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Περίληψη

Η παρούσα διατριβή πραγματεύεται την ανάπτυξη μοντέλων μαθηματικού προγραμματισμού και

αλγορίθμων βελτιστοποίησης για το πρόβλημα του σχεδιασμού του πτητικού έργου και των εργασιών

περιοδικής συντήρησης επιχειρησιακών αεροσκαφών (στρατιωτικών ή πυροσβεστικών αεροσκαφών,

ελικοπτέρων έρευνας και διάσωσης, κτλ.). Το πρόβλημα ανακύπτει στην καθημερινή λειτουργία μιας

πτέρυγας επιχειρησιακών αεροσκαφών της Πολεμικής Αεροπορίας. Τα μαθηματικά μοντέλα που

αναπτύσσονται προέρχονται από την ευρύτερη περιοχή της επιχειρησιακής έρευνας (γραμμική, μη

γραμμική, ακέραια, και πολυκριτήρια βελτιστοποίηση), ενώ οι αλγόριθμοι επίλυσης είναι τόσο

ευρετικοί όσο και αναλυτικοί, έτσι ώστε να παρέχεται ένα ικανοποιητικό αντιστάθμισμα ανάμεσα

στην ποιότητα των παραγόμενων λύσεων και στους υπολογιστικούς πόρους που απαιτούνται για την

εύρεση των λύσεων αυτών.

Αρχικά, έγινε η μορφοποίηση του προβλήματος με τη χρήση τεχνικών μοντελοποίησης

μαθηματικού προγραμματισμού. Για το σκοπό αυτό, αναπτύχθηκαν διάφορα εναλλακτικά μοντέλα

μεικτού ακέραιου προγραμματισμού, τα οποία διαφοροποιούνται ως προς την αντικειμενική

συνάρτηση (στόχο) που χρησιμοποιούν ως μέτρο απόδοσης, αλλά και ως προς τους περιορισμούς που

υιοθετούν για τον καθορισμό των εφικτών λύσεων του προβλήματος. Η μελέτη των μοντέλων αυτών

κατέδειξε ότι, αν και η εφαρμογή τους οδηγεί στην εύρεση ολικά βέλτιστων λύσεων, οι υπολογιστικές

τους απαιτήσεις είναι συχνά απαγορευτικές για προβλήματα ρεαλιστικού μεγέθους. Η παρατήρηση

αυτή ώθησε τη σχετική έρευνα στην ανάπτυξη εξειδικευμένων αλγορίθμων για την επίλυση του

προβλήματος. Προς την κατεύθυνση αυτή, αναπτύχθηκαν αρχικά ευρετικοί αλγόριθμοι επίλυσης, οι

οποίοι έχουν την ικανότητα να προσεγγίζουν την ολικά βέλτιστη λύση με χαμηλές υπολογιστικές

απαιτήσεις, χωρίς όμως να παρέχουν εγγυήσεις για την εύρεσή της. Στη συνέχεια, η σχετική έρευνα

στράφηκε στην ανάπτυξη αναλυτικών αλγορίθμων επίλυσης, έτσι ώστε να καταστεί εφικτή η εύρεση
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της ολικά βέλτιστης λύσης του προβλήματος. Για το σκοπό αυτό, αναπτύχθηκαν 4 τέτοιοι αλγόριθμοι.

Ο πρώτος μπορεί να εφαρμοστεί όταν ο χρονικός ορίζοντας σχεδιασμού αποτελείται από μία χρονική

περίοδο, ενώ ο δεύτερος όταν αποτελείται από πολλές. Οι άλλοι δύο αλγόριθμοι ενσωματώνουν μία

επιπλέον αντικειμενική συνάρτηση, έτσι ώστε εκτός από τη μεγιστοποίηση της διαθεσιμότητας των

αεροσκαφών να επιτυγχάνεται και η ελαχιστοποίηση της μεταβλητότητάς της. Αυτή είναι μία

σημαντική λειτουργική απαίτηση του εξεταζόμενου προβλήματος, καθώς οδηγεί σε επιχειρησιακή

ετοιμότητα η οποία δεν μεταβάλλεται σημαντικά από περίοδο σε περίοδο.

Για την υλοποίηση των προτεινόμενων μοντέλων μαθηματικού προγραμματισμού και

αλγορίθμων επίλυσης, καθώς και για την εκτέλεση των σχετικών υπολογιστικών πειραμάτων,

χρησιμοποιήθηκαν τα εμπορικά λογισμικά βελτιστοποίησης IBM ILOG CPLEX και LINGO, καθώς

και η γλώσσα προγραμματισμού C/C++. Η ανάλυση των αποτελεσμάτων που προέκυψαν από την

εκτέλεση των υπολογιστικών πειραμάτων κατέδειξε ότι οι επιδόσεις των εξειδικευμένων αλγορίθμων

που αναπτύχθηκαν είναι σαφώς ανώτερες από τις επιδόσεις εμπορικών λογισμικών βελτιστοποίησης

που μπορούν να χρησιμοποιηθούν εναλλακτικά για την επίλυση του προβλήματος. Ως εκ τούτου, οι εν

λόγω αλγόριθμοι καθιστούν εφικτή την αποτελεσματική αντιμετώπιση προβλημάτων ρεαλιστικού

μεγέθους.

Institutional Repository - Library & Information Centre - University of Thessaly
12/05/2024 17:28:17 EEST - 18.118.9.86



viii

UNIVERSITY OF THESSALY

SCHOOL OF ENGINEERING

DEPARTMENT OF MECHANICAL ENGINEERING

Dissertation

OPTIMAL ALLOCATION OF FLIGHT AND MAINTENANCE HOURS

TO MISSION AIRCRAFT. FORMULATIONS, SOLUTION

ALGORITHMS AND COMPUTER IMPLEMENTATIONS

by

ANDREAS GAVRANIS

B.Sc. in Electronics and Telecommunications Engineering,

Hellenic Air Force Academy, 2003

M.Sc. in Mechanical Engineering, University of Thessaly, 2008

Submitted in partial fulfillment

of the requirements for the degree of

Doctor of Philosophy

2017

Institutional Repository - Library & Information Centre - University of Thessaly
12/05/2024 17:28:17 EEST - 18.118.9.86



ix

© 2017 Andreas Gavranis

The approval of this PhD Dissertation by the Department of Mechanical Engineering of the School of

Engineering of the University of Thessaly does not imply acceptance of the writer’s opinions (Law

5343/32 article 202 par.2).

Institutional Repository - Library & Information Centre - University of Thessaly
12/05/2024 17:28:17 EEST - 18.118.9.86



x

Approved by:

First Examiner Dr. George Kozanidis
(Supervisor) Assistant Proffesor, Department of Mechanical Engineering, University of

Thessaly

Second Examiner Dr. George Liberopoulos
Professor, Department of Mechanical Engineering, University of Thessaly

Third Examiner Dr. Athanasios Ziliaskopoulos
Professor, Department of Mechanical Engineering, University of Thessaly

Fourth Examiner Dr. Georgios K. Saharidis
Assistant Proffesor, Department of Mechanical Engineering, University of
Thessaly

Fifth Examiner Dr. Michael Doumpos
Associate Professor, School of Production Engineering and Management,
Technical University of Crete

Sixth Examiner Dr. Athanasios Mygdalas
Chaired Professor, Department of Business Administration, Technology and
Social Sciences, Luleå University of Technology, Sweden

Seventh Examiner Dr Christos Tarantilis
Professor, Department of Management Science and Technology, Athens
University of Economics

Institutional Repository - Library & Information Centre - University of Thessaly
12/05/2024 17:28:17 EEST - 18.118.9.86



xi
Institutional Repository - Library & Information Centre - University of Thessaly
12/05/2024 17:28:17 EEST - 18.118.9.86



xii

Acknowledgements

First and foremost, I would like to thank my dissertation supervisor, Assistant Professor Dr. George

Kozanidis, for his valuable help and guidance throughout this work. I am also grateful to Dr. George

Liberopoulos and Dr. Athanasios Ziliaskopoulos for the valuable knowledge I acquired from them

during my post-graduate studies, as well as to the other members of the examining committee of my

dissertation, Dr. George Sacharidis, Dr. Michael Doumpos, Dr. Athanasios Mygdalas and Dr. Christos

Tarantilis for the thorough examination of my work. I owe grateful thanks to all my professors who

helped me enhance my knowledge, so as to obtain the essential theoretical background for the

completion of this demanding dissertation. I am also truly thankful to my parents, Thanasis and Meni,

and my sister Aspelina for their unconditional love and endless support. Above all, I thank my wife

Maria for her understanding and her encouragement, especially through the last period of my effort

during which she gave birth to our son, as well as her mother Konstantina for her constant support. I

promise to my son Athanasios that I will be the first to teach him the value of education and critical

thinking, and I sincerely wish that this effort will be an exemplary guide, so that he always works hard

in life for everything he aspires to achieve.

I dedicate this dissertation to my parents, my wife and my son.

Andreas Gavranis

Institutional Repository - Library & Information Centre - University of Thessaly
12/05/2024 17:28:17 EEST - 18.118.9.86



xiii

OPTIMAL ALLOCATION OF FLIGHT AND MAINTENANCE HOURS

TO MISSION AIRCRAFT. FORMULATIONS, SOLUTION

ALGORITHMS AND COMPUTER IMPLEMENTATIONS

ANDREAS GAVRANIS

University of Thessaly, Department of Mechanical Engineering, 2017

Dissertation Advisor: Dr. George Kozanidis, Assistant Professor in Optimization Methods of

Production/Service Systems

Abstract

This dissertation addresses the Flight and Maintenance Planning (FMP) problem, i.e., the problem of

deciding which available aircraft to fly and for how long, and which grounded aircraft to perform

maintenance operations on in a group of aircraft that comprise a unit. FMP is an important decision

making problem arising at the typical operation of the Hellenic Air Force (HAF). The aim is to

maximize the fleet availability of the unit, while also ensuring that certain flight and maintenance

requirements are satisfied.

We develop several optimization models for the formulation of the FMP problem, which

accommodate various objective functions as well as constraint sets. These models handle small

problem instances effectively, but tend to be computationally inefficient for larger problems, such as

the ones that arise in practice. With this in mind, we first develop heuristic approaches which can

provide near optimal solutions in insignificant solution times. Due to the fact that these approaches

often generate solutions which are far from the optimum, we go on to develop exact solution

algorithms for the FMP Problem, which are capable of identifying the exact optimal solution of

considerably large realistic problems in reasonable computational times. The first algorithm that we

develop handles the single period version of the problem, whereas the second one handles the multi-

period one.

A crucial difficulty that often arises in practice relates to the fact that the fleet availability of the

solutions provided by the aforementioned methodologies often exhibits significant variability. In order

to handle this difficulty, we develop a multi-objective FMP model next, which includes an additional

objective minimizing the variability of the fleet availability. For this model, we develop two exact

solution methods, which are capable of identifying the entire frontier of non-dominated solutions.
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In order to test the performance of the proposed optimization models, we used the commercial

optimization solvers IBM ILOG CPLEX and LINGO; for the development of the specialized solution

algorithms, we used the C/C++ programming language. The experimental results that we present

demonstrate the high efficiency of the proposed solution methodologies on both randomly generated

as well as on realistic problem instances, as compared to the traditional approaches that can be used

alternatively for the solution of the problem under study.
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Chapter 1 Introduction

Before delving into the mathematical content of this dissertation, we first provide some context and

motivation. This dissertation grew out of research in the area of optimization. Optimization deals with

the development and application of mathematical programming techniques for the solution of complex

decision-making problems. Evidence of vigorous research activity within this field is easy to

document. This introduction gives an overview of the motivation for dealing with the specific problem

under consideration, states the dissertation’s main contributions, and provides a guide through the

chapters to follow.

1.1 Motivation and background

The Air Force and the commercial airline industry have several similarities, but also exhibit significant

differences. Safety is the most important factor in both industries; however, while maximization of

profit is naturally the overall objective in the commercial airline industry, maximization of the

readiness to respond to external threats is the main objective in the Air Force. Therefore, military

aircraft operational problems should generally be treated differently than traditional problems arising

in the commercial airline industry.

A significant part of the total operational budget of a fleet is spent for maintaining the aircraft

that comprise it. In the commercial airline industry, there are four different levels of maintenance

which differ from each other in philosophy, duration, and frequency of occurrence. They are:

• Type "A" Check: This check is performed every 65-100 flight hours or once a week. It

includes inspection of all major components and systems of the aircraft, such as the landing

system, the engines, and the control surfaces.

• Type "B" Check: This check is performed every 300-600 flight hours and includes lubrication

of all moving parts and thorough optical testing of several components, such as the rear wing

and the slope surfaces. Both Type A and Β checks are usually performed overnight so that the

aircraft becomes operational in the next morning. If the necessary equipment is available, Type

"A" and "B" checks are usually performed on site, at the base location of the aircraft.

• Type "C" and Type "D" Checks: These are more costly and time consuming checks

performed every one and four years, respectively, which require grounding of the aircraft for

several weeks. Type "C" and "D" checks are only performed in special facilities that have the

necessary equipment and know-how.
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Military aircraft are usually categorized according to their type or the mission that they can

accomplish. Typical missions are pilot training, recognition and repulsion of enemy aircraft,

bombardment, etc. The safety standards of military aircraft are usually prescribed by their

manufacturer; due to the fact that there are a few such manufacturers worldwide, the standards used by

Air Force organizations of different countries are often similar. Each aircraft must be grounded for a

routine maintenance check as soon as it completes a certain number of flight hours since its last

maintenance check. There are also restrictions regarding calendar time (as opposed to flight time) and

number of takeoffs, but they are rarely used in practice, because the flight time restrictions usually

apply sooner.

In the current dissertation, we address the problem of the joint flight and maintenance planning

(FMP) of military aircraft. The FMP problem poses the question of which available aircraft should fly

and for how long, and which grounded aircraft should perform maintenance operations, in a group of

aircraft that comprise a combat unit. The objective is to achieve maximum availability of the unit over

the planning horizon. The FMP problem is a very important decision making problem in the Air Force.

Due to the fact that it involves both operations as well as maintenance related decisions, we treat it as a

unified operational problem.

The FMP problem arises as an important decision making problem in the typical operation of

the HAF. The HAF is primarily responsible for Greece’s national air defence. It is split into four

Divisions: Division of Tactical Air Force, Division of Air Support, Division of Air Training, and a

fourth division, responsible for other units and services. All units responsible for air operations and

missions belong to the Division of Tactical Air Force. Further down the organizational structure of the

Division of Tactical Air Force, we find the Combat Wings, which are subdivided into squadrons. The

HAF is supported by a three-level maintenance program as follows:

• 1st level maintenance (organizational level): This check is performed on site and includes

inspection, repair, and parts replacement.

• 2nd level maintenance (intermediate level): This check is performed on site and includes

more thorough inspection, repair, and parts replacement than the 1st level maintenance.

• 3rd level maintenance - Manufacturer's maintenance (depot level): This check is performed

in special facilities by specially trained professionals. It includes more thorough repair and parts

replacement than the other two levels.

The key challenges faced by military managers around the world are readiness, affordability and

increased operational workload. At the same time, the associated budgets become increasingly tighter.

This implies that existing aerospace platforms and systems must remain in service much longer than

originally expected. The B-52 Stratofortress, for example, which entered the U.S. Air Force inventory
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in 1954, has served in recent operations "Enduring Freedom" and "Iraqi Freedom" and is expected to

continue flying until 2040, after being upgraded between 2013 and 2015.

High operational workload cannot be handled easily by aging fleets, however. Maintenance

costs tend to rise, fleet availability decreases, and obtaining out-of-production spare parts becomes

expensive and difficult. Platforms also need upgrades to keep them relevant in today's integrated

battlespace. It is estimated that, while the development and production of a military aircraft system

make up only about 30 percent of a government's total ownership cost, the overwhelming 70 percent

of total cost regards sustainment and support functions, such as program planning and data

management, training, developing and updating technical manuals, purchasing and managing spare

parts and support equipment, and carrying out maintenance, modifications, upgrades and other aging

aircraft initiatives.

While the importance of the maintenance functions of fleet organizations has received

considerable attention, its linkage to the operations functions has been overlooked. Traditionally, the

maintenance functions have been considered separately from the operations functions. One of the main

reasons for this separation has been the difficulty in information exchange and the lack of

communication between operations and maintenance. As a result, these two functions often appear to

operate competitively, although their ultimate aim is common. The vast progress of real time

information management systems during recent years has made it possible to look into the entire fleet

management organization as an integral system and optimize all its major parts towards the primary

mission.

Even though our work is carried out within the context of a military application, our model can

be applied to several non-military applications, such as planning for fire-fighting aircraft, rescue

choppers, etc. The lack of effective synchronization of flight and maintenance operations in these

applications, too, may have devastating results. Such was the case, for example, in the week of August

21-27, 2006, when an immense forest fire in the region of Chalkidiki, Greece, burned more than

13,000 acres of virgin fir and pine forest and olive groves, as well as tens of homes, tourism

infrastructure, livestock and agricultural installations and machinery. At the peak of the blaze on the

second day, the fire had extended over a 20 mile front. Government officials admitted that the low

number of fire-fighting planes that initially responded to the blaze was due to three aircraft

experiencing mechanical problems and another six temporarily grounded for regular maintenance

(ANA, 2006).

Institutional Repository - Library & Information Centre - University of Thessaly
12/05/2024 17:28:17 EEST - 18.118.9.86



Chapter 1 Introduction

4

1.2 Dissertation contributions

The main contribution of the present work lies in the development of various mathematical

optimization models for the FMP problem along with the specialized algorithms that facilitate their

efficient solution. These operations research tools comprise a useful toolset that the aviation

commanders and the maintenance managers can utilize to address many aspects of the FMP problem

effectively. We also study interesting variants of the problem under consideration, and we illustrate

how the proposed methodology can be modified in order to accommodate them. The extensive

computational results that we present demonstrate the performance of the proposed solution

methodologies, and the impact that several key parameters have on their behavior.

The beginning part of the present research was based on the study of three existing

mathematical optimization models for the FMP problem (Kozanidis, 2009; Kozanidis et al., 2010).

The first two of these models are single-objective mixed integer linear programs incorporating

alternative definitions of the unit availability, while the third one is a multi-objective mixed integer

linear program accommodating each of these definitions as a separate objective. The latter of these

models seems to exhibit wider applicability and produce, in general, solutions of higher quality. The

computational effort that these models need in order to reach the optimal solution increases rapidly

with problem size. As a result, their applicability on large scale problem instances such as the ones

that arise in practice is quite limited.

With this in mind, we develop two heuristic solution procedures first for solving the FMP

problem. The first one utilizes a technique which is widely used in an ad-hoc manner for the

production of aircraft flight and maintenance plans in many Air Force organizations worldwide. This

technique is based on a practical “sliding scale scheduling” or “aircraft flowchart” graphical tool for

scheduling aircraft for phase/periodic inspection and deciding which aircraft should fly certain

missions. The second heuristic procedure works by decomposing a large problem into smaller sub-

problems and solving each of these subproblems separately. We develop the theoretical background on

which these heuristics are based, we provide in detail the algorithmic steps required for their

implementation, and we analyze their worst-case computational complexity. We also present

computational results illustrating their computational performance on random problem instances, and

we evaluate the quality of the solutions that they produce. The size and parameter values of some of

these instances are quite realistic, making it possible to infer the performance of the heuristics on real

world problem instances. Our computational results demonstrate that, under careful consideration,

these heuristics can handle quite large FMP instances effectively, yielding satisfactory solutions in

insignificant solution times.
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Our computational experience suggests that an effective FMP model should ideally be able to

provide solutions whose fleet availability exhibits low variability. This is mainly due to the fact that,

since the FMP model is considered in subsequent rolling horizons in practice, the transition into the

next planning horizon should always be as smooth as possible. With this in mind, we develop a single-

period optimization model that establishes a balanced allocation of the flight load and the maintenance

capacity to the individual aircraft of the unit, so that its long term availability is kept at a high and

steady level. This model is a mixed integer nonlinear program, which minimizes a least squares index

expressing the total deviation of the individual aircraft flight and maintenance times from their

corresponding target values. Utilizing this model’s special structure and properties, we develop an

exact algorithm for obtaining its optimal solution. We analyze the computational complexity of this

algorithm, and we present computational results demonstrating that its performance is superior to that

of a commercial optimization package that can be utilized alternatively to this end.

Next, we consider the multi-period FMP problem. In order to overcome the excessive

computational requirements of exact optimization models and the inferior quality of the solutions

produced by heuristic techniques, we develop an exact solution algorithm for this problem. Exploiting

the problem’s special structure, this algorithm is capable of identifying the optimal solution of

considerably large realistic problems in reasonable computational times. This is achieved by solving

suitable relaxations of the original problem and utilizing valid cuts which guide the search towards the

optimal solution. The extensive experimental results that we present demonstrate that the algorithm’s

performance on realistic problems is superior to that of two popular commercial optimization software

packages; on the other hand, they show that the opposite is true for a class of problems with special

characteristics deviating considerably from those of realistic problems. The important conclusion is

that the proposed algorithm, complemented by generic optimization software, can handle effectively a

large variety of FMP problem instances.

We conclude this dissertation with the development of a mixed integer programming model,

which, besides the typical objective maximizing the fleet availability, also includes an additional

objective minimizing its variability. Motivated by the fact that the application of the typical ε-

constraint reduced feasible region approach to this biobjective model exhibits substantial

computational difficulties, we also develop two specialized solution methodologies for this problem.

Both methodologies identify the entire frontier of non-dominated solutions, utilizing suitable

relaxations of the original model and exploiting the fact that the domain comprising possible fleet

availability values is a discrete set. The first one disaggregates the original FMP model into smaller

sub-problems whose solution is attained much more efficiently due to their reduced size. The second

one is a variant of the ε-constraint method, applied to a suitable relaxation rather than the original

FMP model. We present extensive computational results which assess the efficiency of the proposed
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solution methodologies and demonstrate that their performance is significantly superior to that of the

typical ε-constraint method.

1.3 Structure of the dissertation

The present dissertation presents original research, part of which has already been published in

scientific journals and is reprinted with permission from the publishers1. Its remainder is organized in

seven chapters and three appendices, as follows:

In Chapter 2 we review the related literature, while in Chapter 3 we present a detailed definition

of the problem under consideration and we elaborate on various issues related to the development of

accurate FMP optimization models. Chapter 4 presents the heuristic approaches that we developed for

the solution of the FMP problem. Chapters 5 and 6 present mathematical models and associated

solution algorithms for the single and the multi-period, respectively, version of the FMP problem.

Chapter 7 presents mixed integer programming models and associated solution algorithms for

the version of the problem in which the minimization of the fleet variability is also incorporated as an

additional objective. Chapter 8 summarizes the findings of this dissertation and points to fruitful

directions for future research. Appendices A and B contain proofs to a key proposition and a key

lemma utilized in Chapters 4 and 5, respectively. Appendix C lists the journal and conference

publications that have resulted from the present dissertation to date. Finally, Appendix D contains a

glossary of dissertation terms and acronyms.

1 ©Wiley, ©Springer, ©Elsevier
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Chapter 2 Literature Review

2.1 Introduction

Numerous problems dealing with the optimization of aircraft operations have been investigated in the

past. In this chapter, we review the related literature, focusing mostly on works that address military

related applications. First, we review works in the general field of military aircraft maintenance. Then,

we turn our attention to works that employ special purpose techniques in order to deal with military

aircraft organizational level maintenance activities and mission assignments. We conclude with a

review of the published papers which are more closely related to the problem under consideration, i.e.,

papers which deal with the problem of scheduling military aircraft for intermediate level phase

maintenance inspections and mission assignments.

2.2 General military aircraft maintenance works

The increasing importance of effective military aircraft maintenance was recently recognized by the

Operations Research and Management Science community (Horner 2006). The 2006 Franz Edelman

INFORMS Award for outstanding operations research and management science practice was

bestowed on Warner Robins Air Logistics Center (WR-ALC). WR-ALC, located in Georgia, U.S., is

responsible for the repair, modification and overhaul of various mission aircraft of the U.S. Air Force,

such as the F-15 Eagle and Strike Eagle, the C-130 Hercules models, the C-5 Galaxy, the C-17

Globemaster III, as well as their respective avionics system components. Working with Realization

Technologies and faculty from the University of Tennessee, WR-ALC used an operations research

technique called Critical Chain to reduce the number of C-5 aircraft undergoing repair and overhaul in

the depot from twelve to seven in just eight months. As a direct consequence, the time required to

repair and overhaul the C-5 aircraft was reduced by 33%.

Abrahao and Gualda (2006) present the results of a doctoral work which addresses the problem

of preventive maintenance scheduling of a fleet of vehicles. Besides developing an optimization model

formulation for this problem, the authors develop and test several ant colony based solution

approaches considering various instances of the maintenance scheduling problem. They also illustrate

the application of the proposed methodology for scheduling the preventive maintenance of an aircraft

fleet belonging to the Brazilian Air Force.
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Steiner (2006) develops a novel heuristic approach for preventive maintenance scheduling in the

Swiss Air Force, which sets up an initial maintenance plan and then employs a heuristic algorithm

consolidating the maintenance tasks in order to optimize it. By shifting usage-based and calendar-

based maintenance activities in order to realize mergers, the proposed methodology succeeds in

minimizing the total maintenance downtime, which, in turn, has a direct positive effect on aircraft

availability.

Hahn and Newman (2008) develop a mixed integer linear programming model for scheduling

the deployment and maintenance of the United States Coast Guard HH60J helicopters. The proposed

model schedules the maintenance of each helicopter based on its flight hours, and decides when it

should conduct operations either at home base or at one of two alternative deployment sites. The

schedule development considers different maintenance types, as well as the maintenance capacity and

various operational requirements such as the number of helicopters simultaneously patrolling a

deployment site.

In the context of stochastic approaches, a group of researchers from the Systems Analysis

Laboratory of the Helsinki University develop simulation models for the maintenance and repair of a

fleet of Bae Hawk Mk51 aircraft, both for the case of normal operation as well as for the case of

deployment under crisis situations. The related research has been published in a series of conference

papers (Raivio et al., 2001; Mattila et al. 2003, 2008; Mattila and Virtanen 2005, 2006). In a related

work, Mattila (2007) considers the assignment of aircraft to flight missions as a markov decision

process over a finite time horizon, and develops a methodology utilizing the average aircraft

availability as the optimization objective. The problem of finding an efficient assignment policy is

solved using a reinforcement learning approach called Q-learning. The performance of the Q-learning

approach is compared to a set of heuristic assignment rules using problem instances that involve a

variable number of aircraft and various types of periodic maintenance.

Mattila and Virtanen (2014) address the problem of scheduling maintenance for a fleet of fighter

aircraft and develop a multi-objective approach based on discrete-event simulation and simulated

annealing for the generation of non-dominated solutions. They also develop a multi-attribute decision

analysis model to support the maintenance decision maker in selecting the preferred non-dominated

solution. The authors choose a different set of objectives than those considered in the present work,

which focuses on maximizing the average aircraft availability and minimizing the average deviation

between the target and the actual starting times of the maintenance activities. The work of Mattila and

Virtanen differs from the present one in that it proposes a metaheuristic solution approach, and in that

it considers a stochastic model which incorporates uncertain durations for the aircraft activities as well

as the possibility of unexpected failures.
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2.3 Works on scheduling organizational level maintenance

Several published works address the problem of assigning a group of available aircraft to missions and

organizational level repair activities, so as to establish a high level of unit readiness. This is the case

with the work of Yeung et al. (2007), who develop a model-based methodology for mission

assignment and maintenance scheduling of systems with multiple states. The authors utilize heuristics

and simulation to solve the model, and illustrate its application on a hypothetical scenario of a fleet of

aircraft.

Safaei et al. (2011) develop a mixed integer optimization model to formulate the problem of

workforce-constrained maintenance scheduling for a fleet of military aircraft. The goal is to maximize

the aircraft that can be assigned to missions under maintenance scheduling and workforce availability

constraints. The model utilizes a network flow structure in order to simulate the flow of aircraft

between missions, the hangar and the repair shop, and is solved with generic optimization software.

In a recent related work, Bajestani and Beck (2013) address a dynamic repair shop scheduling

problem that takes into consideration flight requirements, aircraft failures, as well as maintenance

related capacity constraints. The goal is to assign aircraft to flights and schedule repair jobs, so as to

maximize the coverage of the unit flight requirements. The authors accommodate the stochasticity that

the problem exhibits by decomposing it into smaller static sub-problems, and propose several

alternative solution methodologies, including mixed integer programming, constraint programming,

logic-based Benders decomposition, and heuristics.

2.4 Works on intermediate level scheduled-phase maintenance

Although FMP is an important decision making problem encountered in several diversified areas, the

relevant published research is rather limited. Sgaslik (1994) introduces a decision support system for

maintenance planning and mission assignment of a helicopter fleet that partitions the master problem

into two subproblems which are solved separately. The first subproblem is called the Yearly Planning

Model (YPM). The YPM assigns helicopters to inspections and exercises, while also providing their

maintenance schedule and their flight hour distribution. The second model is called the Short Term

Planning Model (STPM). The STPM takes as input the maintenance schedule produced by the YPM

and returns the helicopters’ mission assignments. The author develops two elastic mixed integer

programs to formulate these two sub-problems and solves them using standard optimization software.

The YPM minimizes the cost associated with the violation of some of the problem’s constraints (e.g.,
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those referring to the required flight time, the maintenance capacity and the flight time of each

individual aircraft), while also maintaining a given lower bound on the fleet availability.

Pippin (1998) develops a MILP and a quadratic program for the FMP problem, which try to

establish a flight hour allocation that ensures a steady-state sequence of aircraft into phase

maintenance. Both these models minimize the cost associated with the deviations of the individual

aircraft residual flight times from their diagonal line target values, but neither of them incorporates the

apparent difficulties introduced by the maintenance aspect of the problem.

Kozanidis (2009) proposes a multi-objective MILP model for the FMP problem that maximizes

the minimum aircraft and flight time availability of the wing and of the squadrons that comprise it.

The proposed methodology utilizes the weighted sums approach (Geoffrion, 1968; Steuer, 1986) for

solving the problem, which cannot, in general, provide the entire non-dominated set. Kozanidis et al.

(2010) develop a single objective optimization model that maximizes wing aircraft availability while

imposing a lower bound on the number of available aircraft of each squadron over all periods and a

lower bound on the average residual flight time of each available aircraft.

The U.S. Department of the Army has released a Field Manual on Army Aviation Maintenance,

which describes a practical “sliding scale scheduling” or “aircraft flowchart” graphical tool for

scheduling aircraft for phase/periodic inspection and deciding which aircraft should fly in certain

missions (US DoA, 2000). Rosenzweig et al. (2010) develop a MILP to formulate the sliding scale

method for deciding the aircraft flight times. This model minimizes the penalty associated with the

deviation of the aircraft flight times from their diagonal target values, but does not consider the

maintenance requirements and the impact that they can have on the fleet availability of the unit. The

authors solve the model with generic optimization software and illustrate its application on a small

fleet of training aircraft.

Cho (2011) develops a MILP to model the FMP problem. The proposed formulation generates a

daily flight and maintenance plan that distributes the maintenance workload evenly across the

planning horizon. The main difference that this model exhibits with respect to the one that we address

in the current work is that it uses different definitions for the objective function and for the flight

requirements of the unit. With respect to the former, that model minimizes the maximum number of

aircraft in maintenance at any given time in order to smoothen the variability of the maintenance

demand over time. With respect to the latter, it translates the original flight load requirements into

specific flight assignments, which are successively assigned to the aircraft of the unit. The author also

considers a two-stage formulation that disaggregates the problem in order to determine the flight and

maintenance decisions separately. All the decisions pertaining to the flight or the maintenance

schedule are made in the first stage, while the remaining ones are determined in the second one. Both

the single and the two stage models are solved with generic optimization software, although a
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discussion that proposes equivalent alternative formulations and potential heuristic solution

approaches is also included.

Based on the work of Kozanidis and Skipis (2006), Verhoeff et al. (2015) develop a flight and

maintenance planning optimization model that incorporates the aspects of availability, serviceability

and sustainability for the RNAF CH47D Chinook helicopter fleet. The proposed model formulation

maximizes the minimum scheduled sustainability over the planning horizon, while also ensuring that

the variability of the residual flight time availability remains relatively low.
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Chapter 3 FMP Problem Definition and Model Development
Considerations

3.1 Introduction

Having presented a thorough literature review, in this chapter we address model development issues

related to the FMP problem. Specifically, we present the detailed problem definition, we elaborate on

alternative FMP objective function choices, and we discuss various issues related to the development

of accurate FMP optimization models. We also provide a basic overview of a common ad-hoc

approach that has been utilized to address the FMP problem.

3.2 Problem definition

The FMP problem arises as a routine operations management problem in a typical aircraft unit

(typically, a combat wing) of the HAF. Depending on the particular context, such a unit may consist of

several squadrons, each of which serves as the base for several aircraft types. When this is the case, we

often use the term "wing" to refer collectively to all the squadrons forming the unit together.

In order to retain a high level of unit readiness, at the beginning of each planning horizon the

unit command issues suitable flight requirements, which are also referred to as flight load. These

requirements determine the total time that the aircraft of the unit should fly in each corresponding time

period, and only small deviations are permitted from them. Separate requirements are issued for each

aircraft type, because different aircraft types have different flight capabilities and maintenance needs.

For this reason, the optimization models that we develop for addressing the FMP problem are suitable

for use on a specific aircraft type. Of course, each of these models can be applied repeatedly in order

to issue the plans of several aircraft types, if more than one aircraft types are present.

For each individual aircraft, we define its residual flight time as the total remaining time that

this aircraft can fly until it has to undergo a maintenance check. This time is also referred to as "bank

time" in the related military literature (US DoA, 2000). The residual flight time of an aircraft is

positive if and only if this aircraft is available to fly. At any time, the total residual flight time of the

unit is equal to the sum of the residual flight times of all the aircraft that belong to this unit. Of course,

there exist many possible combinations of individual aircraft residual flight times that can result in the

same total residual flight time for the unit. Similarly, we define the residual maintenance time of a

non-available aircraft as the total remaining time that this aircraft needs in order to complete its
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maintenance check. The residual maintenance time of an aircraft is positive if and only if this aircraft

is undergoing a maintenance check, and is therefore not available to fly.

For the maintenance needs of the unit, there exists a station responsible for providing service to

its aircraft. This station has certain space (also referred to as dock space) and time capacity

capabilities. Given the flight requirements for each time period and the physical constraints that stem

from the capacity of the maintenance station, the aim of the FMP problem is to issue a flight and

maintenance plan for each individual aircraft, so that the unit’s readiness to respond to external threats

(operational readiness) is maximized. In the military context, the operational readiness of a unit is

defined as follows by the North Atlantic Treaty Organization (NATO, 2015): “The capability of a

unit/formation, ship, weapon system or equipment to perform the missions or functions for which it is

organized or designed. May be used in a general sense or to express a level or degree of readiness.”

In accordance with the above definition, the readiness of a unit to respond to external threats is

defined as the capability of the unit to perform the assigned flight missions. This capability is

expressed in terms of the total number of aircraft that are available to fly (aircraft availability) and in

terms of the total residual flight time of all available aircraft (residual flight time availability).

The FMP problem refers mainly to the intermediate level scheduled maintenance, also called

phased maintenance, which is a time consuming activity that may lead to extended grounding of the

aircraft, and, as a consequence, affect adversely the unit fleet availability. It is a very important

decision making problem arising in the operation of numerous types of fleets, involving military or

fire-fighting aircraft, rescue choppers, etc.

3.3 Aircraft flowchart

A common empirical approach for addressing the FMP problem involves the utilization, in an ad-hoc

manner, of a 2-dimensional graphical tool called the aircraft flowchart, shown in Figure 3.1.
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Figure 3.1: Visual representation of the fleet availability with the aircraft flowchart

The vertical axis of this graph represents residual flight time, while the horizontal axis

represents the indices of the available aircraft in non-decreasing order of their residual flight times, 1

being the index of the aircraft with the smallest, and A being the index of the aircraft with the largest

residual flight time, where A is the total number of available aircraft. Consider the line segment (also

called the diagonal) that connects the origin with the point with coordinates (A, Y), where Y is the total

flight time of an aircraft between two maintenance inspections, also called phase interval. By mapping

each aircraft on this graph, we can visualize the unit’s fleet availability.

To describe the smoothness of the distribution of the total residual flight time among the

available aircraft, a total deviation index is used. This index is equal to the sum of squares of the

vertical distances (deviations) of the points mapping the residual flight times of the individual aircraft

from their corresponding target values on the diagonal. The smaller this sum is, the smoother the

distribution of the total residual flight time. Ideally, the total deviation index is equal to 0, when every

point lies on the diagonal, as shown in Figure 3.2. When issuing the flight plan of each individual

aircraft, the user is advised to keep each point as close to the diagonal as possible, in order to minimize

the value of the total deviation index.
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Figure 3.2: Ideal fleet availability distribution among the aircraft

In current practice, the aircraft flowchart is at best used as a graphical device by the aviation

commanders and the maintenance managers responsible for issuing the flight and maintenance plans.

For example, in an aviation maintenance manual of the U.S. Army where this flowchart is described

(US DoA, 2000), the user is simply advised to utilize the flowchart by “flying the aircraft that are

above the diagonal to get them down to the line” and “holding the aircraft that are below the diagonal

to bring them up to the line”. No particular instructions are given on how this can be implemented

effectively. Clearly, this procedure is highly subjective and dependent on numerous minor decisions

made by the user.

3.4 Alternative FMP objective functions

One of the most crucial decisions that need to be made towards the development of FMP optimization

models regards the choice of the objective function. Maximizing the readiness to respond to external

threats is the most appropriate measure of effectiveness for this application. As already explained, in

the military context the readiness of a unit to respond to external threats is typically expressed as the

total number of aircraft that are available to fly (aircraft availability) and as the total residual flight

time of all available aircraft (residual flight time availability). Although a certain degree of synergy

between the two exists, optimizing one of them may, in some cases, have an adverse effect on the

optimization of the other. Moreover, knowing one of the two gives no information about the way that

the other is distributed across the individual aircraft.
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This situation is highlighted in the example depicted in Figure 3.3, in which there is a large

number of available aircraft, but both the unit residual flight time availability, as well as the separation

between phases (periodic inspections), are particularly low. The label on top of each point in this

figure reveals the residual flight time of the corresponding aircraft. This situation is highly

problematic; many aircraft will soon need to enter the station for phase maintenance, but only a small

number of them will be able to do so due to the limited space capacity of the maintenance station. As a

consequence, the imminent flight load requirements of the unit cannot be met adequately.

Figure 3.3: An example of high aircraft availability and low residual flight time availability

An alternative situation is highlighted in the example depicted in Figure 3.4, in which the unit

residual flight time availability is high, but the number of available aircraft (aircraft availability) is

particularly low. In addition there is a gap in the separation between phases (periodic inspections),

similar to that of the previous example. This situation is also problematic, because the number of

available aircraft is not adequate to perform the necessary missions.
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Figure 3.4: An example of high residual flight time availability and low aircraft availability

Another related important decision concerns the question of whether the minimum or the total

fleet availability over a given planning horizon should be used as the problem objective. In the former

case, the focus is on finding the highest availability level that can be ensured for each time period of

the planning horizon, whereas in the latter one, the focus is on finding the highest availability level

that can be attained cumulatively over all time periods of the planning horizon, independently of how

this varies between individual ones. A common strategy that is often used in practice is to maximize

the total fleet availability, while also imposing an acceptable lower bound on the fleet availability of

each individual time period.

3.5 FMP model formulation considerations

Besides the objective function selection, several other important decisions are involved in the process

of developing an accurate FMP optimization model. In practice, these decisions should be made based

on the specific characteristics and requirements of each particular application. Furthermore, a

systematic study that evaluates and compares different choices may also be necessary in order to

choose the most appropriate model. In an effort to address a wide range of different problem

characteristics, we develop various FMP optimization model variants in this work. The various design

choices the user is faced with are discussed next and involve the length of the planning horizon, the

structure of the fleet unit, the satisfaction of the flight load and the number of objective functions.
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In practice, the flight load requirements refer to single-month time periods and are typically

issued over a planning horizon of 6 monthly periods. Several FMP optimization models focus on

maximizing the fleet availability within each individual planning horizon in isolation, without taking

into consideration the fact that, since FMP is an on-going problem repeatedly solved in successive

horizons, the transition into the next planning horizon must also be as smooth as possible. This clearly

results in plans which, although being optimal within each individual planning horizon, do not exhibit

certain desirable long-term characteristics, such as low variability. An inevitable side effect of this

behavior is the fact that the exact length of each planning horizon strongly affects the pattern of the

fleet availability; the longer this length, the lower the associated variability is expected to be. Still,

however, since the application of the model in subsequent rolling horizons is inevitable, the selection

of the planning horizon length is an important modeling choice.

As already mentioned, an aircraft unit (wing) may consist of several squadrons. While there is

only a single maintenance station responsible for the inspection of all aircraft, each squadron is

assigned separate flight load requirements. Wing officials are responsible for monitoring the fleet

availability of the wing, whereas squadron officials are responsible for monitoring the fleet availability

of the corresponding squadron. The incorporation of multi-squadron units adds a strong combinatorial

component to the problem, since distinct cases depending on which squadron an aircraft that enters or

exits the maintenance station belongs to need to be distinguished. The decision on whether the model

should accommodate distinct squadrons depends on the scheduling needs of the aviation commanders

and the maintenance managers and constitutes another important modeling choice.

In many practical cases, the actual problem definition calls for satisfaction of the flight load

requirements within some predefined tolerance, instead of their strict satisfaction. For example, a

maximum deviation of 5% from the target value of the flight load may be acceptable for each time

period of the planning horizon. The main effect of this is that it makes the total flight time of each time

period a decision variable instead of a known parameter.

Finally, single objective models only optimize a specific performance measure of a decision

making problem. However, in case that multiple performance measures need to be optimized

simultaneously, a corresponding multi-objective optimization model needs to be developed instead.

When this is the case, the adopted objective functions are usually conflicting, necessitating the search

for a suitable compromise between the alternative objective function levels.
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Chapter 4 Heuristic Solution Techniques

4.1 Introduction

Simple heuristic techniques used in practice to solve the FMP problem, such as the aircraft flowchart

tool (US DoA, 2000), often perform poorly generating solutions that are far from the optimum. On the

other hand, the more sophisticated mathematical models that have been developed to handle this

problem (e.g., Kozanidis, 2009; Kozanidis et al., 2010) solve small problems effectively, but tend to

be computationally inefficient for larger problems that often arise in practice. In this chapter, we

consider a multi-objective optimization model for the multi-period variant of the FMP problem, and

we develop two heuristic approaches for solving it.

The two heuristic algorithms that we develop have been roughly sketched in the earlier works of

Kozanidis (2009) and Kozanidis et al. (2010). In this chapter, we extend these two works by: i)

developing the theoretical background on which the proposed heuristics are based, ii) providing in

detail the algorithmic steps required for the implementation of these heuristics, iii) analyzing the

worst-case computational complexity of these heuristics, iv) presenting computational results

demonstrating the computational performance of these heuristics on random problem instances, and,

v) evaluating the quality of the solutions that these heuristics produce.

4.2 Multi-objective multi-period FMP model formulation

Having provided the FMP problem definition in the previous chapter, we present next a mathematical

model formulation that has been developed for the case in which the aircraft unit (also termed wing) is

divided into distinct squadrons. This formulation adopts the following mathematical notation:

Sets:

M : set of squadrons, indexed by m,

Nm : set of aircraft in squadron m, indexed by n.

Parameters:

T : length of the planning horizon,

Smt : flight load of squadron m in period t,

Bt : time capacity of the maintenance station in period t,

C : space capacity of the maintenance station,

Y : residual flight time of an aircraft immediately after it exits the maintenance station,
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G : residual maintenance time of an aircraft immediately after it enters the maintenance station,

A1mn : state (0/1) of aircraft n of squadron m at the first period of the planning horizon,

Y1mn : residual flight time of aircraft n of squadron m at the first period of the planning horizon,

G1mn : residual maintenance time of aircraft n of squadron m at the first period of the planning horizon,

Xmax : maximum flight time of an available aircraft in a single time period,

Ymin : lower bound on the residual flight time of every available aircraft,

Gmin : lower bound on the residual maintenance time of every grounded aircraft,

L, U : real numbers denoting the maximum deviation from the target value of the flight load that can

be tolerated,

K : a sufficiently large number.

Decision Variables:

z1 : minimum number of available aircraft of the wing over all periods,

z2 : minimum number of available aircraft in each squadron over all periods,

z3 : minimum residual flight time of the wing over all periods,

z4 : minimum residual flight time of each squadron over all periods,

amnt : binary decision variable that takes the value 1 if aircraft n of squadron m is available in period t,

and 0 otherwise,

ymnt : residual flight time of aircraft n of squadron m at the beginning of period t,

xmnt : flight time of aircraft n of squadron m in period t,

gmnt : residual maintenance time of aircraft n of squadron m at the beginning of period t,

hmnt : maintenance time of aircraft n of squadron m in period t,

dmnt : binary decision variable that takes the value 1 if aircraft n of squadron m exits the maintenance

station at the beginning of period t, and 0 otherwise,

fmnt : binary decision variable that takes the value 1 if aircraft n of squadron m enters the maintenance

station at the beginning of period t, and 0 otherwise,

qt, pmnt, rmnt : auxiliary binary decision variables.

The proposed FMP model (Kozanidis, 2009) is a mixed integer multi-objective linear program

with four objectives, formulated as follows:
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ymnt+1 = ymnt − xmnt + Ydmnt+1, m =1,…,|M|, n =1,…,|Nm|, t =1,..,T (4.2.9)

dmnt+1 ≥ amnt+1 − amnt, m =1,…,|M|, n =1,…,|Nm|, t =1,..,T (4.2.10)

amnt+1 − amnt + 1.1(1−dmnt+1) ≥ 0.1, m =1,…,|M|, n =1,…,|Nm|, t =1,..,T (4.2.11)

gmnt+1 = gmnt − hmnt + Gfmnt+1, m =1,…,|M|, n =1,…,|Nm|, t =1,..,T (4.2.12)

fmnt+1 ≥ amnt − amnt+1, m =1,…,|M|, n =1,…,|Nm|, t =1,..,T (4.2.13)

amnt − amnt+1 + 1.1(1−fmnt+1) ≥ 0.1, m =1,…,|M|, n =1,…,|Nm|, t =1,..,T (4.2.14)

Max z1 (4.2.1)

Max z2 (4.2.2)

Max z3 (4.2.3)

Max z4 (4.2.4)

s.t. 1
1 1

,  2,..., 1
mNM

mnt
m n

z a t T
 

   (4.2.5)
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, 1,..., , 2,..., 1
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mnt
n

z a m M t T


    (4.2.6)

3
1 1

,  2,..., 1
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mnt
m n

z y t T
 

   (4.2.7)

4
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z y m M t T


    (4.2.8)
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

    (4.2.15)

1 1
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mNM

mnt t
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h B t T
 

  (4.2.16)

1 1
(1 ) , 2,..., 1

mNM

mnt
m n

a C t T
 

    (4.2.17)
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The objective function (4.2.1) maximizes z1, which, by constraint set (4.2.5), denotes the

minimum number of available aircraft of the wing over all periods, while the objective function (4.2.2)

maximizes z2 which, by constraint set (4.2.6) denotes the minimum number of available aircraft of

each squadron over all periods. Similarly, the objective functions (4.2.3) and (4.2.4) maximize z3 and

z4 which, by constraint sets (4.2.7) and (4.2.8), denote the minimum residual flight time of the wing

and of each squadron, respectively, over all periods. Although the four objectives do not seem to be in

1 1
(1 ), 1,...,

mNM

t mnt t
m n

B h K q t T
 

    (4.2.18)

1 1 1 1
, 1,...,

m mN NM M

mnt mnt t
m n m n

g h Kq t T
   

    (4.2.19)

ymnt + Kpmnt ≤ K, m =1,…,|M|, n =1,…,|Nm|, t =1,..,T (4.2.20)

amnt+1 ≤ (ymnt − xmnt)K + Kpmnt, m =1,…,|M|, n =1,…,|Nm|, t =1,..,T (4.2.21)

gmnt + Krmnt ≤ K, m =1,…,|M|, n =1,…,|Nm|, t =1,..,T (4.2.22)

1-amnt+1 ≤ (gmnt − hmnt)K + Krmnt, m =1,…,|M|, n =1,…,|Nm|, t =1,..,T (4.2.23)

ymnt ≤ Yamnt, m =1,…,|M|, n =1,…,|Nm|, t = 2,...,T + 1 (4.2.24)

gmnt ≤ G(1-amnt), m =1,…,|M|, n =1,…,|Nm|, t = 2,...,T + 1 (4.2.25)

xmnt ≤ Xmaxamnt, m =1,…,|M|, n =1,…,|Nm|, t = 1,...,T (4.2.26)

ymnt ≥ Yminamnt, m =1,…,|M|, n =1,…,|Nm|, t = 2,...,T + 1 (4.2.27)

gmnt ≥ Gmin(1 − amnt), m =1,…,|M|, n =1,…,|Nm|, t = 2,...,T + 1 (4.2.28)

xmnt ≤ ymnt, m =1,…,|M|, n =1,…,|Nm|, t = 1,...,T (4.2.29)

hmnt ≤ gmnt, m =1,…,|M|, n =1,…,|Nm|, t = 1,...,T (4.2.30)

amn1 = A1mn, m =1,…,|M|, n =1,…,|Nm| (4.2.31)

ymn1 = Y1mn, m =1,…,|M|, n =1,…,|Nm| (4.2.32)

gmn1 = G1mn, m =1,…,|M|, n =1,…,|Nm| (4.2.33)

xmnt, hmnt ≥ 0; m =1,…,|M|, n =1,…,|Nm|, t =1,..,T (4.2.34)

ymnt, gmnt ≥ 0; m =1,…,|M|, n =1,…,|Nm|, t =2,..,T + 1 (4.2.35)

pmnt, rmnt, qt binary, m =1,…,|M|, n =1,…,|Nm|, t =1,..,T (4.2.36)

amnt, dmnt, fmnt binary, m =1,…,|M|, n =1,…,|Nm|, t =2,..,T + 1 (4.2.37)
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direct conflict with each other, all of them must be included in the model, otherwise the obtained

solution may not be satisfactory with respect to the objective that was omitted. Note that, under the

weighted sums approach, the 4 objectives are weighted, taking into account the tradeoffs that a

decision-maker is willing to make among the objectives. In this study, however, an actual decision-

maker was not involved in the analysis. Therefore, the weights of the objectives have been defined to

be inversely related to the objectives’ scales.

Constraint set (4.2.9) updates the residual flight time of each aircraft at the beginning of the next

period, based on its residual flight time at the beginning of the previous period and the time that it flew

during that period. Binary variable dmnt+1 takes the value 1 only when the corresponding aircraft exits

the maintenance station at the beginning of period t+1. In this case, its residual flight time is reset to Y

(also referred to as phase interval). Similarly, constraint set (4.2.12) updates the residual maintenance

time of each aircraft at the beginning of the next period, based on its residual maintenance time at the

beginning of the previous period and the time that it received maintenance during that period. Binary

variable fmnt+1 takes the value 1 only when the corresponding aircraft enters the maintenance station for

service at the beginning of period t+1. In this case, its residual maintenance time is reset to G.

Constraint sets (4.2.10), (4.2.11), (4.2.13) and (4.2.14) ensure that variables dmnt and fmnt take

appropriate values, based on the values of variables amnt. More specifically, consider the nth aircraft of

the mth squadron. Then, (amnt,amnt+1) can take any of the values (0,1), (0,0), (1,0) and (1,1) and the

dierence (amnt+1 - amnt) is equal to 1, 0, -1 and 0, respectively. Variable dmnt+1 should take the value 1

when (amnt,amnt+1) = (0,1) and this is ensured by constraint set (4.2.10). In any other case, dmnt+1 should

be equal to 0 and this is ensured by constraint set (4.2.11). Similarly, variable fmnt+1 should take the

value 1 when (amnt,amnt+1) = (1,0) and this is ensured by constraint set (4.2.13). In any other case, fmnt+1

should be equal to 0 and this is ensured by constraint set (4.2.14).

Constraint set (4.2.15) restricts the flight time of squadron m in period t to the interval [LSmt,

USmt] defined by variables L and U, ensuring that the flight load of each squadron and period

combination is satisfied. For example, when L = 0.95 and U = 1.05, a maximum deviation of 5% from

the target values of the flight requirements is permitted. Constraint sets (4.2.16) and (4.2.17) ensure

that the time and space capacity constraints of the maintenance station will not be violated in any time

period. Constraint sets (4.2.18) and (4.2.19) ensure that the maintenance station will not idle whenever

there is at least one aircraft waiting for service. With the introduction of the auxiliary binary variables

qt, it is ensured that the total maintenance time provided by the station in period t will be equal to the

minimum between the total time capacity of the station, and the total maintenance requirements in this

period.

Constraint sets (4.2.20) and (4.2.21) ensure that an aircraft's availability ceases as soon as its

residual flight time drops to 0. If ymnt > 0, the auxiliary binary decision variable pmnt in constraint
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(4.2.20) is forced to 0-value. In this case, constraint (4.2.21) forces amnt+1 to 0-value if ymnt = xmnt, since

this implies that the residual flight time of this aircraft drops to 0 at the end of period t. Similarly,

constraint sets (4.2.22) and (4.2.23) ensure that an aircraft becomes available as soon as its residual

maintenance time drops to 0. If gmnt > 0, the auxiliary binary decision variable rmnt in constraint

(4.2.22) is forced to 0-value. In this case, constraint (4.2.23) forces amnt+1 to 1 if gmnt = hmnt, since this

implies that the residual maintenance time of this aircraft drops to 0 at the end of period t.

Constraint set (4.2.24) states that the residual flight time of an aircraft cannot exceed Y, and

ensures that it will be 0 whenever this aircraft is not available. Similarly, constraint set (4.2.25) states

that the residual maintenance time of an aircraft cannot exceed G, and ensures that it will be 0

whenever this aircraft is available. Constraint set (4.2.26) imposes an upper bound on the maximum

time that an aircraft can fly during a single time period. Such a restriction is usually present due to

technical reasons. Constraint set (4.2.27) imposes a lower bound on the residual flight time of each

available aircraft, and constraint (4.2.28) imposes a lower bound on the residual maintenance time of

each non-available aircraft. These constraints are introduced to prevent an aircraft from ending up with

a negligible but positive residual flight or maintenance time. Constraint set (4.2.29) ensures that the

total time that an aircraft flies during a single period does not exceed its residual flight time at the

beginning of the same period. Similarly, constraint set (4.2.30) ensures that the total time that the

maintenance crew works on an aircraft during a single period does not exceed the residual

maintenance time of this aircraft at the beginning of the same period.

Constraint sets (4.2.31), (4.2.32) and (4.2.33) are used to initialize the state of the system at the

first period of the planning horizon. When an aircraft exits or enters the maintenance station at the first

period of the planning horizon, its residual flight and maintenance times are updated directly;

therefore, variables dmn1 and fmn1 are never used. Finally, constraints (4.2.34), (4.2.35) and (4.2.36),

(4.2.37) are the non-negativity and the integrality constraints, respectively.

Instead of the minimum fleet availability of the unit that is maximized in the above formulation,

the cumulative fleet availability of the unit may be maximized alternatively. To incorporate this, we

also consider two additional objectives for the above model, which maximize the number of available

aircraft and the residual flight time of the unit cumulatively over all periods of the planning horizon.

Of course, the distinction between wing and squadron availability is redundant in this case.

Mathematically, these two objectives are expressed as follows:

Max z5

Max z6

s.t.
1

5
1 1 2

mNM T

mnt
m n t

z a

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

Institutional Repository - Library & Information Centre - University of Thessaly
12/05/2024 17:28:17 EEST - 18.118.9.86



25

1

6
1 1 2

mNM T

mnt
m n t

z y

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

The computational effort that the above FMP model requires in order to reach an optimal

solution increases fast with problem size (Kozanidis, 2009). As a result, its applicability on large

problems is quite limited. This raises the need to develop alternative intelligent approaches in order to

address large FMP instances. To this end, in this chapter we develop two heuristic solution procedures,

which we call Aircraft Flowchart Heuristic (AFH) and Horizon Splitting Heuristic (HSH),

respectively. The above work sketches briefly these two heuristic solution procedures, but does not

present the theoretical background, the detailed algorithmic description, the computational complexity

analysis and the extensive computational results that we provide next.

4.3 Aircraft Flowchart Heuristic (AFH)

A common empirical approach to the FMP problem involves the utilization, in an ad-hoc manner, of a

2-dimensional graphical tool called the aircraft flowchart, presented in Section 3.3. AFH aims to

implement this procedure more systematically. We consider two different variants of this heuristic.

The first one takes into consideration the squadron each aircraft belongs to, whereas the second one

focuses on the wing and treats the aircraft as if they all belong to the same squadron. We call these two

variants AFH1 and AFH2, respectively, and we describe them next.

4.3.1 Aircraft Flowchart Heuristic 1 (AFH1)

The application of AFH1 requires a series of decisions in each period of the planning horizon. In order

to make these decisions, AFH1 determines a priority order for the unit’s squadrons, by computing a

priority index for each of them. The first such decision regards the time capacity of the maintenance

station. Knowing how this capacity will be allocated among the grounded aircraft determines the

number of dock spaces that will become available at the end of the current time period. In turn, this

has an effect on the production of the flight plan of each available aircraft.

In general, the priority index of each squadron is an indicator of how heavy its anticipated flight

load is with respect to its availability. The higher the priority index of a squadron, the higher the

priority that is given to the grounded aircraft of this squadron at the maintenance station. In our study,

we define the priority index of squadron m at the end of period t (0 ≤ t ≤ T-1) as Smt+1/
| |

1
1

.
mN

mnt
n

y 

 Thus,

the higher the flight requirements of a squadron in the next time period with respect to the residual

flight time availability of that squadron in the same time period, the higher its priority index is
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expected to be. Of course, the interested user can come up with additional definitions if necessary,

either by modifying this one, or by devising entirely new ones.

In each time period, the maintenance station continues incomplete service which is pending

from the previous period and allocates the extra time capacity to the remaining grounded aircraft in the

order determined by the priority indices of the squadrons. In order to free dock space and increase the

fleet availability of the unit, the station works continuously on the same aircraft until the service of

that aircraft is completed. Of course, the service of an aircraft may be spread out over more than one

time periods if not enough time capacity exists. Every time an aircraft finishes its maintenance service,

the priority index of the squadron it belongs to is updated, and the relative priority order of the

squadrons is adjusted accordingly.

The above procedure determines the number of dock spaces that will become available at the

beginning of period t+1. These spaces will be occupied by the aircraft that will enter the station for

service at the beginning of period t+1. An important decision that must be made subsequently pertains

to the order in which the squadrons will be considered for occupying the free dock space. Not

surprisingly, we utilize the priority indices to make this decision, too. More specifically, the aircraft of

the squadron with the highest priority index is considered for occupying dock space which is available

at the maintenance station first, and so on, until either no free dock space exists, or all squadrons have

been considered and no other aircraft will be grounded for service at the next time period.

The existence of a free dock space at the maintenance station does not automatically impose the

grounding of an available aircraft. Given that it is feasible, the grounding of an aircraft takes place if

its service is anticipated to begin in the next time period. This condition can be easily checked by

“simulating” the operation of the maintenance station over the next time period, since both its time

capacity and the residual maintenance times of the aircraft that will be grounded during the next time

period are already known. This rule is also in direct alignment with the current practice of the HAF

that strongly discourages the existence of unused maintenance time capacity. Even so, a case in which

the service of a grounded aircraft does not begin in the next period even though it was anticipated to

do so may actually come up. Such is the case, for example, when another aircraft that is grounded

based on a subsequent decision begins its service first, due to a higher assigned priority.

When the grounding of an aircraft is decided, this aircraft flies its entire residual flight time in

period t and enters the maintenance station for service at the beginning of period t+1; subsequently,

the priority index of the squadron it belongs to is updated accordingly. After the complete set of

aircraft that will be grounded at the beginning of period t+1 is determined, the flight times of the

aircraft of each squadron that will be available at the beginning of period t+1 are obtained by solving a

simple quadratic problem, as explained next.
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Assume that the aircraft of squadron m that will be available in period t+1 (let their total number

be A) are arranged on a flowchart in non-decreasing order of their residual flight times at the

beginning of period t. Let F be the set that contains the indices of the aircraft of this squadron that are

available in period t and will be grounded at the beginning of period t+1. These aircraft are not

displayed on this graph, since they won’t be available in period t+1. On the other hand, the aircraft of

this squadron which are grounded during period t and will exit the maintenance station at the

beginning of period t+1 are displayed with residual flight time equal to Y on this graph, but their

maximum flight time in period t is set equal to 0, to ensure that no flight hours will be assigned to

them. Let i be the index denoting the order of aircraft in this arrangement (1 ≤ i ≤ A), and let s = Y/A be

the slope of the diagonal. The target value for the residual flight time of the aircraft that appears in the

ith position at the beginning of period t+1 is equal to i.s. Thus, the problem of deciding the flight time

of each aircraft of squadron m reduces to the following quadratic programming problem:

For simplicity, the above formulation denotes each aircraft using one index (i or f), instead of

the indices m and n of the original formulation. The objective function minimizes the total deviation

index of squadron m that will be realized at the beginning of period t+1, which is equal to the sum of

squares of the deviations of the individual aircraft residual flight times from their corresponding target

values. The first set of constraints updates the residual flight time of the aircraft at the beginning of

period t+1. The next constraint ensures that the flight requirements of squadron m in period t will be

satisfied (index f scans the aircraft of squadron m that will enter the station for service at the beginning

of time period t+1). The next two sets of constraints impose upper bounds on the flight times of the

aircraft, based on their status during the previous time period. The next set of constraints imposes a

lower bound on the residual flight time of each available aircraft at the beginning of period t+1.

Finally, the last set of constraints accounts for the non-negativity of the flight times. Note that the

yit+1’s and the xit’s are decision variables in this formulation, whereas the yit’s and the yft’s are known

parameters. Setting Xi = min(Xmax, yit - Ymin), for i = 1,…, A: i is available in period t, and yit = Y, Xi = 0,

for i = 1,…, A: i is grounded in period t, we obtain the following equivalent formulation:

Min 2
1

1
( )

A

it
i

y is



s.t. yit+1 = yit - xit, i = 1,…, A

1 

   
A

mt it ft mt
i f F

LS x y US

xit ≤ Xmax , i = 1,…, A: i is available in period t
xit = 0, i = 1,…, A: i is grounded in period t

yit+1 ≥ Ymin, i = 1,…, A
xit ≥ 0, i = 1,…, A
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The problem defined by (4.3.1)-(4.3.4) is a quadratic program. The Hessian of the objective

function is diagonal with all diagonal elements equal to 2; therefore, it is positive semi-definite, which

implies that the objective function is convex. Hence, since all the constraints are linear, the KKT

conditions (see Bazaraa et al., 2006) are necessary and sufficient for optimality. We give next a simple

procedure called “Sweep” that can be utilized to obtain the optimal solution.

Figure 4.1: Illustration of Procedure “Sweep”

On the corresponding flowchart described above, consider a line parallel to the diagonal which

is initially placed far enough to the top, so that all the aircraft lie below it, as shown in Figure 4.1 (in

what follows, we do not distinguish between a point on the graph and the aircraft that this point

represents). Assume now that this line starts moving towards the diagonal (and past it, while always

remaining parallel to it), sweeping along vertically each aircraft that it comes across. Throughout this

move, flight times are accordingly assigned to the aircraft in the order that they are swept by the line.

If the flight time of an aircraft i reaches its maximum possible value, Xi, during this procedure, then

the line should “disengage” this aircraft and continue its move without sweeping it further, to ensure

Min 2

1
(( ) )

A

it it
i

y is x


  (4.3.1)

s.t.
1

-
 

 
A

mt ft it
f F i

LS y x (4.3.2)

1

-
 

 
A

it mt ft
i f F

x US y (4.3.3)

0 ≤ xit ≤ Xi, i = 1,…, A (4.3.4)
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that the resulting solution will remain feasible. Consider now the following 4 solutions that can be

obtained during the application of this procedure:

1. The solution in which the sum of the assigned aircraft flight times is equal to LSmt - .

 ft
f F

y In what

follows, we refer with “LL” to this sum.

2. The solution in which the sum of the assigned aircraft flight times is equal to USmt - .

 ft
f F

y In what

follows, we refer with “UL” to this sum.

3. The solution in which each aircraft, i, is assigned its maximum possible flight time, Xi. In what

follows, we refer with “X” to the sum of the assigned aircraft flight times of this solution.

4. The solution in which the sweeping line coincides with the diagonal. In what follows, we refer with

“D” to the sum of the assigned aircraft flight times of this solution.

The following is a crucial and interesting result, utilized in the development of AFH:

Proposition 4.1. If the quantities LL, UL, X and D are arranged in non-decreasing order, then:

a) If, after taking into consideration any ties present, there does not exist an arrangement in which LL

precedes X, then the problem defined by (4.3.1)-(4.3.4) is infeasible.

b) If an arrangement in which LL precedes X exists, then the optimal solution of the problem defined

by (4.3.1)-(4.3.4) is the one obtained by Procedure Sweep when the sum of the assigned aircraft flight

times becomes equal to the quantity that appears in the second place of this arrangement.

Proof. See Appendix A. �

The application of Procedure Sweep produces the flight time of each available aircraft in each

squadron of the unit. The same procedure is repeated successively for each time period, until the flight

and maintenance plans for the entire planning horizon are produced. Based on the theory developed

above, the detailed steps of AFH1 are introduced next using the additional notation presented below:

Samt = number of available aircraft of squadron m in period t

Sxmt = total flight time of squadron m in period t

Symt = total residual flight time of squadron m at the beginning of period t

Shmt = total maintenance time of squadron m in period t

Sgmt = total residual maintenance time of squadron m at the beginning of period t

exmt = number of aircraft of squadron m that exit the maintenance station at the end of period t

Bres = residual time capacity of the maintenance station

Cres = residual space capacity of the maintenance station

Aircraft Flowchart Heuristic 1 pseudocode
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Step 0: Initialization
Cres = C;
for m = 1 to |M| do

Sam1 = 0; Sym1 = 0; Sgm1 = 0;
for n = 1 to |Nm| do

amn1 = A1mn; Sam1 = Sam1 + amn1; Cres = Cres – 1 + amn1;
ymn1 = Y1mn; Sym1 = Sym1 + ymn1;
gmn1 = G1mn; Sgm1 = Sgm1 + gmn1;

end for
arrange in non-decreasing order of ymn1 the available aircraft of squadron m
arrange in non-decreasing order of gmn1 the grounded aircraft of squadron m

end for
for t = 1 to T do

Step 1: Production of maintenance plans for period t
Bres = Bt;
for m = 1 to |M| do

exmt = 0; Shmt = 0;
for n = 1 to |Nm| do

hmnt = 0;
end for

end for
while Bres > 0 and at least one grounded aircraft waiting for service exists do

if at least one grounded aircraft with interrupted service from previous periods exists
k =

   : squadron  has at least one
grounded aircraft with interrupted service

arg max
m M m

Smt /(Symt + (exmt * Y)); # squadron with max priority index

l = index of aircraft with lowest residual maintenance time among all grounded
aircraft with interrupted service in squadron k

else
k =

      : squadron  has at least
one grounded aircraft waiting for service

arg max
m M m

Smt /(Symt + (exmt * Y));

l = index of aircraft with lowest residual maintenance time among all grounded
aircraft waiting for service in squadron k

end if
if Bres > gklt
# if Bres suffices to finish the maintenance service of that aircraft

hklt = gklt; Shkt = Shkt + hklt; Bres = Bres - hklt;
Cres = Cres + 1; exmt = exmt +1;
# remove this aircraft from the set of grounded aircraft waiting for service

else
# if Bres does not suffice to finish the maintenance service of that aircraft

hklt = Bres; Shkt = Shkt + hklt; Bres = 0;
end if

end while
Step 2: Decision on aircraft that will be grounded in period t+1
for m = 1 to |M| do

Sxmt = 0;
for n = 1 to |Nm| do

xmnt = 0;
end for

end for
set of candidate aircraft includes all available aircraft
while Cres > 0 and the set of candidate aircraft is not empty do

k =
: squadron  contains

at least one candidate aircraft

arg max
m M m

(Smt - Sxmt)/(Symt - Sxmt + (exmt * Y)); # squadron with max priority index

l = index of candidate aircraft with lowest residual flight time in squadron k
if the check for grounding this aircraft is successful

xklt = yklt; Sxkt = Sxkt + xklt; Cres = Cres – 1; # ground this aircraft
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remove this aircraft from the set of candidate aircraft
else

remove all the available aircraft of squadron k from the set of candidate aircraft
end if

end while
Step 3: Production of flight plans for period t
for m = 1 to |M| do

apply Procedure Sweep to compute the flight time (xmnt) of each available aircraft
update Sxmt

end do
Step 4: Update of status for period t+1
for m = 1 to |M| do

Samt+1 = Samt; Symt+1 = Symt; Sgmt+1 = Sgmt;
for n = 1 to |Nm| do

if (amnt == 0 and hmnt == gmnt) # if this aircraft becomes available
amnt+1 = 1; Samt+1 = Samt+1 + 1;
ymnt+1 = Y; Symt+1 = Symt+1 + Y;
gmnt+1 = 0; Sgmt+1 = Sgmt+1 - hmnt;

else if (amnt == 1 and xmnt < ymnt) # if this aircraft retains availability
amnt+1 = 1;
ymnt+1 = ymnt - xmnt; Symt+1 = Symt+1 - xmnt;
gmnt+1 = 0;

else if (amnt == 1 and xmnt == ymnt) # if this aircraft is grounded
amnt+1 = 0; Samt+1 = Samt+1 – 1;
gmnt+1 = G; Sgmt+1 = Sgmt+1 + G;
ymnt+1 = 0; Symt+1 = Symt+1 - xmnt;

else if (amnt == 0 and hmnt < gmnt) # if this aircraft retains non-availability
amnt+1 = 0;
gmnt+1 = gmnt - hmnt; Sgmt+1 = Sgmt+1 - hmnt;
ymnt+1 = 0;

end if
end for

end for
end for �

4.3.2 Aircraft Flowchart Heuristic 2 (AFH2)

The application of AFH2 is similar to that of AFH1, the only difference being that AFH2 does not

utilize priority indices in order to arrange the aircraft of each squadron, but treats the aircraft as if they

all belong to the same squadron. The next aircraft to receive maintenance service is always the one

with the lowest residual maintenance time among all the grounded aircraft. Aircraft that are candidate

for entering the maintenance station are considered in non-decreasing order of their residual flight

times, independently of the squadron they belong to. The individual flight plan of each aircraft in each

time period is produced by solving the quadratic problem defined by (4.3.1)-(4.3.4) once for each

squadron. In the corresponding arrangement, however, the index i of each aircraft denotes its relative

order when all the aircraft of the wing (not only those of the squadron this aircraft belongs to) are

arranged in non-decreasing order of their residual flight times. Based on the theory developed above,

the detailed steps of AFH2 are introduced next. Note that a rearrangement of the order of available

aircraft takes place at the end of each time period in Step 4. This happens because the relative order
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between the available aircraft of different squadrons may change during the application of Procedure

Sweep, even though it remains unchanged within each squadron.

Aircraft Flowchart Heuristic 2 pseudocode

Step 0: Initialization
Same with Step 0 in AFH1 with the additional requirement that the available aircraft of the wing should be
arranged in non-decreasing order of ymn1 and the grounded aircraft of the wing should be arranged in non-
decreasing order of gmn1 at the end of this step
for t = 1 to T do

Step 1: Production of maintenance plans for period t
Bres = Bt;
for m = 1 to |M| do

Shmt = 0;
for n = 1 to |Nm| do

hmnt = 0;
end for

end for
while Bres > 0 and at least one grounded aircraft waiting for service exists do

if at least one grounded aircraft with interrupted service from previous periods exists
l = index of aircraft with lowest residual maintenance time among all grounded

aircraft with interrupted service
else

l = index of aircraft with lowest residual maintenance time among all grounded
aircraft waiting for service

end if
k = index of the squadron the selected grounded aircraft belongs to
if Bres > gklt # if Bres suffices to finish the maintenance service of the aircraft

hklt = gklt; Shkt = Shkt + hklt; Bres = Bres - hklt;
Cres = Cres + 1;
remove this aircraft from the set of grounded aircraft waiting for service

else
# if Bres does not suffice to finish the maintenance service of this aircraft

hklt = Bres; Shkt = Shkt + hklt; Bres = 0;
end if

end while
Step 2: Decision on aircraft that will be grounded in period t+1
for m = 1 to |M| do

Sxmt = 0;
for n = 1 to |Nm| do

xmnt = 0;
end for

end for
set of candidate aircraft includes all available aircraft
while Cres > 0 and the set of candidate aircraft is not empty do

l = index of candidate aircraft with lowest residual flight time
k = index of the squadron that aircraft belongs to
if the grounding check for this aircraft is successful

xklt = yklt; Sxkt = Sxkt + xklt; Cres = Cres – 1;
remove this aircraft from the set of candidate aircraft

else
remove all the available aircraft of squadron k from the set of candidate aircraft

end if
end while
Step 3: Production of flight plans for period t
Same with Step 3 in AFH1
Step 4: Update for period t+1
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Same with Step 4 in AFH1 with the additional requirement that the available aircraft of the wing should
be arranged in non-decreasing order of ymnt+1 after the status update of the aircraft of each squadron

end for �

4.3.3 Horizon Splitting Heuristic (HSH)

The second heuristic procedure that we propose for the solution of large FMP instances utilizes the

simple idea of splitting the original planning horizon into several consecutive ones, and applying an

FMP optimization model to each of them. The ending state of the system in each sub-horizon becomes

the beginning state of the next one, and so on. The smaller horizons do not necessarily need to have

equal lengths. The quality of the solution obtained this way is expected to be inferior to the one

obtained when the problem is solved up front for all the periods of the original planning horizon. On

the other hand, the total computational time needed in order to reach a solution is expected, in general,

to decrease, especially as the length of the smaller horizons decreases. This is mainly because the

computational effort needed to reach an optimal solution is expected (in general, but not necessarily

always) to increase as the size of the problem increases.

4.4 Computational implementation

In this section, we analyze the worst-case computational complexity of AFH1 and AFH2, and we

present computational results evaluating the performance of AFH1, AFH2 and HSH on randomly

generated FMP instances. Of course, each subproblem solved by HSH is itself an FMP optimization

model, and therefore, exhibits the same complexity.

4.4.1 Computational complexity of AFH1 and AFH2

In order to analyze the computational complexity analysis of AFH1, we prove an interesting result

first.

Lemma 4.1. The problem defined by (4.3.1)-(4.3.4) can be solved in time O(A), where A is the total

number of variables xit.

Proof. See Appendix B. �

Let max max mm M
N N


 and .m

m M
N N



  Propositions 4.2 and 4.3 utilize Lemma 4.1 in order to analyze

the computational complexity of AFH1 and AFH2, respectively.
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Proposition 4.2. AFH1 requires time O(max(|M|NmaxlogNmax,T|M|Nmax,T|M|2,T|M|C2,TC3)).

Proof. The dominating operation in Step 0 is the arrangement of the available and the grounded

aircraft that requires time O(NmaxlogNmax) and is executed |M| times. Therefore, the total time that Step

0 requires is O(|M|NmaxlogNmax). The initialization commands in the first 7 lines of Step 1 require time

O(|M|Nmax). The check in the while command of Step 1 requires time O(1). Checking if an aircraft with

incomplete service from previous periods exists requires time O(1). Finding the squadron with the

highest priority index among all the squadrons with aircraft with interrupted service (or all the

squadrons with aircraft waiting for service) requires time O(min(i,|M|)), where i is the number of

grounded aircraft (1 ≤ i ≤ C). Selecting the appropriate aircraft from that squadron requires time O(1),

since the grounded aircraft of each squadron are always sorted in non-decreasing order of their

residual maintenance times. The if-else clause that decides the maintenance time of the selected

aircraft requires time O(1). Since min(i,|M|) = C in the worst case, the while-loop of Step 1 is repeated

at most C times, with each repetition i (1 ≤ i ≤ C) requiring time O(C-i+1) for selecting the appropriate

squadron and aircraft, and time O(1) for deciding its maintenance time. Since C + (C-1) +...+ 1 =

( 1)
2

C C  , the total time required for this is O(C2). Note that this bound cannot be improved by sorting

in advance the squadrons with respect to their priority index, since one of these indices always

changes in each iteration, imposing a rearrangement. Therefore, Step 1 requires time O(|M|Nmax) +

O(C2) = O(max(|M|Nmax,C2)) in total.

The initialization commands in the first 7 lines of Step 2 require time O(|M|Nmax). For the while-

loop that follows, we distinguish two cases. The first case is when this loop is repeated |M|+C-1 times

(C-1 successful checks for grounding an aircraft first, followed either by |M|-1 unsuccessful and one

successful, or by |M| unsuccessful). This is the maximum possible number of times that this loop can

be repeated. The sequence of checks implies that the maintenance station is initially empty. Moreover,

simulating the operation of the maintenance station at the presence of i grounded aircraft requires time

O(i2), since there is a total of at most i iterations involved, where iteration k (1 ≤ k ≤ i) selects out of at

most i-k+1 squadrons the one with the highest priority index (again a prearrangement is not sufficient

to improve the bound, since one of these indices changes in each iteration) and assigns a maintenance

time to a grounded aircraft that belongs to that squadron. It follows that repetition i (1 ≤ i ≤ C-1)

requires time O(|M|) for selecting the squadron with the highest priority index and time O(i2) for

checking the condition for grounding the associated aircraft, while each repetition i of the next |M|

ones (C ≤ i ≤ |M|+C-1) requires time O(|M|+C-i) for selecting the squadron with the highest priority

index and time O((C-1)2) for checking the condition for grounding the associated aircraft. Therefore,

the total time required for the while-loop in this case is O((|M|+12) + (|M|+22) +...+ (|M|+(C-1)2) +

(|M|+(C-1)2) + (|M|-1+(C-1)2) +...+ (1+(C-1)2)) = O((C-1)|M| + (12+22+...+(C-1)2) + (1+2+...+|M|) +
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|M|(C-1)2) = O(C|M| - |M| + ( 1) (2( 1) 1)
6

C C C   +
( )( 1)

2
M M 

+ |M|C2 + |M| -2C|M|) =

O(|M|2+|M|C2+C3) = O(max(|M|2,|M|C2,C3)). The second case is when the while-loop is repeated |M|

times (|M| unsuccessful checks for grounding an aircraft from |M| distinct squadrons). In this case,

repetition i (1 ≤ i ≤ |M|) requires time O(|M|-i+1) for selecting the squadron with the highest priority

index, leading to a total bound of O(|M| + |M|-1 +...+ 1) = O(
( 1)

2
M M 

) = O(|M|2) for all |M|

selections (since the selected squadron is dropped at the end of each iteration, this bound can be

improved to O(|M|log|M|) by sorting in advance the |M| squadrons with respect to their priority index,

but this is neither known in advance, nor can it improve the overall bound of Step 2 computed next).

Additionally, since one aircraft is considered for entering the maintenance station at each iteration,

there are at most C-1 grounded aircraft; thus, the time required for this check is O((C-1)2). Hence, the

total time required for the while-loop is O(|M|2 + |M|(C-1)2) = O(max(|M|2,|M|C2)) in this case. Thus,

considering the worst of the above two cases, Step 2 requires time O(max(|M|2,|M|C2,C3,|M|2,|M|C2) =

O(max(|M|2,|M|C2,C3)) in total. In Step 3, solving |M| times the problem defined by (4.3.1)-(4.3.4)

requires time O(|M|Nmax) in total. Finally, updating the status of the system for period t+1 in Step 4

requires time O(|M|Nmax). Since Step 0 is executed once and each of Steps 1-4 is executed T times, the

total time required by AFH1 is O(|M|NmaxlogNmax + T(|M|Nmax + C2 + |M|2 + |M|C2 + C3+ |M|Nmax +

|M|Nmax) = O(max(|M|NmaxlogNmax,T|M|Nmax,T|M|2,T|M|C2,TC3)). �

Proposition 4.3. AFH2 requires time O(max(|M|NmaxlogNmax,TC,T|M|Nmaxlog|M|).

Proof. The arrangement of the available and the grounded aircraft of each squadron in Step 0 requires

time O(NmaxlogNmax) and is executed |M| times in total. The arrangement of the available and the

grounded aircraft of the wing requires time O(Nlog|M|), since the aircraft of each squadron are already

sorted. These are the two dominating operations in Step 0; therefore, the total time that Step 0 requires

is O(|M|NmaxlogNmax) + O(Nlog|M|) = O(|M|Nmaxmax(logNmax, log|M|)). The initialization commands in

the first 7 lines of Step 1 require time O(|M|Nmax). The check in the while command of Step 1 requires

time O(1). Checking if an aircraft with interrupted service from previous periods exists requires time

O(1). Selecting the grounded aircraft that should receive maintenance service next requires time O(1),

since the grounded aircraft of the wing are always sorted in non-decreasing order of their residual

maintenance times. The if-else clause that decides the maintenance time of the selected aircraft

requires time O(1). Since the while-loop of Step 1 is repeated C times in the worst-case, Step 1

requires time O(|M|Nmax) + O(C) = O(max(|M|Nmax,C)) in total.

The initialization commands in the first 7 lines of Step 2 require time O(|M|Nmax). For the while-

loop that follows, we distinguish two cases. The first case is when this loop is repeated |M|+C-1 times

(C-1 successful checks for grounding an aircraft first, followed either by |M|-1 unsuccessful and one
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successful, or by |M| successful). This is the maximum possible number of times that this loop can be

repeated. The sequence of checks implies that the maintenance station is initially empty. In this case,

repetition i (1 ≤ i ≤ |M|+C-1) requires time O(1) for selecting the appropriate aircraft and time O(1) for

checking whether it should be grounded. Therefore, the total time required for the while-loop is

O(|M|+C). The second case is when the while-loop is repeated |M| times (|M| unsuccessful checks for

grounding an aircraft from |M| distinct squadrons). In this case, each repetition requires time O(1) for

selecting the appropriate aircraft, and time O(1) for checking whether it should be grounded (since the

aircraft are treated as if they all belong to the same squadron, the “simulation” of the operation of the

maintenance station is trivial). Hence, the total time required for the while-loop is O(|M|). Thus,

considering the worst of the above two cases, Step 2 requires time O(|M|+C) in total. In Step 3, solving

|M| times the problem defined by (4.3.1)-(4.3.4), requires time O(|M|Nmax) in total. In Step 4, updating

the status of the system for period t+1 requires time O(|M|Nmax) and sorting the available aircraft of the

wing requires time O(Nlog|M|), since the available aircraft of each squadron are already sorted.

Therefore, the total time required by Step 4 is O(|M|Nmax+ Nlog|M|) = O(|M|Nmaxlog|M|). Since Step 0 is

executed once and each of Steps 1-4 is repeated T times, the total time required by AFH2 is

O(|M|NmaxlogNmax + |M|Nmaxlog|M| + T(max(|M|Nmax,C) + (|M|+C) + |M|Nmax + |M|Nmaxlog|M|)) =

O(max(|M|NmaxlogNmax,TC,T|M|Nmaxlog|M|). �

Note that, in most of the cases, the available aircraft of the wing will almost be sorted at the end

of Step 4. Therefore, sorting them will require time O(A) (using a sorting technique such as insertion-

sort); in such a case, the total time required by AFH2 will be O(max(|M|NmaxlogNmax,|M|Nmaxlog|M|,

T|M|Nmax, TC)).

4.4.2 Computational results

We implemented AFH1 and AFH2 in C/C++ and tested their performance against that of HSH and the

FMP model of Section 4.2. Since their design does not depend on the adopted objective function, we

only applied AFH1 and AFH2 once on each random problem instance. For the solution of FMP and

HSH, we utilized version 10.1 of AMPL/CPLEX (see Fourer et al., 2002), with default values where

possible. We performed all the experiments on a Dual Xeon server with a 2 GHz processor and 2 GB

system memory.

We used 12 different combinations for the values of |M|, |Nm| and T and solved 10 random

problem instances for each of them. We chose a smaller size for the problem instances of the first 8

combinations, in order to enable their exact solution with the FMP model, and evaluate this way the

quality of the solutions produced by the heuristics. On the other hand, the remaining 4 combinations

correspond to actual wing sizes encountered in the HAF, for which the FMP model cannot find the
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optimal solution in reasonable times. Since the data pertaining to real-world problem instances are

strictly confidential, we mainly use these problem instances to infer the performance of the heuristics

on real problem cases.

The value of |Nm| was always the same across all squadrons. For |M|, we used the values 2 and 3,

since typical HAF wings consist of 2 or 3 squadrons. In the first 8 combinations, the value of |Nm| was

taken equal to 6-10 when |M| = 2, and 6-8 when |M| = 3. In the remaining 4 combinations, we

considered the values 20 and 25 for |Nm|, to reflect the fact that a typical HAF squadron may contain

up to 20-25 aircraft. The value of T was always taken equal to 6, since the flight requirements are

typically issued for a planning horizon of 6 monthly periods.

The required flight time for each squadron and period combination was a random number

distributed uniformly in the interval [16|Nm|, 21|Nm|]. The time capacity of the maintenance station in

each time period was a random number distributed uniformly in the interval [21|M||Nm|, 26|M||Nm|],

and the space capacity was set equal to 0.1|M||Nm|, rounded up to the nearest integer. These figures

correspond to actual FMP configurations encountered in the HAF. We generated the number of

grounded aircraft randomly, using a discrete probability function that considered integer values

between 0 and C, inclusive. This distribution associated higher values with higher probabilities, in

order to favor more challenging problems. We set parameters Y and G equal to their actual values, i.e.,

300 and 320 hours, respectively. The residual flight time of each available aircraft was a random

number distributed uniformly in the interval [Ymin,Y], whereas the residual maintenance time of each

grounded aircraft was a random number distributed uniformly in the interval [Gmin,G]. We used actual

values drawn from the real application for the remaining problem parameters, i.e., L = 0.9, U = 1.1,

Xmax = 50, Ymin = 0.1 and Gmin = 0.1. We performed several checks to ensure that each randomly

generated problem instance was feasible.

First, we applied FMP and HSH as single objective models, adopting each of the 6 objective

functions presented in Section 4.2. The ideal value (see Ehrgott, 2005) of the corresponding objective

was obtained this way. Although the ideal values are useful for evaluating the quality of the solutions

produced by AFH1, AFH2 and HSH, a feasible solution that simultaneously attains them will rarely

exist. To assess this quality, we also solved each of the random problem instances using the weighted

sums approach (see Steuer, 1986) with two uniform weight combinations. In the first case, we

introduced positive weights w1 = w2 = w3 = w4 = 0.25 and we solved the FMP model with objective ZA

= 0.25(Y/2)z1 + 0.25|M|(Y/2)z2 + 0.25z3 + 0.25|M|z4. We introduced the constants (Y/2) and |M| for

scaling reasons, since the residual flight time of an available aircraft is equal to Y/2 on the average, and

increasing the fleet availability of every squadron by 1 is equivalent to increasing the fleet availability

of the wing by |M|. In the second case, we introduced positive weights w5 = w6 = 0.5 and we solved the

FMP model with objective ZB = 0.5(Y/2)z5 + 0.5z6. We also tested the performance of HSH using the
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objectives ZA and ZB, by splitting the original 6-period time horizon into two 3-period ones and

applying the FMP model twice.

Tables 4.1-4.3 compare the six criteria values provided by AFH1 with their corresponding ideal

values and show the fleet availabilities that the obtained solutions provide. More specifically, out of

the four columns that pertain to the same criterion, the first two show the average and maximum

percentage difference between each criterion value and its corresponding ideal value, whereas the next

two show the average and minimum associated availability. Results for the differences from the ideal

values are not reported for the last 4 sets of problem instances, since it was not possible to apply the

FMP model in order to obtain the ideal value of each associated criterion for them. The availabilities

are not expressed in absolute values, but as a percentage over their theoretically maximum possible

value. For example, the theoretically maximum possible value of objective z1 is equal to the total

number of aircraft, |M||Nm|.

Table 4.1: Quality and fleet availability of the solutions provided by AFH1 for objectives z1 and z2

|M| |Nm| z1
% from Ideal

z1
% availability

z2
% from Ideal

z2
% availability

Avg Max Avg Min Avg Max Avg Min
2 6 13.64 16.67 83.33 83.33 23.00 33.33 71.67 66.67
2 7 10.62 14.29 85.71 85.71 18.25 28.57 76.19 71.43
2 8 10.17 12.50 87.50 87.50 18.21 25.00 77.50 75.00
2 9 10.59 11.11 88.89 88.89 18.89 22.22 80.00 77.78
2 10 13.39 15.00 86.11 85.00 17.90 30.00 81.11 70.00
3 6 11.11 11.11 88.89 88.89 31.67 33.33 68.33 66.67
3 7 12.95 14.29 86.19 85.71 23.10 28.57 74.29 71.43
3 8 12.50 12.50 87.50 87.50 26.39 37.50 73.61 62.50
2 20 87.75 87.50 82.50 80.00
2 25 88.40 88.00 82.80 80.00
3 20 88.50 88.33 79.50 75.00
3 25 89.33 89.33 79.20 76.00

Table 4.2: Quality and fleet availability of the solutions provided by AFH1 for objectives z3 and z4

|M| |Nm| z3
% from Ideal

z3
% availability

z4
% from Ideal

z4
% availability

Avg Max Avg Max Avg Min Avg Min
2 6 3.97 9.15 3.59 9.15 35.94 30.21 41.83 36.95
2 7 5.20 28.20 4.16 19.46 34.78 26.46 41.77 30.85
2 8 1.83 10.23 0.16 1.62 39.57 27.09 47.27 40.37
2 9 4.49 10.19 4.12 11.09 42.80 33.14 48.87 42.37
2 10 3.35 11.38 2.56 7.81 42.09 33.35 47.19 42.64
3 6 2.98 12.26 2.25 13.81 34.51 29.07 46.03 40.36
3 7 2.99 15.41 3.11 14.77 37.16 30.40 44.75 36.80
3 8 1.34 4.59 0.53 4.63 36.63 26.54 44.47 38.49
2 20 42.04 34.74 45.66 40.97
2 25 41.23 34.47 44.98 40.09
3 20 38.10 28.41 43.74 39.19
3 25 38.96 32.98 44.15 41.35
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Table 4.3: Quality and fleet availability of the solutions provided by AFH1 for objectives z5 and z6

|M| |Nm| z5
% from Ideal

z5
% availability

z6
% from Ideal

z6
% availability

Avg Max Avg Min Avg Max Avg Min
2 6 12.15 12.68 87.36 86.11 5.18 9.52 46.71 42.55
2 7 10.94 13.10 88.23 85.71 4.00 20.37 46.04 34.32
2 8 9.52 11.46 90.10 88.54 3.23 6.85 49.68 44.68
2 9 8.99 10.19 90.93 89.81 4.50 9.03 50.76 44.35
2 10 10.66 13.33 89.26 86.67 4.40 8.00 50.18 45.46
3 6 9.17 10.19 90.83 89.81 2.15 8.77 48.77 43.22
3 7 10.41 12.70 89.44 87.30 3.52 13.68 48.26 40.22
3 8 10.26 11.11 89.74 88.89 2.75 3.83 47.33 42.93
2 20 90.46 89.58 47.75 43.28
2 25 90.83 89.33 47.30 43.13
3 20 90.78 90.28 46.64 43.20
3 25 90.89 90.44 46.91 44.04

Tables 4.4-4.9 present similar results for AFH2 and HSH. Results for HSH are not reported at

all for the last 4 size combinations, since the application of HSH on these problems is impractical due

to its excessive computational effort. The extra columns labeled “IF” in Tables 4.7-4.9 show the

number of instances in the associated combination for which HSH did not return a feasible solution.

The computation of the results reported in these tables was based only on the instances for which HSH

reached a feasible solution.

Table 4.4: Quality and fleet availability of the solutions provided by AFH2 for objectives z1 and z2

|M| |Nm|
z1

% from Ideal
z1

% availability
z2

% from Ideal
z2

% availability
Avg Max Avg Min Avg Max Avg Min

2 6 13.64 16.67 83.33 83.33 26.33 33.33 68.33 66.67
2 7 10.62 14.29 85.71 85.71 19.84 28.57 74.60 71.43
2 8 10.17 12.50 87.50 87.50 19.46 25.00 76.25 75.00
2 9 10.59 11.11 88.89 88.89 20.14 22.22 78.89 77.78
2 10 13.11 15.00 86.00 85.00 22.33 30.00 76.00 70.00
3 6 11.11 11.11 88.89 88.89 28.33 33.33 71.67 66.67
3 7 12.95 14.29 86.19 85.71 24.76 28.57 72.86 71.43
3 8 12.12 12.50 87.50 87.50 27.68 37.50 71.25 62.50
2 20 89.25 87.50 83.00 80.00
2 25 90.00 90.00 84.80 84.00
3 20 90.17 90.00 81.50 80.00
3 25 90.53 89.33 84.00 80.00
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Table 4.5: Quality and fleet availability of the solutions provided by AFH2 for objectives z3 and z4

|M| |Nm|
z3

% from Ideal
z3

% availability
z4

% from Ideal
z4

% availability
Avg Max Avg Max Avg Max Avg Min

2 6 0.97 4.56 7.34 23.35 7.34 23.35 68.33 66.67
2 7 6.66 21.02 15.12 38.01 15.12 38.01 74.60 71.43
2 8 1.57 5.02 11.31 30.52 11.31 30.52 76.25 75.00
2 9 7.24 18.58 14.84 26.26 14.84 26.26 78.89 77.78
2 10 4.51 11.18 10.15 21.91 10.15 21.91 76.00 70.00
3 6 2.51 11.08 14.50 35.09 14.50 35.09 71.67 66.67
3 7 3.10 20.33 16.57 31.76 16.57 31.76 72.86 71.43
3 8 1.65 5.51 16.01 38.93 16.01 38.93 71.25 62.50
2 20 83.00 80.00
2 25 84.80 84.00
3 20 81.50 80.00
3 25 84.00 80.00

Table 4.6: Quality and fleet availability of the solutions provided by AFH2 for objectives z5 and z6

|M| |Nm|
z5

% from Ideal
z5

% availability
z6

% from Ideal
z6

% availability
Avg Max Avg Min Avg Max Avg Min

2 6 13.83 14.08 85.69 84.72 3.92 7.59 47.32 43.93
2 7 10.00 13.10 89.02 86.90 6.15 18.06 47.31 38.19
2 8 9.94 11.46 89.69 88.54 4.25 7.31 49.13 45.55
2 9 8.99 10.19 90.93 89.81 6.67 13.29 49.60 44.16
2 10 9.85 10.83 90.00 89.17 6.27 11.42 49.44 45.56
3 6 9.44 10.19 90.56 89.81 2.80 7.61 48.44 42.83
3 7 9.38 11.11 90.48 88.89 4.59 15.06 47.73 40.22
3 8 9.80 10.42 90.14 89.58 3.41 7.96 46.63 44.06
2 20 91.67 91.25 47.59 43.82
2 25 92.13 91.67 47.22 43.33
3 20 92.36 92.22 46.33 43.34
3 25 92.60 92.44 46.75 44.04

Table 4.7: Quality and fleet availability of the solutions provided by HSH for objectives z1 and z2

|M| |Nm|
z1

% from Ideal
z1
%

availability

z2
% from Ideal

z2
%

availability
Avg Max IF Avg Min Avg Max IF Avg Min

2 6 0.00 0.00 2 93.75 83.33 0.00 0.00 0 93.75 83.33
2 7 0.00 0.00 2 92.86 92.86 1.79 14.29 2 85.71 85.71
2 8 0.00 0.00 3 92.86 87.50 0.00 0.00 2 87.50 87.50
2 9 0.00 0.00 0 94.44 94.44 0.00 0.00 0 88.89 88.89
2 10 0.00 0.00 0 93.75 90.00 0.00 0.00 0 90.00 90.00
3 6 0.00 0.00 1 94.44 94.44 0.00 0.00 0 83.33 83.33
3 7 0.00 0.00 0 92.86 90.48 0.00 0.00 0 85.71 85.71
3 8 0.00 0.00 0 94.44 91.67 0.00 0.00 0 87.50 87.50

Table 4.8: Quality and fleet availability of the solutions provided by HSH for objectives z3 and z4

|M| |Nm|
z3

% from Ideal
z3
%

availability

z4
% from Ideal

z4
%

availability
Avg Max Avg Max Avg Max Avg IF Avg Min

2 6 12.38 20.63 16.41 33.16 16.41 33.16 16.41 0 93.75 83.33
2 7 7.72 14.98 4.52 14.25 4.52 14.25 4.52 2 85.71 85.71
2 8 5.97 9.58 12.73 30.93 12.73 30.93 12.73 2 87.50 87.50
2 9 9.36 17.70 7.63 17.82 7.63 17.82 7.63 0 88.89 88.89
2 10 4.61 12.29 6.52 21.71 6.52 21.71 6.52 0 90.00 90.00
3 6 7.67 22.64 5.93 21.93 5.93 21.93 5.93 0 83.33 83.33
3 7 3.01 6.97 11.16 36.72 11.16 36.72 11.16 0 85.71 85.71
3 8 3.27 10.08 7.25 17.36 7.25 17.36 7.25 0 87.50 87.50
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Table 4.9: Quality and fleet availability of the solutions provided by HSH for objectives z5 and z6

|M| |Nm|
z5

% from Ideal
z5

% availability
z6

% from Ideal
z6

% availability
Avg Max IF Avg Min Avg Max IF Avg Min

2 6 0.18 1.41 2 99.31 97.22 10.89 14.96 1 36.98 32.54
2 7 0.15 1.20 2 96.73 96.43 6.60 10.93 3 44.24 29.56
2 8 0.00 0.00 3 95.68 94.79 6.05 11.43 1 47.04 40.90
2 9 0.00 0.00 0 96.67 96.30 7.10 11.90 0 49.52 39.72
2 10 0.00 0.00 0 96.46 95.00 5.59 10.52 6 46.91 40.32
3 6 0.00 0.00 1 96.30 96.30 6.70 12.28 1 44.30 37.67
3 7 0.00 0.00 0 96.03 95.24 5.55 9.21 1 50.13 37.58
3 8 0.00 0.00 0 95.83 95.83 5.18 10.32 1 45.13 36.81

Several interesting observations can be made based on the results of the above tables. The

results of Tables 4.1-4.3 show that the quality of the solutions produced by AFH1 is quite satisfactory

for criterion z1 (approximately 12% difference from the corresponding ideal values on average), less

satisfactory for criterion z2 (approximately 22% difference from the corresponding ideal values on

average), very satisfactory for criteria z3 and z4 (approximately 2-3% difference from the

corresponding ideal values on average), quite satisfactory for criterion z5 (approximately 10%

difference from the corresponding ideal values on average), and very satisfactory for criterion z6

(approximately 4% difference from the corresponding ideal values on average). The solution quality of

some particular instances is significantly worse than average, as denoted by the large difference

between columns “Avg” and “Max”. The results of Tables 4.4-4.6 show that the behavior of AFH2 is

similar, the only difference being that the solution quality for criterion z4 is more comparable to that of

criterion z1 (approximately 12% difference from the corresponding ideal values on average).

The availabilities that we report for criteria z3, z4 and z6 are significantly lower than those

reported for criteria z1, z2 and z5. This is not surprising, since the criteria z3, z4 and z6 pertain to the

residual flight time availability which cannot be improved dramatically with respect to the value that it

has at the beginning of the planning horizon. This is due to the presence of the flight load

requirements, and the fact that the replenishment of the flight hours through the completion of

maintenance service is constrained by the limited time capacity of the maintenance station. To provide

further intuition on this, note that any aircraft which is available at the initial state of the system is

expected to have residual flight time availability equal to (Y+Ymin)/2 = 150.05 hours on the average.

Coupled with the fact that some of the unit’s aircraft are initially expected to be grounded, this implies

that the initial residual flight time availability of the unit is expected to be smaller than 50% of its

maximum possible value.  On the other hand, starting with a large number of available aircraft, it is

easier to retain a high level of aircraft availability for the entire planning horizon, leading to drastically

higher values for criteria z1, z2 and z5.

As shown in Tables 4.7-4.9, HSH exhibits a rather myopic behavior and is not always able to

return a feasible solution, mainly because it treats each sub-horizon separately. This is due to the fact
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that the decisions made in an early sub-horizon may turn out to be too restricting, leaving the system

in an inadequate state that is incapable of satisfying the flight requirements of the following sub-

horizon. This issue can be resolved by a more conservative planning over the initial periods of the

planning horizon. In the actual combat wing that we studied, |Nm| and Xmax were always large enough,

making it always possible to satisfy this flight load using only a subset of the available aircraft. Thus,

finding a feasible problem solution was hardly troublesome. In general, however, a careful design

should address accordingly such difficulties that may arise.

Aside from this issue, it is impressive that HSH was able to find the ideal value of criteria z1 and

z2 in almost all the instances for which it reached a feasible solution. On the other hand, the quality of

the solutions produced by HSH is very satisfactory for criterion z3 (approximately 6-7% difference

from the corresponding ideal values on average), and a little less satisfactory for z4 (approximately 9-

10% difference from the corresponding ideal values on average). HSH was not able to find a feasible

solution for criterion z5 in 8 out of 80 instances, but found the ideal value of the associated criterion in

almost all the instances for which it reached a feasible solution. Additionally, the quality of the

solutions produced by HSH is very satisfactory for criterion z6 (approximately 6-7% difference from

the corresponding ideal values on average).

In Tables 4.10 and 4.11, we perform a comparison of the optimal values of the weighted sum

objectives ZA and ZB provided by AFH1, AFH2, HSH and FMP. In order to tie these results with those

of Tables 4.1-4.9, we also compare in the last two columns of these tables the optimal ZA and ZB

values provided by FMP, with the ones that result when the ideal values of the corresponding criteria

are used. Results for the last 4 sets of problem instances are not reported, since the large size of these

problem instances renders the application of FMP and HSH impractical.

Table 4.10: Comparison of optimal ZA values

|M| |Nm|
AFH1

% from FMP
AFH2

% from FMP
HSH

% from FMP
FMP

% from Ideal
Avg Max Avg Max Avg Max IF Avg Max

2 6 5.30 9.18 6.30 10.44 14.61 16.86 2 6.73 11.24
2 7 5.97 14.86 9.09 14.01 7.58 19.25 2 4.14 7.88
2 8 4.83 6.16 7.64 12.87 3.30 5.81 3 3.28 5.08
2 9 6.03 9.78 9.60 11.71 5.12 6.46 5 4.01 4.91
2 10 5.14 8.22 8.71 13.03 5.10 10.52 2 4.45 7.21
3 6 5.92 12.75 7.46 13.42 3.09 4.73 4 7.49 12.36
3 7 6.37 8.39 9.88 14.40 5.63 7.98 6 5.52 7.12
3 8 5.57 8.90 9.70 18.03 4.39 6.74 7 5.46 6.96
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Table 4.11: Comparison of optimal ZB values

|M| |Nm|
AFH1

% from FMP
AFH2

% from FMP
HSH

% from FMP
FMP

% from Ideal
Avg Max Avg Max Avg Max IF Avg Max

2 6 3.45 5.34 3.67 5.63 7.31 9.17 2 5.47 5.76
2 7 4.71 14.71 5.33 13.97 2.82 6.55 2 3.14 4.15
2 8 4.11 5.82 4.87 6.98 2.56 6.09 3 2.37 3.59
2 9 3.60 5.52 4.76 8.64 2.40 3.66 5 3.29 4.42
2 10 3.86 5.46 4.46 6.25 3.68 4.53 2 3.78 4.33
3 6 2.38 6.06 2.85 5.88 3.08 4.14 4 3.45 4.64
3 7 3.54 7.90 3.55 7.66 4.07 5.71 6 3.78 4.61
3 8 2.74 3.59 2.83 5.37 4.69 6.51 7 4.00 4.58

Applying FMP with a weighted sums objective produces a high-quality solution, which is

additionally guaranteed to be non-dominated (see Steuer, 1986) for the associated multi-objective

problem. Moreover, the ZA values of the optimal solutions produced by FMP appear to be close

(approximately 3-5% on average) to the corresponding ZA values that result when the ideal value of

each criterion is used. This is because the objectives of the model are not in direct conflict with each

other, but there exists a certain degree of synergy among them. It should be noted however, that if we

replace one of the objectives with a corresponding lower bound constraint, the model will only focus

on ensuring this bound for that objective, without any special concern for optimizing it.

The weighted sums objective function value of the solutions produced by AFH1 appears to be

close (approximately 5% on average for ZA and 3.5% on average for ZB) to the corresponding ZA and

ZB values provided by FMP. On the other hand, AFH2 seems to perform slightly worse than AFH1

with an average difference of approximately 8.5% for ZA and 4% for ZB. These percentages do not

remain constant, but exhibit significant variance. Despite the existence of this variance, AFH1 and

AFH2 perform quite satisfactorily on average. HSH seems to perform comparably to AFH1 and

AFH2, with an average difference of approximately 6% for ZA and 4% for ZB, and variance of similar

magnitude. The difficulty in reaching feasibility is still a factor, however, since HSH was not able to

reach a feasible solution in 62 out of 160 instances in total.

Results for the computational requirements of the algorithms are presented in Tables 4.12-4.14.

More specifically, Table 4.12 shows the average and maximum computational time needed by FMP to

find the ideal value of each of the 6 criteria. Table 4.13 shows the total computational effort required

by HSH for the associated single objective problems, which was computed as the sum of the

computational times of the two 3-period subproblems. Table 4.14 shows the computational effort

required by FMP and HSH for the weighted sums approach. Results for the computational

performance of AFH1 and AFH2 are not reported, since their computational requirements are always

negligible (less than a second). This justifies the effectiveness of these heuristics, especially for large

FMP instances, for which the other available approaches are not applicable in reasonable times.
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Table 4.12: Computational requirements (in seconds) needed by
FMP to find the ideal value of each of the 6 criteria

|M| |Nm|
z1

Avg Max
z2

Avg Max
z3

Avg Max
z4

Avg Max
z5

Avg Max
z6

Avg Max
2 6 0.024 0.050 0.040 0.124 0.332 0.759 0.326 0.814 0.018 0.022 2.756 20.181
2 7 0.069 0.269 0.085 0.299 3.588 32.027 0.430 1.829 0.037 0.123 99.997 519.030
2 8 0.069 0.336 0.062 0.175 0.187 0.704 0.471 1.169 0.038 0.186 557.701 1665.700
2 9 0.025 0.030 0.026 0.034 124.037 1232.71 0.410 0.791 0.023 0.028 696.355 1803.470
2 10 0.030 0.041 0.038 0.092 7.589 51.421 1.466 7.443 0.026 0.029 1171.418 1803.300
3 6 0.026 0.031 0.034 0.097 46.297 451.82 0.501 1.150 0.024 0.027 695.558 1803.910
3 7 0.032 0.042 0.040 0.073 10.474 83.351 1.004 1.636 0.030 0.033 1455.299 1804.290
3 8 0.036 0.044 0.048 0.144 5.236 23.413 1.829 9.106 0.033 0.037 1697.275 1803.610

Table 4.13: Computational requirements (in seconds) of HSH for
each of the 6 single objective problems

|M| |Nm|
z1

Avg Max
z2

Avg Max
z3

Avg Max
z4

Avg Max
z5

Avg Max
z6

Avg Max
2 6 0.014 0.019 0.016 0.030 0.029 0.055 0.029 0.050 0.013 0.016 0.038 0.101
2 7 0.015 0.019 0.016 0.029 0.026 0.040 0.028 0.045 0.013 0.017 0.057 0.165
2 8 0.016 0.018 0.017 0.025 0.027 0.036 2.314 16.010 0.014 0.016 0.170 0.249
2 9 0.016 0.019 0.016 0.019 0.071 0.219 1.918 17.011 0.014 0.017 0.127 0.328
2 10 0.017 0.021 0.020 0.024 0.270 0.751 2.287 20.014 0.016 0.018 0.303 0.764
3 6 0.018 0.023 0.016 0.022 0.077 0.136 0.030 0.051 0.016 0.021 0.188 0.561
3 7 0.021 0.026 0.026 0.050 0.588 3.957 2.380 21.047 0.020 0.026 1.130 5.303
3 8 0.024 0.028 0.024 0.028 0.272 0.899 0.044 0.074 0.022 0.025 1.006 4.396

Table 4.14: Computational requirements (in seconds) of FMP
and HSH for the weighted sums approach

|M| |Nm|
FMP, ZA

Avg Max
HSH, ZA

Avg Max
FMP, ZB
Avg Max

HSH, ZB
Avg Max

2 6 0.789 1.175 0.047 0.086 0.554 2.503 0.036 0.060
2 7 2.252 14.121 0.092 0.410 6.042 23.868 0.050 0.113
2 8 0.529 0.828 0.079 0.134 42.034 98.537 0.091 0.148
2 9 0.741 1.725 0.064 0.113 290.802 1803.650 0.102 0.242
2 10 2.511 10.819 0.102 0.174 944.721 1803.650 0.158 0.329
3 6 1.062 2.141 0.112 0.161 423.489 1804.050 0.211 0.443
3 7 6.447 31.741 0.134 0.247 1446.759 1804.610 0.435 1.215
3 8 9.050 41.949 0.196 0.281 1803.922 1804.550 0.589 1.123

A first observation that can be made based on the results of Tables 4.12-4.14 is that, besides

problem size, the actual values of the problem parameters also have a strong influence on the total

computational effort needed to reach an optimal solution in the case of FMP and HSH. This is

supported by the fact that, even for the same problem size, a large variance is exhibited in the

computational times of FMP and HSH. Note that the results of Tables 4.12-4.14 are only partly

comparable, since HSH was not able to reach a feasible solution for all the problem instances that it

was tested. On the other hand, the computational effort of AFH1 and AFH2 is negligible for all

problem sizes. Our computational experience also indicates that the computational effort of AFH1 and

AFH2 does not vary significantly even when the values of the problem parameters differ considerably.

Therefore, the actual values of the problem parameters do not seem to have a strong influence on the

computational effort of AFH1 and AFH2.

Institutional Repository - Library & Information Centre - University of Thessaly
12/05/2024 17:28:17 EEST - 18.118.9.86



45

A careful comparison of the results presented in Tables 4.12 and 4.13 reveals that, in most

cases, the total computational effort needed to reach an optimal solution decreases significantly when

HSH is used instead of FMP, although not in all of them. While in the case of objectives z1, z2 and z5

this decrease is not very large, it is much larger in the case of objectives z3 and z6. This is because the

total computational effort is already small in the former case; therefore, there is little room for

improving it. In the latter case, however, where the FMP computational effort is considerably larger,

there exist significantly larger computational savings from utilizing HSH. In the case of z4 on the other

hand, the computational time seems to increase when HSH is used instead of FMP. This is a very

important observation, because it shows that the proposed heuristics may behave differently than

expected.

As far as the weighted sums approach is concerned, the results of Table 4.14 suggest that there

are significant computational savings from utilizing HSH instead of FMP. A very interesting

observation is that the computational effort needed for the application of the weighted sums approach

with the ZB objective on large problems becomes significantly larger than the computational effort

needed for the application of the weighted sums approach with the ZA objective.

Before concluding this section, it is noteworthy to make an additional important observation. In

an attempt to directly compare an AFH with an FMP solution and discover the characteristics of the

latter that make it advantageous, we discovered the following interesting FMP behavior: FMP rarely

grounds an aircraft that will not exit the maintenance station by period T+1. The intuition behind this

is trivial, since only the periods up to T+1 are included in the model’s objective function; therefore, an

aircraft exiting the maintenance station later than period T+1 cannot influence the objective of the

current planning horizon. This strategy, however, may result in an excessive number of aircraft with

particularly low residual flight times towards the end of current planning horizon, which in turn may

result in a drastic decrease of the unit’s fleet availability over the next planning horizon. The

performance of AFH within a single time horizon can be similarly improved by only allowing the

grounding of an aircraft if this aircraft is expected to exit the maintenance station by period T+1; this,

however, may have an adverse effect on the unit’s availability in the long term.

4.5 Summary

In this chapter, we addressed a multi-objective optimization model for the multi-period variant of the

FMP problem. We proved several interesting theoretical properties for this problem, and we utilized

them to develop two heuristics for solving this model. We also presented experimental results

demonstrating the computational performance of these heuristics and the quality of the solutions that
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they produce. The results are very satisfactory, because they show that, under careful consideration,

even large FMP instances can be handled quite effectively.

The first heuristic, AFH, is simple and performs quite satisfactorily in most of the cases. It is

based on an ad-hoc heuristic technique used in many Air Force organizations worldwide. The question

of whether the quality of the solutions that it produces can be further improved through appropriate

enhancements remains open, leaving this as a potential direction for future research.

The second heuristic, HSH, exhibits a rather myopic behavior. It focuses on maximizing fleet

availability in the initial periods first, which may result in low availability over the next periods.

Nevertheless, the solution obtained by HSH is quite satisfactory in most cases. Therefore, it can be

considered alternatively for obtaining a satisfactory solution when the size of the problem prohibits its

solution using an exact solution algorithm. In general, the number of periods of each smaller horizon

has a strong effect on the quality of the obtained solution by HSH. An interesting conclusion that

arises from this observation is that, since this is an on-going problem repeatedly solved in successive

horizons, the length of the horizons for which the wing command issues the flight requirements has a

strong impact on the long term availability of the unit. As the number of periods over which the

command issues the flight requirements increases, the fleet availability of the unit is expected to

increase, too. This remark reveals the potential benefits from extending the planning horizon for which

flight load information is available.
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Chapter 5 Single Period FMP Problem

5.1 Introduction

The application of the aircraft flowchart presented in Section 3.3 involves two additional shortcomings

that have an adverse critical effect on its efficiency. The first one stems from the fact that the slope of

the diagonal varies depending on the exact number of aircraft that will be available in the next time

period. The application of the underlying methodology, however, necessitates a diagonal whose slope

is known in advance. Of course, this is not possible, since it requires knowledge of the flight and

maintenance times of the individual aircraft in the current period, which are decision variables and not

parameters. In practice, this difficulty is addressed by deciding in advance, based on simplistic

heuristic rules, which aircraft will be available in the next time period and which not, but it becomes

clear that these decisions are not necessarily optimal.

The second shortcoming of the aircraft flowchart methodology is that it does not provide a

maintenance plan for the grounded aircraft. Several important questions pertaining to the grounded

aircraft need to be answered to this end, such as the order in which they should receive service, the

amount of service time that should be allocated to each individual aircraft, etc. In practice, such

decisions are also made in a heuristic way, based on the intuition and the experience of the user.

In the previous chapter, we partially dealt with the above shortcomings, by providing a

systematic methodology for utilizing the aircraft flowchart effectively. Our computational results

demonstrate that, under careful consideration, the proposed heuristics can handle large FMP instances

effectively, yielding satisfactory solutions in insignificant solution times. The optimality gaps,

however, show that there is still room for improvement.

The problem’s myopic nature adds another factor of difficulty that complicates its solution.

More specifically, independently of the exact length of the planning horizon, finding the plan that

provides the maximum readiness usually results in a drastic decrease of this readiness over subsequent

horizons. This is an inevitable side effect, since focusing on one particular horizon in isolation and

overlooking the requirements of the following ones does not result in long-term optimal decisions, but

in short-term ones instead. Therefore, potential benefits can arise from extending the planning horizon

for which flight load information is available. Our computational experience suggests that an efficient

FMP model should ideally be able to provide solutions whose fleet availability exhibits low

variability. This is mainly due to the fact that, since the FMP model is considered in subsequent rolling

horizons in practice, the transition into the next planning horizon should always be as smooth as

possible.
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In order to address the aforementioned difficulties effectively, in this chapter we develop a

mixed integer nonlinear model that can be used to generate the joint flight and maintenance plan of a

unit of mission aircraft over a single-period planning horizon. This model aims to establish a balanced

allocation of the flight load and the maintenance capacity to the individual aircraft of the unit, so that

the long term availability is kept at a high and steady level. Its objective function minimizes a least

squares index expressing the total deviation of the individual aircraft flight and maintenance times

from their corresponding target values.

Using the model’s special structure and properties, we develop a solution algorithm, which

returns the exact optimum. We analyze the computational complexity of this algorithm and we present

computational results comparing its performance against that of a commercial optimization package.

Besides demonstrating the superiority of the proposed algorithm, these results reveal that the total

computational effort required for the solution of the problem depends mainly on two crucial

parameters: the size of the unit (i.e., the number of aircraft that comprise it), and the space capacity of

the maintenance station.

5.2 Single period FMP Problem (SPer-FMP)

For the mathematical formulation of the proposed optimization model, we introduce the

following notation:

Decision Variables:

xi : flight time of available aircraft i in the current time period,

hj : maintenance time of grounded aircraft j in the current time period,

yin : residual flight time of available aircraft i at the beginning of the next time period,

gjn : residual maintenance time of grounded aircraft j at the beginning of the next time period,

bi : binary decision variable that takes the value 1 if available aircraft i enters the maintenance station

for service at the beginning of the next time period, and 0 otherwise,

cj : binary decision variable that takes the value 1 if grounded aircraft j exits the maintenance station at

the beginning of the next time period, and 0 otherwise,

zg : number of aircraft that will enter the maintenance station at the beginning of the next time period,

za : number of aircraft that will exit the maintenance station at the beginning of the next time period.

Parameters:

S : required flight load in the current time period,

B : time capacity of the maintenance station in the current time period,

yip : residual flight time of available aircraft i at the beginning of the current time period,

gjp : residual maintenance time of grounded aircraft j at the beginning of the current time period,
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Xmax: maximum flight time of any available aircraft in the current time period,

Ymin : lower bound on the residual flight time of every available aircraft,

Gmin : lower bound on the residual maintenance time of every grounded aircraft,

C : maximum number of aircraft that the maintenance station can accommodate,

Y : residual flight time of an aircraft immediately after it exits the maintenance station,

G : residual maintenance time of an aircraft immediately after it enters the maintenance station,

L, U : real numbers denoting the maximum deviation from the target value of the flight load that can

be tolerated,

A : number of available aircraft at the beginning of the current time period,

NA: number of grounded aircraft at the beginning of the current time period,

N : total number of aircraft in the unit = A + NA.

At the beginning of the current time period, the available aircraft are arranged in non-decreasing

order of their residual flight times and the grounded aircraft are arranged in non-decreasing order of

their residual maintenance times. We make the assumption that this order is always preserved,

according to the aircraft flowchart methodology. Although this is not an actual restriction in practice,

we will show in what follows that we can always assume that it is, without loss of generality. With this

in mind, the problem under consideration is formulated as follows:
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The objective function (5.2.1) minimizes the total deviation index that will be realized at the

beginning of the next time period, i.e., the sum of squares of the deviations of the residual flight times

of the available aircraft and the residual maintenance times of the grounded aircraft from their
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s.t. yin = yip - xi, i = 1,..,A (5.2.2)

gjn = gjp - hj, j = 1,..,NA (5.2.3)

yin ≤ yi+1n, i = 1,..,A-1 (5.2.4)

gjn ≤ gj+1n, j = 1,..,NA-1 (5.2.5)
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yin ≥ Ymin(1-bi), i = 1,...,A (5.2.11)

gjn ≥ Gmin(1–cj), j = 1,...,NA (5.2.12)

yin ≤ yip(1-bi), i = 1,...,A (5.2.13)

gjn ≤ gjp(1–cj), j = 1,...,NA (5.2.14)

xi ≤ Xmax, i = 1,...,A (5.2.15)

xi ≥ 0, yin ≥ 0, i =1,..,A (5.2.16)

hj ≥ 0, gjn ≥ 0, j =1,..,NA (5.2.17)

bi binary, i =1,..,A; cj binary, j =1,..,NA (5.2.18)

zg, za integer ≥ 0 (5.2.19)
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corresponding target values on the associated flowcharts. To see why this is true, note that this

objective comprises of two summations. The first one refers to the aircraft which are available at the

beginning of the current period. Consider a particular of these aircraft with index i. If zg < i, then this

aircraft will remain available in the next time period, too. Since the aircraft with the zg smallest

residual flight times will enter the maintenance station for service, the index of this aircraft on the

flowchart of available aircraft at the beginning of the next time period will become equal to i-zg.

Additionally, since zg aircraft will enter and za aircraft will exit the maintenance station, the new

diagonal slope of this flowchart will become equal to
g a

Y
A z z 

. Thus, the corresponding target value

of the residual flight time of this aircraft at the beginning of the next time period will be equal

to ( )g
g a

Yi z
A z z


 

.

On the other hand, if zg ≥ i, then this aircraft will join the set of grounded aircraft at the

beginning of the next time period with residual maintenance time equal to G, assuming an index j

instead of i. Considering that za aircraft will exit the maintenance station at the beginning of the next

period and that this will be the ith in order aircraft to enter the maintenance station, the index of this

aircraft on the flowchart of grounded aircraft at the beginning of the next time period will become

equal to (NA+i–za). Moreover, the new diagonal slope of this flowchart will become equal

to
g a

G
NA z z 

. Thus, the corresponding target value of the residual maintenance time of this aircraft

at the beginning of the next time period will be equal to ( – )a
g a

GNA i z
NA z z


 

.

The terms (1-bi) and bi are binary indicators denoting whether aircraft i will be grounded or not

in the next time period. More specifically, if bi = 0, then aircraft i will retain its availability in the next

period; therefore, the square of its residual flight time deviation on the flowchart of available aircraft

will be taken into account in the objective function. On the other hand, if bi = 1, then aircraft i will be

grounded in the next period and the square of its residual maintenance time deviation on the flowchart

of grounded aircraft will be taken into account in the objective function instead. The second

summation of the objective function pertains, in an identical way, to the aircraft which are grounded at

the beginning of the current period.

Constraint set (5.2.2) updates the residual flight time of each available aircraft based on its

initial status and the flight time that will be assigned to it in the current time period, similarly to the

constraint set (4.2.9) of the model presented in Section 4.2. Likewise, constraint set (5.2.3) updates the

residual maintenance time of each grounded aircraft based on its initial status and the maintenance

time that it will receive in the current time period similarly to the constraint set (4.2.12) of the model
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presented in Section 4.2. Constraints (5.2.4) and (5.2.5) ensure that the order of available aircraft and

the order of grounded aircraft, respectively, will be preserved. Constraints (5.2.6) and (5.2.7) compute

the number of aircraft that will enter and exit, respectively, the maintenance station at the beginning of

the next time period, based on the values of binary variables bi and cj.

Constraint (5.2.8) ensures that the space capacity of the maintenance station will not be violated

similarly to the constraint set (4.2.17) of the model presented in Section 4.2, while constraint (5.2.9)

ensures that the total maintenance time that will be provided by the station will either be equal either

to its total time capacity, or to the total maintenance requirements of the grounded aircraft, whichever

of these two quantities is smaller. This constraint serves to ensure both that the time capacity of the

maintenance station will not be violated, and that no part of this capacity will remain unused,

whenever additional maintenance requirements exist. Constraint set (5.2.10) ensures that the required

flight load will be satisfied, within a tolerance defined by variables L and U similarly to the constraint

set (4.2.15) of the model presented in Section 4.2. For example, when L = 0.95 and U = 1.05, a

maximum deviation of 5% from the target value of the flight load can be tolerated.

Constraint set (5.2.11) imposes a lower bound equal to Ymin on the residual flight time of each

available aircraft that will remain available in the next period, too, similarly to the constraint set

(4.2.27) of the model presented in Section 4.2. This bound is imposed when bi = 0; otherwise, the

corresponding constraint becomes redundant, since bi = 1 implies that this aircraft will be grounded in

the next period. This modeling technique prevents an available aircraft from ending up with positive

but negligible residual flight time at the end of the current time period. Likewise, constraint set

(5.2.12) imposes a lower bound of Gmin on gjn when cj = 0, similarly to the constraint set (4.2.28) of the

model presented in Section 4.2, and becomes redundant when cj = 1. This prevents a grounded aircraft

from ending up with positive but negligible residual maintenance time at the end of the current time

period.

We introduce constraints (5.2.11) and (5.2.12) because it is odd and unrealistic to have a

grounded (available) aircraft whose residual maintenance (flight) time is positive but arbitrarily small.

This does not imply that a grounded aircraft whose residual maintenance time drops below Gmin can be

declared fit for flight and released from the maintenance station, since that would violate the safety

standards. If an aircraft could indeed finish its service in a time frame which is strictly smaller than G,

this would signify that the actual service duration is in fact less than G, and that G has been

erroneously used. Moreover, if we allowed the solver to release an aircraft from the maintenance

station before this aircraft finishes its service, then the solver would take advantage of this whenever it

was preferable and would apply this smaller service time instead of G, in order to improve the quality

of the returned solution. Similarly, imposing the lower bound Ymin on the residual flight time of each

available aircraft does not imply that an available aircraft can be grounded, as soon as its residual
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flight time drops below Ymin, because this would increase the average maintenance cost per hour flown,

decreasing in this way the long-term efficiency of the unit.

Constraint set (5.2.13) states that the residual flight time of an available aircraft must drop to 0

before this aircraft enters the maintenance station for service. This constraint is redundant when bi = 0,

and forces yin to 0-value when bi = 1, since it implies, together with constraint (5.2.2), that xi will be

equal to yip. Likewise, constraint set (5.2.14) states that the residual maintenance time of a grounded

aircraft must drop to 0 before this aircraft exits the station and becomes available. This constraint is

redundant when cj = 0, and forces gjn to 0-value when cj = 1, as it implies, together with constraint

(5.2.3), that hj will be equal to gjp. Constraint set (5.2.15) imposes an upper bound on the flight time of

each available aircraft. This restriction is usually present due to technical reasons. Finally, constraints

(5.2.16), (5.2.17) and (5.2.18), (5.2.19) are the non-negativity and the integrality constraints,

respectively.

There exists a rare special case in which constraints (5.2.9), (5.2.12) and (5.2.14) cannot be

satisfied simultaneously. This happens when both
1

NA

jp
j

B g


 and, at the same time, utilizing B fully by

forcing
1

NA

j
j

h

 to be equal to B (as required by constraint (5.2.9)) inevitably results in one or more

grounded aircraft with residual maintenance time positive but strictly smaller than Gmin at the end of

the current period. For example, if NA = 2, g1p = g2p = Gmin = 0.1 and B = 0.05, then the problem is

infeasible. This is because there is no feasible way to utilize B fully without violating the restriction

that the residual maintenance time of every grounded aircraft must be greater or equal to Gmin.

In practice, a typical way to avoid leaving an aircraft with very small but positive residual

maintenance time at the end of the current time period is by forcing the station to provide the extra

time that this aircraft needs in order to finish its service. This implies that the time capacity of the

station will be exogenously increased. Of course, if this extra time is negligible, this increase will also

be negligible. In the small numerical example introduced above, for example, setting B = 0.1 would

make the problem feasible with no significant effect.

From a mathematical point of view, on the other hand, a suitable modification of the problem

formulation can be adopted to model this, as described next. Let t be an auxiliary binary decision

variable that takes the value 1 if constraint (5.2.9) is relaxed and 0 otherwise. If
1

,
NA

jp
j

B g


 substitute

constraint (5.2.9) with the following two constraints:
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where F is a sufficiently large number, introduce the following constraint:

and add the term Ft to the objective function, in order to ensure that variable t will always be set to 0

whenever a feasible solution to the original formulation exists. The insight of this modification is the

following. If
1

NA

jp
j

B g


 and a feasible solution such that
1

NA

j
j

h B


 exists, then t will be set to 0 and this

equality will be denoted by constraints (5.2.20) and (5.2.21), whereas constraint (5.2.22) will become

redundant. Otherwise, t will be set to 1, constraint (5.2.20) will become redundant, and constraint

(5.2.22) will set the total maintenance time that will be provided by the station equal

to
1

( ) ,
NA

jp a min
j

g NA z G


  instead of B. This is true even though constraint (5.2.22) is expressed as

inequality instead of equality, since no feasible solution such that
1 1

( )
NA NA

j jp a min
j j

h g NA z G
 

    will

exist. Thus, it will be acceptable to slightly increase the station’s time capacity in that case, under the

restriction that every grounded aircraft that will not finish its service will end up with residual

maintenance time equal to Gmin at the end of the current time period. The user should keep in mind that

if t = 1, the correct value of the total deviation index results after the term Ft is subtracted from the

optimal objective function value.

When this modification in the problem formulation is adopted, the problem may be satisfied for

several values of variable za. To ensure that the slight increase on the time capacity of the maintenance

station will be the minimum possible, the user is advised to select the solution with the minimum

feasible value for variable za. It seems logical that this will be the most desirable solution, since it will

result in the smallest violation of the original constraint
1

.
NA

j
j

h B


 In the small numerical example

introduced above, for example, a feasible solution can be obtained by setting
1

NA

j
j

h

 equal to 0.1 and za

1

NA

j
j

h B Ft


  (5.2.20)

1

NA

j
j

B h


 (5.2.21)

1 1
(1 ) ( ) ,

NA NA

j jp a min
j j

F t h g NA z G
 

      (5.2.22)
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equal to 1, or by setting
1

NA

j
j

h

 equal to 0.2 and za equal to 2. The former out of these two solutions

seems preferable, since it results in the smallest violation of the original constraint
1

0.05.
NA

j
j

h




A similar situation can arise when the satisfaction of the flight load inevitably results in one or

more available aircraft with residual flight time strictly smaller than Ymin at the end of the current

period. For example, if A = 1, y1p = Ymin = 0.1, S = 0.05, L = 0.9 and U = 1.1, then the problem does not

have a feasible solution. A modeling technique similar to the one presented above can be adopted in

this case, too. Nevertheless, these two are rare extreme cases with practically negligible effect;

therefore, in order to avoid complicating things unnecessarily, in what follows we assume that the

problem defined by (5.2.1)-(5.2.19) is always feasible, and we suppress constraints (5.2.20)-(5.2.22).

The progressively worse deviation index for the subsequent aircraft that exit or enter the station

besides the first one, and the fact that the model does not allow an aircraft to act both as available and

as grounded within the same time period are main consequences of the planning horizon’s

discretization, which does not allow an aircraft to both fly and be serviced within the same time

period. The minimization of the unit’s total deviation index in subsequent time periods will balance

the allocation of the flight and maintenance times and smoothen things out.

In practice, the flight load requirements refer to 1-month time periods, the time capacity of the

maintenance station is measured in monthly labor hours and the flight/maintenance plans of the unit

are typically reviewed and updated at the beginning of each month. This setting not only hints towards

the development of a discrete model, but also implies that it is reasonable to choose an optimization

period of one month, though it might seem preferable to make this choice in such a way that only one

aircraft enters the station and only one aircraft exits the station at each time period.

This is not a very strict limitation for the present model, since the flight load issued by the unit

command is practically small on the one hand, while the load factor of the maintenance station is

practically equal to 1 on the other hand. In turn, the flight load of the unit can be satisfied using only

few of the unit’s aircraft, whereas the time capacity of the maintenance station is always fully utilized.

Hence, in terms of the unit’s long-term aggregate fleet availability, it is hardly ever an issue, if the

flight time of one or more aircraft that are fit for flight is forced to zero value for an extra time period.

Similarly, delaying the beginning of the maintenance service of one or more aircraft for an extra time

period is not critical either, because other grounded aircraft that are present can always utilize the

station’s capacity fully. If it is absolutely necessary, the consequences of the progressively worse

deviation index for the subsequent (besides the first one) aircraft that change status can be lessened by

only including in the computation of the total deviation index the first aircraft that will become
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grounded and the first aircraft that will become available (i.e., by assuming a deviation of 0 for every

subsequent aircraft that will change status).

The formulation that we propose adopts the aircraft flowchart methodology both for the

available and for the grounded aircraft. Its novelty lies in that it gives the user additional flexibility by

allowing the slopes of the two diagonals to vary, based on the actual number of aircraft that enter and

exit the maintenance station. This seems far more rational than fixing these numbers in advance and

generating the flight and maintenance plans afterward, based on the resulting diagonal slopes.

We can essentially view this formulation as the composition of two individual ones, one that

pertains to the available and one that pertains to the grounded aircraft. The main difference between

them is that a small deviation, determined by variables L and U, can be tolerated for the satisfaction of

the flight load by the available aircraft, whereas no such tolerance exists for the total maintenance time

that will be provided by the maintenance station. Additionally, an upper bound is imposed on the

maximum flight time of each available aircraft, whereas no such bound is imposed on the maintenance

time of each grounded aircraft.

At first glance, the problem formulation seems too restricting, since it imposes a steady rotation

of the aircraft in and out of the maintenance station in non-decreasing order of their residual

flight/maintenance times, without allowing any contravention of this order. For example, according to

this formulation, an aircraft which is available in the current period cannot be grounded at the

beginning of the next one, unless all the available aircraft with smaller residual flight times are

grounded, too. Similarly, the grounded aircraft must always exit the maintenance station in the exact

same order in which they entered it in the first place.

In the actual application that we study, no such restriction is present. Aircraft are allowed to

enter and exit the maintenance in any feasible order, while their indices are updated accordingly to

represent their relative order in terms of their residual flight and maintenance times. With this in mind,

the index of each aircraft at the beginning of the next period should be a decision variable allowed to

take any feasible value and should not be determined by the exact number of aircraft that will enter

and exit the maintenance station. Nevertheless, we prove next that there always exists at least one

optimal solution to the problem that results when this restriction is relaxed that satisfies it. Besides

establishing the validity of the proposed formulation, this proof also reveals some crucial properties of

the problem, which are utilized in the next section for the development of the exact solution algorithm.

Proposition 5.1: Given the optimal solution to the problem defined by (5.2.1)-(5.2.19), there does not

exist another solution that satisfies all the constraints except possibly (5.2.4) and/or (5.2.5), in which

the two flowcharts of available and grounded aircraft at the beginning of the next time period result in

lower total deviation index.
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Proof. Suppose that there exists another feasible solution (let the superscript q refer to the values of

the decision variables of that solution) that contains two initially available aircraft with indices l and

m, such that ylp > ymp and yln
q < ymn

q, and results in lower total deviation index. Consider another

solution in which all the decision variables take the same values as those of solution q, except that xl =

(ylp – ymp) + xm
q, xm = xl

q + xm
q – xl, yln = ymn

q, ymn = yln
q, bl = bm

q and bm = bl
q. It is easy to verify that

aircraft l and m no longer violate constraint set (5.2.4). Moreover, if there is a one to one interchange

of these aircraft and the relative order of the remaining aircraft on the associated flowcharts is kept the

same, the total deviation index value of this solution is the same as that of solution q. Repeating this

procedure for any two initially available aircraft that violate constraint set (5.2.4) in solution q, we can

eventually get a solution that has the same total deviation index value and satisfies constraint set

(5.2.4) entirely. An identical procedure (just exchange variables x, y and b in the above substitution

with the corresponding variables h, g and c, respectively) can also be applied for any two initially

grounded aircraft that violate constraint set (5.2.5), leading eventually to a solution in which constraint

set (5.2.5) is entirely satisfied, too. Moreover, the total deviation index value of this solution will be

the same as that of solution q. This implies, however, that this solution provides an improvement to the

objective function value of the optimal solution to the problem formed by expressions (5.2.1)-(5.2.19),

contradicting its optimality. �

5.3 Solution methodology

5.3.1 Solving for a particular combination of zg and za

Suppose that the optimal values of variables zg and za in the formulation (5.2.1)-(5.2.19) are known.

Then, the optimal values of variables bi for i = 1,...,A and cj for j = 1,...,NA, the slopes of the flowchart

diagonals at the beginning of the next period and the two sets of aircraft that will be available and

grounded at the beginning of the next period are known, too. In this case, obtaining the optimal values

of the remaining decision variables reduces to solving two independent trivial subproblems, as

explained next. The first one of these subproblems pertains to the set of aircraft that will be available

at the beginning of the next period, whereas the second one pertains to the set of aircraft that will be

grounded.

Let K denote the former of these sets, indexed by k. Set K is the union of set K1, which consists

of the aircraft which are grounded at the beginning of the current period and will exit the maintenance

station at the beginning of the next one, and set K2, which consists of the aircraft which are available at

the beginning of the current period and will remain available in the next period, too. Clearly, the
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maintenance time of each aircraft in set K1 must be set equal to its residual maintenance time at the

beginning of the current period.

Similarly, let M denote the latter of these sets, indexed by m. Set M is the union of set M1, which

consists of the aircraft which are available at the beginning of the current period and will be grounded

at the beginning of the next one, and set M2, which consists of the aircraft which are grounded at the

beginning of the current period and will remain grounded in the next period, too. Clearly, the flight

time of each aircraft in set M1 must be set equal to its residual flight time at the beginning of the

current period.

We update the indices of the aircraft of set K as follows. The aircraft of set K2 are indexed first

with indices k = 1,…,|K2| according to their residual flight time order, followed by the aircraft of set K1

with indices k = |K2|+1,…,|K2|+|K1|, according to their residual maintenance time order. Noting that |K|

= |K2|+|K1|, the following quadratic optimization problem can be used to find the optimal flight times

of the aircraft that comprise set K2:

In this formulation, the objective function minimizes the total deviation index that will be

realized on the flowchart of available aircraft at the beginning of the next period. The first two sets of

constraints update the residual flight times of the aircraft of sets K2 and K1, respectively, at the

beginning of the next time period. The next constraint ensures that the flight requirements of the

current period will be satisfied (index m scans the available aircraft that will use up their entire

residual flight time and will enter the maintenance station for service at the beginning of the next

period). The next two sets of constraints impose a lower bound on the residual flight time of each

aircraft in set K2 at the beginning of the next period, and an upper bound on the flight time of each

aircraft in set K2, respectively. Finally, the last set of constraints accounts for the non-negativity of the

flight times. Note that the ykn’s and the xk’s for k = 1,…,|K2| are decision variables in this formulation,

the ykp’s for k = 1,…,|K2| are known parameters, and the ykn’s for k = |K2|+1,…,|K| are auxiliary

decision variables (they do not appear in the original formulation) with known values. Adding the

2

, 1
Min ( )

k kn

K

knx y k g a

Yy k
A z z


 

s.t. ykn = ykp - xk, k = 1,…,|K2|
ykn = Y, k = |K2|+1,…,|K|

2

11

K

k mp
k m M

LS x y US
 

   
ykn ≥ Ymin, k = 1,…,|K2|
xk ≤ Xmax, k = 1,…,|K2|

xk ≥ 0, k = 1,…, |K2|
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auxiliary decision variables xk for k = |K2|+1,…,|K| and setting
g a

Ys
A z z

 

, ykp = Y for k =

|K2|+1,…,|K|, Xk = min(Xmax, ykp - Ymin) for k = 1,…,|K2|, and Xk = 0 for k = |K2|+1,…,|K|, we obtain the

following equivalent formulation:

The problem defined by (5.3.1)-(5.3.4) is a quadratic program equivalent to the quadratic

program defined by (4.3.1)-(4.3.4). Following the rationale of Section 4.3, we utilize the following

crucial and interesting result in the development of the proposed solution algorithm:

Proposition 5.2. Assume that the quantities LL, UL, X and D are arranged in non-decreasing order.

a) If, after taking into consideration any ties present, there does not exist an arrangement in which LL

precedes X, then the problem defined by (5.3.1)-(5.3.4) is infeasible.

b) If an arrangement in which LL precedes X exists, then the optimal solution of the problem defined

by (5.3.1)-(5.3.4) is the one obtained by Procedure Sweep when the sum of the assigned aircraft flight

times becomes equal to the quantity that appears in the second place of this arrangement.

Proof. Same as Proposition 4.1 (See Appendix A). �

We update the indices of the aircraft of set M as follows. The aircraft of set M2 are indexed first

with indices m = 1,…,|M2| according to their residual maintenance time order, followed by the aircraft

of set M1 with indices m = |M2|+1,…,|M2|+|M1|, according to their residual flight time order. Noting

that |M| = |M2|+|M1|, the following quadratic optimization problem can be used to find the optimal

maintenance times of the aircraft that comprise set M2:

2

1
Min (( ) )

k

K

kp kx k
y x ks



  (5.3.1)

s.t.
1 1

K

mp k
m M k

LS y x
 

   (5.3.2)

11

K

k mp
k m M

x US y
 

   (5.3.3)

0 ≤ xk ≤ Xk, k = 1,…,|K| (5.3.4)

2

, 1
Min ( )

m mn

M

mnh g m g a

Gg m
NA z z


 

s.t. gmn = gmp - hm, m = 1,…,|M2|
gmn = G, m = |M2|+1,…,|M|

2

11 1
min( , )

M NA

m kp jp
m k K j

h g B g
  

   
gmn ≥ Gmin, m = 1,…,|M2|
hm ≥ 0, m = 1,…, |M2|
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In this formulation, the objective function minimizes the total deviation index that will be

realized on the flowchart of grounded aircraft at the beginning of the next period. The first two sets of

constraints update the residual maintenance times of the aircraft of sets M2 and M1, respectively, at the

beginning of the next time period. The next constraint ensures that the time capacity of the

maintenance station will be properly utilized (index k scans the grounded aircraft that will finish their

service and will exit the maintenance station at the beginning of the next period). The next set of

constraints imposes a lower bound on the residual flight time of each grounded aircraft in set M2 at the

beginning of the next period. Finally, the last set of constraints accounts for the non-negativity of the

maintenance times. Note that the gmn’s and the hm’s for m = 1,…,|M2| are decision variables in this

formulation, the gmp’s for m = 1,…,|M2| are known parameters, and the gmn’s for m = |M2|+1,…,|M| are

auxiliary decision variables (they do not appear in the original formulation) with known values.

Adding the auxiliary decision variables hm for m = |M2|+1,…,|M| and setting
g a

Gs
NA z z


 
, gmp = G

for m = |M2|+1,…,|M|, Hm = gmp - Gmin for m = 1,…,|M2|, and Hm = 0 for m = |M2|+1,…,|M|, we obtain

the following equivalent formulation:

This problem is similar to the one defined by (5.3.1)-(5.3.4). On the flowchart that results from

the known values of parameters gmp in (5.3.5)-(5.3.7), consider the following two solutions that can be

obtained during the application of Procedure Sweep:

1. The solution in which the sum of the assigned aircraft maintenance times is equal

to
11

min( , ) .
NA

jp kp
j k K

B g g
 

  In what follows, we refer with “Bg” to this sum.

2. The solution in which each aircraft, m, is assigned its maximum possible maintenance time,

Hm. In what follows, we refer with “H” to the sum of the assigned aircraft maintenance times of this

solution. Then, Proposition 5.2 can be modified as follows, in order to identify the optimal solution of

the problem defined by (5.3.5)-(5.3.7):

2

1
Min (( ) )

m

M

mp mh m
g h ms



  (5.3.5)

s.t.
11 1

min( , )
M NA

m jp kp
m j k K

h B g g
  

    (5.3.6)

0 ≤ hm ≤ Hm, m = 1,…,|M| (5.3.7)
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Proposition 5.3. If Bg < H, then the optimal solution of the problem defined by (5.3.5)-(5.3.7) is the

one obtained by Procedure Sweep when the sum of the assigned aircraft maintenance times becomes

equal to Bg. If Bg > H, then the problem defined by (5.3.5)-(5.3.7) is infeasible.

Proof. The validity of this proposition results from the fact that the problem defined by (5.3.5)-(5.3.7)

is a special case of the problem defined by (5.3.1)-(5.3.4) with L = U = 1 and

1 1

.mp mp
m M m M

LS y US y
 

    �

5.3.2 The general case

The above discussion implies that when the optimal values of variables zg and za are known, obtaining

the optimal values of the remaining decision variables of problem (5.2.1)-(5.2.19) reduces to solving

two independent trivial subproblems. The first one of these subproblems is associated with the

flowchart of the aircraft that will be available at the beginning of the next time period, while the

second one is associated with the flowchart of the aircraft that will be grounded at the beginning of the

next time period. Moreover, the optimal total index deviation value of the problem for a particular

value combination of zg and za is equal to the sum of the optimal deviation index values of these two

subproblems. Therefore, among all the feasible value combinations of variables zg and za, the

problem’s global optimal solution is associated with the one for which the total deviation index

assumes its lowest value.

In order to exclude in advance infeasible value combinations of variables zg and za, we consider

variable za first. Assume that the grounded aircraft are already arranged in non-decreasing order of

their residual maintenance times, with indices j = 1,…,NA. Let Sum be a non-negative auxiliary

variable. Then, the following pseudocode provides a valid upper bound on variable za:

Sum = 0; j = 1;
while j ≤ NA do

Sum = Sum + gjp;
if Sum ≤ B do

j = j + 1;
else

print j-1 and exit;
end if

end while
print j-1; �

Proposition 5.4. The value of variable za in any feasible solution to problem (5.2.1)-(5.2.19) cannot be

larger than the value printed by the above pseudocode.

Proof. We use variable Sum to store the sum of the residual maintenance times of the grounded

aircraft that can finish their service in the current time period. Every time that the residual

maintenance time of an aircraft is added to Sum and Sum still remains less than or equal to B, we
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conclude that the time capacity of the maintenance station suffices to finish the service of that aircraft,

too; therefore, we increase the upper bound on variable za by 1. The procedure terminates either when

Sum becomes strictly greater than B, implying that the station’s time capacity is not sufficient to finish

the service of the last (or any subsequent) considered aircraft, or when the full list of grounded aircraft

has been scanned, implying that NA is the maximum (and unique, due to constraint (5.2.9)) feasible

value of variable za. �

The following pseudocode provides a valid lower bound on variable za:

Sum =
1

( );
NA

jp min
j

g NA G


 j = 0;

while j ≤ NA do
if Sum ≥ B do

print j and exit;
else

Sum = Sum + Gmin; j = j + 1;
end if

end while
print NA; �

Proposition 5.5. The value of variable za in any feasible solution to problem (5.2.1)-(5.2.19) cannot be

smaller than the value printed by the above pseudocode.

Proof. The validity of the proposition results from the fact that if k is a feasible value for variable za,

then
1 1

( ) ,
k NA

jp jp min
j j k

g g G B
  

    or equivalently,
1

( ) ( )
NA

jp min min
j

g NA G k G B


   holds. Thus, the

lowest non-negative integer value of k for which this inequality holds is a valid lower bound on

variable za. If no value of k between 0 and NA satisfies this condition, then
1

,
NA

jp
j

g B


 and constraint

(5.2.9) restricts
1

NA

j
j

h

 to be equal to

1
;

NA

jp
j

g

 therefore, the only feasible value of variable za is NA. �

In the presence of the special case discussed in Section 5.2 that we resolve through the

introduction of constraints (5.3.1)-(5.3.3), the lower bound on variable za will be larger than its upper

bound, rendering the entire problem infeasible. Next, we exclude infeasible values of variable zg.

Assume that the available aircraft are already arranged in non-decreasing order of their residual flight

times, with indices i = 1,…,A. The following pseudocode provides a valid upper bound on variable zg:
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Sum = 0; i = 1;
while i ≤ min(C,A) and yip ≤ Xmax do

Sum = Sum + yip;
if Sum ≤ US do

i = i + 1;
else

print i-1 and exit;
end if

end while
print i-1; �

Proposition 5.6. The value of variable zg in any feasible solution to problem (5.2.1)-(5.2.19) cannot be

larger than the value printed by the above pseudocode.

Proof. We use variable Sum to store the sum of the residual flight times of the available aircraft that

can be grounded in the current time period. Every time that the residual flight time of an aircraft is

added to Sum and Sum still remains less than or equal to US, we conclude that the flight load suffices

to ground this aircraft, too; therefore, we increase the upper bound on variable zg by 1. The procedure

terminates either when the upper bound on variable zg assumes its largest possible value (= min(C,A)),

or when the first aircraft with residual flight time strictly greater than Xmax is encountered, or when

Sum becomes strictly greater than US. �

The following pseudocode provides a valid lower bound on variable zg:

Sum =
1

( );
A

ip min
j

y A Y


 j = 0;

while j ≤ A do
if Sum ≥ LS do

print j and exit;
else

Sum = Sum + Ymin; j = j + 1;
end if

end while
print “problem is infeasible”; �

Proposition 5.7. The value of variable zg in any feasible solution to problem (5.2.1)-(5.2.19) cannot be

smaller than the value printed by the above pseudocode.

Proof. The validity of the proposition results from the fact that if k is a feasible value for variable zg

then
1 1

( ) ,
k A

ip ip min
i i k

y y Y LS
  

    or equivalently,
1

( ) ( )
A

ip min min
i

y A Y k Y LS


   holds. Thus, the lowest

non-negative integer value of k for which this inequality holds is a valid lower bound on variable zg. If

this inequality does not hold even when k = A, then the problem is clearly infeasible. �

Once we determine the individual upper and lower bounds on variables zg and za, we utilize

constraint (5.2.8) to eliminate those value pairs that violate the space capacity of the maintenance
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station. After that, the proposed algorithm searches among the remaining value combinations of

variables zg and za to find the one that leads to the lowest total deviation index.

5.3.3 A small numerical example

In this section, we illustrate the application of the above algorithm on a small numerical example.

Consider a unit comprising of 6 aircraft, 4 of which are available and 2 of which are grounded at the

beginning of the current time period. Table 5.1 presents the residual flight times of the available

aircraft and the residual maintenance times of the grounded aircraft. In this table, bold-style entries

denote maintenance times of grounded aircraft and plain-style entries denote flight times of available

aircraft.

Table 5.1: Residual flight/maintenance times (yip/gjp) (hours)

i = 1 i = 2 i = 3 i = 4 j = 1 j = 2
38 50 273 298 130 300

The values of the other problem parameters are S = 125 hours, B = 325 hours, G = 320 hours, Y

= 300 hours, C = 3, Xmax = 50 hours, Ymin = 0.1 hours, Gmin = 0.1 hours, L = 0.95 and U = 1.05.

The available/grounded aircraft are already sorted in non-decreasing order of their residual

flight/maintenance times. If this were not the case, the user would have to rearrange them and update

their indices accordingly. Applying the procedure for obtaining the bounds on variables zg and za, we

get 0 ≤ zg ≤ 2 and 0 ≤ za ≤ 1. Only 5 of the resulting 6 value combinations of zg and za are feasible,

since constraint (5.2.8) is violated for zg = 2 and za = 0. Table 5.2 presents the total deviation index

value of each combination.

Table 5.2: Optimal total deviation index value for each combination of zg and za

zg \ za 0 1
0 87652.08 23098.56
1 27215.81 9864.06
2 IF 37819.62

Thus, the optimal solution is the one with zg = 1 and za = 1 and objective function value

9864.06. This total deviation index value results as follows. Since zg = 1 and za = 1, the available

aircraft with index i = 1 will be grounded and the grounded aircraft with index j = 1 will become

available at the beginning of the next time period. Therefore, x1 = 38, y1n = 0, h1 = 130 and g1n = 0.

Set K comprises of the available aircraft with initial indices i = 2, 3 and 4 (these aircraft

comprise set K2) and the grounded aircraft with initial index j = 1 (this aircraft comprises set K1). Set

M comprises of the grounded aircraft with initial index j = 2 (this aircraft comprises set M2) and the

available aircraft with initial index i = 1 (this aircraft comprises set M1). In order to compute the values

of the remaining decision variables, we update the aircraft indices first, as shown in Table 5.3.
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Table 5.3: Update of the aircraft indices

Initial index i = 1 i = 2 i = 3 i = 4 j = 1 j = 2
Updated index j = 2 i = 1 i = 2 i = 3 i = 4 j = 1

Using the updated indices, the following quadratic optimization problem can be used to

compute the flight times of the aircraft that comprise set K2:

After some basic manipulation, we obtain the following equivalent formulation:

Arranging the quantities LL, UL, X and D of Proposition 5.2 in non-decreasing order, we have:

LL = 80.75, UL = 93.25, D = 100, X = 149.9. Therefore, the optimal solution of the problem is the one

obtained by Procedure Sweep when the sum of the assigned aircraft flight times becomes equal to

93.25. Using the updated indices, the flight times of the aircraft of set K2 in that solution are x1 = 0, x2 =

50 and x3 = 43.25, or, using the initial indices, x2 = 0, x3 = 50 and x4 = 43.25. After substituting these

values in the objective function of the above formulation, the deviation index value on the flowchart of

the aircraft that will be available at the beginning of the next time period is equal to 6839.06.

Similarly, the optimal maintenance times are 130 for the grounded aircraft with initial index j = 1 and

195 for the grounded aircraft with initial index j = 2, leading to a deviation index value of 3025 on the

flowchart of the aircraft that will be grounded at the beginning of the next time period. Therefore, the

total deviation index of the solution with zg = 1 and za = 1 is equal to 6839.06 + 3025 = 9864.06.

2 2 2 2
1 2 3 4,

300 300 300 300Min( ) ( 2 ) ( 3 ) ( 4 )
4 1 1 4 1 1 4 1 1 4 1 1in i

n n n ny x
y y y y      

       
s.t. y1n = 50 – x1

y2n = 273 – x2
y3n = 298 – x3
y4n = 300 – x4

0.95(125) ≤ x1 + x2 + x3 + x4 + 38 ≤ 1.05(125)

yin ≥ 0.1, i = 1,…,3
xi ≤ 50, i = 1,…,3

x4 = 0
xi ≥ 0, i = 1,…,4

2 2 2 2
1 2 3 4Min((50 ) 75) ((273 ) 150) ((298 ) 225) ((300 ) 300)

ix
x x x x          

s.t. 80.75 ≤ x1 + x2 + x3 + x4 ≤ 93.25

0 ≤ x1 ≤ 49.9; 0 ≤ x2 ≤ 50; 0 ≤ x3 ≤ 50; 0 ≤ x4 ≤ 0
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5.4 Computational implementation

In this section, we analyze the worst-case computational complexity of the proposed algorithm, and

we present computational results evaluating its performance on randomly generated instances.

5.4.1 Computational complexity

Problems similar to the one defined by (5.3.1)-(5.3.4) have been studied extensively in the past

(Helgason et al. (1980); Brucker (1984); Calamai and Moré (1987); Pardalos and Kovoor (1990)) and

several exact solution algorithms have been proposed, some of which are asymptotically optimal in

terms of computational performance. Next, we utilize one of these papers in order to analyze the

computational effort required to solve the problem defined by (5.3.1)-(5.3.4).

Lemma 5.1. The problem defined by (5.3.1)-(5.3.4) can be solved in time O(|K|).

Proof. Same as Lemma 4.1 (See Appendix B). �

The following proposition utilizes Lemma 5.1 in order to analyze the computational complexity of the

proposed solution algorithm.

Proposition 5.8. The computational complexity of the solution algorithm that we propose is O(A

log(A)) + O(N((NA)(min(C,A)))).

Proof. The total time required to arrange the available aircraft in non-decreasing order of their residual

flight times is O(A log(A)). The total time required to arrange the grounded aircraft in non-decreasing

order of their residual maintenance times is O(NA log(NA)). The total time required to find the upper

and lower bound on variable zg is O(A). The total time required to find the upper and lower bound on

variable za is O(NA). The total time required to find the value combinations of variables zg and za that

satisfy constraint (5.2.8) is O((NA)(min(C,A))), since za cannot have more than NA+1 feasible values

and zg cannot have more than min(C+1,A+1) feasible values. Solving the problem for a particular

value combination of zg and za requires total time O(A) + O(NA) = O(A+NA) = O(N). Since there are at

most O((NA)(min(C,A))) such combinations, the total computational complexity of the proposed

solution algorithm is O(A log(A)) + O(NA log(NA)) + O(A) + O(NA) + O((NA)(min(C,A))) +

O((N)((NA)(min(C,A)))) = O(A log(A)) + O(N((NA)(min(C,A)))). �

5.4.2 Computational results

We implemented the proposed solution algorithm in C/C++ and we compared its performance against

that of two models that we developed in LINGO 11.0 [8]. LINGO is a commercial optimization
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software that can be alternatively utilized for the solution of the problem under consideration. We

performed our computational experiments on an i7-920 @ 2.7 GHz Intel processor with 3 GB system

memory. We used 5 different values (i.e., 50, 100, 150, 200 and 250) for the total number of aircraft

that comprise the unit, and solved 20 random problem instances for each of them.

The first LINGO model that we developed (called original hereafter) solves the original

problem formulation of Section 5.2, whereas the second one (called decoupling hereafter) utilizes the

results of Section 5.3.2 to find the feasible value pairs of variables zg and za, and then searches among

them to find the one that results in the lowest total deviation index. This is doable, because LINGO has

embedded capabilities that allow it to function as a programming language. The application of the

decoupling LINGO model resembles the application of our specialized algorithm, the only difference

being that it does not utilize Procedure Sweep to solve each of the smaller subproblems, but its own

nonlinear programming subroutines.

We invoked LINGO mainly with default options, except that we modified the following options

in order to improve its performance: a) we increased the Update Interval in the Solver Status Window

from 2 to 60 seconds to prevent LINGO from spending too much updating this window’s information,

b) we set the Output Level at the Interface Tab to Terse to suppress useless output, c) we imposed the

maximum of Y, G and C as an (obvious) upper bound on the optimal value of each decision variable in

the Variable Upper Bound box of the Global Server tab.

We generated the random problem instances as follows: We set parameter C equal to 0.2N,

rounded up to the nearest integer. Although C is equal to approximately 0.1N in practice (for a group

of 60-80 aircraft, the maintenance hangar can typically accommodate 6-8 aircraft), we doubled this

value in our design to make the generated problem instances more challenging. This is because

according to the analysis of Section 5.4.1, as the value of C increases, the computational complexity of

the proposed solution algorithm increases, too. We generated the number of grounded aircraft, NA,

randomly, using a discrete uniform probability function that considered integer values between 0.1 N

and 0.2 N, inclusive. Of course, we always set the number of available aircraft, A, equal to N-NA. The

residual flight time of each available aircraft was a random number distributed uniformly in the

interval [Ymin,Y] and the residual maintenance time of each grounded aircraft was a random number

distributed uniformly in the interval [Gmin,G].

We set parameter B equal to
1

0.75
NA

jp
j

g

 in order to maximize the number of feasible values for

variable za, since only very large values are feasible for za as B approaches
1

,
NA

jp
j

g

 and only very small

as it approaches 0. Similarly, we set parameter S equal to max
1

0.5 min( , ),
A

ip
i

y X

 since only very large
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values are feasible for zg as S approaches max
1

min( , ),
A

ip
i

y X

 and only very small as it approaches 0.

The difference in the multiplying coefficient (0.75 vs. 0.5) is partially due to the fact that a small

deviation can be tolerated for the satisfaction of the flight load by the available aircraft, while no such

tolerance exists for the total maintenance time that will be provided by the maintenance station. We

used actual values drawn from the real application for the other problem parameters, i.e., Y = 300, G =

320, L = 0.95, U = 1.05, Xmax = 50, Ymin = 0.1 and Gmin = 0.1.

In order to test the proposed solution algorithm on large scale problems, too, we also applied it

on problem instances with N = 500, 1000, 1500, 2000 and 2500. We were not able to apply either of

the two LINGO models on these problems, since their computational requirements are prohibitive

even when LINGO’s local solver is invoked. Typical combat wings of the HAF may consist of up to

100 aircraft; therefore, it seems highly unlikely that problems of this magnitude will need to be solved

in practice. Note, however, that for the needs of providing a plan over a typical planning horizon, the

underlying problem may have to be solved repeatedly a significant number of times under possibly

different scenarios. Therefore, a high speed solution algorithm, such as the one that we propose, is

essentially important and will provide the additional capability of performing more thorough analyses

and comparisons.

Tables 5.4 and 5.5 present the results of our computational experiments. Table 5.4 shows the

computational requirements of the two LINGO models and of the solution algorithm that we propose.

More specifically, columns 2 and 3 of this table show the average and maximum computational times

when the original LINGO model with the global solver was invoked, whereas the next two columns

show the average and maximum computational times when the original LINGO model with the local

solver was invoked instead (the option Use Global Server in the Global Solver tab was unchecked in

this case). The next two columns show the average and maximum computational times for the

decoupling LINGO model. This model was only applied once to each random problem, since each of

the smaller subproblems that arise when the values of zg and za are known is a convex quadratic

program whose global optimal solution can successfully be provided by both the global and the local

solver of LINGO. Naturally, the global solver needs significantly more time than the local solver to

identify this optimal solution; therefore, this model was only applied with the local solver invoked.

Only results with up to N = 200 aircraft are reported for this model, since its computational

requirements increase faster than those of the original LINGO model and become extraordinary for N

≥ 250. Columns 8-9 of Table 5.4 present our proposed solution algorithm’s average and maximum

computational times. We explain the results shown in the last two columns of Table 5.4 in the next

subsection.
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Table 5.4: Computational requirements (in seconds) of the proposed solution algorithms and LINGO

Original LINGO Decoupling LINGO Proposed algorithm Modified algorithm

Global Local

N Avg Max Avg Max Avg Max Avg Max Avg Max

50 53.757 142.049 4.7165 12.359 16.7003 22.8088 0.00525 0.015 0.00225 0.015

100 171.39 437.239 14.97 39.889 299.368 408.999 0.01355 0.031 0.006 0.015

150 595.46 1165.21 32.318 63.789 1874.72 2854.32 0.04075 0.046 0.01505 0.031

200 1690.4 3289.5 32.993 94.308 6085.92 6734.67 0.09325 0.109 0.03625 0.062

250 3118.1 5751.46 25.821 82.988 0.1968 0.343 0.07035 0.093

500 1.7258 1.934 0.5529 0.733

1000 20.7865 21.964 6.011 7.363

1500 86.8852 91.642 25.9719 30.529

2000 262.69 279.77 79.4926 92.476

2500 668.438 710.517 208.057 248.617

Columns 2-3 of Table 5.5 show the average and maximum percentage difference of the

objective value of the solution returned by LINGO’s local solver from the problem’s global optimal

solution objective value. The next two columns of the same table show the average (rounded to the

nearest integer) and the maximum number of feasible value combinations of variables zg and za. Of

course, these results are always the same for both the solution algorithm that we propose and the

decoupling LINGO model. We explain the results shown in the last two columns of Table 5.5 in the

next subsection.

Table 5.5: Quality of the solutions returned by LINGO’s local solver and
number of value combinations for variables zg and za

LINGO Local Proposed algorithm Modified algorithm

% Obj Combinations Combinations

N Avg Max Avg Max Avg Max

50 116.969 1109.23 42 49 24 32

100 327.442 2043.78 145 169 66 93

150 244.147 1166.53 333 370 134 178

200 473.786 1076.09 587 637 221 315

250 551.545 1476.18 925 990 343 462

500 3561 3825 1123 1438

1000 14712 14858 4265 5175

1500 31866 32905 9410 10861

2000 56905 59059 16914 19149

2500 89221 92057 26676 31084

The superiority of the solution algorithm that we propose becomes immediately clear, since its

computational times are significantly lower than those of both LINGO models. As the results of Table

Institutional Repository - Library & Information Centre - University of Thessaly
12/05/2024 17:28:17 EEST - 18.118.9.86



Chapter 5 Single Period FMP Problem

70

5.4 demonstrate, the computational savings increase considerably for large scale problem instances,

for which the application of LINGO appears impracticable. This is partially due to the fact that the

increase in the number of feasible value combinations of variables zg and za is quite moderate as the

problem size increases, and partially due to the efficiency of Procedure Sweep. The variability of the

solution times appears higher in the case of LINGO than in the case of the algorithm that we propose.

Additionally, the original LINGO model with the local solver invoked has a rather unusual behavior,

since its average computational requirements for N = 250 are lower than those for N = 150 and N =

200. This is an indication that the total computational effort also depends on the specific

characteristics of each problem instance besides its size. With the exception of the problems with N =

50, the average computational requirements of the decoupling LINGO model are higher than those of

the original LINGO model with the global solver invoked. This is an indication that the significant

computational savings of our solution algorithm should be attributed more to the efficiency of

Procedure Sweep than to the decoupling of the original problem into smaller subproblems alone.

As expected, the computational requirements of LINGO’s local solver are significantly lower

than those of the global solver. This comes at a price, however, as columns 2 and 3 of Table 5.5 verify,

since the objective value of the solution returned by the local solver is on the average approximately

between 100 and 550% higher than that of the global optimal solution. In the worst case, this

percentage difference increases to approximately 2000%. One way to improve the quality of the

solutions returned by LINGO’s local solver is to increase the number of “multistart solver attempts”

on the “Global Solver” tab, but this also increases the computational time required for termination. In

general, as this number increases, the results returned by the local solver resemble those returned by

the global solver in terms of solution quality and computational requirements.

5.4.3 Algorithmic enhancements

Our extensive computational experience with the proposed solution algorithm and LINGO has

provided considerable evidence suggesting that the 2-dimensional “cost-matrix” with rows the

feasible values of variable zg, columns the feasible values of variable za, and elements the optimal total

deviation index values for each particular combination of zg and za, may possess a special type of

convexity called row and column convexity. More specifically, let TC(g,a) be the problem’s optimal

total deviation index value for the combination with zg = g and za = a. The corresponding matrix is row

convex if TC(g,a) < TC(g,a+1) implies TC(g,a+1) ≤ TC(g,a+i) for every feasible i ≥ 2 and if TC(g,a) <

TC(g,a-1) implies TC(g,a-1) ≤ TC(g,a-i) for every feasible i ≥ 2. Similarly, the corresponding table is

column convex if TC(g,a) < TC(g+1,a) implies TC(g+1,a) ≤ TC(g+i,a) for every feasible i ≥ 2 and if

TC(g,a) < TC(g-1,a) implies TC(g-1,a) ≤ TC(g-i,a) for every feasible i ≥ 2.
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Despite numerous and tedious attempts, we haven’t been able to develop a formal mathematical

proof that establishes the validity of this property. On the other hand, despite extensive

experimentation, we haven’t been able to discover a single counterexample that disproves it either. If

this property is indeed valid, then we can exploit it in order to improve the computational performance

of the proposed solution algorithm considerably. To show this, we developed a simple modification of

this algorithm, which does not compute the optimal total deviation index value for every feasible

combination of zg and za; instead, this algorithm computes this value for the middle element of each

row (or column using a specific simplistic rule) of the cost-matrix and terminates its search within the

same row (or column) as soon as it has established, assuming that the cost-matrix is indeed row and

column convex, that no further improvement on the objective can be accomplished in the same row (or

column). After this procedure is repeated for all rows (or columns) of the matrix, the best incumbent

solution is returned by the algorithm. The last two columns of Table 5.4 present the average and

maximum computational times of this modified algorithm, and the last two columns of Table 5.5

present the average and maximum number of value combinations of variables zg and za for which this

algorithm computed the total deviation index.

These results show that if the cost-matrix is indeed row and column convex, then the solution

algorithm that we propose can be significantly expedited by cleverly incorporating this property into

its original design. The modified algorithm returned the global optimal solution in every problem

instance out of the 200 on which it was applied, giving us, for one thing, strong evidence that this is

indeed true. Given this intuition, we believe that future research should investigate whether this

property is actually valid or not. If it turns out to be, a suitable modification of the proposed solution

algorithm that exploits this result to the greatest extent should be developed, so that additional

computational benefits can be gained. Given the deficiency that stems from the lack of a formal proof

for the validity of this property, we did not develop a sophisticated design for the cost-matrix search,

which explains the rather simplistic design that we present above.

5.5 Summary

In this chapter, we developed a mixed integer nonlinear model for flight and maintenance planning of

a group of aircraft that comprise a unit. The objective is to provide a balanced allocation of the flight

load and the maintenance capacity to each individual aircraft, so that the long term availability of the

unit is kept at a high and steady level. The formulation that we propose is based on a suitable

modification of an existing graphical heuristic tool for addressing this problem. Utilizing the

problem’s special structure, we also developed an exact search algorithm for its solution. Our

Institutional Repository - Library & Information Centre - University of Thessaly
12/05/2024 17:28:17 EEST - 18.118.9.86



Chapter 5 Single Period FMP Problem

72

computational results demonstrate the superiority of the proposed algorithm over a commercial

optimization package.
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Chapter 6 Single Objective Multi-Period FMP Problem

6.1 Introduction

In the previous chapter, we developed an exact solution algorithm for the single period FMP problem.

Motivated by the fact that the flight load requirements are typically issued over a planning horizon of

6 monthly periods, in this chapter we develop an exact solution algorithm for the muti-period version

of this problem. This algorithm is capable of identifying the optimal solution of considerably large

realistic problems in very reasonable computational times.

Initially, the algorithm obtains a valid upper bound on the optimal fleet availability by solving a

simplified relaxation of the original problem. In subsequent iterations, this bound is gradually reduced,

until a feasible solution is identified. Solutions encountered along the search procedure, which cannot

be optimal because they are infeasible, are excluded from further consideration through the addition of

suitable valid inequalities (cuts). The algorithm terminates when the first feasible solution that attains

the current fleet availability bound is identified, which, naturally, comprises the optimal solution of the

problem.

The remainder of the chapter is structured as follows. In Section 6.2 we present the mixed

integer linear programming (MILP) formulation for the multi-period version of the FMP problem. In

Section 6.3 we develop the proposed solution algorithm, while in Section 6.4 we present experimental

results evaluating its computational performance. In Section 6.5 we discuss some interesting model

extensions, and finally, in Section 6.6 we summarize this chapter.

6.2 Single objective multi-period FMP Model (S-FMPh)

The mixed integer linear programming model for the formulation of the multi-period FMP problem

utilizes the following mathematical notation:

Sets:

N : set of aircraft in the unit, indexed by n.

Parameters:

T : length of the planning horizon,

St : flight load requirements in time period t,

Bt : time capacity of the maintenance facility in time period t,

C : space capacity of the maintenance facility,

Y : residual flight time of an aircraft immediately after it exits the maintenance facility,
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G : residual maintenance time of an aircraft immediately after it enters the maintenance facility,

A1n : state (0/1) of aircraft n at the beginning of the planning horizon,

Y1n : residual flight time of aircraft n at the beginning of the planning horizon,

G1n : residual maintenance time of aircraft n at the beginning of the planning horizon,

Xmax : maximum flight time of an aircraft in a single time period,

Ymin : lower bound on the residual flight time of an available aircraft,

Gmin : lower bound on the residual maintenance time of a grounded aircraft,

K : a sufficiently large number.

Decision Variables:

an,t : binary decision variable equal to 1 if aircraft n is available in time period t, and 0 otherwise,

yn,t : residual flight time of aircraft n at the beginning of time period t,

xn,t : flight time of aircraft n in time period t,

gn,t : residual maintenance time of aircraft n at the beginning of time period t,

hn,t : maintenance time of aircraft n in time period t,

dn,t : binary decision variable equal to 1 if aircraft n exits the maintenance facility at the beginning of

time period t, and 0 otherwise,

fn,t : binary decision variable equal to 1 if aircraft n enters the maintenance facility at the beginning of

time period t, and 0 otherwise,

qt, pn,t, rn,t : auxiliary binary decision variables.

Utilizing the above notation, the proposed FMP model is formulated as follows:

Problem S-FMPh:

s.t. yn,t+1 = yn,t - xn,t + Ydn,t+1, n =1,…, N , t =1,..,T (6.2.2)

dn,t+1 ≥ an,t+1 - an,t, n =1,…, N , t =1,..,T (6.2.3)

an,t+1 - an,t + 1.1(1 - dn,t+1) ≥ 0.1, n =1,…, N , t =1,..,T (6.2.4)

gn,t+1 = gn,t - hn,t + Gfn,t+1, n =1,…, N , t =1,..,T (6.2.5)

fn,t+1 ≥ an,t - an,t+1, n =1,…, N , t =1,..,T (6.2.6)

an,t - an,t+1 + 1.1(1 - fn,t+1) ≥ 0.1, n =1,…, N , t =1,..,T (6.2.7)

,
1

,  1,...,
N

n t t
n

x S t T


  (6.2.8)

1

,
2 1

Max  =
NT

h n t
t n

CFA y


 
 (6.2.1)
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,
1

, 1,...,
N

n t t
n

h B t T


  (6.2.9)

,
1

(1 ) , 2,..., 1
N

n t
n

a C t T


    (6.2.10)

,
1

(1 ), 1,...,
N

t n t t
n

B h K q t T


    (6.2.11)

, ,
1 1

, 1,...,
N N

n t n t t
n n

g h Kq t T
 

    (6.2.12)

yn,t + Kpn,t ≤ K, n =1,…, N , t =1,..,T (6.2.13)

an,t+1 ≤ (yn,t − xn,t)K + Kpn,t, n =1,…, N , t =1,..,T (6.2.14)

gnt + Krn,t ≤ K, n =1,…, N , t =1,..,T (6.2.15)

1 - an,t+1 ≤ (gn,t - hn,t)K + Krn,t, n =1,…, N , t =1,..,T (6.2.16)

yn,t ≤ Yan,t, n =1,…, N , t = 2,...,T+1 (6.2.17)

gn,t ≤ G(1-an,t), n =1,…, N , t = 2,...,T + 1 (6.2.18)

xn,t ≤ Xmaxan,t, n =1,…, N , t = 1,...,T (6.2.19)

yn,t ≥ Yminan,t, n =1,…, N |, t = 2,...,T + 1 (6.2.20)

gn,t ≥ Gmin(1 - an,t), n =1,…, N , t = 2,...,T + 1 (6.2.21)

xn,t ≤ yn,t, n =1,…, N , t = 1,...,T (6.2.22)

hn,t ≤ gn,t, n =1,…, N , t = 1,...,T (6.2.23)

an,1 = A1n, n =1,…, N (6.2.24)

yn,1 = Y1n, n =1,…, N (6.2.25)

gn,1 = G1n, n =1,…, N (6.2.26)

xn,t, hn,t ≥ 0; n =1,…, N , t =1,..,T (6.2.27)

yn,t, gn,t ≥ 0; n =1,…, N , t =2,..,T + 1 (6.2.28)

pn,t, rn,t, qt binary, n =1,…, N , t =1,..,T (6.2.29)
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an,t, dn,t, fn,t binary, n =1,…, N , t =2,..,T + 1 (6.2.30)

The objective function (6.2.1) is similar to the objective function (4.2.3) of the multi-objective

model presented in Section 4.2, while the constraint set is similar to the constraint set of that model.

Nevertheless, for reasons of completeness and clarity, we also provide a short description of the above

model next. Two key differences that this model exhibits with respect to the model of Section 4.2 stem

from the fact that it refers to a single unit not comprised of distinct squadrons, and from the fact that

constraint (6.2.8) imposes the exact flight load satisfaction, as opposed to the tolerance allowed on the

flight load satisfaction by constraint (4.2.15). Section 6.5 provides a brief discussion on how the multi-

squadron case, as well as the case of non-strict flight load satisfaction, can be handled within the

context of the present model.

The objective function (6.2.1) maximizes the cumulative residual flight time availability (CFAh)

of the unit, defined as the sum of the individual residual flight time availabilities of all time periods.

The availability of the first time period is not included in the objective since it is pre-determined upon

the application of the model, whereas that of time period T+1 is included, ensuring a smooth transition

into the next planning horizon. For each time period, constraint set (6.2.2) updates the residual flight

time of each aircraft. When an aircraft exits the maintenance facility at the beginning of time period

t+1, binary variable dn,t+1 takes the value 1, while the residual flight time of that aircraft is reset to Y.

Parameter Y, also called phase interval, represents the total flight time until the next maintenance

inspection. Similarly, for each time period, constraint set (6.2.5) updates the residual maintenance time

of each aircraft. When an aircraft is grounded for maintenance inspection at the beginning of time

period t+1, binary variable fn,t+1 takes the value 1, while the residual maintenance time of that aircraft is

reset to G. Parameter G represents the total service time of the maintenance inspection.

Constraint sets (6.2.3), (6.2.4), (6.2.6) and (6.2.7) utilize the values of variables an,t in order to

assign proper values to variables dn,t and fn,t. More specifically, (an,t, an,t+1) can be (0,1), (0,0), (1,0) or

(1,1), making (an,t+1 - an,t) equal to 1, 0, -1 and 0, respectively. When this difference is equal to 1,

variable dn,t+1 should be equal to 1, which is ensured by constraint set (6.2.3). Otherwise, dn,t+1 should

take the value 0, which is ensured by constraint set (6.2.4). Similarly, when this difference is equal to -

1, variable fn,t+1 should be equal to 1, which is ensured by constraint set (6.2.6). Otherwise, fn,t+1 should

take the value 0, which is ensured by constraint set (6.2.7).

Constraint set (6.2.8) ensures satisfaction of the flight load requirements in each time period,

while constraint sets (6.2.9) and (6.2.10) ensure that the restrictions pertaining to the time and space,

respectively, capacity of the maintenance facility are respected. For each time period, constraint sets

(6.2.11) and (6.2.12) impose the full utilization of the facility’s time capacity if it does not suffice for

finishing the service of the grounded aircraft, or the full completion of this service if the opposite is
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true. This is achieved through the utilization of the auxiliary binary variable qt, which assists in setting

the total maintenance time provided by the facility in time period t equal to the minimum between the

total service time requirements and the total time capacity of the maintenance facility in that period.

Constraint sets (6.2.13) and (6.2.14) state that if the residual flight time of an available aircraft

drops to 0, then this aircraft must be grounded for service. The auxiliary binary variable pn,t becomes

equal to 0 if yn,t > 0, which forces an,t+1 to 0-value if yn,t = xn,t. Similarly, constraint sets (6.2.15) and

(6.2.16) state that if the residual maintenance time of a grounded aircraft drops to 0, then this aircraft

must exit the facility and become available. The auxiliary binary variable rn,t becomes equal to 0 if gn,t

> 0, which forces an,t+1 to 1 if gn,t = hn,t.

Constraint set (6.2.17) imposes an upper bound equal to Y on the residual flight time of each

available aircraft, and sets the residual flight time of each grounded aircraft equal to 0. Similarly,

constraint set (6.2.18) imposes an upper bound equal to G on the residual maintenance time of each

grounded aircraft, and sets the residual maintenance time of each available aircraft equal to 0.

Constraint set (6.2.19) imposes an upper bound equal to Xmax on the flight time of each available

aircraft in a single time period, and sets the flight time of each grounded aircraft equal to 0. This upper

bound is usually imposed due to technical restrictions. Constraint set (6.2.20) imposes a lower bound

equal to Ymin on the residual flight time of each available aircraft, while constraint (6.2.21) imposes a

lower bound equal to Gmin on the residual maintenance time of each grounded aircraft. This way, an

aircraft cannot end-up with a positive but negligible residual flight or maintenance time. Constraint set

(6.2.22) states that the total flight time of an aircraft in a single time period cannot be larger than its

residual flight time at the beginning of this time period. Similarly, constraint set (6.2.23) states that the

total maintenance time of an aircraft in a single time period cannot be larger than its residual

maintenance time at the beginning of this time period.

Constraint sets (6.2.24), (6.2.25) and (6.2.26) are used to initialize the status of the aircraft at the

beginning of the planning horizon. It should be noted that variables dn,1/fn,1 are never used, since

variables yn,1/hn,1 are directly updated to depict the exit/entrance of an aircraft from/into the

maintenance facility at the beginning of the planning horizon. Finally, constraints (6.2.27) and (6.2.28)

impose the non-negativity of the continuous decision variables, while constraints (6.2.29) and (6.2.30)

impose the integrality of the binary decision variables.

Let x be a solution to the problem formulation (6.2.1)-(6.2.30) introduced above, CFAh(x) be the

cumulative residual flight time availability realized by this solution, and X be the set of all feasible

solutions. In short, the S-FMPh problem introduced above can be expressed as:

 Max hCFA x

s.t. x X

(S-FMPh)
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6.3 Solution methodology

The solution algorithm that we develop for the FMP problem utilizes the fact that the CFAh of the unit

depends solely on the combination of aircraft that enter and exit the maintenance station over the

planning horizon, and that the number of such combinations is finite. As a consequence, the domain

comprised of possible CFAh values is a discrete set. Initially, the algorithm identifies a valid upper

bound on the optimal CFAh by solving a simplified relaxation of the original problem; then this bound

is gradually decreased, until a feasible flight and maintenance plan that attains it is identified.

It can be shown that if Problem (6.2.1)-(6.2.30) has one or more optimal solutions, then at least

one of them preserves a steady rotation of aircraft into and out of the maintenance station, in non-

decreasing order of their residual flight/maintenance times. In practice, no such restriction is present.

Aircraft are allowed to enter and exit the maintenance station in any feasible order, while their indices

are updated accordingly to represent their resulting relative order. With this in mind, the index

representing the relative order of each aircraft at the beginning of the next period should be a decision

variable allowed to take any feasible value. Adding this degree of freedom, however, complicates the

solution of the problem unnecessarily, without providing any advantage whatsoever; therefore, the

algorithm that we develop next adopts the assumption that a steady rotation of aircraft into and out of

the maintenance station is preserved.

It is relatively easy to prove that this assumption does not affect the optimal objective of the

problem. In fact, this result has been proven in Proposition 5.1 for the single-period FMP problem

studied in Section 5. The proof involves exchanging the actions performed on any two aircraft for

which this order is not preserved, so as to reinstate it. This can be done straightforwardly, without

altering the optimal objective. Repeating this exchange for all such pairs of aircraft leads to an

alternative optimal solution for which this order is preserved. As a result, the validity of the

proposition is confirmed.

In general, several distinct aircraft combinations can result in the same CFAh. Each time one

such combination is identified, the algorithm checks whether it is feasible, i.e., whether it can be

realized by a feasible flight and maintenance plan. If this check is successful, then the algorithm

terminates with the solution determined by this combination being optimal. If not, a suitable cut is

added to the model, excluding this combination from further consideration. All the cuts pertaining to

the same CFAh level remain active for as long as this level remains constant. If, at some point, the

currently considered CFAh level is proven infeasible (i.e., if it cannot be attained by any feasible

aircraft combination), then the search for the optimal solution continues to the next (lower) level from

the CFAh domain set. This renders the cuts associated with the previous level redundant, which are

subsequently suppressed.
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To check a particular aircraft combination for feasibility, we utilize the original formulation,

after adjusting accordingly the model constraints to force its realization. Alternatively, one could

directly utilize Problem (6.2.1)-(6.2.30) in order to check whether a feasible aircraft combination that

attains a particular CFAh level exists. As it turns out, however, identifying the candidate aircraft

combination first and then checking its feasibility is more efficient, at least for the realistic problems

that we test in this dissertation. This is mainly due to the fact that the model utilized for the initial

feasibility check on the identified combination is considerably more simplistic than the original model

comprised of (6.2.1)-(6.2.30). As a result, the former model terminates quite fast, whereas the latter

one occasionally requires considerable time in order to terminate. Taking also into consideration the

fact that the number of combinations that the algorithm encounters in the case of realistic problems is

quite small (the related results are presented in Section 6.4), it is not very surprising that this is the

case. On the other hand, when this number increases, the opposite behavior is observed, i.e., it is more

efficient to apply the original model directly instead. With this discussion in mind, the following three

subsections portray in detail each step of the proposed algorithm, while the last one illustrates its

application on a small case study.

6.3.1 Bounding the optimal CFAh

As determined by constraint (6.2.8), the residual flight time availability of the unit reduces by the

associated flight load in each time period of the planning horizon, independently of how this flight

load is distributed across the aircraft of the unit. Based on this observation, we claim that, as far as the

actions of the maintenance station are concerned, the maximum possible CFAh level is attained when

the maintenance crew works continuously on the grounded aircraft with the lowest residual

maintenance time until its service is completed. To get more insight into why this is true, note that

interrupting the service of a grounded aircraft once this has begun may lead to a sub-optimal solution,

since it can delay the addition of this aircraft’s phase interval to the fleet availability of the unit. This

would clearly result in lower CFAh, since the number of aircraft exiting the station at any individual

time period is more heavily weighted in the objective function than that of any succeeding one. Of

course, the service of an aircraft may be spread out over more than one time periods if the station’s

time capacity is not sufficient.

Let ent and ext be the number of aircraft that enter and exit, respectively, the maintenance station

at the beginning of time period t (t = 2,…,T+1), and
2

t

t k
k

cx ex


 be the cumulative number of aircraft

that exit the maintenance station from the beginning of the planning horizon up to time period t (t =

2,…,T+1). In order to show that a first-in-first-out maintenance policy that serves continuously the
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aircraft with the lowest residual maintenance time until its service is completed always leads to the

optimal solution of the problem, we prove next the following result:

Proposition 6.1: Maximizing the objective function of Problem (6.2.1)-(6.2.30) is equivalent to

maximizing
1

2

T

t
t

cx



 .

Proof. For t = 2,…,T+1, the individual residual flight time availability of the unit in time period t is

equal to
1

,1
1 2

( ).
t t

n k k
n N k k

y S Yex


  

    Therefore, the objective function value of problem (6.2.1)-(6.2.30)

is equal to
1 1

,1
2 1 2

( ( ))
T t t

n k k
t n N k k

y S Yex
 

   

     = ,1 1
1 1

(( 1) ) (( 1) ).
T T

n t t
n N t t

T y T t S T t Yex 
  

       

The only non-constant term subject to optimization in this expression is the last summation, which is

equal to 2 3 1( 1) ... TTYex T Yex Yex      2 3 1( ( 1) ... ).TY Tex T ex ex     Therefore, maximizing the

objective function of Problem (6.2.1)-(6.2.30) is equivalent to maximizing the expression

2 3 1( ( 1) ... )TTex T ex ex     = 1
1

( 1)
T

t
t

T t ex 


  .

Since
1

2

T

t
t

cx



 =

1

2 2

( )
T t

k
t k

ex


 
  = 1

1

( 1)
T

t
t

T t ex 


  , the validity of the proposition is established. �

As a consequence of Proposition 6.1, the following result regarding the optimal policy of the

maintenance station is now evident:

Corollary 6.1: No other maintenance policy can result in higher objective value for Problem (6.2.1)-

(6.2.30) than a first-in-first-out policy that always services the grounded aircraft with the lowest

residual maintenance time continuously until its service is completed.

The validity of the corollary results directly from the fact that no other maintenance policy can

result in larger value for
1

2

T

t
t

cx



 . Of course, depending on the particular problem instance, the optimal

CFAh may also be attainable by another maintenance policy; the important finding that we utilize in

the remainder of this work, however, is that the optimal solution will never be overlooked if this

maintenance policy is adopted. If the aircraft with the lowest residual maintenance time is not unique,

the particular aircraft selection can be made arbitrarily.

The total number of aircraft that exit the station cannot be larger than the corresponding number

that results when the total number of aircraft that enter the maintenance station is the maximum

possible. Therefore, to compute a valid upper bound on the optimal CFAh, we enforce the maximum

possible flow of aircraft into the maintenance station by grounding each available aircraft as early as
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possible. This ensures that the time capacity of the station will be fully utilized and that the maximum

possible number of aircraft maintenance services will be completed as early as possible. To expedite

the performance of the algorithm, a small subset of the original model constraints are taken into

consideration for the calculation of this bound. This implies that the associated aircraft combination

that will be identified will not necessarily be feasible. Of course, a subsequent check that confirms or

disproves feasibility is always performed on each such combination.

The following pseudocode outlines the steps of the procedure for obtaining the valid upper

bound on the optimal CFAh, and facilitates the establishment of its validity which is proven in

Proposition 6.2. To keep this pseudocode simple and readable, we utilize the following additional

mathematical notation:

Cres : current number of empty aircraft spots at the maintenance station (residual space capacity),

Bres : currently unused time capacity of the maintenance station (residual time capacity),

TSt : cumulative flight load requirements of time periods 1,…,t (by convention, TS0 = 0),

TS_entt : cumulative flight load that has been fulfilled by the aircraft that have been grounded in time

periods 1,…,t (by convention, TS_ent0 = 0),

tlastn : the most recent time period aircraft n exited the maintenance station (by convention, tlastn = 1 if

aircraft n has not exited the maintenance station in the current planning horizon yet),

ylastn : auxiliary variable that is set equal to Y if tlastn > 1, and yn,1 otherwise,

flag : auxiliary boolean variable.

Procedure CFAh-UB

Step 0: Preprocessing

order the available/grounded aircraft in non-decreasing order of their residual flight/maintenance times

set CFAh = ,1n
n N

T y

 ; set Cres = C - ,1(1- );n

n N
a


 set TS0 = 0; set TS_ent0 = 0;

n N  set tlastn = 1;

Step 1: Iteration

for t = 1 to T do

set TSt = TSt-1 + St; set TS_entt = TS_entt-1; set Bres = Bt; set ext+1 = 0;

while Bres > 0 & additional grounded aircraft exist do

select the grounded aircraft with the lowest residual maintenance time (if more than one such aircraft

exist, select one arbitrarily); let q be the index of this aircraft

set gq,t+1 = gq,t – min(gq,t,Bres); set Bres = Bres - min(gq,t,Bres);

if gq,t+1 = 0 then

set ext+1 = ext+1 + 1; set Cres = Cres + 1;

remove aircraft with index q from the set of grounded aircraft and add it to the set of aircraft which

are available at the beginning of time period t+1; set yq,t+1 = Y; set tlastq = t+1

end if
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end while

set CFAh = CFAh + (T-t+1)Yext+1; set ent+1 = 0; set flag = true;

while (Cres > 0) & additional available aircraft exist & (flag = true) do

select the available aircraft with the lowest residual flight time (if more than one such aircraft exist, select

one arbitrarily); let q be the index of this aircraft

if (tlastq > 1) then set ylastq = Y; else set ylastq = yq,1; end if

if (ylastq > Xmax*(t-tlastq+1)) or (ylastq + TS_entt > TSt) then

set flag = false;

else

set TS_entt = TS_entt + ylastq; set ent+1 = ent+1 + 1; set Cres = Cres - 1;

remove aircraft with index q from the set of available aircraft and add it to the set of aircraft which

are grounded at the beginning of time period t+1; set gq,t+1 = G;

end if

end while

set CFAh = CFAh - (T-t+1)St;

end for �

Procedure CFAh-UB performs two main actions in each time period t. First, it computes the

number of aircraft that will finish their service and exit the station at the end of time period t. This is

straightforward, given the complete knowledge of the aircraft that are grounded at the beginning of

time period t, and Corollary 6.1. Next, it examines the available aircraft in non-decreasing order of

their residual flight times, and checks which of them can be grounded. The grounding of a particular

aircraft is feasible only if the remaining aircraft are sufficient for satisfying the flight load

requirements. Variables tlastn and ylastn are crucial for this check. If Xmax = 50, an aircraft with

residual flight time 80 hours needs at least two time periods in order to enter the maintenance station.

Moreover, if Y = 300, an aircraft that has just exited the maintenance station needs at least Y/Xmax =

300/50 = 6 time periods in order to be grounded for service again.

Procedure CFAh-UB interrupts the flight time allocation in a particular time period as soon as

the first aircraft that cannot be feasibly grounded at the end of this period is identified, since this

implies that no other aircraft can be feasibly grounded either. In the above pseudocode, this is signified

by variable flag which is set equal to false whenever this situation is detected. To ensure that no

feasible solution is ever overlooked, this check is performed separately for each time period. The key

assumption when this is done in time period t is that the residual flight time of each aircraft n is equal

to ylastn and that no flight time has been allocated yet to this aircraft in time periods tlastn,…,t.

This way, the flight time allocation is limited only to aircraft for which their earliest grounding

time period has been determined, which guards against taking decisions that may turn out to be sub-

optimal in future time periods. This is exactly why parameters tlastn and ylastn are introduced in the

Institutional Repository - Library & Information Centre - University of Thessaly
12/05/2024 17:28:17 EEST - 18.118.9.86



83

first place. By maintaining the values of these two variables for each aircraft n, we are able to take into

account every feasible flight time allocation to aircraft n in time periods tlastn,…,t, which ensures that

no feasible aircraft combination will be overlooked. This enables Procedure CFAh-UB to compute the

maximum possible number of grounded aircraft that can finish their service in each time period, as

well as the maximum possible number of available aircraft that can be grounded for service. The

above discussion leads to the following crucial result.

Proposition 6.2: Procedure CFAh-UB provides a valid upper bound on the optimal objective value

(CFAh) of problem (6.2.1)-(6.2.30).

Proof. As far as the maintenance decisions are involved, Corollary 6.1 ensures that the computed

CFAh will be the maximum possible. For each time period, the above procedure computes an upper

bound on the maximum possible number of aircraft that can cumulatively enter the maintenance

station from the beginning of the planning horizon up to this period, thus maximizing the flow of

aircraft into the maintenance station. This implies that the actual number of aircraft that enter the

maintenance station for service from the beginning of the planning horizon up to the end of time

period t for t = 2,…,T+1 in the optimal solution of the problem cannot be larger than the corresponding

number that results from Procedure CFAh-UB. Therefore, the optimal CFAh cannot be larger than the

one provided by Procedure CFAh-UB. �

Besides establishing a valid upper bound on the optimal CFAh, Procedure CFAh-UB also

identifies a particular combination of aircraft that enter and exit the maintenance station in each time

period of the planning horizon. In what follows, we call this the nominal combination, independently

of whether it is feasible or not. Naturally, the nominal is the first combination that the algorithm

checks for full feasibility. The particular details of this procedure are presented in the next subsection.

6.3.2 Checking a particular aircraft combination for feasibility

Checking a particular aircraft combination for feasibility is trivial. Keeping in mind that the order of

aircraft is preserved, the check of whether a particular aircraft combination is feasible reduces to a

check of whether there exists a feasible flight and maintenance plan that realizes this combination.

This is equivalent to checking the original problem formulation for feasibility after fixing the values of

all the discrete decision variables which are determined by this combination, i.e., decision variables

an,t, dn,t, fn,t, pn,t, rn,t, and qt. This simplifies things considerably, since it eliminates completely the

combinatorial nature of the original problem; as a result, the feasibility check is not time-consuming.
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6.3.3 Adding a cut for the exclusion of a particular aircraft combination

Suppose now that a particular aircraft combination is proven infeasible. In order to investigate whether

the currently considered CFAh level can be attained by a different aircraft combination, we need to add

a valid inequality excluding this combination from further consideration. We augment variables ent

and ext with a second index that takes the value 0, 1 or 2, as explained next. The index 0 pertains to the

nominal combination, the index 1 pertains to the combination at hand that we want to exclude, while

the index 2 pertains to any other aircraft combination yet to be discovered by the algorithm. A suitable

cut that excludes the infeasible aircraft combination at hand from further consideration is the

following:
1 1

,1 ,2 ,1 ,2
2 2

| | | | 1.
T T

t t t t
t t

en en ex ex
 

 

     In this expression, ent,2 and ext,2 (t = 2,…,T+1) are

decision variables, whereas ent,1 and ext,1 (t = 2,…,T+1) are parameters with known values. The

constraint ensures that the number of aircraft exiting and entering the maintenance station in the next

combination that will be discovered by the algorithm will differ from the one at hand in at least one

time period. Letting W denote the CFAh level that is currently being considered, nat,i be the number of

grounded aircraft in time period t (t = 2,…,T+1) in the combination that is being excluded (i = 1) and

in the next combination to be discovered (i = 2), the following mixed integer formulation can be

employed to impose the above cut and provide the next candidate aircraft combination:

,2 ,0
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,  2,.., 1
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k k
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ex ex t T
 

    (6.3.2)
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en en t T
 

    (6.3.3)

nat,2 = nat-1,2 + ent,2 - ext,2, t =2,..,T+1 (6.3.4)

nat,2 ≤ C, t =2,..,T+1 (6.3.5)

ext,2 ≤ nat-1,2, t =2,..,T+1 (6.3.6)

Constraint (6.3.1) fixes the currently considered CFAh level. Constraint sets (6.3.2) and (6.3.3)

impose upper bounds on the cumulative number of aircraft that exit and enter the station, respectively,

based on the nominal aircraft combination. Constraint set (6.3.4) updates the number of grounded

,1
1

1,2
1
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n tT
n N t
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t
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Y
 
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   
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 


(6.3.1)
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| | | | 1,
T T

t t t t
t t

en en ex ex
 

 

     (6.3.7)

ent,2, ext,2, nat,2 integer ≥ 0, t = 2,..,T+1 (6.3.8)
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aircraft based on the number of aircraft that enter and exit the maintenance station. Constraint set

(6.3.5) ensures that the space capacity of the maintenance station will not be violated in any time

period. Constraint set (6.3.6) states that the number of aircraft exiting the station at the beginning of

each time period cannot exceed the number of aircraft that were grounded during the previous time

period. Constraint (6.3.7) is the valid cut that excludes the infeasible combination at hand. Of course,

if more than one such combinations have been identified, one such cut needs to be added for each of

them. Finally, the last constraint set imposes the non-negativity and the integrality of the decision

variables.

Consider a particular pair (ent,2, ent,1) in the above formulation. The following set of constraints,

in which z and u are two auxiliary decision variables and K is a sufficiently large number, eliminates

the nonlinearities introduced by the corresponding absolute term in constraint (6.3.7):

Essentially, this set of constraints sets z equal to |ent,1 - ent,2|. If ent,2 > ent,1 then u takes the value

0 and this is determined by constraint (6.3.9), while constraint (6.3.10) becomes redundant. If ent,2 <

ent,1 then u takes the value 1 and this is determined by constraint (6.3.10), while constraint (6.3.9)

becomes redundant. Of course, both values will work for u if ent,2 = ent,1. Appending one such

constraint set for each pair (ent,2, ent,1) and (ext,2, ext,1), together with a constraint that sets the sum of

auxiliary variables z at least equal to 1 is equivalent to constraint (6.3.7), while also preserving the

linearity of the formulation.

If the set of constraints (6.3.1)-(6.3.8) augmented with all the cuts that are currently active is

proven infeasible, this is an indication that the currently considered CFAh level cannot be attained by

any feasible aircraft combination. In order to compute the next lower CFAh level that is candidate for

optimality, we utilize the same formulation after substituting (6.3.1) with an objective that maximizes

the expression
1

,2
2

 (( 1) )
T

t
t

T t ex




  subject to an upper bound of
,1

1

(( 1) )
T

n t
n N t

W T y T t S

Y
 

    
. The

next candidate CFAh level is discovered this way, which is fixed using constraint (6.3.1), as before. At

the same time, all the previous cuts are suppressed because they are rendered redundant.

ent,2 - ent,1 ≤ z ≤ ent,2 - ent,1 + Ku (6.3.9)

ent,1 - ent,2 ≤ z ≤ ent,1 - ent,2 + K(1-u) (6.3.10)

u binary (6.3.10)
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6.3.4 A small case study

In this section, we illustrate the application of the proposed algorithm on a small case study. Consider

a unit comprising of six aircraft, five of which are available and one of which is grounded at the

beginning of the planning horizon. Table 6.1 presents the residual flight/maintenance times of the

aircraft at the beginning of the six-period planning horizon, while Table 6.2 presents the flight load

requirements and the time capacity of the maintenance station in each time period. In Table 6.1, bold-

style entries denote maintenance times of grounded aircraft and plain-style entries denote flight times

of available aircraft. The values of the other problem parameters are G = 320 hours, Y = 300 hours, C

= 3, Xmax = 50 hours, Ymin = 0.1 hours and Gmin = 0.1 hours.

Table 6.1: Residual flight/maintenance times (yn,1/gn,1) (hours)

n = 1 n = 2 n = 3 n = 4 n = 5 n = 6
5 38 186 213 257 70

Table 6.2: Flight load requirements and time capacity of the maintenance station

t 1 2 3 4 5 6
St 97 115 99 121 121 113
Bt 129 148 154 144 126 135

The valid upper bound on the optimal CFAh obtained by Procedure CFAh-UB is equal to 4923.

The associated (nominal) aircraft combination is shown in Table 6.3.

Table 6.3: Nominal aircraft combination

t 2 3 4 5 6 7
ent 2 0 0 1 1 1
ext 1 0 0 1 0 1

Next, we check where a feasible solution that realizes this combination exists. To this end, we

fix in the original formulation the values of all the decision variables which are determined by this

combination, keeping in mind that the order of aircraft into and out of the maintenance station is

preserved. These are the variables an,t, dn,t and fn,t for n = 1,…,6 and t = 2,…,7, pn,t and rn,t for n =

1,…,6 and t = 1,…,6, as well as several of the variables xn,t, yn,t, gn,t, hn,t (for example, x1,1 = 5, x2,1 = 38,

g6,1 = 70, etc.). The user may choose to add only a proper subset of the constraints enforced by the

aircraft combination and let the optimization solver deduce the remaining ones, or opt for a tighter

formulation by explicitly adding all the implied constraints. For our small example, the inclusion of

the above constraints makes the problem infeasible, because the flight load constraints of time periods

5 and 6 are violated. Therefore, we add a valid-cut that excludes this combination, and we utilize the

following set of constraints in order to check if the currently considered CFAh level (4923) can be

attained by another aircraft combination.
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ex t

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ex

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nat = nat-1 + ent - ext, t =2,..,7

nat < 3, t =2,..,7

ext ≤ nat-1, t =2,..,7

The aircraft combination shown in Table 6.4 is identified next, for which the value of CFAh is

equal to 4923, as before.

Table 6.4: Second aircraft combination

t 2 3 4 5 6 7
ent 1 0 0 0 1 1
ext 1 0 0 1 0 1

Next, we check whether this aircraft combination can be realized by a feasible

flight/maintenance plan. Since it cannot, a new cut is added, excluding it from further consideration.

The algorithm continues similarly until the first feasible aircraft combination is identified. This is true

for the 12th combination identified, which is the one shown in Table 6.5. This is the optimal

combination, while the optimal CFAh is equal to 4923, i.e. equal to the valid upper bound provided by

Procedure CFAh-UB. The complete optimal solution of the problem is found easily by forcing the

realization of this combination in the original model formulation.

Table 6.5: Optimal aircraft combination
t 2 3 4 5 6 7

ent 1 0 1 0 0 1
ext 1 0 0 1 0 1

6

1
1

((7 ) ) 10t
t

t ex 


 

2 3 4 5 6 7

2 3 4 5 6 7

2 0 0 1 1 1

1 0 0 1 0 1 1

en en en en en en

ex ex ex ex ex ex

           

           

ent, ext, nat integer ≥ 0, t =2,..,7
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6.4 Computational implementation

In this section, we analyze the computational complexity of the proposed solution algorithm, and we

present computational results demonstrating its efficiency. We also compare its performance against

that of two popular commercial optimization software packages that can be utilized alternatively for

the solution of the problem under consideration. In order to portray the applicability of the proposed

solution algorithm and highlight the benefits that can emerge from its practical application, we test the

proposed algorithm both on realistic problem instances drawn from the operation of a typical aircraft

unit of the HAF, as well as on large scale random problem instances whose size and parameter values

differ significantly from those of typical problems arising in practice.

6.4.1 Computational complexity

The computational effort of the proposed solution algorithm comprises of the computational effort

required for the calculation of the valid upper bound on the optimal CFAh, of the computational effort

required for testing the feasibility of the aircraft combinations that are encountered, and of the

computational effort required for the addition of the necessary valid inequalities. Let A and NA be the

total number of aircraft that are initially available and grounded, respectively, and |N| = A + NA be the

total number of aircraft. Regarding the computational effort for the calculation of the valid upper

bound on the optimal CFAh, the following result is true:

Proposition 6.3. The computational effort of Procedure CFAh-UB is O(A log(A)) + O(NA log(NA)) +

O(T|N|).

Proof. The total time required to arrange the available aircraft in non-decreasing order of their residual

flight times and the grounded aircraft in non-decreasing order of their residual maintenance times is

O(A log(A)) and O(NA log(NA)), respectively. The total time required to initialize the values of

variables tlastn is O(|N|). The preprocessing phase of Procedure CFAh-UB performs these actions only

once. The total time required to compute the maximum cumulative number of aircraft that can enter

and exit the maintenance station for each time period is O(|N|). This action is performed once for each

time period of the planning horizon. Therefore, the total computational effort of Procedure CFAh-UB is

O(A log(A)) + O(NA log(NA)) + O(|N|) + O(T|N|) = O(A log(A)) + O(NA log(NA)) + O(T|N|). �

Regarding the computational effort required to test the feasibility of a single aircraft

combination, with the values of decision variables an,t, dn,t, fn,t, pn,t, rn,t, and qt known, the problem

defined by (6.2.1)-(6.2.30) reduces to finding a feasible solution to a system of linear constraints with

continuous decision variables. Therefore, its computational complexity is polynomial in the values of
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parameters |N| and T that define the size of the problem. On the other hand, the total number of aircraft

combinations that must be checked in the worst case is exponential in the values of parameters |N|, C,

and T. For realistic problems, this is hardly an issue, since the value of T is rather small and remains

constant, while C is relatively small as a percentage of |N| (~10%), making the number of aircraft

combinations that the algorithm encounters relatively small. In the next section, we discuss how this

exponential behavior can be properly handled should it arise.

6.4.2 Computational results

The proposed solution algorithm was implemented in C and its performance was compared against

that of CPLEX 12.5 (2012) and LINGO 13.0 (2011), two popular commercial optimization software

packages. Our computational experiments were performed on an i5-3330 @ 3.0 GHz Intel processor

with 16 GB system memory. Typical wing configurations of the HAF comprise of 60-80 aircraft, a

number that can increase up to 100 aircraft in special cases. Neither CPLEX nor LINGO can handle

problems of this size in reasonable time; hence we chose 5 smaller values (i.e., 10, 15, 20, 25 and 30)

for the total number of aircraft that comprise the unit. On the other hand, the proposed solution

algorithm is capable of handling considerable larger problems; therefore, we also tested its

performance on more challenging problems with |N| = 50, 100 and 200. The planning horizon was

always set equal to six monthly periods, since the flight load of a typical combat unit of the HAF is

typically issued over a six-month period. For each of these sizes, we solved 30 random problem

instances. Both optimization packages were invoked with default options.

The random generator was specially designed so as to make the generated problems as similar

as possible to the realistic ones. The specifics are as follows: although C is equal to approximately

0.1|N| in practice (for a group of 60-80 aircraft, the maintenance hangar can typically accommodate 6-

8 aircraft), we set it equal to 0.15|N| rounded to the nearest integer in order to make the generated

problem instances more challenging. This is because our computational experience and the complexity

analysis of the previous subsection suggest that, in general, the difficulty of solving a particular

problem increases as the value of C increases. The number of initially grounded aircraft, NA, was

generated randomly, using a discrete probability function that considered integer values between 0 and

C, inclusive. This distribution was negatively skewed, so that larger candidate NA values were

assigned higher probabilities. In particular, for x = 0,…,C, the probability that the number of grounded

aircraft at the beginning of the planning horizon was equal to x was set equal to
0

( 1) / ( ( 1)).
C

x
x x



 

Of course, the number of initially available aircraft, A, was always set equal to |N|-NA. The residual

flight time of each available aircraft at the beginning of the planning horizon was a random number

distributed uniformly in the interval [Ymin,Y], while the residual maintenance time of each grounded
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aircraft at the beginning of the planning horizon was a random number distributed uniformly in the

interval [Gmin,G].

For each time period t, St was uniformly distributed in the interval [10|N|, 15|N|], and Bt was

uniformly distributed in the interval [15|N|, 20|N|]. This design approximates fairly close the

characteristics of realistic problems; the detailed reasons are strictly confidential. Actual values drawn

from the real application were used for the other problem parameters, i.e., Y = 300, G = 320, Xmax = 50,

Ymin = 0.1 and Gmin = 0.1.

Table 6.6 presents the average and maximum computational times of the two commercial

software packages and our proposed solution algorithm for these realistic problems. More specifically,

columns 2 and 3 of this table show the computational times of LINGO, columns 6 and 7 show the

computational times of CPLEX with the single-thread option selected, while columns 8 and 9 show

the computational times of CPLEX with the multi-thread option selected (this is the default option).

Additionally, columns 10 and 11 show the computational times of the proposed solution algorithm

when the original formulation (6.2.1)-(6.2.30) is directly utilized for checking whether a feasible

aircraft combination that attains a particular CFAh level exists, while columns 12 and 13 show the

computational times of this algorithm when this check is performed in two steps (according to the

procedure described in Section 6.3), instead. The results of columns 4 and 5 are explained in the

following paragraphs. When the multi-thread option is selected, CPLEX uses all the available threads

(4 in the case of the computer that we used for our experiments). The table is incomplete because the

commercial solvers are not able to accommodate all the problem sizes within the 8-hour limit that we

enforced.

Table 6.6: Computational times (seconds) comparison for realistic problems

LINGO LINGO
with cuts

CPLEX
single-thread

CPLEX
multi-thread

Proposed
algorithm

(1-step feas.
check)

Proposed
Algorithm

(2-step feas.
check)

|N| Avg Max Avg Max Avg Max Avg Max Avg Max Avg Max
10 0.44 1.73 0.19 0.49 0.05 0.09 0.05 0.09 0.12 0.18 0.10 0.11
15 30.03 174.24 0.40 1.32 1.34 6.89 0.54 2.37 0.15 0.23 0.10 0.11
20 2.43 10.48 1189.57 20550.01 118.72 1321.3 0.47 4.38 0.11 0.13
25 1.65 18.20 1130.14 7794.17 0.30 2.33 0.12 0.14
30 4.26 34.32 0.82 16.46 0.13 0.14
50 4.46 13.15 0.45 0.59 0.18 0.18

100 10.58 18.18 4.48 68.84 0.28 0.29
200 2.73 4.09 0.49 0.52

The superiority of the proposed solution algorithm becomes immediately clear, since its

computational times are significantly lower than those of both LINGO and CPLEX. As the results of

this table demonstrate, the computational savings increase considerably for large scale problem

instances, for which the application of the two software packages appears impracticable. The

variability of the computational times appears significant for both CPLEX and LINGO, whereas in the
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case of our algorithm it appears insignificant. An interesting observation is that, naturally, the

performance of CPLEX improves considerably when the multi-thread option is selected instead of the

single-thread option. This option should always be used with caution, however, since increasing the

number of threads being used increases the probability that the computer will run out of memory on a

particular problem that may be otherwise solvable when the single-thread option is selected. As far as

the two alternative designs for the proposed solution algorithm are concerned, the last four columns

demonstrate that, for these particular problems, the performance of the two-step procedure for

identifying feasible aircraft combinations appears superior to that of the direct feasibility check that

utilizes the original formulation (6.2.1)-(6.2.30).

While experimenting with alternative solution options, we noticed that the performance of

LINGO can improve significantly by introducing additional constraints that impose valid upper

bounds on the cumulative number of aircraft that enter and exit the maintenance station from the

beginning of the planning horizon up to time period t for t =2,…,T+1. Such bounds can be provided by

Procedure CFAh-UB. Columns 4 and 5 of Table 6.6 show the computational times of LINGO when

these bounds are applied. It becomes evident from these results that the improvement is significant,

allowing LINGO to handle considerably larger problems within the predefined time limit. In practice,

of course, it does not make much sense to adopt this procedure by applying partially the proposed

algorithm in order to find these bounds, since its full application exhibits even better performance for

all the realistic problems on which it was tested. On the other hand, a similar behavior was not

detected for CPLEX (probably due to different strategies followed by the underlying algorithmic

procedures), and therefore no similar results are reported.

The high efficiency of the proposed solution algorithm can be partially attributed to the fact that

the number of aircraft combinations it encounters is rather small. In turn, this implies that the upper

bound provided by Procedure CFAh-UB is tight. In view of this observation, and in an attempt to test

the limits of this algorithm, we tried to generate problem instances for which this bound is

considerably looser. In particular, since the algorithm starts by grounding each available aircraft as

early as possible, we generated special problems for which although it is possible to ground several

aircraft during the first time periods of the planning horizon, the optimal decision is to hold them back

and ground them after several subsequent time periods. Tables 6.7 and 6.8 show the data of one

problem with such characteristics, for which A = 10, NA = 0, T = 6, G = 320 hours, Y = 300 hours, C =

4, Xmax = 50 hours, Ymin = 0.1 hours and Gmin = 0.1 hours. The time capacity of the maintenance station

is purposely selected to be larger in the first three time periods so as to enable a large number of

service completions during these periods, and smaller in the last three time periods, so as to cause

delays in the service completions of those periods.
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The application of Procedure CFAh-UB for this problem results in one aircraft being grounded

during the first two time periods of the planning horizon and provides an upper bound equal to 7210

on the optimal CFAh. However, the associated aircraft combination, shown in Table 6.9, is infeasible.

In fact, a CFAh equal to 7210 cannot be realized by any feasible combination; in order to obtain a

feasible solution to the problem, the first aircraft grounding must not take place before time period 4.

Table 6.7: Residual flight times (yn,t) (hours)

n = 1 n = 2 n = 3 n = 4 n = 5 n = 6 n = 7 n = 8 n = 9 n = 10
5 250 250 250 250 250 250 250 250 250

Table 6.8: Flight load requirements and time capacity of the maintenance station

t 1 2 3 4 5 6
St 450 450 455 200 50 50
Bt 200 200 640 100 100 100

Table 6.9: Nominal aircraft combination

t 2 3 4 5 6 7
ent 1 0 0 0 4 0
ext 0 0 1 0 0 0

Starting from this one, the proposed algorithm identifies in total 165 infeasible aircraft

combinations before reaching the optimal. The number of these combinations for each associated

CFAh level is shown in Table 6.10, while the optimal combination that corresponds to a CFAh level of

6010 is shown in Table 6.11.

Table 6.10: Number of encountered aircraft combinations

CFA level 7210 6910 6610 6310 6010 Total
# of A/C comb. 30 45 45 42 3 165

Table 6.11: Optimal aircraft combination

t 2 3 4 5 6 7
ent 0 0 1 0 1 0
ext 0 0 0 0 0 0

Looking more closely at the data of this problem, note that if the aircraft with index 1 is

grounded at the end of the first period, it cannot exit the maintenance station earlier than the beginning

of time period 4. Although the remaining nine aircraft are sufficient for satisfying the flight load

requirements of time period 2, all ten aircraft are needed in order to satisfy the flight load requirements

of time period 3 (455 hours), due to the upper bound (50 hours) on the flight time of each individual

aircraft in a single time period. Therefore, the optimal and only feasible decision is to hold back the

first aircraft and ground it at the end of time period 3. The algorithm cannot foresee this, and goes on

to examine all the aircraft combinations that can possible arise by grounding this aircraft earlier,
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before identifying the optimal one. Since the number of these combinations is quite large, this has an

adverse effect on the algorithm’s performance, which deteriorates considerably.

It should be emphasized that this numerical example violates many of the characteristics that

realistic problems exhibit; it is specially designed so as to trouble the proposed solution algorithm as

much as possible, and is presented as a reference basis in order to illustrate a case in which the

performance of this algorithm is unsatisfactory, as well as the characteristics of a problem for which

this situation can arise. The main such characteristic is that there exist one or more aircraft which can

be feasibly grounded during the first time periods of the planning horizon, but the optimal decision is

to hold them back and ground them after several subsequent time periods.

The fact that the performance of the proposed solution algorithm deteriorates when applied on

these non-standard problem instances is confirmed by the results of Table 6.12. In this table, we

present the computational times that this algorithm needs in order to find the optimal solution of

problems exhibiting the above characteristic, for various problem sizes (30 problem instances were

solved for each such size). The problem instances are not completely random, in that several of their

parameter values were selected purposely, so as to ensure the existence of this characteristic. Once this

had been ensured, however, the remaining parameters were chosen randomly. In particular, the

residual flight times of the aircraft, as well as the flight load and the time capacity of the maintenance

station in each time period were selected randomly in similar ranges as those of the problem instances

tested in Table 6.6, under the additional requirement that the optimal CFAh level should not be

attainable if the first one or two aircraft were grounded before the 4th-5th time period. A trivial trial and

error technique was employed in order to achieve that, which simply rejected those random instances

for which this was not true. The columns of Table 6.12 are mainly the same with those of Table 6.6,

the only difference being that no results are reported regarding the application of LINGO after the

incorporation of special cuts, since there is no significant advantage from adding such cuts in the case

of these non-standard problems.

Table 6.12: Computational times (seconds) comparison for non-standard problems
LINGO CPLEX

single-thread
CPLEX

multi-thread
Proposed

algorithm (1-
step feas.

check)

Proposed
algorithm (2-

step feas.
check)

|N| Avg Max Avg Max Avg Max Avg Max Avg Max
10 0.04 0.04 0.02 0.03 0.02 0.03 0.04 0.04 13.87 27.64
15 0.05 0.06 0.02 0.03 0.02 0.03 0.05 0.06 26.49 31.71
20 0.06 0.07 0.02 0.03 0.02 0.03 0.07 0.07 27.42 30.42
25 0.08 0.09 0.02 0.03 0.03 0.03 0.08 0.08 29.60 35.24
30 0.09 0.10 0.02 0.03 0.03 0.03 0.09 0.10 29.80 33.24
50 0.15 0.16 0.05 0.06 0.04 0.05 0.15 0.15 33.87 36.40

100 0.30 0.31 0.07 0.08 0.07 0.08 0.29 0.31 47.67 50.44
200 0.64 0.65 0.13 0.14 0.13 0.16 0.61 0.61 64.58 90.50
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Besides confirming that the performance of the proposed solution algorithm deteriorates

considerably for the non-standard problems, the results of Table 6.12 also show that the opposite is

true for CPLEX and LINGO. This observation is important because it suggests that none of the

solution algorithms considered in this work can handle efficiently every possible problem of

reasonable size that can arise. Additionally, the above results show that, in the case of the non-

standard problems, it is preferable to employ directly the original formulation comprised of (6.2.1)-

(6.2.30) for identifying feasible aircraft combinations that attain a particular CFAh level, instead of the

two-step procedure which appears superior in the case of the realistic problems. As these results

additionally demonstrate, however, the employment of this technique is not even necessary, due to the

fact that the performance of CPLEX and LINGO appears superior to that of the proposed solution

algorithm, in contrary to what happens in the case of problems with realistic characteristics. Our

computational experience suggests that as the actual number of aircraft combinations that the proposed

solution algorithm must visit in order to reach the optimal solution increases, the performance of both

LINGO and CPLEX improves, whereas that of the proposed solution algorithm deteriorates, and vice

versa. In particular, note that, exhibiting superior performance to that of LINGO, CPLEX appears as

the most efficient algorithmic solution tool for handling these non-standard problems.

To summarize, for problems with realistic characteristics in which the number of encountered

aircraft combinations is quite small, the performance of the proposed algorithm appears superior,

whereas for problems with characteristics such as those described above in which this number is

considerably larger, the performance of CPLEX/LINGO appears superior. The important conclusion

of this analysis is that the proposed algorithm, complemented by generic optimization software such as

CPLEX and LINGO, can handle effectively a large variety of FMP problem instances.

6.5 Problem extensions

In this section, we discuss the applicability of the proposed algorithm on some interesting problem

extensions, which have been briefly discussed in Section 3.5. In particular, we relax the assumption on

the strict satisfaction of the flight load requirements, we extend the single-squadron case to the multi-

squadron one, and we discuss alternative problem objectives.

6.5.1 Relaxing the assumption of strict flight load satisfaction

The actual problem definition often calls for satisfaction of the flight load requirements within some

predefined tolerance, instead of the strict satisfaction imposed by constraint (6.2.8). When this is the

case, constraint set (6.2.8) is expressed as follows instead:
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where L and U are two parameters defining the interval in which the actual total flight time of time

period t must lie. For example, when L = 0.95 and U = 1.05, a maximum deviation of 5% from the

target value of the flight load is allowed in each time period of the planning horizon. The main effect

of this modification is that it makes the total flight time of each time period a decision variable instead

of a known parameter. Thus, Proposition 6.1 is no longer valid, and maximizing the CFAh becomes

equivalent to maximizing the expression
1

2 1

( ) (( 1) ),
T T

t t
t t

cx T t AS


 

    where ,t n t
n N

AS x


 is the actual

flight time in period t.

This implies that the upper bound on the optimal CFAh obtained by Procedure CFAh-UB is no

longer valid. To compute a valid upper bound on the optimal CFAh in this case, we can use the value

USt as the total flight time of period t for computing the maximum number of aircraft that can enter

and exit the maintenance station over the planning horizon, and the value LSt as the total flight time of

period t for performing the remaining calculations. The validity of the new bound obtained this way

results from the fact that it considers the maximum possible number of aircraft service completions, as

well as the minimum possible flight load requirements.

With the new flight load requirement definition, a particular aircraft combination can result in

many different CFAh levels, depending on the exact value of the total flight time in each time period of

the planning horizon. Therefore, in order to search for the optimal solution, the user needs to consider

alternative aircraft combinations, verify their feasibility, and check the optimal CFAh they result in.

This can be accomplished by enforcing the complete aircraft combination using the model formulation

of Section 6.2.

6.5.2 Multi-squadron units

Another interesting problem extension arises when the considered unit is comprised of several sub-

units. The incorporation of multi-squadron units adds a strong combinatorial flavor to our model, since

distinct cases depending on which squadron an aircraft that enters or exits the maintenance station

belongs to need to be distinguished. In turn, this has a significant impact on the computational

requirements of the proposed algorithm, as well as on those of CPLEX/LINGO.

Note, however, that instead of considering each of these possible cases separately, we can

simply check whether a particular CFAh level can be attained by a feasible combination by utilizing

the complete constraint set of problem (6.2.1)-(6.2.30) and letting the solver deduce whether an

associated feasible flight and maintenance plan exists. The computational requirements that result

, ,  1,...,t n t t
n N

LS x US t T


   ,
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when the CFAh level is fixed to a particular value are moderate, enabling the solution of realistic

problems in satisfactory computational times.

6.5.3 Alternative problem objectives

In the current chapter, we consider the cumulative residual flight time availability as the

model’s objective. One of the reasons for doing so is because among all the alternative objectives this

is the one that causes the largest computational difficulties to the solution of the optimization model of

Section 6.2. To justify this claim, in Table 6.13 we report the computational requirements of LINGO

and CPLEX on the same problem instances as those of Table 6.6, except that we use the cumulative

aircraft availability (CFAa) instead of the cumulative residual flight time availability as the model’s

objective. Mathematically, this objective is expressed as follows:

The corresponding single objective multi- period formulation (S-FMPa) is:

The results of Table 6.13 confirm that the use of the alternative objective reduces considerably

the computational requirements of the two software packages, and suggest that the objective choice is

a very crucial decision that has a strong impact on the computational effort needed to find the optimal

solution of the problem. A similar behavior is observed when the minimum residual flight time and

aircraft availability are used as model objectives, which are expressed as follows:

The proposed algorithm requires a few modifications in this case, since maximizing the number

of aircraft service completions is not necessarily an optimal maintenance strategy. In view of the

above important insights, however, we did not pursue these modifications, because the performance of

1

,
2

Max
T

n t
t n N

a


 


Max aCFA

s.t. x X

(S-FMPa)

Max Z

s.t. , ,   = 2,..., +1, andn t
n N

Z y t T




Max Z

s.t. , ,   = 2,..., +1, respectively.n t
n N

Z a t T



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the existing solvers on realistic problems is quite satisfactory, and the potential savings from the

implementation of a modification of the above algorithm are uncertain.

Table 6.13: Computational times (seconds) of LINGO/CPLEX for the alternative objective CFAa

LINGO CPLEX
single-thread

|N| Avg Max Avg Max
10 0.12 0.17 0.02 0.03
15 0.19 0.72 0.02 0.03
20 0.32 2.39 0.03 0.05
25 0.22 1.26 0.03 0.05
30 0.25 0.69 0.04 0.06
50 0.44 1.05 0.04 0.05

100 1.45 15.36 0.08 0.08
200 2.20 2.78 0.14 0.16

Out of all these alternative model objectives, there does not seem to exist a single one that can

capture completely all the aspects of the problem under consideration. For example, the CFAh is not

able to differentiate between solutions with different distribution of the total fleet availability among

the time periods of the planning horizon, which is also important since this distribution should be as

balanced as possible, too. We believe that the user would have to develop a multi-objective model in

order to capture this problem aspect, but we did not pursue this because it would require additional

modifications, and would extend the length of this chapter beyond the typical standards.

Our particular choice for the model objective was motivated by the observation that, in contrary

to this objective, other ones can be handled successfully by commercial optimization software

packages such as CPLEX/LINGO. Hence, given also the fact that this objective is quite realistic, we

decided to develop a specialized algorithm that handles it in order to fill in this gap. Independently of

that, for each typical alternative model objective we believe that it is possible to develop a suitable

modification of the proposed algorithm that will be able to solve the problem under consideration. The

main design of this algorithm will remain similar to that of the present one (find a valid upper bound

on the optimal objective, test the feasibility of aircraft combinations that attain this bound, eliminate

infeasible such combinations, update accordingly the upper bound, etc., until the optimal solution is

obtained), although the particular details for the implementation of each single step will clearly have to

be modified accordingly in each case. We do not claim that the performance of such an algorithm will

always be superior to that of commercial optimization software (this cannot be known in advance), but

that the development of such an algorithm appears attainable.
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6.6 Summary

In this chapter, we addressed a single-objective multi-period version of the FMP problem. The

problem aims to issue a joint flight and maintenance plan for a group of aircraft that comprise a unit in

order to maximize the unit’s fleet availability over a multi-period planning horizon. Using the

cumulative residual flight time availability as the objective, we developed an exact solution algorithm

that initially computes a valid upper bound on its optimal value, and then gradually reduces this bound

in a stepwise fashion, until a solution that attains it is identified. The performance of the algorithm on

realistic problems appears superior to that of two commercial optimization solvers that can be used

alternatively for the solution of the problem, whereas the opposite behavior is observed for a class of

problems with significantly different characteristics.
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Chapter 7 Incorporating the Minimization of the Fleet
Availability Variability

7.1 Introduction

A drawback of the FMP models studied in the previous chapters is that they provide long-term fleet

availabilities with significant variability. For example, the application of the FMP model developed by

Kozanidis et al. (2010) for solving a real problem instance in 4 consecutive planning horizons with an

equal length of 6 monthly periods each, results in the fleet availability pattern shown in Figure 7.1.

The characteristic bell-shaped curve of the fleet availability depicted in this figure is an indication of

its high variability. Intuitively, the availability levels tend to be higher towards the middle of the

associated planning horizon, and lower towards its two endpoints. This is a consequence of the fact

that the model focuses on maximizing the fleet availability within each individual planning horizon in

isolation, without taking into consideration the fact that the transition into the next planning horizon

must also be as smooth as possible; this clearly results in plans which, although being optimal within

each individual planning horizon, do not exhibit certain desirable long-term characteristics, such as

low variability. An inevitable side effect of this behavior is the fact that the exact length of each

planning horizon strongly affects the pattern of the fleet availability; the longer this length, the lower

the associated variability is expected to be. Still, however, since the application of the model in

subsequent rolling horizons is inevitable, the bell-shaped pattern depicted in Figure 7.1 is always

expected to be present.

Figure 7.1: Visual depiction of the fleet availability’s variability

With these in mind, we formulate a quadratic FMP model in this chapter, which, besides the

typical objective maximizing the fleet availability, also includes an additional objective minimizing its
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variability. For this model, we develop two specialized solution algorithms, which successfully obtain

the entire frontier of non-dominated solutions. Both algorithms utilize suitable relaxations of the

original formulation, exploiting the discrete nature of the domain comprising possible fleet availability

values. This key property is a consequence of the fact that the flight time availability of the unit is

uniquely determined by the combination of aircraft entering and exiting the maintenance facility, and

the fact that the number of distinct such combinations is finite.

The first methodology disaggregates the original FMP model into smaller subproblems whose

solution is attained much more efficiently. Initially, it establishes a valid upper bound on the ideal

value of the fleet availability through the solution of a suitable relaxation of the original formulation;

next, this value is gradually reduced in a stepwise manner, with the aircraft combination minimizing

the variability of the associated fleet availability identified in each of these steps. Adding special valid

inequalities for excluding the solutions which cannot be optimal, the procedure succeeds in obtaining

the entire frontier of non-dominated solutions upon termination.

The second methodology is a variant of the ε-constraint method, applied to a suitable relaxation

instead of the original FMP model. It works by devising the payoff table calculation through

lexicographic optimization, and by disaggregating the FMP solution into suitable relaxations which

are utilized in subsequent steps. As the experimental results that we present demonstrate, the

computational performance of the two proposed algorithms is considerably superior to that of applying

the typical ε-constraint method directly on the original biobjective model, enabling the solution of

large realistic problem instances in reasonable computational times.

The remainder of this chapter is structured as follows. In Section 7.2 we present the proposed

FMP formulation. In Section 7.3, we develop the proposed solution methodologies, while in Section

7.4 we present computational results comparing their relative performance. Section 7.5 discusses some

interesting model enhancements and possible extensions, and finally, Section 7.6 summarizes our

conclusions.

7.2 Biobjective FMP model (Bi-FMPh)

In this section, we develop the mixed integer biobjective quadratic formulation for the FMP problem,

which extends the single objective FMP formulation presented in Section 6.2. As already explained at

the end of Section 6.2, that model can be expressed as follows:

 Max hCFA x

s.t. x X ,

(S-FMPh)
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where x is a solution, CFAh(x) is the cumulative residual flight time availability realized by this

solution, and X is the set of all feasible solutions.

Let ,
1

N

t n t
n

SY y


 be the individual residual flight time availability of the unit in time period t,

and      
1

2





T

t
h t

SY xCFA x
SY x =

T T
be the average residual flight time availability of the unit over the

planning horizon realized by solution x. We define the corresponding variability, Vh(x), of this solution

as:

     
1

2

2

1 ( )




   
 

T

h t
t

V x = SY x SY x
T

.

This expression is similar but not identical to the biased sample variance definition, since the

sum of the squared deviations from the average is divided by the number of observations instead of the

number of observations minus one. In our case, this difference is insignificant, since our main focus is

on minimizing the summation of the squared deviations from the average. The incorporation of the

second objective minimizing the variability of the residual flight time availability leads to the

following biobjective formulation for the FMP problem (Bi-FMPh):

A well-known notion in multi-objective optimization is that of efficiency or Pareto optimality.

In the context of the specific formulation introduced above, a feasible solution x* is called efficient or

Pareto optimal if there does not exist any other feasible solution x’ such that CFAh(x*) ≤ CFAh(x’) and

Vh(x*) ≥ Vh(x’), with at least one of the two inequalities holding as strict. In general, efficient are the

solutions for which one cannot improve one of the two objectives without worsening the other. In

multi-objective optimization, the different objectives involved are typically in conflict, and very rarely

a single solution that simultaneously optimizes all of them exists. We use the notation z(x) to denote

the image of a feasible solution in objective space: z(x) = {(CFAh(x), Vh(x)) : xX}.

If x* is efficient, then the corresponding point z(x*) = (CFAh(x*), Vh(x*)) in objective space is

called non-dominated point. The set of all efficient solutions constitutes the efficient set, E, while the

set of all non-dominated points constitutes the non-dominated set, Nd:

Nd ={(CFAh(x*), Vh(x*)) : x*E}.

 Max hCFA x

 Min hV x

s.t. x X

(Bi-FMPh)
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Let  max


I
h hx X

CFA CFA x and  min


I
h hx X

V V x . Then, the point ( , )I I
h hCFA  V in objective space

is called the ideal point. In general, the ideal point is not a member of Nd, since a feasible solution in

decision space whose corresponding image in criterion space is the ideal point rarely exists. Let also

 min : ( )


 N I
h h h hx X

V V x CFA x CFA and  max : ( )


 N I
h h h hx X

CFA CFA x V x V . The points  ,N I
h hCFA V

and  ,I N
h hCFA V in objective space belong to Nd, while their inverse images in decision space belong

to E. Finally, the point ( ,  )N N
h hCFA V is called the nadir point and is rarely a member of Nd, because it is

usually dominated by the two previous points.

7.3 Solution methodology

7.3.1 Theoretical groundwork

Let ent and ext denote the number of aircraft entering and exiting, respectively, the maintenance

facility at the beginning of time period t (t = 2,…,T+1), and c = (en2,…,enT+1, ex2,…,exT+1) be a

specific such aircraft combination over the entire planning horizon. The two solution methodologies

that we develop for the biobjective quadratic FMP problem utilize the key property that the domain

comprising possible CFAh values is a discrete set. This enables the identification of the entire non-

dominated set through the application of an iterative solution procedure that minimizes the associated

variability for each of these discrete CFAh values. In that sense, our proposed approach exhibits some

similarities with the methodology proposed by Bérubé et al. (2009), who develop an exact ε-constraint

method for biobjective combinatorial optimization problems with integer objective values. Before

introducing the specifics of this approach, we prove some important theoretical results first, which,

among others, lead to the establishment of this key property, laying the foundation for the

development of the proposed algorithmic methodologies.

Lemma 7.1: The maximization of CFAh depends solely on the combination of aircraft entering and

exiting the maintenance facility in time periods 2,…,T+1.

Proof. For t = 2,…,T+1, the residual flight time availability of the unit at the beginning of time period

t, SYt, is equal to
| | 1

1 1 2
1 ( ).

N t t

n k k
n k k

Y S Y ex


  

     The first two summations in this expression are

constant; therefore, the only term subject to optimization is the last summation, which is equal to

(Yex2+…+Yext). As a result, maximizing CFAh is equivalent to maximizing
1

2 2

( )


 


T t

k
t k

Y ex , which can

be expressed as (Yex2) + (Yex2+Yex3) +…+ (Yex2+…+YexT+1) = (Tex2 + (T-1)ex3 + … + exT+1)Y.
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Besides decision variables enk and exk, which determine the combination of aircraft entering and

exiting the maintenance facility in time periods 2,…,T+1, the above expression only includes Y and T,

which are fixed parameters known in advance. This establishes the validity of the lemma. �

Lemma 7.2: The CFAh values of any two distinct aircraft combinations differ by an exact multiple of

Y.

Proof. In Lemma 7.1, it was shown that the CFAh value of a particular aircraft combination is equal to
| |

1 1

1 ( 1)
N T

n t
n t

T Y T t S
 

    + (Tex2 + (T-1)ex3 + … + exT+1)Y. In this expression, the term

| |

1 1

1 ( 1)
N T

n t
n t

T Y T t S
 

    is constant and independent of the aircraft combination. Besides, the

multiplier of Y, appearing in the last parenthesis, is clearly an integer; the fact that the difference of

any two integers is also an integer establishes the validity of the lemma. �

Corollary 7.1: The number of feasible aircraft combinations c = (en2,…,enT+1,ex2,…,exT+1) is finite.

Lemma 7.3: Minimizing Vh for a fixed CFAh level is equivalent to minimizing 2 2 2
2 3 1...+ TSY SY SY   .

Proof. For a fixed CFAh level, we have
1

2

2

1= ( )




   
 

T

h t
t

V SY SY
T

=

      2 2 22 2 2
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T

=

  22 2 2
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hCFA
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.

Since CFAh is fixed in this expression, the only non-constant quantity subject to optimization is the

enumerator of the first term. This establishes the validity of the lemma. �

In the next sections, we utilize the above key theoretical results for the development of the

proposed solution methodologies.

7.3.2 ε-Constraint methodological framework

An appropriate methodology for the solution of a biobjective problem should ideally be able to

provide the entire set of non-dominated solutions to the decision maker, allowing him/her to make the

final decision on the desired compromise between the two objectives. Since E is defined in the

decision space while Nd is defined in the objective space, in the general case there may be multiple
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efficient solutions that map to the same non-dominated point. For those cases, we make the reasonable

assumption that identifying one of these solutions is sufficient. This implies that no other characteristic

other than the two associated objective values can be used for ranking any two alternative solutions, an

assumption which appears reasonable and valid.

One of the most commonly used solution approaches in multi-objective programming is the

weighted-sums method (Ehrgott, 2005), which optimizes a suitable convex combination of the model

objectives. A natural difficulty that arises in our case is that the specification of the weights, which

strongly influences the results, is not straightforward. Moreover, it is well known that the method is

unable to find a certain class of efficient solutions (namely, unsupported ones) in discrete optimization

problems (Ehrgott and Gandibleux, 2000), and that it does not provide any guarantee that it will not

overlook efficient solutions in the general case.

An alternative method which, under suitable treatment, can generate the non-dominated set of

non-convex optimization problems is the ε-constraint reduced feasible region method (Cohon, 1978;

Chankong and Haimes, 1983). This method optimizes a single one of the objectives, while

transforming all the other ones into constraints through the imposition of suitable bounds on their

values. These bounds are lower for maximization objectives and upper for minimization ones. Taking

advantage of the fact that the domain comprising feasible CFAh values is a discrete set, we model the

corresponding ε-constraint formulation for the Bi-FMPh problem as follows:

The traditional ε-constraint method may generate inefficient solutions (e.g., see Xidonas et al.,

2010). In order to remedy this well-known pitfall, Mavrotas (2009) has proposed a method called

AUGMECON, which employs an acceleration algorithm of early exit in order to avoid the generation

of dominated solutions. Mavrotas and Florios (2013) developed an improved extension of this method

(AUGMECON2), which introduces a bypass coefficient of the innermost loop. Another variant of this

approach (SAUGMECON) that extends the early exit acceleration algorithm with bouncing steps was

more recently developed by Zhang and Reimann (2014). In the present chapter, we employ

AUGMECON2 for the solution of the problem under investigation. In summary, this method consists

of the following steps:

Step 1 :
Select one as the main objective subject to optimization, and convert the other (secondary)

objective(s) into constraints. Then, create the payoff table by lexicographic optimization of

the objective functions. The range of each objective is determined by the corresponding

interval between its ideal and its nadir value.

Min Vh(x)

s.t. CFAh(x) ≥ ε

x X
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Step 2 :
Divide the range of each secondary objective function to m equal intervals using m-1

intermediate equidistant grid points (εk) which are used to vary parametrically the associated

right-hand side.

Step 3 :
Solve the augmented ε-constraint model for each εk value obtained in Step 2.

The procedure outlined above can be adjusted accordingly to generate the entire frontier of non-

dominated solutions in our case, taking advantage of the discrete nature of the CFAh objective. As

Mavrotas and Florios (2013) have shown, the solution obtained upon the completion of any iteration is

guaranteed to be non-dominated. This key result motivated our decision to utilize the AUGMECON2

method for the solution of the problem, since it ensures that no redundant iterations will be performed.

Following the guidelines proposed by Mavrotas and Florios (2013), the ε-constraint optimization

model is formulated as follows in our case:

where eps is a sufficiently small scalar ensuring the lexicographic ordering of the two objectives, s is a

slack variable utilized to convert the constraint imposing the lower bound on the CFAh objective into

an equality, and r is the range of possible CFAh values. Based on the theory developed in the previous

section, and in particular Lemmas 7.1, 7.2 and Corollary 7.1, it is obvious that starting from the nadir

CFAh value and increasing it by a step size of Y at each iteration, we can consider all the k values

which differ from it by an exact multiple of Y, eventually stopping when the ideal CFAh value is

reached. This way, all possible CFAh values will be examined and the entire non-dominated set will be

obtained upon termination.

7.3.3 Double-step solution algorithm

Step 1 of the AUGMECON2 method, and in particular the creation of the payoff table by

lexicographic optimization, necessitates the separate solution of one single-objective optimization

problem for each of the model’s objective functions. In the previous chapter, it was shown that

performing this task with commercial optimization solvers in reasonable computational times is only

possible for problem instances with up to 25-30 aircraft. A typical aircraft wing of the HAF, on the

other hand, may consist of up to 60-100 aircraft. The exact solution algorithm developed in the

previous chapter is far more efficient, enabling the successful treatment of such size problems in

Min ( )h
sV x eps
r

 

s.t. CFAh(x) - s = εk

x X,

AUGMECON Bi-FMPh
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reasonable computational times. Motivated by this, in what follows we slightly modify the design of

this algorithm in order to enable its applicability for the efficient treatment of the biobjective version

of the problem, too.

The proposed solution algorithm identifies initially a valid upper bound on the ideal CFAh value

by solving a simplified relaxation of the original model formulation; in successful iterations, this value

is gradually decreased by a constant value of Y. For each distinct CFAh level encountered, the

algorithm tries to identify the minimum variability associated solution. Due to the fact that the

computational requirements of utilizing the original formulation for performing this task are excessive,

a suitable relaxation of the original model is used instead to this end. Each identified solution is

checked for full feasibility, by adjusting the original formulation accordingly to impose its realization.

Valid cuts excluding infeasible solutions from further consideration are suitably added, enabling the

continuation of the search for the optimal solution to a given CFAh level.

For each individual CFAh level, the procedure terminates either when the optimal solution

realizing this CFAh level is identified, or when it is proven that no such feasible solution exists. In the

former case, the associated point (CFAh, Vh) in objective space is added to the set of points which are

candidate for being non-dominated. All the cuts that pertain to a specific CFAh level remain active for

as long as this level remains fixed. Once the search at the current CFAh level terminates, these cuts are

rendered redundant and are subsequently suppressed, while the algorithm proceeds to the next lower

CFAh level.

The algorithmic procedure continues in a similar fashion until all possible CFAh levels have

been considered; at that point, a straightforward approach identifies among all the points which have

been recorded those which are non-dominated, together with their efficient solution counterparts. The

following subsections portray in thorough detail the steps of the double-step solution algorithm.

7.3.3.1 Bounding the ideal CFAh

Due to constraint set (6.2.8), the unit residual flight time availability of each time period is reduced by

the associated flight load requirements independently of the exact flight time of each individual

aircraft. As a result, the maximum possible CFAh value is attained when each grounded aircraft

finishes its service as early as possible. This is true because interrupting the maintenance service of a

grounded aircraft once it has begun could potentially delay the addition of this aircraft’s phase interval

to the unit fleet availability. This would clearly reduce the CFAh value leading to a sub-optimal

solution, since the objective function weighs more heavily the number of aircraft exiting the facility at

any particular time period than that of any succeeding one. Of course, if the maintenance facility does

not have sufficient time capacity, the maintenance service of a grounded aircraft may span several

time periods.
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In order to compute a valid upper bound on the ideal CFAh value, we impose the maximum

possible aircraft flow into the maintenance facility, by assigning the flight load of each time period to

the available aircraft in non-decreasing order of their residual flight times. As a consequence, each

available aircraft is grounded for service at the earliest possible time. To speed up the performance of

the algorithm, not all the original model constraints are considered for calculating this upper bound,

which indicates that the corresponding solution that will be identified may be infeasible. This

necessitates a consequent check that confirms or disproves the feasibility of this solution.

Procedure CFAh-UB, presented in Section 6.3.1, can be utilized for computing the valid upper

bound on the ideal CFAh value. Additionally, this procedure also identifies a specific combination cnom

= (en2
nom,…,enT+1

nom, ex2
nom,…,exT+1

nom) of aircraft entering and exiting the maintenance facility in

each time period. In what follows, we call this combination nominal. Note that in Section 6.3.1 we

showed that, for t = 2,…,T+1, the total number of aircraft exiting the maintenance facility from time

period 2 up to time period t for t = 2,…,T+1 in any feasible solution cannot be larger than nom

2

t

k
k

ex

 ,

while the total number of aircraft entering the maintenance facility from time period 2 up to time

period t for t = 2,…,T+1  in any feasible solution cannot be larger than nom

2

t

k
k

en

 .

7.3.3.2 Checking a particular CFAh level for feasibility

Each specific CFAh level considered can be optionally checked for feasibility first. This is carried out

by checking whether a feasible solution to the original formulation (6.2.2)-(6.2.30) after fixing this

CFAh value exists. As it turns out, the computational requirements for performing this are limited, due

to the fact that knowing in advance the CFAh level eliminates considerably the combinatorial nature of

the problem. The execution of this step is optional, however, since the feasibility of the current CFAh

level is always confirmed or disproved at the next step, in which the minimum variability aircraft

combination is sought. Nevertheless, our computational experience suggests that this step should

preferably be executed, because it guards against the risk of visiting an exponential number of

infeasible aircraft combinations before realizing that a particular CFAh level is infeasible.

7.3.3.3 Obtaining the minimum variability aircraft combination

For each CFAh level considered, the algorithm tries to find the minimum variability aircraft

combination realizing this CFAh level. Due to the substantial computational effort required for

performing this, a suitable relaxation of the original formulation is utilized to this end. The main

characteristic of this relaxation is that it does not include distinct decision variables monitoring the

residual flight and maintenance time of each individual aircraft; instead, it utilizes decision variables

Institutional Repository - Library & Information Centre - University of Thessaly
12/05/2024 17:28:17 EEST - 18.118.9.86



Chapter 7 Incorporating the Minimization of the Fleet Availability Variability

108

monitoring the cumulative flight and maintenance times of all aircraft for each time period of the

planning horizon. This clever technique results in a considerable reduction of the number of decision

variables utilized, making it possible to bypass the computational difficulties involved.

To give a specific example, exact knowledge of the individual aircraft residual flight and

maintenance times determines the exact number of available and grounded aircraft in each time

period. In the relaxed formulation, however, this knowledge is absent. Therefore, the model estimates

the number of available and grounded aircraft in each time period using suitable bounds on the

cumulative residual flight and maintenance times of all aircraft.

Due to the adoption of several simplifications such as the above, a particular aircraft

combination identified may turn out to be infeasible. Therefore, a proper feasibility check is performed

on each such combination, using the full original FMP formulation. Despite the extra effort needed to

perform this task, the proposed relaxation facilitates considerably the identification of the minimum

variability solution that realizes a particular CFAh level. The following additional mathematical

notation is utilized in this formulation:

Parameters:

ε : a sufficiently small number,

Decision variables:

wt : binary decision variable equal to 1 if the time capacity of the maintenance facility in time period t

(t = 1,…,T) is greater or equal to the total residual maintenance time of all grounded aircraft at the

beginning of the same time period, and 0 otherwise,

nαt : number of grounded aircraft at the beginning of time period t (t = 2,…,T+1),

tLBrem : lower bound on the number of aircraft that remain grounded at the end of time period t (t =

1,…,T),

tSG : total residual maintenance time of all grounded aircraft at the beginning of time period t, (t =

2,…,T+1),

tSGres : total residual maintenance time of all grounded aircraft at the end of time period t (t = 1,…,T).

Utilizing the above notation and exploiting Lemma 7.3, we employ the following mixed integer

quadratic formulation in order to identify the minimum variability aircraft combination, c =

(en2,…,enT+1, ex2,…,exT+1), attaining a particular CFAh level:

Min 2 2 2
2 3 1...+ TSY SY SY   (7.3.1)

s.t
| | 1

1 1 2

 1 (( 1) ) (( 2) )
N T T

n t t h
n t t

T Y T t S Y T t ex CFA


  

          (7.3.2)

nom

2 2

,  2,.., 1
t t

k k
k k

ex ex t T
 

    (7.3.3)
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nom

2 2

,  2,.., 1
t t

k k
k k

en en t T
 

    (7.3.4)

 max max
: 1 0 2 1

min( 1 , ) ( min( , 1 ))
n

t t

n k k
n N Y k k

Y t X ex Y t k X S
   

         , t=1,..,T (7.3.5)

(1 )t t tSG B K w   , t=1,..,T (7.3.6)

t t tB SG Kw   , t=1,..,T (7.3.7)

 1t tLBrem C w   , t=1,..,T (7.3.8)

    1t t t t
t t

SG B SG B
LBrem K w

G G


 
      , t=1,..,T (7.3.9)

 1 1t t tna ex K w   , t =1,..,T (7.3.10)

1  t t tex na LBrem , t =1,..,T (7.3.11)

t t t t t t tSG B Kw SGres SG B Kw    , t=1,..,T (7.3.12)

 1t tSGres K w  , t=1,..,T (7.3.13)

1 1   t t tSG SGres G en , t=1,..,T (7.3.14)

1 1    t t t tSY SY S Y ex , t =2,..,T+1 (7.3.15)

1  t t t tna na en ex , t =2,..,T+1 (7.3.16)

tna C , t =2,..,T+1 (7.3.17)

| |

1
1

1
N

n
n

SY Y


 (7.3.18)

| |

1
1

1



N

n
n

SG G (7.3.19)

 
| |

1
1

1 1


 
N

n
n

na A (7.3.20)

0tSG  , t = 2,..,T+1 (7.3.21)

0tSGres  , t =1,..,T (7.3.22)

ten , tex , tna Z  , t = 2,..,T+1 (7.3.23)

tLBrem Z  , tw binary , t =1,..,T (7.3.24)
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The objective (7.3.1) minimizes the variability of the aircraft combination that will be identified,

as a consequence of Lemma 7.3 and the fact that the CFAh level is fixed at a specific value by

constraint (7.3.2). For t = 2,…,T+1, constraint sets (7.3.3) and (7.3.4) impose upper bounds on the

cumulative number of aircraft exiting and entering the maintenance facility, respectively, from the

beginning of the planning horizon up until time period t, as determined by the nominal combination.

These two constraint sets are identical to constraint sets (6.3.2) and (6.3.3), respectively, of the model

presented in Section 6.3.3.

For t = 1,…,T, constraint set (7.3.5) ensures that the cumulative flight load of time periods 1 to t

is satisfied. The required flight time to this end is provided by the aircraft which are available in time

period 1 and by those that exit the maintenance facility in time periods 2,…,t. The flight time that each

aircraft can provide in a single time period cannot be larger than the minimum between its residual

flight time at the beginning of the same time period and Xmax.

Constraint sets (7.3.6) and (7.3.7) ensure that binary variable wt becomes equal to 1 when SGt ≤

Bt, and 0 otherwise. This variable is used to impose the restriction that no part of the maintenance time

capacity should go wasted unless all grounded aircraft finish their service. For t = 1,…,T, constraint

sets (7.3.8) and (7.3.9) give proper value to tLBrem according to the corresponding value of wt. If wt =

1, then constraint set (7.3.8) ensures that tLBrem is equal to 0, while constraint set (7.3.9) becomes

redundant, since t tSG B
G

is non-positive. If wt = 0, then constraint set (7.3.8) becomes redundant,

while constraint set (7.3.9) ensures that tLBrem is equal to the ceiling of t tSG B
G

, which is a valid

lower bound on the number of aircraft that will remain grounded at the end of time period t. For

example, consider the hypothetical case of four grounded aircraft with residual maintenance time 20

hours each, for which G = 320 and Bt = 20. Independently of the individual aircraft maintenance times,

at least 3 aircraft will remain grounded at the end of this time period. The computed lower bound is

equal to 80 20 1
320
    

, which is clearly valid. Due to the fact that in the relaxed formulation there is no

knowledge of the individual aircraft maintenance times, this bound will not always be tight, as

happens in this case. If the actual residual maintenance time distribution among the 4 aircraft were 5,

5, 5 and 65 instead, it would be possible to finish the service of 3 aircraft in the current time period, in

which case the bound would be tight.

Constraint sets (7.3.10) and (7.3.11) impose suitable bounds on the number of aircraft exiting

the maintenance facility at the beginning of each time period. If wt = 1, then these constraints are

equivalent to ext+1 = nat, which is valid since this implies that all grounded aircraft will complete their
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maintenance service. If wt = 0, then constraint (7.3.10) becomes redundant, while constraint set

(7.3.11) ensures than no more than (nat - tLBrem ) aircraft will exit the maintenance facility at the

beginning of time period t+1, which is also valid according to the definition of tLBrem .

Constraint sets (7.3.12), (7.3.13) and (7.3.14) update SGt+1 based on the corresponding value of

wt. If wt = 0, then SGt+1 is set equal to SGt - Bt + G  ent+1 by constraints (7.3.12) and (7.3.14), while

constraint (7.3.13) becomes redundant. If wt = 1, then SGt+1 is set equal to G  ent+1 by constraints

(7.3.13) and (7.3.14), while constraint (7.3.12) becomes redundant. Constraint sets (7.3.15) and

(7.3.16) update the unit residual flight time availability and the number of grounded aircraft,

respectively, in each time period, while constraint (7.3.17) ensures that the latter will never exceed the

maintenance facility’s space capacity, similarly to the constraint set (6.3.5) of the model presented in

Section 6.3.3. Constraint sets (7.3.18)-(7.3.20) initialize the unit residual flight time availability, the

total residual maintenance time of the grounded aircraft, and the number of grounded aircraft,

respectively, at the beginning of the planning horizon. Finally, constraint sets (7.3.21)-(7.3.22) impose

non-negativity constraints on the continuous decision variables, while constraint sets (7.3.23)-(7.3.24)

impose integrality constraints on the discrete decision variables.

We conclude this subsection with the proof that, for a fixed CFAh level, constraint set (7.3.2)-

(7.3.24) comprises a relaxation of the original formulation, and thus for every feasible solution to the

original problem there exists a corresponding feasible solution to this formulation. This confirms the

validity of utilizing model (7.3.1)-(7.3.24) instead of the original one in order to identify the minimum

variability aircraft combination for a particular CFAh level. Our choice to adopt this strategy is

motivated by the fact that the computational requirements of the relaxed formulation are significantly

lower than those of the original one.

Proposition 7.1: Suppose that for a feasible solution to the original set of constraints (6.2.2)-(6.2.30)

we calculate the number of aircraft entering (ent) and exiting (ext) the maintenance facility, the number

of grounded aircraft (nat), and the total residual maintenance time of all grounded aircraft (SGt) in each

time period of the planning horizon. Then, this solution is feasible to constraint set (7.3.2)-(7.3.24), in

the sense that there exist consistent values for all the decision variables of that formulation that satisfy

it.

Proof. Constraint (7.3.2) fixes the CFAh level at its corresponding value. Constraints (7.3.3) and

(7.3.4) hold for any feasible solution to (6.2.2)-(6.2.30) as shown in the previous chapter. Adding side

by side constraints (6.2.8) for k = 1,…,t, we obtain ,
1 1 1

Nt t

n k k
k n k

x S
  

  . The left hand side of this

expression includes the cumulative flight time of all aircraft in time periods 1,…,t. For each initially

available aircraft, n, the maximum such flight time before it is grounded is equal to min(Y1n, tXmax),
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while for any aircraft exiting the maintenance facility in time period k (2 ≤ k ≤ t), it is equal to min(Y,

(t-k+1)Xmax). As a result, constraints (7.3.5) are satisfied, too. For each time period t, constraints

(7.3.6)-(7.3.14) update the decision variables pertaining to the maintenance facility, i.e., the total

residual maintenance time of the grounded aircraft, the number of aircraft that remain grounded, and

the number of aircraft that exit the maintenance facility. If SGt > Bt, then these constraints set the

number of aircraft that remain grounded at the end of time period t equal to at least  t tSG B
G

  
 
 

. This

is true due to constraints (6.2.11) and (6.2.12) of the original model, which ensure that no part of the

maintenance time capacity is allowed to go wasted when SGt > Bt. If SGt ≤ Bt then wt is set equal to 1,

all grounded aircraft exit the maintenance facility at the beginning of time period t+1, and SGt+1 is set

equal to G  ent+1. Otherwise, SGt+ is set equal to SGt - Bt + G  ent+1. This is true due to constraints

(6.2.5)-(6.2.7) of the original model, which update the residual maintenance time of each grounded

aircraft. Constraints (7.3.15)-(7.3.17) update the unit’s residual flight time availability and the number

of grounded aircraft in each time period, and are clearly satisfied in the original problem, too. Finally,

the initialization constraints (7.3.18)-(7.3.20) and the non-negativity/integrality constraints (7.3.21)-

(7.3.24) clearly hold in the original formulation, too. �

7.3.3.4 Checking a particular aircraft combination for feasibility

The check of whether a specific aircraft combination is feasible is straightforward. The important

property that the optimal solution can always be identified even if a steady rotation of aircraft into and

out of the maintenance station is preserved is valid for this problem, too. We utilize this important

result, which was proven in Section 5.2 for the single period FMP model formulation, in order to

simplify the procedure for checking the feasibility of a particular aircraft combination. Since the proof

carries over practically unchanged to the present biobjective multi-period version of the problem, we

do not repeat it here for brevity.

As a consequence of the above discussion, checking a specific aircraft combination for

feasibility can be accomplished by checking whether a feasible solution that realizes this combination

exists. To do this, we fix the decision variable values unambiguously determined by this combination,

and we check the original model for feasibility. This simplification eliminates considerably the

combinatorial nature of the optimization problem, enabling the completion of the feasibility check in

negligible time.

7.3.3.5 Generating a cut for the exclusion of a particular aircraft combination

When a specific aircraft combination identified by model (7.3.1)-(7.3.24) is proven infeasible,

continuing the search for a different aircraft combination that attains the current CFAh level
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necessitates the addition of a valid cut excluding this combination from further consideration. Let the

superscript excl refer to the specific combination that we wish to exclude. A suitable cut that achieves

this is the following:
1 1

2 2

| | | | 1.
 

 

    
T T

excl excl
t t t t

t t
en en ex ex This constraint imposes the restriction that

the number of aircraft exiting and entering the maintenance facility in any subsequent combination yet

to be found by the algorithm should differ from the one being excluded in at least one time period. Of

course, one needs to add one such cut for each infeasible aircraft combination. The nonlinearities

present in this cut can be straightforwardly eliminated through the clever reformulation procedure

presented in the previous chapter.

7.3.3.6 Stopping conditions and selection of non-dominated solutions

Since the payoff table is not calculated explicitly in the case of the Double-step solution algorithm, no

nadir point is obtained. Therefore, the algorithm terminates when a suitable lower bound on CFAh is

reached. Since CFAh can be expressed as:
| |1 1

2 1 1 2

( 1 ( ))
NT t t

n k k
t n k k

Y S Y ex
 

   

      , which is equal to

| |

1
1 1 1

1 (( 1) ) (( 1) )
N T T

n t t
n t t

T Y T t S T t Y ex 
  

         , an obvious lower bound on CFAh is

| |

1 1

1 (( 1) )
N T

n t
n t

T Y T t S
 

    .

An additional stopping rule that can be employed is to terminate the algorithmic execution in

case a solution with Vh = 0 is obtained, utilizing the trivial result that the variability is always non-

negative. Since the algorithm begins with the highest possible CFAh value and reduces it in a stepwise

manner in succeeding iterations, the above two stopping rules ensure that no non-dominated solution

will ever be overlooked. Upon termination, a simple search procedure distinguishes the non-dominated

points among all the points which have been recorded.

7.3.4 Hybrid approach

In order to further enhance the performance of the proposed solution algorithm, we develop a hybrid

double-step ε-constraint approach, which attempts to combine the computational advantages of

AUGMECON2 with those resulting from the disaggregation of the original FMP model as shown in

the previous section. Let Π be the set of all feasible aircraft combinations determined by constraint set

(7.3.2)-(7.3.24). Note that, for any combination c, Vh(c) is directly determined by (7.3.15) and (7.3.18).

The idea is to apply the AUGMECON2 method not to the full original FMP model, but to this FMP

relaxation instead. Mathematically, this can be expressed as follows:
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Note that, in contrast to the Double-step solution method, constraint (7.3.2) merely provides the

definition of CFAh in this case, and does not fix the CFAh level to a specific value. In summary, the

proposed methodology includes the following steps:

Step 1 :
Select Vh as the main objective function to be optimized, and transform the secondary

objective CFAh into a constraint. Then, create the payoff table by lexicographic optimization

of the objective functions, using the relaxed formulation. The range of the secondary

objective function is determined by the corresponding interval between its ideal and its nadir

value.

Step 2 :
Divide the range of the CFAh objective to m equal intervals using m-1 intermediate

equidistant grid points (εk) for varying parametrically the right-hand side of the

corresponding constraint, which differ from each other by a constant value of Y.

Step 3 :
For each εk value obtained in Step 2, solve the augmented ε-constraint relaxed model and

check the identified aircraft combination for feasibility by forcing the original formulation to

realize it (same as 7.3.3.4). If this combination is infeasible, add a valid cut excluding it from

further consideration (same as 7.3.3.5), and repeat until either a feasible combination is

identified, or the current CFAh level is proven infeasible.

The main difference in this case is that the creation of the payoff table by lexicographic

optimization is attained efficiently even for realistic problem instances, due to the fact that the utilized

formulation is a relaxation of the original FMP model. The computed objective ranges may initially be

larger than those of the original problem since the relaxed model may also identify infeasible

solutions, but these solutions are quickly rejected through the application of the feasibility check. Note

that, since Step 3 is applied using a relaxation, the actions utilized by the Double-Step solution

algorithm in order to identify feasible solutions to the original problem need to be employed in this

case, too. Despite the extra effort needed to perform this, the performance of the algorithm appears

considerably improved in comparison to the case that AUGMECON2 method is applied to the full

original FMP model, as demonstrated by the computational results that we present in Section 7.4.

Min ( )  h
sV c eps
r

s.t. ( )h kCFA c s  

c

(HYBRID-FMP)
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7.3.5 A Small Case Study

In this section, we illustrate the application of the proposed solution methodologies on a small case

study. We consider a unit comprised of 10 aircraft. At the first period of the planning horizon, 9

aircraft are available and one is grounded. Table 7.1 presents the residual flight times of the available

aircraft in plain-style, and the residual maintenance time of the grounded aircraft in bold-style. Table

7.2 presents the flight requirements and the time capacity of the maintenance facility in each time

period. The values of the remaining problem parameters are Y = 300 hours, Ymin = 0.1 hours, G = 320

hours, Gmin = 0.1 hours, C = 2, and Xmax = 50. Collective results pertaining to the application of the

three solution approaches are presented in Table 7.6.

Table 7.1: Residual flight times (yn,1) / residual maintenance time (gn,1) (hours)

n = 1 n = 2 n = 3 n = 4 n = 5 n = 6 n = 7 n = 8 n = 9 n = 10
5 42 81 88 169 183 205 260 288 253

Table 7.2: Flight load requirements and time capacity of the maintenance facility

t 1 2 3 4 5 6
St 144 122 111 131 128 131

Bt 166 194 160 197 156 192

7.3.5.1 AUGMECON2 Methodology

Table 7.3 presents the payoff table for this problem. Since the range of the objective function CFAh is

[7328, 7928], we choose a step size of Y = 300 and we divide this range into two equal intervals; the

three corresponding grid points for the ε-constraint method are ε1 = 7328, ε2 = 7628, and ε3 = 7928.

Next, the augmented ε-constraint model (AUGMECON Bi-FMPh) is solved for each of these three

values.

Table 7.3: Payoff table for the small case study

Vh CFAh
Min Vh 6778.222 7328

Max CFAh 9211.556 7928

7.3.5.2 Double-step solution algorithm

Given that each aircraft can fly at most Xmax = 50 hours during each time period, the following table

shows the maximum cumulative flight time (MCFT) that the aircraft which are available at the

beginning of the planning horizon can provide from the beginning of the planning horizon up to time

period t for t = 1,…,T, before being grounded for service.
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Table 7.4: Maximum cumulative flight times that can be provided by the initially available aircraft

t n = 1 n = 2 n = 3 n = 4 n = 5 n = 6 n = 7 n = 8 n = 9 MCFT
1 5 42 50 50 50 50 50 50 50 397
2 5 42 81 88 100 100 100 100 100 716
3 5 42 81 88 150 150 150 150 150 966
4 5 42 81 88 169 183 200 200 200 1168
5 5 42 81 88 169 183 205 250 250 1273
6 5 42 81 88 169 183 205 260 288 1321

The valid upper bound on the ideal CFAh value provided by Procedure CFAh-UB is equal to

7928. The corresponding (nominal) aircraft combination identified is the one shown in Table 7.5.

Table 7.5: Nominal aircraft combination identified by Procedure CFAh-UB

t 2 3 4 5 6 7
nom
ten 0 1 0 1 0 1

nom
tex 0 1 0 1 0 1

After setting CFAh equal to 7928, model (7.3.1)-(7.3.24) also identifies the nominal

combination, for which Vh = 9211.556. Next, we check whether this combination can be realized by a

feasible solution. In order to do this, we retain the order of aircraft visiting and exiting the

maintenance facility constant, and we fix the decision variables values determined by this

combination. These variables are an,t, dn,t, fn,t, pn,t, rn,t, and qt for n = 1,…,6, t = 2,…,7, (for example, α1,2

= 1, α1,3 = 0, α10,2 = 0, α10,3 = 1, etc.), together with several of the variables xn,t, yn,t, gn,t, hn,t. The user

may choose to fix only a proper subset of these values and let the remaining ones be deduced by the

solver, or opt for a more specific model by explicitly fixing all the unambiguously determined decision

variable values. For our small case study, the resulting formulation is feasible. Therefore, no valid-cut

excluding this combination needs to be added, and the associated point (7928, 9211.56) in objective

space is added to the set of points which are candidate for being non-dominated.

The algorithm continues similarly with the next lower CFAh levels, until the lower bound on

CFAh is reached. This bound is equal to
| |

1 1

1 (( 1) ) 6728
N T

n t
n t

T Y T t S
 

     . Upon termination, the full

non-dominated set is obtained by eliminating the dominated solutions out of those that have been

recorded.

7.3.5.3 Hybrid algorithm

The Hybrid algorithm creates initially the payoff table by lexicographic optimization of the objective

functions. Although the relaxed formulation is utilized to this end, the ranges of the objectives

coincide with those identified in the application of the AUGMECON2 method in Subsection 7.3.5.1.

Next, the HYBRID-FMP model is employed using ε1 = 7328, ε2 = 7628 and ε3 = 7928. The variability

of the solution identified for ε1 = 7328 is equal to 6778.222. The feasibility check applied next
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confirms that the associated aircraft combination is feasible. Thus, the corresponding point (7328,

6778.222) in objective space is added to the non-dominated set. The algorithm continues in a similar

fashion with the next two higher CFAh levels.

7.3.5.4 Collective results

The non-dominated set obtained from the application of the three solution methodologies is shown in

Table 7.6. Of course, it is identical for all three of them. It comprises of points A, B and C shown in

Figure 7.2. Points D and E are also initially identified by the Double-step solution algorithm, but are

subsequently eliminated since they are dominated. On the other hand, the other two methodologies do

not identify dominated points.

Table 7.6: Non-dominated set of the case study

CFAh Vh
7928 9211.556

7628 8444.889

7328 6778.222

Figure 7.2: Non-dominated set of the case study

7.4 Computational implementation

In this section, we present experimental results evaluating the computational performance of the

proposed solution algorithms and demonstrating their efficiency. All three algorithms were

implemented in C/C++ interfacing with LINGO 13.0 through LINGO Dynamic Link Library (DLL)

callback functions. LINGO 13.0 (2011) is a commercial optimization software package that can
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accommodate the mixed integer quadratic formulations involved. In order to demonstrate the

applicability of the proposed methodologies and highlight the benefits that can result from their actual

implementation, we test them on random problem instances whose size and characteristics resemble

those of realistic problem instances encountered in the typical operation of the HAF. Our

computational experiments were performed on an i5-3330 Intel Quad Core processor @ 3.0 GHz with

16 GB system memory.

Due to the fact that the complexity of the single objective models AUGMECON2 is faced with

makes the treatment of large size problem instances such as those encountered in realistic

environments impracticable, we chose five small values (i.e., 10, 15, 20, 25 and 30) for the total

number of aircraft comprising the unit. On the other hand, since they are treating suitable relaxations

of the original model, the other two proposed methodologies are capable of handling considerably

larger problem instances; therefore, we also tested their performance on larger problem instances

comprising of 50 and 100 aircraft. 30 random problem instances were solved for each size considered.

The size of the planning horizon was always set equal to six monthly time periods, motivated by the

fact that the unit command typically issues the flight load requirements over a six-month planning

horizon. LINGO was mainly invoked with default options and the Global Solver enabled to ensure that

the global optimal solution was always obtained.

The random problem generator was specially designed to generate problems which resemble the

realistic ones as closely as possible. The specifics are as follows: In practice, C is equal to roughly

0.1N (for a unit comprising of 60-100 aircraft, the maintenance facility can typically accommodate 6-

10 aircraft). Since increasing the value of C appears to increase the computational burden, we set C

equal to 0.15N rounded down to the next integer in order to make the posed problem instances more

challenging. The number of aircraft which were initially grounded, NA, was determined randomly,

using a discrete probability function with possible values the integers between 0 and C, inclusive.

Negative skewness was imposed on this distribution, resulting in higher probabilities for larger NA

values. More specifically, the probability that NA was equal to x, for x = 0,…,C, was set equal to

0

( 1) / ( ( 1))
C

x
x x



  . Naturally, the number of aircraft which were initially available, A, was set equal

to N-NA.

For each available aircraft, its residual flight time was uniformly distributed in the interval

[Ymin,Y], while, for each grounded aircraft, its residual maintenance time was uniformly distributed in

the interval [Gmin,G]. The flight load requirement of each time period was a random number uniformly

distributed in the interval [10N, 15N], while the time capacity of the maintenance facility in each time

period was a random number uniformly distributed in the interval [15N, 20N]. This random generation

scheme results in problem instances with characteristics resembling closely those of realistic
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problems, with the specifics reasons for this being strictly confidential. For the remaining problem

parameters, we chose realistic values, i.e., Y = 300, Ymin = 0.1, G = 320, Gmin = 0.1, and Xmax = 50.

Table 7.7 presents the average and maximum computational times of the three solution

algorithms, i.e., AUGMECON2, the Double-step solution algorithm, and the Hybrid approach. Two

variants of the Double-step algorithm are considered, based on whether a feasibility check is

performed in advance for each CFAh level as described in 7.3.3.2 (FEAS) or not. The entries for N >

15 are missing for AUGMECON2, because the optimization solver was not able to accommodate such

instances within the 12-hour limit that was enforced. Additionally, 11 problem instances with N = 15

did not terminate within this time limit; therefore, the average and maximum computational time for N

= 15 has been computed over 19 instances instead of 30.

Table 7.7: Computational times (in seconds) of the three methodologies (CFAh objective)
AUGMECON2

(original model)

Double-step

(relaxed model)

Double-step (FEAS)

(relaxed model)

Hybrid

(relaxed model)

N Avg Max Avg Max Avg Max Avg Max

10 195.86 1010.21 1.73 3.06 2.22 3.45 1.06 1.69

15 1410.52 6883.39 9.39 19.11 11.65 24.13 13.49 67.00

20 34.43 95.19 37.97 89.11 27.67 142.85

25 94.73 330.19 115.95 569.13 36.62 116.23

30 101.04 493.98 107.23 493.16 82.90 566.56

50 888.82 4808.69 957.45 6453.72 341.34 7321.84

100 1302.09 4987.47 1306.09 5104.39 602.17 8019.53

The superiority of the two proposed solution methodologies becomes immediately evident,

since their computational times are significantly lower than those exhibited when AUGMECON2 is

applied to the original model. Of course, this behavior should not be considered as an AUGMECON2

deficiency, but should be attributed to the solution complexity of the optimization models the method

is faced with. Since the solution of these models appears impracticable even for moderate size problem

instances, the computational savings realized when the other two methodologies are utilized are

excessive, as the results of Table 7.7 demonstrate. The computational performance of the Hybrid

solution methodology appears superior to that of the Double-step solution methodology as the problem

size increases. The variability of the computational times of all three solution methods appears

significant. This is further supported by the fact that, in a few cases, increasing the problem size results

in a reduction of the computational times. Performing the feasibility check in advance does not seem

to improve the computational performance of the Double-step solution algorithm. Nevertheless, the

employment of this step is motivated by its ability to mitigate the potential risk of extensive execution

times due to the existence of an exponential number of intermediate infeasible solutions.
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Table 7.8 presents results regarding the cardinality of the non-dominated set, and the number of

LINGO calls, i.e., the number of optimization problems each methodology solves in order to find the

non-dominated set. As these results demonstrate, the size of the non-dominated set appears to increase

moderately with the size of the underlying problem. On the other hand, for the same problem size, the

fewest optimization problems are solved by AUGMECON2. The considerably larger computational

times of this methodology lead to the conclusion that the solution of these problems is substantially

more time consuming than that of the problems solved by the other methodologies. As far as the other

two methodologies are concerned, the Hybrid algorithm solves significantly fewer optimization

problems than the Double-step algorithm. In addition, performing the feasibility check in advance

does not appear to benefit the Double-step algorithm, leading to an increased number of optimization

problems solved.

Table 7.8: Nd cardinality and number of LINGO calls for the three methodologies (CFAh objective)

Nd set
cardinality

AUGMECON2
(original model)

Double-step
(relaxed model)

Double-step (FEAS)
(relaxed model)

Hybrid
(relaxed model)

N Avg Max Avg Max Avg Max Avg Max Avg Max
10 1.53 3 4.82 6 14.57 20 19.86 27 6.82 11
15 3.10 7 5.84 10 24.74 34 34.16 45 9.74 16
20 2.70 5 39.07 50 53.43 66 9.60 15
25 4.93 8 49.13 60 68.17 81 14.03 20
30 5.47 9 61.27 70 84.23 95 15.20 23
50 9.20 15 110.48 127 150.93 173 22.86 34

100 17.33 28 213.57 257 276.48 327 40.35 60

7.5 Algorithmic enhancements & extensions

In this section, we discuss some algorithmic enhancements and potential model extensions. In

particular, we elaborate on alternative model objectives, we discuss the potential parallelization of the

algorithmic implementations in order to take advantage of modern computer architecture, and we

study a 3-objective model extension.

7.5.1 Alternative objectives

As briefly discussed in Section 3.5, in the military context, the readiness of an aircraft wing is

typically determined in terms of the total number of available aircraft (aircraft availability) and in

terms of the total residual flight time (residual flight time availability). Mathematically, the cumulative

aircraft availability objective is expressed as follows:

1

,
2 1

Max Max


 

 
NT

a n t
t n

CFA a
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The corresponding biobjective formulation (Bi-FMPa) that incorporates the minimization of the

availability variability is the following in this case:

where       
1 2

2

1 T

a t
t

V x = SA x SA x
T





   
 
 , ,

1

N

t n t
n

SA a


 , and      
1

2

T

t
a t

SA xCFA x
SA x =

T T






.

The design of the proposed solution algorithms enables them to cater for the aircraft fleet

availability objective, too. A slight modification deemed necessary in this case is the fact that the grid

points used for the CFAa objective must differ by a step size of 1 instead of Y. Moreover, a valid upper

bound on the ideal value of the aircraft fleet availability is clearly |N|T, whereas a lower bound on its

nadir value is clearly (|N|-C)T. Table 7.9 presents the average and maximum computational times of

the three solution algorithms for Problem Bi-FMPa. The same two variants are again considered for

the Double-step solution algorithm.

Table 7.9: Computational times (in seconds) of the three methods (CFAa objective)

AUGMECON2

(original model)

Double-step

(relaxed model)

Double-step (FEAS)

(relaxed model)

Hybrid

(relaxed model)

N Avg Max Avg Max Avg Max Avg Max

10 65.03 285.31 0.92 1.69 1.34 2.59 1.38 2.70

15 913.53 1149.52 4.12 10.61 5.24 13.47 6.68 18.53

20 2446.26 9034.04 13.71 40.68 14.63 45.15 20.61 95.14

25 19.57 45.49 23.79 105.06 24.63 52.62

30 26.90 108.45 47.47 182.41 31.82 145.74

50 201.90 692 209.55 720.03 314.08 1632.30

100 1882.32 6117.53 1690.98 4209.70 2600.26 8003.20

Compared to the instances in which the residual flight time availability is subject to

optimization, the computational times of the two proposed solution algorithms appear higher for some

problem sizes, and lower for some other ones. The computational performance of AUGMECON2

appears improved, since the maximum problem size for which it successfully computes the non-

dominated set is slightly larger than before. The superiority of the two proposed solution methods over

AUGMECON2 is evident in this case, too and can be attributed to the same reasons as before. In

contrast to Bi-FMPh, the computational performance of the Double-step solution algorithm appears

superior in this case. Moreover, with the exception of the instances with N = 100, performing the

feasibility check in advance still has a slightly negative effect.

 Max aCFA x

 Min aV x

s.t. x X ,

(Bi-FMPa)
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Table 7.10 presents similar results as those of Table 7.8 for the CFAa objective. As these results

demonstrate, the size of the non-dominated set seems to slightly increase when the CFAa objective is

adopted instead of the CFAh. On the other hand, the effect on the number of optimization problems

solved appears mixed, as it is higher in some cases, and lower in some other ones. AUGMECON2 still

solves the fewest optimization problems among the three methods, while the Hybrid algorithm still

solves fewer optimization problems than the Double-step algorithm. Finally, performing the feasibility

check in advance still leads to an increased number of optimization problems solved for the Double-

step algorithm.

Table 7.10: Nd cardinality and number of LINGO calls for the three methodologies (CFAa objective)

Nd set
cardinality

AUGMECON2
(original model)

Double-step
(relaxed model)

Double-step (FEAS)
(relaxed model)

Hybrid
(relaxed model)

N Avg Max Avg Max Avg Max Avg Max Avg Max
10 2.33 4 3.73 8 11.50 12 17.50 18 8.60 12
15 4.30 7 6.28 12 21.07 22 32.07 33 12.63 18
20 6.53 12 8.41 18 30.29 32 45.96 48 17.57 28
25 7.40 12 35.41 37 50.41 55 19.07 32
30 6.87 17 41.45 42 62.45 63 21.59 38
50 16.10 33 71.18 72 107.18 108 47.41 70

100 30.93 42 145.83 152 212.33 228 39.06 88

7.5.2 Parallelization

The inherent structure of the proposed solution methodologies makes possible the execution of several

algorithmic tasks in parallel, taking advantage of modern computer architecture, and in particular

multi-core processors. More precisely, once the CFAh search range has been identified, the augmented

ε-constraint model can be solved independently for each distinct grid point εk at a separate CPU thread.

After all grid points have been considered, the non-dominated points together with their corresponding

Pareto optimal solutions can be identified.

The parallelization is possible, because the solution of the problem for the different grid points

can be carried out independently of each other, likewise the AUGMECON2 method (Florios and

Mavrotas, 2014). Our computational experience suggests that the main computational burden of the

algorithm lies in the execution of this task; therefore, the proposed parallelization is expected to

provide a substantial speedup.

7.5.3 A 3-objective model extension

In order to investigate the proposed model’s behavior under the presence of more than two objectives,

we consider a 3-objective model extension in this subsection, and we outline how the proposed

methodology can be modified in order to accommodate it. We also study the effect of the inclusion of

the third objective on the cardinality of the non-dominated set, as well as on the algorithmic

computational performance. The proposed approach for accommodating the 3-objective FMP model is
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illustrated on a small case study which comprises a suitable extension of the case study introduced in

Section 7.3.5.

Whereas maximizing the unit’s cumulative fleet availability over the entire planning horizon is

one of the most important objectives of the FMP problem, ensuring that the fleet availability will not

fall below a critical level in any time period of the planning horizon is also of major importance. With

this in mind, we incorporate the additional objective of maximizing the minimum fleet availability

ensured for each time period of the planning horizon into the proposed model. Mathematically, this

objective is expressed as follows:

Max SYmin

s.t. SYmin ≤ SYt, t = 2,…,T+1

In turn, this leads to the following multiobjective formulation for the FMP problem (Multi-

FMPh):

Based on the key result that the domain comprising possible CFAh values is a discrete set, we

modify accordingly the Double-step algorithm next, enabling the treatment of this 3-objective FMP

problem formulation, too. In Section 7.3.3, it was demonstrated that the Double-step algorithm

successfully obtains the entire non-dominating set of Problem Bi-FMPh by fixing the CFAh objective

in a stepwise manner and minimizing for each of these values the associated variability, Vh(x). We

extend this approach, by applying a suitable modification of the Double-step solution algorithm for

each of these distinct CFAh values. This involves fixing the CFAh level in successive iterations, and

computing the associated non-dominated set with respect to the other two objectives by increasing the

SYmin objective in a stepwise manner and computing the minimum variability associated solution. After

all possible CFAh levels have been considered, a simple procedure eliminates out of all the solutions

that have been identified those which are dominated with respect to all 3 objectives. Ensuring that both

the CFAh objective (at the outer level), as well as the SYmin objective (at the inner level) are increased

in a stepwise fashion ensures that no non-dominated solution will be overlooked; thus, the entire non-

dominated set will be obtained upon termination.

For t = 2,…,T+1, the residual flight time availability of the unit at the beginning of time period

t, SYt, is equal to
| | 1

1 1 2
1 ( ).

N t t

n k k
n k k

Y S Y ex


  

     Moreover, for t = 2,…,T+1, the nominal combination

 Max hCFA x

 Min hV x

 Max minSY x

s.t. ,
1

N

min t n t
n

SY SY y


  , t = 2,...,T + 1,

x X

(Multi-FMPh)
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imposes upper bounds on the cumulative number of aircraft exiting the maintenance facility from the

beginning of the planning horizon up until time period t; thus, nom

2 2
0

t t

k k
k k

ex ex
 

   holds true in any

feasible solution. Hence, we can compute all possible values of the unit fleet availability at the

beginning of time period t, for t = 2,…,T+1, by considering all feasible values of the summation

2


t

k
k

ex imposed by this constraint. These values can then be used to define SYmin objective steps in the

Double-step instances employed for the various CFAh levels. Next, we illustrate how this can be

accomplished for the small case study introduced in Section 7.3.5.

For t=2, nom
2 0ex  according to Table 7.5. Subsequently, the only possible value for SY2

is
| |

1
1

1 *0 1321 144 300*0 1177


     
N

n
n

Y S Y . Calculating all possible values for the remaining 5

time periods, we conclude that the domain comprising possible SYmin values is the following set: {554,

685, 813, 854, 944, 985, 1055, 1113, 1154, 1177, 1244, 1285, 1355, 1413, 1454}. For each of the

three possible values of the CFAh objective, we employ a distinct Double-step solution algorithm

instance, which computes the non-dominated set with respect to the Vh and SYmin objectives. At the

end, we perform a final step that eliminates out of all identified solutions the dominated ones with

respect to all 3 objectives, and we conclude that the non-dominated set is the one presented in Table

7.11 and depicted in Figure 7.3.

As far as the computational burden is concerned, the number of LINGO iterations increases

from 15 in the 2-objective case to 170 in the 3-objective case, although many LINGO calls turn out to

be infeasible/redundant. Nevertheless, the total execution time increases by nearly 8 times. Of course,

a more sophisticated solution approach fully exploiting the problem’s theoretical properties will

eliminate many redundant iterations, improving the computational time substantially. Even in that

case, however, the computational requirements are expected to be considerably larger and increase

more progressively with problem size. Our elementary computational experience suggests that the

application of the proposed simplistic solution procedure remains practical only for problems with up

to 30-40 aircraft. Considering the fact that realistic FMP instances include up to 100 aircraft, it

becomes apparent that the development of a more sophisticated solution algorithm for the 3-objective

case of the problem turns up as a very promising direction for future research.

Table 7.11: Non-dominated set of the multiobjective case study

CFAh Vh SYmin
7928 9211.556 1177
7628 8444.889 1154
7328 6778.222 1113
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Figure 7.3: Non-dominated set of the multiobjective case study

7.6 Summary

In this chapter, we addressed a biobjective quadratic model for the FMP problem. The problem

consists of compiling individual flight and maintenance plans for a group of aircraft that comprise an

aircraft wing. The aim is to maximize the fleet availability of the unit, while also minimizing its

variability. For this problem, we developed two exact solution methodologies which are capable of

identifying the entire non-dominated set. The first one minimizes the variability of the fleet

availability, while also decreasing the fleet availability level in a stepwise fashion; this ensures that no

non-dominated solutions are overlooked. The second one is a hybrid approach, which combines the

computational savings gained from the introduction of the payoff table calculation through

lexicographic optimization and slack variables, with those gained from the disaggregation of the FMP

solution into several steps. The performance of the two proposed algorithms on problems with realistic

characteristics appears to be considerably superior to that of the traditional ε-constraint approach,

which can be used alternatively for the solution of this problem. The main reason for this seems to be

the considerably high computational requirements of the optimization models the ε-constraint

approach encounters.
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Chapter 8 Dissertation Summary and Concluding Remarks

As stated in Chapter 1, the main contribution of the present work lies in the development of various

mathematical optimization models for the formulation of the FMP problem, along with the specialized

algorithms that facilitate their efficient solution. In this chapter, we conclude this dissertation by

presenting the most prominent findings and results of this research. First we provide a review of the

dissertation, then we make some suggestions for facilitating the application of the proposed models,

and lastly we provide some promising directions for future research.

Chapter 1 is an introductory chapter, giving an overview of the motivation for dealing with the

specific problem under consideration, stating the dissertation’s main contributions, and providing an

outline of the following chapters. In Chapter 2, we review the related literature, focusing mostly on

works that address military related applications. In Chapter 3, we present a detailed definition of the

FMP problem, and we address model formulation considerations related to the development of

accurate FMP optimization models.

In Chapter 4 we prove several interesting theoretical properties of the FMP problem, and we

utilize them to develop two heuristic solution approaches for solving large FMP instances. We also

present experimental results demonstrating the computational performance of these heuristics and the

quality of the solutions they produce. The first heuristic, AFH, exhibits a very satisfactory

performance in most of the cases, which justifies its wide usage by many Air Force organizations

worldwide. The second heuristic, HSH, exhibits a rather myopic behavior. It works by splitting the

original planning horizon into smaller ones, and solving an FMP problem for each of them. Although

this technique may result in low availability over the last sub-horizons, the solution obtained by HSH

is also quite satisfactory in most of the cases. Therefore, it can be considered as an alternative choice

for identifying a solution of satisfactory quality when the size of the problem prohibits the application

of an exact solution methodology.

In Chapter 5, we develop a mixed integer nonlinear model for the FMP problem, which is based

on a suitable modification of an existing graphical heuristic tool for addressing this problem. Utilizing

the problem’s special structure and theoretical properties, we also develop an exact solution algorithm

for accommodating this model. Our computational results demonstrate that the performance of the

proposed solution algorithm is superior compared to that of a commercial optimization package.

In Chapter 6, we consider a mixed integer optimization model for the multi-period version of

the FMP problem. For this model, we develop an exact solution algorithm that identifies a valid upper

bound on the optimal objective first, and then reduces this bound in a stepwise fashion until a feasible

solution that attains it is identified. The performance of the algorithm on realistic problem instances

appears superior to that of two commercial optimization solvers that can be used alternatively for the
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solution of the problem, whereas the opposite behavior is observed for a class of problems with

significantly different characteristics.

In Chapter 7, we address a biobjective quadratic FMP model, which incorporates the

minimization of the fleet availability variability. For this FMP problem variant, we develop two exact

solution methodologies which are capable of obtaining the entire set of non-dominated solutions. The

first methodology disaggregates the original FMP model into smaller subproblems whose solution is

attained much more efficiently. The second methodology is a variant of the ε-constraint method,

applied to a suitable relaxation instead of the original FMP model. The performance of the two

proposed methodologies on problems with realistic characteristics appears to be considerably superior

to that of the traditional ε-constraint approach, which can be used alternatively for the solution of the

problem.

The present work provides an in-depth study of several interesting variants of the FMP problem.

The most important contribution of this work is the development of several interesting optimization

models for this problem, along with the specialized algorithms that facilitate their efficient solution,

which comprise an efficient toolset the aviation/maintenance managers can utilize to address the

numerous aspects of the FMP problem effectively. The extensive computational results that we present

demonstrate the performance of the proposed solution methodologies.

The key objective of the FMP problem is to maximize the operational readiness of a military

unit, as stated in Chapter 1, mainly through the maximization of the fleet availability. The developed

models can provide valuable information to the aviation/maintenance managers in many ways. For

example, by using current data as input to these models, they can assess the midterm operational

readiness of the unit. Moreover, the aviation/maintenance managers can utilize the proposed models to

perform what-if scenarios and test alternative parameter choices and desing options. For example, if

the fleet availability that results with the existing maintenance resources turns out to be insufficient,

the aviation/maintenance managers can relax the maintenance costraints in order to find out the extra

maintenance resources needed to achieve the desired availability level, and then acquire the extra

personell. Another valuable use of the proposed models is for examining how new operational

requirements, such as exercises and deployments, can influence the long-term readiness of the fleet.

By relaxing the maintenance costraints, the aviation/maintenance managers can estimate the extra

maintenance capacity needed to handle the additional operational load. The fact that they enable the

examination of such hypothetical scenarios gives added value to the developed mathematical models,

fulfilling the original research aims.

The present work points to several promising directions for future research. The deterministic

models that we address in this work comprise a basic building block towards developing more

complicated models that will take into consideration stochastic events, such as unforeseen failures.
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Future works should be directed towards the development of such stochastic models that will

incorporate the uncertainty that some of the problem’s parameters might exhibit. A recent work in that

direction is the paper by Mattila and Virtanen (2014), who use discrete event simulation to model the

maintenance of military aircraft in the Finnish Air Force and study its impact on aircraft availability.

We deliberately decided to deal with the deterministic version of the FMP problem, because it is

novel, complex, interesting and realistic enough to constitute a contribution in itself, which is useful

for researchers and practitioners.

Two factors of the problem under consideration exhibit significant uncertainty in practice: the

fact that the actual duration of the maintenance service may turn out to be longer than its nominal

value (expressed by parameter G), and the fact that a mission aircraft may fail in fulfilling its entire

flight load (expressed by decision variable xi). The grounding of an aircraft for a longer time period

than the one determined by parameter G may be dictated due to the detection of serious findings

during the regularly scheduled maintenance inspection, or due to the lack of specific spare parts or

staff expertise, which are needed in order to complete the service of the aircraft according to the

prescribed safety standards. On the other hand, an aircraft may not be able to fly the entire time that

has been assigned to it, due to an unexpected event such as an unforeseen failure. Of course, in case of

such undesirable events, the user always has the option of reapplying the proposed model after

updating the state of the system, but a stochastic model will clearly incorporate such uncertainties

more accurately, leading to a better long term performance for the entire system.

Another interesting direction for future research appears to be the suitable modification of the

model studied in Chapter 5 that will enable its application to a multi-period planning horizon, so that

its long term performance and behavior can be evaluated. This will also render this model directly

comparable to other models that have been proposed in the related literature, which are targeted

towards multi-period planning horizons. Additionally, for the biobjective quadratic version of the FMP

problem studied in Chapter 7, the generation of the exact non-dominated set opens up the opportunity

of applying state-of the-art multi-objective metaheuristics and using the benchmarks provided in order

to assess their effectiveness. Finally, the study of FMP multi-objective models with more than two

objectives such as the one introduced in Section 7.5.3 also stems as a very interesting direction for

future research.
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Appendix A Proof of Proposition 4.1

Let λ1, λ2 and ui (i = 1,…, |K|) be the non-negative dual multipliers of constraints (4.3.2), (4.3.3) and

(4.3.4), respectively. In addition to the original constraints of the problem, the KKT conditions are:

We call the quantity (ykp – ks – xk) the “perpendicular distance of aircraft k from the diagonal”.

Despite the word “distance” in this definition, note that this quantity is negative when aircraft k lies

below the diagonal at the end of the current period. Since LL < UL always, there are 12 possible

distinct arrangements of the quantities LL, UL, D and X. When there does not exist an arrangement in

which LL precedes X, the problem is clearly infeasible, since the flight requirements (constraint

(4.3.2)) cannot be satisfied, even when every aircraft is assigned its maximum possible flight time. In

each of the remaining 8 cases, it is clear that the solution obtained from the application of the

Procedure Sweep when the sum of the assigned aircraft flight times becomes equal to the second

quantity in the arrangement, satisfies (4.3.2)-(4.3.4) and is therefore feasible. We show next that this

solution also satisfies conditions (1)-(6), and is therefore optimal, too.

Case 1: The arrangement is {LL,UL,D,X} or {LL,UL,X,D}.

In this case, the sum of the assigned aircraft flight times in the obtained solution is equal to the second

quantity in the arrangement, UL. We partition the indices of the decision variables of this solution into

4 sets:

a) Set S1 contains the indices of the variables xk such that xk = 0 = Xk.

b) Set S2 contains the indices of the variables xk such that xk = 0 < Xk,

c) Set S3 contains the indices of the variables xk such that 0 < xk = Xk,

d) Set S4 contains the indices of the variables xk such that 0 < xk < Xk.

We set λ1 = 0 and λ2 = 2(ykp – ks – xk) for some 4 .k S Note that the value of λ2 is the same for

any 4 ,k S since set S4 contains the indices of the variables that lie on the sweeping line at the current

1 22( ) 0,   = 1,...,kp k ky ks x u k K        (1)

1 2[ 2( ) ] 0,   = 1,...,k kp k kx y ks x u k K        (2)

1

1
1

( ) 0
K

mp k
m M k

LS y x
 

    (3)

1

2
1

( ) 0
K

k mp
k m M

x US y
 

    (4)

( ) 0,   = 1,...,k k ku x X k K  (5)
λ1 > 0, λ2 > 0, uk > 0, k = 1,…, |K| (6)
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solution, and, as a result, their perpendicular distance from the diagonal is the same. Additionally, each

of these distances is non-negative, since the fact that UL appears before D in the arrangement implies

that the sweeping line lies above the diagonal at the current solution; therefore λ2 is non-negative, too.

We also set uk = max(2(ykp – ks – xk) - λ2, 0) for 1 ,k S uk = 0 for 2 4k S S  and uk = 2(ykp – ks – xk) - λ2

for 3.k S The multipliers uk for 3k S are always non-negative, since set S3 contains the indices of the

variables that were initially swept and later disengaged by the sweeping line because they reached

their upper bound; therefore, the perpendicular distance of each of these points from the diagonal

cannot be smaller than the perpendicular distance from the diagonal of any point that lies on the

sweeping line at the current solution. For 1k S and 3 ,k S constraints (1) and (2) are clearly satisfied.

Constraints (1) are clearly satisfied as an equality for 4 ;k S therefore, constraints (2) are satisfied, too.

For 2 ,k S constraints (2) are clearly satisfied and constraints (1) are satisfied if λ2 > 2(ykp – ks – xk),

which is true, since set S2 contains the indices of the variables that have not been swept by the line yet;

therefore, their perpendicular distance from the diagonal cannot be larger than the perpendicular

distance from the diagonal of any point that lies on the sweeping line at the current solution. Finally,

constraints (3)-(6) are clearly satisfied, too. Hence, the current solution together with λ1, λ2 and uk (k =

1,…,|K|) as the dual multipliers satisfies the KKT conditions and is therefore optimal.

If set S4 is empty, then the above analysis remains the same, but λ2 needs to be set equal

to
2

max(max 2( ),0).kp kk S
y ks x


  If both S2 and S4 are empty, then every decision variable has taken its

maximum possible value. This implies that UL = X, and this case reduces to Case 4 through an

appropriate rearrangement.

Case 2: The arrangement is {LL,D,UL,X} or {LL,D,X,UL}.

In this case, the sum of the assigned aircraft flight times in the solution obtained is equal to the second

quantity in the arrangement, D, which implies that the sweeping line coincides with the diagonal. We

partition the indices of the decision variables of this solution into the same 4 sets as in Case 1. We set

λ1 = λ2 = 0, uk = max (2(ykp – ks – xk), 0) for 1,k S uk = 0 for 2 4k S S  and uk = 2(ykp – ks – xk), for

3.k S The multipliers uk for 3k S are always non-negative, since set S3 contains the indices of the

variables that were initially swept and later disengaged by the sweeping line because they reached

their upper bound; therefore, since the sweeping line coincides with the diagonal at the current

solution, the perpendicular distance of each of these points from the diagonal cannot be negative. For

1k S and 3 ,k S constraints (1) and (2) are clearly satisfied. For 2 ,k S constraints (2) are clearly

satisfied and constraints (1) are satisfied if -2(ykp – ks – xk) > 0, which is true, since set S2 contains the

indices of the variables that have not been swept by the line yet; therefore, since the sweeping line

coincides with the diagonal at the current solution, each of these points has non-positive perpendicular

distance from the diagonal. Set S4 contains the indices of the variables that lie on the sweeping line at
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the current solution. Since the sweeping line coincides with the diagonal, the perpendicular distance of

each of these variables from the diagonal is equal to 0. As a result, constraints (1) and (2) are also

satisfied for 4 .k S Finally, constraints (3)-(6) are clearly satisfied, too. Hence, the current solution

together with λ1, λ2 and uk (k = 1,…,|K|) as the dual multipliers satisfies the KKT conditions and is

therefore optimal.

Case 3: The arrangement is {D,LL,UL,X} or {D,LL,X,UL}.

In this case, the sum of the assigned aircraft flight times in the solution obtained is equal to the second

quantity in the arrangement, LL. We partition the indices of the decision variables of this solution into

the same 4 sets as in Cases 1 and 2. We set λ2 = 0 and λ1 = -2(ykp – ks – xk), for 4 .k S Note that the

value of λ1 is the same for any 4 ,k S since set S4 contains the indices of the variables that lie on the

sweeping line at the current solution, and, as a result, their perpendicular distance from the diagonal is

the same. Additionally, each of these distances is non-positive, since the fact that D appears first in the

arrangement implies that the sweeping line does not lie above the diagonal at the current solution;

therefore, λ1 is non-negative, too. We also set uk = max(2(ykp – ks – xk) + λ1, 0) for 1,k S uk = 0 for

2 4k S S  and uk = 2(ykp – ks – xk) + λ1 for 3.k S The multipliers uk for 3k S are always non-

negative, since set S3 contains the indices of the variables that were initially swept and later

disengaged by the sweeping line because they reached their upper bound; therefore, the perpendicular

distance of each of these points from the diagonal cannot be smaller than the perpendicular distance

from the diagonal of any point that lies on the sweeping line at the current solution. For

1k S and 3 ,k S constraints (1) and (2) are clearly satisfied. Constraints (1) are clearly satisfied as an

equality for 4 ;k S therefore, constraints (2) are satisfied, too. For 2 ,k S constraints (2) are clearly

satisfied and constraints (1) are satisfied if –λ1 > 2(ykp – ks – xk), which is true, since set S2 contains the

indices of the variables that have not been swept by the line yet; therefore, the perpendicular distance

of each of these points from the diagonal cannot be larger than the perpendicular distance from the

diagonal of any point that lies on the sweeping line at the current solution. Finally, constraints (3)-(6)

are clearly satisfied, too. Hence, the current solution together with λ1, λ2 and uk (k = 1,…,|K|) as the

dual multipliers satisfies the KKT conditions and is therefore optimal.

If set S4 is empty, then the above analysis remains the same, but λ1 needs to be set equal

to
2

min( 2( )),kp kk S
y ks x


   which is always non-negative, since set S2 contains the indices of the variables

that have not been swept by the line yet; therefore, since the sweeping line does not lie above the

diagonal at the current solution, each of these points has non-positive perpendicular distance from the

diagonal. If both S2 and S4 are empty, then every decision variable has taken its maximum possible

value. If D = LL = X, this case reduces to Case 4 through an appropriate rearrangement. If D < LL = X,
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then the sweeping line lies below the diagonal at the current solution. In this case, we partition the

indices of the decision variables of the current solution into 2 sets:

a) Set S1 contains the indices of the variables xk such that xk = 0 = Xk,

b) Set S2 contains the indices of the variables xk such that 0 < xk = Xk.

We set λ1 = -2(ykp – ks – xk), where 2k S is the index of a variable that is currently on the sweeping

line, λ2 = 0, uk = max(2(ykp – ks – xk) + λ1, 0) for 1k S and uk = 2(ykp – ks – xk) + λ1, for 2 .k S Since

the sweeping line lies below the diagonal, λ1 is strictly positive. Additionally, the multipliers uk for

2k S are always non-negative, since the perpendicular distance from the diagonal of any point that

lies on the sweeping line at the current solution cannot be larger than the perpendicular distance from

the diagonal of any other point. Constraints (1)-(6) are clearly satisfied for 1 2 .k S S  Hence, the

current solution together with λ1, λ2 and uk (k = 1,…,|K|) as the dual multipliers satisfies the KKT

conditions and is therefore optimal.

Case 4: The arrangement is {LL,X,UL,D} or {LL,X,D,UL}.

In this case, the sum of the assigned aircraft flight times in the solution obtained is equal to the second

quantity in the arrangement, X. We partition the indices of the decision variables of this solution into 2

sets:

a) Set S1 contains the indices of the variables xk such that xk = 0 = Xk,

b) Set S2 contains the indices of the variables xk such that 0 < xk = Xk.

We set λ1 = λ2 = 0, uk = max(2(ykp – ks – xk), 0) for 1k S and uk = 2(ykp – ks – xk) for 2 .k S The

multipliers uk for 2k S are always non-negative, since set S2 contains the indices of the variables that

have already been swept by the sweeping line to their upper bound; therefore, since the sweeping line

does not lie below the diagonal at the current solution, their perpendicular distance from the diagonal

is non-negative. Constraints (1)-(6) are clearly satisfied for 1 2 .k S S  Hence, the current solution,

together with λ1, λ2 and uk (k = 1,…,|K|) as the dual multipliers, satisfies the KKT conditions and is

therefore optimal. 
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Appendix B Proof of Lemma 4.1

The values of LL and UL are known. We can compute the values of D and X in time O(|K|),

since
1
min( ,[ ] )

K

k kp
k

D X y ks 


  and
1

.
K

k
k

X X


 Finding if there exists an arrangement of LL, UL, D

and X in which LL precedes X requires time O(1). If such an arrangement exists and Q is the second

quantity in order, we can equivalently transform the problem defined by (4.3.1)-(4.3.4) into the

following problem in time O(|K|):

where dk = 2, ak = 2(ykp - ks), bk = 1, b0 = Q, lk = 0 and uk = Xk, for k = 1,…,|K|. We have suppressed the

term (ykp - ks)2 in this formulation, since it is constant and does not affect the optimization. This

problem can be solved in time O(|K|) (see Brucker (1984)). Therefore, the problem defined by (4.3.1)-

(4.3.4) can be solved in total time O(|K|), too. 

2

1

1Min ( )
2k

K

k k k kx k
d x a x





s.t. 0
1

K

k k
k

b x b



lk < xk < uk, k = 1,…,|K|,
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Appendix C List of Dissertation Publications

Parts of the work presented in this dissertation have been published in scientific journals and presented

in international conferences as follows:

Journal Papers

[J.1] Kozanidis, G., Gavranis, A., & Kostarelou, E. (2012). Mixed integer least squares

optimization for flight and maintenance planning of mission aircraft. Naval Research

Logistics, 59(3-4), 212–229. http://doi.org/10.1002/nav.21483

[J.2] Kozanidis, G., Gavranis, A., & Liberopoulos, G. (2013). Heuristics for flight and maintenance

planning of mission aircraft. Annals of Operations Research, 221(1), 211–238.

http://doi.org/10.1007/s10479-013-1376-6

[J.3] Gavranis, A., & Kozanidis, G. (2015). An exact solution algorithm for maximizing the fleet

availability of a unit of aircraft subject to flight and maintenance requirements. European

Journal of Operational Research, 242(2), 631–643. http://doi.org/10.1016/j.ejor.2014.10.016

[J.4] Gavranis, A., & Kozanidis, G. (2017). Mixed integer biobjective quadratic programming for

maximum-value minimum-variability fleet availability of a unit of mission aircraft. Computers

& Industrial Engineering, 110, 13–29. http://doi.org/10.1016/j.cie.2017.05.010

Papers in International Conferences

[C.1] Kozanidis, G., Gavranis, A., & Liberopoulos, G. (2008). Heuristics for maximizing fleet

availability subject to flight and maintenance requirements. In 10th International Conference

on Application of Advanced Technologies in Transportation. Athens, Greece.

[C.2] Gavranis, A., & Kozanidis, G. (2013). An exact solution algorithm for maximizing the fleet

availability of an aircraft unit subject to flight and maintenance requirements. In Proceedings

of the International MultiConference of Engineers and Computer Scientists 2013 (Vol. II, pp.

1036–1041). Hong Kong: Newswood Limited.
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Abstracts and Presentations in International Conferences

[P.1] Gavranis, A and Kozanidis, G (2009). “Modeling techniques and solution approaches for

maximizing fleet availability of mission aircraft subject to flight and maintenance

requirements.” 23rd European Conference on Operational Research, Bonn, Germany, 5-8 July.

[P.2] Kozanidis, G, Gavranis, A and Kostarelou E. (2010). “Mixed integer least squares

optimization for flight and maintenance planning of mission aircraft”. 24th European

Conference on Operational Research, Lisbon. Portugal, 11-14 July.

[P.3] Gavranis, A and Kozanidis, G (2013), “Mixed integer multi-objective optimization for flight

and maintenance planning of mission aircraft” in 22nd International Conference on Multiple

Criteria Decision Making, Malaga, Spain, 17-21 June

In Table C.1, we link each of the above works to the corresponding chapter in this dissertation.

Table C.1: List of publications and association to dissertation chapters.

Chapter 4 Chapter 5 Chapter 6 Chapter 7
[J.2] : entire chapter [J.1] : entire chapter [J.3] : entire chapter [J.4] : entire chapter
[C.1]: early work [P.2]: early work [C.2]: early work [P.3]: early work
[P.1] : entire chapter
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Appendix D Glossary of Dissertation Terms and Acronyms

aircraft flowchart A 2-dimensional graphical tool utilized, in an ad-hoc manner,
as a common empirical approach for addressing the FMP
problem (see Figure 3.1).

bank time residual flight time

CFA Cumulative Fleet Availability

diagonal The line segment that connects the origin with the point with
coordinates (A, Y) at the aircraft flowchart, where Y is the
phase interval.

dock space Unit maintenance station space capacity capability

FMP Flight and maintenance planning

flight load Suitable flight requirements issued by the unit command at
the beginning of each planning horizon in order to retain a
high level of unit readiness.

maintenance station Unit maintenance station for providing service to the aircraft.

operational readiness “The capability of a unit/formation, ship, weapon system or
equipment to perform the missions or functions for which it
is organized or designed. May be used in a general sense or
to express a level or degree of readiness.” (NATO, 2015)

phase interval The total flight time of an aircraft between two maintenance
inspections.

phased maintenance Aircraft intermediate level scheduled maintenance conducted
at the unit maintenance station.

residual flight time The total remaining time that each individual available
aircraft can fly until it has to undergo a maintenance check.

residual maintenance time The total remaining time that each non-available aircraft
needs in order to complete its maintenance check. The
residual maintenance time of an aircraft is positive if and
only if this aircraft is undergoing a maintenance check, and is
therefore not available to fly.

total deviation index Index equal to the sum of squares of the vertical distances
(deviations) of the points mapping the residual flight times of
the individual aircraft from their corresponding target values
on the diagonal.
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