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Abstract
This dissertation addresses the Flight and Maintenance Planning (FMP) problem, i.e., the problem of
deciding which available aircraft to fly and for how long, and which grounded aircraft to perform
maintenance operations on in a group of aircraft that comprise a unit. FMP is an important decision
making problem arising at the typical operation of the Hellenic Air Force (HAF). The aim is to
maximize the fleet availability of the unit, while also ensuring that certain flight and maintenance
requirements are satisfied.

We develop several optimization models for the formulation of the FMP problem, which
accommodate various objective functions as well as constraint sets. These models handle small
problem instances effectively, but tend to be computationally inefficient for larger problems, such as
the ones that arise in practice. With this in mind, we first develop heuristic approaches which can
provide near optimal solutions in insignificant solution times. Due to the fact that these approaches
often generate solutions which are far from the optimum, we go on to develop exact solution
algorithms for the FMP Problem, which are capable of identifying the exact optimal solution of
considerably large realistic problems in reasonable computational times. The first algorithm that we
develop handles the single period version of the problem, whereas the second one handles the multi-
period one.

A crucial difficulty that often arises in practice relates to the fact that the fleet availability of the
solutions provided by the aforementioned methodologies often exhibits significant variability. In order
to handle this difficulty, we develop a multi-objective FMP model next, which includes an additional
objective minimizing the variability of the fleet availability. For this model, we develop two exact

solution methods, which are capable of identifying the entire frontier of non-dominated solutions.
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In order to test the performance of the proposed optimization models, we used the commercial
optimization solvers IBM ILOG CPLEX and LINGO; for the development of the specialized solution
algorithms, we used the C/C++ programming language. The experimental results that we present
demonstrate the high efficiency of the proposed solution methodologies on both randomly generated
as well as on realistic problem instances, as compared to the traditional approaches that can be used

alternatively for the solution of the problem under study.
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Chapter 1  Introduction

Before delving into the mathematical content of this dissertation, we first provide some context and
motivation. This dissertation grew out of research in the area of optimization. Optimization deals with
the development and application of mathematical programming techniques for the solution of complex
decision-making problems. Evidence of vigorous research activity within this field is easy to
document. This introduction gives an overview of the motivation for dealing with the specific problem
under consideration, states the dissertation’s main contributions, and provides a guide through the

chapters to follow.

1.1 Motivation and background

The Air Force and the commercial airline industry have several similarities, but also exhibit significant
differences. Safety is the most important factor in both industries; however, while maximization of
profit is naturally the overall objective in the commercial airline industry, maximization of the
readiness to respond to external threats is the main objective in the Air Force. Therefore, military
aircraft operational problems should generally be treated differently than traditional problems arising
in the commercial airline industry.

A significant part of the total operational budget of a fleet is spent for maintaining the aircraft
that comprise it. In the commercial airline industry, there are four different levels of maintenance
which differ from each other in philosophy, duration, and frequency of occurrence. They are:

* Type "A" Check: This check is performed every 65-100 flight hours or once a week. It
includes inspection of all major components and systems of the aircraft, such as the landing
system, the engines, and the control surfaces.

* Type "B" Check: This check is performed every 300-600 flight hours and includes lubrication
of all moving parts and thorough optical testing of several components, such as the rear wing
and the slope surfaces. Both Type A and B checks are usually performed overnight so that the
aircraft becomes operational in the next morning. If the necessary equipment is available, Type
"A" and "B" checks are usually performed on site, at the base location of the aircraft.

* Type "C" and Type "D" Checks: These are more costly and time consuming checks
performed every one and four years, respectively, which require grounding of the aircraft for
several weeks. Type "C" and "D" checks are only performed in special facilities that have the

necessary equipment and know-how.
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Chapter 1 Introduction

Military aircraft are usually categorized according to their type or the mission that they can
accomplish. Typical missions are pilot training, recognition and repulsion of enemy aircraft,
bombardment, etc. The safety standards of military aircraft are usually prescribed by their
manufacturer; due to the fact that there are a few such manufacturers worldwide, the standards used by
Air Force organizations of different countries are often similar. Each aircraft must be grounded for a
routine maintenance check as soon as it completes a certain number of flight hours since its last
maintenance check. There are also restrictions regarding calendar time (as opposed to flight time) and
number of takeoffs, but they are rarely used in practice, because the flight time restrictions usually
apply sooner.

In the current dissertation, we address the problem of the joint flight and maintenance planning
(FMP) of military aircraft. The FMP problem poses the question of which available aircraft should fly
and for how long, and which grounded aircraft should perform maintenance operations, in a group of
aircraft that comprise a combat unit. The objective is to achieve maximum availability of the unit over
the planning horizon. The FMP problem is a very important decision making problem in the Air Force.
Due to the fact that it involves both operations as well as maintenance related decisions, we treat it as a
unified operational problem.

The FMP problem arises as an important decision making problem in the typical operation of
the HAF. The HAF is primarily responsible for Greece’s national air defence. It is split into four
Divisions: Division of Tactical Air Force, Division of Air Support, Division of Air Training, and a
fourth division, responsible for other units and services. All units responsible for air operations and
missions belong to the Division of Tactical Air Force. Further down the organizational structure of the
Division of Tactical Air Force, we find the Combat Wings, which are subdivided into squadrons. The
HAF is supported by a three-level maintenance program as follows:

* 1st level maintenance (organizational level): This check is performed on site and includes
inspection, repair, and parts replacement.

* 2nd level maintenance (intermediate level): This check is performed on site and includes
more thorough inspection, repair, and parts replacement than the 1* level maintenance.

* 3rd level maintenance - Manufacturer's maintenance (depot level): This check is performed
in special facilities by specially trained professionals. It includes more thorough repair and parts
replacement than the other two levels.

The key challenges faced by military managers around the world are readiness, affordability and
increased operational workload. At the same time, the associated budgets become increasingly tighter.
This implies that existing acrospace platforms and systems must remain in service much longer than

originally expected. The B-52 Stratofortress, for example, which entered the U.S. Air Force inventory
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in 1954, has served in recent operations "Enduring Freedom" and "Iraqi Freedom" and is expected to
continue flying until 2040, after being upgraded between 2013 and 2015.

High operational workload cannot be handled easily by aging fleets, however. Maintenance
costs tend to rise, fleet availability decreases, and obtaining out-of-production spare parts becomes
expensive and difficult. Platforms also need upgrades to keep them relevant in today's integrated
battlespace. It is estimated that, while the development and production of a military aircraft system
make up only about 30 percent of a government's total ownership cost, the overwhelming 70 percent
of total cost regards sustainment and support functions, such as program planning and data
management, training, developing and updating technical manuals, purchasing and managing spare
parts and support equipment, and carrying out maintenance, modifications, upgrades and other aging
aircraft initiatives.

While the importance of the maintenance functions of fleet organizations has received
considerable attention, its linkage to the operations functions has been overlooked. Traditionally, the
maintenance functions have been considered separately from the operations functions. One of the main
reasons for this separation has been the difficulty in information exchange and the lack of
communication between operations and maintenance. As a result, these two functions often appear to
operate competitively, although their ultimate aim is common. The vast progress of real time
information management systems during recent years has made it possible to look into the entire fleet
management organization as an integral system and optimize all its major parts towards the primary
mission.

Even though our work is carried out within the context of a military application, our model can
be applied to several non-military applications, such as planning for fire-fighting aircraft, rescue
choppers, etc. The lack of effective synchronization of flight and maintenance operations in these
applications, too, may have devastating results. Such was the case, for example, in the week of August
21-27, 2006, when an immense forest fire in the region of Chalkidiki, Greece, burned more than
13,000 acres of virgin fir and pine forest and olive groves, as well as tens of homes, tourism
infrastructure, livestock and agricultural installations and machinery. At the peak of the blaze on the
second day, the fire had extended over a 20 mile front. Government officials admitted that the low
number of fire-fighting planes that initially responded to the blaze was due to three aircraft
experiencing mechanical problems and another six temporarily grounded for regular maintenance

(ANA, 2006).
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1.2 Dissertation contributions

The main contribution of the present work lies in the development of various mathematical
optimization models for the FMP problem along with the specialized algorithms that facilitate their
efficient solution. These operations research tools comprise a useful toolset that the aviation
commanders and the maintenance managers can utilize to address many aspects of the FMP problem
effectively. We also study interesting variants of the problem under consideration, and we illustrate
how the proposed methodology can be modified in order to accommodate them. The extensive
computational results that we present demonstrate the performance of the proposed solution
methodologies, and the impact that several key parameters have on their behavior.

The beginning part of the present research was based on the study of three existing
mathematical optimization models for the FMP problem (Kozanidis, 2009; Kozanidis et al., 2010).
The first two of these models are single-objective mixed integer linear programs incorporating
alternative definitions of the unit availability, while the third one is a multi-objective mixed integer
linear program accommodating each of these definitions as a separate objective. The latter of these
models seems to exhibit wider applicability and produce, in general, solutions of higher quality. The
computational effort that these models need in order to reach the optimal solution increases rapidly
with problem size. As a result, their applicability on large scale problem instances such as the ones
that arise in practice is quite limited.

With this in mind, we develop two heuristic solution procedures first for solving the FMP
problem. The first one utilizes a technique which is widely used in an ad-hoc manner for the
production of aircraft flight and maintenance plans in many Air Force organizations worldwide. This
technique is based on a practical “sliding scale scheduling” or “aircraft flowchart” graphical tool for
scheduling aircraft for phase/periodic inspection and deciding which aircraft should fly certain
missions. The second heuristic procedure works by decomposing a large problem into smaller sub-
problems and solving each of these subproblems separately. We develop the theoretical background on
which these heuristics are based, we provide in detail the algorithmic steps required for their
implementation, and we analyze their worst-case computational complexity. We also present
computational results illustrating their computational performance on random problem instances, and
we evaluate the quality of the solutions that they produce. The size and parameter values of some of
these instances are quite realistic, making it possible to infer the performance of the heuristics on real
world problem instances. Our computational results demonstrate that, under careful consideration,
these heuristics can handle quite large FMP instances effectively, yielding satisfactory solutions in

insignificant solution times.
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Our computational experience suggests that an effective FMP model should ideally be able to
provide solutions whose fleet availability exhibits low variability. This is mainly due to the fact that,
since the FMP model is considered in subsequent rolling horizons in practice, the transition into the
next planning horizon should always be as smooth as possible. With this in mind, we develop a single-
period optimization model that establishes a balanced allocation of the flight load and the maintenance
capacity to the individual aircraft of the unit, so that its long term availability is kept at a high and
steady level. This model is a mixed integer nonlinear program, which minimizes a least squares index
expressing the total deviation of the individual aircraft flight and maintenance times from their
corresponding target values. Utilizing this model’s special structure and properties, we develop an
exact algorithm for obtaining its optimal solution. We analyze the computational complexity of this
algorithm, and we present computational results demonstrating that its performance is superior to that
of a commercial optimization package that can be utilized alternatively to this end.

Next, we consider the multi-period FMP problem. In order to overcome the excessive
computational requirements of exact optimization models and the inferior quality of the solutions
produced by heuristic techniques, we develop an exact solution algorithm for this problem. Exploiting
the problem’s special structure, this algorithm is capable of identifying the optimal solution of
considerably large realistic problems in reasonable computational times. This is achieved by solving
suitable relaxations of the original problem and utilizing valid cuts which guide the search towards the
optimal solution. The extensive experimental results that we present demonstrate that the algorithm’s
performance on realistic problems is superior to that of two popular commercial optimization software
packages; on the other hand, they show that the opposite is true for a class of problems with special
characteristics deviating considerably from those of realistic problems. The important conclusion is
that the proposed algorithm, complemented by generic optimization software, can handle effectively a
large variety of FMP problem instances.

We conclude this dissertation with the development of a mixed integer programming model,
which, besides the typical objective maximizing the fleet availability, also includes an additional
objective minimizing its variability. Motivated by the fact that the application of the typical e-
constraint reduced feasible region approach to this biobjective model exhibits substantial
computational difficulties, we also develop two specialized solution methodologies for this problem.
Both methodologies identify the entire frontier of non-dominated solutions, utilizing suitable
relaxations of the original model and exploiting the fact that the domain comprising possible fleet
availability values is a discrete set. The first one disaggregates the original FMP model into smaller
sub-problems whose solution is attained much more efficiently due to their reduced size. The second
one is a variant of the e-constraint method, applied to a suitable relaxation rather than the original

FMP model. We present extensive computational results which assess the efficiency of the proposed
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solution methodologies and demonstrate that their performance is significantly superior to that of the

typical g-constraint method.

1.3  Structure of the dissertation

The present dissertation presents original research, part of which has already been published in
scientific journals and is reprinted with permission from the publishers'. Its remainder is organized in
seven chapters and three appendices, as follows:

In Chapter 2 we review the related literature, while in Chapter 3 we present a detailed definition
of the problem under consideration and we elaborate on various issues related to the development of
accurate FMP optimization models. Chapter 4 presents the heuristic approaches that we developed for
the solution of the FMP problem. Chapters 5 and 6 present mathematical models and associated
solution algorithms for the single and the multi-period, respectively, version of the FMP problem.

Chapter 7 presents mixed integer programming models and associated solution algorithms for
the version of the problem in which the minimization of the fleet variability is also incorporated as an
additional objective. Chapter 8§ summarizes the findings of this dissertation and points to fruitful
directions for future research. Appendices A and B contain proofs to a key proposition and a key
lemma utilized in Chapters 4 and 5, respectively. Appendix C lists the journal and conference
publications that have resulted from the present dissertation to date. Finally, Appendix D contains a

glossary of dissertation terms and acronyms.

' ©Wiley, ©Springer, ©Elsevier
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Chapter 2  Literature Review
2.1 Introduction

Numerous problems dealing with the optimization of aircraft operations have been investigated in the
past. In this chapter, we review the related literature, focusing mostly on works that address military
related applications. First, we review works in the general field of military aircraft maintenance. Then,
we turn our attention to works that employ special purpose techniques in order to deal with military
aircraft organizational level maintenance activities and mission assignments. We conclude with a
review of the published papers which are more closely related to the problem under consideration, i.e.,
papers which deal with the problem of scheduling military aircraft for intermediate level phase

maintenance inspections and mission assignments.

2.2  General military aircraft maintenance works

The increasing importance of effective military aircraft maintenance was recently recognized by the
Operations Research and Management Science community (Horner 2006). The 2006 Franz Edelman
INFORMS Award for outstanding operations research and management science practice was
bestowed on Warner Robins Air Logistics Center (WR-ALC). WR-ALC, located in Georgia, U.S., is
responsible for the repair, modification and overhaul of various mission aircraft of the U.S. Air Force,
such as the F-15 Eagle and Strike Eagle, the C-130 Hercules models, the C-5 Galaxy, the C-17
Globemaster III, as well as their respective avionics system components. Working with Realization
Technologies and faculty from the University of Tennessee, WR-ALC used an operations research
technique called Critical Chain to reduce the number of C-5 aircraft undergoing repair and overhaul in
the depot from twelve to seven in just eight months. As a direct consequence, the time required to
repair and overhaul the C-5 aircraft was reduced by 33%.

Abrahao and Gualda (2006) present the results of a doctoral work which addresses the problem
of preventive maintenance scheduling of a fleet of vehicles. Besides developing an optimization model
formulation for this problem, the authors develop and test several ant colony based solution
approaches considering various instances of the maintenance scheduling problem. They also illustrate
the application of the proposed methodology for scheduling the preventive maintenance of an aircraft

fleet belonging to the Brazilian Air Force.
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Steiner (2006) develops a novel heuristic approach for preventive maintenance scheduling in the
Swiss Air Force, which sets up an initial maintenance plan and then employs a heuristic algorithm
consolidating the maintenance tasks in order to optimize it. By shifting usage-based and calendar-
based maintenance activities in order to realize mergers, the proposed methodology succeeds in
minimizing the total maintenance downtime, which, in turn, has a direct positive effect on aircraft
availability.

Hahn and Newman (2008) develop a mixed integer linear programming model for scheduling
the deployment and maintenance of the United States Coast Guard HH60J helicopters. The proposed
model schedules the maintenance of each helicopter based on its flight hours, and decides when it
should conduct operations either at home base or at one of two alternative deployment sites. The
schedule development considers different maintenance types, as well as the maintenance capacity and
various operational requirements such as the number of helicopters simultaneously patrolling a
deployment site.

In the context of stochastic approaches, a group of researchers from the Systems Analysis
Laboratory of the Helsinki University develop simulation models for the maintenance and repair of a
fleet of Baec Hawk MKS51 aircraft, both for the case of normal operation as well as for the case of
deployment under crisis situations. The related research has been published in a series of conference
papers (Raivio et al., 2001; Mattila et al. 2003, 2008; Mattila and Virtanen 2005, 2006). In a related
work, Mattila (2007) considers the assignment of aircraft to flight missions as a markov decision
process over a finite time horizon, and develops a methodology utilizing the average aircraft
availability as the optimization objective. The problem of finding an efficient assignment policy is
solved using a reinforcement learning approach called Q-learning. The performance of the Q-learning
approach is compared to a set of heuristic assignment rules using problem instances that involve a
variable number of aircraft and various types of periodic maintenance.

Mattila and Virtanen (2014) address the problem of scheduling maintenance for a fleet of fighter
aircraft and develop a multi-objective approach based on discrete-event simulation and simulated
annealing for the generation of non-dominated solutions. They also develop a multi-attribute decision
analysis model to support the maintenance decision maker in selecting the preferred non-dominated
solution. The authors choose a different set of objectives than those considered in the present work,
which focuses on maximizing the average aircraft availability and minimizing the average deviation
between the target and the actual starting times of the maintenance activities. The work of Mattila and
Virtanen differs from the present one in that it proposes a metaheuristic solution approach, and in that
it considers a stochastic model which incorporates uncertain durations for the aircraft activities as well

as the possibility of unexpected failures.
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2.3  Works on scheduling organizational level maintenance

Several published works address the problem of assigning a group of available aircraft to missions and
organizational level repair activities, so as to establish a high level of unit readiness. This is the case
with the work of Yeung et al. (2007), who develop a model-based methodology for mission
assignment and maintenance scheduling of systems with multiple states. The authors utilize heuristics
and simulation to solve the model, and illustrate its application on a hypothetical scenario of a fleet of
aircraft.

Safaei et al. (2011) develop a mixed integer optimization model to formulate the problem of
workforce-constrained maintenance scheduling for a fleet of military aircraft. The goal is to maximize
the aircraft that can be assigned to missions under maintenance scheduling and workforce availability
constraints. The model utilizes a network flow structure in order to simulate the flow of aircraft
between missions, the hangar and the repair shop, and is solved with generic optimization software.

In a recent related work, Bajestani and Beck (2013) address a dynamic repair shop scheduling
problem that takes into consideration flight requirements, aircraft failures, as well as maintenance
related capacity constraints. The goal is to assign aircraft to flights and schedule repair jobs, so as to
maximize the coverage of the unit flight requirements. The authors accommodate the stochasticity that
the problem exhibits by decomposing it into smaller static sub-problems, and propose several
alternative solution methodologies, including mixed integer programming, constraint programming,

logic-based Benders decomposition, and heuristics.

2.4 Works on intermediate level scheduled-phase maintenance

Although FMP is an important decision making problem encountered in several diversified areas, the
relevant published research is rather limited. Sgaslik (1994) introduces a decision support system for
maintenance planning and mission assignment of a helicopter fleet that partitions the master problem
into two subproblems which are solved separately. The first subproblem is called the Yearly Planning
Model (YPM). The YPM assigns helicopters to inspections and exercises, while also providing their
maintenance schedule and their flight hour distribution. The second model is called the Short Term
Planning Model (STPM). The STPM takes as input the maintenance schedule produced by the YPM
and returns the helicopters’ mission assignments. The author develops two elastic mixed integer
programs to formulate these two sub-problems and solves them using standard optimization software.

The YPM minimizes the cost associated with the violation of some of the problem’s constraints (e.g.,
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those referring to the required flight time, the maintenance capacity and the flight time of each
individual aircraft), while also maintaining a given lower bound on the fleet availability.

Pippin (1998) develops a MILP and a quadratic program for the FMP problem, which try to
establish a flight hour allocation that ensures a steady-state sequence of aircraft into phase
maintenance. Both these models minimize the cost associated with the deviations of the individual
aircraft residual flight times from their diagonal line target values, but neither of them incorporates the
apparent difficulties introduced by the maintenance aspect of the problem.

Kozanidis (2009) proposes a multi-objective MILP model for the FMP problem that maximizes
the minimum aircraft and flight time availability of the wing and of the squadrons that comprise it.
The proposed methodology utilizes the weighted sums approach (Geoffrion, 1968; Steuer, 1986) for
solving the problem, which cannot, in general, provide the entire non-dominated set. Kozanidis et al.
(2010) develop a single objective optimization model that maximizes wing aircraft availability while
imposing a lower bound on the number of available aircraft of each squadron over all periods and a
lower bound on the average residual flight time of each available aircraft.

The U.S. Department of the Army has released a Field Manual on Army Aviation Maintenance,
which describes a practical “sliding scale scheduling” or “aircraft flowchart” graphical tool for
scheduling aircraft for phase/periodic inspection and deciding which aircraft should fly in certain
missions (US DoA, 2000). Rosenzweig et al. (2010) develop a MILP to formulate the sliding scale
method for deciding the aircraft flight times. This model minimizes the penalty associated with the
deviation of the aircraft flight times from their diagonal target values, but does not consider the
maintenance requirements and the impact that they can have on the fleet availability of the unit. The
authors solve the model with generic optimization software and illustrate its application on a small
fleet of training aircraft.

Cho (2011) develops a MILP to model the FMP problem. The proposed formulation generates a
daily flight and maintenance plan that distributes the maintenance workload evenly across the
planning horizon. The main difference that this model exhibits with respect to the one that we address
in the current work is that it uses different definitions for the objective function and for the flight
requirements of the unit. With respect to the former, that model minimizes the maximum number of
aircraft in maintenance at any given time in order to smoothen the variability of the maintenance
demand over time. With respect to the latter, it translates the original flight load requirements into
specific flight assignments, which are successively assigned to the aircraft of the unit. The author also
considers a two-stage formulation that disaggregates the problem in order to determine the flight and
maintenance decisions separately. All the decisions pertaining to the flight or the maintenance
schedule are made in the first stage, while the remaining ones are determined in the second one. Both

the single and the two stage models are solved with generic optimization software, although a
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discussion that proposes equivalent alternative formulations and potential heuristic solution
approaches is also included.

Based on the work of Kozanidis and Skipis (2006), Verhoeff et al. (2015) develop a flight and
maintenance planning optimization model that incorporates the aspects of availability, serviceability
and sustainability for the RNAF CH47D Chinook helicopter fleet. The proposed model formulation
maximizes the minimum scheduled sustainability over the planning horizon, while also ensuring that

the variability of the residual flight time availability remains relatively low.
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Chapter3 FMP Problem Definition and Model Development
Considerations

3.1 Introduction

Having presented a thorough literature review, in this chapter we address model development issues
related to the FMP problem. Specifically, we present the detailed problem definition, we elaborate on
alternative FMP objective function choices, and we discuss various issues related to the development
of accurate FMP optimization models. We also provide a basic overview of a common ad-hoc

approach that has been utilized to address the FMP problem.

3.2 Problem definition

The FMP problem arises as a routine operations management problem in a typical aircraft unit
(typically, a combat wing) of the HAF. Depending on the particular context, such a unit may consist of
several squadrons, each of which serves as the base for several aircraft types. When this is the case, we
often use the term "wing" to refer collectively to all the squadrons forming the unit together.

In order to retain a high level of unit readiness, at the beginning of each planning horizon the
unit command issues suitable flight requirements, which are also referred to as flight load. These
requirements determine the total time that the aircraft of the unit should fly in each corresponding time
period, and only small deviations are permitted from them. Separate requirements are issued for each
aircraft type, because different aircraft types have different flight capabilities and maintenance needs.
For this reason, the optimization models that we develop for addressing the FMP problem are suitable
for use on a specific aircraft type. Of course, each of these models can be applied repeatedly in order
to issue the plans of several aircraft types, if more than one aircraft types are present.

For each individual aircraft, we define its residual flight time as the total remaining time that
this aircraft can fly until it has to undergo a maintenance check. This time is also referred to as "bank
time" in the related military literature (US DoA, 2000). The residual flight time of an aircraft is
positive if and only if this aircraft is available to fly. At any time, the total residual flight time of the
unit is equal to the sum of the residual flight times of all the aircraft that belong to this unit. Of course,
there exist many possible combinations of individual aircraft residual flight times that can result in the
same total residual flight time for the unit. Similarly, we define the residual maintenance time of a

non-available aircraft as the total remaining time that this aircraft needs in order to complete its
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maintenance check. The residual maintenance time of an aircraft is positive if and only if this aircraft
is undergoing a maintenance check, and is therefore not available to fly.

For the maintenance needs of the unit, there exists a station responsible for providing service to
its aircraft. This station has certain space (also referred to as dock space) and time capacity
capabilities. Given the flight requirements for each time period and the physical constraints that stem
from the capacity of the maintenance station, the aim of the FMP problem is to issue a flight and
maintenance plan for each individual aircraft, so that the unit’s readiness to respond to external threats
(operational readiness) is maximized. In the military context, the operational readiness of a unit is
defined as follows by the North Atlantic Treaty Organization (NATO, 2015): “The capability of a
unit/formation, ship, weapon system or equipment to perform the missions or functions for which it is
organized or designed. May be used in a general sense or to express a level or degree of readiness.”

In accordance with the above definition, the readiness of a unit to respond to external threats is
defined as the capability of the unit to perform the assigned flight missions. This capability is
expressed in terms of the total number of aircraft that are available to fly (aircraft availability) and in
terms of the total residual flight time of all available aircraft (residual flight time availability).

The FMP problem refers mainly to the intermediate level scheduled maintenance, also called
phased maintenance, which is a time consuming activity that may lead to extended grounding of the
aircraft, and, as a consequence, affect adversely the unit fleet availability. It is a very important
decision making problem arising in the operation of numerous types of fleets, involving military or

fire-fighting aircraft, rescue choppers, etc.

3.3 Aircraft flowchart

A common empirical approach for addressing the FMP problem involves the utilization, in an ad-hoc

manner, of a 2-dimensional graphical tool called the aircraft flowchart, shown in Figure 3.1.
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Figure 3.1: Visual representation of the fleet availability with the aircraft flowchart

The vertical axis of this graph represents residual flight time, while the horizontal axis
represents the indices of the available aircraft in non-decreasing order of their residual flight times, 1
being the index of the aircraft with the smallest, and 4 being the index of the aircraft with the largest
residual flight time, where A4 is the total number of available aircraft. Consider the line segment (also
called the diagonal) that connects the origin with the point with coordinates (4, Y), where Y is the total
flight time of an aircraft between two maintenance inspections, also called phase interval. By mapping
each aircraft on this graph, we can visualize the unit’s fleet availability.

To describe the smoothness of the distribution of the total residual flight time among the
available aircraft, a total deviation index is used. This index is equal to the sum of squares of the
vertical distances (deviations) of the points mapping the residual flight times of the individual aircraft
from their corresponding target values on the diagonal. The smaller this sum is, the smoother the
distribution of the total residual flight time. Ideally, the total deviation index is equal to 0, when every
point lies on the diagonal, as shown in Figure 3.2. When issuing the flight plan of each individual
aircraft, the user is advised to keep each point as close to the diagonal as possible, in order to minimize

the value of the total deviation index.
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Figure 3.2: Ideal fleet availability distribution among the aircraft

In current practice, the aircraft flowchart is at best used as a graphical device by the aviation
commanders and the maintenance managers responsible for issuing the flight and maintenance plans.
For example, in an aviation maintenance manual of the U.S. Army where this flowchart is described
(US DoA, 2000), the user is simply advised to utilize the flowchart by “flying the aircraft that are
above the diagonal to get them down to the line” and “holding the aircraft that are below the diagonal
to bring them up to the line”. No particular instructions are given on how this can be implemented
effectively. Clearly, this procedure is highly subjective and dependent on numerous minor decisions

made by the user.

3.4 Alternative FMP objective functions

One of the most crucial decisions that need to be made towards the development of FMP optimization
models regards the choice of the objective function. Maximizing the readiness to respond to external
threats is the most appropriate measure of effectiveness for this application. As already explained, in
the military context the readiness of a unit to respond to external threats is typically expressed as the
total number of aircraft that are available to fly (aircraft availability) and as the total residual flight
time of all available aircraft (residual flight time availability). Although a certain degree of synergy
between the two exists, optimizing one of them may, in some cases, have an adverse effect on the
optimization of the other. Moreover, knowing one of the two gives no information about the way that

the other is distributed across the individual aircraft.
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This situation is highlighted in the example depicted in Figure 3.3, in which there is a large
number of available aircraft, but both the unit residual flight time availability, as well as the separation
between phases (periodic inspections), are particularly low. The label on top of each point in this
figure reveals the residual flight time of the corresponding aircraft. This situation is highly
problematic; many aircraft will soon need to enter the station for phase maintenance, but only a small
number of them will be able to do so due to the limited space capacity of the maintenance station. As a

consequence, the imminent flight load requirements of the unit cannot be met adequately.

Residual Flight Times

Y

A/C

1 2 3 4 5 A

Figure 3.3: An example of high aircraft availability and low residual flight time availability

An alternative situation is highlighted in the example depicted in Figure 3.4, in which the unit
residual flight time availability is high, but the number of available aircraft (aircraft availability) is
particularly low. In addition there is a gap in the separation between phases (periodic inspections),
similar to that of the previous example. This situation is also problematic, because the number of

available aircraft is not adequate to perform the necessary missions.
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Residual Flight Times

¥ 290 290 290 290 a
(<} ] (<} (<] (<]

A/C

A

Figure 3.4: An example of high residual flight time availability and low aircraft availability

Another related important decision concerns the question of whether the minimum or the total
fleet availability over a given planning horizon should be used as the problem objective. In the former
case, the focus is on finding the highest availability level that can be ensured for each time period of
the planning horizon, whereas in the latter one, the focus is on finding the highest availability level
that can be attained cumulatively over all time periods of the planning horizon, independently of how
this varies between individual ones. A common strategy that is often used in practice is to maximize
the total fleet availability, while also imposing an acceptable lower bound on the fleet availability of

each individual time period.

3.5 FMP model formulation considerations

Besides the objective function selection, several other important decisions are involved in the process
of developing an accurate FMP optimization model. In practice, these decisions should be made based
on the specific characteristics and requirements of each particular application. Furthermore, a
systematic study that evaluates and compares different choices may also be necessary in order to
choose the most appropriate model. In an effort to address a wide range of different problem
characteristics, we develop various FMP optimization model variants in this work. The various design
choices the user is faced with are discussed next and involve the length of the planning horizon, the

structure of the fleet unit, the satisfaction of the flight load and the number of objective functions.
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In practice, the flight load requirements refer to single-month time periods and are typically
issued over a planning horizon of 6 monthly periods. Several FMP optimization models focus on
maximizing the fleet availability within each individual planning horizon in isolation, without taking
into consideration the fact that, since FMP is an on-going problem repeatedly solved in successive
horizons, the transition into the next planning horizon must also be as smooth as possible. This clearly
results in plans which, although being optimal within each individual planning horizon, do not exhibit
certain desirable long-term characteristics, such as low variability. An inevitable side effect of this
behavior is the fact that the exact length of each planning horizon strongly affects the pattern of the
fleet availability; the longer this length, the lower the associated variability is expected to be. Still,
however, since the application of the model in subsequent rolling horizons is inevitable, the selection
of the planning horizon length is an important modeling choice.

As already mentioned, an aircraft unit (wing) may consist of several squadrons. While there is
only a single maintenance station responsible for the inspection of all aircraft, each squadron is
assigned separate flight load requirements. Wing officials are responsible for monitoring the fleet
availability of the wing, whereas squadron officials are responsible for monitoring the fleet availability
of the corresponding squadron. The incorporation of multi-squadron units adds a strong combinatorial
component to the problem, since distinct cases depending on which squadron an aircraft that enters or
exits the maintenance station belongs to need to be distinguished. The decision on whether the model
should accommodate distinct squadrons depends on the scheduling needs of the aviation commanders
and the maintenance managers and constitutes another important modeling choice.

In many practical cases, the actual problem definition calls for satisfaction of the flight load
requirements within some predefined tolerance, instead of their strict satisfaction. For example, a
maximum deviation of 5% from the target value of the flight load may be acceptable for each time
period of the planning horizon. The main effect of this is that it makes the total flight time of each time
period a decision variable instead of a known parameter.

Finally, single objective models only optimize a specific performance measure of a decision
making problem. However, in case that multiple performance measures need to be optimized
simultaneously, a corresponding multi-objective optimization model needs to be developed instead.
When this is the case, the adopted objective functions are usually conflicting, necessitating the search

for a suitable compromise between the alternative objective function levels.
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Chapter 4  Heuristic Solution Techniques
4.1 Introduction

Simple heuristic techniques used in practice to solve the FMP problem, such as the aircraft flowchart
tool (US DoA, 2000), often perform poorly generating solutions that are far from the optimum. On the
other hand, the more sophisticated mathematical models that have been developed to handle this
problem (e.g., Kozanidis, 2009; Kozanidis et al., 2010) solve small problems effectively, but tend to
be computationally inefficient for larger problems that often arise in practice. In this chapter, we
consider a multi-objective optimization model for the multi-period variant of the FMP problem, and
we develop two heuristic approaches for solving it.

The two heuristic algorithms that we develop have been roughly sketched in the earlier works of
Kozanidis (2009) and Kozanidis et al. (2010). In this chapter, we extend these two works by: 1)
developing the theoretical background on which the proposed heuristics are based, ii) providing in
detail the algorithmic steps required for the implementation of these heuristics, iii) analyzing the
worst-case computational complexity of these heuristics, iv) presenting computational results
demonstrating the computational performance of these heuristics on random problem instances, and,

v) evaluating the quality of the solutions that these heuristics produce.

4.2 Multi-objective multi-period FMP model formulation

Having provided the FMP problem definition in the previous chapter, we present next a mathematical
model formulation that has been developed for the case in which the aircraft unit (also termed wing) is
divided into distinct squadrons. This formulation adopts the following mathematical notation:

Sets:

M : set of squadrons, indexed by m,

N, : set of aircraft in squadron m, indexed by n.

Parameters:

T : length of the planning horizon,

S © flight load of squadron m in period ¢,

B, : time capacity of the maintenance station in period ¢,

C : space capacity of the maintenance station,

Y : residual flight time of an aircraft immediately after it exits the maintenance station,

19

Institutional Repository - Library & Information Centre - University of Thessaly
12/05/2024 17:28:17 EEST - 18.118.9.86



Chapter 4: Heuristic Solution Techniques

G : residual maintenance time of an aircraft immediately after it enters the maintenance station,
Al,,, : state (0/1) of aircraft n of squadron m at the first period of the planning horizon,
Y1,,, : residual flight time of aircraft n of squadron m at the first period of the planning horizon,
G1,,, : residual maintenance time of aircraft » of squadron m at the first period of the planning horizon,
Xpar - maximum flight time of an available aircraft in a single time period,
Yin - lower bound on the residual flight time of every available aircraft,
G.in - lower bound on the residual maintenance time of every grounded aircraft,
L, U : real numbers denoting the maximum deviation from the target value of the flight load that can
be tolerated,
K : a sufficiently large number.
Decision Variables:
z; : minimum number of available aircraft of the wing over all periods,
z, : minimum number of available aircraft in each squadron over all periods,
z3 : minimum residual flight time of the wing over all periods,
z, : minimum residual flight time of each squadron over all periods,
@ - binary decision variable that takes the value 1 if aircraft #n of squadron m is available in period ¢,
and 0 otherwise,
Ve - Tesidual flight time of aircraft # of squadron m at the beginning of period ¢,
Xmne - flight time of aircraft # of squadron m in period ¢,
Zune - Tesidual maintenance time of aircraft n of squadron m at the beginning of period ¢,
h.e - maintenance time of aircraft n of squadron m in period ¢,
d,.., : binary decision variable that takes the value 1 if aircraft n of squadron m exits the maintenance
station at the beginning of period ¢, and 0 otherwise,
fune » binary decision variable that takes the value 1 if aircraft n of squadron m enters the maintenance
station at the beginning of period ¢, and 0 otherwise,
Gt> Pmnts Vs - @UXiliary binary decision variables.
The proposed FMP model (Kozanidis, 2009) is a mixed integer multi-objective linear program

with four objectives, formulated as follows:
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Max z, (4.2.1)

Max z, (4.2.2)
Max z3 (4.2.3)
Max z (4.2.4)
(M| |V,
stz <Y > a,,, t=2,.,T+1 (4.2.5)
m=1 n=1
[
2, <Y ay,m=1. M|, t=2,..T+1 (4.2.6)
n=1
(M| [N
S Vs =2, T +1 (4.2.7)
m=1 n=1
[
2y <Y VoM=L M|, 1=2,.,T +1 (4.2.8)
n=1
Vmnt+1 = Ymnt = Xmnt + Ydmnt+la m :19---7|M7 n :17--~>|Nm|7 t :lr-vT (429)
dmnt+l > Amne+1 — A, M :17"'9|M7 n :17"'>|Nm|7 t :17'~>T (4210)
st = ot + L1 =dpn1) > 0.1, m =1, M|, n =1,... |Nol,  =1,..,T (4.2.11)
gmnt+l = gmnt - hmnt + Gfmng m :17~~~9|MI7 n :1>~--7|Nm|7 t :lr"T (4212)
fmnt+l > Qe — Amne+1, M :17"'9|M7 n :17"'>|Nm|7 t :17'~>T (4213)
Gyt — st + LI ~fomis) = 0.1, m =1, M|, n =1,... Nyl  =1,..,T (4.2.14)
‘Nm‘
LS, <Y X, <US,.,m=1..,M|, t=1..,T (4.2.15)
n=l1
M] [N
SSh, <B,t=1..T (4.2.16)
m=1 n=1
M| N,
d>d-a,)<C,1=2,.,T+1 (4.2.17)
m=1 n=1
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M| [N,
Bt < Zzhmnt +K(1_qt)’ t :1,'-'5T
m=1 n=1
M| [N, M| [,
ngnt SZ:Z:hmnt +th’ t= 1""’T
m=1 n=1 m=1 n=1

Vot + Kpp K, m =1, M, n =1,.. N, t =1,..,T

Ant+1 < (ymnt_xmnt)K+Kpmnta m :13~~~9|M> n :13--~>|Nm|> t :la")T

gml’lt+ KrmnISKa m :1>~~~>|Ma n :19~~-a|Nm|> t :la"’T

l'amnﬁls (gmnt_ hmnt)K+Krmnt> m :19'--3|Ma n :1>~--3|Nm|a t :lr-aT

Yt < Yayp, m =1, M|, n =1,..|Ny|, t =2,...T + 1
Gt < G(1-appy), m=1,... M|, n =1,...IN,|,t=2,...,T +1
Xonnt < Xnax@mnes M =1, | M|, n =1,..|N,|, ¢ = 1,....,T
Vot 2 Youinnes M =1,.. M|, n =1,.. [Ny, t =2,...,T + 1
Gont > Grin(1 = @), m =1,... M|, n=1,...IN,|, ¢t =2,....,T + 1
Xont < Vony M =1,.. M|, n =1,.. |N,|, t =1,...,T

Point < oty M =1,.. M|, n =1,...IN,|, t =1,....,T

At = Ay, m =1, |M|, n =1,...,|N,|
Yot = Y, m =1, M|, n =1,... [Nyl
o = Gl m=1,.. M|, n=1,...|N,|
Xonts Ponne = 03 m =1, M|, n =1,.. |N,|, t =1,...,T
Ynts ume = 03 m =1, M|, n =1,..,|N,y|, t =2,.., T+ 1
DPumnts F'mnss ¢ OINATY, m =1,... M|, n =1,...,IN,|, t =1,...T
Annts Aoty frume OIMATY, M =1, M|, 0 =1,.. [Ny|, t =2,..,.T+ 1

(4.2.18)

(4.2.19)

(4.2.20)
(4.2.21)
(4.2.22)
(4.2.23)
(4.2.24)
(4.2.25)
(4.2.26)
(4.2.27)
(4.2.28)
(4.2.29)

(4.2.30)

4.2.31)
(4.2.32)
(4.2.33)
(4.2.34)
(4.2.35)
(4.2.36)
(4.2.37)

The objective function (4.2.1) maximizes z;, which, by constraint set (4.2.5), denotes the

minimum number of available aircraft of the wing over all periods, while the objective function (4.2.2)

maximizes z, which, by constraint set (4.2.6) denotes the minimum number of available aircraft of

each squadron over all periods. Similarly, the objective functions (4.2.3) and (4.2.4) maximize z; and

z, which, by constraint sets (4.2.7) and (4.2.8), denote the minimum residual flight time of the wing

and of each squadron, respectively, over all periods. Although the four objectives do not seem to be in

22

Institutional Repository - Library & Information Centre - University of Thessaly
12/05/2024 17:28:17 EEST - 18.118.9.86



direct conflict with each other, all of them must be included in the model, otherwise the obtained
solution may not be satisfactory with respect to the objective that was omitted. Note that, under the
weighted sums approach, the 4 objectives are weighted, taking into account the tradeoffs that a
decision-maker is willing to make among the objectives. In this study, however, an actual decision-
maker was not involved in the analysis. Therefore, the weights of the objectives have been defined to
be inversely related to the objectives’ scales.

Constraint set (4.2.9) updates the residual flight time of each aircraft at the beginning of the next
period, based on its residual flight time at the beginning of the previous period and the time that it flew
during that period. Binary variable d,,,. takes the value 1 only when the corresponding aircraft exits
the maintenance station at the beginning of period #+1. In this case, its residual flight time is reset to ¥
(also referred to as phase interval). Similarly, constraint set (4.2.12) updates the residual maintenance
time of each aircraft at the beginning of the next period, based on its residual maintenance time at the
beginning of the previous period and the time that it received maintenance during that period. Binary
variable f,,.+1 takes the value 1 only when the corresponding aircraft enters the maintenance station for
service at the beginning of period #+1. In this case, its residual maintenance time is reset to G.

Constraint sets (4.2.10), (4.2.11), (4.2.13) and (4.2.14) ensure that variables d,,, and f,,,, take
appropriate values, based on the values of variables a,,,,. More specifically, consider the n™ aircraft of
the m" squadron. Then, (a,.»@muu+1) can take any of the values (0,1), (0,0), (1,0) and (1,1) and the
dierence (@,u+1 - dmar) 1s equal to 1, 0, -1 and 0, respectively. Variable d,,,+1 should take the value 1
when (@,,8mm+1) = (0,1) and this is ensured by constraint set (4.2.10). In any other case, d,,,+1 should
be equal to 0 and this is ensured by constraint set (4.2.11). Similarly, variable f,,,.+1 should take the
value 1 when (@,,,,@m+1) = (1,0) and this is ensured by constraint set (4.2.13). In any other case, f,,.+1
should be equal to 0 and this is ensured by constraint set (4.2.14).

Constraint set (4.2.15) restricts the flight time of squadron m in period ¢ to the interval [LS,,,
US,,| defined by variables L and U, ensuring that the flight load of each squadron and period
combination is satisfied. For example, when L = 0.95 and U = 1.05, a maximum deviation of 5% from
the target values of the flight requirements is permitted. Constraint sets (4.2.16) and (4.2.17) ensure
that the time and space capacity constraints of the maintenance station will not be violated in any time
period. Constraint sets (4.2.18) and (4.2.19) ensure that the maintenance station will not idle whenever
there is at least one aircraft waiting for service. With the introduction of the auxiliary binary variables
¢ it is ensured that the total maintenance time provided by the station in period ¢ will be equal to the
minimum between the total time capacity of the station, and the total maintenance requirements in this
period.

Constraint sets (4.2.20) and (4.2.21) ensure that an aircraft's availability ceases as soon as its

residual flight time drops to 0. If y,,,, > 0, the auxiliary binary decision variable p,,, in constraint
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(4.2.20) is forced to 0-value. In this case, constraint (4.2.21) forces @, to 0-value if y,,,; = X, SINCE
this implies that the residual flight time of this aircraft drops to O at the end of period ¢. Similarly,
constraint sets (4.2.22) and (4.2.23) ensure that an aircraft becomes available as soon as its residual
maintenance time drops to 0. If g,, > 0, the auxiliary binary decision variable r,,, in constraint
(4.2.22) is forced to O-value. In this case, constraint (4.2.23) forces a,,+1 t0 1 if @0 = s, since this
implies that the residual maintenance time of this aircraft drops to 0 at the end of period ¢.

Constraint set (4.2.24) states that the residual flight time of an aircraft cannot exceed Y, and
ensures that it will be 0 whenever this aircraft is not available. Similarly, constraint set (4.2.25) states
that the residual maintenance time of an aircraft cannot exceed G, and ensures that it will be 0
whenever this aircraft is available. Constraint set (4.2.26) imposes an upper bound on the maximum
time that an aircraft can fly during a single time period. Such a restriction is usually present due to
technical reasons. Constraint set (4.2.27) imposes a lower bound on the residual flight time of each
available aircraft, and constraint (4.2.28) imposes a lower bound on the residual maintenance time of
each non-available aircraft. These constraints are introduced to prevent an aircraft from ending up with
a negligible but positive residual flight or maintenance time. Constraint set (4.2.29) ensures that the
total time that an aircraft flies during a single period does not exceed its residual flight time at the
beginning of the same period. Similarly, constraint set (4.2.30) ensures that the total time that the
maintenance crew works on an aircraft during a single period does not exceed the residual
maintenance time of this aircraft at the beginning of the same period.

Constraint sets (4.2.31), (4.2.32) and (4.2.33) are used to initialize the state of the system at the
first period of the planning horizon. When an aircraft exits or enters the maintenance station at the first
period of the planning horizon, its residual flight and maintenance times are updated directly;
therefore, variables d,,; and f,,,, are never used. Finally, constraints (4.2.34), (4.2.35) and (4.2.36),
(4.2.37) are the non-negativity and the integrality constraints, respectively.

Instead of the minimum fleet availability of the unit that is maximized in the above formulation,
the cumulative fleet availability of the unit may be maximized alternatively. To incorporate this, we
also consider two additional objectives for the above model, which maximize the number of available
aircraft and the residual flight time of the unit cumulatively over all periods of the planning horizon.
Of course, the distinction between wing and squadron availability is redundant in this case.
Mathematically, these two objectives are expressed as follows:

Max Zs
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The computational effort that the above FMP model requires in order to reach an optimal
solution increases fast with problem size (Kozanidis, 2009). As a result, its applicability on large
problems is quite limited. This raises the need to develop alternative intelligent approaches in order to
address large FMP instances. To this end, in this chapter we develop two heuristic solution procedures,
which we call Aircraft Flowchart Heuristic (AFH) and Horizon Splitting Heuristic (HSH),
respectively. The above work sketches briefly these two heuristic solution procedures, but does not
present the theoretical background, the detailed algorithmic description, the computational complexity

analysis and the extensive computational results that we provide next.

4.3 Aircraft Flowchart Heuristic (AFH)

A common empirical approach to the FMP problem involves the utilization, in an ad-hoc manner, of a
2-dimensional graphical tool called the aircraft flowchart, presented in Section 3.3. AFH aims to
implement this procedure more systematically. We consider two different variants of this heuristic.
The first one takes into consideration the squadron each aircraft belongs to, whereas the second one
focuses on the wing and treats the aircraft as if they all belong to the same squadron. We call these two

variants AFH1 and AFH2, respectively, and we describe them next.

4.3.1 Aircraft Flowchart Heuristic 1 (AFH1)

The application of AFH1 requires a series of decisions in each period of the planning horizon. In order
to make these decisions, AFH1 determines a priority order for the unit’s squadrons, by computing a
priority index for each of them. The first such decision regards the time capacity of the maintenance
station. Knowing how this capacity will be allocated among the grounded aircraft determines the
number of dock spaces that will become available at the end of the current time period. In turn, this
has an effect on the production of the flight plan of each available aircraft.

In general, the priority index of each squadron is an indicator of how heavy its anticipated flight
load is with respect to its availability. The higher the priority index of a squadron, the higher the

priority that is given to the grounded aircraft of this squadron at the maintenance station. In our study,

A

we define the priority index of squadron m at the end of period 7 (0 < ¢ < 7-1) as S,.+1/ Z Vomis1- THUS,

n=1
the higher the flight requirements of a squadron in the next time period with respect to the residual

flight time availability of that squadron in the same time period, the higher its priority index is
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expected to be. Of course, the interested user can come up with additional definitions if necessary,
either by modifying this one, or by devising entirely new ones.

In each time period, the maintenance station continues incomplete service which is pending
from the previous period and allocates the extra time capacity to the remaining grounded aircraft in the
order determined by the priority indices of the squadrons. In order to free dock space and increase the
fleet availability of the unit, the station works continuously on the same aircraft until the service of
that aircraft is completed. Of course, the service of an aircraft may be spread out over more than one
time periods if not enough time capacity exists. Every time an aircraft finishes its maintenance service,
the priority index of the squadron it belongs to is updated, and the relative priority order of the
squadrons is adjusted accordingly.

The above procedure determines the number of dock spaces that will become available at the
beginning of period #+1. These spaces will be occupied by the aircraft that will enter the station for
service at the beginning of period 1. An important decision that must be made subsequently pertains
to the order in which the squadrons will be considered for occupying the free dock space. Not
surprisingly, we utilize the priority indices to make this decision, too. More specifically, the aircraft of
the squadron with the highest priority index is considered for occupying dock space which is available
at the maintenance station first, and so on, until either no free dock space exists, or all squadrons have
been considered and no other aircraft will be grounded for service at the next time period.

The existence of a free dock space at the maintenance station does not automatically impose the
grounding of an available aircraft. Given that it is feasible, the grounding of an aircraft takes place if
its service is anticipated to begin in the next time period. This condition can be easily checked by
“simulating” the operation of the maintenance station over the next time period, since both its time
capacity and the residual maintenance times of the aircraft that will be grounded during the next time
period are already known. This rule is also in direct alignment with the current practice of the HAF
that strongly discourages the existence of unused maintenance time capacity. Even so, a case in which
the service of a grounded aircraft does not begin in the next period even though it was anticipated to
do so may actually come up. Such is the case, for example, when another aircraft that is grounded
based on a subsequent decision begins its service first, due to a higher assigned priority.

When the grounding of an aircraft is decided, this aircraft flies its entire residual flight time in
period ¢ and enters the maintenance station for service at the beginning of period #+1; subsequently,
the priority index of the squadron it belongs to is updated accordingly. After the complete set of
aircraft that will be grounded at the beginning of period #+1 is determined, the flight times of the
aircraft of each squadron that will be available at the beginning of period #+1 are obtained by solving a

simple quadratic problem, as explained next.
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Assume that the aircraft of squadron m that will be available in period #+1 (let their total number
be A) are arranged on a flowchart in non-decreasing order of their residual flight times at the
beginning of period ¢. Let F be the set that contains the indices of the aircraft of this squadron that are
available in period ¢ and will be grounded at the beginning of period #+1. These aircraft are not
displayed on this graph, since they won’t be available in period #+1. On the other hand, the aircraft of
this squadron which are grounded during period ¢ and will exit the maintenance station at the
beginning of period #+1 are displayed with residual flight time equal to Y on this graph, but their
maximum flight time in period ¢ is set equal to 0, to ensure that no flight hours will be assigned to
them. Let i be the index denoting the order of aircraft in this arrangement (1 <i < A4), and let s = Y/4 be
the slope of the diagonal. The target value for the residual flight time of the aircraft that appears in the
i"™ position at the beginning of period #+1 is equal to i's. Thus, the problem of deciding the flight time

of each aircraft of squadron m reduces to the following quadratic programming problem:

A
Min Y (3., —is)’
i=1
S.t. yl'H’l :yit - xl-,, i: 1,..., A

LS, < ix” +> y,<US,
i=1

i= feF
Xit < Xpaw» 1= 1,..., A: i is available in period ¢
x;=0,i=1,..., A: i is grounded in period ¢
Vird = Yo, 1=1,..., 4
x;=>0,i=1,...,4

For simplicity, the above formulation denotes each aircraft using one index (i or f), instead of
the indices m and n of the original formulation. The objective function minimizes the total deviation
index of squadron m that will be realized at the beginning of period #+1, which is equal to the sum of
squares of the deviations of the individual aircraft residual flight times from their corresponding target
values. The first set of constraints updates the residual flight time of the aircraft at the beginning of
period #+1. The next constraint ensures that the flight requirements of squadron m in period ¢ will be
satisfied (index f'scans the aircraft of squadron m that will enter the station for service at the beginning
of time period #+1). The next two sets of constraints impose upper bounds on the flight times of the
aircraft, based on their status during the previous time period. The next set of constraints imposes a
lower bound on the residual flight time of each available aircraft at the beginning of period #+1.
Finally, the last set of constraints accounts for the non-negativity of the flight times. Note that the
virr’s and the x;’s are decision variables in this formulation, whereas the y;’s and the y;’s are known
parameters. Setting X; = min(X,, Vir- Ymin), fori =1,..., 4: i is available in period ¢, and y;, = ¥, X; =0,

fori=1,..., A: i is grounded in period ¢, we obtain the following equivalent formulation:
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A
Min 3 (0, —is) - x,) 43.1)
i=1
A
st LS, v, < D%, (4.3.2)
feF i=1
A
> X%, <US,-2 v, (43.3)
i=1 feF
0<xy<X,i=1,.,4 (4.3.4)

The problem defined by (4.3.1)-(4.3.4) is a quadratic program. The Hessian of the objective
function is diagonal with all diagonal elements equal to 2; therefore, it is positive semi-definite, which
implies that the objective function is convex. Hence, since all the constraints are linear, the KKT
conditions (see Bazaraa et al., 2006) are necessary and sufficient for optimality. We give next a simple

procedure called “Sweep” that can be utilized to obtain the optimal solution.

Residual Flight Times

Y

1 2 3 4 A

Figure 4.1: Illustration of Procedure “Sweep”

On the corresponding flowchart described above, consider a line parallel to the diagonal which
is initially placed far enough to the top, so that all the aircraft lie below it, as shown in Figure 4.1 (in
what follows, we do not distinguish between a point on the graph and the aircraft that this point
represents). Assume now that this line starts moving towards the diagonal (and past it, while always
remaining parallel to it), sweeping along vertically each aircraft that it comes across. Throughout this
move, flight times are accordingly assigned to the aircraft in the order that they are swept by the line.
If the flight time of an aircraft i reaches its maximum possible value, X;, during this procedure, then

the line should “disengage” this aircraft and continue its move without sweeping it further, to ensure
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that the resulting solution will remain feasible. Consider now the following 4 solutions that can be

obtained during the application of this procedure:

1. The solution in which the sum of the assigned aircraft flight times is equal to LS, - Z V- In what
JeF

follows, we refer with “LL” to this sum.

2. The solution in which the sum of the assigned aircraft flight times is equal to US,,, - Z V4 In what

feF
follows, we refer with “UL” to this sum.
3. The solution in which each aircraft, i, is assigned its maximum possible flight time, X.. In what
follows, we refer with “X” to the sum of the assigned aircraft flight times of this solution.
4. The solution in which the sweeping line coincides with the diagonal. In what follows, we refer with
“D” to the sum of the assigned aircraft flight times of this solution.

The following is a crucial and interesting result, utilized in the development of AFH:

Proposition 4.1. If the quantities LL, UL, X and D are arranged in non-decreasing order, then:

a) If, after taking into consideration any ties present, there does not exist an arrangement in which LL
precedes X, then the problem defined by (4.3.1)-(4.3.4) is infeasible.

b) If an arrangement in which LL precedes X exists, then the optimal solution of the problem defined
by (4.3.1)-(4.3.4) is the one obtained by Procedure Sweep when the sum of the assigned aircraft flight
times becomes equal to the quantity that appears in the second place of this arrangement.

Proof. See Appendix A. 0

The application of Procedure Sweep produces the flight time of each available aircraft in each
squadron of the unit. The same procedure is repeated successively for each time period, until the flight
and maintenance plans for the entire planning horizon are produced. Based on the theory developed

above, the detailed steps of AFH1 are introduced next using the additional notation presented below:

Sa,,,= number of available aircraft of squadron m in period ¢

Sx,..= total flight time of squadron m in period ¢

Sy .. = total residual flight time of squadron m at the beginning of period ¢

Sh,,= total maintenance time of squadron m in period ¢

Sg.. = total residual maintenance time of squadron m at the beginning of period ¢

ex,,; = number of aircraft of squadron m that exit the maintenance station at the end of period ¢
B,.;=residual time capacity of the maintenance station

C,.s= residual space capacity of the maintenance station

Aircraft Flowchart Heuristic 1 pseudocode
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Step 0: Initialization
Cr'es = C)
for m =1 to |M] do
Saml = 0, Syml = 09 ngl = O,
for n=1to |N,,| do
Amn = A lmn; Saml = Saml + Amnls Cres = Cres -1+ Amnls
Ymn1 = Ylmn; Syml = Syml +ymnl;
8mn1 = Glmm ngl = ngl + &Emnls
end for
arrange in non-decreasing order of y,,, the available aircraft of squadron m
arrange in non-decreasing order of g,,,; the grounded aircraft of squadron m
end for
fort=1to T'do
Step 1: Production of maintenance plans for period ¢

Bres = BI;
for m =1 to |M] do
eXyy = 05 Shyy, = 0;
for n=1to |N,,| d
hnmt = 09
end for
end for

while B,., > 0 and at least one grounded aircraft waiting for service exists do
if at least one grounded aircraft with interrupted service from previous periods exists
k= arg max Syt (SYme+ (€x,:* Y)); # squadron with max priority index

meM: squadron m has at least one
grounded aircraft with interrupted service

/ = index of aircraft with lowest residual maintenance time among all grounded
aircraft with interrupted service in squadron &

else
k= arg max St (Syme+ (€X* ));
meM: squadron m has at least
one grounded aircraft waiting for service
/= index of aircraft with lowest residual maintenance time among all grounded
aircraft waiting for service in squadron k&
end if
lf Bres 2 gk/t

# if B,., suffices to finish the maintenance service of that aircraft
hige = iy Shie= Shig+ higg; Bres = Breg = hys;
Cres = Cres T 1; €, = €X, +1;
# remove this aircraft from the set of grounded aircraft waiting for service
else
# if B,,, does not suffice to finish the maintenance service of that aircraft
hklt = Bres; Shkl = Shkt+ hklt; Br‘es = 07
end if
end while
Step 2: Decision on aircraft that will be grounded in period #+1
for m =1 to |M] do
S = 0;
for n=1to |N,,| d
Xt = 0;
end for
end for
set of candidate aircraft includes all available aircraft
while C,., > 0 and the set of candidate aircraft is not empty do
k= arg max (St = SXut) (SVii = SxXps + (€X,:* Y)); # squadron with max priority index

meM : squadron m contains
at least one candidate aircraft

/= index of candidate aircraft with lowest residual flight time in squadron &
if the check for grounding this aircraft is successful
Xite = Yy SXpe = SXpy+ Xpiry Cres = Cres— 1; # ground this aircraft
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remove this aircraft from the set of candidate aircraft
else
remove all the available aircraft of squadron k& from the set of candidate aircraft
end if
end while
Step 3: Production of flight plans for period ¢
for m =1 to |M] do
apply Procedure Sweep to compute the flight time (x,,,,) of each available aircraft
update Sx,,;
end do
Step 4: Update of status for period #+1
form =1 to |M]| do
Samtﬂ = Saml; SYth = Symt; ngt+1 = ngt;
forn =1 to |N,| do
if (@, == 0 and Ay, == gun)  # if this aircraft becomes available
Apner1 = 15 Sy = Sty + 15
Ymnre1 = Y, Symt+1 = Symt+1 + Y,
Goner1 = 05 St = St = Mo
else if (a,,,,== 1 and x,,,; < y,..) # if this aircraft retains availability

Amnt+1 = 1:
Ymnt+1 = YVmnt = Xmnts Symt+1 = Symtﬂ = Xmnts
Zoner1 = 0;
else if (a,,,,== 1 and x,,,;, == y,..;) # if this aircraft is grounded

Amnt+1 = O: Samtﬂ = Samtﬂ - 1:
Emnt+1 = G: ngt+1 = ngt+l + G:
Vmner1 = 0: Symt+1 = Symt+1 = Xmnts
else if (@, == 0 and h,,,,,, < g,ny)  # if this aircraft retains non-availability

Amnt+1 = O,
i1 = ot = Mownts SCmevt = St = Mot
Yuner1 = 0;
end if
end for
end for
end for 0

4.3.2 Aircraft Flowchart Heuristic 2 (AFH2)

The application of AFH2 is similar to that of AFHI1, the only difference being that AFH2 does not
utilize priority indices in order to arrange the aircraft of each squadron, but treats the aircraft as if they
all belong to the same squadron. The next aircraft to receive maintenance service is always the one
with the lowest residual maintenance time among all the grounded aircraft. Aircraft that are candidate
for entering the maintenance station are considered in non-decreasing order of their residual flight
times, independently of the squadron they belong to. The individual flight plan of each aircraft in each
time period is produced by solving the quadratic problem defined by (4.3.1)-(4.3.4) once for each
squadron. In the corresponding arrangement, however, the index i of each aircraft denotes its relative
order when all the aircraft of the wing (not only those of the squadron this aircraft belongs to) are
arranged in non-decreasing order of their residual flight times. Based on the theory developed above,
the detailed steps of AFH2 are introduced next. Note that a rearrangement of the order of available

aircraft takes place at the end of each time period in Step 4. This happens because the relative order
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between the available aircraft of different squadrons may change during the application of Procedure
Sweep, even though it remains unchanged within each squadron.

Aircraft Flowchart Heuristic 2 pseudocode

Step 0: Initialization
Same with Step 0 in AFH1 with the additional requirement that the available aircraft of the wing should be
arranged in non-decreasing order of y,,,; and the grounded aircraft of the wing should be arranged in non-
decreasing order of g,,,; at the end of this step
fort=1to T'do
Step 1: Production of maintenance plans for period ¢
Bres = Bt;
form =1 to |M]| do
Shy=0;
for n=1to |N,,| d
hnmt = 09
end for
end for
while B,.; > 0 and at least one grounded aircraft waiting for service exists do
if at least one grounded aircraft with interrupted service from previous periods exists
/= index of aircraft with lowest residual maintenance time among all grounded
aircraft with interrupted service
else
/= index of aircraft with lowest residual maintenance time among all grounded
aircraft waiting for service
end if
k = index of the squadron the selected grounded aircraft belongs to
if B,os > g # if B, suffices to finish the maintenance service of the aircraft
hige = iy Shie= Shig+ higg; Bres = Breg = hys;
Cres = Cres + 19
remove this aircraft from the set of grounded aircraft waiting for service
else
# if B,.; does not suffice to finish the maintenance service of this aircraft
hklt = Bres; Shkl = Shkt+ hklt; Br‘es = 07
end if
end while
Step 2: Decision on aircraft that will be grounded in period #+1
for m =1 to |M] do
S = 0;
for n=1to |N,,| do
Xt = 0;
end for
end for
set of candidate aircraft includes all available aircraft
while C,., > 0 and the set of candidate aircraft is not empty do
/= index of candidate aircraft with lowest residual flight time
k = index of the squadron that aircraft belongs to
if the grounding check for this aircraft is successful
Xt = Yiars SXp = SXp & Xpgiy Cres = Crog— 15
remove this aircraft from the set of candidate aircraft
else
remove all the available aircraft of squadron k& from the set of candidate aircraft
end if
end while
Step 3: Production of flight plans for period ¢
Same with Step 3 in AFH1
Step 4: Update for period 7+1
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Same with Step 4 in AFH1 with the additional requirement that the available aircraft of the wing should
be arranged in non-decreasing order of y,,,.1 after the status update of the aircraft of each squadron
end for U

4.3.3 Horizon Splitting Heuristic (HSH)

The second heuristic procedure that we propose for the solution of large FMP instances utilizes the
simple idea of splitting the original planning horizon into several consecutive ones, and applying an
FMP optimization model to each of them. The ending state of the system in each sub-horizon becomes
the beginning state of the next one, and so on. The smaller horizons do not necessarily need to have
equal lengths. The quality of the solution obtained this way is expected to be inferior to the one
obtained when the problem is solved up front for all the periods of the original planning horizon. On
the other hand, the total computational time needed in order to reach a solution is expected, in general,
to decrease, especially as the length of the smaller horizons decreases. This is mainly because the
computational effort needed to reach an optimal solution is expected (in general, but not necessarily

always) to increase as the size of the problem increases.

4.4 Computational implementation

In this section, we analyze the worst-case computational complexity of AFH1 and AFH2, and we
present computational results evaluating the performance of AFHI, AFH2 and HSH on randomly
generated FMP instances. Of course, each subproblem solved by HSH is itself an FMP optimization

model, and therefore, exhibits the same complexity.

4.4.1 Computational complexity of AFH1 and AFH2

In order to analyze the computational complexity analysis of AFH1, we prove an interesting result

first.

Lemma 4.1. The problem defined by (4.3.1)-(4.3.4) can be solved in time O(4), where 4 is the total
number of variables x;.

Proof. See Appendix B. 0

LetN . = max|Nm| and N = Z N,,.Propositions 4.2 and 4.3 utilize Lemma 4.1 in order to analyze

meM et

the computational complexity of AFH1 and AFH2, respectively.
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Proposition 4.2. AFHI requires time O(max(|M|N,,a 02N, TIMIN,yar, TIM, TIM|C2, TCY)).

Proof. The dominating operation in Step O is the arrangement of the available and the grounded
aircraft that requires time O(N,,.logN,...) and is executed |M| times. Therefore, the total time that Step
0 requires is O(|M|N,,..10gN,.4x). The initialization commands in the first 7 lines of Step 1 require time
O(IM|N,.4»)- The check in the while command of Step 1 requires time O(1). Checking if an aircraft with
incomplete service from previous periods exists requires time O(1). Finding the squadron with the
highest priority index among all the squadrons with aircraft with interrupted service (or all the
squadrons with aircraft waiting for service) requires time O(min(i,|M])), where i is the number of
grounded aircraft (1 <i < (). Selecting the appropriate aircraft from that squadron requires time O(1),
since the grounded aircraft of each squadron are always sorted in non-decreasing order of their
residual maintenance times. The if-else clause that decides the maintenance time of the selected
aircraft requires time O(1). Since min(z,|M|) = C in the worst case, the while-loop of Step 1 is repeated
at most C times, with each repetition i (1 <i < C) requiring time O(C-i+1) for selecting the appropriate

squadron and aircraft, and time O(1) for deciding its maintenance time. Since C + (C-1) +..+ 1 =

C((;Jr D , the total time required for this is O(C?). Note that this bound cannot be improved by sorting

in advance the squadrons with respect to their priority index, since one of these indices always
changes in each iteration, imposing a rearrangement. Therefore, Step 1 requires time O(|M|N,..) +
O(C?) = O(max(|M|N,,q.,C?)) in total.

The initialization commands in the first 7 lines of Step 2 require time O(|M|N,,...). For the while-
loop that follows, we distinguish two cases. The first case is when this loop is repeated |[M|+C-1 times
(C-1 successful checks for grounding an aircraft first, followed either by |M|-1 unsuccessful and one
successful, or by |M| unsuccessful). This is the maximum possible number of times that this loop can
be repeated. The sequence of checks implies that the maintenance station is initially empty. Moreover,
simulating the operation of the maintenance station at the presence of i grounded aircraft requires time
O(#%), since there is a total of at most / iterations involved, where iteration k (1 < k < i) selects out of at
most i-k+1 squadrons the one with the highest priority index (again a prearrangement is not sufficient
to improve the bound, since one of these indices changes in each iteration) and assigns a maintenance
time to a grounded aircraft that belongs to that squadron. It follows that repetition i (1 < i < C-1)
requires time O(|M]) for selecting the squadron with the highest priority index and time O(i*) for
checking the condition for grounding the associated aircraft, while each repetition i of the next |M|
ones (C < i < [M[+C-1) requires time O(|M|+C-i) for selecting the squadron with the highest priority
index and time O((C-1)?) for checking the condition for grounding the associated aircraft. Therefore,
the total time required for the while-loop in this case is O((|[M[+1%) + (M+2%) +..+ (MH(C-1)%) +
(MIHC-1)?) + (M]-1H(C-1)°) +..t (1H(C-1)%) = O((C-DIM] + (1*+2%+..H(C-1)") + (1+2+...+{M]) +
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(C-DCEEC-n+)  (M)(M]+D)
6 2

O(IMP+|M|C*+C?) = O(max(|M]*,|M|C*,C?)). The second case is when the while-loop is repeated |M]

MI(C-1)") = O(CIM] - |M] + + MIC + M 2CM) =

times (|M| unsuccessful checks for grounding an aircraft from |[M| distinct squadrons). In this case,
repetition i (1 < i < |M]) requires time O(]M[-i+1) for selecting the squadron with the highest priority

( |M|(M]+1)
2

index, leading to a total bound of O(|M| + |[M|-1 +..+ 1) = O ) = O(MP) for all |M]|

selections (since the selected squadron is dropped at the end of each iteration, this bound can be
improved to O(|M|log|M]) by sorting in advance the |M| squadrons with respect to their priority index,
but this is neither known in advance, nor can it improve the overall bound of Step 2 computed next).
Additionally, since one aircraft is considered for entering the maintenance station at each iteration,
there are at most C-1 grounded aircraft; thus, the time required for this check is O((C-1)?). Hence, the
total time required for the while-loop is O(M[* + |M|(C-1)*) = O(max(|M[*,|M|C?)) in this case. Thus,
considering the worst of the above two cases, Step 2 requires time O(max(|M[*,|M|C% C*,|M[*,|M|C?) =
O(max(|M[*,|M|C%,C?)) in total. In Step 3, solving |M| times the problem defined by (4.3.1)-(4.3.4)
requires time O(|M|N,...) in total. Finally, updating the status of the system for period 7+1 in Step 4
requires time O(|M|N,...). Since Step 0 is executed once and each of Steps 1-4 is executed 7 times, the
total time required by AFHI is O(IM|N;ua:logNpar + T(IM|Npax + C* + [MI + [M|C* + C+ |M|N,pr +
IMIN02) = O(max(M|Ny10s10gN;ae, TIM|N o, TMP TIMIC, TC?)). O

Proposition 4.3. AFH2 requires time O(max(|M|N,,.l0gN,ue, TC, TIM|N ... log|M)).
Proof. The arrangement of the available and the grounded aircraft of each squadron in Step 0 requires
time O(N,.logN,.) and is executed |M| times in total. The arrangement of the available and the
grounded aircraft of the wing requires time O(Nlog|M|), since the aircraft of each squadron are already
sorted. These are the two dominating operations in Step 0; therefore, the total time that Step 0 requires
1S O(IM|N,0:l0gN ) + O(Nog|M]) = O(|M|N,xmax(10gN,,..., 10g|M])). The initialization commands in
the first 7 lines of Step 1 require time O(|M|N,...). The check in the while command of Step 1 requires
time O(1). Checking if an aircraft with interrupted service from previous periods exists requires time
O(1). Selecting the grounded aircraft that should receive maintenance service next requires time O(1),
since the grounded aircraft of the wing are always sorted in non-decreasing order of their residual
maintenance times. The if-else clause that decides the maintenance time of the selected aircraft
requires time O(1). Since the while-loop of Step 1 is repeated C times in the worst-case, Step 1
requires time O(|M|N,,...) + O(C) = O(max(|M|N,..,,C)) in total.

The initialization commands in the first 7 lines of Step 2 require time O(|M|N,,...). For the while-
loop that follows, we distinguish two cases. The first case is when this loop is repeated |[M|+C-1 times

(C-1 successful checks for grounding an aircraft first, followed either by |M|-1 unsuccessful and one
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successful, or by |M] successful). This is the maximum possible number of times that this loop can be
repeated. The sequence of checks implies that the maintenance station is initially empty. In this case,
repetition 7 (1 <i < [M[+C-1) requires time O(1) for selecting the appropriate aircraft and time O(1) for
checking whether it should be grounded. Therefore, the total time required for the while-loop is
O(|M[+C). The second case is when the while-loop is repeated |M] times (|M] unsuccessful checks for
grounding an aircraft from |M] distinct squadrons). In this case, each repetition requires time O(1) for
selecting the appropriate aircraft, and time O(1) for checking whether it should be grounded (since the
aircraft are treated as if they all belong to the same squadron, the “simulation” of the operation of the
maintenance station is trivial). Hence, the total time required for the while-loop is O(]M|). Thus,
considering the worst of the above two cases, Step 2 requires time O(|M]+C) in total. In Step 3, solving
|M| times the problem defined by (4.3.1)-(4.3.4), requires time O(|M|N,...) in total. In Step 4, updating
the status of the system for period #+1 requires time O(|M|N,,,,) and sorting the available aircraft of the
wing requires time O(Nlog|M|), since the available aircraft of each squadron are already sorted.
Therefore, the total time required by Step 4 is O(|M|N,,.c+ Nlog|M|) = O(|M|N,...log|M]). Since Step 0 is
executed once and each of Steps 1-4 is repeated T times, the total time required by AFH2 is
O(M|Nnarl0gNar + IMINyologlM] + T(max(|M|Nye,C) + (IMHC) + [MNpax + [M|Nnadog|M]) =
O(max(|M|N,uu10gN e, TC, TIMN, o log|M]). 0

Note that, in most of the cases, the available aircraft of the wing will almost be sorted at the end
of Step 4. Therefore, sorting them will require time O(4) (using a sorting technique such as insertion-

sort); in such a case, the total time required by AFH2 will be O(max(|M|N,,..10&N,,0,|MIN,olog|M|,
TIM|Nyax, TC)).

4.4.2 Computational results

We implemented AFH1 and AFH2 in C/C++ and tested their performance against that of HSH and the
FMP model of Section 4.2. Since their design does not depend on the adopted objective function, we
only applied AFH1 and AFH2 once on each random problem instance. For the solution of FMP and
HSH, we utilized version 10.1 of AMPL/CPLEX (see Fourer et al., 2002), with default values where
possible. We performed all the experiments on a Dual Xeon server with a 2 GHz processor and 2 GB
system memory.

We used 12 different combinations for the values of |M|, |N,| and T and solved 10 random
problem instances for each of them. We chose a smaller size for the problem instances of the first 8
combinations, in order to enable their exact solution with the FMP model, and evaluate this way the
quality of the solutions produced by the heuristics. On the other hand, the remaining 4 combinations

correspond to actual wing sizes encountered in the HAF, for which the FMP model cannot find the
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optimal solution in reasonable times. Since the data pertaining to real-world problem instances are
strictly confidential, we mainly use these problem instances to infer the performance of the heuristics
on real problem cases.

The value of |N,,| was always the same across all squadrons. For [M], we used the values 2 and 3,
since typical HAF wings consist of 2 or 3 squadrons. In the first 8 combinations, the value of |N,,| was
taken equal to 6-10 when |M| = 2, and 6-8 when |[M| = 3. In the remaining 4 combinations, we
considered the values 20 and 25 for |V,|, to reflect the fact that a typical HAF squadron may contain
up to 20-25 aircraft. The value of T was always taken equal to 6, since the flight requirements are
typically issued for a planning horizon of 6 monthly periods.

The required flight time for each squadron and period combination was a random number
distributed uniformly in the interval [16|N,|, 21|V,|]. The time capacity of the maintenance station in
each time period was a random number distributed uniformly in the interval [21|M||N,.|, 26|M||N,|],
and the space capacity was set equal to 0.1|M]||N,,|, rounded up to the nearest integer. These figures
correspond to actual FMP configurations encountered in the HAF. We generated the number of
grounded aircraft randomly, using a discrete probability function that considered integer values
between 0 and C, inclusive. This distribution associated higher values with higher probabilities, in
order to favor more challenging problems. We set parameters Y and G equal to their actual values, i.e.,
300 and 320 hours, respectively. The residual flight time of each available aircraft was a random
number distributed uniformly in the interval [Y,,;,,Y], whereas the residual maintenance time of each
grounded aircraft was a random number distributed uniformly in the interval [ G,,,,G]. We used actual
values drawn from the real application for the remaining problem parameters, i.e., L = 0.9, U= 1.1,
Xpar = 50, Yiin = 0.1 and G,,;, = 0.1. We performed several checks to ensure that each randomly
generated problem instance was feasible.

First, we applied FMP and HSH as single objective models, adopting each of the 6 objective
functions presented in Section 4.2. The ideal value (see Ehrgott, 2005) of the corresponding objective
was obtained this way. Although the ideal values are useful for evaluating the quality of the solutions
produced by AFH1, AFH2 and HSH, a feasible solution that simultaneously attains them will rarely
exist. To assess this quality, we also solved each of the random problem instances using the weighted
sums approach (see Steuer, 1986) with two uniform weight combinations. In the first case, we
introduced positive weights w; = w, = w3 = wy = 0.25 and we solved the FMP model with objective Z,
= 0.25(Y2)z; + 0.25|M|(Y/2)z; + 0.25z3 + 0.25|M]z4. We introduced the constants (¥/2) and |M| for
scaling reasons, since the residual flight time of an available aircraft is equal to Y72 on the average, and
increasing the fleet availability of every squadron by 1 is equivalent to increasing the fleet availability
of the wing by |M|. In the second case, we introduced positive weights ws = ws = 0.5 and we solved the

FMP model with objective Zg = 0.5(Y/2)zs + 0.5z5. We also tested the performance of HSH using the
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objectives Z, and Zg, by splitting the original 6-period time horizon into two 3-period ones and
applying the FMP model twice.

Tables 4.1-4.3 compare the six criteria values provided by AFH1 with their corresponding ideal
values and show the fleet availabilities that the obtained solutions provide. More specifically, out of
the four columns that pertain to the same criterion, the first two show the average and maximum
percentage difference between each criterion value and its corresponding ideal value, whereas the next
two show the average and minimum associated availability. Results for the differences from the ideal
values are not reported for the last 4 sets of problem instances, since it was not possible to apply the
FMP model in order to obtain the ideal value of each associated criterion for them. The availabilities
are not expressed in absolute values, but as a percentage over their theoretically maximum possible
value. For example, the theoretically maximum possible value of objective z; is equal to the total

number of aircraft, |M||N,,|.

Table 4.1: Quality and fleet availability of the solutions provided by AFH1 for objectives z; and z,

|M| |Nm| 21 1 22 2

% from Ideal % availability | % from Ideal % availability
Avg  Max Avg Min Avg  Max Avg Min
13.64 16.67 8333 8333 | 23.00 3333 71.67 66.67
10.62 1429 8571 85.71 | 1825 28.57 76.19 7143
10.17 1250 87.50 87.50 | 1821 25.00 77.50 75.00
10.59 11.11 88.89 88.89 | 18.89 2222 80.00 77.78
1339 15.00 86.11 85.00 | 17.90 30.00 &1.11 70.00
11.11  11.11 88.89 88.89 | 31.67 33.33 6833 66.67
1295 1429 86.19 85.71 | 23.10 28.57 7429 7143
8 1250 1250 87.50 87.50 | 2639 37.50 73.61 62.50
20 87.75 87.50 82.50  80.00
25 88.40 88.00 82.80  80.00
20 88.50 88.33 79.50  75.00
25 89.33 8933 79.20  76.00

N=BN- CHEN -
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Table 4.2: Quality and fleet availability of the solutions provided by AFH1 for objectives z; and z4

|M | |N ml 3 3 24 4
% from Ideal % availability % from Ideal % availability
Avg  Max Avg Max Avg  Min Avg Min

2 6 397 9.15 3.59 9.15 3594 3021 41.83 3695
2 7 520 2820 416 1946 3478 2646 41.77 30.85
2 8 1.83 1023 0.16 1.62  39.57 27.09 4727 4037
2 9 449 1019 412 11.09 4280 33.14 4887 4237
2 10 | 335 1138 2.56 7.81 4209 3335 47.19 42.64
3 6 298 1226 225 1381 3451 29.07 46.03 4036
3 7 299 1541 3.11 14.77 37.16 30.40 44.75 36.80
3 8 1.34 459 0.53 4.63 36.63 2654 4447 3849
2 20 42.04 3474 45.66 4097
2 25 4123 3447 4498 40.09
3 20 38.10 2841 4374 39.19
3 25 3896 3298 4415 4135
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Table 4.3: Quality and fleet availability of the solutions provided by AFH1 for objectives zs and zg

M) | Nl 35 35 %6 26
% from Ideal % availability | % from Ideal % availability
Avg  Max Avg Min | Avg Max Avg Min
2 6 12.15 12.68 8736 86.11 | 518 9.52  46.71 4255
2 7 1094 13.10 8823 8571 | 4.00 20.37 46.04 3432
2 8 9.52 1146 90.10 88.54 | 3.23 6.85 49.68 44.68
2 9 899 10.19 9093 8981 | 450 9.03 50.76 4435
2 10 | 10.66 1333 89.26 86.67 | 440  8.00 50.18 45.46
3 6 9.17 10.19 90.83 89.81 | 2.15 8.77  48.77 43.22
3 7 1041 1270 89.44 8730 | 3.52 13.68 4826 40.22
3 8 1026 11.11 89.74 88.89 | 2.75 3.83 4733 4293
2 20 90.46  89.58 47.75 43.28
2 25 90.83  89.33 4730 43.13
3 20 90.78 90.28 46.64 43.20
3 25 90.89 90.44 4691 44.04

Tables 4.4-4.9 present similar results for AFH2 and HSH. Results for HSH are not reported at

all for the last 4 size combinations, since the application of HSH on these problems is impractical due

to its excessive computational effort. The extra columns labeled “IF” in Tables 4.7-4.9 show the

number of instances in the associated combination for which HSH did not return a feasible solution.

The computation of the results reported in these tables was based only on the instances for which HSH

reached a feasible solution.

Table 4.4: Quality and fleet availability of the solutions provided by AFH2 for objectives z; and z,

21

%1

22

22

M| [Nl | % from Ideal % availability | % from Ideal % availability
Avg  Max Avg Min | Avg Max Avg Min

2 6 13.64 16.67 8333 8333 | 2633 3333 6833 66.67
2 7 10.62 1429 8571 8571 | 19.84 28.57 7460 7143
2 8 10.17 1250 87.50 87.50 | 19.46 25.00 76.25 75.00
2 9 10.59 11.11 88.89 88.89 | 20.14 2222 78.89 77.78
2 10 | 13.11 15.00 86.00 85.00 | 22.33 30.00 76.00 70.00
3 6 11.11  11.11 88.89 88.89 | 2833 3333 71.67 66.67
3 7 1295 1429 86.19 85.71 | 2476 28.57 72.86 71.43
3 8 1212 1250 87.50 87.50 | 27.68 37.50 7125 62.50
2 20 89.25 87.50 83.00 80.00
2 25 90.00 90.00 84.80  84.00
3 20 90.17  90.00 81.50  80.00
3 25 90.53  89.33 84.00  80.00
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Table 4.5: Quality and fleet availability of the solutions provided by AFH2 for objectives z; and z4

23 23 24 24

M| |N,| | % from Ideal % availability | % from Ideal % availability
Avg  Max Avg Max Avg  Max Avg Min

2 6 097  4.56 734 2335 | 7.34 2335 6833 66.67
2 7 6.66 21.02 15.12 38.01 | 15.12 38.01 74.60 71.43
2 8 1.57  5.02 11.31 30.52 | 11.31 3052 7625 75.00
2 9 7.24 1858 1484 26.26 | 1484 2626 78.89 77.78
2 10 | 451 1118 10.15 2191 | 10.15 2191 76.00 70.00
3 6 2.51 11.08 1450 35.09 | 1450 35.09 71.67 66.67
3 7 3.10 2033 16,57 31.76 | 16.57 31.76 7286 71.43
3 8 1.65 5.51 16.01 38.93 | 16.01 3893 7125 62.50
2 20 83.00  80.00
2 25 84.80  84.00
3 20 81.50  80.00
3 25 84.00  80.00

Table 4.6: Quality and fleet availability of the solutions provided by AFH2 for objectives zs and zg

s 3s 26 36

M| [Nl | % from Ideal % availability | % from Ideal % availability
Avg  Max Avg Min | Avg Max Avg Min

2 6 13.83 14.08 85.69 84.72 | 3.92 7.59 4732 4393
2 7 10.00 13.10 89.02 8690 | 6.15 18.06 4731 38.19
2 8 9.94 1146 89.69 88.54 | 4.25 7.31 49.13 4555
2 9 899 10.19 9093 8981 | 6.67 1329 49.60 44.16
2 10 9.85 10.83 90.00 89.17 | 6.27 1142 4944 45.56
3 6 944 10.19 90.56 89.81 | 2.80 7.61 48.44 4283
3 7 938 11.11 9048 88.89 | 459 1506 47.73 40.22
3 8 9.80 1042 90.14 89.58 | 3.41 7.96 46.63  44.06
2 20 91.67 91.25 47.59 43.82
2 25 92.13 91.67 47.22 4333
3 20 9236 92.22 4633 4334
3 25 92.60 92.44 46.75 44.04

Table 4.7: Quality and fleet availability of the solutions provided by HSH for objectives z, and z,

21 21 22 22
M| N % from Ideal % % from Ideal %
availability availability

Avg Max IF Avg Min | Avg Max IF Avg Min
2 6 | 000 000 2 9375 8333|000 000 0 9375 83.33
2 7 1000 000 2 9286 9286 | 1.79 1429 2 8571 85.71
2 8 | 000 000 3 9286 87.50]|0.00 0.00 2 87.50 87.50
2 9 | 000 000 0 9444 9444 | 0.00 0.00 0 88.89 88.89
2 10 | 0.00 0.00 O 93.75 90.00 | 0.00 000 0 90.00 90.00
3 6 | 000 000 1 9444 9444|000 0.00 O 8333 8333
3 7 1000 000 0 9286 9048 | 0.00 000 0 8571 85.71
3 8 000 000 0 9444 091.67 | 0.00 000 0 87.50 87.50

Table 4.8: Quality and fleet availability of the solutions provided by HSH for objectives z; and z4

23 2 24 24
M| N % from Ideal % % from Ideal %
availability availability

Avg Max Avg Max Avg | Max Avg IF Avg Min
2 6 1238 20.63 1641 33.16 1641 | 33.16 1641 0 9375 83.33
2 7 7.72 1498 452 1425 452 | 1425 452 2 8571 8571
2 8 597 958 1273 3093 1273 | 3093 1273 2 87.50 87.50
2 9 936 1770 7.63 1782 7.63 | 17.82 763 0 88.89 88.89
2 10 461 1229 652 2171 652 | 21.71 652 0 90.00 90.00
3 6 7.67 2264 593 2193 593 |2193 593 0 8333 8333
3 7 301 697 11.16 36.72 11.16 | 36.72 11.16 0 8571 85.71
3 8 327 1008 725 1736 7.25 | 1736 725 0 87.50 &7.50
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Table 4.9: Quality and fleet availability of the solutions provided by HSH for objectives zs and zg

s s 26 Z6

M| N, % from Ideal % availability % from Ideal % availability
Avg Max IF Avg Min | Avg Max IF Avg Min

2 6 0.18 141 2 9931 9722|1089 1496 1 3698 3254
2 7 0.15 120 2 9673 96.43 | 6.60 1093 3 4424 29.56
2 8 0.00 0.00 3 9568 9479 | 6.05 1143 1 47.04 40.90
2 9 0.00 0.00 0 96.67 9630 | 7.10 1190 0 4952 39.72
2 10 0.00 0.00 O 9646 9500 | 559 1052 6 4691 4032
3 6 0.00 000 1 9630 9630 | 6.70 1228 1 4430 37.67
3 7 0.00 0.00 0 96.03 9524 | 555 921 1 50.13 3758
3 8 0.00 000 0 9583 9583 | 5.18 1032 1 4513 36.81

Several interesting observations can be made based on the results of the above tables. The
results of Tables 4.1-4.3 show that the quality of the solutions produced by AFH1 is quite satisfactory
for criterion z, (approximately 12% difference from the corresponding ideal values on average), less
satisfactory for criterion z, (approximately 22% difference from the corresponding ideal values on
average), very satisfactory for criteria z; and z; (approximately 2-3% difference from the
corresponding ideal values on average), quite satisfactory for criterion zs (approximately 10%
difference from the corresponding ideal values on average), and very satisfactory for criterion zg
(approximately 4% difference from the corresponding ideal values on average). The solution quality of
some particular instances is significantly worse than average, as denoted by the large difference
between columns “Avg” and “Max”. The results of Tables 4.4-4.6 show that the behavior of AFH2 is
similar, the only difference being that the solution quality for criterion z, is more comparable to that of
criterion z; (approximately 12% difference from the corresponding ideal values on average).

The availabilities that we report for criteria zs, z, and zs are significantly lower than those
reported for criteria z;, z, and zs. This is not surprising, since the criteria zs, z4 and z¢ pertain to the
residual flight time availability which cannot be improved dramatically with respect to the value that it
has at the beginning of the planning horizon. This is due to the presence of the flight load
requirements, and the fact that the replenishment of the flight hours through the completion of
maintenance service is constrained by the limited time capacity of the maintenance station. To provide
further intuition on this, note that any aircraft which is available at the initial state of the system is
expected to have residual flight time availability equal to (Y+Y,;,)/2 = 150.05 hours on the average.
Coupled with the fact that some of the unit’s aircraft are initially expected to be grounded, this implies
that the initial residual flight time availability of the unit is expected to be smaller than 50% of its
maximum possible value. On the other hand, starting with a large number of available aircraft, it is
easier to retain a high level of aircraft availability for the entire planning horizon, leading to drastically
higher values for criteria z;, z, and zs.

As shown in Tables 4.7-4.9, HSH exhibits a rather myopic behavior and is not always able to

return a feasible solution, mainly because it treats each sub-horizon separately. This is due to the fact
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that the decisions made in an early sub-horizon may turn out to be too restricting, leaving the system
in an inadequate state that is incapable of satisfying the flight requirements of the following sub-
horizon. This issue can be resolved by a more conservative planning over the initial periods of the
planning horizon. In the actual combat wing that we studied, |V,,| and X,,,, were always large enough,
making it always possible to satisfy this flight load using only a subset of the available aircraft. Thus,
finding a feasible problem solution was hardly troublesome. In general, however, a careful design
should address accordingly such difficulties that may arise.

Aside from this issue, it is impressive that HSH was able to find the ideal value of criteria z; and
z, in almost all the instances for which it reached a feasible solution. On the other hand, the quality of
the solutions produced by HSH is very satisfactory for criterion z; (approximately 6-7% difference
from the corresponding ideal values on average), and a little less satisfactory for z4 (approximately 9-
10% difference from the corresponding ideal values on average). HSH was not able to find a feasible
solution for criterion zsin 8 out of 80 instances, but found the ideal value of the associated criterion in
almost all the instances for which it reached a feasible solution. Additionally, the quality of the
solutions produced by HSH is very satisfactory for criterion z¢ (approximately 6-7% difference from
the corresponding ideal values on average).

In Tables 4.10 and 4.11, we perform a comparison of the optimal values of the weighted sum
objectives Z, and Zg provided by AFH1, AFH2, HSH and FMP. In order to tie these results with those
of Tables 4.1-4.9, we also compare in the last two columns of these tables the optimal Z, and Zg
values provided by FMP, with the ones that result when the ideal values of the corresponding criteria
are used. Results for the last 4 sets of problem instances are not reported, since the large size of these

problem instances renders the application of FMP and HSH impractical.

Table 4.10: Comparison of optimal Z, values

AFH1 AFH2 HSH FMP

M| |Nyl | % from FMP | % from FMP % from FMP % from Ideal
Avg Max | Avg Max Avg Max IF | Avg Max

2 6 530 918 | 630 1044 | 1461 1686 2 | 6.73 11.24
2 7 597 1486 | 9.09 1401 | 7.58 1925 2 | 414 788
2 8 4.83 6.16 | 7.64 1287 | 330 581 3 | 328 5.08
2 9 6.03 978 | 9.60 11.71 | 512 646 5 | 4.01 491
2 10 | 5.14 822 | 871 13.03 | 5.10 1052 2 | 445 7.21
3 6 592 1275 | 746 1342 | 3.09 473 4 | 749 1236
3 7 637 839 | 988 1440 | 563 798 6 | 552 7.12
3 8 557 890 | 970 18.03 | 439 674 7 | 546 696
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Table 4.11: Comparison of optimal Z values

AFH1 AFH2 HSH FMP
M| Nyl | % from FMP | % from FMP % from FMP % from Ideal
Avg Max | Avg Max | Avg Max IF | Avg Max
2 6 3.45 534 | 3.67 563 | 731 9.17 2 | 547 576
2 7 471 1471 | 533 1397 | 282 6.55 2 | 3.14 415
2 8 4.11 582 | 487 698 |256 609 3 | 237 3.59
2 9 360 552 | 476 8.64 | 240 3.66 5 | 329 442
2 10 | 386 546 | 446 625 | 3.68 453 2 | 378 433
3 6 238 6.06 | 285 588 |3.08 414 4 | 345 4.64
3 7 354 790 | 355 7.66 |4.07 571 6 | 3.78 4.6l
3 8 274 359 | 283 537 | 469 651 7 | 400 458

Applying FMP with a weighted sums objective produces a high-quality solution, which is
additionally guaranteed to be non-dominated (see Steuer, 1986) for the associated multi-objective
problem. Moreover, the Z, values of the optimal solutions produced by FMP appear to be close
(approximately 3-5% on average) to the corresponding Z, values that result when the ideal value of
each criterion is used. This is because the objectives of the model are not in direct conflict with each
other, but there exists a certain degree of synergy among them. It should be noted however, that if we
replace one of the objectives with a corresponding lower bound constraint, the model will only focus
on ensuring this bound for that objective, without any special concern for optimizing it.

The weighted sums objective function value of the solutions produced by AFH1 appears to be
close (approximately 5% on average for Z, and 3.5% on average for Zg) to the corresponding Z, and
Zg values provided by FMP. On the other hand, AFH2 seems to perform slightly worse than AFH1
with an average difference of approximately 8.5% for Z, and 4% for Zz. These percentages do not
remain constant, but exhibit significant variance. Despite the existence of this variance, AFH1 and
AFH2 perform quite satisfactorily on average. HSH seems to perform comparably to AFH1 and
AFH2, with an average difference of approximately 6% for Z, and 4% for Zg, and variance of similar
magnitude. The difficulty in reaching feasibility is still a factor, however, since HSH was not able to
reach a feasible solution in 62 out of 160 instances in total.

Results for the computational requirements of the algorithms are presented in Tables 4.12-4.14.
More specifically, Table 4.12 shows the average and maximum computational time needed by FMP to
find the ideal value of each of the 6 criteria. Table 4.13 shows the total computational effort required
by HSH for the associated single objective problems, which was computed as the sum of the
computational times of the two 3-period subproblems. Table 4.14 shows the computational effort
required by FMP and HSH for the weighted sums approach. Results for the computational
performance of AFH1 and AFH2 are not reported, since their computational requirements are always
negligible (less than a second). This justifies the effectiveness of these heuristics, especially for large

FMP instances, for which the other available approaches are not applicable in reasonable times.

43

Institutional Repository - Library & Information Centre - University of Thessaly
12/05/2024 17:28:17 EEST - 18.118.9.86



Chapter 4: Heuristic Solution Techniques

Table 4.12: Computational requirements (in seconds) needed by
FMP to find the ideal value of each of the 6 criteria

K41 22 23 24 5 Z6
M| [N, Avg Max Avg Max Avg Max Avg Max Avg Max Avg Max
2 6 0.024 0.050 | 0.040 0.124 | 0.332 0.759 0.326 0.814 | 0.018 0.022 | 2.756 20.181
2 7 0.069 0.269 | 0.085 0.299 | 3.588 32.027 0.430 1.829 | 0.037 0.123 | 99.997 519.030
2 8 0.069 0.336 | 0.062 0.175 | 0.187 0.704 0.471 1.169 | 0.038 0.186 | 557.701 1665.700
2 9 0.025 0.030 | 0.026 0.034 | 124.037 123271 | 0.410 0.791 | 0.023 0.028 | 696.355 1803.470
2 10 | 0.030 0.041 | 0.038 0.092 | 7.589 51.421 1.466 7.443 | 0.026 0.029 | 1171.418 1803.300
3 6 0.026 0.031 | 0.034 0.097 | 46.297  451.82 0.501 1.150 | 0.024 0.027 | 695.558 1803.910
3 7 0.032 0.042 | 0.040 0.073 | 10.474 83.351 1.004 1.636 | 0.030 0.033 | 1455.299 1804.290
3 8 0.036 0.044 | 0.048 0.144 | 5.236 23413 1.829 9.106 | 0.033 0.037 | 1697.275 1803.610
Table 4.13: Computational requirements (in seconds) of HSH for
each of the 6 single objective problems
%1 %) 23 T4 Is T6
M) N, Avg Max Avg Max Avg Max Avg Max Avg Max Avg Max
2 6 0.014 0.019 | 0.016 0.030 | 0.029 0.055 | 0.029 0.050 0.013 0.016 | 0.038 0.101
2 7 0.015 0.019 | 0.016 0.029 | 0.026 0.040 | 0.028 0.045 0.013 0.017 | 0.057 0.165
2 8 0.016 0.018 | 0.017 0.025 | 0.027 0.036 | 2.314 16.010 | 0.014 0.016 | 0.170 0.249
2 9 0.016 0.019 | 0.016 0.019 | 0.071 0.219 | 1.918 17.011 | 0.014 0.017 | 0.127 0.328
2 10 | 0.017 0.021 | 0.020 0.024 | 0.270 0.751 | 2.287 20.014 | 0.016 0.018 | 0.303 0.764
3 6 0.018 0.023 | 0.016 0.022 | 0.077 0.136 | 0.030 0.051 0.016 0.021 | 0.188 0.561
3 7 0.021 0.026 | 0.026 0.050 | 0.588 3.957 | 2.380 21.047 | 0.020 0.026 | 1.130 5.303
3 8 0.024 0.028 | 0.024 0.028 | 0.272 0.899 | 0.044 0.074 | 0.022 0.025 | 1.006 4.396
Table 4.14: Computational requirements (in seconds) of FMP
and HSH for the weighted sums approach
FMP, Z, HSH, Z, FMP, Z; HSH, Z;
M| N, Avg Max Avg Max Avg Max Avg Max
2 6 0.789 1.175 0.047 0.086 | 0.554 2.503 0.036 0.060
2 7 2.252 14121 | 0.092 0.410 | 6.042 23.868 0.050 0.113
2 8 0.529 0.828 0.079 0.134 | 42.034 98.537 0.091 0.148
2 9 0.741 1.725 0.064 0.113 | 290.802 1803.650 | 0.102 0.242
2 10 | 2.511 10.819 | 0.102 0.174 | 944.721 1803.650 | 0.158 0.329
3 6 1.062 2.141 0.112 0.161 | 423.489 1804.050 | 0.211 0.443
3 7 6.447 31.741 | 0.134 0.247 | 1446.759 1804.610 | 0.435 1.215
3 8 9.050 41949 | 0.196 0.281 | 1803.922 1804.550 | 0.589 1.123

A first observation that can be made based on the results of Tables 4.12-4.14 is that, besides

problem size, the actual values of the problem parameters also have a strong influence on the total

computational effort needed to reach an optimal solution in the case of FMP and HSH. This is

supported by the fact that, even for the same problem size, a large variance is exhibited in the

computational times of FMP and HSH. Note that the results of Tables 4.12-4.14 are only partly

comparable, since HSH was not able to reach a feasible solution for all the problem instances that it

was tested. On the other hand, the computational effort of AFH1 and AFH2 is negligible for all

problem sizes. Our computational experience also indicates that the computational effort of AFH1 and

AFH2 does not vary significantly even when the values of the problem parameters differ considerably.

Therefore, the actual values of the problem parameters do not seem to have a strong influence on the

computational effort of AFH1 and AFH2.
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A careful comparison of the results presented in Tables 4.12 and 4.13 reveals that, in most
cases, the total computational effort needed to reach an optimal solution decreases significantly when
HSH is used instead of FMP, although not in all of them. While in the case of objectives zj, z, and zs
this decrease is not very large, it is much larger in the case of objectives z; and z¢. This is because the
total computational effort is already small in the former case; therefore, there is little room for
improving it. In the latter case, however, where the FMP computational effort is considerably larger,
there exist significantly larger computational savings from utilizing HSH. In the case of z4 on the other
hand, the computational time seems to increase when HSH is used instead of FMP. This is a very
important observation, because it shows that the proposed heuristics may behave differently than
expected.

As far as the weighted sums approach is concerned, the results of Table 4.14 suggest that there
are significant computational savings from utilizing HSH instead of FMP. A very interesting
observation is that the computational effort needed for the application of the weighted sums approach
with the Zg objective on large problems becomes significantly larger than the computational effort
needed for the application of the weighted sums approach with the Z, objective.

Before concluding this section, it is noteworthy to make an additional important observation. In
an attempt to directly compare an AFH with an FMP solution and discover the characteristics of the
latter that make it advantageous, we discovered the following interesting FMP behavior: FMP rarely
grounds an aircraft that will not exit the maintenance station by period 7+1. The intuition behind this
is trivial, since only the periods up to 7+1 are included in the model’s objective function; therefore, an
aircraft exiting the maintenance station later than period 7+1 cannot influence the objective of the
current planning horizon. This strategy, however, may result in an excessive number of aircraft with
particularly low residual flight times towards the end of current planning horizon, which in turn may
result in a drastic decrease of the unit’s fleet availability over the next planning horizon. The
performance of AFH within a single time horizon can be similarly improved by only allowing the
grounding of an aircraft if this aircraft is expected to exit the maintenance station by period 7+1; this,

however, may have an adverse effect on the unit’s availability in the long term.

4.5 Summary

In this chapter, we addressed a multi-objective optimization model for the multi-period variant of the
FMP problem. We proved several interesting theoretical properties for this problem, and we utilized
them to develop two heuristics for solving this model. We also presented experimental results

demonstrating the computational performance of these heuristics and the quality of the solutions that
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they produce. The results are very satisfactory, because they show that, under careful consideration,
even large FMP instances can be handled quite effectively.

The first heuristic, AFH, is simple and performs quite satisfactorily in most of the cases. It is
based on an ad-hoc heuristic technique used in many Air Force organizations worldwide. The question
of whether the quality of the solutions that it produces can be further improved through appropriate
enhancements remains open, leaving this as a potential direction for future research.

The second heuristic, HSH, exhibits a rather myopic behavior. It focuses on maximizing fleet
availability in the initial periods first, which may result in low availability over the next periods.
Nevertheless, the solution obtained by HSH is quite satisfactory in most cases. Therefore, it can be
considered alternatively for obtaining a satisfactory solution when the size of the problem prohibits its
solution using an exact solution algorithm. In general, the number of periods of each smaller horizon
has a strong effect on the quality of the obtained solution by HSH. An interesting conclusion that
arises from this observation is that, since this is an on-going problem repeatedly solved in successive
horizons, the length of the horizons for which the wing command issues the flight requirements has a
strong impact on the long term availability of the unit. As the number of periods over which the
command issues the flight requirements increases, the fleet availability of the unit is expected to
increase, too. This remark reveals the potential benefits from extending the planning horizon for which

flight load information is available.
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Chapter 5 Single Period FMP Problem
5.1 Introduction

The application of the aircraft flowchart presented in Section 3.3 involves two additional shortcomings
that have an adverse critical effect on its efficiency. The first one stems from the fact that the slope of
the diagonal varies depending on the exact number of aircraft that will be available in the next time
period. The application of the underlying methodology, however, necessitates a diagonal whose slope
is known in advance. Of course, this is not possible, since it requires knowledge of the flight and
maintenance times of the individual aircraft in the current period, which are decision variables and not
parameters. In practice, this difficulty is addressed by deciding in advance, based on simplistic
heuristic rules, which aircraft will be available in the next time period and which not, but it becomes
clear that these decisions are not necessarily optimal.

The second shortcoming of the aircraft flowchart methodology is that it does not provide a
maintenance plan for the grounded aircraft. Several important questions pertaining to the grounded
aircraft need to be answered to this end, such as the order in which they should receive service, the
amount of service time that should be allocated to each individual aircraft, etc. In practice, such
decisions are also made in a heuristic way, based on the intuition and the experience of the user.

In the previous chapter, we partially dealt with the above shortcomings, by providing a
systematic methodology for utilizing the aircraft flowchart effectively. Our computational results
demonstrate that, under careful consideration, the proposed heuristics can handle large FMP instances
effectively, yielding satisfactory solutions in insignificant solution times. The optimality gaps,
however, show that there is still room for improvement.

The problem’s myopic nature adds another factor of difficulty that complicates its solution.
More specifically, independently of the exact length of the planning horizon, finding the plan that
provides the maximum readiness usually results in a drastic decrease of this readiness over subsequent
horizons. This is an inevitable side effect, since focusing on one particular horizon in isolation and
overlooking the requirements of the following ones does not result in long-term optimal decisions, but
in short-term ones instead. Therefore, potential benefits can arise from extending the planning horizon
for which flight load information is available. Our computational experience suggests that an efficient
FMP model should ideally be able to provide solutions whose fleet availability exhibits low
variability. This is mainly due to the fact that, since the FMP model is considered in subsequent rolling
horizons in practice, the transition into the next planning horizon should always be as smooth as

possible.
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Chapter 5 Single Period FMP Problem

In order to address the aforementioned difficulties effectively, in this chapter we develop a
mixed integer nonlinear model that can be used to generate the joint flight and maintenance plan of a
unit of mission aircraft over a single-period planning horizon. This model aims to establish a balanced
allocation of the flight load and the maintenance capacity to the individual aircraft of the unit, so that
the long term availability is kept at a high and steady level. Its objective function minimizes a least
squares index expressing the total deviation of the individual aircraft flight and maintenance times
from their corresponding target values.

Using the model’s special structure and properties, we develop a solution algorithm, which
returns the exact optimum. We analyze the computational complexity of this algorithm and we present
computational results comparing its performance against that of a commercial optimization package.
Besides demonstrating the superiority of the proposed algorithm, these results reveal that the total
computational effort required for the solution of the problem depends mainly on two crucial
parameters: the size of the unit (i.e., the number of aircraft that comprise it), and the space capacity of

the maintenance station.

5.2  Single period FMP Problem (Sp.-FMP)

For the mathematical formulation of the proposed optimization model, we introduce the
following notation:
Decision Variables:
x; : flight time of available aircraft i in the current time period,
h; : maintenance time of grounded aircraft j in the current time period,
Vi - residual flight time of available aircraft i at the beginning of the next time period,
gj» : residual maintenance time of grounded aircraft j at the beginning of the next time period,
b; : binary decision variable that takes the value 1 if available aircraft i enters the maintenance station
for service at the beginning of the next time period, and 0 otherwise,
¢; : binary decision variable that takes the value 1 if grounded aircraft j exits the maintenance station at
the beginning of the next time period, and 0 otherwise,
z, : number of aircraft that will enter the maintenance station at the beginning of the next time period,
z, : number of aircraft that will exit the maintenance station at the beginning of the next time period.
Parameters:
S : required flight load in the current time period,
B : time capacity of the maintenance station in the current time period,
Vip « residual flight time of available aircraft i at the beginning of the current time period,

gj» : residual maintenance time of grounded aircraft ; at the beginning of the current time period,
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Xar: maximum flight time of any available aircraft in the current time period,

Yin - lower bound on the residual flight time of every available aircraft,

G.,in - lower bound on the residual maintenance time of every grounded aircraft,

C : maximum number of aircraft that the maintenance station can accommodate,

Y : residual flight time of an aircraft immediately after it exits the maintenance station,

G : residual maintenance time of an aircraft immediately after it enters the maintenance station,
L, U : real numbers denoting the maximum deviation from the target value of the flight load that can
be tolerated,

A : number of available aircraft at the beginning of the current time period,

NA: number of grounded aircraft at the beginning of the current time period,

N : total number of aircraft in the unit = A4 + NA.

At the beginning of the current time period, the available aircraft are arranged in non-decreasing
order of their residual flight times and the grounded aircraft are arranged in non-decreasing order of
their residual maintenance times. We make the assumption that this order is always preserved,
according to the aircraft flowchart methodology. Although this is not an actual restriction in practice,
we will show in what follows that we can always assume that it is, without loss of generality. With this

in mind, the problem under consideration is formulated as follows:
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o Y G
Min 1-b)y, —(i—2z,)———) +b(G—(NA+i— 1+
Sy ;[( MO =(=2,) A-z, +za) (G- Z”)NA+Zg —za) |
(5.2.1)
S M-8, — (- 2) O e (V (At j—2,)—— )]
= A8 = T NA+z, -z, ! I 7% A-z,+z,

s.t. Yin = Yip = Xi» i= 1,,14 (522)
Zn=8p - hj»j = 1,..NA (5.2.3)
yin Syi+1m l = 1,--#4'1 (524)
gjn ng+ln7j = 19~-aNA'1 (525)

A
z,= Y.b (5.2.6)

i=1

NA
z,= )¢ (5.2.7)

j=1
NA+z,—2,<C (5.2.8)

NA . NA
D h,=min(B,> g.) (5.2.9)
Jj=1 Jj=1
A
LS<) x,<US (5.2.10)
i=1

Vin> Yo 1-07), i = 1,...,4 (5.2.11)
gin> Gin(1=¢)),j = 1,...,NA (5.2.12)
Yin Syip(l-b,’), i= 1,,A (5213)
gn<gp(1-¢),j = 1,..,.N4 (5.2.14)
% < Xpars i = 1,..,4 (5.2.15)
x>0,,>0,i=1,..4 (5.2.16)
h>0,g,>0,j=1,.,N4 (5.2.17)
b;binary, i =1,..,4; ¢; binary, j =1,..,NA (5.2.18)
Z,, 2, integer > 0 (5.2.19)

The objective function (5.2.1) minimizes the total deviation index that will be realized at the
beginning of the next time period, i.e., the sum of squares of the deviations of the residual flight times

of the available aircraft and the residual maintenance times of the grounded aircraft from their
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corresponding target values on the associated flowcharts. To see why this is true, note that this
objective comprises of two summations. The first one refers to the aircraft which are available at the
beginning of the current period. Consider a particular of these aircraft with index i. If z, <1, then this
aircraft will remain available in the next time period, too. Since the aircraft with the z, smallest
residual flight times will enter the maintenance station for service, the index of this aircraft on the
flowchart of available aircraft at the beginning of the next time period will become equal to i-z,.

Additionally, since z, aircraft will enter and z, aircraft will exit the maintenance station, the new

diagonal slope of this flowchart will become equal to AL Thus, the corresponding target value
-z, +z,

of the residual flight time of this aircraft at the beginning of the next time period will be equal

Y
to(i—z,)——.
A-z, +z
g a
On the other hand, if z, > i, then this aircraft will join the set of grounded aircraft at the
beginning of the next time period with residual maintenance time equal to G, assuming an index j
instead of i. Considering that z, aircraft will exit the maintenance station at the beginning of the next
period and that this will be the i in order aircraft to enter the maintenance station, the index of this
aircraft on the flowchart of grounded aircraft at the beginning of the next time period will become

equal to (NA+ti—z,). Moreover, the new diagonal slope of this flowchart will become equal

G

to———— . Thus, the corresponding target value of the residual maintenance time of this aircraft
NA+z, -z,
o . . . , G
at the beginning of the next time period will be equal to (NA+i—z,) .
NA+z,-z,

The terms (1-b;) and b; are binary indicators denoting whether aircraft i will be grounded or not
in the next time period. More specifically, if b; = 0, then aircraft 7 will retain its availability in the next
period; therefore, the square of its residual flight time deviation on the flowchart of available aircraft
will be taken into account in the objective function. On the other hand, if b, = 1, then aircraft i will be
grounded in the next period and the square of its residual maintenance time deviation on the flowchart
of grounded aircraft will be taken into account in the objective function instead. The second
summation of the objective function pertains, in an identical way, to the aircraft which are grounded at
the beginning of the current period.

Constraint set (5.2.2) updates the residual flight time of each available aircraft based on its
initial status and the flight time that will be assigned to it in the current time period, similarly to the
constraint set (4.2.9) of the model presented in Section 4.2. Likewise, constraint set (5.2.3) updates the
residual maintenance time of each grounded aircraft based on its initial status and the maintenance

time that it will receive in the current time period similarly to the constraint set (4.2.12) of the model
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presented in Section 4.2. Constraints (5.2.4) and (5.2.5) ensure that the order of available aircraft and
the order of grounded aircraft, respectively, will be preserved. Constraints (5.2.6) and (5.2.7) compute
the number of aircraft that will enter and exit, respectively, the maintenance station at the beginning of
the next time period, based on the values of binary variables b; and c;.

Constraint (5.2.8) ensures that the space capacity of the maintenance station will not be violated
similarly to the constraint set (4.2.17) of the model presented in Section 4.2, while constraint (5.2.9)
ensures that the total maintenance time that will be provided by the station will either be equal either
to its total time capacity, or to the total maintenance requirements of the grounded aircraft, whichever
of these two quantities is smaller. This constraint serves to ensure both that the time capacity of the
maintenance station will not be violated, and that no part of this capacity will remain unused,
whenever additional maintenance requirements exist. Constraint set (5.2.10) ensures that the required
flight load will be satisfied, within a tolerance defined by variables L and U similarly to the constraint
set (4.2.15) of the model presented in Section 4.2. For example, when L = 0.95 and U = 1.05, a
maximum deviation of 5% from the target value of the flight load can be tolerated.

Constraint set (5.2.11) imposes a lower bound equal to Y,,;, on the residual flight time of each
available aircraft that will remain available in the next period, too, similarly to the constraint set
(4.2.27) of the model presented in Section 4.2. This bound is imposed when b; = 0; otherwise, the
corresponding constraint becomes redundant, since b; = 1 implies that this aircraft will be grounded in
the next period. This modeling technique prevents an available aircraft from ending up with positive
but negligible residual flight time at the end of the current time period. Likewise, constraint set
(5.2.12) imposes a lower bound of G,,;, on g;, when ¢; = 0, similarly to the constraint set (4.2.28) of the
model presented in Section 4.2, and becomes redundant when ¢; = 1. This prevents a grounded aircraft
from ending up with positive but negligible residual maintenance time at the end of the current time
period.

We introduce constraints (5.2.11) and (5.2.12) because it is odd and unrealistic to have a
grounded (available) aircraft whose residual maintenance (flight) time is positive but arbitrarily small.
This does not imply that a grounded aircraft whose residual maintenance time drops below G,,;, can be
declared fit for flight and released from the maintenance station, since that would violate the safety
standards. If an aircraft could indeed finish its service in a time frame which is strictly smaller than G,
this would signify that the actual service duration is in fact less than G, and that G has been
erroneously used. Moreover, if we allowed the solver to release an aircraft from the maintenance
station before this aircraft finishes its service, then the solver would take advantage of this whenever it
was preferable and would apply this smaller service time instead of G, in order to improve the quality
of the returned solution. Similarly, imposing the lower bound Y,,;, on the residual flight time of each

available aircraft does not imply that an available aircraft can be grounded, as soon as its residual
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flight time drops below Y, because this would increase the average maintenance cost per hour flown,
decreasing in this way the long-term efficiency of the unit.

Constraint set (5.2.13) states that the residual flight time of an available aircraft must drop to 0
before this aircraft enters the maintenance station for service. This constraint is redundant when b, = 0,
and forces y;, to 0-value when b; = 1, since it implies, together with constraint (5.2.2), that x; will be
equal to y;,. Likewise, constraint set (5.2.14) states that the residual maintenance time of a grounded
aircraft must drop to 0 before this aircraft exits the station and becomes available. This constraint is
redundant when ¢; = 0, and forces gj;, to 0-value when ¢; = 1, as it implies, together with constraint
(5.2.3), that h; will be equal to gj,. Constraint set (5.2.15) imposes an upper bound on the flight time of
each available aircraft. This restriction is usually present due to technical reasons. Finally, constraints
(5.2.16), (5.2.17) and (5.2.18), (5.2.19) are the non-negativity and the integrality constraints,
respectively.

There exists a rare special case in which constraints (5.2.9), (5.2.12) and (5.2.14) cannot be
satisfied simultaneously. This happens when both B < % g, and, at the same time, utilizing B fully by

j=1

NA
forcing Zh/‘ to be equal to B (as required by constraint (5.2.9)) inevitably results in one or more
j=1

grounded aircraft with residual maintenance time positive but strictly smaller than G,,;, at the end of
the current period. For example, if NA = 2, g1, = g2, = Gy = 0.1 and B = 0.05, then the problem is
infeasible. This is because there is no feasible way to utilize B fully without violating the restriction
that the residual maintenance time of every grounded aircraft must be greater or equal to G,,,;,.

In practice, a typical way to avoid leaving an aircraft with very small but positive residual
maintenance time at the end of the current time period is by forcing the station to provide the extra
time that this aircraft needs in order to finish its service. This implies that the time capacity of the
station will be exogenously increased. Of course, if this extra time is negligible, this increase will also
be negligible. In the small numerical example introduced above, for example, setting B = 0.1 would
make the problem feasible with no significant effect.

From a mathematical point of view, on the other hand, a suitable modification of the problem
formulation can be adopted to model this, as described next. Let ¢ be an auxiliary binary decision
variable that takes the value 1 if constraint (5.2.9) is relaxed and 0 otherwise. If B < f“ g ,» substitute

j=1

constraint (5.2.9) with the following two constraints:
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> h <B+Ft (5.2.20)

B<Y'h, (5.2.21)

where F'is a sufficiently large number, introduce the following constraint:

NA NA

F(l_t)+2hj ZZgjp -(NA-z,))G,,, (5.2.22)

J=1 J=1

and add the term F7 to the objective function, in order to ensure that variable ¢ will always be set to 0
whenever a feasible solution to the original formulation exists. The insight of this modification is the
NA NA
following. If B < Z g, and a feasible solution such thach . = B exists, then ¢ will be set to 0 and this
j=1 J1
equality will be denoted by constraints (5.2.20) and (5.2.21), whereas constraint (5.2.22) will become
redundant. Otherwise, ¢ will be set to 1, constraint (5.2.20) will become redundant, and constraint
(5.2.22) will set the total maintenance time that will be provided by the station equal
NA
toz g, (NA-z,)G,,, instead of B. This is true even though constraint (5.2.22) is expressed as
=l

NA NA

inequality instead of equality, since no feasible solution such thachj > Z g, (NA-z,)G,, will

min
J=1 J=1

exist. Thus, it will be acceptable to slightly increase the station’s time capacity in that case, under the
restriction that every grounded aircraft that will not finish its service will end up with residual
maintenance time equal to G,,;, at the end of the current time period. The user should keep in mind that
if t = 1, the correct value of the total deviation index results after the term Ft is subtracted from the
optimal objective function value.

When this modification in the problem formulation is adopted, the problem may be satisfied for
several values of variable z,. To ensure that the slight increase on the time capacity of the maintenance
station will be the minimum possible, the user is advised to select the solution with the minimum
feasible value for variable z,. It seems logical that this will be the most desirable solution, since it will

NA
result in the smallest violation of the original constrainchj = B. In the small numerical example
j=1

NA
introduced above, for example, a feasible solution can be obtained by setting Zh ,equal to 0.1 and z,
=
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NA
equal to 1, or by settingZhj equal to 0.2 and z, equal to 2. The former out of these two solutions
j=1

NA
seems preferable, since it results in the smallest violation of the original constraint Zh . =0.05.
=

A similar situation can arise when the satisfaction of the flight load inevitably results in one or
more available aircraft with residual flight time strictly smaller than Y,,, at the end of the current
period. For example, if 4 =1, y;, = ¥,,;,, = 0.1, §=0.05, L = 0.9 and U = 1.1, then the problem does not
have a feasible solution. A modeling technique similar to the one presented above can be adopted in
this case, too. Nevertheless, these two are rare extreme cases with practically negligible effect;
therefore, in order to avoid complicating things unnecessarily, in what follows we assume that the
problem defined by (5.2.1)-(5.2.19) is always feasible, and we suppress constraints (5.2.20)-(5.2.22).

The progressively worse deviation index for the subsequent aircraft that exit or enter the station
besides the first one, and the fact that the model does not allow an aircraft to act both as available and
as grounded within the same time period are main consequences of the planning horizon’s
discretization, which does not allow an aircraft to both fly and be serviced within the same time
period. The minimization of the unit’s total deviation index in subsequent time periods will balance
the allocation of the flight and maintenance times and smoothen things out.

In practice, the flight load requirements refer to 1-month time periods, the time capacity of the
maintenance station is measured in monthly labor hours and the flight/maintenance plans of the unit
are typically reviewed and updated at the beginning of each month. This setting not only hints towards
the development of a discrete model, but also implies that it is reasonable to choose an optimization
period of one month, though it might seem preferable to make this choice in such a way that only one
aircraft enters the station and only one aircraft exits the station at each time period.

This is not a very strict limitation for the present model, since the flight load issued by the unit
command is practically small on the one hand, while the load factor of the maintenance station is
practically equal to 1 on the other hand. In turn, the flight load of the unit can be satisfied using only
few of the unit’s aircraft, whereas the time capacity of the maintenance station is always fully utilized.
Hence, in terms of the unit’s long-term aggregate fleet availability, it is hardly ever an issue, if the
flight time of one or more aircraft that are fit for flight is forced to zero value for an extra time period.
Similarly, delaying the beginning of the maintenance service of one or more aircraft for an extra time
period is not critical either, because other grounded aircraft that are present can always utilize the
station’s capacity fully. If it is absolutely necessary, the consequences of the progressively worse
deviation index for the subsequent (besides the first one) aircraft that change status can be lessened by

only including in the computation of the total deviation index the first aircraft that will become
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grounded and the first aircraft that will become available (i.e., by assuming a deviation of 0 for every
subsequent aircraft that will change status).

The formulation that we propose adopts the aircraft flowchart methodology both for the
available and for the grounded aircraft. Its novelty lies in that it gives the user additional flexibility by
allowing the slopes of the two diagonals to vary, based on the actual number of aircraft that enter and
exit the maintenance station. This seems far more rational than fixing these numbers in advance and
generating the flight and maintenance plans afterward, based on the resulting diagonal slopes.

We can essentially view this formulation as the composition of two individual ones, one that
pertains to the available and one that pertains to the grounded aircraft. The main difference between
them is that a small deviation, determined by variables L and U, can be tolerated for the satisfaction of
the flight load by the available aircraft, whereas no such tolerance exists for the total maintenance time
that will be provided by the maintenance station. Additionally, an upper bound is imposed on the
maximum flight time of each available aircraft, whereas no such bound is imposed on the maintenance
time of each grounded aircratft.

At first glance, the problem formulation seems too restricting, since it imposes a steady rotation
of the aircraft in and out of the maintenance station in non-decreasing order of their residual
flight/maintenance times, without allowing any contravention of this order. For example, according to
this formulation, an aircraft which is available in the current period cannot be grounded at the
beginning of the next one, unless all the available aircraft with smaller residual flight times are
grounded, too. Similarly, the grounded aircraft must always exit the maintenance station in the exact
same order in which they entered it in the first place.

In the actual application that we study, no such restriction is present. Aircraft are allowed to
enter and exit the maintenance in any feasible order, while their indices are updated accordingly to
represent their relative order in terms of their residual flight and maintenance times. With this in mind,
the index of each aircraft at the beginning of the next period should be a decision variable allowed to
take any feasible value and should not be determined by the exact number of aircraft that will enter
and exit the maintenance station. Nevertheless, we prove next that there always exists at least one
optimal solution to the problem that results when this restriction is relaxed that satisfies it. Besides
establishing the validity of the proposed formulation, this proof also reveals some crucial properties of
the problem, which are utilized in the next section for the development of the exact solution algorithm.
Proposition 5.1: Given the optimal solution to the problem defined by (5.2.1)-(5.2.19), there does not
exist another solution that satisfies all the constraints except possibly (5.2.4) and/or (5.2.5), in which
the two flowcharts of available and grounded aircraft at the beginning of the next time period result in

lower total deviation index.
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Proof. Suppose that there exists another feasible solution (let the superscript g refer to the values of
the decision variables of that solution) that contains two initially available aircraft with indices / and

¢ and results in lower total deviation index. Consider another

m, such that y,, > y,, and y,’ < y,.
solution in which all the decision variables take the same values as those of solution ¢, except that x; =
W= Ymp) + X0 X = X+ X7 = X1, Yin = Yon's Yo = V" by = by,! and b,, = b/’. It is easy to verify that
aircraft / and m no longer violate constraint set (5.2.4). Moreover, if there is a one to one interchange
of these aircraft and the relative order of the remaining aircraft on the associated flowcharts is kept the
same, the total deviation index value of this solution is the same as that of solution ¢g. Repeating this
procedure for any two initially available aircraft that violate constraint set (5.2.4) in solution ¢, we can
eventually get a solution that has the same total deviation index value and satisfies constraint set
(5.2.4) entirely. An identical procedure (just exchange variables x, y and b in the above substitution
with the corresponding variables 4, g and c, respectively) can also be applied for any two initially
grounded aircraft that violate constraint set (5.2.5), leading eventually to a solution in which constraint
set (5.2.5) is entirely satisfied, too. Moreover, the total deviation index value of this solution will be
the same as that of solution ¢. This implies, however, that this solution provides an improvement to the

objective function value of the optimal solution to the problem formed by expressions (5.2.1)-(5.2.19),

contradicting its optimality. O

5.3 Solution methodology

5.3.1 Solving for a particular combination of z, and z,

Suppose that the optimal values of variables z, and z, in the formulation (5.2.1)-(5.2.19) are known.
Then, the optimal values of variables b; for i = 1,...,4 and ¢; for j = 1,...,NA, the slopes of the flowchart
diagonals at the beginning of the next period and the two sets of aircraft that will be available and
grounded at the beginning of the next period are known, too. In this case, obtaining the optimal values
of the remaining decision variables reduces to solving two independent trivial subproblems, as
explained next. The first one of these subproblems pertains to the set of aircraft that will be available
at the beginning of the next period, whereas the second one pertains to the set of aircraft that will be
grounded.

Let K denote the former of these sets, indexed by k. Set K is the union of set K;, which consists
of the aircraft which are grounded at the beginning of the current period and will exit the maintenance
station at the beginning of the next one, and set K,, which consists of the aircraft which are available at

the beginning of the current period and will remain available in the next period, too. Clearly, the
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maintenance time of each aircraft in set K; must be set equal to its residual maintenance time at the
beginning of the current period.

Similarly, let M denote the latter of these sets, indexed by m. Set M is the union of set M;, which
consists of the aircraft which are available at the beginning of the current period and will be grounded
at the beginning of the next one, and set M,, which consists of the aircraft which are grounded at the
beginning of the current period and will remain grounded in the next period, too. Clearly, the flight
time of each aircraft in set M; must be set equal to its residual flight time at the beginning of the
current period.

We update the indices of the aircraft of set K as follows. The aircraft of set K, are indexed first
with indices £ = 1,...,|K;| according to their residual flight time order, followed by the aircraft of set K;
with indices k = |Ky|+1,...,|K3[+|K;|, according to their residual maintenance time order. Noting that |K]
= |K,[+|K;|, the following quadratic optimization problem can be used to find the optimal flight times

of the aircraft that comprise set K;:

|| Y 5
Min -k
X5 Vkn ;(ykn A— Zg + z,

S.t. Yin = YVip = Xk» k= 1,...,|K2|
Vin = Ya k: |K2|+15"K|

||

LS<Y x,+ Y. ¥, <US
k=1

meM,
Vin = Yoin, k=1,..,|K|
Xk SXmax, k= 1,...,|K2|
>0, k=1,.., K|

In this formulation, the objective function minimizes the total deviation index that will be
realized on the flowchart of available aircraft at the beginning of the next period. The first two sets of
constraints update the residual flight times of the aircraft of sets K, and K, respectively, at the
beginning of the next time period. The next constraint ensures that the flight requirements of the
current period will be satisfied (index m scans the available aircraft that will use up their entire
residual flight time and will enter the maintenance station for service at the beginning of the next
period). The next two sets of constraints impose a lower bound on the residual flight time of each
aircraft in set K, at the beginning of the next period, and an upper bound on the flight time of each
aircraft in set K, respectively. Finally, the last set of constraints accounts for the non-negativity of the
flight times. Note that the y,,’s and the x;’s for k = 1,...,|K;| are decision variables in this formulation,
the yy,’s for k = 1,...,|K;| are known parameters, and the yy,’s for k = |K,|+1,...,|K]| are auxiliary

decision variables (they do not appear in the original formulation) with known values. Adding the
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s . . . Y
auxiliary decision variables x; for k& = |K,[+1,...,|K] and settmgs:A—, Vip = Y for k =
—z,+z

a

Ko+, . K], Xie = min(Xoae, Vip = Yoin) for k= 1,...,|K5|, and X; = 0 for k = |K,|+1,...,|K]|, we obtain the

following equivalent formulation:

IS
Min ) ((y,, —x,) —ks)’ (5.3.1)
T =l
S
st LS=Y y,, <D x (5.3.2)
meM, k=1
i
> x, <US= D ., (5.3.3)
k=1 meM,
0<x;<Xpk=1,...)K| (5.3.4)

The problem defined by (5.3.1)-(5.3.4) is a quadratic program equivalent to the quadratic
program defined by (4.3.1)-(4.3.4). Following the rationale of Section 4.3, we utilize the following

crucial and interesting result in the development of the proposed solution algorithm:

Proposition 5.2. Assume that the quantities LL, UL, X and D are arranged in non-decreasing order.

a) If, after taking into consideration any ties present, there does not exist an arrangement in which LL
precedes X, then the problem defined by (5.3.1)-(5.3.4) is infeasible.

b) If an arrangement in which LL precedes X exists, then the optimal solution of the problem defined
by (5.3.1)-(5.3.4) is the one obtained by Procedure Sweep when the sum of the assigned aircraft flight
times becomes equal to the quantity that appears in the second place of this arrangement.

Proof. Same as Proposition 4.1 (See Appendix A). O

We update the indices of the aircraft of set M as follows. The aircraft of set M, are indexed first
with indices m = 1,...,|M,| according to their residual maintenance time order, followed by the aircraft
of set M, with indices m = |M,[+1,...,|M,/+|M,|, according to their residual flight time order. Noting
that |M| = |M,[+|M,], the following quadratic optimization problem can be used to find the optimal

maintenance times of the aircraft that comprise set M,:

MinS (g —m—0
e A NA+z, -z,

St Gun = Gump - s m=1,...,| M,
g =G, m=|M,|+1,...,|M|

M, NA

dh,+> g,=min(B,> g.)

m=1 kek, Jj=1
gng Gmim m= 1a---a|M2|
I >0, m=1,..., M)
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Chapter 5 Single Period FMP Problem

In this formulation, the objective function minimizes the total deviation index that will be
realized on the flowchart of grounded aircraft at the beginning of the next period. The first two sets of
constraints update the residual maintenance times of the aircraft of sets M, and M, respectively, at the
beginning of the next time period. The next constraint ensures that the time capacity of the
maintenance station will be properly utilized (index k& scans the grounded aircraft that will finish their
service and will exit the maintenance station at the beginning of the next period). The next set of
constraints imposes a lower bound on the residual flight time of each grounded aircraft in set M, at the
beginning of the next period. Finally, the last set of constraints accounts for the non-negativity of the
maintenance times. Note that the g,,’s and the 4,’s for m = 1,...,|M,| are decision variables in this
formulation, the g,,,’s for m = 1,...,|M>| are known parameters, and the g,,,’s for m = [M>[+1,...,|M] are

auxiliary decision variables (they do not appear in the original formulation) with known values.

Adding the auxiliary decision variables #,, for m = |M,|+1,...,|M] and setting s = NAL 8 =G
+z, —z
g a

for m = |M>[+1,...,|M|, H,, = gwp - Gin for m = 1,...|M,|, and H,, = 0 for m = |M,|+1,...,|M|, we obtain

the following equivalent formulation:

1M
hgjn;((gmp ~h,)—ms)’ (5.3.5)
|M]| . NA
st. > h,=min(B,> g )- Y g, (5.3.6)
m=1 Jj=1 kek,

0<hy<H,,m=1,..|M| (5.3.7)

This problem is similar to the one defined by (5.3.1)-(5.3.4). On the flowchart that results from
the known values of parameters g,, in (5.3.5)-(5.3.7), consider the following two solutions that can be
obtained during the application of Procedure Sweep:

1. The solution in which the sum of the assigned aircraft maintenance times is equal

NA
to min(B, Z g~ z 8, In what follows, we refer with “Bg” to this sum.
Jj=1 kek,

2. The solution in which each aircraft, m, is assigned its maximum possible maintenance time,
H,,. In what follows, we refer with “H” to the sum of the assigned aircraft maintenance times of this
solution. Then, Proposition 5.2 can be modified as follows, in order to identify the optimal solution of

the problem defined by (5.3.5)-(5.3.7):
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Proposition 5.3. If Bg < H, then the optimal solution of the problem defined by (5.3.5)-(5.3.7) is the
one obtained by Procedure Sweep when the sum of the assigned aircraft maintenance times becomes
equal to Bg. If Bg > H, then the problem defined by (5.3.5)-(5.3.7) is infeasible.

Proof. The validity of this proposition results from the fact that the problem defined by (5.3.5)-(5.3.7)
is a special case of the problem defined by (5.3.1)-(5.3.4) with L = U = 1 and

LS—ZymszS—Zymp. O

meM,; meM,;

5.3.2 The general case

The above discussion implies that when the optimal values of variables z, and z, are known, obtaining
the optimal values of the remaining decision variables of problem (5.2.1)-(5.2.19) reduces to solving
two independent trivial subproblems. The first one of these subproblems is associated with the
flowchart of the aircraft that will be available at the beginning of the next time period, while the
second one is associated with the flowchart of the aircraft that will be grounded at the beginning of the
next time period. Moreover, the optimal total index deviation value of the problem for a particular
value combination of z, and z, is equal to the sum of the optimal deviation index values of these two
subproblems. Therefore, among all the feasible value combinations of variables z, and z,, the
problem’s global optimal solution is associated with the one for which the total deviation index
assumes its lowest value.

In order to exclude in advance infeasible value combinations of variables z, and z,, we consider
variable z, first. Assume that the grounded aircraft are already arranged in non-decreasing order of
their residual maintenance times, with indices j = 1,...,NA. Let Sum be a non-negative auxiliary
variable. Then, the following pseudocode provides a valid upper bound on variable z,:

Sum=0;j=1,

while j < NA do
Sum= Sum + g;,;

if Sum < B do
J=jtL
else
print j-1 and exit;
end if
end while
print j-1; 0

Proposition 5.4. The value of variable z, in any feasible solution to problem (5.2.1)-(5.2.19) cannot be
larger than the value printed by the above pseudocode.

Proof. We use variable Sum to store the sum of the residual maintenance times of the grounded
aircraft that can finish their service in the current time period. Every time that the residual

maintenance time of an aircraft is added to Sum and Sum still remains less than or equal to B, we
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Chapter 5 Single Period FMP Problem

conclude that the time capacity of the maintenance station suffices to finish the service of that aircraft,
too; therefore, we increase the upper bound on variable z, by 1. The procedure terminates either when
Sum becomes strictly greater than B, implying that the station’s time capacity is not sufficient to finish
the service of the last (or any subsequent) considered aircraft, or when the full list of grounded aircraft
has been scanned, implying that N4 is the maximum (and unique, due to constraint (5.2.9)) feasible

value of variable z,. [

The following pseudocode provides a valid lower bound on variable z,:

NA
Sum= g, —NAG,,); j=0;
j=1

while j < NA do
if Sum > B do
print j and exit;
else
Sum= Sum + G; j=j+ 1;
end if
end while
print N4; 0
Proposition 5.5. The value of variable z, in any feasible solution to problem (5.2.1)-(5.2.19) cannot be
smaller than the value printed by the above pseudocode.
Proof. The validity of the proposition results from the fact that if & is a feasible value for variable z,,
k NA NA
thenZgjp + Z (g, = G,) 2 B,or equivalently, Zgjp - NA(G,,,)+k(G,,,)=B holds. Thus, the
J=l J=k+1 J=1
lowest non-negative integer value of & for which this inequality holds is a valid lower bound on

NA
variable z,. If no value of k between 0 and NA satisfies this condition, thenz g, < B, and constraint
j=1

NA NA
(5.2.9) restricts Zh . to be equal to Z g > therefore, the only feasible value of variable z, is NA. O

J=1 Jj=1

In the presence of the special case discussed in Section 5.2 that we resolve through the
introduction of constraints (5.3.1)-(5.3.3), the lower bound on variable z, will be larger than its upper
bound, rendering the entire problem infeasible. Next, we exclude infeasible values of variable z,.
Assume that the available aircraft are already arranged in non-decreasing order of their residual flight

times, with indices i = 1,...,4. The following pseudocode provides a valid upper bound on variable z,:
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Sum=0;i=1;

while i < min(C,4) and y;, < X, do
Sum = Sum + y,;
if Sum < US do

i=i+1;
else
print i-1 and exit;
end if
end while
print i-1; O

Proposition 5.6. The value of variable z, in any feasible solution to problem (5.2.1)-(5.2.19) cannot be
larger than the value printed by the above pseudocode.

Proof. We use variable Sum to store the sum of the residual flight times of the available aircraft that
can be grounded in the current time period. Every time that the residual flight time of an aircraft is
added to Sum and Sum still remains less than or equal to US, we conclude that the flight load suffices
to ground this aircraft, too; therefore, we increase the upper bound on variable z, by 1. The procedure
terminates either when the upper bound on variable z, assumes its largest possible value (= min(C,4)),
or when the first aircraft with residual flight time strictly greater than X, is encountered, or when

Sum becomes strictly greater than US. ]

The following pseudocode provides a valid lower bound on variable z,:

4
Sum ="y, —AQX,,); j=0;
j=1

while j < A4 do
if Sum > LS do
print j and exit;

else
Sum=Sum + Yy j=j+ 1;
end if
end while
print “problem is infeasible”; 0

Proposition 5.7. The value of variable z, in any feasible solution to problem (5.2.1)-(5.2.19) cannot be

smaller than the value printed by the above pseudocode.

Proof. The validity of the proposition results from the fact that if k is a feasible value for variable z,
k A A

thenz Y+ z (¥ = Y,n) 2 LS, or equivalently, Z v, —AY,,,) +k(¥,,,) = LS holds. Thus, the lowest
i=l1 i=k+1 i=1

non-negative integer value of k for which this inequality holds is a valid lower bound on variable z,. If

this inequality does not hold even when k = A4, then the problem is clearly infeasible. O

Once we determine the individual upper and lower bounds on variables z, and z,, we utilize

constraint (5.2.8) to eliminate those value pairs that violate the space capacity of the maintenance
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Chapter 5 Single Period FMP Problem

station. After that, the proposed algorithm searches among the remaining value combinations of

variables z, and z, to find the one that leads to the lowest total deviation index.

5.3.3 A small numerical example

In this section, we illustrate the application of the above algorithm on a small numerical example.
Consider a unit comprising of 6 aircraft, 4 of which are available and 2 of which are grounded at the
beginning of the current time period. Table 5.1 presents the residual flight times of the available
aircraft and the residual maintenance times of the grounded aircraft. In this table, bold-style entries
denote maintenance times of grounded aircraft and plain-style entries denote flight times of available

aircraft.

Table 5.1: Residual flight/maintenance times (y,,/g;,) (hours)

i=1  i=2 =3 i=4 | j=1 j=2
38 50 273 298 | 130 300

The values of the other problem parameters are S = 125 hours, B = 325 hours, G = 320 hours, Y
=300 hours, C =3, X,,.., = 50 hours, Y,,;, = 0.1 hours, G,,;, = 0.1 hours, L =0.95 and U= 1.05.

The available/grounded aircraft are already sorted in non-decreasing order of their residual
flight/maintenance times. If this were not the case, the user would have to rearrange them and update
their indices accordingly. Applying the procedure for obtaining the bounds on variables z, and z,, we
get 0 <z,<2and 0 <z,<1. Only 5 of the resulting 6 value combinations of z, and z, are feasible,
since constraint (5.2.8) is violated for z, = 2 and z, = 0. Table 5.2 presents the total deviation index

value of each combination.

Table 5.2: Optimal total deviation index value for each combination of z, and z,

2\ 2 | 0 1

0 87652.08 23098.56
1 27215.81 9864.06
2 IF 37819.62

Thus, the optimal solution is the one with z;, = 1 and z, = 1 and objective function value
9864.06. This total deviation index value results as follows. Since z, = 1 and z, = 1, the available
aircraft with index i = 1 will be grounded and the grounded aircraft with index j = 1 will become
available at the beginning of the next time period. Therefore, x; = 38, y1, =0, & = 130 and g, = 0.

Set K comprises of the available aircraft with initial indices i = 2, 3 and 4 (these aircraft
comprise set K>) and the grounded aircraft with initial index j = 1 (this aircraft comprises set K;). Set
M comprises of the grounded aircraft with initial index j = 2 (this aircraft comprises set M) and the
available aircraft with initial index i = 1 (this aircraft comprises set M). In order to compute the values

of the remaining decision variables, we update the aircraft indices first, as shown in Table 5.3.
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Table 5.3: Update of the aircraft indices

Initial index | i
Updated index |

i=2 i
i

4 | j
3 i

Using the updated indices, the following quadratic optimization problem can be used to

i
J

3 i 1 2
2 i 4 1

compute the flight times of the aircraft that comprise set Kj:

. 300 300 300 300
Min(y,, =7 =) + 0 =27 ) + s, =3 ) + O =4 /)
s.t. yanSO*Xl
yzn:273—XQ
y3n:298*X3
y4n:300*X4

0.95(125) < x, + x>+ x3 + x4 + 38 < 1.05(125)

yinzo-l, i= 1,...,3
x; <50,i=1,...,3

X4:0

x=>0,i=1,..4

After some basic manipulation, we obtain the following equivalent formulation:
Min((50 - x,) — 75)* +((273 - x,) —150)* + ((298 — x;) — 225)> + ((300 — x,) — 300)°

S.t. 80.75 <x; +xp +x3 + x4 <93.25

0<x;<499;0<x,<50;0<x3<50; 0 <x4<0

Arranging the quantities LL, UL, X and D of Proposition 5.2 in non-decreasing order, we have:
LL=280.75, UL =93.25, D =100, X = 149.9. Therefore, the optimal solution of the problem is the one
obtained by Procedure Sweep when the sum of the assigned aircraft flight times becomes equal to
93.25. Using the updated indices, the flight times of the aircraft of set K, in that solution are x; =0, x, =
50 and x; = 43.25, or, using the initial indices, x, = 0, x3 = 50 and x, = 43.25. After substituting these
values in the objective function of the above formulation, the deviation index value on the flowchart of
the aircraft that will be available at the beginning of the next time period is equal to 6839.06.
Similarly, the optimal maintenance times are 130 for the grounded aircraft with initial index j = 1 and
195 for the grounded aircraft with initial index j = 2, leading to a deviation index value of 3025 on the
flowchart of the aircraft that will be grounded at the beginning of the next time period. Therefore, the
total deviation index of the solution with z, = 1 and z, = 1 is equal to 6839.06 + 3025 = 9864.06.
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Chapter 5 Single Period FMP Problem

5.4 Computational implementation

In this section, we analyze the worst-case computational complexity of the proposed algorithm, and

we present computational results evaluating its performance on randomly generated instances.

5.4.1 Computational complexity

Problems similar to the one defined by (5.3.1)-(5.3.4) have been studied extensively in the past
(Helgason et al. (1980); Brucker (1984); Calamai and Mor¢ (1987); Pardalos and Kovoor (1990)) and
several exact solution algorithms have been proposed, some of which are asymptotically optimal in
terms of computational performance. Next, we utilize one of these papers in order to analyze the

computational effort required to solve the problem defined by (5.3.1)-(5.3.4).

Lemma 5.1. The problem defined by (5.3.1)-(5.3.4) can be solved in time O(|K]).
Proof. Same as Lemma 4.1 (See Appendix B). ]

The following proposition utilizes Lemma 5.1 in order to analyze the computational complexity of the
proposed solution algorithm.

Proposition 5.8. The computational complexity of the solution algorithm that we propose is O(A4
log(4)) + O(M(NA)(min(C,4)))).

Proof. The total time required to arrange the available aircraft in non-decreasing order of their residual
flight times is O(4 log(4)). The total time required to arrange the grounded aircraft in non-decreasing
order of their residual maintenance times is O(NA log(NA)). The total time required to find the upper
and lower bound on variable z, is O(4). The total time required to find the upper and lower bound on
variable z, is O(NA). The total time required to find the value combinations of variables z, and z, that
satisfy constraint (5.2.8) is O((NA)(min(C,A4))), since z, cannot have more than NA+1 feasible values
and z, cannot have more than min(C+1,4+1) feasible values. Solving the problem for a particular
value combination of z, and z, requires total time O(4) + O(NA4) = O(4+NA4) = O(N). Since there are at
most O((NA)(min(C,4))) such combinations, the total computational complexity of the proposed
solution algorithm is O(4 log(4)) + O(NA log(NA)) + O(4) + O(NA) + O((NA)(min(C,4))) +
O((M((NA4)(min(C,A4)))) = O(4 log(4)) + O(N(NA)(min(C,4)))). 0

5.4.2 Computational results

We implemented the proposed solution algorithm in C/C++ and we compared its performance against

that of two models that we developed in LINGO 11.0 [8]. LINGO is a commercial optimization
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software that can be alternatively utilized for the solution of the problem under consideration. We
performed our computational experiments on an i7-920 @ 2.7 GHz Intel processor with 3 GB system
memory. We used 5 different values (i.e., 50, 100, 150, 200 and 250) for the total number of aircraft
that comprise the unit, and solved 20 random problem instances for each of them.

The first LINGO model that we developed (called original hereafter) solves the original
problem formulation of Section 5.2, whereas the second one (called decoupling hereafter) utilizes the
results of Section 5.3.2 to find the feasible value pairs of variables z, and z,, and then searches among
them to find the one that results in the lowest total deviation index. This is doable, because LINGO has
embedded capabilities that allow it to function as a programming language. The application of the
decoupling LINGO model resembles the application of our specialized algorithm, the only difference
being that it does not utilize Procedure Sweep to solve each of the smaller subproblems, but its own
nonlinear programming subroutines.

We invoked LINGO mainly with default options, except that we modified the following options
in order to improve its performance: a) we increased the Update Interval in the Solver Status Window
from 2 to 60 seconds to prevent LINGO from spending too much updating this window’s information,
b) we set the Output Level at the Interface Tab to Terse to suppress useless output, ¢) we imposed the
maximum of ¥, G and C as an (obvious) upper bound on the optimal value of each decision variable in
the Variable Upper Bound box of the Global Server tab.

We generated the random problem instances as follows: We set parameter C equal to 0.2,
rounded up to the nearest integer. Although C is equal to approximately 0.1V in practice (for a group
of 60-80 aircraft, the maintenance hangar can typically accommodate 6-8 aircraft), we doubled this
value in our design to make the generated problem instances more challenging. This is because
according to the analysis of Section 5.4.1, as the value of C increases, the computational complexity of
the proposed solution algorithm increases, too. We generated the number of grounded aircraft, N4,
randomly, using a discrete uniform probability function that considered integer values between 0.1 N
and 0.2 N, inclusive. Of course, we always set the number of available aircraft, 4, equal to N-NA. The
residual flight time of each available aircraft was a random number distributed uniformly in the
interval [Y,.,,Y] and the residual maintenance time of each grounded aircraft was a random number

distributed uniformly in the interval [ G, G].

NA
We set parameter B equal to 0.752 g, In order to maximize the number of feasible values for
j=1

NA
variable z,, since only very large values are feasible for z, as B approaches Z g,,»and only very small
j=1

A
as it approaches 0. Similarly, we set parameter S equal to O.SZ min(y,,, X, ), since only very large

max
i=l1
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X_ ), and only very small as it approaches 0.

ip > max

A
values are feasible for z, as S approaches Zmin( y
i=1

The difference in the multiplying coefficient (0.75 vs. 0.5) is partially due to the fact that a small
deviation can be tolerated for the satisfaction of the flight load by the available aircraft, while no such
tolerance exists for the total maintenance time that will be provided by the maintenance station. We
used actual values drawn from the real application for the other problem parameters, i.e., ¥ =300, G =
320, L=10.95, U= 1.05, X,uox = 50, Y,;, = 0.1 and G,,;, = 0.1.

In order to test the proposed solution algorithm on large scale problems, too, we also applied it
on problem instances with N = 500, 1000, 1500, 2000 and 2500. We were not able to apply either of
the two LINGO models on these problems, since their computational requirements are prohibitive
even when LINGO’s local solver is invoked. Typical combat wings of the HAF may consist of up to
100 aircraft; therefore, it seems highly unlikely that problems of this magnitude will need to be solved
in practice. Note, however, that for the needs of providing a plan over a typical planning horizon, the
underlying problem may have to be solved repeatedly a significant number of times under possibly
different scenarios. Therefore, a high speed solution algorithm, such as the one that we propose, is
essentially important and will provide the additional capability of performing more thorough analyses
and comparisons.

Tables 5.4 and 5.5 present the results of our computational experiments. Table 5.4 shows the
computational requirements of the two LINGO models and of the solution algorithm that we propose.
More specifically, columns 2 and 3 of this table show the average and maximum computational times
when the original LINGO model with the global solver was invoked, whereas the next two columns
show the average and maximum computational times when the original LINGO model with the local
solver was invoked instead (the option Use Global Server in the Global Solver tab was unchecked in
this case). The next two columns show the average and maximum computational times for the
decoupling LINGO model. This model was only applied once to each random problem, since each of
the smaller subproblems that arise when the values of z, and z, are known is a convex quadratic
program whose global optimal solution can successfully be provided by both the global and the local
solver of LINGO. Naturally, the global solver needs significantly more time than the local solver to
identify this optimal solution; therefore, this model was only applied with the local solver invoked.
Only results with up to N = 200 aircraft are reported for this model, since its computational
requirements increase faster than those of the original LINGO model and become extraordinary for N
> 250. Columns 8-9 of Table 5.4 present our proposed solution algorithm’s average and maximum
computational times. We explain the results shown in the last two columns of Table 5.4 in the next

subsection.
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Table 5.4: Computational requirements (in seconds) of the proposed solution algorithms and LINGO

Original LINGO Decoupling LINGO | Proposed algorithm Modified algorithm
Global Local
N Avg Max Avg Max Avg Max Avg Max Avg Max
50 | 53.757 142.049 | 4.7165 12359 | 16.7003  22.8088 | 0.00525 0.015 0.00225 0.015
100 | 171.39 437.239 | 1497 39.889 | 299.368  408.999 | 0.01355 0.031 0.006 0.015
150 | 595.46 116521 | 32.318 63.789 | 1874.72  2854.32 | 0.04075 0.046 0.01505 0.031
200 | 1690.4 32895 | 32.993 94308 | 6085.92  6734.67 | 0.09325 0.109 0.03625 0.062
250 | 3118.1 5751.46 | 25.821 82.988 0.1968 0.343 0.07035 0.093
500 1.7258 1.934 0.5529 0.733
1000 20.7865 21.964 6.011 7.363
1500 86.8852 91.642 | 259719  30.529
2000 262.69 279.77 | 79.4926  92.476
2500 668.438  710.517 | 208.057 248.617

Columns 2-3 of Table 5.5 show the average and maximum percentage difference of the

objective value of the solution returned by LINGO’s local solver from the problem’s global optimal

solution objective value. The next two columns of the same table show the average (rounded to the

nearest integer) and the maximum number of feasible value combinations of variables z, and z,. Of

course, these results are always the same for both the solution algorithm that we propose and the

decoupling LINGO model. We explain the results shown in the last two columns of Table 5.5 in the

next subsection.

number of value combinations for variables z, and z,

Table 5.5: Quality of the solutions returned by LINGO’s local solver and

LINGO Local Proposed algorithm Modified algorithm
% Obj Combinations Combinations
N Avg Max Avg Max Avg Max
50 | 116.969 1109.23 42 49 24 32
100 | 327.442 2043.78 145 169 66 93
150 | 244.147 1166.53 333 370 134 178
200 | 473.786 1076.09 587 637 221 315
250 | 551.545 1476.18 925 990 343 462
500 3561 3825 1123 1438
1000 14712 14858 4265 5175
1500 31866 32905 9410 10861
2000 56905 59059 16914 19149
2500 89221 92057 26676 31084

The superiority of the solution algorithm that we propose becomes immediately clear, since its

computational times are significantly lower than those of both LINGO models. As the results of Table
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5.4 demonstrate, the computational savings increase considerably for large scale problem instances,
for which the application of LINGO appears impracticable. This is partially due to the fact that the
increase in the number of feasible value combinations of variables z, and z, is quite moderate as the
problem size increases, and partially due to the efficiency of Procedure Sweep. The variability of the
solution times appears higher in the case of LINGO than in the case of the algorithm that we propose.
Additionally, the original LINGO model with the local solver invoked has a rather unusual behavior,
since its average computational requirements for N = 250 are lower than those for N = 150 and N =
200. This is an indication that the total computational effort also depends on the specific
characteristics of each problem instance besides its size. With the exception of the problems with N =
50, the average computational requirements of the decoupling LINGO model are higher than those of
the original LINGO model with the global solver invoked. This is an indication that the significant
computational savings of our solution algorithm should be attributed more to the efficiency of
Procedure Sweep than to the decoupling of the original problem into smaller subproblems alone.

As expected, the computational requirements of LINGO’s local solver are significantly lower
than those of the global solver. This comes at a price, however, as columns 2 and 3 of Table 5.5 verify,
since the objective value of the solution returned by the local solver is on the average approximately
between 100 and 550% higher than that of the global optimal solution. In the worst case, this
percentage difference increases to approximately 2000%. One way to improve the quality of the
solutions returned by LINGO’s local solver is to increase the number of “multistart solver attempts”
on the “Global Solver” tab, but this also increases the computational time required for termination. In
general, as this number increases, the results returned by the local solver resemble those returned by

the global solver in terms of solution quality and computational requirements.

5.4.3 Algorithmic enhancements

Our extensive computational experience with the proposed solution algorithm and LINGO has
provided considerable evidence suggesting that the 2-dimensional “cost-matrix” with rows the
feasible values of variable z,, columns the feasible values of variable z,, and elements the optimal total
deviation index values for each particular combination of z, and z,, may possess a special type of
convexity called row and column convexity. More specifically, let 7C(g,a) be the problem’s optimal
total deviation index value for the combination with z, = g and z, = a. The corresponding matrix is row
convex if 7C(g,a) < TC(g,a+1) implies T7C(g,a+1) < TC(g,a+i) for every feasible i > 2 and if 7C(g,a) <
TC(g,a-1) implies TC(g,a-1) < TC(g,a-i) for every feasible i > 2. Similarly, the corresponding table is
column convex if TC(g,a) < TC(g+1,a) implies TC(g+1,a) < TC(g+i,a) for every feasible i > 2 and if
TC(g,a) < TC(g-1,a) implies TC(g-1,a) < TC(g-i,a) for every feasible i > 2.
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Despite numerous and tedious attempts, we haven’t been able to develop a formal mathematical
proof that establishes the wvalidity of this property. On the other hand, despite extensive
experimentation, we haven’t been able to discover a single counterexample that disproves it either. If
this property is indeed valid, then we can exploit it in order to improve the computational performance
of the proposed solution algorithm considerably. To show this, we developed a simple modification of
this algorithm, which does not compute the optimal total deviation index value for every feasible
combination of z, and z,; instead, this algorithm computes this value for the middle element of each
row (or column using a specific simplistic rule) of the cost-matrix and terminates its search within the
same row (or column) as soon as it has established, assuming that the cost-matrix is indeed row and
column convex, that no further improvement on the objective can be accomplished in the same row (or
column). After this procedure is repeated for all rows (or columns) of the matrix, the best incumbent
solution is returned by the algorithm. The last two columns of Table 5.4 present the average and
maximum computational times of this modified algorithm, and the last two columns of Table 5.5
present the average and maximum number of value combinations of variables z, and z, for which this
algorithm computed the total deviation index.

These results show that if the cost-matrix is indeed row and column convex, then the solution
algorithm that we propose can be significantly expedited by cleverly incorporating this property into
its original design. The modified algorithm returned the global optimal solution in every problem
instance out of the 200 on which it was applied, giving us, for one thing, strong evidence that this is
indeed true. Given this intuition, we believe that future research should investigate whether this
property is actually valid or not. If it turns out to be, a suitable modification of the proposed solution
algorithm that exploits this result to the greatest extent should be developed, so that additional
computational benefits can be gained. Given the deficiency that stems from the lack of a formal proof
for the validity of this property, we did not develop a sophisticated design for the cost-matrix search,

which explains the rather simplistic design that we present above.

5.5 Summary

In this chapter, we developed a mixed integer nonlinear model for flight and maintenance planning of
a group of aircraft that comprise a unit. The objective is to provide a balanced allocation of the flight
load and the maintenance capacity to each individual aircraft, so that the long term availability of the
unit is kept at a high and steady level. The formulation that we propose is based on a suitable
modification of an existing graphical heuristic tool for addressing this problem. Utilizing the

problem’s special structure, we also developed an exact search algorithm for its solution. Our
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computational results demonstrate the superiority of the proposed algorithm over a commercial

optimization package.
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Chapter 6  Single Objective Multi-Period FMP Problem
6.1 Introduction

In the previous chapter, we developed an exact solution algorithm for the single period FMP problem.
Motivated by the fact that the flight load requirements are typically issued over a planning horizon of
6 monthly periods, in this chapter we develop an exact solution algorithm for the muti-period version
of this problem. This algorithm is capable of identifying the optimal solution of considerably large
realistic problems in very reasonable computational times.

Initially, the algorithm obtains a valid upper bound on the optimal fleet availability by solving a
simplified relaxation of the original problem. In subsequent iterations, this bound is gradually reduced,
until a feasible solution is identified. Solutions encountered along the search procedure, which cannot
be optimal because they are infeasible, are excluded from further consideration through the addition of
suitable valid inequalities (cuts). The algorithm terminates when the first feasible solution that attains
the current fleet availability bound is identified, which, naturally, comprises the optimal solution of the
problem.

The remainder of the chapter is structured as follows. In Section 6.2 we present the mixed
integer linear programming (MILP) formulation for the multi-period version of the FMP problem. In
Section 6.3 we develop the proposed solution algorithm, while in Section 6.4 we present experimental
results evaluating its computational performance. In Section 6.5 we discuss some interesting model

extensions, and finally, in Section 6.6 we summarize this chapter.

6.2 Single objective multi-period FMP Model (S-FMPh)

The mixed integer linear programming model for the formulation of the multi-period FMP problem
utilizes the following mathematical notation:

Sets:

N set of aircraft in the unit, indexed by #.

Parameters:

T : length of the planning horizon,

S; : flight load requirements in time period ¢,

B, : time capacity of the maintenance facility in time period ¢,

C : space capacity of the maintenance facility,

Y : residual flight time of an aircraft immediately after it exits the maintenance facility,
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Chapter 6 Single Objective Multi-Period FMP Problem

G : residual maintenance time of an aircraft immediately after it enters the maintenance facility,

A1, : state (0/1) of aircraft n at the beginning of the planning horizon,

Y1, : residual flight time of aircraft » at the beginning of the planning horizon,

G1, : residual maintenance time of aircraft » at the beginning of the planning horizon,

Xpar - maximum flight time of an aircraft in a single time period,

Y,in - lower bound on the residual flight time of an available aircraft,

G.,.in - lower bound on the residual maintenance time of a grounded aircraft,

K : a sufficiently large number.

Decision Variables:

a,,: binary decision variable equal to 1 if aircraft » is available in time period ¢, and 0 otherwise,

Va, - residual flight time of aircraft » at the beginning of time period ¢,

X, : flight time of aircraft » in time period ¢,

gn, : residual maintenance time of aircraft » at the beginning of time period ¢,

h,, : maintenance time of aircraft » in time period ¢,

d,, : binary decision variable equal to 1 if aircraft » exits the maintenance facility at the beginning of
time period #, and O otherwise,

1. : binary decision variable equal to 1 if aircraft # enters the maintenance facility at the beginning of
time period ¢, and 0 otherwise,

G Puss ¥y - auxiliary binary decision variables.

Utilizing the above notation, the proposed FMP model is formulated as follows:

Problem S-FMP;;:

741 [V

Max CFA4, =Y > y,, (6.2.1)
t=2 n=1

S.t. yn,[+1 :yn,l 'xn,[ + de,ﬁ’l, n :1,..., N ) t :1,..,T (6.2.2)
Auyi1> Apyer - Anpy 0 =1,..,|N|, t =1,..,T (6.2.3)
Anye1-any 111 -d, 1) = 0.1, n =1,..,|N|, t =1,...,T (6.2.4)
Guirl = &uy - My + Gy, n =1, |N|, t =1,..,T (6.2.5)
Jorr1= Quy - Ao, n =1,..,|N|, t =1,..,T (6.2.6)
Any-Anerr + 111 - £,6) 2 0.1, n =1,...,|N|, t =1,...T (6.2.7)

V]
dx, =8, t=1..T (6.2.8)
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V]

Doh,<B,t=1..,T
n=1

¥
d(-a,)<Ct=2,.T+l

n=1

v
B <> h,+K(1-q),t=1..T

n=1

V| V]

> g <> h, +Kq, t=1..T

n=1 n=1

yn,t+ Kpn,,SK, n :1,..., N

,t=1,.,T

an,t+l§ (yn,t _xn,t)K+ Kpn,;, n :1,-.., N ,t :1,..,T

gut Kr,, <K, n=1,..,|N|,t=1.,T

1-apm1<(guy - Mn)K+ Krypyn =1,..,|N

,t=1,..,T

N

Yi<Ya,,n=1,.,|N|,t=2,.,T+1

gﬂ,tS G(l_ai’l,t)v n :19'”7 N

,t=2,...,T+1

N

Xt < Xpaxny n =1,..,IN|, t =1,...,T

N

yn,tZ Yminan,ta n :1,---; |, t= 2,...,T+ 1

N

gn,tZ Gmin(l - an,t); n :1,-.., , = 2,...,T+ 1

Xt <Vann =1,..,|N|,t=1,..T

N|,t=1,.,T

hn,;Sgn,,, n :1,...,

an =Al,,n=1,.,[N|

B2 N Yln, n :1,..., N|

8n1 — Gln, n :1,..., N|

xn,h hn,tE 0, n :1,..., N

,t=1,.,T

N

Ve 8uy = 03 m =1,..., ,t=2,.,T+1

N

Dt Yass @ binary, n =1,...,IN|, t =1,...T
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(6.2.9)

(6.2.10)

(6.2.11)

(6.2.12)

(6.2.13)
(6.2.14)
(6.2.15)
(6.2.16)
(6.2.17)
(6.2.18)
(6.2.19)
(6.2.20)
(6.2.21)
(6.2.22)
(6.2.23)
(6.2.24)
(6.2.25)
(6.2.26)
(6.2.27)
(6.2.28)

(6.2.29)
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an,t> dn,taﬁt,t binal’y, n :13-”9 N s t :2a'~9T+ 1 (6230)

The objective function (6.2.1) is similar to the objective function (4.2.3) of the multi-objective
model presented in Section 4.2, while the constraint set is similar to the constraint set of that model.
Nevertheless, for reasons of completeness and clarity, we also provide a short description of the above
model next. Two key differences that this model exhibits with respect to the model of Section 4.2 stem
from the fact that it refers to a single unit not comprised of distinct squadrons, and from the fact that
constraint (6.2.8) imposes the exact flight load satisfaction, as opposed to the tolerance allowed on the
flight load satisfaction by constraint (4.2.15). Section 6.5 provides a brief discussion on how the multi-
squadron case, as well as the case of non-strict flight load satisfaction, can be handled within the
context of the present model.

The objective function (6.2.1) maximizes the cumulative residual flight time availability (CFA})
of the unit, defined as the sum of the individual residual flight time availabilities of all time periods.
The availability of the first time period is not included in the objective since it is pre-determined upon
the application of the model, whereas that of time period 7+1 is included, ensuring a smooth transition
into the next planning horizon. For each time period, constraint set (6.2.2) updates the residual flight
time of each aircraft. When an aircraft exits the maintenance facility at the beginning of time period
t+1, binary variable d, ., takes the value 1, while the residual flight time of that aircraft is reset to Y.
Parameter Y, also called phase interval, represents the total flight time until the next maintenance
inspection. Similarly, for each time period, constraint set (6.2.5) updates the residual maintenance time
of each aircraft. When an aircraft is grounded for maintenance inspection at the beginning of time
period #+1, binary variable f, .., takes the value 1, while the residual maintenance time of that aircraft is
reset to G. Parameter G represents the total service time of the maintenance inspection.

Constraint sets (6.2.3), (6.2.4), (6.2.6) and (6.2.7) utilize the values of variables a,, in order to
assign proper values to variables d,, and f, . More specifically, (a,,, a,;+1) can be (0,1), (0,0), (1,0) or
(1,1), making (a,+ - a.,) equal to 1, 0, -1 and 0, respectively. When this difference is equal to 1,
variable d, ;+1 should be equal to 1, which is ensured by constraint set (6.2.3). Otherwise, d,,+; should
take the value 0, which is ensured by constraint set (6.2.4). Similarly, when this difference is equal to -
1, variable f, ,+; should be equal to 1, which is ensured by constraint set (6.2.6). Otherwise, f, .+, should
take the value 0, which is ensured by constraint set (6.2.7).

Constraint set (6.2.8) ensures satisfaction of the flight load requirements in each time period,
while constraint sets (6.2.9) and (6.2.10) ensure that the restrictions pertaining to the time and space,
respectively, capacity of the maintenance facility are respected. For each time period, constraint sets
(6.2.11) and (6.2.12) impose the full utilization of the facility’s time capacity if it does not suffice for

finishing the service of the grounded aircraft, or the full completion of this service if the opposite is
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true. This is achieved through the utilization of the auxiliary binary variable ¢q,, which assists in setting
the total maintenance time provided by the facility in time period ¢ equal to the minimum between the
total service time requirements and the total time capacity of the maintenance facility in that period.

Constraint sets (6.2.13) and (6.2.14) state that if the residual flight time of an available aircraft
drops to 0, then this aircraft must be grounded for service. The auxiliary binary variable p,, becomes
equal to O if y,, > 0, which forces a, ., to 0-value if y,, = x,,. Similarly, constraint sets (6.2.15) and
(6.2.16) state that if the residual maintenance time of a grounded aircraft drops to 0, then this aircraft
must exit the facility and become available. The auxiliary binary variable r,, becomes equal to 0 if g,,,
> 0, which forces a,, 41 to 1 if g,,, = h,,,.

Constraint set (6.2.17) imposes an upper bound equal to Y on the residual flight time of each
available aircraft, and sets the residual flight time of each grounded aircraft equal to 0. Similarly,
constraint set (6.2.18) imposes an upper bound equal to G on the residual maintenance time of each
grounded aircraft, and sets the residual maintenance time of each available aircraft equal to 0.
Constraint set (6.2.19) imposes an upper bound equal to X, on the flight time of each available
aircraft in a single time period, and sets the flight time of each grounded aircraft equal to 0. This upper
bound is usually imposed due to technical restrictions. Constraint set (6.2.20) imposes a lower bound
equal to Y,,;, on the residual flight time of each available aircraft, while constraint (6.2.21) imposes a
lower bound equal to G,;, on the residual maintenance time of each grounded aircraft. This way, an
aircraft cannot end-up with a positive but negligible residual flight or maintenance time. Constraint set
(6.2.22) states that the total flight time of an aircraft in a single time period cannot be larger than its
residual flight time at the beginning of this time period. Similarly, constraint set (6.2.23) states that the
total maintenance time of an aircraft in a single time period cannot be larger than its residual
maintenance time at the beginning of this time period.

Constraint sets (6.2.24), (6.2.25) and (6.2.26) are used to initialize the status of the aircraft at the
beginning of the planning horizon. It should be noted that variables d,/f,; are never used, since
variables y,./h,; are directly updated to depict the exit/entrance of an aircraft from/into the
maintenance facility at the beginning of the planning horizon. Finally, constraints (6.2.27) and (6.2.28)
impose the non-negativity of the continuous decision variables, while constraints (6.2.29) and (6.2.30)
impose the integrality of the binary decision variables.

Let x be a solution to the problem formulation (6.2.1)-(6.2.30) introduced above, CFA,(x) be the
cumulative residual flight time availability realized by this solution, and X be the set of all feasible

solutions. In short, the S-FMP;, problem introduced above can be expressed as:

Max CFA, (x) (S-FMPy)

st.xelX
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6.3 Solution methodology

The solution algorithm that we develop for the FMP problem utilizes the fact that the CFA, of the unit
depends solely on the combination of aircraft that enter and exit the maintenance station over the
planning horizon, and that the number of such combinations is finite. As a consequence, the domain
comprised of possible CFA4,, values is a discrete set. Initially, the algorithm identifies a valid upper
bound on the optimal CFA,, by solving a simplified relaxation of the original problem; then this bound
is gradually decreased, until a feasible flight and maintenance plan that attains it is identified.

It can be shown that if Problem (6.2.1)-(6.2.30) has one or more optimal solutions, then at least
one of them preserves a steady rotation of aircraft into and out of the maintenance station, in non-
decreasing order of their residual flight/maintenance times. In practice, no such restriction is present.
Aircraft are allowed to enter and exit the maintenance station in any feasible order, while their indices
are updated accordingly to represent their resulting relative order. With this in mind, the index
representing the relative order of each aircraft at the beginning of the next period should be a decision
variable allowed to take any feasible value. Adding this degree of freedom, however, complicates the
solution of the problem unnecessarily, without providing any advantage whatsoever; therefore, the
algorithm that we develop next adopts the assumption that a steady rotation of aircraft into and out of
the maintenance station is preserved.

It is relatively easy to prove that this assumption does not affect the optimal objective of the
problem. In fact, this result has been proven in Proposition 5.1 for the single-period FMP problem
studied in Section 5. The proof involves exchanging the actions performed on any two aircraft for
which this order is not preserved, so as to reinstate it. This can be done straightforwardly, without
altering the optimal objective. Repeating this exchange for all such pairs of aircraft leads to an
alternative optimal solution for which this order is preserved. As a result, the validity of the
proposition is confirmed.

In general, several distinct aircraft combinations can result in the same CFA,. Each time one
such combination is identified, the algorithm checks whether it is feasible, i.e., whether it can be
realized by a feasible flight and maintenance plan. If this check is successful, then the algorithm
terminates with the solution determined by this combination being optimal. If not, a suitable cut is
added to the model, excluding this combination from further consideration. All the cuts pertaining to
the same CFA, level remain active for as long as this level remains constant. If, at some point, the
currently considered CFA, level is proven infeasible (i.e., if it cannot be attained by any feasible
aircraft combination), then the search for the optimal solution continues to the next (lower) level from
the CFA;, domain set. This renders the cuts associated with the previous level redundant, which are

subsequently suppressed.
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To check a particular aircraft combination for feasibility, we utilize the original formulation,
after adjusting accordingly the model constraints to force its realization. Alternatively, one could
directly utilize Problem (6.2.1)-(6.2.30) in order to check whether a feasible aircraft combination that
attains a particular CFA, level exists. As it turns out, however, identifying the candidate aircraft
combination first and then checking its feasibility is more efficient, at least for the realistic problems
that we test in this dissertation. This is mainly due to the fact that the model utilized for the initial
feasibility check on the identified combination is considerably more simplistic than the original model
comprised of (6.2.1)-(6.2.30). As a result, the former model terminates quite fast, whereas the latter
one occasionally requires considerable time in order to terminate. Taking also into consideration the
fact that the number of combinations that the algorithm encounters in the case of realistic problems is
quite small (the related results are presented in Section 6.4), it is not very surprising that this is the
case. On the other hand, when this number increases, the opposite behavior is observed, i.e., it is more
efficient to apply the original model directly instead. With this discussion in mind, the following three
subsections portray in detail each step of the proposed algorithm, while the last one illustrates its

application on a small case study.

6.3.1 Bounding the optimal CFA4,

As determined by constraint (6.2.8), the residual flight time availability of the unit reduces by the
associated flight load in each time period of the planning horizon, independently of how this flight
load is distributed across the aircraft of the unit. Based on this observation, we claim that, as far as the
actions of the maintenance station are concerned, the maximum possible CFA, level is attained when
the maintenance crew works continuously on the grounded aircraft with the lowest residual
maintenance time until its service is completed. To get more insight into why this is true, note that
interrupting the service of a grounded aircraft once this has begun may lead to a sub-optimal solution,
since it can delay the addition of this aircraft’s phase interval to the fleet availability of the unit. This
would clearly result in lower CFA4,, since the number of aircraft exiting the station at any individual
time period is more heavily weighted in the objective function than that of any succeeding one. Of
course, the service of an aircraft may be spread out over more than one time periods if the station’s
time capacity is not sufficient.

Let en,and ex, be the number of aircraft that enter and exit, respectively, the maintenance station
at the beginning of time period ¢ ( = 2,...,7+1), and cx, = Zt:exk be the cumulative number of aircraft

k=2

that exit the maintenance station from the beginning of the planning horizon up to time period ¢ (t =

2,...,7+1). In order to show that a first-in-first-out maintenance policy that serves continuously the
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aircraft with the lowest residual maintenance time until its service is completed always leads to the

optimal solution of the problem, we prove next the following result:

Proposition 6.1: Maximizing the objective function of Problem (6.2.1)-(6.2.30) is equivalent to

T+1
maximizing Z cx, .
t=2

Proof. For ¢ = 2,...,T+1, the individual residual flight time availability of the unit in time period ¢ is

t—1 11
equal to Z Vi~ ZSk + Z(Yexk ). Therefore, the objective function value of problem (6.2.1)-(6.2.30)

neN k=1 k=2
T+l -1 t T T
isequalto D" (D v, = 2.8+ > Yex, N=T Dy, = > (T —t+1)S)+ > (T —t+1)Yex,,).
t=2 neN k=1 k=2 neN t=1 t=1

The only non-constant term subject to optimization in this expression is the last summation, which is

equal to TYex, + (T —1)Yex, +...+ Yex,,, = Y(Tex, + (T —1)ex; +...+ ex,,,). Therefore, maximizing the

objective function of Problem (6.2.1)-(6.2.30) is equivalent to maximizing the expression

T
(Tex, +(T —1)ex, +...+exm)=Z(T—t+1)exM .

t=1

T+1 T+l ¢t T
Since ZCx, = Z(Z ex,) = Z(T —t+1ex,,, , the validity of the proposition is established. O
=2 =2 k=2 t=1

As a consequence of Proposition 6.1, the following result regarding the optimal policy of the
maintenance station is now evident:

Corollary 6.1: No other maintenance policy can result in higher objective value for Problem (6.2.1)-
(6.2.30) than a first-in-first-out policy that always services the grounded aircraft with the lowest
residual maintenance time continuously until its service is completed.

The validity of the corollary results directly from the fact that no other maintenance policy can

T+1
result in larger value fochx, . Of course, depending on the particular problem instance, the optimal
t=2

CFA, may also be attainable by another maintenance policy; the important finding that we utilize in
the remainder of this work, however, is that the optimal solution will never be overlooked if this
maintenance policy is adopted. If the aircraft with the lowest residual maintenance time is not unique,
the particular aircraft selection can be made arbitrarily.

The total number of aircraft that exit the station cannot be larger than the corresponding number
that results when the total number of aircraft that enter the maintenance station is the maximum
possible. Therefore, to compute a valid upper bound on the optimal CFA4,, we enforce the maximum

possible flow of aircraft into the maintenance station by grounding each available aircraft as early as
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possible. This ensures that the time capacity of the station will be fully utilized and that the maximum
possible number of aircraft maintenance services will be completed as early as possible. To expedite
the performance of the algorithm, a small subset of the original model constraints are taken into
consideration for the calculation of this bound. This implies that the associated aircraft combination
that will be identified will not necessarily be feasible. Of course, a subsequent check that confirms or
disproves feasibility is always performed on each such combination.

The following pseudocode outlines the steps of the procedure for obtaining the valid upper
bound on the optimal CFA,, and facilitates the establishment of its validity which is proven in
Proposition 6.2. To keep this pseudocode simple and readable, we utilize the following additional
mathematical notation:

C,.: current number of empty aircraft spots at the maintenance station (residual space capacity),

B..s: currently unused time capacity of the maintenance station (residual time capacity),

TS, : cumulative flight load requirements of time periods 1,...,¢ (by convention, 7.S,= 0),

TS ent,: cumulative flight load that has been fulfilled by the aircraft that have been grounded in time
periods 1,...,¢ (by convention, 7S ent, = 0),

tlast, : the most recent time period aircraft » exited the maintenance station (by convention, tast, = 1 if
aircraft n has not exited the maintenance station in the current planning horizon yet),

vlast, : auxiliary variable that is set equal to Y if t/ast, > 1, and y,,; otherwise,

flag : auxiliary boolean variable.

Procedure CFA,-UB

Step 0: Preprocessing

order the available/grounded aircraft in non-decreasing order of their residual flight/maintenance times

set CFA, = TZ Vs Set Crpe=C - Z(l-anyl); set 7Sy = 0; set TS _enty=0;

neN neN
Vn e N set tlast,= 1;
Step 1: Iteration
fort=1to T'do
set 7S,= TS, + S;; set TS ent,= TS ent,,; set B,,,= B;; set ex,.; = 0;
while B,.,> 0 & additional grounded aircraft exist do
select the grounded aircraft with the lowest residual maintenance time (if more than one such aircraft
exist, select one arbitrarily); let ¢ be the index of this aircraft
set g, 11 = g — MIN(Gy 1 Bres); S€t Brog= Brog - Min(gy ,Byey);
if g, ;11 = 0 then
setex, . =ex; t1;set Cops=Crps + 13
remove aircraft with index ¢ from the set of grounded aircraft and add it to the set of aircraft which
are available at the beginning of time period #+1; set y, ., = Y; set tlast, = t+1
end if
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end while
set CFA, = CFA;, + (T-t+1)Yex,y; set en,.; = 0; set flag = true;
while (C,.;> 0) & additional available aircraft exist & (flag = true) do
select the available aircraft with the lowest residual flight time (if more than one such aircraft exist, select
one arbitrarily); let g be the index of this aircraft
if (tlast,> 1) then set ylast,=Y; else set ylast, =y, ;; end if
if (vlast, > X,u+(t-tlast,+1)) or (ylast, + TS_ent,> TS,) then
set flag = false;
else
set 7S _ent, - TS ent, + ylast,; set eny = enyy + 1; set Coog = Crps - 1;
remove aircraft with index g from the set of available aircraft and add it to the set of aircraft which
are grounded at the beginning of time period #+1; set g, ,.; = G;
end if
end while
set CFA, = CFA4;, - (T-t+1)S;
end for 0

Procedure CFA,;-UB performs two main actions in each time period ¢. First, it computes the
number of aircraft that will finish their service and exit the station at the end of time period ¢. This is
straightforward, given the complete knowledge of the aircraft that are grounded at the beginning of
time period ¢, and Corollary 6.1. Next, it examines the available aircraft in non-decreasing order of
their residual flight times, and checks which of them can be grounded. The grounding of a particular
aircraft is feasible only if the remaining aircraft are sufficient for satisfying the flight load
requirements. Variables tlast, and ylast, are crucial for this check. If X, = 50, an aircraft with
residual flight time 80 hours needs at least two time periods in order to enter the maintenance station.
Moreover, if ¥ = 300, an aircraft that has just exited the maintenance station needs at least Y/X,,.. =
300/50 = 6 time periods in order to be grounded for service again.

Procedure CFA,-UB interrupts the flight time allocation in a particular time period as soon as
the first aircraft that cannot be feasibly grounded at the end of this period is identified, since this
implies that no other aircraft can be feasibly grounded either. In the above pseudocode, this is signified
by variable flag which is set equal to false whenever this situation is detected. To ensure that no
feasible solution is ever overlooked, this check is performed separately for each time period. The key
assumption when this is done in time period ¢ is that the residual flight time of each aircraft » is equal
to ylast, and that no flight time has been allocated yet to this aircraft in time periods #ast,,....t.

This way, the flight time allocation is limited only to aircraft for which their earliest grounding
time period has been determined, which guards against taking decisions that may turn out to be sub-

optimal in future time periods. This is exactly why parameters f/ast, and ylast, are introduced in the
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first place. By maintaining the values of these two variables for each aircraft n, we are able to take into
account every feasible flight time allocation to aircraft # in time periods t/ast,,...,t, which ensures that
no feasible aircraft combination will be overlooked. This enables Procedure CFA,-UB to compute the
maximum possible number of grounded aircraft that can finish their service in each time period, as
well as the maximum possible number of available aircraft that can be grounded for service. The

above discussion leads to the following crucial result.

Proposition 6.2: Procedure CFA,-UB provides a valid upper bound on the optimal objective value
(CFA,) of problem (6.2.1)-(6.2.30).

Proof. As far as the maintenance decisions are involved, Corollary 6.1 ensures that the computed
CFA, will be the maximum possible. For each time period, the above procedure computes an upper
bound on the maximum possible number of aircraft that can cumulatively enter the maintenance
station from the beginning of the planning horizon up to this period, thus maximizing the flow of
aircraft into the maintenance station. This implies that the actual number of aircraft that enter the
maintenance station for service from the beginning of the planning horizon up to the end of time
period ¢ for = 2,...,T+1 in the optimal solution of the problem cannot be larger than the corresponding
number that results from Procedure CFA,-UB. Therefore, the optimal CFA,, cannot be larger than the
one provided by Procedure CFA,-UB. O

Besides establishing a valid upper bound on the optimal CFA,, Procedure CFA,-UB also
identifies a particular combination of aircraft that enter and exit the maintenance station in each time
period of the planning horizon. In what follows, we call this the nominal combination, independently
of whether it is feasible or not. Naturally, the nominal is the first combination that the algorithm

checks for full feasibility. The particular details of this procedure are presented in the next subsection.

6.3.2 Checking a particular aircraft combination for feasibility

Checking a particular aircraft combination for feasibility is trivial. Keeping in mind that the order of
aircraft is preserved, the check of whether a particular aircraft combination is feasible reduces to a
check of whether there exists a feasible flight and maintenance plan that realizes this combination.
This is equivalent to checking the original problem formulation for feasibility after fixing the values of
all the discrete decision variables which are determined by this combination, i.e., decision variables
Qny Aty foss Prss Tnsr and g, This simplifies things considerably, since it eliminates completely the

combinatorial nature of the original problem; as a result, the feasibility check is not time-consuming.

83

Institutional Repository - Library & Information Centre - University of Thessaly
12/05/2024 17:28:17 EEST - 18.118.9.86



Chapter 6 Single Objective Multi-Period FMP Problem

6.3.3 Adding a cut for the exclusion of a particular aircraft combination

Suppose now that a particular aircraft combination is proven infeasible. In order to investigate whether
the currently considered CF4, level can be attained by a different aircraft combination, we need to add
a valid inequality excluding this combination from further consideration. We augment variables en,
and ex, with a second index that takes the value 0, 1 or 2, as explained next. The index 0 pertains to the
nominal combination, the index 1 pertains to the combination at hand that we want to exclude, while
the index 2 pertains to any other aircraft combination yet to be discovered by the algorithm. A suitable

cut that excludes the infeasible aircraft combination at hand from further consideration is the

T+1 T+1
following: Z| en,, —en,,| + Z| ex, —ex,, |=1. In this expression, en,, and ex,, (¢ = 2,...,T+1) are
=2 t=2

decision variables, whereas en,; and ex,; (¢ = 2,...,7+1) are parameters with known values. The
constraint ensures that the number of aircraft exiting and entering the maintenance station in the next
combination that will be discovered by the algorithm will differ from the one at hand in at least one
time period. Letting W denote the CFA4, level that is currently being considered, na,; be the number of
grounded aircraft in time period ¢ (¢ = 2,...,7+1) in the combination that is being excluded (i = 1) and
in the next combination to be discovered (i = 2), the following mixed integer formulation can be

employed to impose the above cut and provide the next candidate aircraft combination:

T
r W=TY v+ 2. (T-t+1)S) 6.3.1)
DT -t+1)ex,,,) = neN =]
(=1 ’ Y
Yex,, <D ex, g t=2,.,T +1 (6.3.2)
= =
Yem, <Y en,, t=2,..T+1 (6.3.3)
= k=
na;p = Ndpp + eng - exg, t =2,..,7+1 (6.3.4)
nag, < C,t=2,..,T+1 (6.3.5)
ex;2< napy o, t =2,..,7+1 (6.3.6)
T+1 T+1
Z| en, —en,,| + Z| ex, —ex,, =1, (6.3.7)
=2 t=2
en,, ex;, Na,, integer > 0, t = 2,..,T+1 (6.3.8)

Constraint (6.3.1) fixes the currently considered CFA, level. Constraint sets (6.3.2) and (6.3.3)
impose upper bounds on the cumulative number of aircraft that exit and enter the station, respectively,

based on the nominal aircraft combination. Constraint set (6.3.4) updates the number of grounded
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aircraft based on the number of aircraft that enter and exit the maintenance station. Constraint set
(6.3.5) ensures that the space capacity of the maintenance station will not be violated in any time
period. Constraint set (6.3.6) states that the number of aircraft exiting the station at the beginning of
each time period cannot exceed the number of aircraft that were grounded during the previous time
period. Constraint (6.3.7) is the valid cut that excludes the infeasible combination at hand. Of course,
if more than one such combinations have been identified, one such cut needs to be added for each of
them. Finally, the last constraint set imposes the non-negativity and the integrality of the decision
variables.

Consider a particular pair (en,,, en,;) in the above formulation. The following set of constraints,
in which z and u are two auxiliary decision variables and K is a sufficiently large number, eliminates

the nonlinearities introduced by the corresponding absolute term in constraint (6.3.7):

eng,-eng <z<en;-en;+Ku (6.3.9)
en,  -en, <z<en, -en;,+ K(l-u) (6.3.10)
u binary (6.3.10)

Essentially, this set of constraints sets z equal to |en, - en,,|. If en,» > en,; then u takes the value
0 and this is determined by constraint (6.3.9), while constraint (6.3.10) becomes redundant. If en,, <
en,; then u takes the value 1 and this is determined by constraint (6.3.10), while constraint (6.3.9)
becomes redundant. Of course, both values will work for u if en,, = en,;. Appending one such
constraint set for each pair (en,,, en,;) and (ex,,, ex,;), together with a constraint that sets the sum of
auxiliary variables z at least equal to 1 is equivalent to constraint (6.3.7), while also preserving the
linearity of the formulation.

If the set of constraints (6.3.1)-(6.3.8) augmented with all the cuts that are currently active is
proven infeasible, this is an indication that the currently considered CFA, level cannot be attained by
any feasible aircraft combination. In order to compute the next lower CF4, level that is candidate for

optimality, we utilize the same formulation after substituting (6.3.1) with an objective that maximizes

T

T+l W_szn,l+Z((T_t+1)St)
the expression Z((T —t+1)ex,,) subject to an upper bound of i ;l . The
t=2

next candidate CFA, level is discovered this way, which is fixed using constraint (6.3.1), as before. At

the same time, all the previous cuts are suppressed because they are rendered redundant.
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6.3.4 A small case study

In this section, we illustrate the application of the proposed algorithm on a small case study. Consider
a unit comprising of six aircraft, five of which are available and one of which is grounded at the
beginning of the planning horizon. Table 6.1 presents the residual flight/maintenance times of the
aircraft at the beginning of the six-period planning horizon, while Table 6.2 presents the flight load
requirements and the time capacity of the maintenance station in each time period. In Table 6.1, bold-
style entries denote maintenance times of grounded aircraft and plain-style entries denote flight times
of available aircraft. The values of the other problem parameters are G = 320 hours, ¥ = 300 hours, C

=3, X,.ux = 50 hours, Y,,;, = 0.1 hours and G,,;, = 0.1 hours.

Table 6.1: Residual flight/maintenance times (y,,/g,,1) (hours)

n=1 n=2 n=3 n=4 n=5 | n==6
5 38 186 213 257 | 70

Table 6.2: Flight load requirements and time capacity of the maintenance station

t] 1 2 3 4 5 6
S, | 97 115 99 121 121 113

B, | 129 148 154 144 126 135

The valid upper bound on the optimal CFA4, obtained by Procedure CFA;-UB is equal to 4923.

The associated (nominal) aircraft combination is shown in Table 6.3.

Table 6.3: Nominal aircraft combination

en,

— NN

ex;

Next, we check where a feasible solution that realizes this combination exists. To this end, we
fix in the original formulation the values of all the decision variables which are determined by this
combination, keeping in mind that the order of aircraft into and out of the maintenance station is
preserved. These are the variables a,,, d,; and f,, forn = 1,....,6 and ¢t = 2,...,7, p,,and r,, for n =
I,...,.6 and ¢ =1,...,6, as well as several of the variables x,,;, V.1, u.r» 1n, (for example, x1; =5, x,1 = 38,
g1 = 70, etc.). The user may choose to add only a proper subset of the constraints enforced by the
aircraft combination and let the optimization solver deduce the remaining ones, or opt for a tighter
formulation by explicitly adding all the implied constraints. For our small example, the inclusion of
the above constraints makes the problem infeasible, because the flight load constraints of time periods
5 and 6 are violated. Therefore, we add a valid-cut that excludes this combination, and we utilize the
following set of constraints in order to check if the currently considered CFA, level (4923) can be

attained by another aircraft combination.
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Zél((7—t)€xz+1) =10

t
Dex,<1,1=2,3,4

k=2

t
Zexks2, t=56
=2

na,=na,, +en,-ex, t =2,...7
na,<3,t=2,.7
ex;<na, t =2,..7
len, — 2| +|eny — 0| +|en, — O+ |ens — 1| +|eny 1|+ |en, — 1|+
|ex, —1|+|ex; — 0] +|ex, — 0] +|ex; — 1| +|ex, — 0| +]ex, 1| > 1
en,, ex,, na, integer >0, t =2,...,7

The aircraft combination shown in Table 6.4 is identified next, for which the value of CFA, is

equal to 4923, as before.

Table 6.4: Second aircraft combination

7
1

1

t |
en,

— =

3
0
0

S O

5
0
1

S =N

ex,

Next, we check whether this aircraft combination can be realized by a feasible
flight/maintenance plan. Since it cannot, a new cut is added, excluding it from further consideration.
The algorithm continues similarly until the first feasible aircraft combination is identified. This is true
for the 12"™ combination identified, which is the one shown in Table 6.5. This is the optimal
combination, while the optimal CF4, is equal to 4923, i.e. equal to the valid upper bound provided by
Procedure CFA,-UB. The complete optimal solution of the problem is found easily by forcing the

realization of this combination in the original model formulation.

Table 6.5: Optimal aircraft combination

t |2 3 4 5 67
en, | 1 1 0 0 1

0 1 0 1

0
ex, |1 0
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6.4 Computational implementation

In this section, we analyze the computational complexity of the proposed solution algorithm, and we
present computational results demonstrating its efficiency. We also compare its performance against
that of two popular commercial optimization software packages that can be utilized alternatively for
the solution of the problem under consideration. In order to portray the applicability of the proposed
solution algorithm and highlight the benefits that can emerge from its practical application, we test the
proposed algorithm both on realistic problem instances drawn from the operation of a typical aircraft
unit of the HAF, as well as on large scale random problem instances whose size and parameter values

differ significantly from those of typical problems arising in practice.

6.4.1 Computational complexity

The computational effort of the proposed solution algorithm comprises of the computational effort
required for the calculation of the valid upper bound on the optimal CFA,, of the computational effort
required for testing the feasibility of the aircraft combinations that are encountered, and of the
computational effort required for the addition of the necessary valid inequalities. Let 4 and NA be the
total number of aircraft that are initially available and grounded, respectively, and |N] = A + NA be the
total number of aircraft. Regarding the computational effort for the calculation of the valid upper

bound on the optimal CFA4,, the following result is true:

Proposition 6.3. The computational effort of Procedure CFA;-UB is O(4 log(4)) + O(NA log(NA)) +
O(TIN.

Proof. The total time required to arrange the available aircraft in non-decreasing order of their residual
flight times and the grounded aircraft in non-decreasing order of their residual maintenance times is
O(4 log(4)) and O(NA log(NA)), respectively. The total time required to initialize the values of
variables tlast, is O(|N]). The preprocessing phase of Procedure CFA,-UB performs these actions only
once. The total time required to compute the maximum cumulative number of aircraft that can enter
and exit the maintenance station for each time period is O(|V]). This action is performed once for each
time period of the planning horizon. Therefore, the total computational effort of Procedure CFA,-UB is

O(4 log(4)) + O(NA log(NA)) + O(N]) + O(TIN]) = O(4 log(A4)) + O(NA log(NA)) + O(TIN)). 0

Regarding the computational effort required to test the feasibility of a single aircraft
combination, with the values of decision variables a,;, d,, fus» Pnss ¥ns» and g, known, the problem
defined by (6.2.1)-(6.2.30) reduces to finding a feasible solution to a system of linear constraints with

continuous decision variables. Therefore, its computational complexity is polynomial in the values of
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parameters |[N] and 7 that define the size of the problem. On the other hand, the total number of aircraft
combinations that must be checked in the worst case is exponential in the values of parameters |V|, C,
and 7. For realistic problems, this is hardly an issue, since the value of 7 is rather small and remains
constant, while C is relatively small as a percentage of |[N| (~10%), making the number of aircraft
combinations that the algorithm encounters relatively small. In the next section, we discuss how this

exponential behavior can be properly handled should it arise.

6.4.2 Computational results

The proposed solution algorithm was implemented in C and its performance was compared against
that of CPLEX 12.5 (2012) and LINGO 13.0 (2011), two popular commercial optimization software
packages. Our computational experiments were performed on an 15-3330 @ 3.0 GHz Intel processor
with 16 GB system memory. Typical wing configurations of the HAF comprise of 60-80 aircraft, a
number that can increase up to 100 aircraft in special cases. Neither CPLEX nor LINGO can handle
problems of this size in reasonable time; hence we chose 5 smaller values (i.e., 10, 15, 20, 25 and 30)
for the total number of aircraft that comprise the unit. On the other hand, the proposed solution
algorithm is capable of handling considerable larger problems; therefore, we also tested its
performance on more challenging problems with |[N] = 50, 100 and 200. The planning horizon was
always set equal to six monthly periods, since the flight load of a typical combat unit of the HAF is
typically issued over a six-month period. For each of these sizes, we solved 30 random problem
instances. Both optimization packages were invoked with default options.

The random generator was specially designed so as to make the generated problems as similar
as possible to the realistic ones. The specifics are as follows: although C is equal to approximately
0.1|N] in practice (for a group of 60-80 aircraft, the maintenance hangar can typically accommodate 6-
8 aircraft), we set it equal to 0.15|N] rounded to the nearest integer in order to make the generated
problem instances more challenging. This is because our computational experience and the complexity
analysis of the previous subsection suggest that, in general, the difficulty of solving a particular
problem increases as the value of C increases. The number of initially grounded aircraft, NA, was
generated randomly, using a discrete probability function that considered integer values between 0 and
C, inclusive. This distribution was negatively skewed, so that larger candidate NA values were
assigned higher probabilities. In particular, for x = 0,...,C, the probability that the number of grounded
aircraft at the beginning of the planning horizon was equal to x was set equal to (x+1)/ (i(x +1)).

=0
Of course, the number of initially available aircraft, 4, was always set equal to |N|-NA. The residual
flight time of each available aircraft at the beginning of the planning horizon was a random number

distributed uniformly in the interval [Y,,,,Y], while the residual maintenance time of each grounded
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aircraft at the beginning of the planning horizon was a random number distributed uniformly in the
interval [G,,;,,G].

For each time period ¢, S; was uniformly distributed in the interval [10|N|, 15|N|], and B, was
uniformly distributed in the interval [15|N]|, 20|N|]. This design approximates fairly close the
characteristics of realistic problems; the detailed reasons are strictly confidential. Actual values drawn
from the real application were used for the other problem parameters, i.e., ¥ =300, G = 320, X,,.. = 50,
Y,in=0.1 and G,,;, = 0.1.

Table 6.6 presents the average and maximum computational times of the two commercial
software packages and our proposed solution algorithm for these realistic problems. More specifically,
columns 2 and 3 of this table show the computational times of LINGO, columns 6 and 7 show the
computational times of CPLEX with the single-thread option selected, while columns 8 and 9 show
the computational times of CPLEX with the multi-thread option selected (this is the default option).
Additionally, columns 10 and 11 show the computational times of the proposed solution algorithm
when the original formulation (6.2.1)-(6.2.30) is directly utilized for checking whether a feasible
aircraft combination that attains a particular CFA4, level exists, while columns 12 and 13 show the
computational times of this algorithm when this check is performed in two steps (according to the
procedure described in Section 6.3), instead. The results of columns 4 and 5 are explained in the
following paragraphs. When the multi-thread option is selected, CPLEX uses all the available threads
(4 in the case of the computer that we used for our experiments). The table is incomplete because the

commercial solvers are not able to accommodate all the problem sizes within the 8-hour limit that we

enforced.
Table 6.6: Computational times (seconds) comparison for realistic problems
LINGO LINGO CPLEX CPLEX Proposed Proposed
with cuts single-thread multi-thread algorithm Algorithm
(1-step feas. (2-step feas.
check) check)
Nl | Avg Max Avg  Max Avg Max Avg Max Avg Max | Avg Max
10 | 0.44 1.73 0.19 0.49 0.05 0.09 0.05 0.09 0.12 018 | 0.10 0.11
15 | 30.03 17424 | 040 1.32 1.34 6.89 0.54 2.37 0.15 023 | 010 0.11
20 243 1048 | 1189.57 | 20550.01 | 118.72 | 13213 | 047 438 | 0.11 0.13
25 1.65 18.20 1130.14 | 7794.17 | 0.30 233 | 0.12 0.14
30 426 3432 082 1646 | 0.13 0.14
50 446 13.15 045 059 |0.18 0.18
100 10.58 18.18 448 6884 | 028  0.29
200 273 4.09 |049 052

The superiority of the proposed solution algorithm becomes immediately clear, since its
computational times are significantly lower than those of both LINGO and CPLEX. As the results of
this table demonstrate, the computational savings increase considerably for large scale problem
instances, for which the application of the two software packages appears impracticable. The

variability of the computational times appears significant for both CPLEX and LINGO, whereas in the
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case of our algorithm it appears insignificant. An interesting observation is that, naturally, the
performance of CPLEX improves considerably when the multi-thread option is selected instead of the
single-thread option. This option should always be used with caution, however, since increasing the
number of threads being used increases the probability that the computer will run out of memory on a
particular problem that may be otherwise solvable when the single-thread option is selected. As far as
the two alternative designs for the proposed solution algorithm are concerned, the last four columns
demonstrate that, for these particular problems, the performance of the two-step procedure for
identifying feasible aircraft combinations appears superior to that of the direct feasibility check that
utilizes the original formulation (6.2.1)-(6.2.30).

While experimenting with alternative solution options, we noticed that the performance of
LINGO can improve significantly by introducing additional constraints that impose valid upper
bounds on the cumulative number of aircraft that enter and exit the maintenance station from the
beginning of the planning horizon up to time period ¢ for ¢ =2,...,7+1. Such bounds can be provided by
Procedure CFA,-UB. Columns 4 and 5 of Table 6.6 show the computational times of LINGO when
these bounds are applied. It becomes evident from these results that the improvement is significant,
allowing LINGO to handle considerably larger problems within the predefined time limit. In practice,
of course, it does not make much sense to adopt this procedure by applying partially the proposed
algorithm in order to find these bounds, since its full application exhibits even better performance for
all the realistic problems on which it was tested. On the other hand, a similar behavior was not
detected for CPLEX (probably due to different strategies followed by the underlying algorithmic
procedures), and therefore no similar results are reported.

The high efficiency of the proposed solution algorithm can be partially attributed to the fact that
the number of aircraft combinations it encounters is rather small. In turn, this implies that the upper
bound provided by Procedure CFA,-UB is tight. In view of this observation, and in an attempt to test
the limits of this algorithm, we tried to generate problem instances for which this bound is
considerably looser. In particular, since the algorithm starts by grounding each available aircraft as
early as possible, we generated special problems for which although it is possible to ground several
aircraft during the first time periods of the planning horizon, the optimal decision is to hold them back
and ground them after several subsequent time periods. Tables 6.7 and 6.8 show the data of one
problem with such characteristics, for which 4 = 10, NA =0, T=6, G =320 hours, Y= 300 hours, C =
4, Xax = 50 hours, Y,,;, = 0.1 hours and G,,;, = 0.1 hours. The time capacity of the maintenance station
is purposely selected to be larger in the first three time periods so as to enable a large number of
service completions during these periods, and smaller in the last three time periods, so as to cause

delays in the service completions of those periods.
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The application of Procedure CFA,-UB for this problem results in one aircraft being grounded
during the first two time periods of the planning horizon and provides an upper bound equal to 7210
on the optimal CFA4,. However, the associated aircraft combination, shown in Table 6.9, is infeasible.
In fact, a CFA, equal to 7210 cannot be realized by any feasible combination; in order to obtain a

feasible solution to the problem, the first aircraft grounding must not take place before time period 4.

Table 6.7: Residual flight times (y,,) (hours)

n=1 n=2 n=3 n=4 n=>5 n==6 n="17 n=2_8 n=9 n=10
5 250 250 250 250 250 250 250 250 250

Table 6.8: Flight load requirements and time capacity of the maintenance station

t] 1 2 3 4 5 6
S, | 450 450 455 200 50 50

B, | 200 200 640 100 100 100

Table 6.9: Nominal aircraft combination

t |
en,

=

3
0
0

—_— Oh
S Ol
S AN
oS O

ex,

Starting from this one, the proposed algorithm identifies in total 165 infeasible aircraft
combinations before reaching the optimal. The number of these combinations for each associated
CFA4, level is shown in Table 6.10, while the optimal combination that corresponds to a CF4, level of

6010 is shown in Table 6.11.

Table 6.10: Number of encountered aircraft combinations

CFAlevel | 7210 6910 6610 6310 6010 Total
# of A/IC comb.‘ 30 45 45 42 3 165

Table 6.11: Optimal aircraft combination

t |
en,

S Ol

3
0
0

S =
S Oln
S =N
oS O

ex;

Looking more closely at the data of this problem, note that if the aircraft with index 1 is
grounded at the end of the first period, it cannot exit the maintenance station earlier than the beginning
of time period 4. Although the remaining nine aircraft are sufficient for satisfying the flight load
requirements of time period 2, all ten aircraft are needed in order to satisfy the flight load requirements
of time period 3 (455 hours), due to the upper bound (50 hours) on the flight time of each individual
aircraft in a single time period. Therefore, the optimal and only feasible decision is to hold back the
first aircraft and ground it at the end of time period 3. The algorithm cannot foresee this, and goes on

to examine all the aircraft combinations that can possible arise by grounding this aircraft earlier,
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before identifying the optimal one. Since the number of these combinations is quite large, this has an
adverse effect on the algorithm’s performance, which deteriorates considerably.

It should be emphasized that this numerical example violates many of the characteristics that
realistic problems exhibit; it is specially designed so as to trouble the proposed solution algorithm as
much as possible, and is presented as a reference basis in order to illustrate a case in which the
performance of this algorithm is unsatisfactory, as well as the characteristics of a problem for which
this situation can arise. The main such characteristic is that there exist one or more aircraft which can
be feasibly grounded during the first time periods of the planning horizon, but the optimal decision is
to hold them back and ground them after several subsequent time periods.

The fact that the performance of the proposed solution algorithm deteriorates when applied on
these non-standard problem instances is confirmed by the results of Table 6.12. In this table, we
present the computational times that this algorithm needs in order to find the optimal solution of
problems exhibiting the above characteristic, for various problem sizes (30 problem instances were
solved for each such size). The problem instances are not completely random, in that several of their
parameter values were selected purposely, so as to ensure the existence of this characteristic. Once this
had been ensured, however, the remaining parameters were chosen randomly. In particular, the
residual flight times of the aircraft, as well as the flight load and the time capacity of the maintenance
station in each time period were selected randomly in similar ranges as those of the problem instances
tested in Table 6.6, under the additional requirement that the optimal CFA, level should not be
attainable if the first one or two aircraft were grounded before the 4™-5" time period. A trivial trial and
error technique was employed in order to achieve that, which simply rejected those random instances
for which this was not true. The columns of Table 6.12 are mainly the same with those of Table 6.6,
the only difference being that no results are reported regarding the application of LINGO after the
incorporation of special cuts, since there is no significant advantage from adding such cuts in the case

of these non-standard problems.

Table 6.12: Computational times (seconds) comparison for non-standard problems

LINGO CPLEX CPLEX Proposed Proposed
single-thread multi-thread algorithm (1- algorithm (2-

step feas. step feas.

check) check)

|V] Avg Max Avg Max Avg Max Avg Max Avg Max
10 0.04 0.04 0.02 0.03 0.02 0.03 0.04 0.04 13.87  27.64
15 0.05 0.06 0.02 0.03 0.02 0.03 0.05 0.06 2649  31.71
20 0.06 0.07 0.02 0.03 0.02 0.03 0.07 0.07 2742 3042
25 0.08 0.09 0.02 0.03 0.03 0.03 0.08 0.08 29.60 35.24
30 0.09 0.10 0.02 0.03 0.03 0.03 0.09 0.10 2980 33.24
50 0.15 0.16 0.05 0.06 0.04 0.05 0.15 0.15 33.87 3640
100 | 0.30 0.31 0.07 0.08 0.07 0.08 0.29 0.31 47.67 5044
200 | 0.64 0.65 0.13 0.14 0.13 0.16 0.61 0.61 64.58  90.50
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Chapter 6 Single Objective Multi-Period FMP Problem

Besides confirming that the performance of the proposed solution algorithm deteriorates
considerably for the non-standard problems, the results of Table 6.12 also show that the opposite is
true for CPLEX and LINGO. This observation is important because it suggests that none of the
solution algorithms considered in this work can handle efficiently every possible problem of
reasonable size that can arise. Additionally, the above results show that, in the case of the non-
standard problems, it is preferable to employ directly the original formulation comprised of (6.2.1)-
(6.2.30) for identifying feasible aircraft combinations that attain a particular CFA, level, instead of the
two-step procedure which appears superior in the case of the realistic problems. As these results
additionally demonstrate, however, the employment of this technique is not even necessary, due to the
fact that the performance of CPLEX and LINGO appears superior to that of the proposed solution
algorithm, in contrary to what happens in the case of problems with realistic characteristics. Our
computational experience suggests that as the actual number of aircraft combinations that the proposed
solution algorithm must visit in order to reach the optimal solution increases, the performance of both
LINGO and CPLEX improves, whereas that of the proposed solution algorithm deteriorates, and vice
versa. In particular, note that, exhibiting superior performance to that of LINGO, CPLEX appears as
the most efficient algorithmic solution tool for handling these non-standard problems.

To summarize, for problems with realistic characteristics in which the number of encountered
aircraft combinations is quite small, the performance of the proposed algorithm appears superior,
whereas for problems with characteristics such as those described above in which this number is
considerably larger, the performance of CPLEX/LINGO appears superior. The important conclusion
of this analysis is that the proposed algorithm, complemented by generic optimization software such as

CPLEX and LINGO, can handle effectively a large variety of FMP problem instances.

6.5 Problem extensions

In this section, we discuss the applicability of the proposed algorithm on some interesting problem
extensions, which have been briefly discussed in Section 3.5. In particular, we relax the assumption on
the strict satisfaction of the flight load requirements, we extend the single-squadron case to the multi-

squadron one, and we discuss alternative problem objectives.

6.5.1 Relaxing the assumption of strict flight load satisfaction

The actual problem definition often calls for satisfaction of the flight load requirements within some
predefined tolerance, instead of the strict satisfaction imposed by constraint (6.2.8). When this is the

case, constraint set (6.2.8) is expressed as follows instead:
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where L and U are two parameters defining the interval in which the actual total flight time of time
period ¢ must lie. For example, when L = 0.95 and U = 1.05, a maximum deviation of 5% from the
target value of the flight load is allowed in each time period of the planning horizon. The main effect
of this modification is that it makes the total flight time of each time period a decision variable instead

of a known parameter. Thus, Proposition 6.1 is no longer valid, and maximizing the CFA4, becomes

T+1 T
equivalent to maximizing the expression Z(cxt) - Z((T —t+1)4S,), where A4S, = me, is the actual
t=2 t=1 neN

flight time in period ¢.

This implies that the upper bound on the optimal CFA,, obtained by Procedure CFA,-UB is no
longer valid. To compute a valid upper bound on the optimal CF4, in this case, we can use the value
US; as the total flight time of period ¢ for computing the maximum number of aircraft that can enter
and exit the maintenance station over the planning horizon, and the value LS, as the total flight time of
period ¢ for performing the remaining calculations. The validity of the new bound obtained this way
results from the fact that it considers the maximum possible number of aircraft service completions, as
well as the minimum possible flight load requirements.

With the new flight load requirement definition, a particular aircraft combination can result in
many different CFA4, levels, depending on the exact value of the total flight time in each time period of
the planning horizon. Therefore, in order to search for the optimal solution, the user needs to consider
alternative aircraft combinations, verify their feasibility, and check the optimal CFA, they result in.
This can be accomplished by enforcing the complete aircraft combination using the model formulation

of Section 6.2.

6.5.2 Multi-squadron units

Another interesting problem extension arises when the considered unit is comprised of several sub-
units. The incorporation of multi-squadron units adds a strong combinatorial flavor to our model, since
distinct cases depending on which squadron an aircraft that enters or exits the maintenance station
belongs to need to be distinguished. In turn, this has a significant impact on the computational
requirements of the proposed algorithm, as well as on those of CPLEX/LINGO.

Note, however, that instead of considering each of these possible cases separately, we can
simply check whether a particular CFA,, level can be attained by a feasible combination by utilizing
the complete constraint set of problem (6.2.1)-(6.2.30) and letting the solver deduce whether an

associated feasible flight and maintenance plan exists. The computational requirements that result
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Chapter 6 Single Objective Multi-Period FMP Problem

when the CFA, level is fixed to a particular value are moderate, enabling the solution of realistic

problems in satisfactory computational times.

6.5.3 Alternative problem objectives

In the current chapter, we consider the cumulative residual flight time availability as the
model’s objective. One of the reasons for doing so is because among all the alternative objectives this
is the one that causes the largest computational difficulties to the solution of the optimization model of
Section 6.2. To justify this claim, in Table 6.13 we report the computational requirements of LINGO
and CPLEX on the same problem instances as those of Table 6.6, except that we use the cumulative
aircraft availability (CFA,) instead of the cumulative residual flight time availability as the model’s

objective. Mathematically, this objective is expressed as follows:

T+1

MaXZZanJ

t=2 neN

The corresponding single objective multi- period formulation (S-FMPa) is:

Max CFA, (S-FMP,)

st.xelX

The results of Table 6.13 confirm that the use of the alternative objective reduces considerably
the computational requirements of the two software packages, and suggest that the objective choice is
a very crucial decision that has a strong impact on the computational effort needed to find the optimal
solution of the problem. A similar behavior is observed when the minimum residual flight time and

aircraft availability are used as model objectives, which are expressed as follows:

Max Z

SLZ<Y y,., t=2,.T+],and

neN

Max Z

s.t.Z < Zam,, t =2,...,T+1, respectively.

neN

The proposed algorithm requires a few modifications in this case, since maximizing the number
of aircraft service completions is not necessarily an optimal maintenance strategy. In view of the

above important insights, however, we did not pursue these modifications, because the performance of
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the existing solvers on realistic problems is quite satisfactory, and the potential savings from the

implementation of a modification of the above algorithm are uncertain.

Table 6.13: Computational times (seconds) of LINGO/CPLEX for the alternative objective CFA,

LINGO CPLEX
single-thread
|V Avg Max Avg Max
10 0.12 0.17 0.02 0.03
15 0.19 0.72 0.02 0.03
20 0.32 2.39 0.03 0.05
25 0.22 1.26 0.03 0.05
30 0.25 0.69 0.04 0.06
50 0.44 1.05 0.04 0.05
100 1.45 15.36 0.08 0.08
200 2.20 2.78 0.14 0.16

Out of all these alternative model objectives, there does not seem to exist a single one that can
capture completely all the aspects of the problem under consideration. For example, the CFA4, is not
able to differentiate between solutions with different distribution of the total fleet availability among
the time periods of the planning horizon, which is also important since this distribution should be as
balanced as possible, too. We believe that the user would have to develop a multi-objective model in
order to capture this problem aspect, but we did not pursue this because it would require additional
modifications, and would extend the length of this chapter beyond the typical standards.

Our particular choice for the model objective was motivated by the observation that, in contrary
to this objective, other ones can be handled successfully by commercial optimization software
packages such as CPLEX/LINGO. Hence, given also the fact that this objective is quite realistic, we
decided to develop a specialized algorithm that handles it in order to fill in this gap. Independently of
that, for each typical alternative model objective we believe that it is possible to develop a suitable
modification of the proposed algorithm that will be able to solve the problem under consideration. The
main design of this algorithm will remain similar to that of the present one (find a valid upper bound
on the optimal objective, test the feasibility of aircraft combinations that attain this bound, eliminate
infeasible such combinations, update accordingly the upper bound, etc., until the optimal solution is
obtained), although the particular details for the implementation of each single step will clearly have to
be modified accordingly in each case. We do not claim that the performance of such an algorithm will
always be superior to that of commercial optimization software (this cannot be known in advance), but

that the development of such an algorithm appears attainable.
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Chapter 6 Single Objective Multi-Period FMP Problem

6.6 Summary

In this chapter, we addressed a single-objective multi-period version of the FMP problem. The
problem aims to issue a joint flight and maintenance plan for a group of aircraft that comprise a unit in
order to maximize the unit’s fleet availability over a multi-period planning horizon. Using the
cumulative residual flight time availability as the objective, we developed an exact solution algorithm
that initially computes a valid upper bound on its optimal value, and then gradually reduces this bound
in a stepwise fashion, until a solution that attains it is identified. The performance of the algorithm on
realistic problems appears superior to that of two commercial optimization solvers that can be used
alternatively for the solution of the problem, whereas the opposite behavior is observed for a class of

problems with significantly different characteristics.
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Chapter 7 Incorporating the Minimization of the Fleet
Availability Variability

7.1 Introduction

A drawback of the FMP models studied in the previous chapters is that they provide long-term fleet
availabilities with significant variability. For example, the application of the FMP model developed by
Kozanidis et al. (2010) for solving a real problem instance in 4 consecutive planning horizons with an
equal length of 6 monthly periods each, results in the fleet availability pattern shown in Figure 7.1.
The characteristic bell-shaped curve of the fleet availability depicted in this figure is an indication of
its high variability. Intuitively, the availability levels tend to be higher towards the middle of the
associated planning horizon, and lower towards its two endpoints. This is a consequence of the fact
that the model focuses on maximizing the fleet availability within each individual planning horizon in
isolation, without taking into consideration the fact that the transition into the next planning horizon
must also be as smooth as possible; this clearly results in plans which, although being optimal within
each individual planning horizon, do not exhibit certain desirable long-term characteristics, such as
low variability. An inevitable side effect of this behavior is the fact that the exact length of each
planning horizon strongly affects the pattern of the fleet availability; the longer this length, the lower
the associated variability is expected to be. Still, however, since the application of the model in
subsequent rolling horizons is inevitable, the bell-shaped pattern depicted in Figure 7.1 is always

expected to be present.

4

Availability

t

Figure 7.1: Visual depiction of the fleet availability’s variability

With these in mind, we formulate a quadratic FMP model in this chapter, which, besides the

typical objective maximizing the fleet availability, also includes an additional objective minimizing its
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Chapter 7 Incorporating the Minimization of the Fleet Availability Variability

variability. For this model, we develop two specialized solution algorithms, which successfully obtain
the entire frontier of non-dominated solutions. Both algorithms utilize suitable relaxations of the
original formulation, exploiting the discrete nature of the domain comprising possible fleet availability
values. This key property is a consequence of the fact that the flight time availability of the unit is
uniquely determined by the combination of aircraft entering and exiting the maintenance facility, and
the fact that the number of distinct such combinations is finite.

The first methodology disaggregates the original FMP model into smaller subproblems whose
solution is attained much more efficiently. Initially, it establishes a valid upper bound on the ideal
value of the fleet availability through the solution of a suitable relaxation of the original formulation;
next, this value is gradually reduced in a stepwise manner, with the aircraft combination minimizing
the variability of the associated fleet availability identified in each of these steps. Adding special valid
inequalities for excluding the solutions which cannot be optimal, the procedure succeeds in obtaining
the entire frontier of non-dominated solutions upon termination.

The second methodology is a variant of the e-constraint method, applied to a suitable relaxation
instead of the original FMP model. It works by devising the payoff table calculation through
lexicographic optimization, and by disaggregating the FMP solution into suitable relaxations which
are utilized in subsequent steps. As the experimental results that we present demonstrate, the
computational performance of the two proposed algorithms is considerably superior to that of applying
the typical e-constraint method directly on the original biobjective model, enabling the solution of
large realistic problem instances in reasonable computational times.

The remainder of this chapter is structured as follows. In Section 7.2 we present the proposed
FMP formulation. In Section 7.3, we develop the proposed solution methodologies, while in Section
7.4 we present computational results comparing their relative performance. Section 7.5 discusses some
interesting model enhancements and possible extensions, and finally, Section 7.6 summarizes our

conclusions.

7.2 Biobjective FMP model (Bi-FMPh)

In this section, we develop the mixed integer biobjective quadratic formulation for the FMP problem,
which extends the single objective FMP formulation presented in Section 6.2. As already explained at

the end of Section 6.2, that model can be expressed as follows:

Max CFA, (x) (S-FMPy)

s.t.xeX’
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where x is a solution, CFA4,(x) is the cumulative residual flight time availability realized by this

solution, and X is the set of all feasible solutions.

M
Let §Y, = z ,, be the individual residual flight time availability of the unit in time period ¢,

n=l1

T+1

— CFA4,(x) ZSYz (x)
and SY (x)= ; == T be the average residual flight time availability of the unit over the

planning horizon realized by solution x. We define the corresponding variability, V;,(x), of this solution

as:

v, (x){%jjzj(sx (x)=SY ()"

This expression is similar but not identical to the biased sample variance definition, since the
sum of the squared deviations from the average is divided by the number of observations instead of the
number of observations minus one. In our case, this difference is insignificant, since our main focus is
on minimizing the summation of the squared deviations from the average. The incorporation of the
second objective minimizing the variability of the residual flight time availability leads to the

following biobjective formulation for the FMP problem (Bi-FMP},):

Max CFA, (x) Bi-FMPY
1-
Min ¥, (x) '

st.xelX

A well-known notion in multi-objective optimization is that of efficiency or Pareto optimality.
In the context of the specific formulation introduced above, a feasible solution x"is called efficient or
Pareto optimal if there does not exist any other feasible solution x such that CFA,(x") < CFA,(x) and
Vi(x") = Vy(x), with at least one of the two inequalities holding as strict. In general, efficient are the
solutions for which one cannot improve one of the two objectives without worsening the other. In
multi-objective optimization, the different objectives involved are typically in conflict, and very rarely
a single solution that simultaneously optimizes all of them exists. We use the notation z(x) to denote
the image of a feasible solution in objective space: z(x) = {(CFA,(x), Vi(x)) : xeX}.

If x" is efficient, then the corresponding point z(x") = (CFA,(x"), V,(x")) in objective space is
called non-dominated point. The set of all efficient solutions constitutes the efficient set, E, while the
set of all non-dominated points constitutes the non-dominated set, Ny

Ny ={(CFA,x"), Vi(x)) : x"€E}.
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Chapter 7 Incorporating the Minimization of the Fleet Availability Variability

LetCFA = max CF4, (x) and ¥,/ = minV, (x). Then, the point (CF4;, V;') in objective space

xeX
is called the ideal point. In general, the ideal point is not a member of N, since a feasible solution in

decision space whose corresponding image in criterion space is the ideal point rarely exists. Let also

V)" =min¥, (x): CFA,(x) = CFA;and CF4;’ = max CF4, (x):¥,(x)=V, . The points (craY, v/))
and (CFA,f , VN ) in objective space belong to N,, while their inverse images in decision space belong

to E. Finally, the point (CFA4,", V,")is called the nadir point and is rarely a member of N, because it is

usually dominated by the two previous points.

7.3  Solution methodology

7.3.1 Theoretical groundwork

Let en, and ex, denote the number of aircraft entering and exiting, respectively, the maintenance
facility at the beginning of time period ¢ (¢ = 2,...,7+1), and ¢ = (ens,...,enr., exs,...,exr+1) be a
specific such aircraft combination over the entire planning horizon. The two solution methodologies
that we develop for the biobjective quadratic FMP problem utilize the key property that the domain
comprising possible CFA, values is a discrete set. This enables the identification of the entire non-
dominated set through the application of an iterative solution procedure that minimizes the associated
variability for each of these discrete CFA,, values. In that sense, our proposed approach exhibits some
similarities with the methodology proposed by Bérubé et al. (2009), who develop an exact e-constraint
method for biobjective combinatorial optimization problems with integer objective values. Before
introducing the specifics of this approach, we prove some important theoretical results first, which,
among others, lead to the establishment of this key property, laying the foundation for the

development of the proposed algorithmic methodologies.

Lemma 7.1: The maximization of CFA, depends solely on the combination of aircraft entering and
exiting the maintenance facility in time periods 2,...,7+1.

Proof. For t = 2,...,7+1, the residual flight time availability of the unit at the beginning of time period

V] -1 t
t, 8Y, is equal to ZY 1, —ZSk +2(Y -ex, ). The first two summations in this expression are
n=1 k=1 k=2

constant; therefore, the only term subject to optimization is the last summation, which is equal to

T+l ¢t
(Y-exy+...+Y-ex,). As a result, maximizing CFA, is equivalent to maximizing ZZ(Y -ex, ), which can
t=2 k=2

be expressed as (Y-ex;) + (Y-ex,tY-ex3) +...+ (Y-exo*...+Y-exr ) = (Trexy + (I-1)-ex3 + ... + exp)-Y.
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Besides decision variables en, and ex;, which determine the combination of aircraft entering and
exiting the maintenance facility in time periods 2,...,7+1, the above expression only includes Y and 7,

which are fixed parameters known in advance. This establishes the validity of the lemma. O

Lemma 7.2: The CFA, values of any two distinct aircraft combinations differ by an exact multiple of
Y.

Proof. In Lemma 7.1, it was shown that the CF4, value of a particular aircraft combination is equal to

|N| T
TZYln—Z(T—l+l)St+ (T-ex, + (T-1)-ex; + ... + expq)Y. In this expression, the term

n=1 t=1

|N| T
T ZY ln—Z(T —t+1)S,is constant and independent of the aircraft combination. Besides, the

n=1 t=1
multiplier of Y, appearing in the last parenthesis, is clearly an integer; the fact that the difference of

any two integers is also an integer establishes the validity of the lemma. [

Corollary 7.1: The number of feasible aircraft combinations ¢ = (en,,...,enr1,exy,...,exrq) is finite.

Lemma 7.3: Minimizing ¥}, for a fixed CFA4, level is equivalent to minimizing SY, + SY; +...+SY;,, .

T+1

Proof. For a fixed CFA, level, we have 7, —(%] Z(SY; —S_Y)2 -
t=2

%((SYf L ST -8y, ﬁ) +(SY32 LY - 28y, -ﬁ)+...+(syﬁﬂ L SY -25Y, ﬁ)) =

%(SYZ2 +SY2 ..+ SY2, +T-SY —28Y (SY, + SY, +...+ SY, , ))=
%[SY; +8Y] +..+SY) + T(CI;Ah ) -2 CFTAh (CFA4, )} =

L sy 1572 4.4 572 _CFA?_(SY}+SY] +..+SY2, ) (CFA,Y
T 2 3 T+1 T T T .

Since CFA4, is fixed in this expression, the only non-constant quantity subject to optimization is the

enumerator of the first term. This establishes the validity of the lemma. O

In the next sections, we utilize the above key theoretical results for the development of the

proposed solution methodologies.

7.3.2 e-Constraint methodological framework

An appropriate methodology for the solution of a biobjective problem should ideally be able to
provide the entire set of non-dominated solutions to the decision maker, allowing him/her to make the
final decision on the desired compromise between the two objectives. Since £ is defined in the

decision space while N, is defined in the objective space, in the general case there may be multiple
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Chapter 7 Incorporating the Minimization of the Fleet Availability Variability

efficient solutions that map to the same non-dominated point. For those cases, we make the reasonable
assumption that identifying one of these solutions is sufficient. This implies that no other characteristic
other than the two associated objective values can be used for ranking any two alternative solutions, an
assumption which appears reasonable and valid.

One of the most commonly used solution approaches in multi-objective programming is the
weighted-sums method (Ehrgott, 2005), which optimizes a suitable convex combination of the model
objectives. A natural difficulty that arises in our case is that the specification of the weights, which
strongly influences the results, is not straightforward. Moreover, it is well known that the method is
unable to find a certain class of efficient solutions (namely, unsupported ones) in discrete optimization
problems (Ehrgott and Gandibleux, 2000), and that it does not provide any guarantee that it will not
overlook efficient solutions in the general case.

An alternative method which, under suitable treatment, can generate the non-dominated set of
non-convex optimization problems is the e-constraint reduced feasible region method (Cohon, 1978;
Chankong and Haimes, 1983). This method optimizes a single one of the objectives, while
transforming all the other ones into constraints through the imposition of suitable bounds on their
values. These bounds are lower for maximization objectives and upper for minimization ones. Taking
advantage of the fact that the domain comprising feasible CFA, values is a discrete set, we model the

corresponding e-constraint formulation for the Bi-FMPy, problem as follows:

Min V(x)
s.t. CFA(x)= ¢
xeX

The traditional e-constraint method may generate inefficient solutions (e.g., see Xidonas et al.,
2010). In order to remedy this well-known pitfall, Mavrotas (2009) has proposed a method called
AUGMECON, which employs an acceleration algorithm of early exit in order to avoid the generation
of dominated solutions. Mavrotas and Florios (2013) developed an improved extension of this method
(AUGMECON?2), which introduces a bypass coefficient of the innermost loop. Another variant of this
approach (SAUGMECON) that extends the early exit acceleration algorithm with bouncing steps was
more recently developed by Zhang and Reimann (2014). In the present chapter, we employ
AUGMECON?2 for the solution of the problem under investigation. In summary, this method consists
of the following steps:

Step 1:
Select one as the main objective subject to optimization, and convert the other (secondary)

objective(s) into constraints. Then, create the payoff table by lexicographic optimization of
the objective functions. The range of each objective is determined by the corresponding

interval between its ideal and its nadir value.
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Step 2 :
Divide the range of each secondary objective function to m equal intervals using m-1

intermediate equidistant grid points (&) which are used to vary parametrically the associated
right-hand side.

Step 3 :

Solve the augmented e-constraint model for each g, value obtained in Step 2.

The procedure outlined above can be adjusted accordingly to generate the entire frontier of non-
dominated solutions in our case, taking advantage of the discrete nature of the CFA, objective. As
Mavrotas and Florios (2013) have shown, the solution obtained upon the completion of any iteration is
guaranteed to be non-dominated. This key result motivated our decision to utilize the AUGMECON?2
method for the solution of the problem, since it ensures that no redundant iterations will be performed.
Following the guidelines proposed by Mavrotas and Florios (2013), the e-constraint optimization

model is formulated as follows in our case:

Min V), (x)—eps 2
r

AUGMECON Bi-FMP
s.t. CFA(x) -s =& ! "

xeX

where eps is a sufficiently small scalar ensuring the lexicographic ordering of the two objectives, s is a
slack variable utilized to convert the constraint imposing the lower bound on the CFA,, objective into
an equality, and r is the range of possible CFA, values. Based on the theory developed in the previous
section, and in particular Lemmas 7.1, 7.2 and Corollary 7.1, it is obvious that starting from the nadir

CF4, value and increasing it by a step size of Y at each iteration, we can consider all the g, values

which differ from it by an exact multiple of Y, eventually stopping when the ideal CFA4, value is
reached. This way, all possible CFA4,, values will be examined and the entire non-dominated set will be

obtained upon termination.

7.3.3 Double-step solution algorithm

Step 1 of the AUGMECON2 method, and in particular the creation of the payoff table by
lexicographic optimization, necessitates the separate solution of one single-objective optimization
problem for each of the model’s objective functions. In the previous chapter, it was shown that
performing this task with commercial optimization solvers in reasonable computational times is only
possible for problem instances with up to 25-30 aircraft. A typical aircraft wing of the HAF, on the
other hand, may consist of up to 60-100 aircraft. The exact solution algorithm developed in the

previous chapter is far more efficient, enabling the successful treatment of such size problems in
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reasonable computational times. Motivated by this, in what follows we slightly modify the design of
this algorithm in order to enable its applicability for the efficient treatment of the biobjective version
of the problem, too.

The proposed solution algorithm identifies initially a valid upper bound on the ideal CF4,, value
by solving a simplified relaxation of the original model formulation; in successful iterations, this value
is gradually decreased by a constant value of Y. For each distinct CFA4, level encountered, the
algorithm tries to identify the minimum variability associated solution. Due to the fact that the
computational requirements of utilizing the original formulation for performing this task are excessive,
a suitable relaxation of the original model is used instead to this end. Each identified solution is
checked for full feasibility, by adjusting the original formulation accordingly to impose its realization.
Valid cuts excluding infeasible solutions from further consideration are suitably added, enabling the
continuation of the search for the optimal solution to a given CFA4,, level.

For each individual CFA, level, the procedure terminates either when the optimal solution
realizing this CFA,, level is identified, or when it is proven that no such feasible solution exists. In the
former case, the associated point (CFA,, V) in objective space is added to the set of points which are
candidate for being non-dominated. All the cuts that pertain to a specific CFA4,, level remain active for
as long as this level remains fixed. Once the search at the current CF4,, level terminates, these cuts are
rendered redundant and are subsequently suppressed, while the algorithm proceeds to the next lower
CFA4, level.

The algorithmic procedure continues in a similar fashion until all possible CFA, levels have
been considered; at that point, a straightforward approach identifies among all the points which have
been recorded those which are non-dominated, together with their efficient solution counterparts. The

following subsections portray in thorough detail the steps of the double-step solution algorithm.

7.3.3.1 Bounding the ideal CFA4,

Due to constraint set (6.2.8), the unit residual flight time availability of each time period is reduced by
the associated flight load requirements independently of the exact flight time of each individual
aircraft. As a result, the maximum possible CFA4, value is attained when each grounded aircraft
finishes its service as early as possible. This is true because interrupting the maintenance service of a
grounded aircraft once it has begun could potentially delay the addition of this aircraft’s phase interval
to the unit fleet availability. This would clearly reduce the CFA, value leading to a sub-optimal
solution, since the objective function weighs more heavily the number of aircraft exiting the facility at
any particular time period than that of any succeeding one. Of course, if the maintenance facility does
not have sufficient time capacity, the maintenance service of a grounded aircraft may span several

time periods.
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In order to compute a valid upper bound on the ideal CFA, value, we impose the maximum
possible aircraft flow into the maintenance facility, by assigning the flight load of each time period to
the available aircraft in non-decreasing order of their residual flight times. As a consequence, each
available aircraft is grounded for service at the earliest possible time. To speed up the performance of
the algorithm, not all the original model constraints are considered for calculating this upper bound,
which indicates that the corresponding solution that will be identified may be infeasible. This
necessitates a consequent check that confirms or disproves the feasibility of this solution.

Procedure CFA,-UB, presented in Section 6.3.1, can be utilized for computing the valid upper
bound on the ideal CFA,, value. Additionally, this procedure also identifies a specific combination ¢™™

nom

= (eny"",....enr™", exy™", . Lexr ™) of aircraft entering and exiting the maintenance facility in
each time period. In what follows, we call this combination nominal. Note that in Section 6.3.1 we

showed that, for ¢t = 2,...,T+1, the total number of aircraft exiting the maintenance facility from time

nom

t
period 2 up to time period ¢ for £ = 2,...,T+1 in any feasible solution cannot be larger than Z:ex,c
k=2

b

while the total number of aircraft entering the maintenance facility from time period 2 up to time

nom

t
period ¢ for ¢ =2,...,7+1 in any feasible solution cannot be larger than Zenk
k=2

7.3.3.2 Checking a particular CFA, level for feasibility

Each specific CFA, level considered can be optionally checked for feasibility first. This is carried out
by checking whether a feasible solution to the original formulation (6.2.2)-(6.2.30) after fixing this
CFA, value exists. As it turns out, the computational requirements for performing this are limited, due
to the fact that knowing in advance the CF4,, level eliminates considerably the combinatorial nature of
the problem. The execution of this step is optional, however, since the feasibility of the current CFA4,,
level is always confirmed or disproved at the next step, in which the minimum variability aircraft
combination is sought. Nevertheless, our computational experience suggests that this step should
preferably be executed, because it guards against the risk of visiting an exponential number of

infeasible aircraft combinations before realizing that a particular CFA4,, level is infeasible.

7.3.3.3 Obtaining the minimum variability aircraft combination

For each CFA, level considered, the algorithm tries to find the minimum variability aircraft
combination realizing this CFA, level. Due to the substantial computational effort required for
performing this, a suitable relaxation of the original formulation is utilized to this end. The main
characteristic of this relaxation is that it does not include distinct decision variables monitoring the

residual flight and maintenance time of each individual aircraft; instead, it utilizes decision variables
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Chapter 7 Incorporating the Minimization of the Fleet Availability Variability

monitoring the cumulative flight and maintenance times of all aircraft for each time period of the

planning horizon. This clever technique results in a considerable reduction of the number of decision

variables utilized, making it possible to bypass the computational difficulties involved.

To give a specific example, exact knowledge of the individual aircraft residual flight and
maintenance times determines the exact number of available and grounded aircraft in each time
period. In the relaxed formulation, however, this knowledge is absent. Therefore, the model estimates
the number of available and grounded aircraft in each time period using suitable bounds on the
cumulative residual flight and maintenance times of all aircraft.

Due to the adoption of several simplifications such as the above, a particular aircraft
combination identified may turn out to be infeasible. Therefore, a proper feasibility check is performed
on each such combination, using the full original FMP formulation. Despite the extra effort needed to
perform this task, the proposed relaxation facilitates considerably the identification of the minimum
variability solution that realizes a particular CFA, level. The following additional mathematical
notation is utilized in this formulation:

Parameters:

¢ : a sufficiently small number,

Decision variables:

w, : binary decision variable equal to 1 if the time capacity of the maintenance facility in time period ¢
(t=1,...,T) is greater or equal to the total residual maintenance time of all grounded aircraft at the
beginning of the same time period, and 0 otherwise,

na, : number of grounded aircraft at the beginning of time period ¢ ( = 2,...,T+1),

LBrem, : lower bound on the number of aircraft that remain grounded at the end of time period ¢ (£ =
L,...,7),

SG, : total residual maintenance time of all grounded aircraft at the beginning of time period ¢, (¢ =

2,...,T+1),

SGres, : total residual maintenance time of all grounded aircraft at the end of time period ¢ (¢ = 1,...,7).

Utilizing the above notation and exploiting Lemma 7.3, we employ the following mixed integer
quadratic formulation in order to identify the minimum variability aircraft combination, ¢ =

(eny,....enr, exy,...,exrs), attaining a particular CFA4,, level:

Min SY; +SY; +..+SY;, (7.3.1)
IN| T T+1
st TY Y1, =Y (T—t+1)S)+Y-D (T —1+2)ex,) = CFA, (7.3.2)
n=1 t=1 t=2
Zexk SZex,‘?"m, t=2,...T+1 (7.3.3)
k=2 k=2
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t
Den, < Zen“"m t=2,.,T+1 (7.34)
k=2

> min(Yln,t-Xmax)+i(exk -min(Y,(1-k+1)- X, )2 Z (7.3.5)
neN:Y1,>0 = e
SG, <B +K(1-w), t=1,.,T (7.3.6)
B <SG, -¢+Kw,, t=1,.,T (7.3.7)
LBrem, < C-(l—wt), t=1,..,T (7.3.8)
MSLBF’QW!,S(SG[—G_B[)+1—E+K'W[, t=1,..,T (7.3.9)
na,<ex, +K(1-w,), t=1.,T (7.3.10)
ex,,, <na,—LBrem,, t =1,..,T (7.3.11)
SG, — B, — Kw, < SGres, <SG, — B, + Kw,, t=1,..,T (7.3.12)
SGres, <K(1 w) =1,..,T (7.3.13)
SG,,, = SGres, +G-en,,,, t=1,..,T (7.3.14)
SY, =8Y, ,-S,_,+Y-ex,, t=2,.,T+1 (7.3.15)
na, =na,  +en,—ex,,t =2,.,T+1 (7.3.16)
na, <C,t=2,.T+1 (7.3.17)
SY, =‘ZN‘:Y1n (7.3.18)
n=l
SG, = %Gln (7.3.19)
n=1
na, = %(1—/11,,) (7.3.20)
el
SG,>0,t=2,.T+1 (7.3.21)
SGres, 20,t=1,..,T (7.3.22)
en, ex,na, €Z" ,t=2,.,T+1 (7.3.23)
LBrem, € Z*, w, binary ,t =1,..,T (7.3.24)
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Chapter 7 Incorporating the Minimization of the Fleet Availability Variability

The objective (7.3.1) minimizes the variability of the aircraft combination that will be identified,
as a consequence of Lemma 7.3 and the fact that the CFA, level is fixed at a specific value by
constraint (7.3.2). For ¢t = 2,...,7+1, constraint sets (7.3.3) and (7.3.4) impose upper bounds on the
cumulative number of aircraft exiting and entering the maintenance facility, respectively, from the
beginning of the planning horizon up until time period ¢, as determined by the nominal combination.
These two constraint sets are identical to constraint sets (6.3.2) and (6.3.3), respectively, of the model
presented in Section 6.3.3.

For t=1,...,T, constraint set (7.3.5) ensures that the cumulative flight load of time periods 1 to ¢
is satisfied. The required flight time to this end is provided by the aircraft which are available in time
period 1 and by those that exit the maintenance facility in time periods 2,...,z. The flight time that each
aircraft can provide in a single time period cannot be larger than the minimum between its residual
flight time at the beginning of the same time period and .X,,,.

Constraint sets (7.3.6) and (7.3.7) ensure that binary variable w, becomes equal to 1 when SG, <
B,, and 0 otherwise. This variable is used to impose the restriction that no part of the maintenance time
capacity should go wasted unless all grounded aircraft finish their service. For ¢ = 1,...,7T, constraint

sets (7.3.8) and (7.3.9) give proper value to LBrem, according to the corresponding value of w,. If w, =

1, then constraint set (7.3.8) ensures that LBrem,is equal to 0, while constraint set (7.3.9) becomes

.~

redundant, since L is non-positive. If w, = 0, then constraint set (7.3.8) becomes redundant,

while constraint set (7.3.9) ensures that LBrem, is equal to the ceiling of %, which is a valid

lower bound on the number of aircraft that will remain grounded at the end of time period ¢. For
example, consider the hypothetical case of four grounded aircraft with residual maintenance time 20
hours each, for which G =320 and B, = 20. Independently of the individual aircraft maintenance times,

at least 3 aircraft will remain grounded at the end of this time period. The computed lower bound is

80-20

equal to( —‘ =1, which is clearly valid. Due to the fact that in the relaxed formulation there is no

knowledge of the individual aircraft maintenance times, this bound will not always be tight, as
happens in this case. If the actual residual maintenance time distribution among the 4 aircraft were 5,
5, 5 and 65 instead, it would be possible to finish the service of 3 aircraft in the current time period, in
which case the bound would be tight.

Constraint sets (7.3.10) and (7.3.11) impose suitable bounds on the number of aircraft exiting
the maintenance facility at the beginning of each time period. If w, = 1, then these constraints are

equivalent to ex.; = na,, which is valid since this implies that all grounded aircraft will complete their
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maintenance service. If w, = 0, then constraint (7.3.10) becomes redundant, while constraint set

(7.3.11) ensures than no more than (na, - LBrem,) aircraft will exit the maintenance facility at the
beginning of time period #+1, which is also valid according to the definition of LBrem, .

Constraint sets (7.3.12), (7.3.13) and (7.3.14) update SG,; based on the corresponding value of
w,. If w, = 0, then SG,, is set equal to SG, - B, + G- en;; by constraints (7.3.12) and (7.3.14), while
constraint (7.3.13) becomes redundant. If w, = 1, then SG., is set equal to G-en,i by constraints
(7.3.13) and (7.3.14), while constraint (7.3.12) becomes redundant. Constraint sets (7.3.15) and
(7.3.16) update the unit residual flight time availability and the number of grounded aircraft,
respectively, in each time period, while constraint (7.3.17) ensures that the latter will never exceed the
maintenance facility’s space capacity, similarly to the constraint set (6.3.5) of the model presented in
Section 6.3.3. Constraint sets (7.3.18)-(7.3.20) initialize the unit residual flight time availability, the
total residual maintenance time of the grounded aircraft, and the number of grounded aircraft,
respectively, at the beginning of the planning horizon. Finally, constraint sets (7.3.21)-(7.3.22) impose
non-negativity constraints on the continuous decision variables, while constraint sets (7.3.23)-(7.3.24)
impose integrality constraints on the discrete decision variables.

We conclude this subsection with the proof that, for a fixed CFA4, level, constraint set (7.3.2)-
(7.3.24) comprises a relaxation of the original formulation, and thus for every feasible solution to the
original problem there exists a corresponding feasible solution to this formulation. This confirms the
validity of utilizing model (7.3.1)-(7.3.24) instead of the original one in order to identify the minimum
variability aircraft combination for a particular CFA, level. Our choice to adopt this strategy is
motivated by the fact that the computational requirements of the relaxed formulation are significantly

lower than those of the original one.

Proposition 7.1: Suppose that for a feasible solution to the original set of constraints (6.2.2)-(6.2.30)
we calculate the number of aircraft entering (en,) and exiting (ex,) the maintenance facility, the number
of grounded aircraft (na;), and the total residual maintenance time of all grounded aircraft (SG;) in each
time period of the planning horizon. Then, this solution is feasible to constraint set (7.3.2)-(7.3.24), in
the sense that there exist consistent values for all the decision variables of that formulation that satisfy
it.

Proof. Constraint (7.3.2) fixes the CFA, level at its corresponding value. Constraints (7.3.3) and
(7.3.4) hold for any feasible solution to (6.2.2)-(6.2.30) as shown in the previous chapter. Adding side

¢ [N t
by side constraints (6.2.8) for £ = 1,...,t, we obtain Zan,k =ZSk. The left hand side of this
k=1 n=1 k=1

expression includes the cumulative flight time of all aircraft in time periods 1,...,z. For each initially

available aircraft, n, the maximum such flight time before it is grounded is equal to min(Y1,, #X,...),
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Chapter 7 Incorporating the Minimization of the Fleet Availability Variability

while for any aircraft exiting the maintenance facility in time period k (2 < k < 7), it is equal to min(Y,
(t-k+1)-X,..). As a result, constraints (7.3.5) are satisfied, too. For each time period ¢, constraints
(7.3.6)-(7.3.14) update the decision variables pertaining to the maintenance facility, i.e., the total
residual maintenance time of the grounded aircraft, the number of aircraft that remain grounded, and

the number of aircraft that exit the maintenance facility. If SG, > B,, then these constraints set the
number of aircraft that remain grounded at the end of time period ¢ equal to at least {%-‘ . This
is true due to constraints (6.2.11) and (6.2.12) of the original model, which ensure that no part of the
maintenance time capacity is allowed to go wasted when SG, > B,. If SG, < B, then w, is set equal to 1,
all grounded aircraft exit the maintenance facility at the beginning of time period #+1, and SG,, is set
equal to G-en,y. Otherwise, SG- is set equal to SG; - B, + G- enyy. This is true due to constraints
(6.2.5)-(6.2.7) of the original model, which update the residual maintenance time of each grounded
aircraft. Constraints (7.3.15)-(7.3.17) update the unit’s residual flight time availability and the number
of grounded aircraft in each time period, and are clearly satisfied in the original problem, too. Finally,
the initialization constraints (7.3.18)-(7.3.20) and the non-negativity/integrality constraints (7.3.21)-
(7.3.24) clearly hold in the original formulation, too. O

7.3.3.4 Checking a particular aircraft combination for feasibility

The check of whether a specific aircraft combination is feasible is straightforward. The important
property that the optimal solution can always be identified even if a steady rotation of aircraft into and
out of the maintenance station is preserved is valid for this problem, too. We utilize this important
result, which was proven in Section 5.2 for the single period FMP model formulation, in order to
simplify the procedure for checking the feasibility of a particular aircraft combination. Since the proof
carries over practically unchanged to the present biobjective multi-period version of the problem, we
do not repeat it here for brevity.

As a consequence of the above discussion, checking a specific aircraft combination for
feasibility can be accomplished by checking whether a feasible solution that realizes this combination
exists. To do this, we fix the decision variable values unambiguously determined by this combination,
and we check the original model for feasibility. This simplification eliminates considerably the
combinatorial nature of the optimization problem, enabling the completion of the feasibility check in

negligible time.

7.3.3.5 Generating a cut for the exclusion of a particular aircraft combination

When a specific aircraft combination identified by model (7.3.1)-(7.3.24) is proven infeasible,

continuing the search for a different aircraft combination that attains the current CFA, level
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necessitates the addition of a valid cut excluding this combination from further consideration. Let the

superscript exc/ refer to the specific combination that we wish to exclude. A suitable cut that achieves

T+1 T+1
this is the following: Z| en™ —en, | + Z| ex™ —ex, | >1. This constraint imposes the restriction that
t=2 t=2

the number of aircraft exiting and entering the maintenance facility in any subsequent combination yet
to be found by the algorithm should differ from the one being excluded in at least one time period. Of
course, one needs to add one such cut for each infeasible aircraft combination. The nonlinearities
present in this cut can be straightforwardly eliminated through the clever reformulation procedure

presented in the previous chapter.

7.3.3.6 Stopping conditions and selection of non-dominated solutions

Since the payoff table is not calculated explicitly in the case of the Double-step solution algorithm, no

nadir point is obtained. Therefore, the algorithm terminates when a suitable lower bound on CFA, is

T+l |N| -1 t
reached. Since CFA, can be expressed as:Z(ZYln—ZSk+Z(Y-exk)), which is equal to

t=2 n=l k=1 k=2

N| T

T
TZYln —Z((T—t+1)St)+Z((T—t+1)Y-exm), an obvious lower bound on CF4, is
n=l1 t=1 t=1

N T
TY Y1, =Y ((T—t+1)S,).
n=1 t=1
An additional stopping rule that can be employed is to terminate the algorithmic execution in
case a solution with V), = 0 is obtained, utilizing the trivial result that the variability is always non-
negative. Since the algorithm begins with the highest possible CF4,, value and reduces it in a stepwise
manner in succeeding iterations, the above two stopping rules ensure that no non-dominated solution

will ever be overlooked. Upon termination, a simple search procedure distinguishes the non-dominated

points among all the points which have been recorded.

7.3.4 Hybrid approach

In order to further enhance the performance of the proposed solution algorithm, we develop a hybrid
double-step e-constraint approach, which attempts to combine the computational advantages of
AUGMECON?2 with those resulting from the disaggregation of the original FMP model as shown in
the previous section. Let IT be the set of all feasible aircraft combinations determined by constraint set
(7.3.2)-(7.3.24). Note that, for any combination ¢, V,(c) is directly determined by (7.3.15) and (7.3.18).
The idea is to apply the AUGMECON2 method not to the full original FMP model, but to this FMP

relaxation instead. Mathematically, this can be expressed as follows:
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Min V, (c) —eps 2
r

HYBRID-FMP
st. CF4,(c)-s=¢, ( )

cell

Note that, in contrast to the Double-step solution method, constraint (7.3.2) merely provides the
definition of CFA4, in this case, and does not fix the CFA4,, level to a specific value. In summary, the
proposed methodology includes the following steps:

Step 1:
Select V,, as the main objective function to be optimized, and transform the secondary

objective CFA4, into a constraint. Then, create the payoff table by lexicographic optimization
of the objective functions, using the relaxed formulation. The range of the secondary
objective function is determined by the corresponding interval between its ideal and its nadir
value.

Step 2 :
Divide the range of the CFA, objective to m equal intervals using m-1 intermediate

equidistant grid points (&) for varying parametrically the right-hand side of the
corresponding constraint, which differ from each other by a constant value of Y.

Step 3 :
For each ¢, value obtained in Step 2, solve the augmented e-constraint relaxed model and

check the identified aircraft combination for feasibility by forcing the original formulation to
realize it (same as 7.3.3.4). If this combination is infeasible, add a valid cut excluding it from
further consideration (same as 7.3.3.5), and repeat until either a feasible combination is
identified, or the current CFA4, level is proven infeasible.

The main difference in this case is that the creation of the payoff table by lexicographic
optimization is attained efficiently even for realistic problem instances, due to the fact that the utilized
formulation is a relaxation of the original FMP model. The computed objective ranges may initially be
larger than those of the original problem since the relaxed model may also identify infeasible
solutions, but these solutions are quickly rejected through the application of the feasibility check. Note
that, since Step 3 is applied using a relaxation, the actions utilized by the Double-Step solution
algorithm in order to identify feasible solutions to the original problem need to be employed in this
case, too. Despite the extra effort needed to perform this, the performance of the algorithm appears
considerably improved in comparison to the case that AUGMECON2 method is applied to the full

original FMP model, as demonstrated by the computational results that we present in Section 7.4.
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7.3.5 A Small Case Study

In this section, we illustrate the application of the proposed solution methodologies on a small case
study. We consider a unit comprised of 10 aircraft. At the first period of the planning horizon, 9
aircraft are available and one is grounded. Table 7.1 presents the residual flight times of the available
aircraft in plain-style, and the residual maintenance time of the grounded aircraft in bold-style. Table
7.2 presents the flight requirements and the time capacity of the maintenance facility in each time
period. The values of the remaining problem parameters are ¥ = 300 hours, Y,,;,, = 0.1 hours, G = 320
hours, G,,;, = 0.1 hours, C = 2, and X,,,, = 50. Collective results pertaining to the application of the

three solution approaches are presented in Table 7.6.

Table 7.1: Residual flight times (y,;) / residual maintenance time (g, ;) (hours)

n=1 n=2 n=3 n=4 n=35 n==6 n="7 n=3_§ n=9 | n=10
5 42 81 88 169 183 205 260 288 | 253

Table 7.2: Flight load requirements and time capacity of the maintenance facility

t| 1 2 3 4 5 6
S, | 144 122 111 131 128 131

B, | 166 194 160 197 156 192

7.3.5.1 AUGMECON2 Methodology

Table 7.3 presents the payoff table for this problem. Since the range of the objective function CFA,, is
[7328, 7928], we choose a step size of ¥ = 300 and we divide this range into two equal intervals; the
three corresponding grid points for the e-constraint method are &, = 7328, &, = 7628, and &; = 7928.
Next, the augmented &-constraint model (AUGMECON Bi-FMPy) is solved for each of these three

values.

Table 7.3: Payoff table for the small case study

| v, CFA,
Min V, | 6778222 7328

Max CFA4, | 9211.556 7928

7.3.5.2 Double-step solution algorithm

Given that each aircraft can fly at most X,,,, = 50 hours during each time period, the following table
shows the maximum cumulative flight time (MCFT) that the aircraft which are available at the
beginning of the planning horizon can provide from the beginning of the planning horizon up to time

period ¢ for ¢ = 1,...,T, before being grounded for service.

115

Institutional Repository - Library & Information Centre - University of Thessaly
12/05/2024 17:28:17 EEST - 18.118.9.86



Chapter 7 Incorporating the Minimization of the Fleet Availability Variability

Table 7.4: Maximum cumulative flight times that can be provided by the initially available aircraft

t n=1 n=2 n=3 n=4 n=>5 n==6 n="17 n=_§ n=9 MCFT
1 5 42 50 50 50 50 50 50 50 397
2 5 42 81 88 100 100 100 100 100 716
3 5 42 81 88 150 150 150 150 150 966
4 5 42 81 88 169 183 200 200 200 1168
5 5 42 81 88 169 183 205 250 250 1273
6 5 42 81 88 169 183 205 260 288 1321

The valid upper bound on the ideal CFA4,, value provided by Procedure CFA,-UB is equal to

7928. The corresponding (nominal) aircraft combination identified is the one shown in Table 7.5.

Table 7.5: Nominal aircraft combination identified by Procedure CFA4,-UB

5 7
1 1

S ol

1

After setting CFA, equal to 7928, model (7.3.1)-(7.3.24) also identifies the nominal
combination, for which V), = 9211.556. Next, we check whether this combination can be realized by a
feasible solution. In order to do this, we retain the order of aircraft visiting and exiting the
maintenance facility constant, and we fix the decision variables values determined by this
combination. These variables are a,,;, d,s, fu.1, Pns Tuss and g, forn=1,...,6, t = 2,...,7, (for example, a, ,
=1,015=0, a102=0, aj03 = 1, etc.), together with several of the variables x,,, V.;, €. #.,. The user
may choose to fix only a proper subset of these values and let the remaining ones be deduced by the
solver, or opt for a more specific model by explicitly fixing all the unambiguously determined decision
variable values. For our small case study, the resulting formulation is feasible. Therefore, no valid-cut
excluding this combination needs to be added, and the associated point (7928, 9211.56) in objective
space is added to the set of points which are candidate for being non-dominated.

The algorithm continues similarly with the next lower CFA,, levels, until the lower bound on

|N| T
CFA, is reached. This bound is equal to 7' Z Yl — Z((T —t+1)S,)=6728. Upon termination, the full
n=1

t=1
non-dominated set is obtained by eliminating the dominated solutions out of those that have been

recorded.

7.3.5.3 Hybrid algorithm

The Hybrid algorithm creates initially the payoff table by lexicographic optimization of the objective
functions. Although the relaxed formulation is utilized to this end, the ranges of the objectives
coincide with those identified in the application of the AUGMECON2 method in Subsection 7.3.5.1.
Next, the HYBRID-FMP model is employed using ¢; = 7328, ¢, = 7628 and &3 = 7928. The variability
of the solution identified for & = 7328 is equal to 6778.222. The feasibility check applied next
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confirms that the associated aircraft combination is feasible. Thus, the corresponding point (7328,
6778.222) in objective space is added to the non-dominated set. The algorithm continues in a similar

fashion with the next two higher CFA,, levels.

7.3.5.4 Collective results

The non-dominated set obtained from the application of the three solution methodologies is shown in
Table 7.6. Of course, it is identical for all three of them. It comprises of points A, B and C shown in
Figure 7.2. Points D and E are also initially identified by the Double-step solution algorithm, but are
subsequently eliminated since they are dominated. On the other hand, the other two methodologies do

not identify dominated points.

Table 7.6: Non-dominated set of the case study
CFA, | Vv,
7928 | 9211.556
7628 | 8444.889
7328 | 6778.222

v,

30000
*
25000 - E-
20000 -
# Feasible
15000 + M Non-dominated set
L J
10000 - D N
|
i B A
5000 - C
0 - CFA,
6428 6728 7028 7328 7628 7928 8228

Figure 7.2: Non-dominated set of the case study

7.4 Computational implementation

In this section, we present experimental results evaluating the computational performance of the
proposed solution algorithms and demonstrating their efficiency. All three algorithms were
implemented in C/C++ interfacing with LINGO 13.0 through LINGO Dynamic Link Library (DLL)
callback functions. LINGO 13.0 (2011) is a commercial optimization software package that can
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Chapter 7 Incorporating the Minimization of the Fleet Availability Variability

accommodate the mixed integer quadratic formulations involved. In order to demonstrate the
applicability of the proposed methodologies and highlight the benefits that can result from their actual
implementation, we test them on random problem instances whose size and characteristics resemble
those of realistic problem instances encountered in the typical operation of the HAF. Our
computational experiments were performed on an i5-3330 Intel Quad Core processor @ 3.0 GHz with
16 GB system memory.

Due to the fact that the complexity of the single objective models AUGMECON? is faced with
makes the treatment of large size problem instances such as those encountered in realistic
environments impracticable, we chose five small values (i.e., 10, 15, 20, 25 and 30) for the total
number of aircraft comprising the unit. On the other hand, since they are treating suitable relaxations
of the original model, the other two proposed methodologies are capable of handling considerably
larger problem instances; therefore, we also tested their performance on larger problem instances
comprising of 50 and 100 aircraft. 30 random problem instances were solved for each size considered.
The size of the planning horizon was always set equal to six monthly time periods, motivated by the
fact that the unit command typically issues the flight load requirements over a six-month planning
horizon. LINGO was mainly invoked with default options and the Global Solver enabled to ensure that
the global optimal solution was always obtained.

The random problem generator was specially designed to generate problems which resemble the
realistic ones as closely as possible. The specifics are as follows: In practice, C is equal to roughly
0.1N (for a unit comprising of 60-100 aircraft, the maintenance facility can typically accommodate 6-
10 aircraft). Since increasing the value of C appears to increase the computational burden, we set C
equal to 0.15N rounded down to the next integer in order to make the posed problem instances more
challenging. The number of aircraft which were initially grounded, N4, was determined randomly,
using a discrete probability function with possible values the integers between 0 and C, inclusive.
Negative skewness was imposed on this distribution, resulting in higher probabilities for larger NA
values. More specifically, the probability that N4 was equal to x, for x = 0,...,C, was set equal to
(x+1)/ (i(x +1)) . Naturally, the number of aircraft which were initially available, 4, was set equal

=0
to N-NA.

For each available aircraft, its residual flight time was uniformly distributed in the interval
[Y,..,Y], while, for each grounded aircraft, its residual maintenance time was uniformly distributed in
the interval [ G,,;,,G]. The flight load requirement of each time period was a random number uniformly
distributed in the interval [10J, 15N], while the time capacity of the maintenance facility in each time
period was a random number uniformly distributed in the interval [ 15/, 20/N]. This random generation

scheme results in problem instances with characteristics resembling closely those of realistic
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problems, with the specifics reasons for this being strictly confidential. For the remaining problem
parameters, we chose realistic values, i.e., Y =300, ¥,;,= 0.1, G =320, G,;, = 0.1, and X, = 50.
Table 7.7 presents the average and maximum computational times of the three solution
algorithms, i.e., AUGMECON?2, the Double-step solution algorithm, and the Hybrid approach. Two
variants of the Double-step algorithm are considered, based on whether a feasibility check is
performed in advance for each CFA,, level as described in 7.3.3.2 (FEAS) or not. The entries for N >
15 are missing for AUGMECON?2, because the optimization solver was not able to accommodate such
instances within the 12-hour limit that was enforced. Additionally, 11 problem instances with N =15
did not terminate within this time limit; therefore, the average and maximum computational time for N

= 15 has been computed over 19 instances instead of 30.

Table 7.7: Computational times (in seconds) of the three methodologies (CFA,, objective)

AUGMECON2 Double-step Double-step (FEAS) Hybrid

(original model) (relaxed model) (relaxed model) (relaxed model)
N Avg Max Avg Max Avg Max Avg Max
10 195.86 1010.21 1.73 3.06 2.22 3.45 1.06 1.69
15 1410.52 6883.39 9.39 19.11 11.65 24.13 13.49 67.00
20 34.43 95.19 37.97 89.11 27.67 142.85
25 94.73 330.19 115.95 569.13 36.62 116.23
30 101.04 493.98 107.23 493.16 82.90 566.56
50 888.82 4808.69 957.45 6453.72 341.34 7321.84
100 1302.09 4987.47 1306.09 5104.39 602.17 8019.53

The superiority of the two proposed solution methodologies becomes immediately evident,
since their computational times are significantly lower than those exhibited when AUGMECON?2 is
applied to the original model. Of course, this behavior should not be considered as an AUGMECON2
deficiency, but should be attributed to the solution complexity of the optimization models the method
is faced with. Since the solution of these models appears impracticable even for moderate size problem
instances, the computational savings realized when the other two methodologies are utilized are
excessive, as the results of Table 7.7 demonstrate. The computational performance of the Hybrid
solution methodology appears superior to that of the Double-step solution methodology as the problem
size increases. The variability of the computational times of all three solution methods appears
significant. This is further supported by the fact that, in a few cases, increasing the problem size results
in a reduction of the computational times. Performing the feasibility check in advance does not seem
to improve the computational performance of the Double-step solution algorithm. Nevertheless, the
employment of this step is motivated by its ability to mitigate the potential risk of extensive execution

times due to the existence of an exponential number of intermediate infeasible solutions.
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Chapter 7 Incorporating the Minimization of the Fleet Availability Variability

Table 7.8 presents results regarding the cardinality of the non-dominated set, and the number of
LINGO calls, i.e., the number of optimization problems each methodology solves in order to find the
non-dominated set. As these results demonstrate, the size of the non-dominated set appears to increase
moderately with the size of the underlying problem. On the other hand, for the same problem size, the
fewest optimization problems are solved by AUGMECON?2. The considerably larger computational
times of this methodology lead to the conclusion that the solution of these problems is substantially
more time consuming than that of the problems solved by the other methodologies. As far as the other
two methodologies are concerned, the Hybrid algorithm solves significantly fewer optimization
problems than the Double-step algorithm. In addition, performing the feasibility check in advance
does not appear to benefit the Double-step algorithm, leading to an increased number of optimization

problems solved.

Table 7.8: N, cardinality and number of LINGO calls for the three methodologies (CFA,, objective)

N, set AUGMECON2 Double-step Double-step (FEAS) Hybrid
cardinality (original model) (relaxed model) (relaxed model) (relaxed model)
N Avg Max Avg Max Avg Max Avg Max Avg Max
10 1.53 3 4.82 6 14.57 20 19.86 27 6.82 11
15 3.10 7 5.84 10 24.74 34 34.16 45 9.74 16
20 2.70 5 39.07 50 53.43 66 9.60 15
25 4.93 8 49.13 60 68.17 81 14.03 20
30 5.47 9 61.27 70 84.23 95 15.20 23
50 9.20 15 110.48 127 150.93 173 22.86 34
100 | 17.33 28 213.57 257 276.48 327 40.35 60

7.5 Algorithmic enhancements & extensions

In this section, we discuss some algorithmic enhancements and potential model extensions. In
particular, we elaborate on alternative model objectives, we discuss the potential parallelization of the
algorithmic implementations in order to take advantage of modern computer architecture, and we

study a 3-objective model extension.

7.5.1 Alternative objectives

As briefly discussed in Section 3.5, in the military context, the readiness of an aircraft wing is
typically determined in terms of the total number of available aircraft (aircraft availability) and in
terms of the total residual flight time (residual flight time availability). Mathematically, the cumulative
aircraft availability objective is expressed as follows:

741 [N]

Max CFA, = MaxZZa

t=2 n=1

nt
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The corresponding biobjective formulation (Bi-FMPa) that incorporates the minimization of the

availability variability is the following in this case:

Max CFA, (x)
Min V, (x) (Bi-FMP,)
st.xe X,
T+1
T+1 _ v CFA,(x) ;SAt(x)

where V, (x)Z(%j;(SAt (x)—SA(x))2 , 84, = Zan,, ,and @(x)— T - T

n=1

The design of the proposed solution algorithms enables them to cater for the aircraft fleet
availability objective, too. A slight modification deemed necessary in this case is the fact that the grid
points used for the CFA, objective must differ by a step size of 1 instead of Y. Moreover, a valid upper
bound on the ideal value of the aircraft fleet availability is clearly |N|T, whereas a lower bound on its
nadir value is clearly (|N-C)T. Table 7.9 presents the average and maximum computational times of
the three solution algorithms for Problem Bi-FMP,. The same two variants are again considered for

the Double-step solution algorithm.

Table 7.9: Computational times (in seconds) of the three methods (CFA, objective)

AUGMECON2 Double-step Double-step (FEAS) Hybrid

(original model) (relaxed model) (relaxed model) (relaxed model)
N Avg Max Avg Max Avg Max Avg Max
10 65.03 285.31 0.92 1.69 1.34 2.59 1.38 2.70
15 | 913.53 1149.52 4.12 10.61 5.24 13.47 6.68 18.53
20 | 2446.26 9034.04 | 13.71 40.68 14.63 45.15 20.61 95.14
25 19.57 45.49 23.79 105.06 24.63 52.62
30 26.90 108.45 47.47 182.41 31.82 145.74
50 201.90 692 209.55 720.03 314.08 1632.30
100 1882.32 6117.53 | 1690.98 4209.70 | 2600.26 8003.20

Compared to the instances in which the residual flight time availability is subject to
optimization, the computational times of the two proposed solution algorithms appear higher for some
problem sizes, and lower for some other ones. The computational performance of AUGMECON?2
appears improved, since the maximum problem size for which it successfully computes the non-
dominated set is slightly larger than before. The superiority of the two proposed solution methods over
AUGMECON? is evident in this case, too and can be attributed to the same reasons as before. In
contrast to Bi-FMP;, the computational performance of the Double-step solution algorithm appears
superior in this case. Moreover, with the exception of the instances with N = 100, performing the

feasibility check in advance still has a slightly negative effect.
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Chapter 7 Incorporating the Minimization of the Fleet Availability Variability

Table 7.10 presents similar results as those of Table 7.8 for the CFA, objective. As these results
demonstrate, the size of the non-dominated set seems to slightly increase when the CFA, objective is
adopted instead of the CFA,. On the other hand, the effect on the number of optimization problems
solved appears mixed, as it is higher in some cases, and lower in some other ones. AUGMECON?2 still
solves the fewest optimization problems among the three methods, while the Hybrid algorithm still
solves fewer optimization problems than the Double-step algorithm. Finally, performing the feasibility
check in advance still leads to an increased number of optimization problems solved for the Double-

step algorithm.

Table 7.10: N, cardinality and number of LINGO calls for the three methodologies (CFA4, objective)

N, set AUGMECON2 Double-step Double-step (FEAS) Hybrid
cardinality (original model) (relaxed model) (relaxed model) (relaxed model)
N Avg Max Avg Max Avg Max Avg Max Avg Max
10 2.33 4 3.73 8 11.50 12 17.50 18 8.60 12
15 4.30 7 6.28 12 21.07 22 32.07 33 12.63 18
20 6.53 12 8.41 18 30.29 32 45.96 48 17.57 28
25 7.40 12 35.41 37 50.41 55 19.07 32
30 6.87 17 4145 42 62.45 63 21.59 38
50 | 16.10 33 71.18 72 107.18 108 47.41 70
100 | 30.93 42 145.83 152 212.33 228 39.06 88

7.5.2 Parallelization

The inherent structure of the proposed solution methodologies makes possible the execution of several
algorithmic tasks in parallel, taking advantage of modern computer architecture, and in particular
multi-core processors. More precisely, once the CFA,, search range has been identified, the augmented
g-constraint model can be solved independently for each distinct grid point ¢, at a separate CPU thread.
After all grid points have been considered, the non-dominated points together with their corresponding
Pareto optimal solutions can be identified.

The parallelization is possible, because the solution of the problem for the different grid points
can be carried out independently of each other, likewise the AUGMECON2 method (Florios and
Mavrotas, 2014). Our computational experience suggests that the main computational burden of the
algorithm lies in the execution of this task; therefore, the proposed parallelization is expected to

provide a substantial speedup.

7.5.3 A 3-objective model extension

In order to investigate the proposed model’s behavior under the presence of more than two objectives,
we consider a 3-objective model extension in this subsection, and we outline how the proposed
methodology can be modified in order to accommodate it. We also study the effect of the inclusion of
the third objective on the cardinality of the non-dominated set, as well as on the algorithmic

computational performance. The proposed approach for accommodating the 3-objective FMP model is
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illustrated on a small case study which comprises a suitable extension of the case study introduced in
Section 7.3.5.

Whereas maximizing the unit’s cumulative fleet availability over the entire planning horizon is
one of the most important objectives of the FMP problem, ensuring that the fleet availability will not
fall below a critical level in any time period of the planning horizon is also of major importance. With
this in mind, we incorporate the additional objective of maximizing the minimum fleet availability
ensured for each time period of the planning horizon into the proposed model. Mathematically, this
objective is expressed as follows:

Max SY,.in
st. Y <SY, t=2,...,T+1

In turn, this leads to the following multiobjective formulation for the FMP problem (Multi-

FMPy):

Max CFA4, (

Min V, (x)

Max SY,, (x) (Multi-FMPy,)
M

<SY, =Yy, t=2..T+1,

n=1

xeX

x)

s.t.SY

min

Based on the key result that the domain comprising possible CFA, values is a discrete set, we
modify accordingly the Double-step algorithm next, enabling the treatment of this 3-objective FMP
problem formulation, too. In Section 7.3.3, it was demonstrated that the Double-step algorithm
successfully obtains the entire non-dominating set of Problem Bi-FMP;, by fixing the CFA,, objective
in a stepwise manner and minimizing for each of these values the associated variability, V,(x). We
extend this approach, by applying a suitable modification of the Double-step solution algorithm for
each of these distinct CFA, values. This involves fixing the CFA4, level in successive iterations, and
computing the associated non-dominated set with respect to the other two objectives by increasing the
SY.in Objective in a stepwise manner and computing the minimum variability associated solution. After
all possible CFA, levels have been considered, a simple procedure eliminates out of all the solutions
that have been identified those which are dominated with respect to all 3 objectives. Ensuring that both
the CFA,, objective (at the outer level), as well as the SY,,;, objective (at the inner level) are increased
in a stepwise fashion ensures that no non-dominated solution will be overlooked; thus, the entire non-
dominated set will be obtained upon termination.

For t =2,...,T+1, the residual flight time availability of the unit at the beginning of time period

|N| t—1 t
t, 87, is equal to ZY 1, —ZSk +Y -Z(exk ). Moreover, for ¢ = 2,...,7+1, the nominal combination
n=1 k=1 k=2
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Chapter 7 Incorporating the Minimization of the Fleet Availability Variability

imposes upper bounds on the cumulative number of aircraft exiting the maintenance facility from the
beginning of the planning horizon up until time period #; thus, 0< iexk < Z[:ex,’j"m holds true in any
k=2 k=2

feasible solution. Hence, we can compute all possible values of the unit fleet availability at the
beginning of time period ¢, for ¢ = 2,...,7+1, by considering all feasible values of the summation
Zt:exk imposed by this constraint. These values can then be used to define SY,,;, objective steps in the
k=2

Double-step instances employed for the various CFA, levels. Next, we illustrate how this can be

accomplished for the small case study introduced in Section 7.3.5.

nom

For =2, ex;”" =0 according to Table 7.5. Subsequently, the only possible value for SY,

N|
is ZYln -85,+Y*0=1321-144+300*0=1177. Calculating all possible values for the remaining 5

n=l1

time periods, we conclude that the domain comprising possible SY,,;, values is the following set: {554,
685, 813, 854, 944, 985, 1055, 1113, 1154, 1177, 1244, 1285, 1355, 1413, 1454}. For each of the
three possible values of the CFA, objective, we employ a distinct Double-step solution algorithm
instance, which computes the non-dominated set with respect to the V), and SY,,;, objectives. At the
end, we perform a final step that eliminates out of all identified solutions the dominated ones with
respect to all 3 objectives, and we conclude that the non-dominated set is the one presented in Table
7.11 and depicted in Figure 7.3.

As far as the computational burden is concerned, the number of LINGO iterations increases
from 15 in the 2-objective case to 170 in the 3-objective case, although many LINGO calls turn out to
be infeasible/redundant. Nevertheless, the total execution time increases by nearly 8 times. Of course,
a more sophisticated solution approach fully exploiting the problem’s theoretical properties will
eliminate many redundant iterations, improving the computational time substantially. Even in that
case, however, the computational requirements are expected to be considerably larger and increase
more progressively with problem size. Our elementary computational experience suggests that the
application of the proposed simplistic solution procedure remains practical only for problems with up
to 30-40 aircraft. Considering the fact that realistic FMP instances include up to 100 aircraft, it
becomes apparent that the development of a more sophisticated solution algorithm for the 3-objective

case of the problem turns up as a very promising direction for future research.

Table 7.11: Non-dominated set of the multiobjective case study

CFA, | Vi | SV

7928 | 9211.556 | 1177
7628 | 8444.889 | 1154
7328 | 6778.222 | 1113
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(7328, 9212556, 1177)

(7629, 8442889, 1154)

CF4, gooo 6000

Figure 7.3: Non-dominated set of the multiobjective case study

7.6 Summary

In this chapter, we addressed a biobjective quadratic model for the FMP problem. The problem
consists of compiling individual flight and maintenance plans for a group of aircraft that comprise an
aircraft wing. The aim is to maximize the fleet availability of the unit, while also minimizing its
variability. For this problem, we developed two exact solution methodologies which are capable of
identifying the entire non-dominated set. The first one minimizes the variability of the fleet
availability, while also decreasing the fleet availability level in a stepwise fashion; this ensures that no
non-dominated solutions are overlooked. The second one is a hybrid approach, which combines the
computational savings gained from the introduction of the payoff table calculation through
lexicographic optimization and slack variables, with those gained from the disaggregation of the FMP
solution into several steps. The performance of the two proposed algorithms on problems with realistic
characteristics appears to be considerably superior to that of the traditional &-constraint approach,
which can be used alternatively for the solution of this problem. The main reason for this seems to be
the considerably high computational requirements of the optimization models the &-constraint

approach encounters.
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Chapter 8 Dissertation Summary and Concluding Remarks

As stated in Chapter 1, the main contribution of the present work lies in the development of various
mathematical optimization models for the formulation of the FMP problem, along with the specialized
algorithms that facilitate their efficient solution. In this chapter, we conclude this dissertation by
presenting the most prominent findings and results of this research. First we provide a review of the
dissertation, then we make some suggestions for facilitating the application of the proposed models,
and lastly we provide some promising directions for future research.

Chapter 1 is an introductory chapter, giving an overview of the motivation for dealing with the
specific problem under consideration, stating the dissertation’s main contributions, and providing an
outline of the following chapters. In Chapter 2, we review the related literature, focusing mostly on
works that address military related applications. In Chapter 3, we present a detailed definition of the
FMP problem, and we address model formulation considerations related to the development of
accurate FMP optimization models.

In Chapter 4 we prove several interesting theoretical properties of the FMP problem, and we
utilize them to develop two heuristic solution approaches for solving large FMP instances. We also
present experimental results demonstrating the computational performance of these heuristics and the
quality of the solutions they produce. The first heuristic, AFH, exhibits a very satisfactory
performance in most of the cases, which justifies its wide usage by many Air Force organizations
worldwide. The second heuristic, HSH, exhibits a rather myopic behavior. It works by splitting the
original planning horizon into smaller ones, and solving an FMP problem for each of them. Although
this technique may result in low availability over the last sub-horizons, the solution obtained by HSH
is also quite satisfactory in most of the cases. Therefore, it can be considered as an alternative choice
for identifying a solution of satisfactory quality when the size of the problem prohibits the application
of an exact solution methodology.

In Chapter 5, we develop a mixed integer nonlinear model for the FMP problem, which is based
on a suitable modification of an existing graphical heuristic tool for addressing this problem. Utilizing
the problem’s special structure and theoretical properties, we also develop an exact solution algorithm
for accommodating this model. Our computational results demonstrate that the performance of the
proposed solution algorithm is superior compared to that of a commercial optimization package.

In Chapter 6, we consider a mixed integer optimization model for the multi-period version of
the FMP problem. For this model, we develop an exact solution algorithm that identifies a valid upper
bound on the optimal objective first, and then reduces this bound in a stepwise fashion until a feasible
solution that attains it is identified. The performance of the algorithm on realistic problem instances

appears superior to that of two commercial optimization solvers that can be used alternatively for the
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Chapter 8 Dissertation Summary and Concluding Remarks

solution of the problem, whereas the opposite behavior is observed for a class of problems with
significantly different characteristics.

In Chapter 7, we address a biobjective quadratic FMP model, which incorporates the
minimization of the fleet availability variability. For this FMP problem variant, we develop two exact
solution methodologies which are capable of obtaining the entire set of non-dominated solutions. The
first methodology disaggregates the original FMP model into smaller subproblems whose solution is
attained much more efficiently. The second methodology is a variant of the e-constraint method,
applied to a suitable relaxation instead of the original FMP model. The performance of the two
proposed methodologies on problems with realistic characteristics appears to be considerably superior
to that of the traditional e-constraint approach, which can be used alternatively for the solution of the
problem.

The present work provides an in-depth study of several interesting variants of the FMP problem.
The most important contribution of this work is the development of several interesting optimization
models for this problem, along with the specialized algorithms that facilitate their efficient solution,
which comprise an efficient toolset the aviation/maintenance managers can utilize to address the
numerous aspects of the FMP problem effectively. The extensive computational results that we present
demonstrate the performance of the proposed solution methodologies.

The key objective of the FMP problem is to maximize the operational readiness of a military
unit, as stated in Chapter 1, mainly through the maximization of the fleet availability. The developed
models can provide valuable information to the aviation/maintenance managers in many ways. For
example, by using current data as input to these models, they can assess the midterm operational
readiness of the unit. Moreover, the aviation/maintenance managers can utilize the proposed models to
perform what-if scenarios and test alternative parameter choices and desing options. For example, if
the fleet availability that results with the existing maintenance resources turns out to be insufficient,
the aviation/maintenance managers can relax the maintenance costraints in order to find out the extra
maintenance resources needed to achieve the desired availability level, and then acquire the extra
personell. Another valuable use of the proposed models is for examining how new operational
requirements, such as exercises and deployments, can influence the long-term readiness of the fleet.
By relaxing the maintenance costraints, the aviation/maintenance managers can estimate the extra
maintenance capacity needed to handle the additional operational load. The fact that they enable the
examination of such hypothetical scenarios gives added value to the developed mathematical models,
fulfilling the original research aims.

The present work points to several promising directions for future research. The deterministic
models that we address in this work comprise a basic building block towards developing more

complicated models that will take into consideration stochastic events, such as unforeseen failures.
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Future works should be directed towards the development of such stochastic models that will
incorporate the uncertainty that some of the problem’s parameters might exhibit. A recent work in that
direction is the paper by Mattila and Virtanen (2014), who use discrete event simulation to model the
maintenance of military aircraft in the Finnish Air Force and study its impact on aircraft availability.
We deliberately decided to deal with the deterministic version of the FMP problem, because it is
novel, complex, interesting and realistic enough to constitute a contribution in itself, which is useful
for researchers and practitioners.

Two factors of the problem under consideration exhibit significant uncertainty in practice: the
fact that the actual duration of the maintenance service may turn out to be longer than its nominal
value (expressed by parameter G), and the fact that a mission aircraft may fail in fulfilling its entire
flight load (expressed by decision variable x;). The grounding of an aircraft for a longer time period
than the one determined by parameter G may be dictated due to the detection of serious findings
during the regularly scheduled maintenance inspection, or due to the lack of specific spare parts or
staff expertise, which are needed in order to complete the service of the aircraft according to the
prescribed safety standards. On the other hand, an aircraft may not be able to fly the entire time that
has been assigned to it, due to an unexpected event such as an unforeseen failure. Of course, in case of
such undesirable events, the user always has the option of reapplying the proposed model after
updating the state of the system, but a stochastic model will clearly incorporate such uncertainties
more accurately, leading to a better long term performance for the entire system.

Another interesting direction for future research appears to be the suitable modification of the
model studied in Chapter 5 that will enable its application to a multi-period planning horizon, so that
its long term performance and behavior can be evaluated. This will also render this model directly
comparable to other models that have been proposed in the related literature, which are targeted
towards multi-period planning horizons. Additionally, for the biobjective quadratic version of the FMP
problem studied in Chapter 7, the generation of the exact non-dominated set opens up the opportunity
of applying state-of the-art multi-objective metaheuristics and using the benchmarks provided in order
to assess their effectiveness. Finally, the study of FMP multi-objective models with more than two
objectives such as the one introduced in Section 7.5.3 also stems as a very interesting direction for

future research.
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Appendix A Proof of Proposition 4.1

Let 41, 4, and &; (i = 1,..., |K]) be the non-negative dual multipliers of constraints (4.3.2), (4.3.3) and

(4.3.4), respectively. In addition to the original constraints of the problem, the KKT conditions are:

20y, —ks—x )= A+ A +u, 20, k=1,..|K]| (1)
x[2(y, —ks—x) =4 + 4, +u,]1=0, k= 1,..,|K]| )

&
ALS=Y ¥, —2.%)=0 3)

meM,; k=1

K]

QO x, ~US+ > »,)=0 4)

k=1 meM,;
u,(x, —X)=0, k=1,..,|K| (5)
).120,/1220,“](30,/{:1,---, |K| (6)

We call the quantity (yy, — ks — x;) the “perpendicular distance of aircraft k£ from the diagonal”.
Despite the word “distance” in this definition, note that this quantity is negative when aircraft & lies
below the diagonal at the end of the current period. Since LL < UL always, there are 12 possible
distinct arrangements of the quantities LL, UL, D and X. When there does not exist an arrangement in
which LL precedes X, the problem is clearly infeasible, since the flight requirements (constraint
(4.3.2)) cannot be satisfied, even when every aircraft is assigned its maximum possible flight time. In
each of the remaining 8 cases, it is clear that the solution obtained from the application of the
Procedure Sweep when the sum of the assigned aircraft flight times becomes equal to the second
quantity in the arrangement, satisfies (4.3.2)-(4.3.4) and is therefore feasible. We show next that this

solution also satisfies conditions (1)-(6), and is therefore optimal, too.
Case 1: The arrangement is {LL,UL,D,X} or {LL,UL,X,D}.

In this case, the sum of the assigned aircraft flight times in the obtained solution is equal to the second
quantity in the arrangement, UL. We partition the indices of the decision variables of this solution into
4 sets:

a) Set S; contains the indices of the variables x; such that x, = 0 = X.

b) Set S, contains the indices of the variables x; such that x; = 0 <X,

¢) Set S; contains the indices of the variables x; such that 0 < x; =X,

d) Set S, contains the indices of the variables x; such that 0 < x; < Xj.

We set 4y = 0 and 4, = 2(yy, — ks — x;) for some k € S,.Note that the value of 4, is the same for

any k € S,, since set Sy contains the indices of the variables that lie on the sweeping line at the current
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Appendix A Proof of Proposition 4.1

solution, and, as a result, their perpendicular distance from the diagonal is the same. Additionally, each
of these distances is non-negative, since the fact that UL appears before D in the arrangement implies
that the sweeping line lies above the diagonal at the current solution; therefore 4, is non-negative, too.
We also set u; = max(2(yy, — ks — xi) - Ao, 0) for ke S, u, =0 for ke S, US,and u; = 2(yi, — ks —x;) - A2
for k e S,. The multipliers u, for k e S, are always non-negative, since set S; contains the indices of the

variables that were initially swept and later disengaged by the sweeping line because they reached
their upper bound; therefore, the perpendicular distance of each of these points from the diagonal
cannot be smaller than the perpendicular distance from the diagonal of any point that lies on the

sweeping line at the current solution. For & € S, and k € S,, constraints (1) and (2) are clearly satisfied.
Constraints (1) are clearly satisfied as an equality for &  S,; therefore, constraints (2) are satisfied, too.
Fork € S,, constraints (2) are clearly satisfied and constraints (1) are satisfied if 4, > 2(yy, — ks — xy),

which is true, since set S, contains the indices of the variables that have not been swept by the line yet;
therefore, their perpendicular distance from the diagonal cannot be larger than the perpendicular
distance from the diagonal of any point that lies on the sweeping line at the current solution. Finally,
constraints (3)-(6) are clearly satisfied, too. Hence, the current solution together with A;, A, and u; (k =
1,...,JK]) as the dual multipliers satisfies the KKT conditions and is therefore optimal.

If set S; is empty, then the above analysis remains the same, but 1, needs to be set equal

to max(IP%x 2(y,, —ks —x,),0). If both S, and Sy are empty, then every decision variable has taken its

maximum possible value. This implies that UL = X, and this case reduces to Case 4 through an
appropriate rearrangement.

Case 2: The arrangement is {LL,D,UL,X} or {LL,D,X,UL}.

In this case, the sum of the assigned aircraft flight times in the solution obtained is equal to the second
quantity in the arrangement, D, which implies that the sweeping line coincides with the diagonal. We
partition the indices of the decision variables of this solution into the same 4 sets as in Case 1. We set
A =A=0, ue=max 2y — ks — xi), 0) for ke S,,u, =0 for ke S, US, and u; = 2(yy, — ks — x;), for
k e S,. The multipliers u; for ke S,are always non-negative, since set S; contains the indices of the

variables that were initially swept and later disengaged by the sweeping line because they reached
their upper bound; therefore, since the sweeping line coincides with the diagonal at the current
solution, the perpendicular distance of each of these points from the diagonal cannot be negative. For

keS, and ke S,,constraints (1) and (2) are clearly satisfied. Fork € S,, constraints (2) are clearly

satisfied and constraints (1) are satisfied if -2(yy, — ks — x;) > 0, which is true, since set S, contains the
indices of the variables that have not been swept by the line yet; therefore, since the sweeping line
coincides with the diagonal at the current solution, each of these points has non-positive perpendicular

distance from the diagonal. Set S, contains the indices of the variables that lie on the sweeping line at

130

Institutional Repository - Library & Information Centre - University of Thessaly
12/05/2024 17:28:17 EEST - 18.118.9.86



the current solution. Since the sweeping line coincides with the diagonal, the perpendicular distance of
each of these variables from the diagonal is equal to 0. As a result, constraints (1) and (2) are also

satisfied fork € S,. Finally, constraints (3)-(6) are clearly satisfied, too. Hence, the current solution

together with Ay, 4, and u; (k = 1,...,|K]) as the dual multipliers satisfies the KKT conditions and is
therefore optimal.

Case 3: The arrangement is {D,LL,UL,X} or {D,LLX,UL}.

In this case, the sum of the assigned aircraft flight times in the solution obtained is equal to the second
quantity in the arrangement, LL. We partition the indices of the decision variables of this solution into

the same 4 sets as in Cases 1 and 2. We set 4, = 0 and A, = -2(yy, — ks — xy), fork € S,.Note that the
value of 4, is the same for any & € S,, since set S, contains the indices of the variables that lie on the

sweeping line at the current solution, and, as a result, their perpendicular distance from the diagonal is
the same. Additionally, each of these distances is non-positive, since the fact that D appears first in the
arrangement implies that the sweeping line does not liec above the diagonal at the current solution;

therefore, 4, is non-negative, too. We also set u, = max(2(yy, — ks — x) + 4, 0) fork e S, u; = 0 for
keS,uS,and w, = 2(yi, — ks — x;) + Ay for keS,. The multipliers u; for ke S,are always non-

negative, since set S; contains the indices of the variables that were initially swept and later
disengaged by the sweeping line because they reached their upper bound; therefore, the perpendicular
distance of each of these points from the diagonal cannot be smaller than the perpendicular distance
from the diagonal of any point that lies on the sweeping line at the current solution. For

ke S andk e S,, constraints (1) and (2) are clearly satisfied. Constraints (1) are clearly satisfied as an
equality fork e S,; therefore, constraints (2) are satisfied, too. Fork € S,, constraints (2) are clearly

satisfied and constraints (1) are satisfied if —4; > 2(yy, — ks — x;), which is true, since set S, contains the
indices of the variables that have not been swept by the line yet; therefore, the perpendicular distance
of each of these points from the diagonal cannot be larger than the perpendicular distance from the
diagonal of any point that lies on the sweeping line at the current solution. Finally, constraints (3)-(6)
are clearly satisfied, too. Hence, the current solution together with 11, 1, and u; (k = 1,...,|K|) as the
dual multipliers satisfies the KKT conditions and is therefore optimal.

If set S, is empty, then the above analysis remains the same, but A, needs to be set equal

to Iknisn(—Z( ¥, —ks—x,)), which is always non-negative, since set S, contains the indices of the variables

that have not been swept by the line yet; therefore, since the sweeping line does not lie above the
diagonal at the current solution, each of these points has non-positive perpendicular distance from the
diagonal. If both S, and S, are empty, then every decision variable has taken its maximum possible

value. If D = LL = X, this case reduces to Case 4 through an appropriate rearrangement. If D < LL = X,
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Appendix A Proof of Proposition 4.1

then the sweeping line lies below the diagonal at the current solution. In this case, we partition the
indices of the decision variables of the current solution into 2 sets:

a) Set S; contains the indices of the variables x; such that x, = 0 = X,

b) Set S, contains the indices of the variables x; such that 0 < x; = X;.

We set 4y = -2(yy, — ks — x;), wherek € S, is the index of a variable that is currently on the sweeping
line, 4, =0, ux = max(2(yy, — ks —x;) + 41, 0) for ke S, and u; = 2(yy, — ks — x;) + A4y, for ke S,.Since
the sweeping line lies below the diagonal, 4, is strictly positive. Additionally, the multipliers u; for

k € S, are always non-negative, since the perpendicular distance from the diagonal of any point that

lies on the sweeping line at the current solution cannot be larger than the perpendicular distance from

the diagonal of any other point. Constraints (1)-(6) are clearly satisfied fork e S, US,. Hence, the

current solution together with A, 1, and u; (k = 1,...,|K|) as the dual multipliers satisfies the KKT
conditions and is therefore optimal.

Case 4: The arrangement is {LL,X,UL,D} or {LL,X,D,UL}.

In this case, the sum of the assigned aircraft flight times in the solution obtained is equal to the second
quantity in the arrangement, X. We partition the indices of the decision variables of this solution into 2
sets:

a) Set S; contains the indices of the variables x; such that x;, = 0 = X,

b) Set .S, contains the indices of the variables x; such that 0 < x; = Xj.

We set 41 = A, = 0, ux = max(2(yy, — ks — xz), 0) for ke S and u; = 2(y, — ks — x;) for ke S,.The
multipliers u; for k e S, are always non-negative, since set S, contains the indices of the variables that
have already been swept by the sweeping line to their upper bound; therefore, since the sweeping line
does not lie below the diagonal at the current solution, their perpendicular distance from the diagonal
is non-negative. Constraints (1)-(6) are clearly satisfied fork € S, US,. Hence, the current solution,
together with Ay, A, and u; (k = 1,...,|K]) as the dual multipliers, satisfies the KKT conditions and is

therefore optimal. a]
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Appendix B Proof of Lemma 4.1

The values of LL and UL are known. We can compute the values of D and X in time O(|K]),

K] ||
since D = Zmin(X ol —ks]")and X = ZX .- Finding if there exists an arrangement of LL, UL, D
= pa

and X in which LL precedes X requires time O(1). If such an arrangement exists and Q is the second
quantity in order, we can equivalently transform the problem defined by (4.3.1)-(4.3.4) into the
following problem in time O(|K]):

]

Min Z:(%a'kxk2 —a,x,)
k=1

X;
||

s.t. ) bx, =b,
k=1

L<xi<upk=1,.. K|,

where di, =2, ay = 2(yy, - ks), by =1, by = O, [, = 0 and u; = X, for k= 1,...,|K|. We have suppressed the
term (yy, - ks)* in this formulation, since it is constant and does not affect the optimization. This
problem can be solved in time O(|K]) (see Brucker (1984)). Therefore, the problem defined by (4.3.1)-
(4.3.4) can be solved in total time O(|K]), too. O
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Appendix C List of Dissertation Publications

Parts of the work presented in this dissertation have been published in scientific journals and presented

in international conferences as follows:

Journal Papers

[J.1] Kozanidis, G., Gavranis, A., & Kostarelou, E. (2012). Mixed integer least squares
optimization for flight and maintenance planning of mission aircraft. Naval Research
Logistics, 59(3-4), 212-229. http://doi.org/10.1002/nav.21483

[J.2] Kozanidis, G., Gavranis, A., & Liberopoulos, G. (2013). Heuristics for flight and maintenance
planning of mission aircraft. Annals of Operations Research, 221(1), 211-238.
http://doi.org/10.1007/s10479-013-1376-6

[J.3] Gavranis, A., & Kozanidis, G. (2015). An exact solution algorithm for maximizing the fleet
availability of a unit of aircraft subject to flight and maintenance requirements. European
Journal of Operational Research, 242(2), 631-643. http://doi.org/10.1016/j.ejor.2014.10.016

[J.4] Gavranis, A., & Kozanidis, G. (2017). Mixed integer biobjective quadratic programming for

maximum-value minimum-variability fleet availability of a unit of mission aircraft. Computers

& Industrial Engineering, 110, 13-29. http://doi.org/10.1016/j.cie.2017.05.010

Papers in International Conferences

[C.1] Kozanidis, G., Gavranis, A., & Liberopoulos, G. (2008). Heuristics for maximizing fleet
availability subject to flight and maintenance requirements. In 10" International Conference
on Application of Advanced Technologies in Transportation. Athens, Greece.

[C.2] Gavranis, A., & Kozanidis, G. (2013). An exact solution algorithm for maximizing the fleet
availability of an aircraft unit subject to flight and maintenance requirements. In Proceedings
of the International MultiConference of Engineers and Computer Scientists 2013 (Vol. 11, pp.

1036-1041). Hong Kong: Newswood Limited.

134

Institutional Repository - Library & Information Centre - University of Thessaly
12/05/2024 17:28:17 EEST - 18.118.9.86



Appendix C List of Dissertation Publications

Abstracts and Presentations in International Conferences

[P.1] Gavranis, A and Kozanidis, G (2009). “Modeling techniques and solution approaches for
maximizing fleet availability of mission aircraft subject to flight and maintenance
requirements.” 23" European Conference on Operational Research, Bonn, Germany, 5-8 July.

[P.2] Kozanidis, G, Gavranis, A and Kostarelou E. (2010). “Mixed integer least squares
optimization for flight and maintenance planning of mission aircraft”. 24" European
Conference on Operational Research, Lisbon. Portugal, 11-14 July.

[P.3] Gavranis, A and Kozanidis, G (2013), “Mixed integer multi-objective optimization for flight
and maintenance planning of mission aircraft” in 22" International Conference on Multiple
Criteria Decision Making, Malaga, Spain, 17-21 June

In Table C.1, we link each of the above works to the corresponding chapter in this dissertation.

Table C.1: List of publications and association to dissertation chapters.

Chapter 4 Chapter 5 Chapter 6 Chapter 7
[J.2] : entire chapter [J.1] : entire chapter [J.3] : entire chapter [J.4] : entire chapter
[C.1]: early work [P.2]: early work [C.2]: early work [P.3]: early work

[P.1] : entire chapter
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Appendix D Glossary of Dissertation Terms and Acronyms

aircraft flowchart

bank time
CFA

diagonal

dock space
FMP

flight load

maintenance station

operational readiness

phase interval

phased maintenance

residual flight time

residual maintenance time

total deviation index
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A 2-dimensional graphical tool utilized, in an ad-hoc manner,
as a common empirical approach for addressing the FMP
problem (see Figure 3.1).

residual flight time
Cumulative Fleet Availability

The line segment that connects the origin with the point with
coordinates (4, Y) at the aircraft flowchart, where Y is the
phase interval.

Unit maintenance station space capacity capability
Flight and maintenance planning

Suitable flight requirements issued by the unit command at
the beginning of each planning horizon in order to retain a
high level of unit readiness.

Unit maintenance station for providing service to the aircraft.

“The capability of a unit/formation, ship, weapon system or
equipment to perform the missions or functions for which it
is organized or designed. May be used in a general sense or
to express a level or degree of readiness.” (NATO, 2015)

The total flight time of an aircraft between two maintenance
inspections.

Aircraft intermediate level scheduled maintenance conducted
at the unit maintenance station.

The total remaining time that each individual available
aircraft can fly until it has to undergo a maintenance check.

The total remaining time that each non-available aircraft
needs in order to complete its maintenance check. The
residual maintenance time of an aircraft is positive if and
only if this aircraft is undergoing a maintenance check, and is
therefore not available to fly.

Index equal to the sum of squares of the vertical distances
(deviations) of the points mapping the residual flight times of
the individual aircraft from their corresponding target values
on the diagonal.

Institutional Repository - Library & Information Centre - University of Thessaly
12/05/2024 17:28:17 EEST - 18.118.9.86



References

Abrahao, F. T. M., & Gualda, N. D. F. (2006). Fleet Maintenance Scheduling with an Ant Colony
System Approach. Lecture Notes in Computer Science, 4150, 412419,

Athens News Agency. (2006). Daily News Bulletin in English, 06-08-23. Retrieved July 12, 2016,
from http://www.hri.org/news/greek/ana/2006/06-08-23.ana.html

Bajestani Aramon, & Beck J.C. (2013). Scheduling a Dynamic Aircraft Repair Shop with Limited
Repair  Resources. Journal of Artificial Intelligence  Research, 47, 35-70.
http://doi.org/10.1613/jair.3902

Bazaraa, M. S., Sherali, H. D., & Shetty, C. M. (2006). Nonlinear programming: theory and
algorithms. Wiley, New York, NY.

Bérubé, J.-F., Gendreau, M., & Potvin, J.-Y. (2009). An exact e-constraint method for bi-objective
combinatorial optimization problems: Application to the Traveling Salesman Problem with
Profits. European Journal of Operational Research, 194(1), 39-50.

Brucker, P. (1984). An O(n) algorithm for quadratic knapsack problems. Operations Research Letters,
3(3), 163-166. http://doi.org/10.1016/0167-6377(84)90010-5

Calamai, P., & Moré¢, J. (1987). Quasi-Newton Updates with Bounds. SIAM Journal on Numerical
Analysis, 24(6), 1434—1441. http://doi.org/10.1137/0724092

Chankong, V., & Haimes, Y. Y. (1983). Multiobjective decision making: theory and methodology.
North Holland Series in System Science and Engineering, (8).

Cho, P. Y. (2011). Optimal scheduling of fighter aircraft maintenance (MSc Thesis). Massachusetts
Institute of Technology, Cambridge, MA, USA. Retrieved from
http://dspace.mit.edu/handle/1721.1/67773

Cohon JL. (1978). Multiobjective Programming and Planning. New York: Academic Press.

Ehrgott, M. (2005). Multicriteria Optimization. Springer.

Ehrgott, M., & Gandibleux, X. (2000). A survey and annotated bibliography of multiobjective

combinatorial optimization. OR Spectrum, 22(4), 425-460.

137

Institutional Repository - Library & Information Centre - University of Thessaly
12/05/2024 17:28:17 EEST - 18.118.9.86



References

Florios, K., & Mavrotas, G. (2014). Generation of the exact Pareto set in Multi-Objective Traveling
Salesman and Set Covering Problems. Applied Mathematics and Computation, 237, 1-19.
http://doi.org/10.1016/j.amc.2014.03.110

Fourer, R., Gay, D. M., & Kernighan, B. W. (2002). AMPL: a modeling language for mathematical
programming. Duxbury Press, Brooks - Cole Publishing Company.

Gavranis, A., & Kozanidis, G. (2013). An exact solution algorithm for maximizing the fleet
availability of an aircraft unit subject to flight and maintenance requirements. In Proceedings of
the International MultiConference of Engineers and Computer Scientists 2013 (Vol. 11, pp.
1036—-1041). Hong Kong: Newswood Limited.

Gavranis, A., & Kozanidis, G. (2015). An exact solution algorithm for maximizing the fleet
availability of a unit of aircraft subject to flight and maintenance requirements. European

Journal of Operational Research, 242(2), 631-643. http://doi.org/10.1016/j.ejor.2014.10.016

Gavranis, A., & Kozanidis, G. (2017). Mixed integer biobjective quadratic programming for
maximum-value minimum-variability fleet availability of a unit of mission aircraft. Computers
& Industrial Engineering, 110, 13-29. http://doi.org/10.1016/j.cie.2017.05.010

Geoffrion, A. M. (1968). Proper efficiency and the theory of vector maximization. Journal of
Mathematical Analysis and Applications, 22(3), 618-630. http://doi.org/10.1016/0022-
247X(68)90201-1

Hahn, R. A., & Newman, A. M. (2008). Scheduling United States Coast Guard helicopter deployment
and maintenance at Clearwater Air Station, Florida. Computers and Operations Research,
35(6), 1829-1843.

Helgason, R., Kennington, J., & Lall, H. (1980). A polynomially bounded algorithm for a singly
constrained quadratic program. Mathematical Programming, 18(1), 338-343.

Horner, P. (2006, June). Operations Research Management Science Today - June 2006. OR/MS Today,
33(3), 26-28.

IBM ILOG. (2012). CPLEX Optimization Studio: CPLEX User’s Manual Version 12 Release 5.

138

Institutional Repository - Library & Information Centre - University of Thessaly
12/05/2024 17:28:17 EEST - 18.118.9.86



Kozanidis, G. (2009). A Multiobjective Model for Maximizing Fleet Availability under the Presence
of Flight and Maintenance Requirements. Journal of Advanced Transportation, 43(2), 155-182.

Kozanidis, G., Gavranis, A., & Kostarelou, E. (2012). Mixed integer least squares optimization for
flight and maintenance planning of mission aircraft. Naval Research Logistics (NRL), 59(3-4),
212-229. http://doi.org/10.1002/nav.21483

Kozanidis, G., Gavranis, A., & Liberopoulos, G. (2008). Heuristics for maximizing fleet availability
subject to flight and maintenance requirements. In /0™ International Conference on Application
of Advanced Technologies in Transportation. Athens, Greece.

Kozanidis, G., Gavranis, A., & Liberopoulos, G. (2013). Heuristics for flight and maintenance
planning of mission aircraft. Annals of Operations Research, 221(1), 211-238.
http://doi.org/10.1007/s10479-013-1376-6

Kozanidis, G., Liberopoulos, G., & Pitsilkas, C. (2010). Flight and Maintenance Planning of Military
Aircraft for Maximum Fleet Availability. Military Operations Research, 15(1), 53-73.

Kozanidis, G., & Skipis, A. (2006). Flight and maintenance planning of military aircraft for maximum
fleet availability: A biobjective model. In Proceedings of the 18th International Conference on
Multiple Criteria Decision Making, Chania, Crete 19-23 June, 2006. Chania , Greece.

LINGO 13.0. (2011). User’s guide, LINDO Systems, Inc., Chicago, IL. Retrieved July 10, 2016, from
http://www .lindo.com/

Mattila, V. (2007). Flight time allocation for a fleet of aircraft through reinforcement learning. In
Proceedings of the 2007 Winter Simulation Conference, Washington D.C. , 9-12 December,
2007 (p. 2373). http://doi.org/10.1109/WSC.2007.4419888

Mattila, V., & Virtanen, K. (2005). A Simulation-based Optimization Model to Schedule Periodic
Maintenenance of a Fleet of Aircraft. In Proceedings of the 2005 European Simulation and
Modelling Conference, Porto, Portugal, 24 -26 October , 2005 (pp. 479—483). Porto, Portugal.

Mattila, V., & Virtanen, K. (2006). Scheduling Periodic Maintenance of Aircraft through Simulation-
Based Optimization. In Proceedings of the 47th Conference on Simulation and Modelling

(SIMS2006), Helsinki, Finland, 28-29 September, 2006 (pp. 38-43). Helsinki, Finland.

139

Institutional Repository - Library & Information Centre - University of Thessaly
12/05/2024 17:28:17 EEST - 18.118.9.86



References

Mattila, V., & Virtanen, K. (2014). Maintenance scheduling of a fleet of fighter aircraft through multi-
objective simulation-optimization. SIMULATION, 90(9), 1023-1040.
http://doi.org/10.1177/0037549714540008

Mattila, V., Virtanen, K., & Raivio, T. (2003). A Simulation Model for Aircraft Maintenance in an
Uncertain Operational Environment. In Proceedings of the 17th European Simulation
Multiconference in Nottingham, England, 9 - 11 June, 2003. Nottingham, England.

Mattila, V., Virtanen, K., & Raivio, T. (2008). Improving Maintenance Decision Making in the
Finnish Air Force Through Simulation. Interfaces, 38(3), 187-201.
http://doi.org/10.1287/inte.1080.0349

Mavrotas, G. (2009). Effective implementation of the e-constraint method in Multi-Objective
Mathematical Programming problems. Applied Mathematics and Computation, 213(2), 455—
465. http://doi.org/10.1016/j.amc.2009.03.037

Mavrotas, G., & Florios, K. (2013). An improved version of the augmented e-constraint method
(AUGMECON2) for finding the exact pareto set in multi-objective integer programming
problems. Applied Mathematics and Computation. http://doi.org/10.1016/j.amc.2013.03.002

North Atlantic Treaty Organization (NATO). (2015). AAP-06 NATO Glossary of Terms and
Definitions. Retrieved from nso.nato.int/nso/zPublic/ap/aap6/AAP-6.pdf

Pardalos, P. M., & Kovoor, N. (1990). An algorithm for a singly constrained class of quadratic
programs subject to upper and lower bounds. Mathematical Programming, 46(1), 321-328.

Pippin, B. W. (1998). Allocating Flight Hours to Army Helicopters (MSc Thesis). Naval Postgraduate
School, Monterey, CA, USA.

Raivio, T., Kuumola, E., Mattila, V., Virtanen, K., & Héamaldinen, R. P. (2001). A simulation model
for military aircraft maintenance and availability. In Proceedings of the 15th European
Simulation Multiconference. Prague, Czech.

Rosenzweig Vojvodi¢, V., Domitrovié, A., & Bubi¢, M. (2010). Planning of Training Aircraft Flight
Hours. In 13th International Conference on Operational Research (Vol. 1, pp. 170-179). Split,

Croatia.

140

Institutional Repository - Library & Information Centre - University of Thessaly
12/05/2024 17:28:17 EEST - 18.118.9.86



Safaei, N., Banjevic, D., & Jardine, A. K. S. (2011). Workforce-constrained maintenance scheduling
for military aircraft fleet: a case study. Annals of Operations Research, 1(186), 295-316.
http://doi.org/10.1007/s10479-011-0885-4

Sgaslik, A. (1994). Planning German Army helicopter maintenance and mission assignment (MSc
Thesis). Naval Postgraduate School, Monterey, CA, USA.

Steiner, A. (2006). A Heuristic Method for Aircraft Maintenance Scheduling under Various
Constraints. In Proceedings of the 6th STRC Swiss Transport Research Conference. Ascona,
Switzerland (Hrsg.).

Steuer, R. E. (1986). Multiple Criteria Optimization: Theory, Computation, and Application. John
Wiley & Sons.

U.S. DoA, United States Department of the Army, W. D. (2000). Field Manual No. 3-04.500: Army
Aviation Maintenance (Appendix D: Maintenance Management Tools). Retrieved from
http://www.globalsecurity.org/military/library/policy/army/fm/3-04-500/index.html

Verhoeff, M., Verhagen, W. J. C., & Curran, R. (2015). Maximizing Operational Readiness in
Military Aviation by Optimizing Flight and Maintenance Planning. Transportation Research
Procedia, 10, 941-950. http://doi.org/10.1016/j.trpro.2015.09.048

Xidonas, P., Mavrotas, G., & Psarras, J. (2010). Equity portfolio construction and selection using
multiobjective mathematical programming. Journal of Global Optimization, 47(2), 185-209.
http://doi.org/10.1007/s10898-009-9465-4

Yeung, T. G., Cassady, C. R., & Pohl, E. A. (2007). Mission Assignment and Maintenance Scheduling
for Multi-State Systems. Military Operations Research, 12(1), 19-34.

Zhang, W., & Reimann, M. (2014). A simple augmented €-constraint method for multi-objective
mathematical integer programming problems. European Journal of Operational Research,

234(1), 15-24. http://doi.org/10.1016/j.¢jor.2013.09.001

141

Institutional Repository - Library & Information Centre - University of Thessaly
12/05/2024 17:28:17 EEST - 18.118.9.86



