformation may be attributed 

to the larger ferrite size compared to other TRIP materials. In the TRIP780 steel, initial cyclic 

hardening also occurred and was followed by cyclic softening during further fatigue loading 

at higher strain amplitudes. However, at lower strain amplitudes, cyclic softening occurred 

from the very first cycle up to failure. In [18] the non aluminum TRIP590 steel exhibited 

increasing cyclic hardening for strain amplitudes 0.2% - 0.25% followed by a cyclic stable 

behaviour for strain amplitudes of 0.3% - 0.4%, while cyclic softening occurred at strain 

amplitudes above 0.4%. This cyclic softening at higher strain amplitudes has been attributed 

to the relaxation of local internal stress due to the transformation of retained austenite to 

martensite. A similar behaviour was observed in [79] for a TRIP780 steel, but with cyclic 

softening diminishing with decreasing strain amplitude. 
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In [19, 20] it was demonstrated that the martensite volume fraction increases and the rate 

of phase transformation decreases with increasing number of fatigue cycles while the strain-

induced transformation of retained austenite to martensite contributes to initial cyclic 

hardening, but almost having no effect on the subsequent cyclic stable/softening behavior. 

The strain-induced martensitic transformation generated during fatigue loading was 

considered to contribute to initial cyclic hardening in [5, 14, 16, 79, 81]. 

The role of dislocations density and mobility has also an immediate effect on the cyclic 

hardening of TRIP steels. The formation and spreading of dislocation sources were assumed 

to be the major cause for the initial cyclic softening, whereas cyclic softening after the initial 

cyclic hardening was presumed to be due to the decreased dislocation density and the re-

arrangement of dislocations in [14, 16, 79]. Expanding the latter studies, Zhou et al. in [71] 

concluded that the major cause for the initial cyclic hardening was neither the strain-induced 

martensitic transformation nor the increase in dislocation density but the initial high density of 

dislocations, which were pre-existent and mobile in the initial microstructure. 

The proximity of the phases has been also considered to influence the cyclic behavior of 

TRIP steels. Sugimoto et al. in [82-84], examined the effect of microstructure on the fatigue 

properties of TRIP-aided steels and concluded that the cyclic behaviour was controlled not 

only by the RA characteristics and the matrix microstructure, but also by the long range 

internal stresses arising from the difference in flow stress between matrix and the other 

phases. 

By examining the above literature results it is obvious that the transformation effect is 

significant for the LCF behavior of TRIP steels, but interactive mechanisms such as the RA 

transformation, the martensite as the product of the transformation, the interaction/proximity 

of constituting phases and the dislocation density and mobility are also influencing the 
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material performance. In the present study it is attempted to provide a better understanding of 

the role of RA transformation on the cyclic hardening/softening of the TRIP steels examined.  

2.2.3   High cycle fatigue behaviour 

The High Cycle Fatigue (HCF) performance of TRIP steels has received limited attention 

due to the predominantly elastic cyclic behaviour which does not promote bulk 

transformation. Nevertheless, deformation induced transformation which occurs in 

microstructural scale, still takes place and has been found to result in an improvement of 

fatigue strength [24, 25, 85]. In a work of Yokoi et al. [21] it was demonstrated that the 

presence of RA in the microstructure can enhance the fatigue properties of TRIP steels. It was 

shown that a TRIP steel containing 10% initial volume fraction of RA exhibited higher 

fatigue resistance compared with conventional HSLA and DP steels, effect which might be 

attributed to the compressive residual stress in the surface region caused by the austenite-to-

martensite transformation retarding the propagation of the nucleated micro-cracks. 

Haidemenopoulos et al. [24] examined the effect of austenite stability on HCF of low 

alloyed Al-containing TRIP steels with same chemical composition but different initial RA 

content and stability. Their findings suggested that the RA stability is a significant parameter 

affecting the fatigue performance of TRIP steels especially at high cyclic stresses. 

Furthermore, it was demonstrated that under elastic alternating stresses the transformation 

effect still exists and fatigue limit values close to the material's yield strength have been 

reported. Experimental evidence of fatigue limit values close or above the materials' yield 

strength has also been reported in other investigations [22, 86].  

In [87] the high fatigue limit of a quenched and partitioned TRIP steel was attributed to a 

delay in crack propagation caused by phase transformation, while the fatigue strength was 

found to be dependent on the initial RA volume fraction. Similar observations were reported 

in [88], where it was shown that the transformation of RA to martensite is triggered ahead of 
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the fatigue crack tip, leading to a delay in fatigue crack growth, which is directly related to 

high endurance limit value. 

Another study that associates the improvement of fatigue limit by the increasing volume 

fraction of RA was performed by Abareshi et al. [23]. During the fatigue loading, stress-

induced phase transformation of retained austenite to martensite takes place ahead of the 

crack tip and affects the propagation of crack. SEM observations revealed that when the crack 

tip approaches a hard martensitic phase, it changes its direction towards a neighboring ferrite 

grain. This repeating process was found to be the key for the increased fatigue life. Hence, 

higher amounts of RA create more barriers for fatigue crack growth and therefore fatigue life 

can be improved, which has been possibly attributed to the formation of very fine martensite 

particles in the area of local plasticity in adjacent of crack, which effectively block the 

dislocation motion [89]. 

Similar to this, Roth et al. [90] examined the influence of RA transformation of a 

metastable stainless steel in the high cycle fatigue regime. Their work demonstrated that while 

the martensite formation results in an increase of the specific volume and gives rise to 

compressive stresses, that leads to premature contact of the crack surfaces and hence to a 

retardation of the short crack growth.  

2.2.4   Crack initiation and propagation 

Another significant fatigue problem associated with the design of structural components 

is the material's fatigue crack initiation resistance. At locations with stress concentrations (e.g. 

holes, notches), the local material behaviour at the notch tip controls the onset of cracking, 

while local plasticity at the root of the geometrical discontinuity will favor RA transformation 

influencing fatigue behaviour. These issues have received limited research attention and most 

investigations focus on the notch effect on fatigue limit. In [4, 22], it has been reported that 

the formation of hard martensite due to strain induced transformation, suppresses the crack 
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initiation and growth in TRIP steels. In [86] the notched fatigue limit of TRIP-aided bainitic 

ferrite steels with 10-13.7% initial RA volume fraction increased with increasing hardness, 

while the notch sensitivity decreased. Retained austenite to martensite transformation has 

been also found to be beneficial on the rate of the growing crack. In [88, 91] the 

transformation ahead of the crack tip was found to reduce the energy absorption leading to 

high fatigue crack growth resistance in a low alloy TRIP steel. 

The above studies suggest that austenite transformation influences the fatigue behaviour 

of TRIP steels, however a quantitative and qualitative assessment of its contribution under 

high and low cycle fatigue conditions is missing.  

For this purpose the LCF and HCF performance is correlated in the present Thesis with 

the amount of martensitic transformation during straining for different Al-containing TRIP 

steels with slight variations in chemical composition and microstructural characteristics. The 

results present useful insight on the contribution of RA transformation on mechanical 

behavior under different loading conditions. 
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CCHHAAPPTTEERR    33  

EExxppeerriimmeennttaall  PPrrooggrraamm  

In this chapter the experimental methodology is presented, with description of the TRIP 

materials and their microstructures, experimental procedures for the static and fatigue 

experiments, and techniques used for the RA measurements and crack initiation monitoring.  

3.1   Materials 

The materials used in the investigation are Al-containing low alloy TRIP steel 

sheets, with chemical composition, condition and thickness given in Table 3.1. 

Table 3.1 State and chemical composition (wt.-%) of TRIP steels.  

Steel Condition 
Thickness 

(mm) 
C Mn Al Si P 

TRP700(A) Hot rolled 1.75 0.18 1.61 1.45 0.7 - 

TRIP700(B) Cold-rolled 1.45 0.202 1.99 1.07 0.35 0.009 

TRIP(HT2I) 
Cold-rolled 0.72 0.2 1.8 1.33 0.04 0.016 

TRIP(HT3I) 

TRIP(HT2D) 
Cold-rolled 0.72 0.246 1.73 1.43 0.036 0.013 

TRIP(HT3D) 
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TRIP700(A) steel sheet was received in hot rolled condition while TRIP700(B) steel 

sheet in cold rolled condition. The HT steels with minimal differences in chemical 

composition were received as cold rolled steel sheets after being treated by a two stepped heat 

treatment process consisting of two different heating schedules for each material. In that way, 

four different TRIP materials were produced. Specifically, TRIP(HT2I) and (HT2D) steels 

were annealed at 890
o
C for 60s and subsequently cooled down to 400

o
C and held for 420s, 

while TRIP(HT3I) and (HT3D) steels were annealed at 890
o
C for 60s and subsequently 

cooled down to 460
o
C and held for 120s. 

The percentage vol.-% RA values in as-received condition were measured using the 

saturation magnetization (SM) technique, which is described in more detail in section 3.2.2. 

Three SM measurements from each material in as-received condition were performed and the 

averaged values of the vol.-% initial RA content are shown in Table 3.2.  

Table 3.2 Initial RA volume fraction (vol.-%). 

Steel (%) 

TRP700(A) 11.8 

TRIP700(B) 15.8 

TRIP(HT2I) 11.2 

TRIP(HT3I) 14.3 

TRIP(HT2D) 13.5 

TRIP(HT3D) 13.8 

3.2   Material characterization techniques 

An extensive analysis of the constituting phases was performed in order to assess the 

characteristics of TRIP microstructures. To this end, the basic microstructural characteristics 

were evaluated with standard optical microscopy and further examination with image analysis 

software. Moreover, the retained austenite volume fraction was measured with the SM 

technique. The SM measurements were performed in the steel division department of 
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Voestalpine in Austria. A brief description of the performed techniques is presented in the 

following sections. 

 3.2.1   Microstructure evolution 

3.2.1.1   Etching solution and procedure 

The materials' microstructures in as-received condition were assessed using optical 

microscopy. Small samples were cut using a high precision cutter to ensure that minimal 

deformation occurred during the cutting process and standard metallographic techniques of 

grinding and polishing were applied. 

The samples were first mounted in bakelite using a mounting press. The mounted samples 

were then grinded successively using finer grits of silicon carbide paper, starting with #120 

grit and finishing with #2400 grit. Diamond polish was then used to polish the samples' 

surface starting with 3μm diameter diamond particles, followed by 1μm. Consecutively, a 

stepped color tint-etching procedure was employed using the De- etching method [92] in 

order to reveal the steels' microstructures. The samples were first dipped into a 3% Nital 

solution for 3-4s and then placed into a solution of 10% Na2S2O5 for 60s. After etching in 

both solutions, they were immediately washed with water, immersed in ethanol and then were 

blown dry in hot air. Optical microscopy was used to obtain a representative picture of the 

microstructure. The mounted samples were re-polished with 3μm-1μm diamond pastes and re-

etched. With this process multiple images at different sections (through thickness) were 

produced and examined. 

The results obtained with the tint etching technique are very sensitive to the composition 

of the steel and etching agents as well as the etching time. Despite the sensitivity of the 

method to the above parameters, the color etching technique produces a reliable result of the 

different micro-constituents. A disadvantage of the method is that when these or similar 
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etching techniques are used, the RA and martensite cannot be separated as they both appear in 

white. The use of an improved etching technique (tint etching after tempering) to reveal the 

existence of martensite in the multiphase steels proposed in [93], did not give satisfactory 

results because of its extreme sensitivity to the etching time in the second etching agent, 

leading not only to excessive tinting of the martensite but also to the darkening of the ferrite. 

Because of the complexity in revealing the martensitic phase in the microstructure, it is 

assumed that the steels examined did not contain martensite in as-received condition. 

3.2.1.2   Quantitative image analysis 

The ferrite and retained austenite grain characteristics were determined using an image 

analysis software with data taken from several micrographs at different depths of the sample 

to avoid estimation errors due to the large dispersion of the phases. The grain characteristics 

examined include the average grain size diameter as well as the aspect ratio of the measured 

grains. 

Τhe micrographs from each material were processed with a photo editing software to 

create a binary image with isolated grains (phase mapping). Then, the phase mapped images 

were examined with the Image-Pro Plus5 software and the average grain size of austenite and 

ferrite was measured. To increase the accuracy of measurements the average grain diameter 

measured at 2 degree intervals passing through the particle's centroid was calculated. This 

method is recommended in cases where high grain shape irregularity exists in the structure 

[94]. 

Another grain characteristic of TRIP steels measured is the grain aspect ratio 

(Ar=dmin/dmax). The aspect ratio, as a shape factor, is a dimensionless quantity used to describe 

the shape of a particle, independent of its size. The normalized aspect ratio ranges from 

approaching zero value for elongated particles, to near unity for equiaxed grains. 
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Approximately 2000 retained austenite and 200 ferrite grains from each material were 

used for the quantification of the above microstructural characteristics. 

3.2.2   Saturation magnetization method (SM) 

The SM measuring equipment is depicted schematically in Fig. 3.1. It consists of a 

magnetic yoke, which produces a high and homogeneous magnetic field between its poles. A 

magnetic flux sensing coil mounted in the centre of this magnetic field is used as the 

measurement coil. The specimen used for measurement is positioned through the 

measurement coil with its axis aligned to the direction of magnetic field. The amount of 

retained austenite is calculated from the measured integral of the voltage pulse induced in the 

coil [95].  

 
Figure 3.1 Schematic representation of the SM method. 

Ferrite and austenite differ in their magnetic behaviour, with ferrite being ferromagnetic 

and austenite paramagnetic. For this reason, only the amount of ferrite of the sample 

contributes to the induced voltage pulse in the measurement coil. The saturation 

magnetization decreases with arising amount of austenite, which cannot be magnetized in the 

case of a two phase mixture of ferrite and austenite. The addition of alloying elements also 

causes a change of the saturation magnetization. The volume fraction of retained austenite 

was calculated as follows: 
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where αn and An (in vol.-%) are related to the effect of the alloying element n on the saturation 

magnetization in the specimen. Js
Fe

 represents the saturation magnetization of the pure ferrite 

and Jm is the saturation magnetization of the specimen calculated based on the following 

formula: 
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where Uind is a voltage-pulse in the coil, V is the volume of the specimen, N, the number of 

windings of the pick up coil, and L, the length of the measured coil. 

This method has the advantage that the entire volume of the sample can be measured. The 

method shows higher precision compared to other methods [49] for determination of RA 

volume fraction and exhibits good repeatability in the performed measurements [95]. Small 

uncertainties may exist due to the presence of alloying elements, which can cause a small 

change of the saturation magnetization. Despite its advantages, certain scatter in RA volume 

fraction measurements, should always be taken into consideration. 

3.2.3.1   Sampling of specimens 

The initial RA volume fraction was measured from small samples with dimensions 

14mmx3.5mm, which were extracted from the bulk (as-received) material, using the SM 

technique. In order to account for possible scatter in the results, three samples from each 

material were measured and the values presented in Table 3.2 are averaged. To evaluated the 

%RA transformed, the initial measured value of the bulk material was used and correlated 

with each value measured from the different loading condition, as: 
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The vol.- %RA transformation was measured from samples extracted from the gauge area 

of the tensile specimen after fracture (Fig. 3.2(c)). In similar manner, retained austenite 

transformation under cyclic loading was evaluated by performing RA measurements on small 

samples extracted from the fatigue specimens after failure. The specimen location where the 

samples have been extracted from was adjacent to the fracture area as shown in Figs. 3.2(a) 

and (b). Samples were extracted approximately 2 mm away from the fracture location, inside 

the gauge section of the specimen, to avoid additional transformation effects caused by 

localized plastic deformation due to necking. In the specimens with continuous radius of 

curvature, the non uniform distribution of stresses inside the gauge section in the longitudinal 

axis of the sample, was taken into account for the calculation of average stress values along 

the axis at the position of the extracted sample. 

 
Figure 3.2 Location of extracted sample for RA measurements in (a) HCF, (b) LCF, (c) tensile test specimen 

(dimensions in mm). 

3.3   Mechanical Testing 

The mechanical behaviour of the TRIP materials was evaluated under tensile and fatigue 

testing. The complete experimental program, including the different types of testing and 

associated RA measurements is presented in Table 3.3.  
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Table 3.3 Type of mechanical tests and RA measurements performed for each material. 

Steel Mechanical testing RA measurements 

 
Tensile HCF LCF HCFnotch 

Crack 

initiation 

monitoring 

Tensile 
(at fracture) 

HCF 
conditions 

LCF 
conditions 

TRIP700(A) ● ● ● ● ● ● ● ● 

TRIP700(B) ● ● ● ● ● ● ● ● 

TRIP(HT2I) ● ○ ● 
 

● ● ○ ● 

TRIP(HT3I) ● ○ ● 
 

● ● ○ ● 

TRIP(HT2D) ● 
 

● 
  

● 
  

TRIP(HT3D) ● 
 

● 
  

● 
  

○ Results taken from [24] 

3.3.1   Tensile testing 

Uniaxial tensile tests were conducted to determine the mechanical properties of the 

TRIP steels. The tensile tests were carried out using an INSTRON 8801 servo-hydraulic 

machine with 100 kN load capacity. Mechanical properties were determined in accordance 

with ASTM E8M at a constant crosshead velocity of 0.5 mm/min. The specimens were 

tested in the longitudinal (L) direction using a 25- mm gage length clip-on extensometer. The 

geometry of the specimen used for the tensile tests is depicted in Fig. 3.3. 

The strain hardening exponent (n) and the strength coefficient (K) were assessed using the 

Ramberg–Osgood equation [96]: 

1/n

E K

 


 
   

 
             (3) 

 
Figure 3.3 Sub-size specimen configuration according to specification ASTM E8M (dimensions in mm). 
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3.3.2   Fatigue testing 

3.3.2.1   Strain controlled fatigue tests 

Fully reversed (R= -1) cyclic tests were performed in accordance with SEP 1240 [97] 

specification. Strain amplitudes in the range of 0.002 - 0.02 were applied using a 10- mm 

gage length clip-on extensometer at a frequency range of 0.1 - 3 s
-1

. The specimens were 

tested in the longitudinal (L) direction. To prevent buckling during testing, an anti-buckling 

device from ultra high strength steel (compressive strength >1000MPa) was designed (Fig. 

3.4), constructed and attached to the specimen surfaces (Fig. 3.5). The geometry of the LCF 

specimen used is shown in Fig. 3.6. 

 
Figure 3.4 Anti-buckling device used in LCF tests (dimensions in mm). 

 
Figure 3.5 Strain controlled fatigue test setup with the use of anti-buckling device. 
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The stabilized hysteresis loop was determined from the half number of cycles required for 

onset of crack initiation. Crack initiation corresponds to the number of cycles where a 10% 

change of the maximum cyclic load [97] is observed. For determining the total fatigue life Nf, 

as failure criterion the final fracture of the specimen was considered. 

 
Figure 3.6 Geometry of LCF test specimen (dimensions in mm). 

3.3.2.2   Stress controlled fatigue tests 

Constant stress amplitude tests were carried out to determine the fatigue S-N curves on 

smooth and notched specimens at a stress ratio R= 0.1 and a frequency of 25 Hz. Smooth 

fatigue specimens were prepared according to ASTM E466 with a geometry shown in Fig. 

3.7. To investigate the notched fatigue behaviour, specimens with a single, 60
ο
 V-shape notch 

were used (Fig. 3.7(b)) with an elastic stress concentration factor of Kt = 3.5, calculated from 

the Noda et al. approach [98]. 

In order to examine the potential influence of austenite transformation effect taking place 

during machining of the notch, which is relevant for fatigue crack initiation, the 60
o
 V-shaped 

side notch was introduced in the specimens using two different machining methods. Except 

from the Regular Machining method (RM) using a milling angle cutter tool, the sinker 

Electrical Discharge Machining (EDM) method was also implemented. The EDM method, as 

a non-deforming cutting process, has the advantage of not plastically deforming the steel 

during removal of material. Although, as it will be explained in section 4.5.1, no significant 

transformation effect at the notch root caused by the machining process is expected, the above 

investigation was performed to ensure the reliability of experimental results. 
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Figure 3.7 Geometry of (a) smooth and (b) notched fatigue test specimen (dimensions in mm). 

3.3.3   Crack initiation Monitoring 

Fatigue crack initiation and propagation at the notch root was monitored using the replica 

technique. Careful preparation of the notch area was conducted in order to remove 

imperfections (burrs) from the machining process by grinding with fine #1000-4000# grit 

papers, to ensure that no surface effects are induced on crack initiation. The notched fatigue 

tests were interrupted at regular cycle intervals and a small tensile load was applied to open 

the crack surfaces. Extreme care was taken into applying this tensile load, in order not to 

exceed the test's maximum cyclic load (Pmax), which could possibly introduce an overload in 

loading history. Special replica foils of 0.1 mm thickness wetted with acetone, were used to 

take replicas from both sides of the notch root and were examined in an optical microscope. 

Cyclic stressing was continued for a small interval of cycles and the above procedure was 

repeated until a first short crack was observed in the replica through the microscopic 

observation. When the first short crack was observed the procedure was continued by making 

the interruption intervals more frequent. The length of the fatigue crack was measured using 

the replica images taken from microscope and processed with an image analysis software.
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4.1   Microstructural characteristics 

Basic microstructural features that were examined include RA distribution as well as RA 

and ferrite average grain size, parameters which are influencing the TRIP effect. 

Characteristic microstructures of the investigated TRIP materials are presented in Fig. 

4.1. Based on the etching solution used the tinting effect resulted in ferrite- straw brown, 

bainite- dark and retained austenite- white color. Two images for each material are 

indicatively shown in Fig. 4.1 with the phases presented in green (RA) and red color (ferrite). 

The masked micrographs were used as input in the image analysis software to evaluate the 

average grain size of the materials as well as the aspect ratio. The grain measurements of 

ferrite and retained austenite characteristics are presented in Table 4.1. 
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Table 4.1 Grain characteristics of TRIP steels. 

Steel 

Ferrite avg. 

size 

(μm) 

Ferrite 

aspect 

ratio  

RA avg. 

size 

(μm) 

RA 

aspect 

ratio  
[Standard deviation] 

TRIP700(A) 3.62 [0.92] 0.63 [0.15] 1.03 [0.73] 0.33 [0.19] 

TRIP700(B) 9.47 [2.48] 0.53 [0.14] 0.7 [0.34] 0.47 [0.18] 

TRIP(HT2I) 4.77 [1.72] 0.55 [0.15] 1.25 [0.77] 0.31 [0.16] 

TRIP(HT3I) 6.36 [2.4] 0.56 [0.13] 1.32 [0.75] 0.34 [0.18] 

TRIP(HT2D) 4.21 [1.27] 0.60 [0.14] 1.03 [0.62] 0.29 [0.17] 

TRIP(HT3D) 5.15 [1.75] 0.58 [0.13] 1.4 [0.77] 0.34 [0.17] 

The TRIP steels examined can be characterized as fine grained materials with high RA 

dispersion in the ferritic matrix. The average size of RA particles was found 1.03μm and 

0.7μm, while the average ferrite grain size was 3.62μm and 9.47μm, in TRIP700(A) and 

TRIP700(B) steel respectively. Regarding the TRIP(HTxx) materials, the average ferrite and 

RA size was found to be in the order of 5μm and 1.25μm, respectively. The smallest RA 

particle size belongs to TRIP700(B), which has also the largest ferrite grain size (9.47μm), 

while the largest RA particle size belongs to TRIP HT3D with 1.4μm. The ferrite grain size of 

TRIP HTxx steels does not present significant variations and is in the order of 4.2-6.3μm. 

TRIP700(A) has the smallest ferrite particle size with an average size of 3.6μm. 

Examining the shape of ferrite grains in the as-received condition, not significant 

dissimilarities were observed between the TRIP materials, as the values of aspect ratio ranges 

from 0.53-0.63. The aspect ratio analysis of RA revealed that TRIP700(B) steel possesses a 

relatively higher diameter ratio (0.473), indicating that the RA's shape is more equiaxed 

compared to the other materials.  
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(a) 

 
 

(b) 

 
 

(c) 

 
 

(d) 

 
 

(e) 

 
 

(f) 

 
 

Figure 4.1 Microstructure and phase mapping of the investigated TRIP steels. (a) TRIP700(A), (b)TRIP700(B), 

(c) TRIP(HT2I), (d) TRIP(HT3I), (e) TRIP(HT2D), (f) TRIP(HT3D) steel (two images with ferrite and RA 

grains masked for each material is shown on the right).  
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A careful microscopic observation revealed that the RA grains in TRIP700(A) are located 

adjacent to ferrite grains, whereas in the other steels the RA grains are located adjacent and 

within ferrite grains.  

Α more detailed examination of the RA size variation was performed using image 

analysis software and is shown in Fig. 4.2. TRIP700(B) presented the most uniform particle 

size distribution, as indicated by the lower standard deviation value (0.34), whereas 

TRIP700(A) and the TRIP(HTxx) series presented less uniform RA grain size distributions. 

  
(a) (b) 

 
(c) 

Figure 4.2 Histogram of RA grain size variance in, (a) TRIP700(A) and TRIP700(B), (b) TRIP(HT2I) and 

TRIP(HT3I), (c) TRIP(HT2D) and TRIP(HT3D) steels. 
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4.2   Tensile behaviour 

The mechanical properties have been evaluated from the engineering tensile stress-strain 

curves (Fig. 4.3) and are given in Table 4.2. In general the TRIP materials combine high 

strength with ductility, and at the same time their behaviour is characterized by pronounced 

strain hardening. TRIP700(A), which is the only hot rolled steel in the group, exhibits the 

highest yield strength, lowest strain hardening potential and ductility compared to the other 

steels. 

 
Figure 4.3 Engineering stress-strain curves of the investigated TRIP steels. 

Table 4.2 Mechanical properties of TRIP steels. 

Steel 
σy0.2 

(MPa) 

σUTS 

(MPa) 

σy0.2/ 

σUTS 

Af 

(%) 

Ag 

(%) 
n 

K 

(MPa) 

TRIP700(A) 606 707 0.86 23.2 16.2 0.1132 1012 

TRIP700(B) 515 749 0.69 28.2 24.9 0.196 1312 

TRIP(HT2I) 537 762 0.7 30 26 0.2164 1289 

TRIP(HT3I) 470 800 0.59 26 20 0.2357 1448 

TRIP(HT2D) 540 744 0.73 36 31 0.203 1238 

TRIP(HT3D) 462 817 0.57 26.7 23 0.2647 1529 
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4.2.1 Yield strength 

It is well known that manufacturing conditions such as Hot/Cold Rolling as well as heat 

treatment processing of TRIP steels may influence the mechanical properties of the resulting 

material [99]. In hot rolled materials, which have generally little directionality in their 

mechanical properties due to recrystallization, the average grain size of the material can be 

reduced while maintaining a certain soft microstructure. Cold rolling on the other hand occurs 

with the material below its recrystallization temperature (usually at room temperature). Here, 

the increase in yield strength and hardness is obtained by introducing defects into the crystal 

structure of the steel, creating a hardened microstructure which prevents further slip [100]. 

The hot rolling process and small average grain diameter of ferrite and RA may therefore 

explain the high yield strength value obtained in TRIP700(A) [101]. The lowest yield strength 

belongs to HT3x steels, which have the largest ferrite particle size in the HTxx group. 

The dependency of yield strength on the size of ferrite, which is the phase with the largest 

volume fraction, as described by the Hall–Petch effect [102] is confirmed by observation of 

the results in Fig. 4.4.  

  
Figure 4.4 Effect of ferrite grain size on yield strength of the examined materials. 
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4.2.2   Strain hardening 

Comparing materials with different rolling process, the finer ferrite grain size of steel (A) 

is expected to contribute also in the strain hardening behaviour, however the amount of strain 

hardening is higher in steel (B). This is a result of both the lower yield strength, which 

promotes higher initial work hardening, and the TRIP effect, which is controlled by the RA 

content and its stability [103]. The above contributes to a higher strain hardening exponent 

n=0.196 for steel (B) compared to n=0.102 for (A). The HT3x materials exhibit the highest 

strain hardening exponents of all steels, which as explained above is assisted by the lower 

yield strength of the specific steels. 

4.2.3   Elongation 

Comparing steels TRIP700(A) and (B) it can be observed that the uniform elongation is 

higher in steel (B) compared to (A) with values 24.9% and 16.2% respectively. That may be 

related to the slow and progressive work hardening capacity till necking (more stable 

behaviour regarding austenite transformation), the combination of high initial volume fraction 

of RA [23, 104] and the relatively fine and more equiaxed RA grains of TRIP (B). 

A more clear understanding of the effect of transformation on mechanical properties may 

be obtained by examining materials with the same chemical composition and variations in 

microstructure as the HT2 and HT3 materials in the HTxx series. The different heat treatment 

processing results in changes in the size and initial content of RA particles as shown in Table 

4.1. The HT2x materials present a more stable behaviour against transformation compared to 

HT3x, which is reflected in higher uniform elongation values and less strain hardening (Fig. 

4.5) as described in the previous paragraph.  
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(a) (b) 
Figure 4.5 Engineering stress-strain curves of steels with same heat treatment process but small differences in 

chemical composition. (a) HT2 and (b) HT3 conditions.  

The stress-strain behaviour in HT2x steels, is indicative of a more gradual austenite 

transformation occurring under increasing plastic deformation so that damage can be 

accommodated at all stages of deformation [62, 105]. The more "stable" transformation 

behaviour of HT2 compared to HT3 is confirmed also by the transformation measurements in 

Table 4.3, shown in section 4.2.4, from where it is observed that HT2 treatment leads to less 

amount of transformation compared to HT3. The smaller RA particle size induced by HT2 

assists the observed behaviour, as direct experimental evidence presented in [106] showed 

that the stability of the RA is controlled not only by the local carbon level but also by the RA 

grain size. 

4.2.4   RA transformation during tensile testing 

Ex-situ magnetic measurements were conducted on fractured tensile specimens to 

determine the amount of RA transformation that took place during the tensile test. The 

measured RA volume fraction was correlated with the initial RA of the bulk material and the 

%RA transformed was evaluated.  

In general the amount of transformation depends on the RA content and its stability. The 

stability of the phase against transformation is controlled by the carbon content [49], the RA 
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particle size and shape and the strength of the surrounding phases. In some cases the small 

RA particles have been associated with enhanced ductility against transformation [46, 

105].  Stability may also be influenced by the shape of RA phase [49, 61, 62, 107] with "film 

like" or lamellar grains being more stable than blocky type or equiaxed RA grains. 

Furthermore a high content of alloying elements Al and Si makes the precipitation of carbides 

more difficult enriching the carbon content in austenite, contributing to a more stable RA 

phase [40].  

The results shown in Table 4.3 reveal that the HT3x materials presented the highest 

amount of transformation (>79%), while (B) and HT2x steels exhibited moderate amounts of 

transformation (56-72%). TRIP700(A) steel presented the lowest amount of transformation 

with only ~50% of the initial vol.-%RA transformed during tensile testing. 

Table 4.3 RA transformed at fractured tensile specimens.  

Steel %RA transformed (avg.) 

TRIP700(A) 
44.9 

(51.3) 
57.6 

TRIP700(B) 
68.3 

(72.1) 
75.9 

TRIP(HT2I) 
54.9 

(56.6) 
58.3 

TRIP(HT3I) 
84.1 

(83.6) 
83 

TRIP(HT2D) 
63.7 

(69.3) 
75 

TRIP(HT3D) 
77.2 

(78.3) 
79.4 

 

 

Regarding steels (A) and (B) the differences in chemical composition and microstructures 

due to the different rolling process, result in highly dissimilar tensile behaviour. Hot rolled 

TRIP700(A) exhibits a highly stable behaviour with the less amount of transformation 

amongst all steels examined (Table 4.3), the smallest strain hardening exponent and uniform 

elongation but at the same time the less ductile behaviour. On the other hand cold rolled steel 

TRIP700(B) shows high uniform elongation, moderate strain hardening potential combined 
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with a high amount of RA transformation due also to the higher initial %RA, which are 

indications of a more balanced transformation behavior under deformation. 

Τhe sensitivity to transformation during a tensile test cannot be explained based upon one 

single parameter. TRIP700(B) with the finer RA grains should exhibit relatively low amounts 

of transformation. Despite the finer RA grains of TRIP700(B) steel, the larger surrounding 

ferrite grains may impose a larger dilatational deformation provoking large mechanical 

driving force for transformation. In Fig. 4.6(a) an attempt is made to provide a correlation 

between the ferrite size and transformation potential of the materials by excluding other 

influencing factors such as the size of RA. The results are interesting and indicate that if the 

ferrite size would have significant influence on transformation behaviour, the latter would 

increase when the ferrite size becomes large. TRIP700(B) seems to take advantage of the 

small RA size and larger ferrite to provide a more balanced stress strain behaviour combining 

good strength and high uniform elongation. 

Another aspect relating the amount of RA transformation to the mechanical response is 

the strain hardening behaviour. In Fig. 4.6(b) the %RA transformed at fracture is strongly 

correlated with the strain hardening exponent, which increases with the increase in RA 

transformation [108]. 

  
(a) (b) 

Figure 4.6 Correlation of %RA transformed at fracture during monotonic loading with (a) ferrite size and (b) 

strain hardening exponent. 
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Other aspects that contribute to the mechanical behaviour is the rate of strain-induced 

transformation [8] and the role of martensite. In [109] it has been shown that martensite can 

accommodate up to ~8% plastic strain during tensile plastic deformation. In general, when the 

material starts to deform plastically, the soft phases (ferrite and retained austenite) exceed 

their yield point while the hard martensite remains in the elastic state, thus the deformation 

continues with the soft phases transferring the stress to the hard martensite. The martensite 

starts to deform plastically when the transferred stress is large enough to reach its elastic 

limit. The latter leads to a high stress increment in the bulk material due to the high initial 

strain hardening of the martensite (Fig. 4.3). After the martensite flow curve levels off, its 

contribution to the strain-hardening rate of the material declines leading to lower rates. 

4.3   Cyclic stress-strain behaviour 

In this Chapter the low cycle fatigue performance and cyclic behaviour of the TRIP steels 

is assessed and the role of RA transformation on the mechanical behaviour is evaluated. 

4.3.1   Strain-life data 

The cyclic strain-life curves of the materials are presented in Fig. 4.7 and are compared in 

Fig. 4.8. The total strain amplitude is given as the sum of elastic and plastic parts, in the form: 

   
total e p

b cf

a a a f f f

σ '
ε ε ε N ε ' N

E
           (4) 

which is resolved as a sum of the Basquin's equation (εae) and Manson-Coffin relationship 

(εap).  

The cyclic material parameters f fσ' ,b,ε' ,c  as evaluated from the strain-life data are given 

for each material in Fig. 4.7. At first sight, the materials present similar cyclic performance, 

however after more careful examination differences can be distinguished at fatigue regions 

where either the plastic or elastic component is dominant in the total strain amplitude. 
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Examining Fig. 4.8(b), TRIP700(A) and TRIP700(B) steels present an overall good cyclic 

behaviour with (A) prevailing in the plastic and (B) in the elastic range. The HTxx materials 

show in general an inferior performance compared to (A) and (B) steels, with HT3 variant 

showing an improved behaviour compared to HT2 except for very high plastic strain 

amplitudes. 

 
Figure 4.7 Strain-life curves showing total, elastic and plastic components for the investigated TRIP steels. 
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(a) 

  
(b) 

Figure 4.8 Strain-life curves of TRIP steels. Comparison of (a) elastic/plastic components and (c) total strain 

amplitude. 

The transition fatigue lives (equal elastic and plastic strain components) are presented in 

Table 4.4. Transition life of HT3x steel is superior to HT2x with 4500 cycles and 2500 cycles 
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respectively. By comparing steels (A) and (B) from Table 4.4, steel (A) has a smaller LCF 

region characterized by a small transition life value, with regard to steel (B). 

Table 4.4 Transition life of the investigated TRIP steels. 

Steel N
*
 (cycles) εatotal (%) 

TRIP700(A) 2320 0.2775 

TRIP700(B) 3390 0.2497 

TRIP(HT2I) 2750 0.236 

TRIP(HT3I) 4900 0.218 

TRIP(HT2D) 2140 0.2419 

TRIP(HT3D) 4100 0.227 

4.3.2   Cyclic stress-strain curves 

The cyclic stress-strain curves were determined from the stabilized hysteresis loops and 

are presented in Figs. 4.9 - 4.11. The cyclic material parameters such as the cyclic strain 

hardening exponent, n' and cyclic strength coefficient, K' were assessed with the Ramberg–

Osgood equation (Eq. 5) [110] and are given in Table 4.5. 

total

1/n '

α α

a

σ σ
ε

E K '

 
   

 
           (5) 

Table 4.5 Cyclic properties of TRIP steels. 

Steel 
Cyclic properties 

σ'y0.2 n' K' σ'f b ε'f c 

TRIP700(A) 554 0.1189 1160 1073 -0.08096 0.3601 -0.6305 

TRIP700(B) 456 0.1971 1551 794 -0.0544 0.2787 -0.5803 

TRIP(HT2I) 473 0.1368 1107 983 -0.08975 0.3741 -0.64092 

TRIP(HT3I) 444 0.1425 1080 788 -0.06531 0.1402 -0.48842 

TRIP(HT2D) 486 0.1125 980 848 -0.0711 0.2992 -0.63049 

TRIP(HT3D) 461 0.133 1056 786 -0.0623 0.2058 -0.5422 
 

Between the HTxx materials, (HT2D) steel exhibited the highest cyclic yield strength 

(486MPa) accompanied with the lowest cyclic strain hardening exponent (0.1125). The 

highest n' value of 0.1425 belongs to (HT3I) material, which however shows the lowest cyclic 

yield strength (444MPa). The behaviour is consistent with the monotonic behaviour of the 

steels.  
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Ιn Fig. 4.12 the fitted cyclic stress-strain curves are displayed based on the cyclic stress 

strain parameters, n' and K' of Eq. (5) to obtain a clearer, comparative picture of the material 

behaviour. Material (B) has the highest strain hardening potential, while the lowest belongs to 

material (A). The HTxx materials cyclic strain hardening ability lies between TRIP (B) and 

(A) materials with HT3 variant showing higher cyclic strain hardening ability.  

 
(a) 

 
(c) 

 
(b) 

Figure 4.9 Stable hysteresis loops for determining the cyclic σ-ε curve of (a) TRIP700(A) and (b) TRIP700(B) 

steel. (c) Comparison of monotonic and cyclic σ-ε curves. 

 
(a) 

 
(c) 

 
(b) 

Figure 4.10 Stable hysteresis loops for determining the cyclic σ-ε curve of (a) TRIP(HT2I) and (b) TRIP(HT3I) 

steel. (c) Comparison of monotonic and cyclic σ-ε curves. 
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(a) 

 
(c) 

 
(b) 

Figure 4.11 Stable hysteresis loops for determining the cyclic σ-ε curve of (a) TRIP(HT2D) and (b) 

TRIP(HT3D) steel. (c) Comparison of monotonic and cyclic σ-ε curves. 

Lucas and Gerberich in [111] showed that larger ferrite grains can result in a higher cyclic 

strain hardening exponent. The observation is in good agreement with the results obtained in 

the present study, where a linear type relation between the ferrite size and cyclic strain 

hardening exponent is observed (Fig. 4.13). 

 
Figure 4.12 Cyclic stress-strain curves for all examined materials with the respective cyclic strain hardening 

values. 
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Figure 4.13 Dependence of ferrite size on cyclic strain hardening exponent, n'. 

4.3.3 Cyclic hardening/softening 

By comparing the cyclic stress-strain curves with the respective monotonic behaviour it 

can be noticed that most materials present a mixed type of cyclic behaviour including 

softening at small strain amplitudes, followed by cyclic hardening at higher amplitudes 

when the plastic strain component becomes more significant in the material behaviour. At 

strain amplitudes lower than 0.6%, all materials exhibit cyclic softening up to the final 

fracture, with HT2x and (A) steels showing extensive softening behaviour at larger strain 

amplitudes. The variation in tensile peak stress vs. the number of cycles during the strain 

controlled test, is presented in Figs. 4.14 - 4.16. 
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(a) 

 
(b) 

Figure 4.14 Cyclic stress peaks in tension of (a) TRIP700(A) and (b) TRIP700(B) steels. 

 
(a) 

 
(b) 

Figure 4.15 Cyclic stress peaks in tension of (a) TRIP(HT2I) and (b) TRIP(HT3I) steels. 

 
(a) 

 
(b) 

Figure 4.16 Cyclic stress peaks in tension of (a) TRIP(HT2D) and (b) TRIP(HT3D) steels. 
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In TRIP700(A) and (B) steels a gradual transition from cyclic softening to cyclic 

hardening with increasing strain amplitude is observed (Fig. 4.14). The gradual shift to cyclic 

hardening is observed when the plastic strain amplitude increases. In particular at strain levels 

above 1% a clear hardening effect is observed, which becomes more pronounced when strain 

amplitudes reach the value of 2%. The change from cyclic softening to cyclic hardening may 

be associated with the increase of RA transformation with increasing strain amplitude [5, 21, 

75]. Under strain amplitudes with very small plastic component (0.25% - 4% total strain 

amplitude) cyclic softening occurs in both materials. When the plastic strain component 

becomes significant, steel (B) presents reduced softening compared to (A). For strain levels 

above 1% strain hardening controls the materials' behaviour with the amount of hardening 

being higher for steel (B). Contributing to this behaviour is the general trend of TRIP700(B) 

steel for higher RA transformation compared to (A) , as shown from the RA measurements of 

Fig. 4.17 presented in the following section. It is apparent from Figs. 4.15 - 4.16 that heat 

treatment processing influences the materials' cyclic response. TRIP(HT2I) and (HT2D) 

materials exhibit small amounts of initial cyclic hardening for strain amplitudes in the order of 

0.8-1% whereas significant cyclic softening is observed for strain amplitudes below 0.6%. On 

the contrary, TRIP(HT3I) and (HT3D) materials exhibit higher amounts of initial cyclic 

hardening for strain amplitudes in the order of 0.6-1%, while the cyclic softening rate for 

strain amplitudes below 0.6% is decreased compared to HT2x materials. 

All materials present a transitional behaviour from cyclic softening to cyclic hardening. 

The degree of hardening increases with increasing applied strain amplitude, which has been 

observed in a numerous studies in steels containing RA [14, 16, 20, 112]. The steels 

exhibit cyclic softening at strain amplitudes below 0.6% except HT3x materials where 

softening is evident at lower strain amplitudes. In some cases at low strain amplitudes where 
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cyclic softening prevails, a small initial hardening at an early stage was observed (<10 

cycles) (e.g. steel B at strain amplitude 0.4% ). 

4.3.4   Cyclic behaviour and RA transformation 

Steel (B) levels of transformation during cyclic straining prevail by a small amount 

compared to (A). Taking the heat treatment influence into account the (HT3Ι) steel's cyclic 

behaviour is accompanied by extensive transformation, exceeding by far the levels of the 

other materials (see Fig. 4.17), while in the (HT2I) steel's transformation amounts are small 

even below the levels of (A) and (B) steels. The transformation behaviour agrees with the 

respective behaviour under static loading presented in section 4.2.4.  

Taking the above into account with regard to the LCF test results it may be observed that 

HT3 condition showing higher transformation than HT2, exhibits better LCF performance in 

the fatigue region where the elastic and plastic components are comparable, suggesting that 

there is a favorable link between RA transformation potential and LCF life. 

 
Figure 4.17 Percent RA transformed with regard to the applied strain amplitude. 
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Concerning the cyclic behaviour the results reveal that HT3 condition, which promotes 

higher transformation based on Fig. 4.17 is associated with higher cyclic strain hardening 

potential compared to HT2, while the low transformation levels of HT2 in Fig. 4.17 may be 

linked with the cyclic softening behaviour observed in Figs. 4.15(a) and 4.16(a). The above 

behaviour is also confirmed by the larger cyclic strain hardening exponent of the (HT3I) 

material compared to (HT2I) as shown in the results of Table 4.5. 

4.4   High cycle fatigue behaviour  

In order to investigate in more detail the elastic cyclic behaviour of the materials, the 

HCF performance of selected TRIP steels was conducted. In line with the previous 

investigation the effect of RA transformation on the HCF behaviour was assessed by 

measuring the RA value of the fractured fatigue specimens with the SM technique. The 

unnotched and notched S-N curves of (A) and (B) steels are shown in Fig. 4.18.  

 
Figure 4.18 S-N curves of TRIP700(A) and (B) steels (arrows indicate run out tests). 
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C 

The fixed fatigue limits (N=10
7
 cycles), were approximated with the 4- parameter 

Weibull function of Eq. (6), with the fitting parameters C1, C2, C3 and C4 given in Table 4.6. 

For the calculation of the fitting parameter C2 in both notched and unnotched specimens, the 

σUTS value of the materials was used. It is assumed that due to the ductile behaviour the 

presence of the notch does not significantly affect the σUTS value. For the fitting parameter C1, 

the lower bound of the maximum stress at 10
7
 cycles was used. Fitting parameters C3 and C4 

are independent variables. 

     4
3- ln /

max 1 1 2- -
C

N C
C C C e             (6) 

Table 4.6 Weibull equation fitting parameters. 

Steel 
Fitting parameters 

C1 C2 C3 C4 

TRIP700(A) 
smooth 502 707 12.0923 14.00281 

notched 155 707 8.7557 3.61503 

TRIP700(B) 
smooth 535 749 11.03327 6.53394 

notched 165 749 9.33309 4.22789 

 

TRIP700(B) exhibits excellent unnotched fatigue performance with the fatigue limit 

(535MPa) lying close to the material's yield strength (515MPa). Steel (A) exhibits a 

slightly lower fatigue limit (502MPa) and a tendency for improved fatigue resistance at 

higher fatigue stresses, which is in agreement with the good LCF behaviour of steel (A) 

presented in section 4.3.1. The high tensile strength of TRIP700(B) assists the superior HCF 

performance compared to TRIP700(A) and the higher fatigue limit value. 

The notched fatigue behaviour was evaluated with assessment of the fatigue notch 

factor, Kf and the notch sensitivity parameter q from the experimental curves of Fig. 

4.18. The notch parameter values, which are presented in Table 4.7 indicate a detrimental 

notch effect on fatigue crack initiation in both steels, which translates in a drastic decrease in 

fatigue limit in both steels, which was found 165MPa for (B) and 155MPa for steel (A). 

The reduction in fatigue strength is 69% with regard to the unnotched specimens. At higher 
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stresses the curves tend to deviate with steel (B) showing better fatigue performance. It is 

an indication of steel (B) exhibiting better crack initiation resistance. The crack initiation 

behaviour of both steels is evaluated in section 4.5. 

Table 4.7 Fatigue notch factors. 

Steel FL (MPa) FLN (MPa) Kt Kf q= f

t

K 1

K 1




  

TRIP700(A) 502 155 3.5 3.238 0.895 

TRIP700(B) 535 165 3.5 3.24 0.896 

4.4.1   RA transformation under HCF conditions 

Transformation of retained austenite during high cycle fatigue was evaluated by 

measuring the RA volume fraction after the fatigue tests and the results are given in Fig. 

4.19. Steel (A) transforms more in the elastic fatigue region compared to (B) for all stress 

levels examined and the transformation rate of steel (A) is higher compared to steel (B).  

The trend in transformation potential is opposite to the behaviour observed under cyclic 

plastic strains examined in Fig. 4.17. This transition, may be explained by closer examination 

of RA microstructural features contributing to RA transformation. In [113-115] it has been 

shown that in a tensile test under small plastic strains the larger RA particles have the 

tendency to transform first, while the smaller particles transform at higher strains. In [113] the 

transformation behaviour of steel (B) revealed that the smaller the RA particle size the higher 

is the amount of plastic deformation required to enable transformation. The role of RA 

particle size on transformation has also been discussed in [70, 116]. In [116] it was found that 

retained austenite with a grain size smaller than 0.01μm will not transform to martensite, 

while RA particles with grain size larger than 1μm (which is the case for steel (A) in the 

present study), will immediately transform to martensite upon application of small stress. 

More specifically under elastic strains (HCF) the larger RA particles of steel (A) have more 

transformation potential compared to the smaller RA particles of steel (B). As plastic strains 

become larger (LCF) they provide the required driving force for the smaller particles of steel 
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(B) to transform. Hence, the % amount of transformation of steel (B) increases and combined 

with the higher initial RA content exceeds the transformation levels of steel (A). The RA 

measurements from the monotonic tests shown in Table 4.3 confirm this trend showing that at 

fracture, after the materials have undergone severe plastic deformation, steel (B) exhibits 

higher RA transformation. The transformation dependency on particle size under cyclic 

plastic staining has been reported in [87]. Under cyclic stresses, as expected, the amount of 

RA transformation increases with increasing maximum stress as shown in Fig. 4.19.  

The effect of RA transformation on the fatigue limit is examined next for the different 

steels. Fatigue strength has been found to benefit from deformation induced transformation in 

[24, 25, 87]. The S-N fatigue results from [24] on TRIP(HT2I) and (HT3I) steels are used 

here for completeness of the investigation. Combining the results from [24] and experimental 

tests from the current Thesis on (A) and (B) steels the S-N curves of materials are presented in 

Fig. 4.20, while in Fig. 4.21 the %RA transformation in the HCF regime is plotted against the 

maximum cyclic stress. 

 
Figure 4.19 RA transformed with regard to the applied maximum stress. 
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Figure 4.20 HCF behaviour of TRIP steels. 

 
Figure 4.21 RA transformed with regard to the applied maximum stress. 

Steel (B) with the highest fatigue limit exhibits the lowest amounts of transformation as 

shown in Fig. 4.21. On the other end steel (HT3I) with the lowest fatigue limit shows the 

highest transformation levels. By examining Figs. 4.20 and 4.21, a clear tendency of 
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increasing fatigue limit with decreasing transformation levels is obtained. In [24], the higher 

fatigue limit of (HT2I) steel was associated with higher austenite stability. Evaluation of the 

above findings suggests that in contrary to the LCF behaviour, under HCF conditions high 

transformation potential of metastable austenite to martensite degrades the fatigue 

performance of materials. 

4.5   Fatigue crack initiation 

In this chapter the fatigue results of the crack initiation behaviour of TRIP steels are 

presented. In the investigation fatigue crack initiation is considered as the fatigue stage where 

the length of the growing crack at the notch root reaches 250μm. With the length of 250μm 

the crack is significantly larger than the grain size of materials and the assumption that it 

propagates in a homogenous and isotropic field  where application of fundamental fatigue and 

fracture theory is feasible (Fig. 4.22). 

 
Figure 4.22 Schematic representation of stages I (shear mode) and II (tensile mode) considered in the present 

study for the assumption of crack initiation. 

In the findings of Jacques et al. [63], in-situ measurements of stress and strain partitioning 

in TRIP steels during monotonic loading revealed that a representative microstructural 

"element" typically involves ~100 grains and at that level of magnification the average 

mechanical properties of the constituent phases are relevant. 
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In Fig. 4.23, characteristic images of the initiating crack and its progressive advance 

from the notch tip are displayed for (A) and (B) steels, while in Fig. 4.24 the fatigue crack 

growth curves for materials (A), (B) and HTxI are displayed. The case examined in the figure, 

refers to fatigue experiments with maximum stress σmax=200MPa and R=0.1. 

  

(a) (b) 

Figure 4.23 Replica images showing crack evolution from notch tip in (a) TRIP700(A) and (b) TRIP700(B) 

steel using RM method (loading axis is in the horizontal direction). 

The number of cycles corresponding to crack initiation life (Nini) are presented in Table 

4.8 as the average number of cycles at which the first 250μm crack at the free surface is 

detected.  

Table 4.8 Fatigue crack initiation with EDM method (σmax= 200MPa). 

Steel Nf (cycles) Nini (cycles) 

TRIP700(A) 
87300 

113860 
53080 

66040 
140420 79000 

TRIP700(B) 
168860 

175150 
106060 

108970 
181450 111870 

TRIP(HT2I) 

164790 

148600 

87190 

69630 158910 66470 

122090 55240 

TRIP(HT3I) 

184840 

186560 

82300 

91130 181990 95100 

192850 96000 

 

From the results of Table 4.8 it can be noticed that steel (HT3I) is the most damage 

tolerant material with 186560 cycles, followed by steel (B) with 175150 cycles before failure. 
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The average fatigue life for the other materials was 113860 cycles for steel (A) and, 148600 

cycles for steel (HT2I). 

Regarding the fatigue crack initiation stage, steel (B) exhibits the highest crack initiation 

resistance, which corresponds to an average number of 108970 cycles. The worst crack 

initiation behaviour with 66040 cycles belongs to steel (A), while (HT3I) and (HT2I) showed 

crack initiation lives of 91130 and 69630 cycles respectively. 

Crack initiation resistance is primarily associated with microstructural aspects controlling 

the start of cyclic slip or twinning mechanisms under cyclic strains, which is macroscopically 

associated with the materials fatigue limit [117]. In notched fatigue problems, it may also be 

relevant to the materials LCF behaviour since at the root of the notch an elementary material 

volume may be assumed to undergo LCF type conditions [18, 118, 119]. Additionally, the 

transformation mechanism due to the localized plastic strains at the root of the notch is also 

expected to have an impact on crack initiation [22, 86, 91]. For the above reasons providing 

an explanation for the differences in crack initiation behaviour of TRIP steels can be 

superficial. In the following paragraph it is attempted to isolate specific characteristics, which 

may contribute to the observed behaviour. 

Comparing the results between the HTxI variants, steel (HT3I) shows better crack 

initiation resistance compared to (HT2I). Although (HT3I) exhibits a lower smooth fatigue 

limit compared to (HT2I), it has superior LCF performance under cyclic strains with the 

plastic component being comparable to the elastic component. Furthermore, the HT2 variant 

exhibits more pronounced cyclic softening compared to HT3. Steel (A) also exhibits extended 

cyclic softening behaviour and a transition to cyclic hardening only at large strain amplitudes. 

(Figs. 4.14 - 4.16). Steel (B), has the highest fatigue limit, exhibits a very good LCF 

behaviour and a microstructure with moderate stability against RA transformation, where 

transformation develops gradually with increasing plastic strains.  
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In general it may be observed that materials showing cyclic softening accompanied with 

low amounts of transformation under LCF conditions, present a less damage tolerant behavior 

and resistance to fatigue crack initiation is assisted by a microstructure with a moderate RA 

transformation behaviour under cyclic strains, which promotes the gradual cyclic hardening 

mechanism, while cyclic softening associated with less transformation potential is not 

advantageous for damage tolerance.  

 
Figure 4.24 Fatigue crack growth curves of the examined TRIP steels with EDM method (σmax = 200MPa). 

4.5.1   Effect of notch machining on fatigue crack initiation  

Crack initiation behaviour can be influenced by the cutting process during notch 

preparation due to the localized plastic deformation induced at the notch surfaces by the 

machining process. In order to evaluate the possible influence on crack initiation of localized 

RA transformation during machining, the plastic deformation field ahead of the notch tip 

induced by the machining process has to be assessed. The magnitude of deformation depends 

on various parameters such as material, processing and conditions of machining (lubrication, 

wear state of machining tool etc.). From the limited information available the large amount of 
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subsurface plasticity occurs in the material at an average scale length of 10μm [120-122] from 

the machining surface. At larger depths, plastic strains are reduced rapidly within a length 

scale of 50-100μm. This length scale is significantly smaller compared to a) the length scale 

examined from the notch root for crack initiation, b) the magnitude of plastic strains at the 

notch root induced by the external loading of 200MPa. This is expected to reduce the 

influence of the machining deformation effect since it is embedded inside a locally, more 

extended plasticity caused by the external loading during the first cycle.  

In order to validate the effect of notch machining on crack initiation, an additional 

experimental investigation was carried out. Specifically, the fatigue crack initiation tests were 

repeated for steels (A) and (B) on new specimens having the notch introduced with the EDM 

(Electro Discharge Machining) method. In Fig. 4.25 the fatigue crack growth curves are 

compared with the RM and EDM methods and the evaluation of results is presented in Table 

4.9. 

 
Figure 4.25 Fatigue crack growth curves of TRIP700(A) and (B) steel. Effect of notch machining on crack 

initiation (RM: Regular machining, EDM: Electro discharge machining). 
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Table 4.9 Fatigue crack initiation with RM method (σmax= 200MPa). 

Steel Nf (cycles) Nini (cycles) 

TRIP700(A) 

122420 

107770 

87700 

80300 143380 111500 

57510 41700 

TRIP700(B) 

188800 

174010 

124000 

114660 202950 154000 

130280 66000 

 

Comparing the results with EDM and RM (Table 4.8 and Table 4.9) , it may be observed 

that the machining method has minor effects on crack initiation. Both materials exhibit similar 

fatigue lives ((A):113860 cycles with EDM-107770 cycles with RM, (B):175150 cycles with 

EDM-174010 with RM). The average fatigue life for crack initiation was estimated at 80300 

and 114660 cycles for TRIP700(A) and (B) steel, respectively. These average values are in 

quite good agreement with the values presented in Table 4.8, taking into account the 

dispersion of the fatigue crack growth results presented in Fig. 4.25.  

4.5.2   Fractographic observations 

Stereoscopic observations of the fracture surface of notched specimens revealed that 

fatigue cracks (in the majority of the specimens tested) initiate at the free edge adjacent to the 

notch, most probably due to less constraint for development of slip systems. In Fig. 4.26 a 

specimen with typical fatigue segment characteristics including the crack initiation section, 

fatigue crack growth regime and fast fracture region are shown. In the fracture surface of Fig. 

4.26 the crack initiates at the free edge surface of the notch area and is advancing radially 

from the corner edge, towards the mid-thickness direction. 
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Figure 4.26 Stereoscopic image from fracture surface of notched TRIP700(A) steel (Nf=122420 cycles at 

σmax=200MPa, the 250μm crack detected at 87700 cycles). 

The fractographic details of Fig. 4.26 are characteristic for the majority of specimens 

examined. The first crack was observed at one specimen surface and after a certain number of 

cycles a second crack on the other edge was observed, propagating through thickness and 

leading eventually to crack coalescence and the formation of a single through thickness crack 

that propagates until failure of the specimen. A characteristic example is shown in Fig. 4.27 

where replica observations in TRIP700(B) steel specimen at 120000 cycles revealed the 

existence of a 211μm crack only at one side (side A) of the specimen.  
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Figure 4.27 Lateral replica images in TRIP700(B) steel at 120000 cycles showing the onset of an edge surface 

crack (Nf=188800cycles at σmax=200MPa). 
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CCHHAAPPTTEERR    55  

EEssttiimmaattiioonn  ooff  ffaattiigguuee  ccrraacckk  iinniittiiaattiioonn  

In the present Chapter a methodology for the prediction of fatigue crack initiation in 

notched TRIP steel specimens is proposed. The methodology takes into account the local 

elastoplastic stress-strain behavior at the notch root during the first loading event in the cyclic 

history and predicts the life for crack initiation using the cyclic material properties of the 

material based on established models for notched fatigue analyses (Neuber Rule, SED 

criterion). A case study for prediction of crack initiation based on a fracture mechanics 

approach is also considered and the analytical results are compared against experimental data 

produced in section 4.5 in order to assess which methodology presents more reliable 

predictions. In the analysis, discussion is included for the influence of RA transformation 

effect in the obtained results. 
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5.1   Problem Definition 

Methodologies for estimation of notched fatigue crack initiation usually rely on empirical 

fatigue concepts and the use of simplified assumptions to encounter the complex problem of 

multiscale fatigue damage leading to onset of cracking. A common, logical assumption used 

for crack initiation problems is that a material element volume at the root of the notch is 

subjected to low cycle fatigue conditions and that fatigue damage at the material element is 

equivalent to the damage of a macroscopic specimen when subjected to similar cyclic 

conditions. 

In the case of TRIP steels, assessment of crack initiation becomes even more complex 

due to the phase transformation effect and requires a thorough understanding of how damage 

accumulates and initiates in a multiscale perspective, since RA transformation is strongly 

affected by the deformation mode [64], stress state [65], strain rate and slight variations in the 

chemical composition [7]. While limited experimental and analytical research exists on this 

problem, from the available research findings it was shown that the transformation of RA in 

front of the crack tip, inside the monotonic plastic zone [91], acts in favor of suppressing the 

fatigue crack initiation and/or propagation through the plastic relaxation induced by the 

transformation [26-29]. Fatigue crack initiation in TRIP steels is also considered to be 

affected by many other parameters such as the stress state, the transformation rate, the initial 

volume fraction of RA, the carbon content of RA and martensite, the initial defects (e.g. 

voids), the locations of the neighboring austenite grain and martensitic islands and the 

amount of martensite produced [123]. 

Although such effects are important in crack initiation analyses, they are very difficult to 

simulate since available theories fail to combine satisfactorily damage at a multiscale level 

(atomic/microscopic and macroscopic). In the proposed methodology the transformation 

effect is at first stage considered indirectly through the cyclic material parameters of the 
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materials as evaluated in Chapter 4. Subsequently, a more sophisticated method is discussed 

using a fracture mechanics approach to include the phase transformation effect on fatigue 

crack initiation of TRIP steels. 

5.2   Notch strain analysis: The strain-life approach 

Common approaches to notched fatigue behaviour are generally known as local stress–

strain approaches. Their principle is based on relating the crack initiation life at the notch root 

to the crack initiation life of smooth laboratory specimens. The analysis of notched fatigue 

behavior with the local approach usually includes two steps. The first step involves the 

estimation of the local damage using a parameter such as stress, strain or plastic energy 

density at the notch root. The second step is to predict crack nucleation life based on uniaxial 

smooth specimen tests, where it is assumed that smooth and notched specimens encounter the 

same number of cycles to failure since they have the same local damage history. Therefore, 

predicting the local stress-strain behaviour is essential to the understanding of notch fatigue 

behaviour and of fatigue life prediction. 

Two commonly used notch stress-strain models are the Neuber’s rule and the Strain 

Energy Density criterion (SED). A review of these models was performed in [124], where the 

elasto-plastic stress-strain behaviour at notch roots under monotonic and cyclic loading was 

examined. Regarding multiaxial cyclic loading conditions, a unified expression of elastic-

plastic notch stress-strain calculations in solid bodies was also proposed in [125]. 

5.2.1   Local strain approach 

The LS approach was developed to overcome some of the problems inherent in the 

nominal stress (NS) approach, which uses the constant amplitude S-N fatigue curves to 

calculate the fatigue damage based on the nominal stress in the specimen. The principle 
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behind the LS approach, depicted in Fig. 5.1, is that smooth specimens tested under cyclic 

strain-control (LCF conditions) can simulate the fatigue damage at the notch root of an 

engineering component. Equivalent fatigue damage is assumed to occur at the notch root and 

in the smooth specimen when both are subjected to identical stress-strain histories. This is 

known as the principle of equivalence. 

 
Figure 5.1 Material element ahead of the notch tip subjected to LCF conditions. 

Since smooth specimens are tested under strain control, the LS approach uses the strain-

life or ε-N curve for the prediction of life cycles. Estimation of crack initiation life is 

considered when the smooth specimen fails by assuming an equivalent stress state of the 

material volume in the notched specimen. Therefore, cycles to failure of the smooth specimen 

is considered to be equal to cycles to crack initiation of the notched specimen. This 

assumption although introducing specific limitations in the analysis, is considered acceptable 

to approach this type of problems. 
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5.2.2   Notch stress-strain estimation 

The local stress-strain history at the root of a notch under external loading is not easy to 

assess analytically when the material is elastoplastically deformed. If the loading is fully 

elastic, then the material behaviour at the vicinity of the notch can be evaluated using the 

elastic stress concentration factor Kt. However, when -yielding at the notch takes place, the 

resulting behaviour is not known and numerical solutions provide a more accurate analysis 

of the local response. Approximate relationships such as the Neuber method or the Strain 

Energy Density (SED) criterion may be used to determine the local strain at the notch. In 

the following paragraphs a brief description of these two methods is given, which are used 

later in the analytical prediction of fatigue crack initiation life of TRIP steel specimens. 

5.2.2.1   Neuber method  

Neuber showed that for a shear-strained prismatic body with an arbitrary non-linear 

stress-strain law, the geometric mean of the stress and strain concentration factors (Kσ and 

Kε) is equal to the theoretical stress concentration factor, Kt. This is expressed as follows: 

2

tK K               (7) 

The stress concentration factor, Κσ is the ratio of the notch root stress, σ, and the gross-

section nominal stress, S: 

K
S




             (8) 

The strain concentration factor, Kε, is the ratio of the notch root strain, ε and the gross-section 

nominal strain, e: 

K
e




                         (9) 

Combining Eqs. (7)-(9), Neuber's rule can be re-written as: 

2

tK Se                      (10) 
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For nominal elastic behaviour where e=S/E, Neuber' s rule is reduced to: 

 
2

tK S

E
                       (11) 

Generally, this is re-written in terms of stress and strain ranges for the case when the stress 

range remote to the notch is linear elastic: 

 
2

tK S

E
 


                                  (12) 

Eq. (12) is widely used in fatigue life calculations using the LS approach. It shows that the 

product of the notch stress and strain ranges can be estimated by knowing the theoretical 

stress concentration factor, the applied stress range, and the elastic modulus of the material. 

Topper et al. in [126] were the first to refer to Neuber's work as "Neuber's rule". They 

showed that smooth specimen fatigue data could be used to adequately predict fatigue lives of 

notched members made from 2024 and 7075 aluminum alloys under fully reversed loading. 

They suggested the use of fatigue notch factor, Kf, instead of the theoretical stress 

concentration factor, Kt, for cyclic loading, modifying Eqs. (11) and (12) as: 

 
2

fK S

E
                    (13) 

 
2

fK S

E
 


                     (14) 

Although Neuber's rule was derived for monotonic loading, it was applied to fatigue 

loading by Manson and Hirschberg in [119]. They suggested using for fatigue loading the 

cyclic stress-strain curve instead of the monotonic curve. Thus, solving simultaneously 

Eq.(13) for maximum stress and strain (εmax,σmax) and Eq. (5) for εmax and σmax, the notch root 

stress-strain at maximum loading can be estimated. 
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Modifying the Ramberg-Osgood relationship (Eq. (5)) by replacing the strain and stress 

with the strain and stress ranges, respectively and assuming a masing factor of 2 (symmetric 

deformation behaviour in tension and compression), Eq. (5) yields in: 

1/ '

2
2 '

n

E K

 


  
    

 
                       (15) 

Solving simultaneously Eqs. (14) and (15) the cyclic notch stress and strain amplitudes can 

be estimated. With the evaluation of σmax, εmax, Δσ, Δε the values of σmin,σm,εα,σα can also be 

estimated.  

5.2.2.2   Strain energy density criterion (SED)  

An alternate approximate method is the Strain Energy Density (SED) criterion 

proposed by Molski and Glinka [127]. In this approach, it is assumed that the strain energy 

density at the notch root does not change significantly if the localized plasticity is surrounded 

by predominantly elastic material (Fig. 5.2).  

 
Figure 5.2 Graphical representation of the SED criterion. 
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Based on this assumption, computation of the strain energy density at the notch root will 

yield identical results for either the elastic or the elastic-plastic material law. The SED 

criterion has the following form: 

 
 

 
2 2 1/2

0

1 2

2 1

n

t t

e p

K S K S
W W d

E E E n K





  
 

 
       

  
               (16) 

where S is the gross-section nominal stress and σ(ε) is the notch root stress as a function of ε. 

For a given nominal stress S, the notch stress and strain during monotonic loading can be 

calculated solving simultaneously Eqs. (5) and (16). 

With the use of Eq. (5) for maximum stress and strain (εmax,σmax) and Eq. (16) for σ=σmax 

and S=Smax, the notch root stress-strain at maximum load can be calculated. 

For cyclic loading, Eq.(16) can be re-written in terms of stress and strain ranges, while 

the material monotonic deformation properties (K and n) can be replaced by the cyclic 

deformation properties (K' and n') resulting in the following equation: 

   
2 21/n'

4

' 1 2 '

tK S

E n K E

     
  

  
                  (17) 

Solving simultaneously Eqs. (15), (17) the cyclic notch stress and strain amplitudes can be 

calculated. 

According to [128] the SED model is more reliable compared to Neuber' s rule when 

predicting elastic-plastic notch stresses and strains. On the other hand Sharpe et al. [129] 

claim that Neuber' s rule provides better results in cases where plane stress conditions are 

present. In some cases local strain solutions extracted from finite element analyses or 

experimentally determined values, lie between the predictions from the SED criterion and 

Neuber' s rule, with the latter giving unconservative estimations for a given value of KtS (e.g. 

[127, 129]). In these instances, it is difficult to determine which model describes better the 

experimental data. It has been suggested in [129] that estimations made from SED criterion 
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and Neuber' s rule will give lower and upper limits on the local strain, which can be used to 

bound an uncertainty field for the life prediction. 

The analytical expressions provided above, consider the notch stress-strain response for 

completely reversed straining, R=εmin/εmax=-1. In strain-histories with a mean strain, usually 

mean stress relaxation occurs due to the presence of plastic deformation. To account for the 

mean stress effect in fatigue life prediction for the elastic strain component the Smith-Watson 

and Topper parameter (SWT parameter) or the Morrow's mean stress method are oftenly used 

[130]. The SWT parameter [131] which is used in the present thesis is:  

 
   

2
'

2
' '

max 2 2
b b cf

a f f f fN N
E


   



                   (18) 

where σmax=σm+σα and εα is the alternating strain. Eq. (18) is based on the assumption that for 

different combinations of strain amplitude, εα and mean stress, σm, the product σmaxεα remains 

constant for a given fatigue life. If σmax is zero, then Eq. (18) predicts infinite life, which 

implies that tensile loading must be present for fatigue fracture to occur.  

5.3   Fatigue crack initiation analysis 

Calculations of the local stress-strain history may be combined with an appropriate 

notched fatigue analysis in order to estimate fatigue crack initiation as the number of cycles 

required to initiate the crack at the location of interest (notch tip). In this approach, the 

calculated fatigue life is strongly dependent on the material length scale at the notch root and 

the values of notch strains, which usually lack certain accuracy when elastoplastic material 

behaviour is involved due to the complex stress state occurring at the tip of the notch. For this 

purpose appropriate numerical analyses in order to obtain greater accuracy of strains at the 

local elastoplastic material region are usually adopted. 
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Under this viewpoint, in the Thesis a suitable finite element model was developed for the 

determination of the local strains and stresses of a material element volume at the notch tip 

during a far-field loading. The criteria for the selection of length of the material volume are 

analyzed in the following section. The numerical results are then incorporated in the notched 

fatigue models described previously, to obtain the critical number of cycles for fatigue crack 

initiation. The methodology, which is presented in the flow chart of Fig. 5.3 includes the 

following steps for prediction of the number of cycles for fatigue crack initiation for a single 

side V-notch specimen:  

 
Figure 5.3 Methodology for estimation of crack initiation. 

1. Determination of monotonic and cyclic material properties. Specifically the properties 

σy, E, n, K, n', K', σf', b, εf' and c as evaluated in Chapter 4 are required to provide the 

necessary material data for fatigue analysis. 
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2. Calculation of the localized stress-strain curve at the vicinity of the notch during 

external tensile loading. For this purpose an elastoplastic numerical analysis, with the 

true stress-strain data is performed using an appropriate FE model in order to relate 

the macroscopic stress-strain behaviour during the initial loading event of the cyclic 

history, to the local behaviour at the notch tip. The numerical model is described 

analytically in section 5.4.1. 

3. The numerical results of step 2 are used as input in notched fatigue models for 

calculation of fatigue life for the specific loading conditions. 

5.3.1   Assumptions of the methodology 

Fatigue analysis for the prediction of crack initiation life adopts certain assumptions for 

simulating the involved damage mechanisms. The methodology considers that crack 

initiation from the notch tip is associated with failure of an elementary material volume 

adjacent to the notch root, which is subjected to low cycle fatigue conditions. The material 

element is located at the corner of the notch tip, at the free surface of the specimen as 

depicted in Figure 5.4, and has a width along the x-direction (plane of crack propagation), 

equal to 250μm (Fig. 5.4).  

 
Figure 5.4 Material element located at the free edge surface. 
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The criteria for selecting the specific element location are based on the fractographic 

observations discussed in Chapter 4 according to the experimental findings (Figs. 4.26 - 

4.27), cracks originate as corner cracks at the tip of the notch and then propagate radially 

before coalescence occurs into a single through thickness crack.  

Selection of the 250μm width for the corner element satisfies the assumption that the size 

is large enough to consider conditions of an isotropic, homogeneous medium for valid 

implementation of fatigue equations, since it exceeds by far the magnitude of the critical 

microstructural parameter, which is the grain size of the materials. 

 Taking the above into account, fatigue failure of the material element designates crack 

initiation, which for the case examined is considered as the development of a 250μm corner 

crack at the tip of the notch on the outer specimen surface. In the analysis, based on the local 

strain approach (section 5.2.1), it is considered that the material element volume is subjected 

to equivalent fatigue damage as an individual specimen tested uniaxially in laboratory 

conditions. This hypothesis contains specific shortcomings due to i) the size effect involved, 

ii) the fact that the material element volume undergoes deformation constraints from adjacent 

elements, which are not present in laboratory conditions, iii) the deformation state in the 

material element is not strain controlled as in the case of the low cycle fatigue test. Strain 

triaxiality at the notch tip is not expected to be an influential factor in the fatigue behavior 

examined due to the selection of the corner element promoting plane stress conditions.  

5.4   Numerical simulation of the local stress-strain behaviour at the notch 

tip 

Analytical methods for calculation of the stress-strain field in the vicinity of the notch are 

based on assumptions which may not be valid in certain situations. For instance, Neuber' s 

rule does not account the multiaxial stress state present at the root of the notch. The latter 
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method provides quite accurate results for thin sheets (plane stress conditions) but is 

conservative by predicting strains higher than actually measured. Fatemi et al. [124] 

compared the elasto-plastic notch stress strain behaviour obtained by using Neuber’s rule and 

SED method with experimental and finite element results for specimens with different Kt 

values. From their results it was clear that Neuber’s rule works best when the vicinity of the 

notch is in a state of plane stress while Glinka’s rule for plane strain conditions. Approximate 

relationships such as Neuber's rule and SED method are useful to provide first estimations of 

the notch root stress/strain behaviour, but a more accurate prediction would require further 

computational study with a finite element software. Furthermore, being macroscopic, 

analytical methods they do not account for certain microstructural influences, which control 

the material’s plastic deformation behaviour. For instance, the phase transformation effect 

contributes to the plastic straining under external loading and is an important parameter on 

the TRIP steel behaviour. 

5.4.1   Finite element model 

To obtain a representative local stress-strain behaviour at the notch root, the elasto-plastic 

stress-strain behaviour of the material element of Fig. 5.4 was simulated numerically under 

external monotonic loading using the Abaqus finite element (FE) software. The element 

behavior was simulated for a monotonic loading corresponding to a maximum tensile stress 

of 200MPa, which is the quarter of a cycle in the fatigue test performed in Chapter 4. For the 

simulation where the specimen is subjected to a far-field tensile loading, a 3D finite element 

model was constructed and a step loading analysis was performed (Fig. 5.5). 

The values of the elastic material properties used in the analysis are Poisson’s ratio ν=0.3 

and Young’s Modulus E=205.9 GPa for the four steels examined. Beyond the elastic region 

an isotropic hardening behaviour was implemented to describe each material's stress-strain 
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behavior, which uses the calculated true stress-strain plastic curve data presented in section 

4.2. 

During loading a fixed constraint was applied in the upper bolt hole (Fig. 5.5), which 

simulates the conditions of specimen fixture during testing. The tensile loads resulting in the 

stress of 200MPa are 4396N and 3538N for steels (A) and (B), corresponding to a thickness 

of 1.75mm and 1.45mm respectively. For steels variants HTxI having a thickness of 0.75mm, 

the load is 1758 N. 

In the numerical analysis linear hexahedral solid 3D elements were used. The element 

width at the notch tip was set to 250μm, the characteristic crack length assumed for crack 

initiation in section 4.5. The fine mesh consisted of a total number of 25650 and 30130 

elements for steel (A) and (B), respectively. For the HTxI variants, one common solid model 

was used on account of similar specimen geometry, which consisted of 10047 linear 

hexahedral solid 3D elements. Optimization of the mesh in the model was performed by 

increasing the element size with increasing distance from the notch tip in order to reduce the 

computational time.  

Mesh sensitivity validation has also been performed with the use of finer mesh. The 

element width in the vicinity of the notch was reduced to 25μm and the monotonic simulation 

was repeated. The deviation of predicted notch stress-strain values with the finer mesh was 

lower than 4% compared to the results of the 250μm width element mesh. The latter findings 

imply that a finer mesh will have negligible effect on evaluation of results.  
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Figure 5.5 Finite element model of TRIP700(A) material to simulate the notch stress-strain behaviour. (a) 

Boundary conditions used in the simulation. (b) Meshing at the vicinity of the notch. 

5.4.2   Numerical results 

A stepped load increment was applied up to a far-field tensile stress of 200MPa. In Fig. 

5.6 the calculated stress-strain behaviour of the corner element at the notch tip is presented 

for the examined TRIP materials, while in Figs. 5.7 - 5.8 details of the FE models with the 

distribution of normal stresses and strains in the loading direction are shown. 

 
Figure 5.6 Normal stress-strain behaviour of the corner element at notch tip for TRIP700(A),(B),TRIP(HT2I) 

and TRIP(HT3I) steels. 
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The maximum stress and strain (Figs. 5.7 - 5.8) is σyy =675.9MPa - εyy =0.0034 for 

material (A), σyy=606.9MPa - εyy=0.0046 for material (B), σyy=631MPa - εyy=0.00473 for 

material (HT2I) and σyy=587MPa - εyy=0.00504 for material (HT3I). As shown in the results 

of Fig. 5.6 local yielding at the notch tip takes place. 

The maximum stresses and strains at the notch root can be calculated using the Neuber 

method or SED criterion by solving simultaneously Eqs. (3), (11) and Eqs. (3), (16), for 

incremental monotonic loading. In Fig. 5.9 the analytical local stress-strain results obtained 

using the Neuber and SED method are compared with the numerical results obtained from the 

finite element model. 

By examining the results presented in Fig. 5.9 it can be noticed that the analytical results 

underestimate the numerical findings. In TRIP700(A) material, for a maximum notch strain 

of 0.0034 the predicted notch stress with the Neuber or SED criterion is underestimated by 

33.4% (FEA prediction=676MPa, Neuber/SED=450MPa), while for TRIP700(B) material the 

difference is 33.5%. For TRIP(HT2I) and (HT3I) materials the predicted maximum notch 

stresses from Neuber/SED criterion are underestimated 42% and 36.5% respectively. 
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(a) (b) 

Figure 5.7 Side view of the model. Normal stress and strain distribution at the vicinity of the notch for 

(a)TRIP700(A) and (b)TRIP700(B) material. 

 
(a) (b) 

Figure 5.8 Side view of the model. Normal stress and strain distribution at the vicinity of the notch for 

(a)TRIP(HT2I) and (b)TRIP(HT3I) material. 
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As discussed earlier, Neuber's rule may overestimate the notch root strains under 

multiaxial stress state conditions while it provides more reliable results for plane stress 

conditions. Comparison of the analytical approximations with the FE analysis showed that 

the Neuber method and the SED criterion provide almost identical results, which are 

conservative compared to the results of the FE model and hence may be better used as first 

estimations [124]. However, underestimation of notch root strains by quite large margins 

have been also reported elsewhere [118, 124]. 

  
(a) (b) 

  
(c) (d) 

Figure 5.9 Notch root strains from FEA, Neuber's rule and SED criterion under monotonic tensile loading for, 

(a) TRIP700(A), (b) TRIP700(B), (c) TRIP(HT2I) and (d) TRIP(HT3I) steel. 

5.5  Notched fatigue analysis 

A notch fatigue analysis is performed next based on the numerical results of section 5.4.2 

for calculation of the number of cycles for crack initiation, as explained in section 5.3. 
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Implementation of the numerical results in the fatigue analysis aims to provide a more 

reliable prediction due to a more accurate calculation of local strains at the vicinity of the 

notch compared to the analytical methods.  

The case that was simulated analytically was the one studied experimentally in section 

4.5. A flowchart of the analytical simulation for prediction of crack initiation life and the 

steps involved in the analysis is shown in Fig. 5.10.  

 
Figure 5.10 Flowchart of the steps used in the fatigue analysis for prediction of fatigue life corresponding to 

crack initiation. 

The monotonic material properties σy, n, K from Table 4.2 and the cyclic properties n', 

K', σf', b, εf', c, Kt, Kf from Tables 4.5, 4.7 were used as input parameters in the analysis. 

Since there were no experimental data concerning the Kf values of (HT2I) and (HT3I) steels, 

the value of Kf=3.24 obtained experimentally for (A) and (B) materials was chosen also for 

the HT materials. The predicted fatigue lives in cycles for each material examined, is 

presented in Table 5.1 

It is evident from the results of Table 5.1 that fatigue predictions are very sensitive to the 

calculated local stress-strain history at the notch root. Small differences in notch stress-strain 

of the order of 5-6% may result in significant differences in predicted fatigue life of the order 

of 34% of Table 5.1. This observation highlights the importance of a reliable prediction of the 

notch strain values as it is attempted here with the numerical analysis. The SED criterion 

predicts in general higher values of notch stress and strain compared to Neuber's method, 

leading to more conservative fatigue life predictions. Both methods overestimate the 

experimental results. The plane stress conditions corresponding to the element examined in 
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Fig. 5.4 do not seem to favor the prediction of the Neuber method here possibly due to other 

factors associated with the microstructure and TRIP effect. The above trend is in line with 

observations presented in literature, since Neuber’s rule considers the stress state to be 

uniaxial at the notch root, which leads to less conservative results.  

A comparison of predictions using in the fatigue analysis the numerical notch stress-

strain results, and the results from the Neuber or SED method is performed in Table 5.2, 

using the experimental findings as verification. For the majority of materials examined, the 

numerical results improve the fatigue analysis and bring it closer to the experimental results 

compared to the analytical solutions, although some underestimation of the number of cycles 

for failure compared to the experiment is present.  

The largest deviation between analysis (with numerical stress-strain notch results) and 

experimental results is observed for material HT2I, which exhibits the shortest fatigue life for 

initiation of the 250μm crack. For that case, a noticeable underestimation of the experimental 

fatigue life exists, whereas the analytical solutions, which in all other cases overestimate 

significantly the experiment here provide a good approximation. A possible explanation for 

the inferior fatigue performance of HT2I material may be the extensive cyclic softening 

under cyclic plastic strains, even when the plastic strain component is not prominent, as 

discussed in the experimental findings of section 4.3.3 (Fig. 4.15). This cyclic softening 

behavior, when extrapolated to the notch tip, in a stress controlled experiment may degrade 

the resistance to fatigue crack initiation due to the local, gradual increase of strain amplitude. 
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Table 5.1 Predicted fatigue life for the formation of a 250μm crack using FEA results. 

 

TRIP700(A) TRIP700(B) TRIP(HT2I) TRIP(HT3I) 

Neuber SED Neuber SED Neuber SED Neuber SED 

 
Cyclic loading between 200-20Mpa 

Notch stress amplitude, σα (MPa)
 a
 290 312.5 275.5 285 286.2 302 283 295.5 

Notch strain amplitude, εα 
a
 0.00141 0.00153 0.00149 0.00156 0.00144 0.00154 0.00146 0.00155 

 
Fatigue life for loading 200-20MPa 

Notch mean stress, σm (MPa) 385.7 363.2 327.4 317.9 344.5 328.7 303.9 291.4 

Maximum notch stress, σmax (MPa)
 b
 676 676 603 603 631 631 587 587 

Product of εασmax 0.9525 1.0311 0.8964 0.9417 0.9089 0.9725 0.8553 0.9081 

Predicted fatigue life, Nf 

(cycles) 
c 

53800 37890 104500 77500 16500 13090 51000 39050 

a
 Calculated with Eqs. (14),(15) for Neuber and (15),(17) for SED criterion, 

b
 Calculated with FE, 

c
 Solved with Eq. (18) 

 

 

 

Table 5.2 Comparison of predicted fatigue life for crack initiation with experimental data. 

 

TRIP700(A) TRIP700(B) TRIP(HT2I) TRIP(HT3I) 

Neuber SED Neuber SED Neuber SED Neuber SED 

Predicted fatigue life without FE calculations, 

Nf (cycles) 
a 180000 130000 650000 560000 48300 40800 178000 151000 

Predicted fatigue life with FE calculations,             

Nf (cycles) 
53800 37890 104500 77500 16500 13090 51000 39050 

Experimental investigation, Nini (cycles) 
66040

 b
 

80300 
c
 

108970 
b 

114660 
c
 

69630 91130 

a
 Calculated with Eqs. (5), (13), (16) implemented in Eq. (18), 

b 
cycles with EDM method, 

c 
cycles with RM method 
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5.6   Prediction of crack initiation based on a fracture mechanics approach: 

A case study 

In the concept described previously, crack initiation is considered as the onset of a 250μm 

crack due to failure of a material volume at the notch tip, which is subjected to LCF 

conditions. For a more comprehensive understanding of the fatigue crack initiation problem, a 

more rigorous approach based on fracture mechanics is attempted here and is presented as a 

case study. This approach is based on the prediction of the number of cycles required for a 

small crack (not microstructurally short) to initiate at the root of the notch and propagate to an 

increment of 250μm. To accomplish this, it is considered that crack initiation occurs as the 

onset of a corner crack at the free edge of the notch, as it has been experimentally observed in 

section 4.5.2 of the present Thesis, due to fatigue failure of a material element at the free 

edge. A more realistic approximation of fatigue crack initiation requires that the occurring 

fatigue damage resulting to failure of the material element takes place at a smaller scale; 

therefore the dimensions of the material element examined in the previous section (section 

5.5) are reduced to 50x50μm. After onset, the corner crack propagates under in mode I until it 

reaches a final length of 250μm. To perform the analysis the calculation steps presented in 

sections 5.4 and 5.5 are used to predict the number of cycles for failure of the corner element 

(crack initiation), and then a fracture mechanics analysis is implemented to calculate the 

number of cycles for the growth of the crack until a final length of 250μm from the notch tip 

(crack propagation). 

5.6.1 Crack initiation (onset of 50μm crack at the notch tip) 

In Fig. 5.11(a) the finite element model developed in section 5.4.2 is presented with a 

finer mesh (25μm element size) to expand the notch stress- strain analysis at a characteristic 

distance of 50μm from the notch tip for a far field tensile stress of S=200MPa. In Figs. 

5.11(b) and (c) the distribution of local stress and strain with the distance from the notch tip is 
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shown. The maximum stress and strain calculated at a distance of 50μm from the notch root 

are σyy=630MPa and εyy=0.007128. Using these values in the analytical model described in 

section 5.5 the cycles for failure of the material element, are 80300 and 60500 cycles with the 

Neuber and SED criterion, respectively. 

 
(a) 

 
(b) 

 
(c) 

Figure 5.11 (a) Normal strain distribution in TRIP700(B) model with finer mesh (25μm element size), (b) 

maximum strain and (c) maximum stress distribution vs. distance from notch tip for a remote stress of 200MPa.  

 

5.6.2 Crack propagation 

5.6.2.1   LEFM limitations in fatigue crack growth behavior from notches 

In many design situations, Linear Elastic Fracture Mechanics (LEFM) analyses allow a 

direct comparison of fatigue crack growth behavior between engineering components and 
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laboratory specimens using the stress intensity factor range, K. Although this is an accepted 

methodology in the case of long cracks, for short crack problems limitations of continuum 

mechanics lead to underestimation of the fatigue crack growth rate [132]. The limitations may 

arise in the case of microstructurally short cracks due to the length of the crack being 

comparable to the microstructural scale of the material (e.g. grain size) or to the plastic zone 

size at the crack tip. For physically small cracks (typically smaller than 0.5 mm) with length 

exceeding the microstructural scale of the material, limitations may occur when the short 

crack is embedded within the plasticity of a notch [132, 133]. 

In the case examined here, the crack (50μm length) is significantly larger than the 

maximum grain size (9.47μm) and therefore cannot be considered to be microstructurally 

short. Also its cyclic plastic zone size rcy=1/8π(ΔΚ/σy0.2)
2 

=17.65μm [134] is smaller 

compared to its length. On the other hand the plastic zone at the notch root for a remote stress 

of 200MPa is approximately 300μm as calculated from Fig. 5.11 which means that the stage 

of short crack propagation takes place inside the plasticity of the notch. 

Although originally developed for mostly elastic conditions, LEFM concepts can be used 

for short cracks embedded in the inelastic field induced by the presence of notch. 

Characteristic paradigms are the correlative model by Leis [133] which is explained in more 

detail in the next paragraph, the concept of El Haddad et al. [135, 136], which introduces a 

threshold crack length as minimum for applicability of LEFM and models based on the 

determination of short crack growth parameters [e.g. [137]]. The concept of Leis has been 

found to be more suitable for the current investigation, since the threshold crack length for 

applicability of LEFM exceeds the final crack length in the case examined. 

5.6.2.2   LEFM correlative model of notched specimen and crack propagation 

In the work of Leis [133] a correlation of LEFM concept has been proposed when the 

crack is completely submerged in the notch tip plastic zone and thus bulk plasticity conditions 
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dominate the growth behavior. Since the notch inelastic filed does not transmit the far field 

stress and stress cycle to the crack in the same manner as would an elastic field, it is 

reasonably assumed that for a notched specimen subjected to a far field constant stress 

amplitude (load controlled), there is a material volume at the tip of the notch with it's 

deformation being displacement controlled (Fig. 5.12).  

 
Figure 5.12 Displacement control of crack contained within notch plastic zone. 

 

In the view of the above it is postulated by Leis [133] that the driving force for the above 

crack to grow in the notch inelastic field can be approximated by: 

mx mx mΚ 1.12ε E πα           (19) 

where εmx is the cyclically stable maximum strain in the material element at the depth of 

interest (in the absence of the crack), Em is the monotonic modulus, 1.12 is the free surface 

correction factor and α is the length of the crack measured from the notch root. In Eq. (19) the 

product εmx*Em is primarily used to estimate a "pseudostress" in keeping with the linear 

elastic nature of LEFM. In [138], application of Eq. (19) in a pearlitic rail steel resulted in 

accurate prediction of the cracking behavior for cracks as small as 50μm. 

Since the total fatigue crack would be fully embedded in the notch tip plastic zone and 

propagates under LCF conditions, the parameter εmx of Eq. (19) can be estimated as an 

average maximum strain within the length scale of 50μm to 250μm in Fig. 5.11 (b). Using Eq. 
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(19) with a maximum strain value of εmx=0.00417, Em=205.9GPa and the crack length based 

on the size of the corner element α=0.00005m, the calculated stress intensity factor is Kmx= 

12.05MPa√m.  

The number of cycles for the crack to propagate from an initial length, αin=50μm to a 

final length αf=250μm (Fig. 5.13) for a uniaxial, mode I problem under a stress ratio R=0.1 

and a maximum stress of σmax=200MPa can be calculated by integrating a Paris-Erdogan 

crack growth law [139]: 
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Figure 5.13 Initial and final crack length for the growth of the short crack. 

 

The parameters C=1.81005e-13 and m=4.10051 for the TRIP700(B) steel have been 

taken from [140] and are used here under the assumption to be applicable for the short crack 

problem [130]. The "pseudostress" amplitude is Δσ=772MPa calculated from εm*Em for 

R=0.1 and the free surface correction factor Y=1.12. Using the above values in Eq. (20), the 
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number of fatigue cycles for the crack to propagate to the critical length of 250μm is 12254 

cycles. By adding the cycles calculated in section 5.6.1 for onset of the crack, the total fatigue 

life for development of a 250μm crack at the root of the notch is 92554 and 72754, with the 

Neuber and SED method respectively (Table 5.3) . 

Table 5.3 Predicted fatigue life for the formation of a 250μm crack in TRIP700(B). 

 

 

 

 

 

The problem of fatigue crack initiation assessment examined above is focused on sheet 

steel materials having a thickness under 2mm, which allows for the consideration of plane 

stress state. When the thickness increases, stress triaxiality effects can influence RA 

transformation [66, 114, 141-143] and hence the associated mechanical behaviour of TRIP 

steels. 

By comparing the results of Table 5.3 with Table 5.2 it can be noticed that using the 

fracture mechanics approach in the present fatigue crack initiation analysis, the prediction of 

fatigue life for the onset of a 250 μm crack can be satisfactorily predicted. 

5.6.3   RA transformation and fatigue crack growth 

The fracture mechanics approach presented in section 5.6 can be modified appropriately, 

to support the inclusion of RA transformation, which has been found to influence fatigue 

crack initiation as well as crack growth. RA transformation is microstructurally accompanied 

by volume expansion [4-6] and may cause certain stress relaxation at the tip of a stress raiser 

due to the elastic surrounding material, thus extending the fatigue life prior to crack initiation. 

Additionally, phase transformation at the crack tip has been shown to be beneficial for fatigue 

 

Predicted fatigue life with FE calculations, for 

failure of a 50μm element, Nini (cycles) 

Neuber 

80300 
SED 

60500 

 

Crack advancement from 50μm to 250μm, 

Nprop (cycles) 

12254 

Total fatigue life, Nf (cycles) 92554 72754 
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crack growth in a numerous studies [26-29, 91]. The main mechanism contributing to the 

retardation of crack growth is the stress relaxation imposed by the phase transformation 

during the volume change [6]. 

The above observation may be used to correlate the local stress relaxation with the 

induced crack closure, which reduces the effective driving force at the crack tip. Then an 

effective Stress Intensity Factor (SIF) range ΔΚeff (instead of the total range ΔΚ) in Eq. (20) 

may be obtained in the form: 

 eff max op TR
ΔK ΔK ΔK          (21)  

If an appropriate method is developed which allows for the experimental assessment of 

ΔΚop(TR) due to stress relaxation, the effective SIF range is a more reliable parameter for 

estimation of fatigue crack propagation. However the difficulty in the assessment of the SIF 

opening parameter is that it has to be carefully evaluated so that it can be distinguished from 

other mechanisms contributing to crack closure during fatigue crack growth (e.g. plasticity, 

surface roughness etc). 

In that case, empirically, a quantification of the phase transformation effect on crack growth 

rate may be taken into account by using a modified expression of Eq. (21) first proposed by 

Elber [144] in the form: 

       
mm

eff eff

d
C C

dN


         (22) 

where ΔΚeff, σeff are the effective values of SIF range and stress contributing to open crack 

surfaces. This analysis although not simple, is proposed as an idea for further investigation of 

the problem. 
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CCHHAAPPTTEERR    66  

CCoonncclluussiioonnss  aanndd  RReeccoommmmeennddaattiioonnss  

ffoorr  ffuurrtthheerr  ssttuuddyy  

The effect of retained austenite transformation on the fatigue behaviour of Al- containing 

TRIP700 steels was investigated in the present Thesis. Transformation was quantitatively 

assessed under static loading as well as under different fatigue regimes including elastic and 

elastoplastic cyclic straining and its role on the materials tensile and cyclic properties was 

evaluated. The influence of characteristic microstructural parameters such as particle size and 

phase volume fraction was considered in the investigation. Furthermore, the crack initiation 

behavior of TRIP materials was investigated experimentally and analytically including a 

discussion of the role of RA transformation on the material behavior. The main findings of 

the investigation can be summarized in the following: 

1) The tensile behavior is associated with the TRIP effect, which controls the magnitude of 

uniform elongation and thus necking in the material. A smaller RA particle size, which is 
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associated with higher stability against transformation, contributes to higher uniform 

elongation, delaying necking in the material. The delayed necking behavior is 

accompanied by a moderate strain hardening exponent (around the value 0.2) of TRIP 

materials. RA transformation potential is also related to the ferrite size. As the ferrite size 

increases the measured % RA transformation at fracture increases. Finally, a correlation 

seems to exist between RA transformation and strain hardening capacity with the 

materials having high % RA transformation exhibiting higher strain hardening exponents. 

2) The high cycle fatigue behavior of TRIP steels is characterized by high fatigue limits, 

close to the materials' yield strength. The fatigue limit increases with decreasing % RA 

transformation indicating that fatigue behavior under elastic strains is superior in TRIP 

materials with low RA transformation levels. Under Low Cycle Fatigue conditions the 

trend is opposite. In the fatigue regime close to the transition life, where the plastic strain 

component is comparable to the elastic component, superior LCF performance seems to 

be related to higher amounts of RA transformation. 

3) The cyclic behavior of TRIP steels is characterized by cyclic softening at small plastic 

strain amplitudes and a progressive transition to cyclic hardening at larger plastic strain 

amplitudes. Low levels of RA transformation under cyclic plastic strains were found to be 

associated with pronounced cyclic softening of the material. 

4) Although there were no RA measurements at the fatigue crack initiation location in the 

present Thesis, from the material behavior observed, high resistance to fatigue crack 

initiation is obtained from TRIP (B) material with a moderately stable RA microstructure 

under cyclic strains, which promotes a progressive cyclic hardening mechanism. 

Materials exhibiting cyclic softening associated with less transformation potential as 

TRIP (A) steel, have been found to be less damage tolerant with regard to the notched 

fatigue behaviour. 
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5) The analytical results showed that existing fatigue models may be successfully combined 

with FE analysis at the tip of the notch to provide an improvement in the prediction of 

onset of a short crack at the notch root. A damage tolerance approach for the assessment 

of crack initiation at the notch root is also proposed with an option to extend the analysis 

for including the phase transformation effect in the assessment of fatigue crack growth. 

6.1   Recommendations for further study 

In this paragraph, some propositions for further study are included regarding the effect of 

RA transformation on fatigue and damage tolerance behaviour of TRIP steels. Ideas for 

further study may include:  

a) Development of a quantitative correlation between the RA stability (through the 

determination of Ms
σ
 temperature), with microstructural features and the observed trends 

regarding the mechanical behavior of materials. 

b) Investigation of the fatigue crack growth behavior in the medium ΔΚ regime, i) to obtain 

a more global view of the damage tolerance behavior of materials including short and 

long crack behavior and ii) to attempt an experimental assessment of the opening stress 

intensity range ΔΚop(TR) associated with the transformation effect. 

c) Development of fatigue models in combination with point b) for the prediction of the 

transformation effect on fatigue crack growth rate of TRIP materials.  
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