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Abstract

Gaseous transport phenomena far from local equilibrium, i.e. when the flow reference
Knudsen number, defined as the ratio of the mean free path over a characteristic length, is
larger than 1073, appear in several industrial processes and technological applications in vac-
uum technology and microsystems. Typical examples include the design and optimization
of vacuum gas distribution systems with piping, vacuum pumps, sensors and leak detection
equipment in high energy facilities (fusion reactors and accelerators) as well as condensation
and adsorption/desorption processes (e.g. cryopumping and CD/DVD metallization), mass
spectrometers, micro-filtering and porous media, micro-propulsion in satellite maneuvering and
vehicle reentry. The flow behavior in these systems cannot be properly captured by the typical
Navier-Stokes-Fourier approach and must be described based on kinetic theory of gases, as
described by the integro-differential Boltzmann equation or reliable kinetic model equations.
The most widely used and successfully implemented computational schemes in the solution of
kinetic equations are the deterministic Discrete Velocity Method (DVM) and the stochastic
Direct Simulation Monte Carlo (DSMC) scheme.

Non-equilibrium gas processes, also known as rarefied gas processes, in monatomic gases
have been widely studied in the literature, while the corresponding work in polyatomic gases
taking into consideration the internal degrees of freedom is rather limited. The present Ph.D.
thesis is focused on the investigation of the effect of the rotational and vibrational degrees of
freedom in polyatomic gas heat transfer, flow and adsorption processes in the whole range of
the Knudsen number (or gas rarefaction) from the free molecular through the transition up to
the slip and continuum regimes. The investigation is based on the numerical solution of typical
heat transfer and flow problems which are modeled by kinetic model equations and simulated
using both the DVM and the DSMC approaches.
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More specifically, conductive heat transfer through rarefied polyatomic gases confined be-
tween parallel plates and coaxial cylinders maintained at different temperatures is investigated.
It is assumed that gas molecules possess both rotational and vibrational degrees of freedom,
described by the classical rigid rotator and quantum harmonic oscillator models, respectively.
The approach is based on three kinetic models namely the Holway, Rykov and Andries mod-
els, as well as on the DSMC scheme supplemented by the Borgnakke-Larsen collision model.
The total collision frequency is computed according to the Inverse Power Law intermolecular
potential. Results are presented for the density as well as for the translational, rotational,
vibrational and total parts of the heat flux and of the temperature fields in a wide range of the
Knudsen number and for small, moderate and large temperature differences. All kinetic model
results compare very well to each other and with corresponding DSMC results, as well as with
experimental data verifying the validity of the simulations.

By considering in the beginning only the translational and rotational degrees of freedom,
it has been found that the total heat fluxes of diatomic and polyatomic gases are higher about
30 — 50% and 50 — 75% respectively than the corresponding ones obtained by the monatomic
modeling for both geometries. The influence of the type of gas-surface interaction has been
also investigated finding out that in most cases as the gas-surface interaction becomes more
diffusive the dimensionless total heat flux is increased. Then, the vibrational modes of the
molecules have been included and results have been obtained for Ny, Oy, CO,, CHy and SFg
representing diatomic as well as linear and nonlinear polyatomic molecules with 1 up to 15
vibrational modes. The effect of the vibrational degrees of freedom is demonstrated. In diatomic
gases the vibrational heat flux varies from 5% up to 25% of the total one. Corresponding
results in polyatomic gases with a higher number of vibrational modes show that even at
low reference temperatures the contribution of the vibrational heat flux may be considerably
higher. For example in the case of SFg at 300 K and 500 K the vibrational heat flux is about
67% and 76% respectively of the total heat flux. Furthermore, it is numerically proved that
the computed solutions are in agreement with the Chapman-Enskog approximation in a central
strip of the computational domain even at moderately large values of the rarefaction parameter
providing that the system Knudsen number is small. It is evident that modeling heat transfer
configurations with polyatomic gases must consider, and in most cases include, the effect of the
internal degrees of freedom even at ambient temperatures.

Next, the problem of polyatomic gas flow through circular tubes of various lengths has
been considered. Pressure driven rarefied gas flow of polyatomic gases through short tubes

in a wide range of the Knudsen number has been numerically investigated. The downstream
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over the upstream pressure ratio is taken very close to zero. Such flows are characterized by
low Reynolds numbers and high viscous losses and therefore short circular micro-tubes may be
used, instead of typical micro-nozzles, as low-thrust propulsion systems. A parametric study
on propulsion performance is performed based on the Holway kinetic model subject to diffuse
boundary conditions and the main computed quantities include the flow rate, the discharge
coefficient, the thrust and the impulse factor which are provided in terms of the gas rarefaction
and the tube dimensionless length. Furthermore, a comparison between corresponding poly-
atomic and monatomic results is performed and the effect of the internal degrees of freedom on
the results is investigated. It has been found that the overall propulsion efficiency in the case of
polyatomic gases compared to the one in monatomic gases is slightly improved. In general, the
effect of the rotational degrees of freedom on the macroscopic quantities is small except of the
temperature distribution, where the well-known observed minimum along the flow axis is less
pronounced. Also, it has been demonstrated that this type of flows, which have been simulated
so far only based on the DSMC method, can be also tackled by kinetic modeling.

This study has been extended in the case of flows through long tubes based on the infinite
capillary theory (fully developed flow) driven by pressure and temperature gradients. Simula-
tions are based on the Rykov model subject to diffuse-specular boundary conditions. In the
pressure driven flow the polyatomic results are very close to the corresponding monatomic ones,
while in the temperature driven flow, also known as thermal creep flow, there are significant
discrepancies. More specifically, the fully developed thermal creep heat flow rates in the case
of diatomic or linear polyatomic gases (e.g. Ny, CO3) can be about 30 — 40% higher than the
corresponding monatmomic ones. This deviation is further increased in the case of nonlinear
polyatomic gases (e.g. CHy) and can be about 50 — 65%. It is noted that as the Knudsen
number is increased the differences are also increased. The effect of the rotational degrees of
freedom on the gas flow rate in Poiseuille flow is small for all values of the Knudsen number.
However, the effect of the rotational degrees of freedom on the heat flow rate in Poiseuille flow
is greater and can reach 20 — 30% at moderate values of the rarefaction parameter.

The effect of the internal degrees of freedom has been also considered in adsorption pro-
cesses. This investigation has been motivated by the design of multistage cryopumps and more
specifically by the design of a three-stage cryopump which is recently under consideration within
the EUROfusion programme. Since corresponding results in monatomic gases are not widely
available the investigation includes both monatomic and polyatomic gases.

The steady half-space single gas flow driven by an adsorbing planar wall is investigated

based on the solution of the BGK and Holway kinetic models. The mass and heat transfer
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between the gas and the plate are characterized by the sticking and thermal accommodation
coefficients, the surface temperature and the far upstream velocity and temperature. The
work is focused on the influence of partial thermal gas-surface interaction on all flow quantities
including the sticking coefficient. It has been found that as the gas thermal accommodation on
the surface is reduced, for prescribed adsorbing flux and temperature difference, the sticking
coefficient must be increased to sustain the prescribed flux or otherwise for the same sticking
coefficient the adsorbing flux is reduced. This behavior is enhanced as the difference, between
the surface and the far upstream temperatures, is increased. Overall, the effect of the thermal
accommodation coefficient is significant in all flow quantities and must be accordingly taken
into consideration. In general there is good agreement between monatomic and polyatomic
results and therefore, it is stated that in general the effects of the internal degrees of freedom
is small and does not exceed 10%. This is contributed to the low temperatures where these
processes take place. The investigation of the partial thermal accommodation effect may provide
a more clear interpretation of measurements of sticking coefficients, and conversely, improve
performance calculations for cryopumps.

Further, the adsorption process has been simulated in a two-dimensional flow configu-
ration in an effort to compare with corresponding experimental results and investigate the
feasibility of designing a three stage cryopump for the main vacuum pumping system of the
Demonstration Power Plant (DEMO) fusion facility. Based on inverse engineering procedures
the sticking coefficients of gases contained in the exhaust mixture on charcoal surfaces main-
tained at different temperatures may be estimated. Simulations have been performed for dif-
ferent sets of parameters and numerical data have been recovered for Hy and D,. Following a
comparison with experimental data, the values of the sticking coefficient for both gases have
been provided. In addition, the detailed flow structure in terms of all macroscopic quantities of
practical interest is viewed and the effect of the temperature of the adsorbing plate is reported.
Most important a significant amount of back flow in the inlet slit is observed highly influencing
the overall adsorption performance.

Overall, the theoretical /computational investigation performed in this thesis exhibits the
importance of the rotational and vibrational degrees of freedom of polyatomic gases in non-
equilibrium transport phenomena. It has been shown that ignoring the internal structure of
the molecules may yield erroneous results and large deviations between measurements and
calculations. The work provides some useful insight in the design and optimization of processes
and devices with polyatomic gases operating under rarefied conditions in a wide temperature

range.
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Enidpaor twv Baduwv shevdeplag TEQLoTROPNHE %ol 00VNoNg
TWY TOALATOULXOV agpiwy o VEpata UeTapopds Yepprotntag,

POWYV KA TEOCEOPTONG EXTOS YEQOOVVIULKNAS LOOPROTILAS

Xenotoc Tdavtoc
Havemo Ao Osooolac, TuAua Mnyavordyonv Mnyovixoy, 2016
EmufBiénwv: Ap. Anufiteloc Bahouyedpyne, Kodnyntrc

[epirndn

Powvopeva petapopdc extdg Yepuoduvouixnis looppoTiag, 6mou o apriudc Knudsen, opiouévog
©¢ 0 MoYog NG pEong eAel¥epng BLUBPOUNE TPOG EVAL YAUPAXTNELO TIXO UNAXOG TOU EXACTOTE TROBAN-
uotog, ebvon peyokltepog amd 1073, amovtdvTon o8 TOAMEC Blounyavixés eQoapuoYEg OTwS o1
TEYVOLOYIa XEVOU %01 GE UXEOCUG THUOTL. Xopax TNELo Tixd THEodelYHaTa ATOTEAOUY O GYEBLAOHUOS
X0 1) BEATIOTOTOMOT) TV GUCTNUATLY XEVOD, aviyVEUCTC BLEEOMY OE HOVABES UPNATIC EVEQYELIC
(avu%paorf]peg olVTNENG xou ETUTOYLVTECS), XodWS Xou OE SLepyaoieg CUUTUXVOOTG, TROCROGPNONG
xou expogpnone (xpvoyevinés avthec o eniotpwon yetdhhou oe CD/DVD), otnv xataoxeur
(PUCUITOYEAPWY, GTNYV YENOT TOPWOWY UAXMY Xl OF UXPOCUC TAUAUTH TEOWUNOTS BLUC TNULXMY
oynudtwy. H pehétn tov gauvouéveny petagopdc ota mpoavapeplévia cuoTAuaTo dev UTopEl
Vo TepLypael emapxng Yeow tng mpootyyiong Navier-Stokes-Fourier xauw omontelton 1 ypron g
xvnTAc Yewplag Twv agplwy, OTwe auTy| Teptypdpetal and TNy oloxhnpodiapopixnt| e€lonwaor Boltz-
mann e{te evohhaxtind Ye oltomota xavntixd poviéha. Ot mo eupéwe BLABEBOUEVES XAl ETULTUY NS
EQUPUOCUEVES UTOAOYLO TIXEC éV0dOL Yia TNV ETEAUGT TWV XVNTIXGY EELOMOCENY EIVAL 1) VIETEQULV-
ot wébodog twv Boxpltidv tayuthtwy (Discrete Velocity Method: DVM) xou 1 otoyaotixi
uévodog Direct Simulation Monte Carlo (DSMC).

Atepyaolec povatouxmy aepiwy extég VepUodLVaUIXC LlOOPEOTHAS, YVOOTEC Xl WC OLEp-
yaoieg opatonoinuévwy aeplwy, €youy ueietniel extevae otny BiBAoypagio. Avtideta, yia Tnv
TEQIMTWOT TOV TOAUATOUXGY agplwy AaudvovTag untégn Toug ecwtepixols Poduols ereudepiog
TV poplwv N emoTnuovxy épeuva elvor apxetd teploplouévn. H nopodoa diatelf3r) emxevtpmveTtan
otV UEAETN TNg eTidpaone Twv Badumy ekevieploc TEPLOTEOPYC Xou BOVNONE TWV TOAVUTOULXMY
aeplwv oe Yéuota PETOPORdS VEQUOTNTIS, POWY Xl TEOCEOYNONG EXTOC VEQPUOBUVOUXTS LoOER-

ecotiac o 6Ao To elpog Tou apruob Knudsen (1) ahhindg Tng mopauétoou apouonoinonq), ONADY| TNV
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eheOepn poplaxr) TEELOYY|, TNV UETABATIXT TEPLOY T X0 TNV UBRPOBUVOLXT TEQLOYY| EWE TO GUVEYES
opto. H perétn Baotleton otny apduntixnn eniivon Tumxdy TEoBANUATOY UETapopds VepUuoTnTog
XL POMY, ToL OTO{0L LOVTEAOTIOLOUYTOL UE TNV EPURUOYT) XIVNTIXDY EELOMOENY Y PNOULOTOLOVTIS TIG
ued66ouc DVM xaw DSMC.

o cuyxexpyeva, diepeuvdtor 10 TEOBANUA UETAUPOEAS VEQUOTNTUC O TOAVUTOULXS AEQLXL T
orola eowxhelovton o8 TUPIAANAES TAAXES XU O OUOXEVTEOUS XUAIVOPOUS, TOU BlaTneolvTal GE
otaupopeTinég Veppoxpaociec. O Paduol ehevdepiog TEPLOTROPNC XaL BOVAONE TWV TOAVNTOULXMY
aeplwy TeptypdpovTon amd To UOVTEND TEQIG TEOPNG CUUTOY WY Hol®V (rigid rotators) ot to HOVTENO
Tou omAoy appovixol Tahavtot (quantum harmonic oscillator) avtiotoryo. H mpocéyyion
Baoiletoan ota e€hc Telor xvntnd poviéra Holway, Rykov xou Andries, xodo¢ xan 6t otoyao Ty
uédodo DSMC ue yperiorn tou poviélou cuyxpoloewy Borgnakke-Larsen. H cuyvétnto twv cuy-
%e0UGERY LTOAOYILETAL GUUPWVAL UE TO LOVTELO EVOOUOPLIXKY CUYXE0VUoEWY ~Inverse Power Law ™.
Amnoteréopata mopouotdlovton yiol THY oetdunTixny TuxvoTnTa xodog xou yior Ty Vepuoxpacto xou
™V Vepuopot| e€aitiog TNG UETAPOPXAC, TEPLOTROPIXAC Xl TOAUVIWTIXNG XIVNONE TwV Hoplwy
oe €va eupl @dopa Tou apriuol Knudsen 6mwme xou yia didpopoug Adyoug deppoxpacioc. To
ATOTEAEOHUATO TTOU TROXUTTOUY OO Tal TElo XvNTnd HOVTEAA CUYXQEIVOVTAL UE To avTio TOLY oL aTo-
teréoparto e uedodou DSMC, xaddg xon e metpopotind Sedouéva edpamvovTag TNy alomotio
TWV TEOGOUOUDOEWY.

OEWPOVTAC aPYLXd HOVO TOUC PETOPOEWOVS Xal TERIo TeoPoUS Paduols ehcudeplac Tov
Hoplwy 1 GUVOAXT VEQUOPOT| TMV UERIWY UE YROUUIXE oL U1 YROUUXE LOpLo UTOAOY IO TNXE LYNAOG-
tepn xatd 30 — 50% xou 50 — 75% avtictoyyo amb excivr mou UTONOYIGTNXE Yiot LOVOTOMIXS
agpta. Eniong yerethinxe n enldpoon twv la@opetindy TOTeY aAnAenidpacng agplou-TolyHUaTog,
AVIOEYVOVTOS G TIC TEPLOCOTEPES TEQITTWOELS OTL XAVME TA UOPLOL EXTEUTOVTAL UTO TO TOLY WU TLO
Loy LT 1) ouvolxn Vepuopot| auédvetar. H puehétn emextdidnxe xou otny nepintwon twv Badumy
ehevdeploc 86vnone, émov eZetdlovton ypopuxd (No, COq, Og) xou pn yeouuxd (CHy, SFe)
aéptar e Borduoie 86vnomne mou va xupaivovtor and 1 éwg 15. And auth) Tnv UeAETN avadenvieTo
n enidpacn twv Padunyv eievieploc dovnone twv poplwv. Iho ouyxexpwéva otnv mepintwon
TV dlotouxdy aepinv 1 Yepuopor| elouutiog e 86vnong twv poplwy xuuaiveton and 5% éwg
25% e ouvolxrc.  AvtioTolyo anoTEAéoUATH OTNV TEQITTWOT TV TOAUTOUXOY AEplwY UE
mohhoUg Poduolc 86vNong amodexviouy OTL oxOUrn xou O Younhéc Yepuoxpacieg avapopds 1
OLVEIGPOEA. TN VePUOPOhC AOY® TN BOVNOTNS TV Uopiwy efvar apxetd LMY xou e€aptdton and
t0 eletaldyevo aéplo. Ta mopdderyyo oty mepintwon tou SFg otic Yeppoxpaciec twv 300
K xar 500 K n Yepuopory Adyw dovnong elvon mepimou 67% xan 76% NG cuvolxrg Vepuopong

avtictorya. Emnpbdoieta amodevieton apriuntxd oti ta anoteAéopota elval 6 GUPQOVIN UE TNV
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mpoceyylon Chapman-Enskog oto yéco tou unohoylotixol nediou, axdun xon o HEYIAES TUES
NG TapUPETEOU apatoTolnong Tou agplou ue TNy Ttpoutddeon 6Tt o apriude Knudsen avagopdc tou
Olov GUG TAPATOC AofBdvel uxpéc Tée. Enouévee, 1 poviehonoinom Tou mpoBARUaTto UETUpopds
VepuodtnTag o mohuatouxd afptor Yo meEmel olyoupa vor AaufBdver umodn tou v enidpaon Twv
eowTEPX®Y Padumy ehevdeplog axdun xon ot Yeppoxpacieg dwuatiou.

211 oUVEYELL DLERELVATAL 1) POY| TOALUTOULXOL GERIOU BLUUEGOU Oy WYOU XUXALXAS OLUTOUTC
otapopwy unxyv. Iho cuyxexpwéva, emhbeton opriuntind 1 oY) Toluatouxol acpiou dlauécou
AYWYWY Wxpol prxoug Adyw Baduldag micong oe éva eupl @doua tou oapruod Knudsen. O
Aoyog g mieong oTo doyelo exTOVWONG TEog TNV TlEoT 6To Boyelo Tou CUVOEETAL G TNV ElGOBO
TOU oywyol Aaufdver Ty Tohd xovtd 6to undév. Tétolou eldoug poéc yoapuxtnellovto amd
uxeole apriuoic Reynolds xou peydheg EOOEC amOAEIES XoOTOVIAUS EPUXTH TNV AVTIXATAC TACT
TWY OXPOPUOTWY UIXEMY DLUCTACEWY UE ULXPOAY WY OUS TETEQUCUEVOL UNXOUS G TNV TERITTWOT TWV
UEoTEOWINTIXWY cucTNudTwy. [lpayuatomoleiton plor TUQUUETEIXY HEAETY) TWYV YOEUXTNELO TLXMY
NG TEOWoNG Ue Bdor To xvnTind povtélo tolvatouxey acplwv Holway ye tnv urtddeon oploxmv
ouvinx®y TAAeouc Bidyuone xat mtocdtNteg dnwe 1 mapoyn udloc (flow rate), o cuvteleothc
nopoyfc (discharge coefficient), n 80voun dInone (thrust) xa o cuvteleotic Winone (impulse
factor) mopovctdloviar we cuvdpTnon TNg dpaoToinoNg ToL depiou XAl TOU URXoUS Tou oywYoU.
Emnpocieta mporylatomoleltal uior GUC TNUATIXT 6UYXELOT HETUE)D TOAVATOUIXMY XAl LOVOTOUIXDY
aeplwv Ue 0TOYO TNV HEAETY TNG ENBPUONE TwV EcWTEPWY Paducdv ehevdepiog Twv woplwy oTIC
unoloyiloueveg mocotntes. Ilpoéxule 6L 1 Tpdwon emTUYYAVETUL EAUPEOS THO UMOTEAEOUAUTIXG
OV TERIMTMON TWV TOAVATOUXOY AERIWY OE OyYEoT UE Tar ovaTopxd acpla. Ev yever, n enldpaon
TV Boduny ercuteplag TEPLOTEOPYC OTIC YUXPOOXOTIXES TOCOTNTES EfVAL XEY|, EXTOC amd TNV
TeplnTwon e Yepuoxpaciag 6ToU 1) YVOO T TTOOT TNG XATA Ux0g TNE xaTeLYLVOTE TNS poY|¢ etvat
Myotepo évtovr. Eniong amodeixvieton 6Tt autol Tou €ldoug oL poéc Umopoly Vo yoviehonotnioly
XU UE TN YENOT XIVNTIXDY HOVTEAWY avTl TNG EUPEWS dladedouévng uedddou DSMC.

H ev Moy pehétn enextdidnxe xar oTny TERITTWON TV OWY O aywYoUs UEYEAOU Ux0oUg,
Aoy Boduidog mieone xou Vepuoxpaciog xatd uixog tou tedlou porg, Pactouévr ot Yewpla Tng
TAfEWS avamTuYUEVNS porig. O mpocopolnhaoeig €youy Bactotel 070 xivnuixd povtéro tou Rykov ue
NV UTOVEDT) OpLaX®Y GLYVITXWY TATIPOLS BLdyuoNg. MTIG POEC Tou ogellovTon ot Baduideg tieong,
TOL AMOTEAEGHATOL YO TOL TOAVUTOULXE A€tar €LV TOAD XOVTE UE TOL AV TIC TOLY A TWV LOVUTOUIXGY, EVE
oV TERIMTOON TWV POV AoYw Baduidog Yeppoxpacioc, YVwoTég xou we poéc Vepuinol EpnuoUoy
(thermal creep flow), urmdpyouv onuavtixéc amoxAicec. Io cuyxexpwéva, n por Yepudtntog
oTNV TEPITTWON TwVY POWY Vepuxol pmuouol yia to ypopuixd tohvotopxd oépta (Na, CO,) elvor

nepimou 30 — 40% udnidteen and Y avtioTolyn TWY HovaTOUXOY acplwy. Auth 1 amndxhion
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uropel vor awZnlel nepoutépw oTNY TEPITTWOTN TV WU YEOUUXDY ToAvaToux®y acpiwy (t.y. CHy)
oe 50 — 65%. A&iler vo onueiwdel mwg oautéc ol Bopopéc yivoviar mo évioveg 600 o apriudg
Knudsen au&dvetar. H enidpaon twv Podundy ehevdepiog Aoyw meptotoogric otny mopoyr| udlag
potic mou ogetheton o€ Bardulda mieong etvon oD wixer yior Gheg Tig Tiég Tou apriuol Knudsen,
eve oty pot| YepuodtnTag 1 entdpuor Toug ebvan peyahltepn xan uropel va gtdoet to 20 — 30% oe
uéoeg Twéc Tou apriuol Knudsen.

H enidpaon twv eowtepinmy Baduny eheudeplag ouvuroroyileton xou oTny nepintworn diep-
Yaousv mpocpognone. Epétioua yio Ty ev Adyw PERETN anOTEREDE 1) OYEDBIUCT LG XPUOYEVIXTS
VTG TOMNNATAWY GTABIMY XA THO GUYXEXPUIEVAL LIS XPUOYEVIXTS avTALaS TELwY o Tadlwy 1 omolo
TEOCQATA GEYIOE VAL EQEUVATOL EVTIOC TOU TROYRAUUATOC EAEYYOUEVNS Deppomupnvixic oOvINngng
(EUROfusion). Kadde oyetind anotehéopoto vl ThY TERITTOON TWV UOVATOMXOY depitV BEV
elvor evpéwg dladéotua 1 €peuva TEpLAUBdvEL TOCO HOVITOUXE GCO X0l TOAVATOUXGE. OEQLAL.

H pévyun por| agplou oe nuidmeipo ywplo TpoxoAoUUEYY amtd ULo TEOCEOPNTIXY ETLPAEVELNL
HEAETATOL UE YEHioN TV xvnTixdy wovtédny BGK xa Holway. H petagopd pdlag xan Yepuodtnrog
HETOED Tou aEepiou xou TNg TAdxag yopaxtneileton and tov depuixd cuviereoty (thermal accom-
modation coefficient), tov cuvteheo 1| ntpoopdenone (sticking coefficient), v Yepuoxpacia tng
empavelag xat g ouvirxeg Yepuoxpaciog xon Ty UTNTUC Lo UTd TNV ETLPAVELL TEOCEOPNOTS.
H rapoloa épeuva emixevipmvetar otny enidpact mou aoxel 1 ahknienidpaot YeTall agpiou xou
TOLYWUATOC OTIC TOCOTNTES TOU EXPEACOUV TN o7, Xou WLkTepa Tou Vepun0o) CUVTEAECTY| XKoL
ToL cUVTEAEGTH Tpocpdygnong. Eyel mapatneniel mwe 660 0 Vepuindg cuVTEAEGTHS TOL agplou
UELOVETOL, YLl OEBOUEVT] POT) TPOCEOPNCTS XAl VEQUOXEAUCLUXT DLUPORY, O CUVTEAEC TYIC TPOCEOYNOTNS
Yoo mpénel vor auEdveTon TPOXEWEVOL 1) POT| TEOCROPNOTGS Vo Tapouével otodepr. H ouunepipopd
auTY| Yiveton To €vtovn 660 1) Yepuoxpactaxt| Olopopd HETAEY TNG TASXAC Xt TERLOY G LoxELd amd
aut awgdveton. Katodfyouue oTo yeyovoc mwe 1 enidpaon tou Yepuinol CUVTEAECTY| OE OAEC
TIC TOCOTNTEG ToL Yapouxtneilouv Tn por) efvan TOA) GNUOVTIXH %ol GUVETMS TEETEL TAVTOTE Vol
AowBéveton unton. Tevind 1 oOY®EIoT TV ATOTEAEGUATLY UETOED LOVOTOUIXGY X0 TONUNTOUIXDY
aeplwv etvon xahy| xou €V YEVeL 1) enidpaon TV ecwTepy Badumy eheudeplag elvon oyeTnd wxet)
xou Oev Zemepvd to 10%. Xe autd ocuufBdihouv ot younhéc deppoxpaciec otic omoleg hopBdvet
ywea 1 depyaocio tng mpocpdgnong. H peiétn tou Vepuixold cuvieheoty| Yo umopoloe vor BKOEL
Lo TLo aELOTIO TT) EPUNVELD OTIC UETPNOELS TOU CUVTEAECTY| TROCEOPNOTNG XAl CUVETIWS VoL BEATUOCEL
TOUC UTIOAOYLOUOUC TOU €Y0UV YIVEL VLol TIC XPUOYEVIXEC AVTALES.

Emnpocieta, 1 Siodidototn dicpyasio mpocpdenong €yel ueietniel oe pa tpoomdieia oly-
xplong e OtadEotuo TELRUUATIXG DEBOUEV YOl UEAETNG TOU OYEOLACUOD ULAG XPUOYEVIXAG avTAlag

TRV aTadimV Yiot To xVplo alotnua dvtinone tou avidpaotipo DEMO (Demonstration Power
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Plant). Enfong €youv mpayuatonoimniel TpoOGOUOUOOELS VLot DLUPORETIXES AQLIUNTIXES XAl PUOIXES
mopopétooug yioo Tor adplor Hy xan Do X1n ouvéyeia, péow g dadixaciog olyxplong twv
QELIUNTIXGY ATOTEAECUATWY UE TA TELQUUATIXG BEBOUEVA, TEOXUTTOLY Ol TYWEC TOU GUVIEAECTH|
TEocEOYNONG Yo Tor duo wépta. Emniong mapoucidleton 1 Aemtouspnc exdva TG ponfg Yol ORES TIG
HOXPOOXOTIXES TOGOTNTEG UE TEAUXTIXO EVOLAQEPOY, OIS xou 1) enidpaon tng Vepuoxpaciog Tng
TAGXOC TEOCROPNONG. LMUELOVETOL OTL £VaL ONUAVTIXG TOGOCTO PONC EEEPYETAL OO TNV ETLPAVELYL
€L0600U EMOPWVTAS CNUAVTIXG GTNV amdd0ooT TNS dLadixaciog TeocedPNnoNg.

H Yewpntind/unoloyio Ty ueAéTtn mou mporyportonoteitar 6Ny mopovoo didaxtoptxy Slateydn
OVOOEIXVUEL T1 CHAVTIXOTNTA TV E0WTEPOY Badumy eheudeplag TeploTpopnc xou dévnong oe
PAUVOUEVAL UETOPORAS EXTOC Vepuoduvauxrc looppoTiac. Mn haufBdvovtoag utddn Ty ecwtepny
Ooun) TV 0ERiLY TEOXVTTOLY PEYAAES amoXAloElC YETAL) TELOUUUTIXNGDY XUl UTOAOYLO TIXMY OTOTE-
Aeopdrov. H napoloo dratplfr) mapéyel yeRoyles TANeogopieg yio Tov oyedlaoud xou Ty BeATio To-
TONOY TWV BLABXACLOY XAl CUCKEUMY OTIOU EUTAEXOVTOL TOAUATOMIXE. AEQLOL TTOU AELTOUEY 0DV UTO

ouvifixeg apatonolinong ot PEYdho €0pOC VEPUOXPATLANDY DLAUPOPWYV.
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Chapter 1

Introduction

1.1 (General concepts

The investigation of transport phenomena appearing in rarefied gas dynamics has at-
tracted a lot of scientific attention during the last decade mainly due to the increasing num-
ber of technological applications. In general, rarefied gas dynamics is introduced in gaseous
transport phenomena occurring at low density (or pressure) and/or in miniaturized systems.
Typical examples include industrial processes and devices in high altitude aerodynamics, micro
electromechanical systems (MEMS) and vacuum technology [1, 2]. In high altitude (i.e. low
density) aerodynamics and aerospace technology a lot of scientific work is focused on atmo-
spheric reentry of orbiting vehicles as well as satellite propulsion and maneuvering [3-5]. The
design and optimization of gaseous MEMS, manufactured in sizes from millimeters down to
micrometers, with components between 1 to 100 um is an emerging technological field. There
are plenty of applications encountered in personal consuming devices (computer peripherals,
car and personal navigation devices, sports training devices, etc.), in automotive (airbag sys-
tems, vehicle security systems, automatic door locks, etc.), in biotechnology (polymerase chain
reaction, microsystems for DNA amplification and identification, micromachined scanning tun-
neling microscopes, biochips for detection of hazardous chemical and biological agents, etc.)
and in many other industrial and service domains (earthquake detection, leak detection, filters,

coating of CDs / DVDs, etc.) [6-10]. Vacuum technology has always been an application
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area for rarefied gas dynamics since in these systems and devices the pressure may range from
rough vacuum down to ultra-high vacuum [11]. The design and optimization of vacuum gas
distribution systems with piping, vacuum pumps, sensors and leak detection equipment in high
energy facilities (fusion reactors and accelerators) is a very critical issue in the smooth op-
eration of these facilities [12-14]. Also, condensation and adsorption/desorption processes in
cryopumping, leak detection in refrigeration systems, sampling, mass spectrometers and sensors
are typical applications in the wide field of vacuum technology and must be designed based on
rarefied gas dynamics [11, 15].

The gaseous transport phenomena appearing in all aforementioned applications are far
from local equilibrium and the hypothesis of continuum medium fails. In such situations,
the average distance travelled by moving particles between intermolecular collisions become
comparable to a characteristic length. As the flow departs from local equilibrium first the no
velocity slip and temperature jump conditions at the walls fail and then, as the departure from
local equilibrium is further increased, the well-known constitutive laws are not valid and as a
result the typical Navier-Stokes-Fourier approach is not applicable.

To deal with this limitation of the continuum theory, concepts derived from statistical
mechanics and the kinetic theory of gases, need to be involved. Then, the problem is described
by the integro-differential Boltzmann equation, devised by Ludwig Boltzmann in 1872 [16].
This equation describes the evolution of the velocity distribution function of particles, which
is a function of seven independent variables (time, position vector and molecular velocity vec-
tor). The Boltzmann equation, which is solved only numerically, at the right hand side, has
the collision integral term with a complex mathematical structure, which is commonly replaced
by suitable kinetic models. Several kinetic models have been proposed in the literature for
monatomic gases, mixtures of monatomic gases and polyatomic gases. In order to properly de-
fine the problem, the Boltzmann equation is supplemented by boundary conditions describing
the gas interaction with the boundaries. The most common one is the Maxwell diffuse-specular
boundary condition [17], where a part of the incident particles is diffusely reflected according to
a Maxwellian distribution, characterized by the conditions of the surface (velocity and temper-

ature) and the remaining part is reflected specularly (the normal to the surface component of
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the relative velocity reverses its direction, while the parallel to the surface components remain
unchanged). Alternatively, more complicated models may be applied. Solving the Boltzmann
equation for the unknown distribution function leads to the determination of the macroscopic
quantities of practical interest (density, velocity, temperature, stress tensor, heat flux) which
are obtained by the moments of the distribution function.

The solution of the Boltzmann equation in multidimensional problems is computationally
very expensive. However, with the developments of numerical and computational techniques,
this task has become computationally manageable. The most widely implemented computa-
tional schemes are the deterministic Discrete Velocity Method (DVM) [18] and the stochastic
Direct Simulation Monte Carlo (DSMC) method [19]. In the deterministic approach (DVM) it
is advisable to use kinetic model equations instead of the Boltzmann equation, applying dis-
cretization procedures in the physical, molecular velocity and time spaces. In the stochastic
approach (DSMC) simulation particles are used to represent a large number of real molecules
in a probabilistic manner following the collision rules and constrains of the Boltzmann equa-
tion. Nowadays, these mesoscale approaches, due to significant advancements in computational
methods and mainly due to the availability of high speed parallel programming, may be applied
in a computationally efficient manner even in the simulation of complex flow configurations in
a wide range of the gas rarefaction from the free molecular through the transition up to the
continuum regimes.

The above described modeling (Boltzmann equation, kinetic model equations, numerical
approaches) has been widely applied in the literature to successively describe both flow and heat
transfer problems with monatomic gases far from local equilibrium. However, in practice the
working gas may be polyatomic and the internal structure of the molecules has an important
effect on the macroscopic quantities. In this dissertation, the effects of the rotational and
vibrational degrees of freedom in heat transfer, low and adsorption processes are investigated
based on the microscopic description of the gas, as described by the Boltzmann equation. The
approach is based on the Holway [20], Rykov [21] and Andries [22] kinetic models as well as on
the DSMC method supplemented by the Borgnakke-Larsen collision model [23]. The validity of

the simulations is confirmed by comparisons between the various kinetic models and the DSMC
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method as well as between simulations and experiments. A detailed description on the thesis

contents and structure is provided in the next section.

1.2 Dissertation content and structure

The thesis aims to the computational study of the effects of rotational and vibrational
degrees of freedom of polyatomic gases in heat transfer, flow and adsorption processes far from
local equilibrium in the whole range of the gas rarefaction. It is structured as follows:

In Chapter 2 the literature review is presented. It includes the basic concepts of kinetic
theory related to polyatomic gases (Boltzmann equation, kinetic models, boundary conditions),
the implemented computational approaches and an overview of the published work in heat
transfer between plates and cylinders, flow through capillaries and adsorption flows in rarefied
polyatomic gases.

In Chapters 3 and 4 the conductive heat transfer through rarefied polyatomic gases with
translational and rotational degrees of freedom, confined between parallel plates and coaxial
cylinders respectively maintained at different temperatures is investigated. The approach is
based on three kinetic models namely the Holway, Rykov and Andries models, as well as on
the DSMC scheme supplemented by the Borgnakke-Larsen collision model. The influence of
boundary conditions on the distribution of macroscopic parameters of various types is also
studied. Comparisons between results obtained by kinetic models and DSMC method as well
as between simulations and experimental data are performed. Results are presented for all the
heat fluxes and also for the density and temperatures fields in a wide range of the Knudsen
number subject to small, moderate and large temperature differences.

In Chapter 5 the effects of the vibrational modes on the heat transfer in polyatomic gases
confined between parallel plates are studied. The approach is based on the Holway model.
Results are presented for Ns, Oy, CO,, CHy and SFg representing diatomic as well as linear
and nonlinear polyatomic molecules with 1 up to 15 vibrational modes. The results include the
heat fluxes and the temperature and density distributions in a wide range of the rarefaction
parameter and for various ratios of the hot over the cold plate temperatures. Comparisons with

the DSMC method and experimental data are performed. Furthermore, it is numerically proved

4
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that the computed solutions are in agreement with the Chapman-Enskog approximation in a
central strip of the computational domain even at moderately large values of the rarefaction
parameter.

In Chapter 6 the polyatomic gas flows through circular tubes of various length are ex-
amined. The investigation includes pressure driven flows in short channels as well as pressure
and temperature driven flows in long channels in a wide range of the Knudsen number. In the
former case a parametric study on the propulsion characteristics is performed and the com-
puted quantities include the flow rate, the discharge coefficient, the thrust and the impulse
factor are provided in terms of the gas rarefaction and the tube dimensionless length. In the
latter case the flow is fully developed and the Poiseuille and thermal creep flows are studied.
The effect of the internal degrees of freedom on the results is investigated. The influence of the
tangential momentum accommodation coefficient on the flow rates is discussed. Comparisons
with experiments are also reported.

In Chapter 7 the adsorption process is investigated. A steady-state half-space gas flow
driven by an adsorbing planar wall is considered. The work is focused on the influence of the
internal degrees of freedom and the partial thermal gas-surface interaction on all flow quantities
including the sticking coefficient. Also comparisons with available numerical data in literature
are included. The work is extended in two dimensions in an effort to study the feasibility of
multistage cryopumps including a comparison with experimental data.

In Chapter 8 a summary with the associate main results plus some comments on future

work are provided.

1.3 Novelty and scientific contributions of the thesis

As discussed in Section 1.1, the dissertation is focused on the effect of the rotational and
vibrational degrees of freedom in polyatomic gas heat transfer, flow and adsorption processes in
the whole range of the Knudsen number. The investigation is based on the numerical solution
of typical heat transfer and flow problems which are modeled by kinetic model equations and
simulated using both the DVM and the DSMC approaches. The novel scientific contributions

of the dissertation are outlined:
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e Based on a detailed comparison with DSMC computational results and available in the
literature experimental data, the validity of the Holway, Rykov and Andries models to
simulate the specific polyatomic heat transfer, flow and adsorption configurations has

been verified.

e The Holway kinetic model has been accordingly adjusted to be applied in polyatomic

gases with molecules having more than two atoms in heat flow simulations.

e In conductive plane and cylindrical polyatomic heat transfer the portions of the rotational
and vibrational heat fluxes with regard to the total heat flux for various temperatures
differences in the whole range of the Knudsen number are reported (similarly for the

density and temperature distributions).

e In the case of conductive polyatomic heat transfer in coaxial cylinders the effect of the

radius ratio is examined.

e Following the detailed investigation of the effect of the vibrational degrees of freedom,
the major importance of the excited vibrational modes in certain polyatomic gases even

at ambient temperatures is clearly demonstrated (e.g. SFg).

e A detailed parametric study on the performance of micro-tubes as low-thrust propulsion
systems is performed finding out that the overall propulsion efficiency in polyatomic gases

compared to the one in monatomic gases is slightly improved.

e In pressure and temperature driven flows through long tubes, results are reported for

polyatomic gases with molecules having more than two atoms.

e Adsorption flow in one and two dimensions has been simulated based on kinetic modeling

(instead of the DSMC method).

e In adsorption processes the effect of the internal degrees of freedom is small mainly due

to the low temperatures where these processes take place.

e Based on inverse engineering procedures the sticking coefficients of Hy and Dy on charcoal

surfaces maintained at different temperatures have been estimated.

6
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All above scientific contributions in the field of rarefied polyatomic gas processes are reported

for first time in the literature and are considered as novel.
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Chapter 2

Literature review

2.1 The Knudsen number and flow regimes

In non-equilibrium or rarefied gas flows the main flow parameter is the Knudsen number

Kn, introduced by Knudsen around 1909 [24], defined as

Kn = (2.1)

A

D )
where the mean free path X is defined as the average distance a particle travels between succes-
sive collisions and D is a characteristic length of the problem or a length scale of macroscopic

gradient, given by D = p/(0p/0x), where p is the fluid density. For the hard sphere molecules

the mean free path can be written as [17]

2kgT
YL S (2.2)
5 ™ P

with p being the dynamic viscosity of the gas in temperature T, P is the pressure, kg is the

Boltzmann constant and m is the molecular mass. The Knudsen number can thus be interpreted

based on the ratio between the Mach number Ma and the Reynolds number Re as,
my Ma

Kn = 2.3
n 5 R (2.3)
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where 7 is the specific heat ratio, while Ma and Re are the Mach and Reynolds numbers.
Alternatively, the rarefaction parameter ¢ is also commonly used, given by

5= FDvm 1 (2.4)

w2k sT " Kn

According to the range of the properly chosen Knudsen number the flow regimes can be
classified as the continuum regime, slip regime, transition regime, and the free molecular regime.
Generally, when Kn < 0.001, the Navier-Stokes equations and the continuum model are valid
giving accurate results. When Kn is less than 0.1 but is larger than 0.01, some rarefied effects
such as the velocity slip and temperature jump appear, although the continuum model is still
valid applying a proper modification of the boundary conditions at the solid walls. For values
of Knudsen number lie between 0.1 and 100 a kinetic description of the gas is necessary, since
intermolecular collisions are reduced and the distribution function is not of Maxwellian type
and the use of the Boltzmann equation is needed. The Boltzmann equation describes the time-
evolution of the particle distribution function of a simple gas, and is the basic mathematical
model in rarefied gas dynamics. It is valid in all flow regimes and the macroscopic fluid dynamic

equations, such as the Navier-stokes, Burnett and Super-Burnett, can be derived from it.

2.2 The Boltzmann equation of polyatomic gases

In 1859 Maxwell [25] abandoned the idea that all gaseous molecules move with the
same speed and introduced the statistical approach to gaseous medium. Also, he introduced
the velocity distribution function and obtained its expression in the equilibrium state. Thus,
Maxwell gave the origin to the kinetic theory of gases. Then, in 1872 Boltzmann [26] introduced
the kinetic equation which determines the evolution of the distribution function for gaseous
systems being out of equilibrium. The first attempt for the kinetic description in polyatomic
gas was done by Wang Chang and Uhlenbeck [27] in 1951 utilizing a semi-classical approach.
A completely classical treatment was given later by Taxman in 1958 [28]. Usually at small
and moderate temperatures, the gas rotation of the gas molecules is modelled by rigid rotators

[29], while in some situations depending on the working gas and the temperature the vibration

10
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degrees of freedom are additionally included and described by the quantum harmonic oscillator
model [29]. When, as in the case considered in this thesis, intrinsic molecular angular momenta
(spin) have no preferential alignment, it is reasonable to describe molecular internal states
through a single variable, the internal energy I. Then, a dilute gas of classical rigid rotators
undergoing binary collisions can be described by a kinetic equation having the following general
form [30]:

af Lo
FIRT

vEa Y o(f), (2.5

where f (t, 7, v, I ) is the spin orientation averaged distribution function, ¢ denotes the time, v =
(&4, &y, &) s the velocity vector, # = (2,9, 2) is the position vector and E, = (Fex - Few, Fem)

is the field of the external forces, while the collision operator () is given by

. //[f (f,v'l,f;,t>f(f,u’,f',t> —f(f,vl,fl,t)f(f,v,f,tﬂ QitdldPor, (2.6)
—oco 0

where () is defined as

E I

E-
Q:/dQé’/ dI’ / d[’
0

S 0

(E;é’-é;f’,i{ —>f,f1). (2.7)

Here, J(E - 1= I.1 1) is the differential cross-section associated with a binary collision
which produces a pair of molecules in the final states (v, I ), (v, fl) from a pair of molecules
in the initial states (v’, "), (v’y,I}). The argument E denotes the conserved total energy in

the center of mass reference frame:
n 1 2 T T 1 1\2 7/ 71
E:var‘i‘[‘{‘[l:zm(’l)r) + I +Il (28)

The unit vectors & = v, /v and é = v, /v, have the directions of the relative velocities

v, = v] — v’ and v, = v; — v before and after a collision, respectively. The exponent pu

r

takes the values 0 for j = 2 and 1/2 for j = 3, with j being the number of rotational degrees
of freedom. In Eq.(2.5) the left part of the equation describes the free flight of the particles

11

Institutional Repository - Library & Information Centre - University of Thessaly
20/05/2024 01:12:25 EEST - 13.59.53.151



Section 2.2

under the influence of external forces Fi,. The right hand of the equation is the collision
term and its complexity makes the solution of the Boltzmann equation a very difficult and
challenging task. An alternative definition of the Boltzmann equation in polyatomic gases with
several degrees of freedom (inducing rotational and vibrational states) can be found in [31].
All the details related to the vibrational degrees of freedom are discussed in Chapter 5. The
distribution function f (t, 7, v, I ) of the polyatomic Boltzmann equation satisfies the H-theorem
[1], introduced by Ludwig Boltzmann in 1872, which is a more general statement of the second
thermodynamic law and is a quantity that on the kinetic time scale measures the approach to
equilibrium.

Solving the Boltzmann equation for the unknown distribution function leads to the de-
termination of any quantity of practical interest. In particular, the macroscopic quantities are

found by appropriate moments of the distribution function, such as the following:

e Number density

n(#,t) = 77fdfdv (2.9)
co 0

e Bulk velocity vector
1 A A
i (7,1) = dld 2.10
W)= ey | [ whdias (210)
—oo 0
e Stress tensor o
Pyt =m [ [ (6= i)~ i) faldo (211)
—oo 0
e Translational temperature
Ty (7, 1) = —° //(v @)’ fdldv (2.12)
T Skpn (7, 1) '
—oo 0
e Rotational temperature
Tror (7, 1) 2 77ffdfd (2.13)
rot \T's = 3 A v .
' jkpn (7,t)
—oo 0
12
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e Total temperature
~ 3Ttr (7’;; t) + jTrot (,f.’ t)
T (7, t) = , 2.14
(7.1) Y (2.14)
e Translational heat flux vector
~ m T ~ N2} 17
Qu (7. 1) = / /<v — @) (v — @) fdldv (2.15)
—oo 0
e Rotational heat flux vector
Q.o (7,1) = / / (v —a) fldldv (2.16)
—oo 0
e Total heat flux vector
Q (7,t) = Qu (P, 1) + Qo (T, 1) (2.17)
e Total pressure
P (#,t) = n(#,t) kpT (#,1) (2.18)

In Egs. (2.9)-(2.17) the quantities with subscripts ¢ and rot are related to the translational and
rotational degrees of freedom respectively.

Due to the complexity of the collision term of the Boltzmann equation and immense
computational requirements associated with the solution of the Boltzmann equation, several
polyatomic kinetic models have been proposed to substitute the collision term. Alternatively,
the polyatomic Boltzmann equation can be solved using the stochastic method Direct Simula-
tion Monte Carlo which has been thoroughly tested in high Knudsen-number flows over the past
25 years [33, 34]. An important issue is the interaction of rarefied gases with solid surfaces and
significant effort has been made in the modelling of the boundary conditions. The polyatomic
kinetic models, the boundary conditions and the numerical methods widely used in literature

are presented in the next sections.
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2.3 Polyatomic kinetic models

The mathematical complexity in dealing directly with the collision integrals appearing
in the formal kinetic theory of the Boltzmann equation for polyatomic gases compelled the
introduction of a great number of kinetic model equations. More specifically, the complicated
collision term eplaced by the kinetic models causing a remarkable reduction in the computational
solving effort. The kinetic models must satisfy the collision invariants of mass, momentum and
energy as well as the H-theorem. Moreover, the Chapman-Enskog analysis of those models
must lead to the correct calculation of transport coefficients such as bulk viscosity, viscosity
and thermal conductivity for translational and internal degrees of freedom.

In 1964, Morse [35] proposed an extension of the Bhatnagar-Gross-Krook model (BGK)
[36] for monatomic gases to polyatomic gases in which the internal degrees of freedom of the
molecules are represented by an additional energy variable in the distribution function, and
both elastic and inelastic collisions (the latter providing the coupling between translational and
internal energies) are characterized by constant collision frequencies. More elaborate kinetic
model equations for polyatomic gases can also be found in the literature, e.g., the works of Hol-
way [20], Hanson and Morse [37], Brau [38], Wood [39], McCormack [40], Rykov [21], Andries
[22], Marques [41] and Fernandes and Marques [42]. In the work of Hanson and Morse, kinetic
model equations for diatomic gases have been obtained by employing a diagonal approximation
in the linear operator of the Boltzmann equation. In Braus work, the inelastic collisions are
treated by a FokkerPlanck term whereas the elastic collisions are described by a single relax-
ationtime term. The kinetic model equation proposed by Wood uses the ellipsoidal statistical
model (formulated by Cercignani and Tironi [43] for the elastic collisions) which retains the
essential simplicity of the BGK model and allows the calculation of the correct value of the
Prandtl number. The McCormack model is an extension of the Hanson and Morse diatomic
gas model to a polyatomic gas. In the work of Marques, a classical kinetic model equation for
polyatomic gases is derived by replacing the Boltzmann collision operator by a single relaxation-
time term and keeping some of the main physical properties of the usual Navier-Stokes-Fourier

description. The model proposed by Fernandes and Marques replaces the Boltzmann collision
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operator by a single relaxation-time term which is compatible with Grads 6-moment approx-
imation and valid for the limiting case that the energy exchange between translational and
internal degrees of freedom is slow, but not negligible. It is noted that most of the aforemen-
tioned kinetic models belong to linearized kinetic theory, except from those proposed by Morse,
Holway, Brau, Rykov and Andries. The Holway, Rykov and Andries models have been applied
in the past to solve high speed flows providing very good agreement between simulations and
available experimental data [44, 45]. For this reason, these models are used in this thesis and
are presented in more detail below.

The Holway model [20] was established in 1966. This model was one of the first approaches
for polyatomic gases. In this model the collision term consists of two components corresponding
to elastic and inelastic collisions. The Holway model is similar to Morse model but there
are some differences. The elastic collision term used by Holway is different and satisfies the
requirement for conservation of particles in any state and not over all the states at it is in
the Morse model. Also, in the Morse model the definition of the heat capacity at constant
volume used in the temperature over all degrees of freedom is independent of the temperature,
something which is true only at very high temperatures [37]. The Holway model can be written
by

Q (ﬁ f) = vy (1, Th) (ftr - f) + Vyot (0, Ty ) (frot - f) ) (2.19)

where 14, and v,.; are the elastic and inelastic collision frequencies, while the elastic and inelastic

equilibrium distribution functions ftr and fmt are given by

3/2 .\ 2
j m —m(v — u)
ot = N ex
' omkpT N T

Ji/2—1 L
T G/2) (kaTy " (k:B_T> (2.20)

and
—m(v —a)°

A A " 3/2
= adln [ —2— v
o= 010 (5 ) exp[ b

respectively, where I is the gamma function, 7(I]§) is the number density of molecules having

, (2.21)

internal energy I, n is the total number density, T}, is the translational temperature and 7" is the

total temperature, as well as w = (U, Uy, U,) and © = (&, §,,§,) are the bulk and molecular
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velocity vectors respectively. It is noted that as 1,.,; — 0 the Holway model is reduced to
BGK model for monatomic gases [36]. The main disadvantage of this model is that cannot
recover the shear viscosity and the thermal conductivity simultaneously. Thus depending on
the problem which is under question, the proper elastic and inelastic collision frequencies must
be chosen. The H-theorem for this model can be proved in a straightforward manner following
the arguments leading to analogous proof of the BGK model and the corresponding analysis is
presented in Appendix B.

Another model, the Rykov model [21], appeared in 1975. Although its first version was
only for diatomic gases, recently in [46] the model has been extended to polyatomic gases. The
Rykov model consists of two components, one for the elastic collisions and the other for the
inelastic collisions, and can be written in the same way as the Holway model described by
the Eq. (2.19). The elastic and inelastic equilibrium distribution functions ftr and fmt for the
Rykov model read such that

SSRATIR N St BISER A
rot — X - X 7. T
' "\ 2nksT PV 20T | T (/2) ey O \ BsT

[1 | 2mm Qe (v — @) (m(v —a) §> L2 (L= R) mQry (v — ) ( I 1)] (2.22)

15n(kpT)* 2kpT 2 J n(ksT)’ kT 2
and
j ( m >3/2 —m(v —4)? [i/2-1 I
p=nl ———— exp —— exp X
' QWkBET QkBET r (j/2) (kBTrot)j/2 kBTrot

i ) (o —a) _5) 2(1._’€)mQ’”§t<v_m r_J . (2.23)
1571(]{331—;57") ZkBT;fr 2 J nkBT;fTTrot kBTrot 2

where n is the number density, T is the temperature and Q is the heat flux vector. The
quantities with subscripts tr and rot are related to the translational and rotational degrees of
freedom. It is stated in [46] that the parameters wy and w; are chosen so that the thermal
conductivity obtained from the model equation is close to the experimental data in [47]. It is
also pointed that the parameter x for a power intermolecular potential is constant. The Rykov

model recovers simultaneously both the viscosity and thermal conductivity coefficients, while

16

Institutional Repository - Library & Information Centre - University of Thessaly
20/05/2024 01:12:25 EEST - 13.59.53.151



Section 2.5

in the limit case v.,;, — 0 is transformed to the Shakhov model [48] for monatomic gases. A
shortcoming of the Rykov model is that the H-theorem has not been proved for it yet.
Finally, the model proposed by Andries in 2000 [22] is presented. This model holds the
entropy inequality and provides correct expressions simultaneously for the viscosity and thermal
conductivity coefficients. In addition, preliminary calculations indicate good agreement with
corresponding results based on the Boltzmann equation. This model for monatomic gas is
reduced to the ES model [20]. Contrary to the aforementioned models, the collision term of
the Andries model is kept in compact form as it is in ES model, introducing a new ”artificial”
temperature which is accordingly decomposed into translational and rotational parts. The

model is written by

For 1 ptr A L
= mod ~ ) 224
where
A ni/?=1 i N . I
fmod = — — C6Xp | — Z (5@ - uz) Kij (5] - uj) - knT ) (225)
T (j/2) 73/2y/det Ky (kT,e)" i Borel
with R
- 2kgT, P 2kgT
Kﬁ:(L—@[ﬂ—u) Bt@f+m%% + 0=, (2.26)
The quantity T, in Eq. (2.25) is a new artificial temperature which is defined as
Tre = 0T + (1 - 9) Trot- (227)

In Eqgs. (2.24)-(2.27), T, is the rotational temperature, T" is the total temperature, 151-]- are the
components of the pressure tensor, Ptr = nkpTy, is the translational pressure, p(7},) is the
viscosity at translational temperature 7}, and d;; is the Kronecker delta. The Andries model
is transformed to the ES monatomic model by taking # = 0 and v = —1/2. It is noted that
the entropy inequality (H-theorem) has been proved for this polyatomic kinetic model with

~1/2<v<land0<6<1in [22].
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The model kinetic equations obtained allow further simplification by averaging of the

distribution function over the variable /. We introduce the functions g and fL, described by
§= /fdf, h = /ffdf, (2.28)
0 0

in order to eliminate the rotational energy variable to save computational memory and cost.
Multiplying the each kinetic model equation by 1 and I and integrating the resulting equations
with respect to I from zero to infinity, the kinetic equations can be transformed into two coupled
equations. The equilibrium distribution functions for the elastic and inelastic collisions for each

model are written as

e Holway model

R m 3/2 —m(v — '&)2 N jksT .
Grot = N eXP | — 7 hrot = — & Yrot,

271-ICBT’ QkBT ’ 2
: : (2.29)
qQ m i —m(v — ﬁ’)Q iL .jkBTrot ~
r =N\ =—F— ex —_— |, r = -
o 27TkBﬂr P QkBﬂr ¢ 2 9t
o Rykov model
3/2 ) . 2
— — 2 - (v — _
e exp | ZO W 1y 2@0mQu (v i @) (mv—a)” 53}
2rkpT 2kpT 15n(kgT) 2%kpT 9
3/2 N2 R 2 _
P — 2 . _ _ 5
Gir = n(L) exp m(v — u) 14 mQy, (v ;L) m(v — ) 5|
2mkp Ty, 2kpT, 15n(kgT,,) 2kgT,, 2
(2.30)

mQ’/‘ot (U - ﬁ')
kgT ’

A T 3/2 B a2
hrot = jiArot + ( o ) exp [M w1 (1 — /i)

2kgT

(1 o I{) mQrot (U - ﬁ') )

. 3/2 L \2
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Ry = =———" Gy —_—

QkBT;fr
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o Andries model

3

R n _ N
Gmod = ———=—=exp [— DG —a) K5t - uﬂ] :

w3/24/det Kj; i.j

(2.31)

a kg1 an > N P R
hmod = 05 l ~ exp [_ Z (51 - ul) Kijl (5.7 o u])] :

2m3/2y [ det K i.j

The above kinetic equations are used in the next chapters for the modeling of the heat
transfer, flow and adsorption processes. Also, comprehensive analysis showing the advantages

and disadvantages of each model is performed.

2.4 Boundary conditions for polyatomic gases

The Boltzmann equation must be accompanied by the boundary conditions which de-
scribe the interaction between molecules and solid walls. The gap between solid state physics
and the kinetic theory of gases is bridged with the definition of the boundary conditions. The
limited knowledge on the interaction potential of the gas molecules with molecules of the solid
makes the theoretical investigation of the gas-surface interaction a very difficult task. In the
description of the interaction of the gas molecules with solid surface there are two simple mod-
els proposed by Maxwell [49] in 1879: the diffuse reflection model and the specular reflection
model.

On a boundary surface the velocity distribution function of incident particles f ~ is related

to that of reflected molecules f ~ in the polyatomic gases as [17]

[e.9]

& (v.1) = - / / ¢ (0 )R (v v d ) ala, & >0, (232)

where &, = & - n is a normal velocity component, n is the unit vector normal to the surface
directed to the gas. In Eq. (2.32) the velocity and the energy before and after the collision with
the solid wall are denoted by (U’ , I > and (v, I ) respectively. The explicit expression of the

scattering kernel R (v’ , U, I , I > depends on the gas-surface interaction law. The well known
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diffuse scattering corresponds to the following kernel [1]

o 2 2 Ji/2—1 I
R <v',v,[,]’> =T e (— e ) —exp | ———— ], (233
! 21 (kpTg)? 2kpTy ) T (5/2) (kgTe, )" ke (233)

rot

where T3} and T, are two temperatures. Physically, it means that a particle can be reflected

to any direction independently of its velocity before the collision with a surface. The two

[e7

temperatures T} and T)¢, can be determined from the balance equations for the translational

T

and rotational energies of the gas when it interacts with the wall. In [50] different models
have been proposed for the determination of 7} and 7%, and are examined in Chapter 2. The

O

simplest is that the T and T2, are equal to the temperature of the wall T% (T2=T2%,=T").
Such an interaction is frequently called as the complete accommodation. In many practical
applications the diffuse scattering is well justified and provides reliable results. The final form
of the outgoing distribution from the wall is obtained by substituting Eq. (2.33) into Eq. (2.32)

as

R 3/2 2 Jilz—1 I
T =ny, (L) ex (— my ) . exp | — . 2.34
Ja 2rkpT P 2kpTsy ) (kpT2,)*T (j/2) P kpTy% (2:34)

rot

The specular reflection model assumes that the incident molecules reflect on the body surface as
the elastic spheres reflect on the entirely elastic surface, i.e., the normal to the surface component
of the relative velocity reverses its direction while the parallel to the surface components remain
unchanged. Thus the normal pressure originated from the reflected mofecules equals to that
originated from the incident molecules; the sheer stress subjected by the surface from the
reflected molecules has the opposite sign to that from the incident molecules and the net sheer
stress is zero; the total energy exchange with the surface is zero. An other widely used boundary

condition is the diffuse-specular boundary conditions defined as [1]

~

fis = anfi + (1 —am) f, (2.35)

where f‘ is the velocity distribution functions of molecules incident at the surface and ay,

is the tangential momentum accommodation coefficient. This boundary condition allows to
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eliminate the discrepancy between simulations and experiments which is observed for some
noble gases, e.g. helium, neon etc. Experimental data on the accommodation coefficient of the
noble gases on various surfaces reported in [51]. However, some experimental data contradict to
theoretical results based on the boundary condition Eq. (2.35), hence more physical scattering
kernels should be used, e.g. that proposed by Cercignani and Lampis [52]. Some of the facts
that establish the superiority of this model are the distinction between the accommodation
of energy and momentum introducing two coefficients and the possibility of adjusting them
to obtain diffuse, specular or backscattering reflection which can occur on a rough surface.
Recently, the model has been extended to polyatomic gases [53]. A serious shortcoming of
the model is its inability to include the case of completely diffuse scattering with partial or
zero energy accommodation. Also, the model is purely classical and thus cannot realistically
describe energy exchange to and from vibrational states, where the separation of energy levels

is typically of the same order as, or larger than, kgT™.

2.5 Numerical methods

The area of numerical simulation of rarefied gas flows is rapidly expanding due to the ap-
plicability of the rarefied gas dynamics theory in several practical applications (micromachines,
deposition techniques, fusion technology, etc.), requiring more and more computer simulations.
The numerical solution of the integral-differential Boltzmann equation in the case of polyatomic
gases, with the collision term and an unknown function having as many as eight arguments is so
difficult that many researchers envisaged various methods to solve the problems in transitional
regime, making them readily tackled. Some of these methods are characterized as analytical, for
instance the Moment method [54, 56] or the Method of elementary solutions [17, 54], and some
other as semi-analytical, for example the Integro-moment method [17, 55, 57]. Due to limita-
tions related to applicability range, generality, accuracy or complexity, two numerical methods
have prevailed: the Discrete Velocity Method (DVM) and the Direct Simulation Monte Carlo
(DSMC).

After the innovated work of Carleman [58], Broadwell [59], Huang et al. [60] and Ca-

banes [61], the deterministic DVM method has been developed into one of the most common
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techniques for solving the Boltzmann equation [1, 62| and simplified kinetic model equations
[17, 63] in the area of rarefied gas dynamics. The method has also been applied to solve mixture
problems [64, 65]. An extensive review article on internal rarefied gas flows including DVM ap-
plications has been given lately by Sharipov [17]. Recently, new models of discrete velocity gases
[66] and mixtures [67] have been introduced indicating that the method can be extended into
more general models including polyatomic gases [68]. Also, recent work shows that the DVM
method can also be employed when the form of kinetic models is non-linear producing accurate
results. The method is based on a discretization of the velocity and space variables by choos-
ing a suitable set of discrete velocities and by applying a consistent finite difference scheme,
respectively. Then, the collision integral term is approximated by an appropriate quadrature,
and the resulting discrete system of equations is solved in an iterative manner. It is noted that
the number of the iterations is rapidly increased as the Knudsen number is decreased, although
the results are considered valid in the whole range of the Knudsen number. The accuracy of the
results depends on the number of the chosen discrete velocities, as the number of the velocities
is increased more and more accurate results are provided.

The stochastic DSMC method, proposed by Bird [69] in the 1960s, is an alternative
method to DVM for simulation of rarefied gas flows, in which the mean free path of a molecule
is of the same order (or greater) of a representative physical length scale. Later, it was revealed
that the DSMC solves the Boltzmann equation [70]. Currently the DSMC method has been
applied to the solution of flows ranging from estimation of the space shuttle re-entry aerodynam-
ics, to the modeling micro-electro-mechanical systems (MEMS) [71-73]. In the DSMC method
simulation molecules which represent a large number of real molecules are used. Simulation
molecules are moved through a simulation of physical space in a realistic manner that is directly
coupled to physical time such that unsteady flow characteristics can be modeled. Intermolecular
collisions and molecule-surface collisions are calculated using probabilistic, phenomenological
models. Common collision models include the Hard Sphere model, the Variable Hard Sphere
(VHS) model [71], and the Variable Soft Sphere (VSS) model [71]. In the DSMC method
the anelastic collisions are dealt by Borgnakke-Larsen (BL) model [23] and by its quantum

extension [75] to describe collisions involving vibrational energy transfer when the vibrational
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degrees of freedom must be taken into account. The BL model describes energy transfer be-
tween internal and translational energies by assuming that a fraction of the total number of
collisions is elastic, i.e. no exchange between internal and translational energy occurs, whereas
the remaining fraction is composed by collisions in which rotational and/or vibrational energy
is exchanged according to prescribed probabilistic rules. Recently the quantum-kinetic (Q-K)
model proposed by Bird for study of chemically reacting gas [76]. The main drawback of the
method is the frequent occurrence of noisy results. Numerous parameters (i.e. size of cells,
number of representative molecules, number of samples) must be adjusted to obtain a good
representation of the gas.

The main numerical method used in this thesis is the DVM method, while the DSMC

method is used as an alternative technique for benchmarking purposes.

2.6 Polyatomic heat transfer

Heat transfer through stationary rarefied gases confined between solid surfaces continues
to be an active area of research. This is well justified since this heat transfer problem is
met in several technological applications including vacuum pressure gauges [78], vacuum solar
collectors [79], multilayer insulation blankets in space and cryogenic equipment [15], micro heat
exchangers and microsensors [80, 81]. It is also commonly used as a prototype set-up in order to
determine the thermal conductivity of gases [82] the temperature jump coefficient [83] and the
energy accommodation at the cold and hot surfaces, combining modeling and measurements [84—
86]. The case of the heat transfer through a monatomic gas has been extensively investigated.
The literature survey on this topic is very long and only some very recent papers for linear and
nonlinear kinetic treatment of single monatomic gases or mixtures of monatomic gases are cited
here [86-90]. However, the research work is not as extensive in the case of polyatomic gases,
where the contribution of the internal degrees of freedom to thermal effects is expected to be
important, leading to deviations from the corresponding monatomic results.

The polyatomic kinetic models by Morse [35], Holway [20] and Hanson and Morse [37] have
been implemented to solve the plane heat transfer and temperature jumps problems. Most of the

work refers to small temperature differences and the applied linearized kinetic model equations
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are solved via semi-analytical techniques and variational methods [91-94] as well as by an early
version of the discrete ordinates (velocity) method [95]. The model proposed by Rykov [21] has
also been implemented to solve heat transfer in diatomic gases confined between parallel plates
in a wide range of temperatures providing good agreement with experimental data [50]. Also,
experimental work in polyatomic gases between parallel plates has been performed in [96, 97]
and [85] measuring heat flow rates and thermal accommodation coefficients respectively.

The available research work of cylindrical heat conduction in rarefied polyatomic gases
is rather limited. There are only the early works of Lees and Liu [98] applying the two-
sided Maxwellian associated with the 4" order moment method and of Cipolla and Morse [99]
solving the Morse model by the Knudsen iteration scheme for small temperature differences.
Experimental work has been performed for very small temperature differences in [84] and for
larger differences in [79, 80]. The two latter works have direct relevance to the design of
evacuated solar collectors and Pirani micro sensors respectively. In [79], the DSMC method
[19] subject to the Borgnakke-Larsen collision scheme [23] has also been applied to provide
satisfactory data for desorbable gases which are difficult to obtain experimentally.

Similar work in the case of large temperature differences is very limited. Nonlinear heat
transfer in diatomic gases confined between two parallel plates has been solved based on the
Rykov model in [50] focusing on the influence of the boundary conditions on the density and
temperature distributions. The solution is based on the discrete ordinates (velocity) method,
while good agreement with experimental results [96, 97] has been observed. Thus, a detailed
investigation of the nonlinear conductive heat transfer through rarefied polyatomic gases con-
fined between two coaxial cylinders and two infinite parallel pates is needed. These heat transfer
configurations are investigated here, based on both deterministic and stochastic methodologies.
The deterministic modeling includes the direct solution of the Holway, Rykov and Andries
models, whereas the stochastic DSMC scheme is adopted to solve the Boltzmann equation in

combination with the Larsen-Borgnakke collision model.
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2.7 Polyatomic flows through capillaries

Rarefied gaseous flows in micro devices can be found almost everywhere in technological
applications, i.e. micro-electromechanical devices (MEMS), micro-sensors, pressure gauges,
vacuum pumps, pipe networks etc. It is noted that in all these applications the operation of
the system may be under low, medium, or high vacuum conditions. The majority of the studies
was made for monatomic gases based on the DSMC method [73, 100] as well as on the kinetic
models [101, 102]. However, the research work in polyatomic gas flow is limited and is referred
mainly to linear polyatomic gases. In [103-106] the Hanson-Morse and Rykov models have
been implemented to solve the fully developed diatomic flows under temperature and pressure
gradients through parallel plates and cylindrical tubes. The analysis shows that the calculated
quantities in the case of temperature driven flows can differ from the corresponding ones in the
monatomic gas by 30 to 40%.

The available research in the case of short channels is not as extensive in the case of
the long channels where the flow is fully developed. The study of short channels is more
difficult since the distribution function is four- or five-dimensional and the complete flow field,
including part of the upstream/downstream containers, must be included in the simulation.
In [107, 108] numerical investigation of the rarefied nitrogen gas flow through parallel plates
into vacuum is performed. Also, the dependence of the gas flow rate through the channel on
the Knudsen number, the wall temperature, the thermal accommodation coefficients and the
channel length is determined, showing that when a diatomic gas flow is computed with the
boundary conditions proposed in [50], which take into account the physics of the interaction
between diatomic molecules and the solid surface, the flow rates for diatomic and monatomic
gases differ. Also in [109] the temperature driven gas flows in both a two-dimensional finite
length microchannel and a cylindrical tube have been studied numerically, based on the DSMC
method supplemented with the Larsen-Borgnakke collision model, while in [110] experimental
data for nitrogen flow in channels are presented.

Since in many practical applications the working gas is polyatomic, and the available
work on flows with nonlinear molecules is limited, a part of this thesis deals with polyatomic

gas flows through long and short tubes.
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2.8 Polyatomic gas adsorption on solid surfaces

Gas adsorption processes are present in many natural, physical, biological, and chemical
systems and are widely used in industrial applications such as water purification, air condition-
ing (adsorption chillers), vapor deposition [111] and vacuum pumping (getters and cryogenic
pumps) [112]. At the gas-surface interface a Knudsen layer is developed and therefore, model-
ing of such flows is commonly based on kinetic equations or on the DSMC method. In [113],
the authors have studied one-dimensional steady flows of binary monatomic gas mixtures in
contact with an infinite planar wall which absorbs the two gas components at different rates
based on the DSMC method. Recently in [114], a 2D geometry, met in vacuum technology
devices like Nonevaporable getters (NEG) or cryogenic pumps [112], has been simulated. In
such devices the absorbing surfaces are organized in more or less densely packed arrays. An
other application area of the adsorption processes is the cryopumping. The cryopumps, where
the main operational mechanism is based on the adsorption process, have been proposed for
use in fusion reactors and their modelling is an attractive area for many researchers. In [115]
a numerical modeling, including comparisons with experimental data, of a high-performance
large-scale prototype cryopump of ITER (International Thermonuclear Experimental Reactor)
is performed based on the Test Particle Monte Carlo (TPMC), which is a simulation tool in the
collisionless flow regime. Next, the same configuration is modelled combining both DSMC and
TPMC methods in [116] providing detailed information of the gas flow field such as pressure
and temperature distributions, number of particles absorbed by each cryopanel, etc. In [117]
a three-stage compound cryopump for use in fusion reactors such as DEMO (DEMOnstration
Power Plant) is modelled based on the DSMC method.

All the aforementioned works are based on the DSMC method due to the geometry
complexity, while the corresponding work using kinetic models is rather limited. Moreover,
the main available work has been done for monatomic gases and the corresponding work in

polyatomic gases remained an open issue, that is studied in this thesis.
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Chapter 3

Conductive heat transfer in rarefied
polyatomic gases confined between

parallel plates

3.1 Introduction

A detailed computational investigation of conductive heat transfer through rarefied poly-
atomic gases confined between parallel plates is performed providing a complete description of
the heat flux, temperature and density distributions in terms of all involved parameters. The
formulation is based on the kinetic models proposed by Holway [20] and Rykov [21] as well as
on the more recently introduced model by Andries et al. [22]. In addition, the solution is also
obtained by the Boltzmann equation via the DSMC scheme supplemented by the Borgnakke-
Larsen collision model [23]. A systematic comparison between the results obtained by the three
kinetic models and the DSMC method, by ensuring equivalent translational and rotational
relaxation rates, is performed. The effect of the thermal accommodation at the boundaries
is also examined for various diffuse-specular reflection scenarios at the walls and comparisons
with corresponding experimental work are included. Overall, the influence of the number of
rotational degrees of freedom is investigated and the differences (and similarities) compared to

the corresponding monatomic gas heat transfer problem are pointed out.
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In the next section, the kinetic formulation of the three kinetic models with the associated
boundary conditions as well as the alternative stochastic DSMC method are described in detail.
Finally, the most important results are provided in the last section, where the effect of each

parameter is discussed.

3.2 The plane heat flow configuration

Consider a stationary polyatomic gas confined between two infinite parallel plates, fixed
at § = £H/2 and maintained at constant temperatures Ty and T¢ respectively, with Ty > T¢,
as it is seen in Fig.3.1. Then, due to the temperature difference, a steady one-dimensional
heat flow is established in the direction normal to the plates and directed from the hot towards
the cold plate. The present analysis treats only the translational and rotational energy modes
ignoring the vibrational ones. A detailed analysis of the effects of the vibrational modes on

present heat transfer configuration is presented in Chapter 5.
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Figure 3.1: The heat transfer configuration.

In the temperature range where the effects of vibrational degrees of freedom can be ne-
glected, the problem may be modelled by the Boltzmann equation for a gas of rigid rotators.
When intrinsic molecular angular momenta (spin) has no preferential alignment, the gas may be
described by a spin orientation averaged distribution function f (g}, v, 1 ), where v = (§;,§,,&.)
is the molecular velocity vector and I is the internal energy, describing the molecular internal
states through a single variable [30]. In polyatomic gases the internal energy can be divided

in two parts, the energy of the translational motion and the energy associated to the internal
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structure. These energies are related to the corresponding so-called translational and rota-
tional temperatures and heat fluxes. Then, the macroscopic quantities of practical interest are

obtained by the moments of f as

7 7 fdlde,de,de., (3.1)
oco 0

Qrot (§) = &,1 fdlde,dg,d¢., (3.6)
111
Q@) = Qur (9) + Qrot (), (3.7)

[c o lNe olNNe CllNe o]

Pai)=m [ [ [ [@laticagds. =y (3.8)

—00 —00 —00 0
where n, T', () and ]5“-, with kg being the Boltzmann constant and m the molecular mass, are
the number density, total (thermodynamic) temperature, total heat flux and normal stresses
respectively. The subscripts tr and rot denote the translational and rotational parts, while the
parameter j is the number of rotational degrees of freedom, with j = 2 for diatomic and linear
molecules and j = 3 in all other cases ( j = 0 refers to monoatomic molecules).

The main two parameters characterizing the problem are the normalized temperature

difference
B Ty — T

p 275

(3.9)
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where Ty = (Ty + T¢) /2 is the reference temperature and the reference gas rarefaction param-

eter .
PH
by = ——, (3.10)
HoVo

where, (19 is the gas viscosity at reference temperature Ty, vg = \/2kgTy/m is the most probable

molecular speed and Py = nokgTy is a reference pressure. The average number density

! /H/2 () dg (3.11)
ng = — n\y)ay, .
H ] g/,

has been used to specify the density level. It is noted that dy € [0,00) and it is proportional
to the inverse Knudsen number, with the limiting values of §y = 0 and dy — oo corresponding
to the free molecular and hydrodynamic limits respectively. In addition to the parameters /3
and &y the problem is also characterized by the type of wall-gas interaction, which is defined
in Subsection 3.3.3. Here, the effect of all parameters on the translational and rotational
heat fluxes and temperature distributions as well as on the density distribution for polyatomic
gases is examined. This is achieved both in a deterministic and stochastic manner described in

Sections 3.3 - 3.4 respectively.

3.3 Polyatomic kinetic modeling

The effort of solving the Boltzmann equation either analytically or numerically, is sig-
nificantly reduced by substituting its collision term with reliable kinetic models. The two
well-known models introduced by Holway and Rykov as well as the more recently introduced
model by Andries, are implemented. All three models may be considered as BGK type models
and, for monatomic gases they are reduced to the BGK [36], Shakhov [48] and ES [20] models
respectively. The models by Holway and Rykov, where the collision integral consists of two
components corresponding to the elastic and inelastic collisions are described in Subsection
3.3.1. The model by Andries, where the collision term is kept in compact form as it is in the ES
model with a new artificial temperature which is accordingly decomposed into translational and

rotational parts, is provided in Subsection 3.3.2. The associated boundary conditions are given
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in Subsection 3.3.3, while the translational and rotational relaxation rates of all models are
formulated in the Appendix A. The H-theorem has been proved in [22] for the Andries model
and following the arguments leading to analogous proof of the BGK model can be proved in a

straightforward manner for the Holway model as it is shown in Appendix B.

3.3.1 Models with elastic and inelastic collision terms

The Holway and Rykov models, which have been commonly applied with considerable
success in rarefied polyatomic gas flows and heat transfer configurations [45, 50, 118], are
formulated. Applying the projection process in energy space as it is shown in Chapter 2, for
the present one-dimensional heat transfer problem, both models may be written in a similar
compact form as

a-i-/ — ptr X 1 A(Z) ot 1 A(Z) ~
gyﬁ_g] = Pr Kl — W) (Ltr - L> + A0 (Lmt — L> , (3.12)

where ¢ = H, R for the Holway and the Rykov model respectively, Pr is the Prandtl num-
ber of the gas, with the parameter y =1 in the Holway model and y =0 in the Rykov
model, ptr = nkgT}. is the pressure defined by the translational temperature, py, = p(Ty,)
is the gas viscosity based on the translational temperature of the gas, while the parame-
ter 0 < (Z ("))71 < 1 indicates the fraction of rotational collisions of their total number. In
Eq. (3.12) the first and the second terms on the right hand side of equation describe elastic and
inelastic collisions respectively. The elastic collision conserves the translational energy, while
the inelastic collision exchanges the translational and rotational energies. Here, the vector of
the unknown distributions L = [Q, E}T depends on the spatial variable ¢ and the molecular
velocity vector v = (&,,&,,&,). The reference translational and rotational distribution functions
in Eq. (3.12) are given by f)g? = [g‘i’ }}f)r and iﬁ?t = [g‘“ B

T
o s Py ot mt] , where the components of

these vectors for each kinetic model are as follows
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e Holway model

2

3/2 - 2 R k‘T
g§f>=n(L) exp( m ), i — TkTro

27T]€Bﬂr Qk'BEr

3/2 2 .
S(H) _ m —mv o _ JkBT )
Grot n (QWICBT) eXp ( QkBT ) ’ rot 2 Grot -

o Rykov model

. . 2 mQy mu? 5
0 =g L4 ey (2]

15 n(kT,)* \2ksTy 2
B = g ks T {1 n %n’g;ff) <QZ;“T - g) 1w
i a2 |1+ o ot (D))
M = kT 1o Tty (o D) -

K)

mQrotgy
nk%ErTrot

mQrotgy
n(kBT)2

(3.13)

(3.14)

The parameter k = pu/ (mnD), where D is the gas self-diffusion coefficient, is a constant

which for a power intermolecular potential is varying between the values of 1/1.2 for hard

spheres and 1/1.543 for Maxwell molecules [120]. The parameters wy and w; can be chosen so

that the thermal conductivity obtained from the model equation is close to the experimental

data in [119]. Alternatively, following the theory in [47], once the constant x and the rotational

collision number Z @

are defined, the parameters w, and w; may be determined in order

to obtain the correct translational and rotational thermal conductivity coefficients from the

equations [47, 121]

11—\ " 1 2
<1+W> ~ ! ozm (1—57)’

1—r)(1—w)\ " 3 2
(1+ A =1+ w5 )
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Then, based on Eq. (3.15) and Eq. (3.16), the Prandtl number is given by [121]

7 3 0.4 -
Pr = ) 3.17
'S 520|220 11—y T RZB 4 (1—r) (1 =) (3.17)
In cases where the Pr number, along with the constant x and the collision number Z(®) are

given, Eq. (3.17) and either of Eq. (3.15) and (3.16) may be used to define wy and w;. At this

stage it is convenient to introduce the dimensionless quantities
y=i9/H, e=v/v,, g=(3u8)/no, h=(hui) /P,

p=n/ng, P;= pii/(QnOk'BTO)a
(3.18)

Ttr = ET/T()v Trot = Trot/T07 T = (37—157“ + jTrot)/(S + ])7
qir = Qtr/(nOkBTOUO>7 Qrot = Qrot/(n()kBTOUO)7 q = Gir + Qrot,

where H is the distance between the plates and g = g (y, ¢), h = h (y, ¢) are the dimensionless
distribution functions. Employing the Inverse power law model (IPL), where the repulsive force
between two molecules is proportional to the inverse of the nth power of the distance between

their centers, for the dependence of viscosity on temperature [19]

/ T )”

Ao () 3.19

£_ (% (3.19)
where w = 1/2 + [2/(n — 1)] is the viscosity index, which for the limiting cases of hard sphere

(HS) and Maxwell Molecules (MM) takes the values 1/2 (n — o0) and 1 (n = 5) respectively,

and based on the definition of the rarefaction parameter, Eq. (3.10) becomes

OL —w 1 i 1 7
gy = op(re)'Prt [(1 - %> (L8 = L) + 5 (29 - L)] . (320)

where L is the vector of the unknown dimensionless distribution functions ¢ and h, while

@ _ [,0 po]" 0 W 01"
components of the reference vectors L;,’ = [gﬁ ,htr] and L, , = [gmt, h ] for each model

rot

are given in dimensionless form as
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e Holway model

(i _ P < ) () _ JPTrot ( c )

ro exXpy——1, h T p — ]

' (77)*? Ter ' 277y ) Tir

(3.21)
(# _ __P ex —C—2 R JpT ex C—2
Grot (7_(_7_)3/2 P T ) rot (7‘("7’)3/2 p - .
e Rykov model
2
(R) _ [y, Aawey (5
gtT gtT |: + 15 th2,’,, Ttr 2 9
4 que, (25 QrotC
h(R): (H)m 1 s Hry [ Y 21 — roty
r Jor Trot - 15 thzr Ttr 2 - ( " PTrTrot 7
(3.22)
2
® _ oy, A ey (¢ 5
Grot Grot |: + @o 15 pT2 T 2 ’
4 que, (5 QrotC
B — ()1 — Y = =D ) 42 (1 — k)
rot Grot T + @ 15 p7_2 - 9 + wl( I{) p7_2

Furthermore,

further reduced by

for the specific problem under consideration the computational effort is

eliminating, based on the so-called projection procedure, the ¢, and c,

components of the molecular velocity by introducing the following reduced distributions:

F(yacy>: / /gdczdcm

—00 —O0

G(y,c)) = / / g (2 + ) de.dey, (3.23)

—00 —0Q

S(y,cy) = / /hdczdcgc7

—00 —00
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and operate accordingly on Eq. (3.20) to reduce after some routine manipulation the final cou-

pled set of non-linear integro-differential equations

O » 1 Z- 1 /o
vy = Sop(rn) P {(1 _ %) (ql;) _ m) * 75 (wﬁgt - \If)] , (3.24)

where dy is the rarefaction parameter given by Eq. (3.10). Here, the vector of the unknown dis-
tributions ¥ = [F, G, S]T depends on two independent variables, namely y and c¢,. The trans-

. AT
lational and rotational relaxing distributions in Eq. (3.24) are given by W' = [Ft(f), G\ St(;)]

. , AT
and \Pgo)t = [FT(Z, Gilo)t, S,Ez)t] respectively, where the components of these vectors for each ki-

netic model are as follows:

o Holway model

C |
R L (<5). G B, =t

N T 27
(3.25)
H _ P ¢y (H) (H)  o(H) _ J_p(H)
F’/‘ot = \/EQXP _? ) Grot = TFrot ) Srot = §TFrot .
o Rykov model
4 qq c 3
FP = 1 2 (v 2
15 p1s \7er 2
4 quc 21
G(R): 7"F(H) 1 Lt
r Tt - 15 th27" Ter 2 ’
4 quey (¢ 3 GrotC
S — o FU) [1+ e ] (—y——) 1 2(1 — k) Lty
¢ i 15 th2r tr 2 ( ) thrTrot
(3.26)
4 qrC 02 3
F(R):F(H) 1 Yy
rot rot +w0 15 p 2 T 2 )
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Applying the same non-dimensionalization and projection procedures in energy and ve-
locity spaces to the moments in Eqgs. (3.1)-(3.8) and after some similar manipulation to the one
applied in the governing equations the macroscopic quantities are given in terms of F, G and

S, according to

p = /chy, (3.27)

2 ! 2 2 r 3Ttr +j7-rot
y=— [ (FF+G)dey, Tou=— [ Sde, 7=l ITrol 3.28
m 30/(Cy +G)day, Tro J,O/ 7 3+ (3.28)
Gir = / (C§F+G) cydcy,  GQrot = /Scydcy, q = Ger + Grot- (3.29)

The Holway model cannot recover the shear viscosity and thermal conductivity simulta-
neously and since here a purely heat transfer configuration is investigated the collision frequency
has been set to properly recover the property of thermal conductivity. The Rykov model, as
the Shakhov model for monatomic gases, recovers both coefficients. The Rykov model at its
present form is applicable only to diatomic gases (7 = 2), while the Holway model is applicable

to polyatomic gases (j = 2, 3).

3.3.2 The ES-BGK model for polyatomic gases

The ES-BGK model for polyatomic gases proposed by Andries et al., has received less
attention since it has been proposed more recently. Its applicability is demonstrated in [44]
where some typical rarefied gas flows are solved and a comparison with corresponding results
based on the Boltzmann equation is provided. The ES-BGK model in terms of the unknown

distribution functions § and h is written as [22, 44]

oL P, 1 . .
ob _ L (L N\ (fw_ L) 3.30
Syﬁgj Lt (1—1/—|—9y)< e ' ( )
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. AT
where the superscript (A) denotes the Andries model and L = [g, h] is the vector of the

unknown distribution functions. For the problem under question,in this model the reduced

s 1T
equilibrium distributions in Egs. (3.30) are kept in a compact form Lg} = [gé;‘), héﬁ)] , where

A n i _ A _ A _
gé?) = = N = exp (_éngml - £ZKyy1 - ngzzl) 9 (331)
m3/2 \/ KzzKnyzz
7 ]nk Trel o ~ ~A
hé?) = ,\B N ~ eXp <_§£sz1 - szyyl - §3Kzzl> s (332)
2m3/2 \/ KxxKnyzz
with )
> 2kpTy, Py 2kgT . R
Ky =(1-10) [(1—V) B oy + 0B =39, 5 (3.33)
m nm m

The quantity T, in Eq.(3.32) is a new artificial temperature, which is accordingly
decomposed as

Ty = 0T + (1 — 6) Ty, (3.34)

where T" and T,,; are the total and rotational temperatures respectively. The relaxation pa-
rameters —1/2 < v < 1 and 0 < # < 1 are chosen to recover the correct Prandtl number of

diatomic and polyatomic gases according to

1

g < Pr

For a monatomic gas a Prandtl of 2/3 is obtained by taking # =0 and v = —1/2. In

that case the ES model kinetic model for monatomic gases is recovered. Furthermore, the
same processes of the non-dimensionalization and projection mentioned in Subsection 3.3.1 are
applied. More specifically, an additional reduced distribution added to the aforementioned set

of Eq. (3.23), which is defined by

R= / /gcidczdcx. (3.36)

—00 —00
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In terms of the reduced dimensionless distribution functions the model, for the present

heat transfer problem is written as

ovr

» 1
oy Sop(Tur)! (m) (W) —w], (3.37)

where ¥ = [F,G, S, R]T is the vector of the unknown reduced distributions, while the reduced
T
equilibrium functions in Eq. (3.37) are kept in compact form \Ilgf}) = [Fe(f ), Ggﬁ), Sgg‘), Réﬁ) ,

where

FW) = P exp [—CQK_l} ,

eq y  yy
Ty,

G = exp [-2K 1],
eq 2@ P [ y yy]
. (3.38)
A) _ JPTrel 2 r—1
éq) - ﬁexp [_CyKyy] )
9y
A) _ psz 2 7-—1
qu) T 9 ik exp [_CyKyy} ;
vy
with the tensor Kj;, i = x,y, z , written as
Py
Kii=(1-0)|(1 -v)7y +2v—| + 0. (3.39)
P

The dimensionless artificial temperature temperature in Eq.(3.38) is given as 7. =
01 + (1 — 0) 7,0t It is noted that the scales of the pressure ]5u and the tensor R’u are set to 25,
and vg respectively. The macroscopic quantities of number density p, translational, rotational
and total temperatures 7., 7,,+ and 7 respectively as well as the corresponding heat fluxes g,

qrot and q are given by Egs. (3.27)-(3.29), while the normal stresses in Eq. (3.39) are

P [ Rie, Py= [ Féie, P.= [(G-Rde, (3.40)

It is noted that the entropy inequality (H-theorem) has been proved for this polyatomic

kinetic model with —1/2 <v <1 and 0 <6 <1 in [22]. Also, for all aforementioned models
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namely Holway, Rykov and Andries the conservation equation dq (y) /Oy = 0 is readily deduced,
which implies that the total heat flux ¢ (y) remains constant along —1/2 <y < 1/2.

3.3.3 Boundary conditions

To close the problem the formulation of the boundary conditions at § = £H/2 for the
reflected distributions is provided. The classical Maxwell wall model is applied [122]. Hereby,
to distinguish between incident and reflected quantities the superscripts (—) and (+) are in-
troduced. In the investigation of gas flows with rotational degrees of freedom, the distribution

function of the particles reflected from the solid surfaces is taken in the form [123]

R 3/2 2 Ji/2—1 I
T =ny (L) ex (— mo ) . exp | — . 3.41
/ 2mkp Ty P\ 2T (ksT2,)"*T (j/2) P\ kT, (341

rot

Introducing in Eq. (3.41), the same projection process in energy space as for the kinetic equa-

tions, leads to the following reflected reduced distributions at the boundaries § = +H /2

3/2 2 - a
L m _mu B kT .o 349
g7 =Ny (—zkaT;;> eXp( ) 5 (3.42)

where n,, is a parameter found from the no-flow condition as

™m
2kpTy”

Ny = 2N N=— / £,G7dE, (3.43)

£y <0

where, N is the incident particle flux which is equal with the reflected particle flux. The param-
eters Ty and 77, are obtained as part of the solution from the energy balances at the surface.

The following three possible types of boundary conditions for determining the parameters 7}

and T)¢, are considered [50]
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e Boundary condition model I

In most occasions, experimental studies report only one energy accommodation coefficient
defined as
Ef=FE —a <E* - EW) . (3.44)

The energy fluxes in Eq. (3.44) are obtained by adding the corresponding translational and
rotational parts, i.e. B~ = E; + E,, BT = (24 j/2) NkgT® and E* = (2 + j /2)NkpT",
while 7% =T =T2

.. Introducing in Eqs. (3.42), the same normalization and projection

process in velocity space as for the kinetic equations, lead to the following reflected re-

duced distributions at the boundaries y = £1/2

Ft =

2 .
exp (—C—) CGr=rert, st=tept o lert (aan)

T T 2

where 7® = T*/T}, based on Eq. (3.44) is given by

2E~
=at"+ (1 —a)———= 3.46
P =art s (1) (3.46)
while -
B J (G F™+ G~ +87)cydey
OfF*cydcy
The parameter p,, in Eq. (3.45) is computed as
2ﬁ7 _
pw=—= [ Fcydcy, (3.48)
[

with 7% = T%/Ty. This approach with the one thermal accommodation coefficient has

been widely used in literature [50, 124] and the modelling remains efficient.

e Boundary condition model I1

A more detailed description of the energy transfer between the gas and the plates includes

two energy accommodation coefficients one for the translational and one for rotational
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degrees of freedom defined as [50, 94, 124]

B =Ey = (B = BY). Bly=Ery— o (B — B3), (349)

A

where Etr and Emt are the incident translational and rotational energy fluxes, K =

INkpT? and Ef, =

rot

fluxes, while E¥ = 2NkgT® and EY

rot —

(j/2) NkpT?, are the reflected translational and rotational energy
— (j/2) NkgT™ are the translational and rotational
energy fluxes that would have been achieved if the reflected molecules were emitted in
thermal equilibrium at the surface. Adding the two reflected energy fluxes of the Eq. (3.49)

the total energy balance equation is given as
Bt =E" —a, (E,; - Etw) — Qo (E; E;gt) (3.50)

where E+ and E~ are the total reflected and incident energy fluxes respectively. The

reflected dimensionless reduced distributions at the boundaries y = +1/2 are given as

1
¢ FT Rt = 27't,nFJr (3.51)

C
F+ — pw exp (——y) s G = TtTF—i_ S+ — %

where the parameter p, is given by the Eq.(3.48). Also, based on the definition of
the two accommodation coefficients given in Eq. (3.49), the parameters 772 = T} /T and

e, =12, /Ty are defined as

E;, 2

= qu, 7" + (1 — Oétr>2N Traot ot T+ (1 - CVr‘ot) j]?\“[ot, (352)
o f (czF_ + G_)cydcy o f S~ eydey
]\t;“ _0 _ ’ ]’\”fot = 20 . (3.53)
[ F-¢,de, [ F-¢,de,
0 0

It is noted that for a = . = .oy the boundary condition model II is not the same with
the boundary condition model I, since in model I the two parameters 7} and T, are

assumed to be equal, whereas in model II these two parameters are different in the general
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case. Furthermore, the boundary condition model IT with the two thermal accommodation
coefficients, separate contributions from the different energy modes and provide a detailed

description of the energy transfer between the gas and the surface.

e Boundary condition model II1

Furthermore, to take into account the cross energy transfer between the translational and
rotational modes two additional energy accommodations may be introduced into the two
thermal accommodation coefficients model resulting to a total of four coefficients, namely

rot

tr
Ay, oty Qg and «

. [50]. Transfer of such a type is considered if two terms added into

two expressions for the translational and rotational reflected energy fluxes of Eq. (3.49)

according to

B = By = an (B = BY) = ait (B — B ) + aliy (Bro = Bi)

(3.54)
E:_ot = Er_ot — Qrot (E;)t - E:ét) — Qo (Er_ot - E:%t) +ag” <Et; - Etwr> :
The two Egs. (3.54) are the equations of translational and rotational energy balance on the
plates. The energies of the translational and rotational degrees of freedom of the reflected

molecules are denoted by Ef and E, as well as the translational £ and rotational £Y,

energy fluxes of the molecules which are in thermal equilibrium with the wall are the same
with those given for the boundary condition model II. It is noted that by adding the two
reflected energy fluxes of the Eq. (3.54) the total energy balance describing by Eq. (3.50)
is obtained. The coefficients oy, and o, determine the fraction of the rotational and

translational energy transferred to the surface while the coefficients o} and o!", determine

rot
the transition rates of translational to rotational energy and vice versa respectively. The
values of the four thermal accommodation coefficients can be determined experimentally
[50, 125]. The reflected reduced distributions at the boundaries in terms of F', G, S, R
are described by the Egs. (3.51), while the parameter p,, is given by the Eq. (3.48). Based

on the rotational and translational energy balance on the wall of Eqgs. (3.54), the two
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dimensionless parameters 772 = T2 /Ty and 72, = T2, /Ty in Eq. (3.51) are given as
Ttr:ﬁ—(atr—i-oztrt) <2]t\7_7— )+Tm<_Nt—§T)7

a 2‘E'r_ot tr 2Eir_ot w 404;?'5 Et; w
7—rot - ]N (Q/TOt + arot) ( jN T > + ] 2N T )

where the ratios E,, / N and E,, / N are given in Egs. (3.53). The boundary condition

(3.55)

model IIT allows a better adjustment to experimental results, but since the number of
parameters to be examined is increased this type of boundary conditions seems to be
more useful in investigations focused on specific comparisons between simulations and

experiments.

It is noted that in the manipulation of Egs. (3.46), (3.52) and (3.55) the scales of the incident
energy flux and incident particle flux are set to Byvy and ngug respectively. Moreover, the

rot

thermal accommodation coefficients v, ., o, @)% and of

. vary between zero and unity. The

thermal accommodation coeflicient «v of the model I is related to the thermal accommodation
coefficients of the translational oy, and rotational degrees of freedom «,..; of model II and III

according to

(B — 2NT) + Qo (E,,Ot — %NTw)

o= (3.56)

Ep+ B, — <2+ %) Nrw

Furthermore, in accordance with the experimental and theoretical papers [126, 127] it is ob-
tained that oy, > a,o. The nonlinear set of Equations presented in Subsections 3.3.1 and
3.3.2 along with the different model boundary conditions presented in Subsection 3.3.3 pro-
vide a theoretically well-established kinetic formulation for the heat transfer problem under

consideration.

3.4 DSMUC solution of the Boltzmann equation

In order to increase confidence into the predictions of the kinetic models described in the

previous section, the problem has also been studied by a DSMC particle scheme [19]. In general,
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the determination of the form of the collision cross section for polyatomic gases is not easy. As
it is well known, the dynamics of a binary molecular collision is much more complicated than
a binary atomic collision which is largely amenable to analytical treatment. Simple mechani-
cal models of translational-rotational coupling (rough spheres, loaded spheres, spherocylinders)
[128] are not flexible enough to fit experimental data on polyatomic species. Hence, the col-
lision dynamics and cross-sections have been obtained from the well-known phenomenological
model proposed by Borgnakke and Larsen [23]. The model can be easily adapted to reproduce
experimental translational-rotational relaxation rates with good accuracy [129]. Moreover, its
collision algorithm is very well suited to particle schemes used to obtain numerical solutions of
the Boltzmann equation [19].

In the particular form of the Borgnakke-Larsen model adopted here, collision dynamics

is organized as follows:

e The collision probability of two molecules in the pre-collision state (v’ I ) , (U{,f{)
is proportional to oggv., where ogg = md? is the integral cross-section of hard sphere

molecules of diameter d and v]. = ||v] — ¥’|| is the relative velocity modulus.

DSMC) o1 elastic with probability

e An individual collision is inelastic with probability 1/Z¢
1 — 1/Z(PSME)  An inelastic collision gives rise to an exchange between translational
and rotational energies, as explained below. In an elastic collision pre- and post-collision
rotational energies do not change, i.e. I=r, I,=1 1 . Conservation of total energy then
implies v, = v/ and, according to hard sphere impact dynamics, post-collision relative

velocity is written as v, = v,.e, being e a random vector uniformly distributed on the

unit sphere S.

e In an inelastic collision conserved total energy E of the center of mass reference frame:
~ ]_ 2 ~ ) 1 12 -t y
E:Z—lmUT—i—I-i-[l:ZmUr +1I'+ 14 (3.57)

is randomly partitioned between translational and rotational motion by sampling the
translational energy fraction F,, /E from a given probability density function P, (Etr /E ’ Jj > .
The available total rotational energy E,o =I+1, = E—E,, is then randomly distributed

44

Institutional Repository - Library & Information Centre - University of Thessaly
20/05/2024 01:12:25 EEST - 13.59.53.151



Section 3.4

between the collision partners by sampling the fraction I / E, from a given probability

density function P (f / E,,ot

J ) The relative velocity after a collision is again written as

v, = v.e, where € is a random unit vector and v, = \/4EAtr /m. The specific form of the

probability densities P (EAW / E‘ j) and P, (I / E,or

j) depends both on the number of
internal degrees of freedom and on the assumed intermolecular interaction [19]. In the

case of hard sphere interaction and j = 2 they take a particularly simple form [19, 30]

- ET Ar
PI(EtT/E‘z) :65 (1— Et) (3.58)

PZ (I/Erot

2) = 1. (3.59)

The strength of translational-rotational coupling is determined by the mixing parameter
ZPSMC) which can be made to depend on the local flow field temperature to fit experimental
relaxation rates [129]. As mentioned above, the hard sphere collision cross section has been
used in the DSMC simulations presented in this work. The choice is suggested by the limited
temperature range of the experimental measurements which allow to assume a constant value
of the total collision cross section. For the same reason, a similar choice has been made about

(DSMC) whose value has been assumed not to depend on

the rotational collision number, Z
temperature, neglecting its weak temperature dependence in the case of air species [129]. In
the DSMC algorithm, the main hypothesis is that at each discrete time interval, particle motion
and intermolecular collisions are considered as two independent, uncoupled steps. The physical
space domain is discretized into cells, which are used to track model particles and calculate
the bulk properties. Each model particle in the simulation represents a large number of real
molecules in the physical system and is characterized by spatial position #(f), velocity v (%)
and internal energy I (f) associated with j rotational degrees of freedom. The particles states
are advanced from time # to time ¢ + Af in two stages. In the first stage gas-gas collisions
are neglected and particles move along straight lines with the constant velocity and rotational

energy they had at time £. In this free flight stage wall boundary conditions are applied to

change the velocity and internal energy of molecules hitting a wall. In the second stage, particle
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positions are kept fixed and equal to the final values resulting from the free flight. Particles
belonging to the same cell of the spatial grid are allowed to collide according to the rule described
above. Finally, macroscopic quantities are obtained by sampling and time averaging particles

microscopic states after the onset of steady flow conditions.

3.5 Results and discussion

In this section, results for the heat fluxes and the distributions of temperature and den-
sity obtained by the Holway, Rykov and Andries models as well as by the DSMC method in
a wide range of all involved parameters are presented in tabulated and graphical form. The
temperature ratio of the hot over the cold plate takes the values of Ty /T = (1+5) /(1 —3) =
[1.1,3,7,10] covering the cases of small, moderate and large temperature differences, while the
reference gas rarefaction parameter dy € [0, 100] varies in a wide range of the gas rarefac-
tion from the free molecular up to the slip regime. Three types of gas-surface interaction are
considered and comparisons with measurements under various conditions are included.

The results are organized as follows: In Subsection 3.5.1 the numerical parameters used
in the simulations are given. Subsection 3.5.2 presents results of the heat fluxes for diatomic
and polyatomic gases as well as a comparison between kinetic and DSMC results including
density and temperature fields. Subsection 3.5.3 describes the dependency of the heat fluxes
on the accommodation coefficients and finally, Subsection 3.5.4 is focused on comparison with
experiments. The computational results always coincide in the free molecular limit (dy = 0)
with the corresponding analytical results of the translational and rotational temperatures and
heat fluxes. Also, as dq is increased, the computed heat flux gradually tends to the analytical
one in the hydrodynamic limit. The analytical solutions in the two limits are provided in the

Appendix C.

3.5.1 Numerical parameters and the computing quantities

The kinetic model equations of Holway, Rykov and Andries with the associated moments

applying the three types of boundary conditions described above are solved numerically in
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a deterministic manner. The discretization is based on the discrete velocity method in the
molecular velocity space and on a second order control volume approach in the physical space.
The macroscopic quantities are computed by Gauss-Legendre quadrature. The implemented
algorithm is parallel in the velocity space and has been extensively applied in previous works
to solve with considerable success heat transfer configurations [89, 124]. The iteration process
between the kinetic equations and the corresponding moments of the distribution functions is
terminated when the convergence criteria

(t+1) (t)

t+1
- q; —q;

Pz( : Pz@ Ti(tH) _Ti(t)

- +

1 K

] < (3.60)

with ¢ denoting the iteration index and K the number of nodes in the physical space, is fulfilled.
The kinetic results presented here have been obtained with 4001 equally spaced nodes and
96 molecular velocities being the roots of the corresponding Legendre polynomial, while the
tolerance parameter is set to ¢ = 107%. Computations have been performed with a parallel
version of the code parallelizing in the molecular velocity space on 3 Tntel® Core™ i5-3570
cpus at 3.40 GHz (total of 12 cores). The computational times per iteration for the BGK,
Shakhov, Holway, Andries and Rykov models are roughly speaking in the ratio 1:2:3:4:6, i.e.
the computational time of the polyatomic models is approximately three times higher than the
corresponding monatomic ones. It is noted that the total number of iterations for convergence
depends only on the reference rarefaction parameter and is independent of the model. To have
an idea of the required computational times, it is stated indicatively that the simulation of
the case 9y = 50, Ty /T = 3 with the above defined parallelization and numerical parameters,
based on the Holway model, takes about 3.2min (serial execution time about 32 min).

The reported DSMC results have been obtained from simulations using not less than
1250 particles per cell. The spatial cell size Ay does not exceed 1/20 of the reference mean

free path. The time step Af has been set equal to the minimum between the estimated time

a particle takes to cross a cell, (Af)adv = (Agy/m)/(VkpTy), and a small fraction (Af)wl of

the minimum mean free time, based on the maximum value of the collision frequency in the

domain. Macroscopic quantities have been obtained by sampling microscopic particles states
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for 20 — 40 x 10* time steps after the estimated onset of steady conditions. The heat fluxes
dispersion within each sample allows estimating the statistical error associated with the Monte
Carlo method. In most of the cases the relative statistical error is well below 1%. Larger relative
standard deviations (around 2%) are found for the largest value of the rarefaction parameter and
the smallest temperature ratio. The computing time associated to a serial DSMC simulation
amounts to about 5 x 1078 per time step, per particle, on a workstation equipped with Tntel®
Xeon® E5-2630 cpus, running at 2.3 GHz. For instance, the simulation of the case dg = 50,
Ty /Te = 3 with 1000 spatial cells and particles, takes about 40 min to execute 3 x 10° time

steps and produce an accurate solution.

3.5.2 Comparison between kinetic and DSMC results

In Tables 3.1 and 3.2 the dimensionless translational and rotational heat fluxes respec-
tively obtained by all three kinetic models are compared for a diatomic gas (j = 2, Pr = 0.72)
with HS molecules. The temperature ratio and the reference gas rarefaction parameter take
the values of Ty /Te = [1.1, 3,10] and &y € [0, 100] respectively. Since the translational
and rotational heat fluxes vary between the plates the tabulated results are at the hot plate
y = —1/2. Of course the total heat flux remains constant. The gas molecules are fully accom-
modated at the two plates. Furthermore, in order to ensure comparison compatibility between
the various kinetic models and according to the Appendix A (Eq.(A.4)), where the relax-
ation rates are discussed, the rotational collision numbers are set as Z(®) = Z(4) = 6.50 and
ZWH) = 7(A) x Pr = 4.67. Based on these values and x = 1/1.2 (HS molecules) it is deduced that
w, = 0.458, w; = 2.840 in the Rykov model and v = —0.50, # = 0.21 in the Andries model.
It is clearly seen that for both heat fluxes the agreement between the corresponding results
obtained by all three models is excellent (within two or even three significant figures for all
values of 6y and Ty /T¢). The rotational heat flux is always about one-half of the corresponding
translational one, while in the free molecular limit, is exactly one-half. The results for o = 0
coincide with the corresponding analytical ones estimated by Egs. (C.5)-(C.6) in Appendix C.

It is noted that the dependency of the results on the values of Z( for the present heat

transfer configuration and for all values of &y and T /T tested, in all three models, is small,
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with the Holway model being the less sensitive one. Also, as Z is increased the translational
heat flux tends to the heat flux of a monatomic gas, while the rotational heat flux remains
always about one-half of the translational one. To clearly demonstrate that, in Table 3.3,
the monatomic heat fluxes obtained by the BGK and Shakhov models are tabulated for the
same temperature ratios Ty /7o and rarefaction gas parameter &y [130]. It is seen that the
monoatomic heat fluxes are close to and always a little bit higher than the translational part of
the corresponding diatomic heat flux, shown in Table 3.1, while the total diatomic heat fluxes
4 = Qi + Grot are higher compared to the corresponding monatomic ones of Table 3.3 about
30 — 50%.

A comparison between the dimensionless total heat fluxes obtained by the Andries model
and the DSMC method for a diatomic gas with Z(PSMC) = 7(4) = 5 (v = —0.5, § = 0.27) is
presented in Table 3.4. The particles reflection is purely diffuse at the walls. The temperature
ratio and the reference gas rarefaction parameter take the values of Ty /Te = [1.1, 3, 7, 10]
and &y € [0, 100] respectively. In all cases the agreement between the results is very good with
the relative error being less than 3%. Furthermore, the comparison is extended to the number
density distributions plotted in Fig. 3.2 as well as to the translational and rotational tempera-
ture distributions plotted in Fig. 3.3 for various typical values of §y and Ty /T demonstrating
excellent agreement between the deterministic and stochastic approaches. It is also seen that
the translational and rotational distributions are very close to each other and through Eq. (3.20)
it is deduced that 7 ~ 73, ~ 7,4, with the larger deviations occurring at larger temperature
differences and intermediate values of the gas rarefaction. Overall, the effectiveness of the An-
dries as well as of the Holway and Rykov models to simulate this heat transfer configuration is
clearly demonstrated.

In Table 3.5 the translational and rotational heat fluxes of a polyatomic gas (j = 3)
based on the Andries model with Z(Y) = 6.50, v = —0.50, # = 0.21 and purely diffuse reflection
at the walls are tabulated. The results are at the hot plate for Ty /T = [1.1, 3, 7, 10] and
do € [0, 100]. Overall, the qualitative variation of the polyatomic heat fluxes in terms of
Ty/Te and 4 is similar to the diatomic ones. More specifically, the translational parts of the

polyatomic and diatomic heat fluxes are close, while the rotational part of the polyatomic heat
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flux is always higher than the corresponding one of the diatomic gas. Comparing the total
polyatomic heat fluxes with those in Tables 3.3, it is deduced that they are about 50 — 75%
higher than the corresponding monatomic ones. The analytical free molecular solutions are

fully recovered with the rotational part being 75% of the translational one.

3.5.3 Effect of accommodation coefficients

The effect of partial accommodation at the walls on the heat fluxes is investigated based
on the two types of boundary conditions presented in Subection 3.3.3. Results are provided for
the typical values Ty /T = [1.1, 3, 10], dp € [0,100] and they are based on the Holway kinetic
model.

First the boundary condition Eqs. (3.45)-(3.47) with the one energy accommodation co-
efficient a € [0, 1], defined by Eq. (3.44), is considered. In Fig. 3.4, the dimensionless total heat
flux ¢ of a diatomic gas (j = 2, Pr = 0.71, Z) = 5) with HS molecules in terms of « is
plotted. As expected the effect of o on the total heat flux becomes more significant as g is
decreased, i.e. as the gas becomes more rarefied, while at d; = 100 the total heat flux is practi-
cally independent of a. Also, in almost all cases as « is increased the dimensionless total heat
flux is monotonically increased, which is physically justified since a larger portion of particles
is reflected with temperatures closer to the wall temperatures. However, for large temperature
differences this is true only at large 9y, while as g is decreased a maximum heat flux is observed
at some a < 1. This is clearly shown at Ty /Tc = 10 and §y < 0.1, where the maximum heat
flux is reached at about a = 0.95. It has been found that as the temperature ratio is further
increased the value of a where the maximum heat flux occurs is decreased. The behavior of
both the translational and rotational parts of the heat flux with respect to « is similar to the
one described here for the total heat flux and therefore is not shown separately. These findings
have also been confirmed by simulations with the other kinetic models and the DSMC approach.
In addition, the results for dy = 0 are in excellent agreement with the corresponding analytical
ones given in the Appendix C, where the detailed dependence of g, on the parameters a and

B is shown in Fig. C.1.
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Next, the boundary condition Egs. (3.51)-(3.53) with the two energy accommodation co-
efficients oy, € [0,1] and a,.x € [0, 1], defined by Eq. (3.49), is considered and the effect of the
accommodation coefficients on each of the translational and rotational parts of the heat flux
is investigated. In Fig. 3.5, the dimensionless translational heat flux ¢, at the hot plate of a
diatomic gas (j = 2, Pr = 0.71, Z = 5) with HS molecules in terms of with oy, = 1 with @,
as well as in terms of ay,. with a,,; = 1 is plotted. It is seen that the dependency of ¢, on
oy, is very similar to the one observed before of ¢¥) on o . On the contrary g, is actually
independent of a...

In Fig. 3.6, the corresponding plots for ¢,,; are provided. The rotational heat flux depends
on both a4, and a,..;. With regard to a4, the dependency is in general weak in small temperature
differences but becomes stronger as the temperature difference is increased and the gas becomes
more rarefied. It is interesting to observe that in these latter conditions as ay, is increased ¢,
is decreased. With regard to a,,; the dependency of the rotational heat flux is strong and as
Qo 18 increased, ¢, is also increased.

The effect of the two thermal accommodation coefficients on the density and temperature
distributions is shown in Figs.3.7 and 3.8 for a diatomic HS gas (j = 2, Pr = 0.71, Z = 5)
in the case of Ty/Tc = 10 and dp = 1. The dimensionless wall temperatures are 77 = 1.82
and 7 = 0.18. More specifically, in Fig.3.7 the distributions of density and translational
temperature are plotted for various values of oy, with «,,; = 1. It is seen that at small values
of ay, both distributions, even at this large temperature ratio, are almost anti-symmetric about
y = 0 (typical of a linear configuration) and then as is increased the anti-symmetry is vanished
(typical of a nonlinear configuration). The effect of the variation of oy, on the wall temperature
jump is more dominant at the cold rather than at the hot wall. The coefficient «,..; has always a
very small effect or no effect at all on these distributions and therefore its effect is not plotted.
On the contrary, both ay. and a,, have an important effect on the rotational temperature
shown in Fig.3.8. It is seen that as ay, is increased, 7., () is decreased in a uniform manner
along the distance y (the curves are almost parallel to each other). Also, at large values of
oty the T4 (y) distribution is symmetric and as «,.,; is decreased it becomes antisymmetric.

In addition, as Ty /T¢ is decreased the effect of oy, and ay.o; on 7o (y) is drastically decreased.
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Furthermore, comparing the translational and rotational temperatures in Figs.3.7 and
3.8 respectively with a4 < 1 and «,.,; = 1 it is seen that 7, ~ 7., only when a4 = 1 while as
oy, 18 reduced the translational and rotational temperatures start to depart from each other.
To clearly demonstrate that the two temperatures are plotted for . = 1, a,o¢ = 0.2 and
oy = 0.2, ar = 1 at two different values of the reference gas rarefaction parameter in Fig. 3.9.
It is seen that for ay. # ., i.e., when translational and rotational energies are differently
accommodated at the walls, then the corresponding temperatures vary significantly (7, # Trot)
and this difference becomes larger as dy is increased. Also, at 0y = 0.1 the departure between
Ty and T, is larger with the variation of a,,; rather than of ay.. It is expected that similar

results will be obtained performing molecular dynamics simulations.

3.5.4 Comparison with experiments

A comparison with the early experimental results in [96, 97] and the more recent ones in
[85] is performed based on the kinetic Holway model and the DSMC method. In experiments
[85, 96] the temperature difference between the plates is small, while in [97] the temperature
difference is large, the gas is nitrogen (N3) and the associated energy accommodation coefficient
has been experimentally determined from heat transfer measurements at low pressures where
the Knudsen formula is valid, to be about o« = 0.75—0.8. The simulations have been performed
for a diatomic HS gas with Pr = 0.71, while the rotational collision number for the DSMC
approach is taken to be Z(PSMC) — 5.

The comparison with [96] is shown in Fig.3.10 in terms of the total heat flux normal-
ized with the corresponding free molecular heat flux versus the inverse of the reference Knudsen
number. The measured temperature of the hot plate and the temperature ratio are Ty = 301.96
K and Ty /Tc = 1.0291 respectively, while the experimentally determined thermal accommo-
dation coefficient is a = 0.76. The Holway model simulations have been performed for these
data with Z(H) = 5 as well as with Z obtained by the Landau-Teller (L-T) expression [19]
based on the Lordi and Mates [131] experimental data. As it is seen the computed results are

in very good agreement with the experimental ones in the whole range of the inverse Knudsen

number. It is noted however, that the implemented gas-surface interaction model is not capable
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to capture both the heat flux and density variations presented in [96] simultaneously and to
achieve that more complex boundary conditions, as the ones in [50], are needed.

The comparison with [85] is shown in Fig.3.11 in terms of the dimensionless total heat
flux g versus the inverse measured pressure. The measured temperatures of the hot and cold
plates are Ty = 308.3 K and Ty = 288.3 K respectively (Ty/Tc = 1.069), while the associated
experimentally estimated thermal accommodation coefficients are ay = 0.795 and ac = 0.808
[85]. Simulations have been performed for these data with the Holway model (Z() = 5).
Excellent agreement between the kinetic results and measurements is observed in the whole
range of measured pressures.

The comparison with [97] is shown in Fig.3.12 in terms of the dimensionless density
distribution between the parallel plates. The temperatures of the hot and cold plates are
Ty =294 Kand Te = 79 K respectively (T /Tc = 3.72). In this case the temperature difference
is large, while in the former comparisons it was small. The comparison covers a wide range of the
rarefaction parameter (1.52; 3.08, 4.64, 16.72), while the experimentally determined thermal
accommodation coefficient is a = 0.82. It is noted that in order to perform the comparison the
experimental rarefaction parameters have been accordingly converted having as the reference
number density the mean number density and not the number density at the center plane as it
is taken in [97]. Simulations have been performed for these data with the Holway model and
ZW) = 5. The influence of the different models of boundary conditions described in Subsection
3.3.3 on the density distribution between the plates is investigated. In the boundary condition
model I the accommodation coefficient is taken equal to experimental value (v = 0.82). In
[50] the range of the parameters ay. = [0.7,0.9] and «,, = [0.3,0.8] for the heat transfer
problem through Ny is given. Moreover, in [126, 127] it is found that o, < a4.. Taking into
consideration the aforementioned and due to the fact that the coefficients oy, and «,, must
have a value equal to that measured experimentally (o = 0.82) according to Eq.(3.56) the
values oy, = 0.9 and «,.,; = 0.65 are chosen in the case of boundary condition model II. For
the boundary condition model III the values oy = a.op = 0.82, % = 0.18 and o7, = 0.01 are
used based on all the above information related to the coefficients oy, and «,.. The values

of the a4, and «,.; are different in boundary condition model II and model III, since from all
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the available combinations these values of «y,. and .., for each model achieve the best fitting
with experimental data in [97]. As it is seen very good agreement between all three boundary
condition models and experiments is observed at large values of the rarefaction parameter,
since in this case the effects of the boundary conditions is small. However, at §, = 1.52 the
comparison between the density profiles obtained by the boundary condition model I and II
with the corresponding experimental data is not as good as for higher values of §y. This is due
to the fact that the boundary condition model I and II do not take into account the energy
transfer between the translational and rotational degrees of freedom of the molecules as they
collide with the plates. As it is seen the boundary condition model III makes it possible to
obtain very good agreement in the whole examined range of the rarefaction parameter.

In order to obtain a more physical understanding of the heat transfer in monatomic and
polyatomic gases and to facilitate comparisons with experiments, in Fig. 3.13, some dimensional
total heat fluxes [W/m?] in terms of the reference pressure P, [Pa] are given for the monatomic
gases of He and Ar (j = 0, Pr = 0.67), the diatomic gases of Hy and Ny (j = 2, Pr = 0.71)
and for the polyatomic gases of COy (j = 2, Pr = 0.75) and CHy4 (j = 3, Pr = 0.75). The
distance between the plates is H = 5 mm with the temperature of the cold plate to be set at
Te = 293 K and temperature ratio Ty /T = 3. The reference pressure ]50 € [10_3, 5 X 102]Pa
is easily connected to the rarefaction parameter dg, via Eq. (3.10) once the viscosity and the
most probable velocity of each gas is specified. All computations are based on the Holway model
and the IPL interaction law with w = [0.66,0.81,0.67,0.74,0.93,0.84] for He, Ar, Hy, Ny, CO,,
CH, respectively. It is noted that the experimentally estimated rotational collision number of
these gases may vary between one and five [47]. However, the dependency of the results on Z

(1) = 5 is introduced. It is seen that, as expected, the heat

is small and therefore in all cases Z
flux is monotonically increased with pressure. At highly rarefied atmospheres the heat flux is
proportional to gas pressure, then, in the transition regime the relation becomes more complex
and at dense atmospheres the heat flux depends weakly and finally is independent of pressure.

More importantly, it is observed in Fig.3.13, that under the same conditions the heat

flux of different gases varies significantly. The largest heat fluxes are achieved for Hy followed

successively by the heat fluxes of He, CHy, Ny, CO5 and Ar. This trend is valid in the whole
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range of pressure except for the curves of COy and Ar, which cross each other at some relatively
large pressure Py >1 Pa. In monatomic gases confined between surfaces the heat transfer is
increased as the molar mass of the gas is decreased and the molecular velocities are increased.
However, this remark cannot be generalized in the case of polyatomic gases since the additional
degrees of freedom result to additional heat transfer, as seen in Fig. 3.13, where in a wide range

of pressure the heat flux of COy is larger than that of Ar, while its molar mass is larger.

3.6 Concluding remarks

The problem of heat transfer through rarefied polyatomic gases confined between two
parallel plates maintained at different temperatures is solved based on three kinetic models
namely the ones proposed by Holway, Rykov and Andries as well as on the DSMC scheme
supplemented by the Borgnakke-Larsen collision model. Results for the heat fluxes and the
distributions of density and temperature are provided for small, moderate and large temperature
differences in a wide range of the gas rarefaction from the free molecular limit up to the slip
regime with full and partial energy accommodation at the boundaries. The three kinetic models
and the DSMC method provide very close values of the computed macroscopic quantities as
well as very good agreement with corresponding experimental data available in the literature.
In addition, the computational results perfectly match the analytical ones in the free molecular
limit and tend to the analytical ones in the hydrodynamic regime.

Based on the above, the validity of the implemented modeling approaches is demonstrated.
All kinetic models provide accurate results for the specific problem. The H-theorem has been
proved for the Andries model and can be readily obtained for the Holway model, while no
such proof exists for the Rykov model. Surely, the Holway model is the simplest to use since
it depends only on one parameter, the Prandtl number, but probably not accurate enough to
treat problems with combined heat transfer and flow phenomena. The Rykov model remains a
solid alternative for diatomic gases, while very recently has been extended to polyatomic gases
[46]. It is noted that for this specific heat transfer problem the dependency of the results on
the parameter indicating the strength of translational-rotational coupling is very small for all

kinetic models and the DSMC method (the Holway model is the less sensitive one).
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The total heat fluxes of diatomic and polyatomic gases have been found to be higher
about 30 — 50% and 50 — 75% respectively than the corresponding monatomic ones, with the
highest differences occurring in the free molecular limit. Furthermore, as the amount of elastic
compared to inelastic collisions is increased, the translational heat fluxes are slightly increased
and they tend to the monatomic ones, while the rotational heat fluxes are always about 50%
and 75% of the translational ones for diatomic and polyatomic gases respectively. Also, the
translational and rotational temperature distributions (as well as the total temperature) are
very close to each other for each set of parameters examined and they are similar to the corre-
sponding monatomic ones when the translational and rotational accommodation coefficients are
the same. On the contrary they depart from each other when the two coefficients are different.
In most cases as the thermal accommodation coefficient « is increased, i.e. the gas-surface in-
teraction becomes more diffusive, the dimensionless total heat flux is monotonically increased.
However, for adequately large temperature differences and efficiently high gas rarefaction levels
a non-monotonic behavior, with a maximum total heat flux at some a < 1, has been observed.
A detailed description of the behavior of the translational and rotational heat fluxes and tem-
peratures on the partial energy accommodation at the walls is provided. Finally, providing
some dimensional results, it has been found that while in monatomic gases the heat flux is
always increased as the molar mass is decreased, this is not necessarily the case in polyatomic
gases since the additional degrees of freedom result to additional heat transfer.

Overall, it is noted that the present work may be useful in the heat transfer design and
optimization of MEMS, vacuum sensors and other technological devices with polyatomic gases.
It is also noted that the presented results are in a range of heat transfer parameters where the

assumption of a gas of rigid rotators is justified.
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Table 3.1: Dimensionless translational heat fluxes ¢, for a diatomic gas (j =2, Pr=0.72)
with HS molecules (w =0.5) at the hot plate (y = —1/2) and various values of §y and Ty /T
(ZWB) =z =650, v = —0.50, 8 = 0.21, w, = 0.458, w; = 2.840, ZH) = 4.67).

Ty/To = (1+8)/ (1)
do 1.1 3.0 10.0
Andries | Holway | Rykov | Andries | Holway | Rykov | Andries | Holway | Rykov
0 |5.37(-2) | 5.37(-2) | 5.37(-2) | 5.06(-1) | 5.06(-1) | 5.06(-1) | 5.98(-1) | 5.98(-1) | 5.98(-1)
0.1 | 5.11(-2) | 5.11(-2) | 5.09(-2) | 4.84(-1) | 4.84(-1) | 4.83(-1) | 5.83(-1) | 5.83(-1) | 5.88(-1)
1 | 3.79(-2) | 3.79(-2) | 3.77(-2) | 3.65(-1) | 3.65(-1) | 3.66(-1) | 4.68(-1) | 4.67(-1) | 4.82(-1)
5 1.92(-2) | 1.92(-2) | 1.95(-2) | 1.92(-1) | 1.92(-1) | 1.95(-1) | 2.75(-1) | 2.75(-1) | 2.85(-1)
10 | 1.21(-2) | 1.21(-2) | 1.23(-2) | 1.22(-1) | 1.22(-1) | 1.25(-1) | 1.84(-1) | 1.84(-1) | 1.90(-1)
50 | 3.03(-3) | 3.03(-3) | 3.10(-3) | 3.13(-2) | 3.13(-2) | 3.20(-2) | 4.96(-2) | 4.96(-2) | 5.07(-2)
100 | 1.56(-3) | 1.57(-3) | 1.60(-3) | 1.62(-2) | 1.62(-2) | 1.66(-2) | 2.58(-2) | 2.58(-2) | 2.64(-2)

Table 3.2: Dimensionless rotational heat fluxes ¢, for a diatomic gas (j =2, Pr=0.72)
with HS molecules (w = 0.5) at the hot plate (y = —1/2) and various values of &y and Tx/Tc
(ZzWB) = z(A) = 6.50, v = —0.50, 8 = 0.21, w, = 0.458, w; = 2.840, ZH) = 4.67).

Tu/To = (1+8)/(1— B)
do 1.1 3.0 10.0
Andries | Holway | Rykov | Andries | Holway | Rykov | Andries | Holway | Rykov
0 | 2.68(-2) | 2.68(-2) | 2.68(-2) | 2.53(-1) | 2.53(-1) | 2.53(-1) | 2.99(-1) | 2.99(-1) | 2.99(-1)
0.1 | 2.54(-2) | 2.54(-2) | 2.51(-2) | 2.40(-1) | 2.40(-1) | 2.39(-1) | 2.90(-1) | 2.90(-1) | 2.91(-1)
1 | 1.80(-2) | 1.80(-2) | 1.74(-2) | 1.74(-1) | 1.74(-1) | 1.69(-1) | 2.24(-1) | 2.24(-1) | 2.24(-1)
5 | 8.55(-3) | 8.55(-3) | 8.11(-3) | 8.59(-2) | 8.59(-2) | 8.20(-2) | 1.25(-1) | 1.24(-1) | 1.21(-1)
10 | 5.27(-3) | 5.27(-3) | 4.98(-3) | 5.39(-2) | 5.38(-2) | 5.12(-2) | 8.18(-2) | 8.18(-2) | 7.85(-2)
50 | 1.31(-3) | 1.31(-3) | 1.25(-3) | 1.36(-2) | 1.36(-2) | 1.29(-2) | 2.17(-2) | 2.16(-2) | 2.05(-2)
100 | 6.79(-4) | 6.79(-4) | 6.44(-4) | 7.05(-3) | 7.04(-3) | 6.68(-3) | 1.12(-2) | 1.12(-2) | 1.07(-2)
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Table 3.3: Dimensionless heat flux for a monatomic gas with HS molecules (w = 0.5) for various
values of §p and Ty /T based on the BGK and Shakhov models.

Tu/Te = (1+8) /(1= )
do 1.1 3.0 10.0
BGK Shakhov | BGK Shakhov | BGK Shakhov
0 | 5.37(-2) | 5.37(-2) | 5.06(-1) | 5.06(-1) | 5.98(-1) | 5.98(-1)
0.1 | 5.13(-2) | 5.09(-2) | 4.86(-1) | 4.84(-1) | 5.85(-1) | 5.89(-1)
1 | 3.86(-2) | 3.81(-2) | 3.72(-1) | 3.70(-1) | 4.74(-1) | 4.88(-1)
5 12.02(-2) | 2.01(-2) | 2.01(-1) | 2.02(-1) | 2.86(-1) | 2.94(-1)
10 | 1.28(-2) | 1.28(-2) | 1.30(-1) | 1.31(-1) | 1.95(-1) | 1.98(-1)
50 | 3.31(-3) | 3.31(-3) | 3.43(-2) | 3.43(-2) | 5.42(-2) | 5.43(-2)
100 | 1.72(-3) | 1.72(-3) | 1.78(-2) | 1.78(-2) | 2.84(-2) | 2.84(-2)

Table 3.4: Comparison between the dimensionless total heat fluxes ¢ of the Andries model and the
DSMC method for a diatomic gas (j = 2, Pr = 0.73) with HS molecules (w = 0.5) and various values
of 09 and Ty /Te (Z(PSMC) = z(A) =5 1 = —0.5, = 0.27).

Tu/To = (1+8)/(1- )
do 1.1 3.0 7.0 10.0
Andries | DSMC | Andries | DSMC | Andries | DSMC | Andries | DSMC
0.1 | 7.64(-2) | 7.55(-2) | 7.24(-1) | 7.21(-1) | 8.90(-1) | 8.87(-1) | 8.73(-1) | 8.70(-1)
1 | 5.56(-2) | 5.57(-2) | 5.36(-1) | 5.35(-1) | 6.86(-1) | 6.81(-1) | 6.89(-1) | 6.81(-1)
5 | 2.74(-2) | 2.80(-2) | 2.74(-1) | 2.80(-1) | 3.77(-1) | 3.82(-1) | 3.95(-1) | 3.99(-1)
10 | 1.71(-2) | 1.75(-2) | 1.73(-1) | 1.78(-1) | 2.46(-1) | 2.52(-1) | 2.62(-1) | 2.68(-1)
50 | 4.26(-3) | 4.38(-3) | 4.41(-2) | 4.55(-2) | 6.47(-2) | 6.68(-2) | 6.99(-2) | 7.23(-2)
100 | 2.20(-3) | 2.28(-3) | 2.28(-2) | 2.38(-2) | 3.36(-2) | 3.50(-2) | 3.63(-2) | 3.78(-2)
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Table 3.5: Dimensionless translational and rotational heat fluxes for a polyatomic gas (j =3,
Pr =0.72) with HS molecules (w = 0.5) at the hot plate (y = —1/2) and various values of ¢y and
Ty /Tc based on the Andries model (Z(A) = 6.50, v = —0.50, § = 0.21).

Ty /Tc = (1+6) /(1 - B)

do 1.1 3.0 7.0 10.0

qir Qrot qir qrot qir Qrot qir Qrot
0 5.37(-2) | 4.03(-2) | 5.06(-1) | 3.79(-1) | 6.14(-1) | 4.61(-1) | 5.98(-1) | 4.49(-1)
0.1 | 5.11(-2) | 3.80(-2) | 4.84(-1) | 3.61(-1) | 5.95(-1) | 4.43(-1) | 5.83(-1) | 4.35(-1)
1 3.79(-2) | 2.70(-2) | 3.65(-1) | 2.61(-1) | 4.66(-1) | 3.34(-1) | 4.68(-1) | 3.36(-1)
5 1.92(-2) | 1.28(-2) | 1.91(-1) | 1.29(-1) | 2.62(-1) | 1.78(-1) | 2.75(-1) | 1.86(-1)
10 | 1.20(-2) | 7.88(-3) | 1.22(-1) | 8.05(-2) | 1.73(-1) | 1.15(-1) | 1.83(-1) | 1.22(-1)
50 | 3.01(-3) | 1.96(-3) | 3.11(-2) | 2.03(-2) | 4.57(-2) | 2.98(-2) | 4.93(-2) | 3.23(-2)
100 | 1.56(-3) | 1.01(-3) | 1.61(-2) | 1.05(-2) | 2.37(-2) | 1.55(-2) | 2.57(-2) | 1.67(-2)
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Figure 3.2: Comparison between the dimensionless number density distributions p(y) of the

Andries model and the DSMC method for a diatomic HS gas (j = 2, Pr = 0.73, Z(DSMC)
ZW =5 v = —-0.5, § = 0.27) and various values of & with Ty /Tc = 1.1 (up), Ty /Tc =

(middle) and T /T = 10 (down).
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Figure 3.3: Comparison between the dimensionless translational 74, (y) and rotational 7, (y)
temperature distributions of the Andries model and the DSMC method for a diatomic HS gas
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Figure 3.4: Dimensionless total heat flux ¢ of a diatomic HS gas (j = 2, Pr = 0.71, Z(!) = 5)
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Ty /Tc =3 (middle) and Ty /Tc = 10 (down) based on the Holway model.
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Figure 3.5: Dimensionless translational heat flux ¢, at the hot plate of a diatomic HS gas (j = 2,
Pr=0.71, ZH) = 5) in terms of ay, (left) and a,e (right) for 6 = [0.1,1,10] and Ty /Tc = 1.1
(up), T /T = 3 (middle), Ty /T = 10 (down) based on the Holway model.
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Figure 3.6: Dimensionless rotational heat flux g, at the hot plate of a diatomic HS gas (j = 2,
Pr =0.71, ZH) = 5) in terms of oy, (left) and oy (right) for 6o = [0.1,1,10] and Ty /Te = 1.1
(up), T /T = 3 (middle), Ty /T = 10 (down) based on the Holway model.
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Figure 3.7: Dimensionless distributions of number density p (y) (left) and translational temper-
ature 7, (y) (right) of a diatomic HS gas (j = 2, Pr =0.71, Z = 5) with Ty /Tc = 10 and §p = 1
for various values of a4 with ;.. = 1, based on the Holway model.
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Figure 3.8: Dimensionless distributions of rotational temperature 7,4 (y) of a diatomic HS gas
(j =2, Pr=0.71, Z = 5) with Ty /T = 10 and d§y = 1 for various values of oy, with ao = 1
(left) and o with ay = 1 (right), based on the Holway model.
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Figure 3.10: Comparison between the experimental data in [96] and the computational results
obtained by the Holway model and the DSMC method (gas: No, Pr = 0.71, Z(DSMC) — 5
Ty/Te =1.0291, Ty = 301.96 K, a = 0.76, HS molecules).
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Figure 3.11: Comparison between the experimental data in [85] and the computational results

obtained by the Holway model (gas: Ny, Pr = 0.71, ZWH) = 5 Ty = 308.3 K, Ty/Te = 1.069,
ag = 0.795, ac = 0.808, HS molecules).
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Figure 3.12: Comparison between the experimental data in [97] and the computational results
obtained by the Holway model (gas: Na, Pr = 0.71, ZWH) = 5 Ty = 294 K, Ty/Tc = 3.72,
ag = ac = 0.82, HS molecules).
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Figure 3.13: Dimensional heat flux through various gases enclosed between two plates with
distance H = 5 mm for T = 293 K and Ty /T = 3 in terms of the reference pressure obtained
by the Holway model (Z(1) = 5 IPL model).
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Chapter 4

Conductive heat transfer in a rarefied
polyatomic gases confined between

coaxial cylinders

4.1 Introduction

The available research work of cylindrical heat conduction in rarefied polyatomic gases
is very limited and is mainly for small temperature differences. Thus, a detailed investigation
of the conductive heat transfer through rarefied polyatomic gases confined between two coaxial
cylinders is needed and it is tackled in this chapter considering only rotational degrees of
freedom. This heat transfer configuration is investigated here, based on the Holway [20] and
Rykov [21] models. Macroscopic quantities are provided for various radii ratios in a wide range of
the rarefaction parameter number and for small, moderate and large temperature differences.
Comparisons between kinetic models and DSMC results as well as between simulations and
available in the literature experimental data are presented and discussed. The validity of the
results is confirmed and the effects of all involved parameters on the heat flux and on the
temperature as well as on the density distributions are examined. Moreover, the influence
of the gas-surface interaction, as well as the influence of the number of rotational degrees of

freedom on the computed quantities are investigated.
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4.2 The cylindrical heat flow configuration

Consider two concentric stationary cylinders with radii R4, Rp and the annular gap
R = {(x,y) : R} < 2? +y* < R%} filled with a polyatomic gas at rest and arbitrary density
level. The temperatures of the inner and outer cylinder are maintained constant at T4 and
Ts respectively with Ty > Ts. The cylinders are assumed to be very long and variations in
the axial direction (end effects) are neglected. Then, due to the temperature difference there is
an axisymmetric conductive heat flow through the gas from the inner hot cylinder towards the
cold outer cylinder. The problem configuration is shown in Fig.4.1. In the temperature range
where the effects of vibrational degrees of freedom can be neglected, and the gas temperature
is neither too high nor too low, so that the rotational degrees of freedom may be considered

classically the problem may be modeled by rigid rotators model [29].

Figure 4.1: Cross-sectional schema of the heat transfer between coaxial cylinders.

The investigation is based on the description of the state of a polyatomic gas using the
distribution function f <'ﬁ, v, f) dependent on v = (&,,&y,£.) = (Ecosb, Esinb, E,), with v? =
&% + &2 being the molecular velocity, the position vector 7 and the rotational motion energy

I. The objective is to estimate all macroscopic distributions in terms of the three parameters
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governing this heat transfer problem, namely the temperature difference between the cylindrical
walls, the ratio of the two cylindrical radii and the degree of gas rarefaction.
It is convenient to introduce these three parameters in dimensionless form, taking the

quantities at the outer cylinder as reference quantities. In particular

Ty —1T, AT
B="2_L = (4.1)
Tp Tp
is the normalized temperature difference
Ra
=2 4.2
=R, (4.2)
is the ratio of the inner over the outer radius and
RpP
o = —2- L (4.3)
HBUB

is the reference gas rarefaction parameter. In the latter expression Py is a reference gas pressure,
measured when the system is in equilibrium (74 = T), pup is the gas viscosity at reference
temperature Tg and vg = \/m, with kg being the Boltzmann constant and m the
molecular mass, is the most probable molecular speed. The problem is axially symmetric and
one-dimensional in the physical space R4 < 7 < Rp. The macroscopic quantities of practical

interest are the number density distribution

n(7) = / / / 7 fdlde.cdedo (4.4)

as well as the temperature and heat flux distributions denoted by 7'(7) and Q(7) respectively. In
polyatomic gases the internal energy can by divided in two parts, the energy of the translational
motion and the energy associated to the internal structure. These energies are related to the

corresponding temperatures and heat fluxes. Then, the translational, rotational and total
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(thermodynamic) temperatures are:

]O ]" 7 (€% +€2) fdldg.cdgap, (4.5)
0 —oco 0

7 70 7 fIdIde cdeds, (4.6)
0 —x 0

_ 3ET (f) + jTrot (7@)
3+ '

R m
T (7) = 31— /
0

T(r)

(4.7)

The subscripts tr and rot refer to translational and rotational parts respectively, with
j = 2 for diatomic and linear molecules and j = 3 in all other cases (nonlinear molecules). The

corresponding heat fluxes are:

Qu (7)== (€2 +€2) (¢ cosb) fdlde.cdeds, (4.8)
]

2T 00 00 00

Qrot (7) = (¢ cos ) fIdIde.¢ddo, (4.9)
1]

Q(7) = Qur () + Qror (7). (4.10)

Here, the effect of all involved parameters, namely of 5, v and dg on the heat flux,
temperature and density distributions for diatomic and polyatomic gases is examined. This
is achieved in a deterministic manner described in Section 4.3. The approach includes the
replacement of the rather complex collision term of Eq. (2.5) by the Holway and Rykov kinetic

models.

4.3 Kinetic formulation in cylindrical geometry

The effort of solving the Boltzmann either analytically or numerically, is significantly
reduced by substituting its collision term with reliable kinetic models. Here, for purposes

related mainly to benchmarking and validation of results the Holway and Rykov models are
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applied. The Rykov model at its present form is applicable only to diatomic gases (j = 2), while
the Holway model is more general and is applicable to polyatomic gases (j = 2,3). Applying
the described projection process in energy space in Chapter 2, both models for the present
steady-state heat transfer configuration can be written in a similar form as [124, 132]

dg €sinbog Do
87" 7 60 7Eo)t (97(’0)25 g) + Vt(r) <g§r) - g) ) (411>

Oh  €sinf0h _ o i)\ 0 (30 _;
oF 7 o0 = Vpot (hrot - h) + Vg <htr - h) ) (412)

where the superscript ¢ = H, R denotes the Holway (H) and Rykov (R) models respectively.
Here, the collision term consists of the elastic and inelastic collision parts, with the subscripts
tr referring to elastic and rot to inelastic, while gtr , hg;ﬁ , g,(j)t and hfnot are the corresponding

relaxing distributions given by Egs. (3. 13) and (3.14) for the Holway and the Rykov models

(4)

respectively. The quantities v,,” and !

mt denote the frequency of the elastic and inelastic

(4)

collisions respectively. The collision frequencies v;,” and u t are specified as

0 _ (1 LYPrpa L0 _ L Prp,
v, = (1 Z(i)) utTPr Vot = 0 ,utrPr : (4.13)

where Pr is the Prandtl number of the gas, with the parameter xy = 1 in the Holway model
(i = H) and x = 0 in the Rykov model (i = R), while the parameter 1 < Z < oo indicates how
many collisions occur per single rotational collision. Also in Egs. (4.13), P, = nkgT,, is the
pressure defined by the translational temperature and p, = p (T is the gas viscosity based
on the translational temperature of the gas. At this stage the following dimensionless quantities

are introduced

S ~0 3 ]iL 3
T:Lv €:i7 CZ:§7 g:gUB7 h: EJB
RB UB Up npg PB
T, T, 3Ty + JTro
p=" p=2t g = tret o 2T T Tt (4.14)
np TB TB 3+j
o Qtr - Qrot .
Qtr = = ) Qrot = = ) q = Qir + Qrot-
Ppup BUB
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All quantities with the subscript B are considered as reference quantities (]53 = ngkpTs).
Here, g = g (r,(,0,c.) and h = h(r,(, 0, c,) are the dimensionless distributions, with v <r <1
while ¢ = ((cos,(sinf,c,) is the dimensionless molecular velocity vector. Furthermore, p,
7 and ¢ are the dimensionless distributions of number density, temperature and radial heat
flux respectively, with 7y, Trot, Qiry ¢rot denoting the corresponding dimensionless translational
and rotational parts. Next, the computational effort is further reduced by eliminating the c,

component of the molecular velocity by introducing the reduced distributions

F(rc.0) = / gde., G (r,C,0) = / glde., S (r,C,0) = / hde..  (4.15)

By operating successively on Eq. (4.11) with the integral operators [ (.)dc, and [ (.)c2dc,
as well as on Eq. (4.12) with [ (.)dc,, a system of three integro-differential equations is obtained,

which in compact vector form is written as

OT  (sind O

—w 1 i 1 7
Ceosth 5 — == = mp(mir) ~“Pr Kl - zm) (wh )+ (v - ‘I’>] - (4.16)

Here, the vector of the unknown distributions ¥ = [F, G, S]T depends on three indepen-
dent variables, namely p, ¢ and 6. Also, the reference gas rarefaction dp is given by Eq. (4.3). As
7 — o0, the first two equations in Eq. (4.16) for i = H, R are transformed to the correspond-
ing reduced BGK and Shakhov equations for monatomic gas. In the derivation of Eq. (4.16) the
Inverse Power Law (IPL) interaction between particles has been introduced with w € [0.5, 1].
In addition, the translational and rotational relaxing distributions in Eq. (4.16) are given by
\Ill(tf,) = [Ft(f), Ggi), Sg)]T and \Ilfi}t = F,,(f,l, Gf,i)t, Sﬁz)t ' respectively, where the components of

these vectors for each kinetic model are as follows

e Holway model

2 1 ;
th“H) - P eXp (_C_) ) G?Ef) = _Ttrth"H)J St(rH) = lTrotFt(rH)a

T Ty Tir 2 2
(4.17)
H P ¢ m 1 H) ] _ H
Fr(ot) = ;exp (_?> ; G7("0t) = §TF7"(ot)> Sﬁot) = §TF7“(ot)'
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o Rykov model

4 q, 0 2
FO g |y A CCSS (S ’
15 PTir Tir

1 4 ¢, Ccosf [ C?
G = o YD |14 22 (> -1
Ak T !

Ttr

4 anGeost (¢7 ot c08 0
St(f') :TrotﬂgdH) {14_ _w (C_ _2) +2(1 —li) qrotG COS

15 thZT Ttr PTirTrot
(4.18)

4 qir 0 (2

F® — pD {Hwo_@ (c_ . 2)} |
15 pr T

1 4 QtrC cos 6 C2
qW® _ L_pH) |y 4 guCeosd (&
rot 27— rot +w015 p’]‘2 pn ,

4 g eost (¢ ot 05 0

SB _ gt |y o A6 cosO (G 0N o gy BrerC oSO
15 pr? T 72

The parameters wy and w; are chosen so that the thermal conductivity obtained from
the model equation is close to the experimental data in [119], while the parameter k for a
power intermolecular potential is constant. The parameters w,, w; and k are discussed in
detail in Chapter 3. The macroscopic quantities in Egs. (4.16)-(4.18) in terms of the reduced
distributions F', G and S are obtained by operating accordingly on Eqs. (4.4)-(4.10). A similar

manipulation to the one applied in the governing equations is applied to deduce the following

moments )
p= / / Fedcde, (4.19)
0 0
2 2w oo 2 2T 00 3 )
r_l_JTrot
R 2F 4+ @) ¢dCdd, mz—//deG, _ Tt T JTrot. 4.20
. 3p0/0/(< ) CdCdD, T ) ccdy. 7= T (4.20)

2

tr — 2F G 9 d d@, rot — S 9 d d@, = (tr rot- .
q O/O/(C 1G) (Ceos0) CdCdB, g 0/0/ (Ccos0) CCdb, g = gy + qror. (4:21)

2w
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It is noted that by operating accordingly on Eq. (4.16) the conservation equation

9 rq(r)]

S =0 (4.22)

is readily deduced, which implies that the product rq(r) remain constant along v < r <
1. Therefore in the Section 4.5, results for the heat fluxes are presented only at the inner
hot cylinder where r = ~. In addition, this conservation equation is used for benchmarking
purposes. Furthermore, it is noted that upon convergence the conservation equation Eq. (4.22)
is accordingly satisfied in several significant figures. In addition, the numerical solutions at the
free molecular (0 = 0) and continuum (0 — o0) limits have an excellent agreement with the
corresponding analytical ones presented in Appendix C.

To close the problem formulation boundary conditions have to be assigned. The problem is
axially symmetric and therefore becomes one-dimensional in physical space. Thus, the boundary
conditions are only imposed in two points. Since, in many practical applications [80] the radius
ratio is characterized by large values the influence of the gas-surface interaction on the external
cylinder is so small that we may neglect it. Thus, the diffuse scattering is assumed on the outer
cylinder, while the boundary condition model I with one thermal accommodation coefficient
described in Chapter 3 is applied at the inner cylinder. Then, the outgoing distributions (+)
associated to Eq. (4.16) are at the inner wall (r = ~)

2 .
w 1
Ft = p—eXp (—C—) ., Gt = §TaF+’ St = %TO‘F’L, (4.23)

where 7* = T /Tj is given by

o B 2E~
™=a(l+p)+(1 oz)—(4+j)N, (4.24)
while
37/2 00
] [ (Ceost) (CPFT + G+ S7) ¢d¢de
N — 57/2 o0 : (4.25)
[ [ (¢cos®) F~¢d¢do
w/2 0
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The parameter p,, is obtained by the no penetration condition according to

37’1’/2 o0
2

jT—Z | [ ceosorrcaca. (4.26)

w/2 0

Pw = —

In the Eqs. (4.24)-(4.26) the superscript (-) denotes the incoming fluxes on the wall. At the

outer wall (r = 1) the following boundary conditions are applied

1 1 '
Ff=—exp(=¢?), G'=3F* S§*= %F*. (4.27)

Boundary conditions Egs. (4.23)-(4.26) and Eq.(4.27) are valid for 0 € [—7/2,7/2]
and 6 € [n/2,37/2] respectively. The nonlinear vector Eq. (4.16) along with the associated
expressions Eqs. (4.17)-(4.18), the moments Eqgs. (4.19)-(4.21) and the boundary conditions
Egs. (4.23)-(4.27) provide a theoretically well-established closed kinetic formulation for the
heat transfer problem under consideration, which is solved numerically both for the Holway

and Rykov models in a deterministic manner.

4.4 Results and discussion

4.4.1 Numerical parameters and computing quantities

The molecular velocity space (¢, #), with ¢ € [0,00), 8 € [0,27], and the physical space
r € [v,1] are discretized. The continuum spectrum of magnitudes of the molecular velocity
vector is replaced by a set of discrete magnitudes (,, € [0, (nax], m = 1,2,..., M, which are
taken to be the roots of the Legendre polynomial of order M accordingly mapped from [—1, 1]
t0 [0, (max]- Also, by using a uniform grid, the angular space is divided into N intervals. Each
of the angular intervals is defined by its angle 6,,, n = 1,2, ..., N. Finally, the distance between
the two cylinders is divided into K equal segments, defined by r, k =1,2,..., K + 1.

The integro-differential equations Eq. (4.16) are first discretized in the variable ¢ and
the resulting equations are integrated over each spatial and angular intervals [Tk_1 /25 Tht1 /2}

and [Gn_l/g, 0n+1/2}. The moments Eq. (4.4)-(4.10) are numerically integrated by applying the
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trapezoidal rule and Gauss-Legendre quadrature in the polar angle 6 and the velocity magnitude
( respectively. The resulting discretized equations for Wy ,,, » = [Frim.n, Grmon, Sk7m7n]T with the
associated discretized moments are solved in an iterative manner which is concluded when the

convergence criteria

(t+1) ) Ti(t+1) B Ti(t) n q§t+1)i B ql(t)

] <e (4.28)

s [

with ¢ denoting the iteration index, is fulfilled. The results presented in Section 5 have been
obtained with M = 24, N = 400 and K = 800 for v > 0.1 and K = 2000 for v < 0.1, while
the termination parameter is set to e = 107®. Recently, the implemented numerical scheme has
been applied to solve with considerable success heat transfer configurations [124, 132].

Results in graphical and tabulated form are presented for the macroscopic quantities in
terms of all parameters involved in the problem. In particular, in Subsection 4.4.2 the macro-
scopic quantities obtained by the Holway and Rykov kinetic models as well as by the DSMC
method in a wide range of all parameters involved in the problem are presented for linear (j = 2)
and nonlinear (j = 3) polyatomic molecules in tabulated and graphical form. The influence
of the rotational degrees of freedom on the translational, rotational and total heat fluxes in
the case of the cylindrical geometry is investigated in Subsection 4.4.3. More specifically, heat
fluxes distributions are provided for diatomic and polyatomic gases enclosed between cylinders
with the normalized temperature difference 5 = [0.1, 1, 10], the radii ratio v = [1/2,1/10, 1/65]
and the gas rarefaction parameter ég varying from the free molecular limit up to the hydro-
dynamic regime. Finally, in Subsection4.4.4 comparisons between computational results and

experimental data available in literature are performed.

4.4.2 Comparison between kinetic models and DSMC

In Table 4.1, the dimensionless translational and rotational heat fluxes computed by
the Holway and Rykov models (j = 2) are given for various  and dp with v = 1/2. The
tabulated results are at the surface r = v of the inner cylinder. The enclosed gas is nitrogen

(N3) and the inverse power law (IPL) model with w = 0.74 has been applied. In the case
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of the Rykov model, the parameters in Eq. (4.18) are set to wy = 0.2354, w; = 0.3049 and
k = 0.645 [45, 106]. Results are provided for Z = 1 and 5, which are indicative for this type
of simulations since, Z = 1 means that only inelastic collisions occur, while Z = 5 refers to
the situation where the amount of inelastic collisions is small compared to the elastic ones. In
the last column the corresponding heat fluxes obtained by the Shakhov model for a monatomic
gas are given. It is observed that the agreement between the results of the Holway and Rykov
models is, in general, very good. As expected, at 0 = 0 identical results are provided and then
as dp is increased the deviation between the Holway and Rykov heat fluxes is increased. Also,
in terms of the parameter Z the agreement is better as Z is increased. The largest discrepancies
are about 10% and they are occurring at Z = 1 and dp = 10 (independent of ). According
to Eq. (3.17) for fixed values of the parameters wy = 0.2354, w; = 0.3049 and x = 0.645
the Prandtl number of the Rykov model is a function of the parameter Z taking the values
Pr =0.71 and 0.91 for Z = 1 and 5 respectively. In order to achieve a consistent comparison for
Z =1 between the Holway and Rykov models the Prandtl number used in the Holway model
is taken equal to the Prandtl number obtained by the Rykov model. Thus, in Table 4.2 the
corresponding comparison performed in Table 4.1 for Z = 1 is presented for Pr = 0.91. As it
is seen the comparison is very good with the maximum relative error being less than 2%. In
both models the rotational heat fluxes are about half of the corresponding translational ones
(at 0 = 0, @ is exactly one-half of ¢;.). It is clearly seen that the Rykov model is more
sensitive to the variation of Z, compared to the Holway model which, at least for this set of
parameters, is slightly affected and only at large values of dg. In both models as Z is increased,
the translational heat fluxes are increased approaching those of the Shakhov model (Z — o0).
The values of ¢, at Z = 5, are already close enough to the corresponding ¢ of the Shakhov
model. The total heat fluxes ¢ = ¢4 + ¢t of Ny for the Rykov and Holway models are higher
about 22 — 50% and 36 — 50% respectively than the corresponding monatomic heat fluxes. It is
noted that the analytical free molecular results in Appendix C are recovered to all significant
figures, while the conservation Eq. (4.22) is fully satisfied. The heat flux distributions between
the cylinders are readily reduced by multiplying the tabulated values by the ratio ~/r.
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In Table 4.3, a comparison between the results obtained by the Holway model and the
DSMC method [132] for a diatomic gas (j = 2) enclosed between cylinders with v = 1/2 and
various values of § and Jj is performed. Based on the hard sphere (HS) model the dimensionless
translational and rotational heat fluxes for Z =1 and 5 at r = ~ are provided. It is important
to note that in order to facilitate comparisons between the DSMC and kinetic results, the gas
rarefaction parameter dy is defined in terms of a reference pressure By given by By = nokgTy

(instead of Ps=n pkpTg), where ng is an average reference number density defined as

2 / () pd (4.29)
ngo = ———— nir)rar. .
° RzB _R2A Ra

Therefore, the Holway kinetic heat fluxes presented in Table 4.3 are not directly compatible
with the ones in Table 4.1. The variation of the DSMC heat fluxes in terms of the problem
parameters (3, &y, Z) is exactly the same as for the kinetic models. More importantly, in all
cases the quantitative agreement between the Holway and DSMC results is excellent with the
largest discrepancies not exceeding 5%. For completeness purposes the monatomic modelling
results based on the Shakhov model are also included.

The comparison is continued in Figs. 4.2 and 4.3, where the distributions of density and
temperatures respectively, obtained by the Holway and DSMC approaches, are plotted for the
indicative values of 5 = 0.1, 1, 10 and 0y = 0.2, 2, 20. As it is observed in Fig.4.2, the
corresponding density distributions are in excellent agreement for all 8 and ¢y, with the relative
plots actually coinciding on each other. Furthermore, in Fig.4.3 the agreement between the
corresponding translational and rotational temperature distributions is again very good in all
cases with an exception at § = 10 and dyp = 20, where a small deviation between the relative
plots is observed. It is also seen that the translational and rotational temperatures for the same
set of parameters are almost identical. Therefore, Eq. (4.20) yields 7 ~ 7. & T,o;. Observing
the results presented so far (Tables 4.1, 4.2 and 4.3 and Figs. 4.2 and 4.3) it is deduced that
the deterministic modeling based on two different kinetic model equations namely the Holway
and Rykov models and the stochastic modeling based on the DSMC method provide similar
results in simulating polyatomic gas heat transfer between coaxial cylinders in a wide range of

problem parameters.
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4.4.3 Effects of cylindrical geometry on heat fluxes

In this subsection the study is focused on the dependency of the translational, rotational
and total heat fluxes on 0 < d5 < 10, v and 3. The presented results are for d5 = [0, 0.1, 1,4, 10],
v =1[1/2,1/10,1/65] and 5 = [0.1,1,10]. Also, the influence of the thermal accommodation
coefficient o on the heat transfer characteristics is studied by providing numerical results for
q(r =) in terms of the parameter 0 < a < 1 of the boundary condition model I with one
thermal accommodation coefficient, which is applied at inner cylinder. Furthermore, the simple
approximate expression for the heat flux proposed in [98] is tested for different values of the
parameters dg, v and . The simulations have been performed for diatomic (; = 2) and
polyatomic (j = 3) hard sphere gases (w = 1/2) with Pr = 0.71 and Z = [1, 3, 5].

In Table 4.4, the translational, rotational and total heat fluxes of a diatomic gas (j = 2)
are presented for dp = [0,0.1,1,4,10], v = [1/2,1/10,1/65] and g = [0.1,1,10]. These di-
mensionless results demonstrate the effect of all parameters on the heat fluxes including the
effect of the radius ratio, which has not been shown before. Furthermore, they may be used for
reference purposes in future computational and experimental studies. Therefore, in order to be
as general as possible for diatomic gases, they are obtained based on the Holway model, which
depends only on the parameter Z. Also, based on the literature, the value of Z = 3 used in the
simulations is the most suitable one covering a wide range of diatomic gases. The behaviour
of the polyatomic heat fluxes in terms of dg, v and [, qualitatively is similar to that of the
monatomic ones (are also included for comparison purposes), i.e., they are increased slowly as
~ is decreased, they are increased almost proportionally to § and they are decreased as dp is
increased. Quantitatively however, they vary significantly, with the diatomic heat fluxes being
36 — 50% higher. Also, g, is about one-half of ¢, with the latter one being close and always
smaller to the heat flux of the Shakhov model.

In Table 4.5, the translational, rotational and total heat fluxes for a polyatomic gas (j = 3)
are presented for 5 = [0,0.1,1,4,10], v = 1/2 and § = [0.1,1,10]. The results are based on
the Holway model and since no results for j = 3 have been presented so far, the parameter Z
is set to Z = 1 and 5. The variation of all heat fluxes in terms of g and 3, as well as of Z

is similar to the one for a diatomic gas (see Tables 4.1 and 4.3). The numerical solutions at
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0p = 0 are exactly the same to all tabulated significant figures with the ones obtained by the
analytical expressions given in Appendix C with j = 3. Also, at dg = 0, ¢t is 75% (instead
of 50% in diatomic gases) of ¢,.. This relation applies approximately to all 65 > 0 independent
of 3, with rotational heat fluxes being about 75% of the translational ones, while the latter
ones are close to the translational heat fluxes of a diatomic (and monatomic) gas. As a result,
the dimensionless total heat fluxes of polyatomic gases are about 58 — 75% higher than the
corresponding monatomic ones.

In Fig. 4.4 the dimensionless total heat flux ¢ of a diatomic gas (j = 2, Pr =0.71, Z = 5)
with HS molecules in terms of « is plotted. Results are given for 05 = [0.1, 1,10}, v = [1/2,1/10]
and = [0.1,1,10]. As expected the effect of the thermal accommodation coefficient o on the
total heat flux is increased as the rarefaction parameter is decreased. Also, in all cases as « is
increased the dimensionless total heat flux is also increased, which is physically justified since
as « is increased the temperature of the particles leave from the inner cylinder is increased
approaches the temperature of the cylinder. Moreover, it is seen that the behaviour of the total
heat flux in terms of « is independent of the radius ratio v. Qualitatively similar behaviour is
observed for the translational and rotational heat fluxes and therefore is not shown separately.

It has been proposed in [98] that the heat flux between confined coaxial cylinders may
be computed in the whole range of the rarefaction parameter, assuming small temperature

differences and large radius ratios, according to

=+, (4.30)

where ¢f,, and g. are the corresponding free molecular and continuum heat fluxes, which are
given for the cylindrical geometry in Appendix C. It has been observed in [86] that in monatomic
gases this expression remains valid well beyond the introduced assumptions providing easy-to-go
results. Here, this investigation is extended to Ny and in Fig. 4.5, a comparison is made between
the computed heat fluxes based on the Rykov model for the large temperature difference of
g =10, v=[1/2,1/10,1/65] and in a wide range of dg, with the corresponding ones obtained
by the empirical Eq. (4.30). It is seen that the agreement is excellent for 65 < 10 and then as 0p

is further increased there are some discrepancies which are increased as 7y is decreased. However,
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the overall agreement remains good and becomes even better as [ is decreased. Therefore this
expression may also be implemented in polyatomic gases for engineering purposes when the

temperature distributions are not needed.

4.4.4 Comparison with experiments

A comparison with experimental data available in the literature is performed in terms
of the total heat fluxes. In [84], in an effort to estimate the energy accommodation coefficient
of various gases, a detailed experimental investigation has been performed for heat transfer in
rarefied gases between coaxial cylinders maintained at a very small temperature difference. It
has been found that in the case of Ny the interaction with the wall is almost purely diffusive.
These dimensionless experimental data for Ny with v = 1/65 and T = 300 K (see Tables 2 and
3 in [84]) are compared, in Fig.4.6, with the corresponding computational ones, based on the
Rykov model. Since the temperature difference is very small and in order to avoid introducing
a specific temperature difference, the linearized Rykov model has been applied. The linearized
formulation of the Rykov model for the problem under question is described in Appendix D.
It is noted that the nonlinear Rykov model with 5 < 0.1 provides very similar results with
those of its linearized version. Simulations are performed with wy = 0.2354, w; = 0.3049 and
k = 0.645 [106] for Ny while the parameter Z is chosen equal to 3 in order to obtain a Prandtl
number equal to 0.73, which is a good estimation for the Prandtl number of Ny [133]. The
results obtained by the Rykov model are in very good agreement with the experimental results
in a wide range of the gas rarefaction dg € [1, 102}. On the contrary, the heat fluxes obtained
by the linearized Shakhov kinetic model, also shown in Fig. 4.6, are erroneous underestimating
the experimental ones about 50%. In [84] experimental data for Dy are also reported. In Fig. 4.7
the results obtained from the Holway kinetic model with § = 0.01, o = 0.479, j = 2, Pr = 0.66,
w = 0.67 [84, 134] are compared with the corresponding experimental data in [84] for Dy. Very
good agreement is observed in a wide range of the rarefaction parameter 0 between simulations
and experiments. In the same comparison the numerical results obtained with o = 1 are shown
for completeness purposes. For small values of the rarefaction parameter d the total heat flux

with a = 1 is about two times higher than the corresponding one with a = 0.479.
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Next, a comparison with the experimental data in [80] is also performed in Fig. 4.8, in
dimensional form. Now, the inner diameter is R4 = 75 um, the radius ratio v = 1/667, the
temperature of the outer cylinder Tp = 298 K and the temperature difference AT (5 = 0.336).
The computational total heat fluxes, based on the DSMC method and the Rykov model, with
Z = 3, are in very good agreement with the experimental ones, while once again the heat
fluxes based on the Shakhov model for monatomic gases are significantly smaller than the
experimental ones. As it is seen the comparison is in a wide range of the reference pressure Py
varying from 1 Pa up to 10 Pa, with the corresponding gas rarefaction parameter dz varying
from 6 up to 2600. It is noted that as dp is increased the computational results tend to the
analytical ones obtained by Eq. (C.21). Overall, the comparison studies in Figs. 4.6, 4.7 and 4.8
with the experimental data in [84] and [80] respectively, validate the simulation results.

In order to obtain a more physical understanding of the heat transfer in monatomic and
polyatomic gases and to facilitate comparisons with experiments, in Fig. 4.9, some dimensional
total heat fluxes [W/m?] in terms of the reference pressure Pp [Pa] are given for the monatomic
gases of He and Ar, the diatomic gases of Hy and Ny and for the polyatomic gas of COs. The
inner diameter is R4 = 1 cm with v = [1/2,1/10], while the reference temperature is T = 293
K with § = [0.1,1]. The reference pressure Py € [10_3, 10} Pa and is easily connected to
the rarefaction parameter dp, via Eq. (4.3) once the viscosity and the most probable velocity
of each gas is specified. All computations are based on the Holway model with Z = 3 and
the IPL model (w = [0.66,0.81,0.67,0.74,0.93] for He, Ar, Hy, Ny, CO; respectively). In all
cases, as expected, the heat flux is monotonically increased with pressure. At highly rarefied
atmospheres the heat flux is proportional to gas pressure, then, in the transition regime the
relation becomes more complex and at dense atmospheres the heat flux depends weakly and
finally is independent of pressure. Also, the heat fluxes for § = 1 are about one order magnitude
higher than the corresponding ones for # = 0.1, while the effect of 7 is not that important with
the heat fluxes being slightly decreased as the gap between the cylinders is increased.

More importantly, it is observed in Fig.4.9, that under the same conditions the heat
flux of different gases varies significantly. The largest heat fluxes are achieved for Hy followed

successively by the heat fluxes of He, Ny, CO5 and Ar. This trend is valid in the whole range of
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pressure except for the curves of COs and Ar, which cross each other at some relatively large
pressure Py > 1Pa. It is well known that in heat transfer through monatomic gases confined
between coaxial cylinders, the dimensional heat flux is increased as the molar mass of the gas
is decreased (see Fig. 9 in [89]). However, this remark cannot be generalized in the case of
polyatomic gases since, as seen in Fig. 4.9, in a wide range of pressure the heat flux of CO, is

larger than that of Ar, while its molar mass is larger.

4.5 Concluding remarks

The problem of heat transfer through rarefied polyatomic gases confined between two
coaxial cylindrical surfaces maintained at different temperatures is solved based on the Holway
and Rykov kinetic models. The quantitative behavior of the radial heat flux is examined in a
wide range of the gas rarefaction parameter, small, moderate and large normalized temperature
differences and various radius ratios. The deduced density and temperature (translational,
rotational, total) distributions are also provided. The results obtained by the two kinetic
models are in good agreement, with the Rykov model being more sensitive, compared to the
Holway model, in the variation of the mixing parameter indicating the strength of translational-
rotational coupling. Very good agreement between the Holway model and DSMC results for
HS molecules has also been observed. In addition, the computational results match perfectly
the analytical ones in the free molecular and continuum limits. These findings along with
the successful comparison between simulations and available experimental data for polyatomic
gases associated to small and large temperature differences demonstrate the validity of the
implemented modeling approaches.

The translational and rotational as well as the total temperatures are very close to each
other for all parameters examined here and they are similar to the corresponding monatomic
ones. In contrary, the total heat fluxes for polyatomic gases are significantly higher than those
for monatomic gases. More specifically, the heat fluxes of diatomic and polyatomic gases,
obtained by the Holway model, are higher about 36 — 50% and 58 — 75% respectively than the
corresponding ones obtained by the Shakhov model, with the highest differences occurring in

the free molecular limit. As the amount of elastic compared to inelastic collisions is increased,
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the translational heat fluxes are increased and they tend to the monatomic ones, while always
the rotational heat fluxes are about 50% and 75% of the translational ones for diatomic and
polyatomic gases respectively. Furthermore, it has been found that the simple expression in
Eq. (4.30), proposed in [98], provides reasonably accurate results in a wide range of parameters,
while another observation of practical interest is that, while in monatomic the dimensional heat
flux is increased as the molar mass is decreased, this is not necessarily the case in polyatomic
gases.

Overall, it may be stated that the implementation of the Holway model is more flexible
to polyatomic gases, while the Rykov model, although seems to be more accurate, is limited
to additional experimental data for the specific gas under consideration. It is hoped that the
present work may be useful in engineering purposes as well as in comparisons with experimental

results.
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Table 4.1: Heat fluxes at the inner hot cylinder (r =+) with v = 1/2 for Ny (w = 0.74, j = 2,
Pr =0.71) based on the Holway and Rykov models.

Z=1 Z=5
B op qtr drot dir drot !

Rykov | Holway | Rykov | Holway | Rykov | Holway | Rykov | Holway | Shakhov
0 | 5.64(-2) | 5.64(-2) | 2.82(-2) | 2.82(-2) | 5.64(-2) | 5.64(-2) | 2.82(-2) | 2.82(-2) | 5.64(-2)
0.1 | 5.57(-2) | 5.58(-2) | 2.78(-2) | 2.79(-2) | 5.58(-2) | 5.58(-2) | 2.79(-2) | 2.79(-2) | 5.59(-2)
0.1 ] 1 | 4.97(-2) | 5.10(-2) | 2.46(-2) | 2.52(-2) | 5.12(-2) | 5.11(-2) | 2.54(-2) | 2.52(-2) | 5.15(-2)
4 | 3.65(-2) | 3.96(-2) | 1.75(-2) | 1.90(-2) | 3.98(-2) | 3.97(-2) | 1.92(-2) | 1.89(-2) | 4.08(-2)
10 | 2.37(-2) | 2.72(-2) | 1.11(-2) | 1.27(-2) | 2.75(-2) | 2.74(-2) | 1.28(-2) | 1.25(-2) | 2.87(-2)
0 | 5.64(-1) | 5.64(-1) | 2.82(-1) | 2.82(-1) | 5.64(-1) | 5.64(-1) | 2.82(-1) | 2.82(-1) | 5.64(-1)
0.1 | 5.57(-1) | 5.58(-1) | 2.78(-1) | 2.79(-1) | 5.59(-1) | 5.58(-1) | 2.79(-1) | 2.79(-1) | 5.60(-1)
1 1 | 4.98(-1) | 5.11(-1) | 2.47(-1) | 2.53(-1) | 5.14(-1) | 5.11(-1) | 2.56(-1) | 2.53(-1) | 5.18(-1)
4 | 3.73(-1) | 4.01(-1) | 1.81(-1) | 1.94(-1) | 4.05(-1) | 4.02(-1) | 1.97(-1) | 1.93(-1) | 4.15(-1)
10 | 2.53(-1) | 2.86(-1) | 1.20(-1) | 1.35(-1) | 2.90(-1) | 2.88(-1) | 1.37(-1) | 1.34(-1) | 3.02(-1)

0 5.64 5.64 2.82 2.82 5.64 5.64 2.82 2.82 5.64

0.1 5.57 5.58 2.79 2.79 5.61 5.58 2.81 2.79 5.62

10 | 1 5.00 5.10 2.49 2.53 5.24 5.10 2.62 2.53 5.31

4 3.86 4.08 1.91 2.00 4.25 4.08 2.11 2.00 4.37

10 2.86 3.10 1.40 1.51 3.24 3.11 1.59 1.50 3.37
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Table 4.2: Heat fluxes at the inner hot cylinder (r =) with (y =1/2) for Ny (w = 0.74, j = 2,
Pr =0.91) based on the Holway and Rykov models.

Z =1
B 0B dir drot

Rykov | Holway | Rykov Holway
0 | 5.64(-2) | 5.64(-2) | 2.82(-2) | 2.82(-2)
0.1 | 5.57(-2) | 5.57(-2) | 2.78(-2) | 2.78(-2)
0.1 ] 1 | 4.97(-2) | 4.97(-2) | 2.46(-2) | 2.44(-2)
4 | 3.65(-2) | 3.65(-2) | 1.75(-2) | 1.74(-2)
10 | 2.37(-2) | 2.38(-2) | 1.11(-2) | 1.10(-2)
0 | 5.64(-1) | 5.64(-1) | 2.82(-1) | 2.82(-1)
0.1 | 5.57(-1) | 5.57(-1) | 2.78(-1) | 2.78(-1)
1 1 | 4.98(-1) | 4.98(-1) | 2.47(-1) | 2.46(-1)
4 | 3.73(-1) | 3.73(-1) | 1.81(-1) | 1.79(-1))
10 | 2.53(-1) | 2.54(-1) | 1.20(-1) | 1.19(-1)

0 5.64 5.64 2.82 2.82

0.1 5.57 5.56 2.79 2.78

10 | 1 5.00 4.97 2.49 247

4 3.86 3.83 1.91 1.88

10 2.86 2.84 1.40 1.37
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Table 4.3: Heat fluxes at the inner hot cylinder (r =) with v = 1/2 for a diatomic gas (j = 2,
Pr = 0.71) with HS molecules, based on the Holway model and the DSMC method.
Z =1 Z =5
B do qtr drot dir drot !
Holway | DSMC | Holway | DSMC | Holway | DSMC | Holway | DSMC | Shakhov
0.2 | 5.59(-2) | 5.61(-2) | 2.79(-2) | 2.80(-2) | 5.59(-2) | 5.62(-2) | 2.79(-2) | 2.79(-2) | 5.61(-2)
2 | 4.73(-2) | 4.81(-2) | 2.30(-2) | 2.36(-2) | 4.73(-2) | 4.89(-2) | 2.30(-2) | 2.30(-2) | 4.81(-2)
1 3.08(-2) | 3.00(-2) | 1.44(-2) | 1.49(-2) | 3.09(-2) | 3.26(-2) | 1.42(-2) | 1.40(-2) | 3.23(-2)
20 | 1.79(-2) | 1.76(-2) | 8.18(-3) | 8.30(-3) | 1.81(-2) | 1.89(-2) | 8.03(-3) | 7.76(-3) | 1.93(-2)
0.2 | 5.98(-1) | 6.01(-1) | 2.98(-1) | 3.00(-1) | 5.98(-1) | 6.02(-1) | 2.98(-1) | 2.99(-1) | 6.01(-1)
2 | 5.16(-1) | 5.26(-1) | 2.52(-1) | 2.59(-1) | 5.17(-1) | 5.35(-1) | 2.52(-1) | 2.53(-1) | 5.30(-1)
o 3.42(-1) | 3.45(-1) | 1.61(-1) | 1.66(-1) | 3.44(-1) | 3.62(-1) | 1.59(-1) | 1.57(-1) | 3.60(-1)
20 | 2.03(-1) | 2.01(-1) | 9.35(-2) | 9.53(-2) | 2.05(-1) | 2.14(-1) | 9.18(-2) | 8.94(-2) | 2.18(-1)
0.2 6.85 6.85 3.42 3.42 6.85 6.85 3.42 3.41 7.00
2 6.48 6.64 3.19 3.26 6.48 6.65 3.17 3.17 6.99
0 8 4.85 4.94 2.32 2.38 4.86 5.06 2.29 2.24 5.27
20 3.26 3.27 1.53 1.56 3.29 3.43 1.50 1.46 3.54
91

Institutional Repository - Library & Information Centre - University of Thessaly
20/05/2024 01:12:25 EEST - 13.59.53.151



Section 4.5

Table 4.4: Heat fluxes at the inner hot cylinder (r = «) for a diatomic gas (j = 2, Pr = 0.71) with
HS molecules.

- 5 | og Holway (Z = 3) Shakhov
dtr qrot q q
0 | 5.64(-2) | 2.82(-2) | 8.46(-2) | 5.64(-2)
0.1 | 5.58(-2) | 2.79(-2) | 8.37(-2) | 5.59(-2)
0.1 [ T |5.10(2) | 2.51(-2) | 7.62(-2) | 5.15(-2)
3.95(-2) | 1.88(-2) | 5.84(-2) | 4.07(-2)
10 | 2.72(2) | 1.25(2) | 3.97(-2) | 2.86(-2)
0 | 5.64(-1) | 2.82(-1) | 8.46(-1) | 5.64(-1)
0.1 | 5.58(-1) | 2.79(-1) | 8.37(-1) | 5.59(-1)
12 | 1 [ 1 [5.09¢-1) | 2551(-1) | 7.60(-1) | 5.15(-1)
3.95(-1) | 1.90(-1) | 5.84(-1) | 4.08(-1)
10 | 277(-1) | 1.29(-1) | 4.06(-1) | 2.91(-1)
0 5.64 2.82 8.46 5.64
0.1 5.57 2.78 8.35 5.62
10 1 4.99 2.48 7.47 5.22
3.84 1.87 5.71 4.11
10 2.81 1.35 4.15 3.04
0 | 5.64(-2) | 2.82(-2) | 8.46(-2) | 5.64(-2)
0.1 | 5.61(-2) | 2.80(-2) | 8.41(-2) | 5.61(-2)
0.1 [ T |5.32(-2) | 2.64(-2) | 7.96(-2) | 5.38(-2)
451(-2) | 2.19(-2) | 6.70(-2) | 4.66(-2)
10 | 3.41(-2) | 1.62(-2) | 5.04(-2) | 3.62(-2)
0 | 5.64(-1) | 2.82(-1) | 8.46(-1) | 5.64(-1)
0.1 | 5.61(-1) | 2.80(-1) | 8.41(-1) | 5.62(-1)
110 | 1 [ 1 | 5.30(-1) | 2.63(-1) | 7.93(-1) | 5.39(-1)
4.45(-1) | 2.17(-1) | 6.62(-1) | 4.63(-1)
10 | 3.37(-1) | 1.61(-1) | 4.98(-1) | 3.57(-1)
0 5.64 2.82 8.46 5.64
0.1 5.60 2.80 8.40 5.66
10 1 5.22 2.60 7.82 5.61
4.21 2.08 6.29 4.70
10 3.17 1.55 4.72 3.50
0 | 5.64(-2) | 2.82(-2) | 8.46(-2) | 5.64(-2)
0.1 | 5.63(-2) | 2.82(-2) | 8.45(-2) | 5.63(-2)
0.1 [ 1T |555(2) | 2.77(-2) | 8.32(-2) | 5.57(-2)
5.20(-2) | 2.62(-2) | 7.91(-2) | 5.35(-2)
10 | 4.80(-2) | 2.36(-2) | 7.17(-2) | 4.94(-2)
0 | 5.64(-1) | 2.82(-1) | 8.46(-1) | 5.64(-1)
0.1 | 5.63(-1) | 2.82(-1) | 8.45(-1) | 5.64(-1)
1/65 | 1 [ 1 | 556(-1) | 2.77(-1) | 831(-1) | 5.58(-1)
5.25(-1) | 2.60(-1) | 7.85(-1) | 5.34(-1)
10 | 4.70(-1) | 2.32(-1) | 7.02(-1) | 4.87(-1)
0 5.64 2.82 8.46 5.64
0.1 5.63 2.82 8.45 5.65
10 1 5.52 2.76 8.27 5.70
5.07 2.52 7.59 5.50
10 4.32 2.14 6.47 4.75
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Table 4.5: Heat fluxes at the inner hot cylinder (r = «) with v = 1/2 for a polyatomic gas (j = 3,
Pr = 0.71) with HS molecules based on the Holway model.

8 | op Z = Z =5
Qtr Qrot q qtr Qrot q
0 |5.64(-2) | 4.23(-2) | 9.87(-2) | 5.64(-2) | 4.23(-2) | 9.87(-2)
0.1 [ 5.58(-2) | 4.18(-2) | 9.76(-2) | 5.58(-2) | 4.18(-2) | 9.76(-2)
0.1 1 [5.10(-2) | 3.77(-2) | 8.87(-2) | 5.10(-2) | 3.77(-2) | 8.87(-2)
4 [3.94(-2) | 2.83(-2) | 6.77(-2) | 3.96(-2) | 2.82(-2) | 6.78(-2)
10 | 2.770(-2) | 1.88(-2) | 4.58(-2) | 2.72(-2) | 1.86(-2) | 4.58(-2)
0 |5.64(-1) | 4.23(-1) | 9.87(-1) | 5.64(-1) | 4.23(-1) | 9.87(-1)
0.1 [ 5.58(-1) | 4.18(-1) | 9.76(-1) | 5.58(-1) | 4.18(-1) | 9.76(-1)
1 [ 1 [5.08(-1) | 3.77(-1) | 8.86(-1) | 5.09(-1) | 3.77(-1) | 8.86(-1)
4 3.94(-1) [ 2.85(-1) | 6.79(-1) | 3.95(-1) | 2.84(-1) | 6.79(-1)
10 | 2.776(-1) | 1.94(-1) [ 4.70(-1) | 2.77(-1) | 1.92(-1) | 4.69(-1)
0 5.64 4.23 9.87 5.64 4.23 9.87
0.1 2.57 4.17 9.74 5.57 4.17 9.74
10 | 1 4.99 3.72 8.71 4.99 3.72 8.71
4 3.82 2.82 6.64 3.84 2.81 6.65
10 2.79 2.03 4.82 2.81 2.01 4.82
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Figure 4.2: Dimensionless density distributions with v = 1/2 for a diatomic gas (j = 2,
Pr = 0.71) with HS molecules, based on the Holway model and the DSMC method.
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Figure 4.3: Dimensionless translational and rotational temperature distributions with v = 1/2
for a diatomic gas (j = 2, Pr =0.71) with HS molecules, based on the Holway model and the
DSMC method.
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Figure 4.4: Dimensionless total heat flux ¢ of a diatomic HS gas (j = 2, Pr =0.71, Z = 5) in
terms of thermal accommodation coefficient « for various values of 65 and f = 0.1 (up), g =1
(middle), 8 = 10 (down) with v = 1/2 (left) and v = 1/10 (right) based on the Holway model.
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Figure 4.5: Comparison of the radial heat flux at the inner hot cylinder ¢ (r = =) for Ny and
B = 10 with corresponding results of Eq. (4.30).
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Figure 4.6: Comparison between computational and experimental [84] dimensionless heat fluxes
q(r = =) for Ny confined between two cylinders with R4 = 100 gum, v = 1/65 and maintained at
a very small temperature difference with Tz = 300 K.
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Figure 4.7: Comparison between computational and experimental [84] dimensionless heat fluxes

q(r = =) for Dy confined between two cylinders with R4 = 100 pm, v = 1/65 and maintained at
a very small temperature difference with T = 300 K.
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Figure 4.8: Comparison between computational and experimental [80] dimensional heat fluxes
Q (r = ) for N and air respectively, confined between two cylinders with R4 = 75 pm, v = 1/667
and maintained at a temperature difference of AT = 100 K, with T = 298 K.
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Figure 4.9: Dimensional heat flux @ (r = 7) through various gases enclosed between two cylinders
with R4 = 1 cm and v = [1/2,1/10], maintained at T = 293 K and 8 = [0.1, 1], in terms of the
reference pressure Pp obtained by the Holway model (Z = 3, IPL model).
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Chapter 5

Effects of vibrational degrees of
freedom on the heat transfer in
polyatomic gases confined between

parallel plates

5.1 Properties of polyatomic gases

In general, it is advisable to consider vibrational excitation when the problem charac-
teristic temperature exceeds 25 — 30% of the gas characteristic vibrational temperature which
varies significantly for each gas. For instance, for O, and Ny the characteristic vibrational
temperatures are 2256 K and 3371 K respectively, whereas for CO, and SFg the lowest ones
are 960 K and 520 K respectively [19, 135].

Polyatomic gases with relatively low and moderate characteristic vibrational temperatures
are very common in several industrial processes and technological applications running in a wide
range of operating temperatures. A typical example of low excitation temperature gases is SFg,
which is used in the electronics industry (plasma etching and chemical vapor deposition), in the
magnesium production (die casting), in the fusion technology (as insulating gas into neutral

beam injector high voltage towers and transmission lines) and in other applications including
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gas-air tracing, leak detection, soundproof windows, etc. [136-138]. Other gases with moderate
excitation temperatures may be involved in piezoelectric sensing technologies [139] for use at
high temperatures (> 800 °C), in the automotive industry and in micro-electro-mechanical
systems for aeronautics and space applications (e.g. micro rocket engines) [140], as well as in
natural and environmental processes. Modeling of these processes should include the effect of
the excited vibrational modes, if agreement between measurements and calculations is to be
obtained.

Here, the same simple heat transfer configuration as in Chapter 3 is considered taking
into account however the vibrational degrees of freedom. The whole approach is based on the
Holway kinetic model [20]. The translational, rotational, vibrational and total temperature
distributions and the corresponding heat fluxes are presented for a wide range of the involved
parameters. Comparisons between the simulations based on the Holway kinetic model and the
DSMC method [173] as well as between simulations and experimental data [141] are shown and
discussed. The influence of the vibrational degrees of freedom on the heat fluxes for CO,, CHy
and SFg at low reference temperatures is investigated, while corresponding high temperature
calculations with Ny and O, are mainly performed for model testing and results validation. The
properties including the characteristic vibrational temperatures of all gases examined here are
given in Table 5.1. Furthermore, thermal conductivities predicted by the considered gas models
have been estimated exploiting the good agreement between the kinetic solutions and their
hydrodynamic (Chapman-Enskog) approximations, which occurs for moderately high values of

the rarefaction parameter, in a central strip of the domain [142, 143].
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Table 5.1: Properties of working gases (in the 3'¢ column the numbers in parenthesis indicate
degeneracy)

Gas | O, [K] | m x 10726 [Kg] | po [pPas] | w |j
Ny 3371 4.65 61.40 0.69
O, 2256 5.31 72.51 0.66

CO2 | 1930(1 7.31 62.01 0.7

CHy 2.66 41.12 0.68

SF¢ 24.3 59.82 0.69

5.2 Basic definitions

Consider the state of a stationary nonpolar polyatomic gas confined between two infinite
parallel plates fixed at § = £ H/2 and maintained at constant temperatures Ty and T¢ respec-
tively, with Ty > T. Then, due to temperature difference a conductive heat flow through the
gas from the hot plate to the cold plate is induced.

The adopted models include translational, rotational and vibrational energy modes of the
molecules assuming that the translational and the rotational energies are continuous, while the
vibrational energy is discrete. The rotation and vibration of the gas molecules are described
by the rigid rotator and quantum the harmonic oscillator models respectively. The rotational
mode can be described as having a constant number of degrees of freedom at all temperatures

which is j = 2 for linear molecules and j = 3 for non-linear molecules.
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On the contrary, the effective number of vibrational degrees of freedom varies with tem-

perature. For the simple quantum harmonic oscillator assumed here they are defined as [29]

9 N
= — 5.1
Tzexp QM/T)—l (5.1)
=1
where N is the total number of vibrational modes given by N = 3M — 5 for linear molecules
and N = 3M — 6 for nonlinear molecules with M being the number of atoms in the molecule.

Also, 6, ; is the characteristic vibrational temperature of vibrational mode 7 given by

hwi

kg’

Oy,i = (5.2)

where h = 1.05457 x 1073* J s is the reduced Planck constant, w; is the vibrational frequency
of the gas molecules and kg = 1.38065 x 10723 J/K is the Boltzmann constant. At very high
temperature each vibrational mode is linked to 2 degrees of freedom, from which one describes
the linear distance between the two atoms and the other describes the speed of vibration. In
diatomic gases at high temperature (, — 2, while in polyatomic gases (, takes higher values
depending on the specific gas and the applied temperature.

Depending on the accuracy desired level, the presence of the dissociation must be included
when the characteristic temperature exceeds 3 — 6% of the gas characteristic dissociation tem-
perature. It is noted that for most of the diatomic gases at these temperatures the atom mass
fraction is less than 10% [135]. For instance the dissociation temperatures of Ny and Oy are
113500 K and 59500 K respectively.

In the absence of dissociation the state of a polyatomic gas is determined by its distribution
function fg (g), v, f), where S = {S1,Ss,... Sy}, with S; = 0, 1,2, ..., represents the vibrational
quantum states, that depends on the space coordinate g, the molecular translational velocity
v = (&, &,,€.) and the energy of rotational motion I [20, 29]. Then, the macroscopic quantities

of practical interest are obtained by the moments of fg as [20, 144]

= i 77 sdldv, (5.3)

5=0
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kT (7 N A
Etr(gj):BTt@):ﬂnZ//UQ sdldv, (5.4)
oo 0

kT () 1N [ [ s
Erot (y):‘“%t(y)zgz://[ Sdldvy (55)

S=0_"" %
Fun (9) = o ); Faton () _ %Z / / (Zh >fsd]d’v (5.6)
,5':0_0o 0 =1

37}7"( )+]Tr0t( ) <v( mb( ))Tmb(:&)
Lo (8) = 3+ J+ Co (Tiot (9)) ’ 57
HUEEDY / / &0 fsdldv, (58)
Qrot (1)) = &1 fsdldv, (5.9)

Y géo/ s

)= [ [« (E .S ) fsdido, (5.10)

Qtot( ) Qtr( )+Qrot( )+me( ) (511)

In Egs. (5.3)-(5.11), n (y) is the number density, Ei. (9), Erot (4), Fvip () are the mean particle
energies and Qy (9), Qrot (), Quip (§) are the heat fluxes related to the translational, rotational
and vibrational motion of the molecules respectively, with T3, (9), Trot (9), Tvip (y) denoting the
corresponding temperatures. Also Ty, (3) is the total temperature and Qo () is the total heat
flux of all degrees of freedom.

The problem in dimensionless form is prescribed by the ratio of the high over the low

plate temperatures

T
= — 5.12
b= (512

and the reference gas rarefaction parameter

PyH
o = ——, (5.13)

HoVo
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where g is the gas viscosity at reference temperature Ty = (Ty + 1¢)/2, By = nokgTy is
the reference pressure and vy = \/m, with m denoting the molecular mass, is the
most probable molecular speed at Ty. The reference number density ng is given by Eq. (3.11).
The cases of 99 = 0 and §y — oo correspond to the free molecular and hydrodynamic limits

respectively. In addition, the dimensionless vibrational temperatures

0,; = 2 (5.14)

depending upon the working gas under consideration, are specified.

The effect of all involved parameters on the heat transfer problem is investigated focusing
of course on the effect of 0, ; since it is the parameter which characterizes the importance of
the vibrational degrees of freedom. This is achieved via the Holway kinetic model described in

Section 5.3.

5.3 Holway kinetic model with vibrational degrees of
freedom

As it has been shown in Chapter 3 the Holway kinetic model has been applied with
considerable success in the present heat transfer configuration providing good agreement with
the DSMC method and the experimental data. Since here a purely heat transfer configuration
is investigated the collision frequency has been set to properly recover the thermal conductiv-
ity coefficient and for the present heat transfer configuration the Holway model taking into

consideration the translational, rotational and vibrational degrees of freedom can be written as

fy%—% = Vgot {(1 — Zir — Ziv) (fét) _ fs) 1 Zir (fét,r) _ fs) I Ziv (fét,r,v) _ fs)l . (5.15)
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B m 3/2 mu?
< .
— ne(Il9) [ — 2 _
Is* = ns(113) (zkaTtr) exp ( Qk:BTt) ’

3/2 Ao .
fét’”—ﬁs(m( ? ) P (‘ mvz) T e
2kl 2kgT" ) (kpTr)'*T (j/2) kgTr

f(mv) - n( m )3/2 . (_ mu? ) Jil2-1 oo [ i (5.16)
5 271-l’{:BT;fot 2ijE0t (k‘Bﬂot)j/QF (]/2) kBEot
>
N hw;S;
XH {l—exp (— o, )] exp =
k’BT;ggt kBT;tot

=1

Here, 040y = [Pr (T},) nkgTy| /i (1) is the total collision frequency where Pr (73,) is the Prandtl
number and p (7},) is the viscosity both depending on the translational temperature. The pa-
rameters 1 < Z,., Z, < oo define how many collisions occur per single rotational and vibrational
collisions respectively. It is noted that Z,, Z, must be chosen in such a way that the rotational
and vibrational relaxations governed by the Holway model match the corresponding relaxations
obtained by the DSMC method when these approaches are compared. This task is performed
in Appendix A. Also n is the total number density defined by Eq. (5.3), ng is the total number
density in vibrational state S and ng is the number density of molecules having rotational
energy I in vibrational state S. Finally, 7" () is the common temperature of the rotational
and translational modes given by 7" (9) = [3T3, (9) + 1Tt (9)]/(3 + 7).

In order to reduce the computational cost the following three reduced density distributions

one for the mass and two for the internal energy (rotational and vibrational) are introduced

For the specific problem under consideration the computational effort is further reduced by

eliminating the &, and &, components of the molecular velocity by introducing the reduced
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distributions

= 7 7@ d¢.d¢,, G = 7 7@ (& + &) de.dg,,

o o (5.18)
K://ﬁdfzdfx, ﬁ://u?dfzdfz.

Operating accordingly with the appropriate summation and integral operators, defined by

Egs. (5.17) and (5.18), on Eq. (5.15) and introducing the following dimensionless quantities
y:g/H7 C:'U/Uo, ]:j/kBTm p:n/nﬁ)
F:UOF/nOa G:é/(no?}o% szok/po, LIUoﬁ/po, (5.19)

i =T/To, @ = Qi/(POUO>> e; = E;/(kpTh),

where the subscript ¢ = tr, rot, vib, tot refers to translational, rotational, vibrational or total

quantities, the following system of kinetic equations may be obtained in vector form

ov 11 1 1
gy = Vit [(1 7 7) (T — ) + 7 (T — W) + 7 (L) — @)L (5.20)

Here, ¥ = [F, G, K, L]T are the unknown reduced distributions, which depend on the dimen-
sionless space and molecular velocity independent variables y and ¢,. Also, dy is the reference

gas rarefaction given by Eq. (5.13) and v,y = (50p(7'tr)17wPr (7¢-) is the dimensionless collision

T
)

frequency. The relaxing distributions in Eq. (5.20) are given by W) = [F @ GO, KO, L(i)}
with i = (t), (t,r), (t,r,v), where

0 __P AN EN D c2
Y= exp|——), F"" = exp|——= |, F""" = ——exp | — )
VT Ty P ( Ttr) TT" P ( TT) \/ T Ttot P ( Ttot)

G(t) — 7_1‘/74};1(15), G(t,r) — TTF(t’T), G(t,r,v) — TtOtF(t,r,v)
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K — % FREED ) % Ty 7).

(5.21)

Lo — Go (;m'b) Toio F(t)’ L) — Co (;m‘b)mb F(t,r)’ 1) — Go (;tot) Tios Ftro)

In the derivation of Eq. (5.20) the Inverse Power Law (IPL) interaction between particles has
been introduced with the parameter w taking the values of 1/2 and 1 for hard sphere (HS) and
Maxwell (MM) interactions respectively.

The same non-dimensionalization and projection procedures are applied to the moments
in Egs. (5.3)-(5.11), to find that the macroscopic quantities are given in terms of F'; G, K and

L according to

) 3 ] )
Ttr
p= /chy, Cpr = 2t = ; / (C?JF—FG) dcy,
ro vi vi 1 r
€rot = ]T : /chya Evib = C (T b)T b= / dey:
2 p
—oc (5.22)
Gir = / (ciF—i—G) cydey,  Qrot = /Kcydcy7 Quib = /Lcydcy,
r 3 Ttr +j Trot 3 Ttr + ] Trot + C’U (Tvib) Tvib
ot = Quib + Qrot + Qr, T = ——F———, Tiot = - )
Qtot = Quib T Grot T Gt 3+ tot 3+]+Cv(7'tot)
where
N N
i d G (Teer) = 5.23
C B b Tmb ; eXp ev Z/Tmb) o C nt t ; eXP 0’0 z/Ttot) ( )

are the vibrational degrees of freedom in dimensionless temperatures 7,; and 7., respectively.
From Eq.(5.20) the energy conservation equation Jq;,/0y = 0 is readily reduced and it is

implemented to benchmark the computations.
Next, the boundary conditions are defined. The typical purely diffuse boundary conditions

are implemented where the distribution function of the particles departing by the two plates
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takes the form [144]

£(+) = Ny (L) i exp (— mU2 ) [Aj,/Z_l exp | — [A
5 dmkpT, 2k5Tw) (ksT,)T (j/2) kT
N
TI; i=
X H {1 — exp (— kBTw):| exp _IICB—Tw . (5.24)

The superscript (+) denotes outgoing distributions, T,, (£1/2) is either the cold or the
hot temperatures of the plates and n,, (£1/2) is a parameter specified by the condition of no
penetration at the walls. Introducing in Eq. (5.24), the same normalization and projection as

for the kinetic equations, lead to the outgoing distributions

w C2 w C2
F(+) _ Puw,E1/2 exp (__y) ’ G(+) _ Pwt1/2/Tw exp (__y) 7

+1/2 T g +1/2 I Tw

. 2 2
+) JPw,+1/2v/ Tw C +) Cv (Tw) Pw,+1/2+/ Tw C
K:I:]./2 - 2\/7_,(_ €Xp (__y ) L:tl/2 — 2ﬁ exXp | — Ll

(5.25)

Tw Tw

at y = £1/2, where p,, is specified by applying the no penetration condition at the walls as

2\/m i 0
Puwt1jo = E/Fﬂ(ﬂ/zcydcy' (5.26)
0

In Egs. (5.25) and (5.26) the superscripts (+) and (—) denote outgoing and impinging distribu-
tions respectively. Also, 7, = Ty, /Tp in terms of the temperature ratio 3 is equal to 25/(8 + 1)
at y = —1/2 (hot wall) and 2/ (8 + 1) at y = 1/2 (cold wall).

The governing equations (5.20) and (5.21) with the associated expressions (5.22) subject
to boundary conditions (5.25)-(5.26) are solved numerically in an iterative manner. More
specifically for prescribed values of 3, dy and 6, ; the iteration map starts by assuming all needed
macroscopic quantities. The kinetic equations (5.20)-(5.21) are solved numerically discretizing
in the physical space by the control volume approach and in the molecular velocity space by the

discrete velocity method to yield the reduced distributions F', G, K and L, which are introduced
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into the moment equations (5.22) and (5.26). Integration is performed via the Gauss-Legendre
quadrature to find the new estimates of all bulk quantities which are introduced in the next

iteration. The iteration process is terminated when convergence criteria

(t+1) (t)

(t+1) ()
Ttot,i tot,i

t+1)
; - Qioti — tot,i

Y=ol + +

o

=1

} <e, (5.27)

with ¢ denoting the iteration index and K the number of nodes in the physical space, is fulfilled.
The kinetic results presented here have been obtained with Ay = 0.2 x 1072 and 96 molecular

velocities being the roots of the corresponding Legendre polynomial.

5.4 Results and discussion

Results for the density, temperature and heat flux distributions are obtained by the
Holway kinetic model for § = [1.1, 4, 5, 11] covering small, moderate and large temperature
differences, dp € [0, 100] representing heat transfer flow from the free molecular up to the slip
regime and 6, = [0.1, 1, 2, 5] corresponding to mean temperatures 7y higher, equal and lower
compared to the characteristic vibrational temperature. At #, = 0.1 almost all vibrational
degrees of freedom are fully excited, while at 8, = 5 almost no vibrational excitation occurs.

The results are organized as follows: Benchmarking is displayed in Subsection 5.4.1 by
comparing the kinetic model with the DSMC results for Ny and O,, as well as simulations
with experimental data for Ny, CO,, CHy and SFg. In Subsection 5.4.2, general results for
all macroscopic quantities are presented for diatomic gases in terms of 3, &y, 6, including a
sensitivity analysis of the dependency of the heat fluxes on Z,, Z,. Finally, in Subsection 5.4.3
results for the specific gases of Ng, Oy, CO9, CH4 and SFg are presented showing the effect of
the vibrational degrees of freedom on the total heat fluxes and on the translational, rotational
and vibrational parts. Also the concept of the effective thermal conductive in polyatomic gases

is investigated.
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5.4.1 Benchmarking

The comparison between the Holway kinetic model and the DSMC method is performed
considering Ny and Os as working gases (j = 2). To have a valid comparison it is ensured that
the two approaches have the same relaxation rates and therefore the relaxation parameters
of the Holway model are accordingly fixed. Following common practice the DSMC relaxation
parameters are set as Z\2°MY = 5 and Z{PM9) = 50 [29] and then following Appendix A, the
Holway relaxation parameters are ZT(H) = 2.47, Z8 = 24.7 for Ny and ZT(H) = 2.62, ZqEH) = 26.2
for Oy. Furthermore, in both approaches the viscosity index takes the values w = 0.74 for N,
and w = 0.66 for Oy to reproduce the recommended data in [145]. Also, the Pr number in the
kinetic model simulations is independent of temperature and equal to Pr = 0.764 and 0.751 for
Ny and O, respectively to ensure that the thermal conductivities obtained by the two methods
are equal to each other.

In Tables 5.2 and 5.3, a comparison between the results obtained by the Holway model
and the DSMC method is performed for Ny and Oy respectively. In both tables dy € [0, 100],
g =5 and 6, = 1 (the mean temperature Ty is taken equal to the characteristic vibrational
temperatures of 3371 K for Ny and 2256 K for Oj). In all cases the agreement between the
results, taking into account the different models implemented in the two approaches, is very
good. The translational heat fluxes computed by the Holway model are smaller than the DSMC
ones, while it is the other way around for the rotational and vibrational heat fluxes. The largest
relative error occurs in the vibrational heat fluxes being always however less than 10%, while
in the total heat fluxes is less than 1%. The results at do = 0 are in excellent agreement with
the analytical free molecular ones presented in Appendix C.

The comparison is extended to the number density as well as to the translational, rota-
tional and vibrational temperature distributions plotted in Fig. 5.1 for various values of values
of dg. Excellent agreement between the deterministic and stochastic approaches is shown. It is
also observed that for large values of dy the translational, rotational and vibrational are ther-
mally equilibrated (73, = 7ot = Tuip), While as the rarefaction level of the gas is increased the
three temperatures depart from each other with the vibrational temperature being higher than

the other two.
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Next, a comparison with the experimental data in [141] is performed in Fig.5.2 based on
the Holway kinetic model in terms of the thermal conductivity. More specifically the experimen-
tal data for the thermal conductivities of Ny, CO5, CH4 and SFg obtained from Tables 1, 5, 7 and
9 respectively in [141] are shown in terms of the corresponding temperatures 300 < T < 3273
(K). Simulations have been also performed close to the hydrodynamic limit at 6o = 100, with
Te =300 K and Ty = 3273 K (T, = 1786.5 K, 8 = 10.91) and for all these gases (gas properties
including characteristic vibrational temperatures are shown in Table 5.1). The rotational and
vibrational collision numbers are Z, = 5 and Z, = 50. The Pr number is taken as a function
of temperature according to the data in ([141]; see Tables 1, 5, 7 and 9). Once the problem is
solved, an effective thermal conductivity k. (v) is determined based on the Fourier law, which

in the present dimensionless notation reads as

m aTtot
ot — ke X 5.28
Gtot (2]{:360#0) ff (y> ay ( )

with the spatial derivative 07, /0y being approximated by central differences. Previous studies
(see [142] and references therein for monatomic gases and [143] for a diatomic gas), have shown
that k. (y) approximates extremely well the Chapman-Enskog value of the thermal conduc-
tivity in a central strip of the domain, provided its boundaries are sufficiently far from the walls
where Knudsen layers cause deviations from hydrodynamic behavior. The computed kess (v)
is plotted in Fig.5.2 and compared to the experimental one. As it is seen the computational
results are in excellent agreement with the experimental data in the whole region between the
plates except very close to the boundaries, i.e., inside the thin Knudsen layers which are present
even at 0y = 100 and where the Fourier constitutive law is not valid.

Based on all above the effectiveness of the Holway kinetic model to simulate this heat
transfer configuration is demonstrated. Also, the efficiency of the implemented computational

scheme and the accuracy of the deduced numerical results are verified.
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5.4.2 Effect of vibrational degrees of freedom

The effect of 6, on the heat fluxes and other macroscopic quantities is investigated. The
analysis is kept as general as possible and therefore only diatomic gases (j = 2) with hard
sphere (HS) molecules (w = 0.5) are considered.

However, before we proceed it is interesting to examine the effect of the prescribed collision
numbers Z, and Z, on the results. A computational sensitivity analysis related to these two
parameters is shown in Tables 5.4 and 5.5. The temperature ratio of the two plates is taken large
and equal to § = 5, while the parameter 6, = [0.1, 5]. Also, the results are for j, x Pr = 71.4
without being necessary to specify exactly either of the two quantities. However, since for a
diatomic gas Pr ~ 0.7 the analysis is performed, in purpose, at high values of d;, ~ 102, where the
effect of the rotational and vibrational degrees of freedom is more dominant. Based on the above
input data, in Table 5.4, all heat fluxes are tabulated by keeping the vibrational collision number
constant, Z, = 50, while the rotational one varies as Z, € [3,80]. The corresponding results
for constant rotational number Z,. = 5 and the vibrational number varying as Z, € [5, 103}
are tabulated in Table 5.5. As Z, is increased, with Z, being constant, ¢, is slightly increased
not more than 2% and ¢, is slightly decreased not more than 3%. Also ¢, and g are not
affected at all for the significant figures shown. These observations are valid for both 6, = 0.1
and 5. As Z, is increased, with Z, being constant, the variation in ¢, and ¢, is very small
not exceeding 5% for both 6,. More interesting is the effect of Z, on ¢, which for 6, = 0.1
is decreased about only by 3%, while for 6, = 5 is decreased by 36%. However, in this latter
case the vibrational heat flux is one order of magnitude smaller than the translational one
and therefore, once again, there is no variation of the total heat flux ¢,; with respect to the
vibrational collision number. The fact that the total heat flux remains invariant in terms of Z,
and Z, is of major importance and reduces the introduced modeling error, particularly when
performing comparisons with experimental work. The effect of Z, and Z, on the density and
temperatures distributions is negligible. Also, in general the effect of Z,. and Z, is decreased as
the temperature difference between the plates is decreased.

Next, in Table 5.6 the translational, rotational and vibrational heat fluxes as percentage

of the total heat flux along with the total heat fluxes are provided for a diatomic HS gas
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(j = 2, w = 0.5) and for various values of 6, and of the product dy x Pr with 5 = 1.1. The
collision numbers are set to Z, = 5 and Z, = 50. The percentage results are at the hot
plate (y = —1/2), while ¢ remains constant between the plates. Depending upon 6, the
ratios of the translational, rotational and vibrational heat fluxes over the total one vary as
0.5 < Gu/qor < 0.66, 0.23 < Grot/Gior < 0.32 and 0.05 < quin/qior < 0.25 respectively. As
expected, independently of 6, the rotational heat flux is about 43 — 50% of the corresponding
translational ones. Also, as #, is decreased the vibrational part becomes of the same order of
the rotational one and corresponds to about 25% of the total heat flux. This is justified by the
fact that as the parameter 6, is decreased the mean temperature is increased causing activation
of a larger number of vibrational degrees of freedom. It is noted that in the case of 6§, = 0.1
the vibrational degrees of freedom are almost fully excited with ¢, = 1.9. The corresponding
mean values of ¢, for 6, = 1 and 5 is about 1.2 and 0.07 respectively. These results are valid in
the whole range of the gas rarefaction examined. It is noted that the percentage of each part
of heat flux to the total heat flux remains almost constant with regard to .

The dimensionless translational ey, (y), rotational e, (y) and vibrational e,; (y) energies
of a diatomic HS gas (j = 2, w = 0.5, Z, = 5, Z, = 5) are shown in Fig.5.3 for various
values of g x Pr with 5 = 1.1 and 6, = [0.1, 5]. The translational and vibrational energies are
independent of 6,,, while the vibrational energy depends strongly on #,,. Therefore the latter one
is presented in two subfigures. The vibrational energy for 6, = 0.1 is approximately 28 times
higher than the corresponding one for 6, = 5, with the exact number depending on the position
between the plates and on the gas rarefaction. The difference in the vibrational distribution
energies between 6, = 0.1 and 6, = 5 is increased moving from the hot plate towards the cold
plate wall. Also, all energies are higher, as they should, near the hot wall than the corresponding
ones at the cold wall.

In Fig.5.4 the dimensionless vibrational temperature is plotted for the same input pa-
rameters as in Fig.5.3. At large dy x Pr the vibrational temperatures for ¢, = [0.1, 5] almost
coincide, while as dy x Pr (or dy) is decreased they depart from each other with 7,4 (y) for
6, = 5 being higher than the corresponding ones for 6, = 0.1. This latter observation is proba-

bly not expected but it may be explained by considering the reported vibrational energies for
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0, =[0.1, 5] in Fig. 5.3 and the vibrational temperature in diatomic gases given by

0
Toib = —F -
In (1 + 9—”)

€vib

(5.29)

Based on the above this behavior is contributed to the relative decrease of e,; with regard to
the increase of 6,. This behavior is also seen in the analytical expressions provided in the free
molecular limit in Appendix C. Furthermore, the parameter 6, has no effect on the number
density distribution and the corresponding plots are omitted. Since 6, has a very small effect
on the translational and rotational temperatures they are not plotted here and they may be
found in Chapter 3. In large values of §y the vibrational temperature is thermally equilibrated

with the translational and rotational temperatures (7y =~ 7,0t ™~ Tyi) independent of 6,,.

5.4.3 Heat fluxes for specific gases

At this subsection some results are provided for the nonpolar polyatomic gases of N,
O,, CO,, CH4 and SF¢ based on the Holway kinetic model. Results are provided for the typical
values of Z) = 5 and Z{ = 50 with temperature ratio § = 1.1 in a wide range of the
rarefaction parameter dg. Two values of the reference mean temperature Ty = 500 K and 2000
K are considered. The parameters of each gas are given in Table 1 and the Pr number is a
function of temperature according to [141].

In Fig.5.5 the rotational, vibrational and total heat fluxes at the hot wall (y = —1/2)
are given in a wide range of the rarefaction parameter dy. It is seen that the rotational heat
fluxes are in practice independent of the mean temperature Ty. The rotational heat fluxes ¢,
of the linear gases (N3, Oq, COs) are very close to each other (almost coincide) and the same
happens for the nonlinear gases (CHy, SFg) with the latter ones being 30 —60% higher than the
former ones for both Tj. The vibrational heat fluxes depend on T} and this dependency becomes
stronger as depending upon the working gas, the characteristic vibrational temperatures are
decreased and the number of vibrational degrees of freedom is increased. The vibrational heat
fluxes of Ny and O, are about the same with small dependency on Ty. However, for COq there

is a significant difference in ¢, as the mean temperature is increased from 500 K to 2000
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K, which becomes even larger in the cases of CH, and SFg. More specifically, since the SFg
contains 15 vibrational modes and most of them are well excited at Ty = 500 K is characterized
compared to the other gases by the largest vibrational heat flux which is about 74 — 76% of
the total heat flux. Computations for SFg have been also performed with Ty = 300 K. As it
is seen in Fig.5.6 the resulting to a vibrational heat flux corresponds up to 67% of the total
heat flux. On the other hand, since the one vibrational mode of Nj is fully activated at 3371
K, its vibrational heat flux is only about 2% and 19% of the total heat flux when the mean
temperature is Ty = 500 K and 2000 K respectively. With regard to dy, it is noted that the
previous remark, related to diatomic gases, i.e. that the percentage of each part of heat flux to
the total heat flux remains almost constant in the whole range of gas rarefaction (see Table 5.6),
is also valid for linear and nonlinear polyatomic gases.

In monatomic gases it has been shown that when the flow is in the hydrodynamic regime
with non-continuum effects (large local gradients) the effective thermal conductivity concept
may be successfully applied to compute the corresponding heat fluxes [142]. A similar inves-
tigation is performed here for polyatomic gases. In Fig.5.7, indicative results of the variation
of the effective thermal conductivity k.ss (y), computed according to Eq. (5.28), over the corre-
sponding experimental values in [141] are plotted along the distance between the plates. The
working gas is Ny (w = 0.69, j = 2) with 69 = 50, 5 = 1.1, 4 and 6, = 3.371 (T, = 3371 K).
It is noted that the computed effective and experimental thermal conductivities (also seen in
Fig.5.2) are not constant within the domain but they are both decreasing moving from the hot
towards the cold plate along with the temperature. It is seen that in the region approximately
defined by —0.45 < y < 0.45 the ratio is constant and equal to one, clearly indicating that
under both weakly (8 = 1.1) or highly (8 = 4) non-equilibrium conditions the Fourier law
works satisfyingly far from the boundaries, i.e., outside the Knudsen layers. Also, the hot wall
Knudsen layer is thicker than the corresponding one at the cold wall since the mean free path is
an increasing function of temperature at constant pressure. Corresponding results are readily
obtained for the other polyatomic gases. Thus, the effective thermal conductivity approxima-
tion may be also applied in polyatomic gases provided that the system Knudsen number is

small.
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5.5 Concluding remarks

The problem of heat transfer through rarefied polyatomic gases between parallel plates
maintained at different temperatures has been considered by taking into consideration the gas
rotational and vibrational degrees of freedom. The solution is obtained by the Holway kinetic
model and the DSMC method. The very good agreement between the two approaches as well as
with experimental data clearly demonstrates the capability of the Holway model to accurately
simulate polyatomic gas heat transfer in the whole range of gas rarefaction for small, moderate
and large temperature differences between the plates.

The translational, rotational, vibrational and total heat fluxes of Ny, Oy, CO4, CH, and
SFg are computed to examine the effect of the mean reference temperature and of the gas
rarefaction with regard to the characteristic vibrational temperatures and the corresponding
number of vibrational degrees of freedom of each gas. It has been shown that for gases with low
and moderate characteristic excitation temperatures (e.g. COy, CHy and SFg) the vibrational
heat flux may be, even at ambient temperatures, a significant portion of the total heat flux
independent of the gas rarefaction. For example in the case of SFg at reference temperatures of
300 K and 500 K the vibrational heat fluxes are 67% and 76% respectively of the corresponding
total ones. The effective thermal conductivity approximation has been also studied finding
out that it can be successfully applied in polyatomic gases to study non-equilibrium effects
providing that the system Knudsen number is small.

Overall, the present work aims to provide some useful insight in the heat transfer design
and optimization of technological applications operating in a temperature range where the
vibrational modes of the involved gases are excited and must be taken into consideration. It is
evident that in such heat transfer and flow configurations modeling must include the effect of

the vibrational degrees of freedom.
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Table 5.2: Dimensionless heat fluxes for Ny (j = 2, Pr = 0.764) with IPL molecules (w = 0.74) at
the hot plate (y = —1/2) for various values of &y, 8 =5 (Ty = 5618 K, Tc = 1124 K, T = 3371 K)

and 0, = 1 (ZP5M9) = 5, Z{PSMO) — 50, 231 = 247, Z$M) = 24.7).

5o Qtr drot Quib Qtot
Holway | DSMC | Holway | DSMC | Holway | DSMC | Holway | DSMC
0 | 6.00(-1) 3.00(-1) 2.62(-1) 1.16
0.1 | 5.76(-1) | 5.76(-1) | 2.86(-1) | 2.83(-1) | 2.49(-1) | 2.47(-1) | 1.1 1.11
1 | 4.35(-1) | 4.41(-1) | 2.07(-1) | 2.01(-1) | 1.81(-1) | 1.72(-1) | 8.23(-1) | 8.14(-1)
5 |2.32(-1) | 2.43(-1) | 1.05(-1) | 1.02(-1) | 9.24(-2) | 8.45(-2) | 4.29(-1) | 4.30(-1)
10 | 1.49(-1) | 1.58(-1) | 6.65(-2) | 6.53(-2) | 5.95(-2) | 5.42(-2) | 2.75(-1) | 2.77(-1)
50 | 3.82(-2) | 4.05(-2) | 1.68(-2) | 1.65(-2) | 1.57(-2) | 1.43(-2) | 7.07(-2) | 7.13(-2)
100 | 1.97(-2) | 2.08(-2) | 8.68(-3) | 8.35(-3) | 8.15(-3) | 7.48(-3) | 3.66(-2) | 3.66(-2)

Table 5.3: Dimensionless heat fluxes for Oz (j = 2, Pr = 0.751) with IPL molecules (w = 0.66) at
the hot plate (y = —1/2) for various values of dy, 8 =5 (Tyg = 3760 K, T = 752 K, Ty = 2256 K)

and 0, = 1 (ZP5M9) = 5, Z{PSMO) — 50, 7201 = 262, Z{M) = 26.2).

5o Qtr Arot Quib Qtot
Holway | DSMC | Holway | DSMC | Holway | DSMC | Holway | DSMC
0 | 6.00(-1) 3.00(-1) 2.62(-1) 1.16
0.1 | 5.76(-1) | 5.76(-1) | 2.86(-1) | 2.84(-1) | 2.50(-1) | 2.47(-1) 1.11 1.11
1 | 4.38(-1) | 4.42(-1) | 2.09(-1) | 2.01(-1) | 1.82(-1) | 1.73(-1) | 8.29(-1) | 8.17(-1)
5 | 2.35(-1) | 2.43(-1) | 1.06(-1) | 1.02(-1) | 9.33(-2) | 8.49(-2) | 4.34(-1) | 4.30(-1)
10 | 1.51(-1) | 1.57(-1) | 6.73(-2) | 6.53(-2) | 6.01(-2) | 5.42(-2) | 2.78(-1) | 2.76(-1)
50 | 3.87(-2) | 4.03(-2) | 1.70(-2) | 1.65(-2) | 1.59(-2) | 1.43(-2) | 7.16(-2) | 7.11(-2)
100 | 2.00(-2) | 2.08(-2) | 8.80(-3) | 8.52(-3) | 8.25(-3) | 7.40(-3) | 3.71(-2) | 3.67(-2)
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Table 5.4: Effect of Z, on the translational, rotational, vibrational and total heat fluxes at the hot
plate (y = —1/2) for a diatomic HS gas (j = 2, w = 0.5) with 8 =5, 09 x Pr = 71.4 and Z, = 50.

7 qir drot Quib Qtot
0,=01| 6,=5 [0,=01]| 6,=5 |0,=01]| 0,=5 |60,=01]| 0,=5
2.13(-2) | 2.02(-2) | 9.35(-3) | 8.85(-3) | 9.02(-3) | 3.81(-3) | 3.97(-2) | 3.29(-2)
2.14(-2) | 2.03(-2) | 9.29(-3) | 8.80(-3) | 9.02(-3) | 3.81(-3) | 3.97(-2) | 3.29(-2)

7.5 | 2.14(-2) | 2.03(-2) | 9.25(-3) | 8.76(-3) | 9.02(-3) | 3.81(-3) | 3.97(-2) | 3.29(-2)

10 | 2.15(-2) | 2.03(-2) | 9.22(-3) | 8.73(-3) | 9.02(-3) | 3.81(-3) | 3.97(-2) | 3.29(-2)

20 | 2.15(-2) | 2.04(-2) | 9.15(-3) | 8.66(-3) | 9.02(-3) | 3.81(-3) | 3.97(-2) | 3.29(-2)

40 | 2.16(-2) | 2.05(-2) | 9.10(-3) | 8.61(-3) | 9.02(-3) | 3.81(-3) | 3.97(-2) | 3.29(-2)

60 | 2.16(-2) | 2.05(-2) | 9.08(-3) | 8.59(-3) | 9.02(-3) | 3.81(-3) | 3.97(-2) | 3.29(-2)

80 | 2.16(-2) | 2.05(-2) | 9.07(-3) | 8.58(-3) | 9.02(-3) | 3.81(-3) | 3.97(-2) | 3.29(-2)

Table 5.5: Effect of Z, on the translational, rotational, vibrational and total heat fluxes at the hot
plate (y = —1/2) for a diatomic HS gas (j = 2, w = 0.5) with 3 =5, 09 Xx Pr = 71.4 and Z, = 5.

Z, qtr Qrot Quib Qtot
,=01| 6,=5 |6,=01]| 6,=5 |6,=01]| 6,=5 [6,=01| 6,=5
) 2.12(-2) | 2.00(-2) | 9.30(-3) | 8.76(-3) | 9.21(-3) | 4.15(-3) | 3.97(-2) | 3.29(-2)
10 | 2.13(-2) | 2.01(-2) | 9.28(-3) | 8.76(-3) | 9.15(-3) | 4.08(-3) | 3.97(-2) | 3.29(-2)
25 2.13(-2) | 2.02(-2) | 9.28(-3) | 8.77(-3) | 9.07(-3) | 3.95(-3) | 3.97(-2) | 3.29(-2)
70 | 2.14(-2) | 2.03(-2) | 9.30(-3) | 8.82(-3) | 9.00(-3) | 3.73(-3) | 3.97(-2) | 3.29(-2)
100 | 2.14(-2) | 2.04(-2) | 9.30(-3) | 8.85(-3) | 8.97(-3) | 3.63(-3) | 3.97(-2) | 3.29(-2)
400 | 2.15(-2) | 2.07(-2) | 9.32(-3) | 8.99(-3) | 8.91(-3) | 3.10(-3) | 3.97(-2) | 3.28(-2)
700 | 2.15(-2) | 2.09(-2) | 9.32(-3) | 9.06(-3) | 8.89(-3) | 2.83(-3) | 3.97(-2) | 3.28(-2)
1000 | 2.15(-2) | 2.10(-2) | 9.32(-3) | 9.10(-3) | 8.88(-3) | 2.66(-3) | 3.97(-2) | 3.27(-2)
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Figure 5.1: Comparison between the dimensionless density and temperature distributions of the
Holway model and the DSMC method for No (j = 2, Pr = 0.764) with VHS molecules (w = 0.74)

or various values of &, 8 = 5 (T = 5618 K, T = 1124 K, Ty = 3371 K) and 8, = 1 (Z"5M) = 5,
ZPSMO) — 50, 7, = 2.47, Z, = 24.7).
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Figure 5.2: Comparison between the experimental thermal conductivities in [141] with T = 300
K, Ty = 3273 K and the corresponding computed ones obtained by the Holway model with
do = 100 and 5 =10.9 (Z, =5, Z, = 50) for various gases.
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Figure 5.3: Dimensionless translational (left-up), rotational (right-up) and vibrational (down)

energy distributions for a diatomic HS gas (j = 2, w = 0.5) with 5 = 1.1, various values of dy x Pr
and 0, = [0.1,5] (Z, = 5, Z, = 50).
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Figure 5.4: Dimensionless vibrational temperature distributions for a diatomic HS gas (j = 2,
w = 0.5) with g = 1.1, various values of §y x Pr and 6, = [0.1,5] (Z, =5, Z, = 50).

125

Institutional Repository - Library & Information Centre - University of Thessaly
20/05/2024 01:12:25 EEST - 13.59.53.151



Section 5.5

0.06 0.06 -
| T,=500 K —e— SF, | T,=2000 K —=— SFy

0.04 0.04
0.02 0.02
0L 0.=
1 1
0.4 0.5
- Ty=500 K —o—8F,;
—— CH, Gk
0.3 ;.._____‘_.__‘_h —— C‘OZ AEF-e—a —— C‘Oz
| S 02 o -““‘-. .~
s [ =0
t;é 0.2 B c%’
0.1F
0.5 0.6
- Ty,=500 K —a—5F: [ T,=2000 K —o— ST,
: —— CH, 0.5 kF —— CH,
0.4f—ea e —— O, ~e—e, —— CO,
i k =0 0.4} 7
03f —5—N; T
N 0-2 : ! =
i 0.2
0.1 A
OF oy iy, —— OF o Ly e
107 10" 10° 10' 10° 107 10" 10° 10' 10°
a() h()

Figure 5.5: Dimensionless rotational (up), vibrational (middle) and total (down) heat fluxes at
the hot plate (y = —1/2) in terms of dy for various polyatomic gases, with 5 = 1.1 and Ty = 500 K
(left) and Ty = 2000 K (right) (Z, =5, Z, = 50).
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Figure 5.6: Dimensionless translational, rotational, vibrational and total heat fluxes at the hot
plate (y = —1/2) in terms of dy for SFg, with 8 = 1.1 and Ty = 300 K (Z, =5, Z, = 50).
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Figure 5.7: Ratio k.rs/k between the plates for Ny (w = 0.69, j = 2) at 6, = 3.371 K (Z, =5,
Zy = 50).
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Chapter 6

Polyatomic flows through circular

capillaries

6.1 Introduction

Flows through long channels have been considered by many researchers and for various
geometries [146-148] both numerically and experimentally. The wide availability of results
comes from the simplifications occurring because of the fully developed flow conditions (the
pressure is constant at each cross section). The problem admits, firstly, linearization (due to
the smallness of the pressure and temperature differences) and, secondly, further simplification
due to the fact that the tube is very long. However, in many practical situations [149, 150] the
length of the tube is comparable with its radius and the whole problem is described by large
pressure differences. For instance, micro-nozzles are often used as low-thrust propulsion systems
in order to produce accurate orbital maneuvers in micro-satellites. Therefore, a systematic study
of the gas flow in such devices is needed in order to determine the optimal geometry and design.
It is well known that, at low Reynolds numbers, the viscous losses in micronozzles become large
enough making the concept of a nozzle expansion useless and micronozzles can be replaced by
short circular tubes. In such cases the problem is described by the non-linear theory of short
tubes described in [151]. The majority of the studies in literature was made for monatomic

gases [73, 100, 102], while corresponding work in the case of polyatomic gases is very limited.
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Here, the rarefied gas flow of polyatomic gases through short and long circular tubes
is modelled via the Holway and Rykov polyatomic kinetic models respectively. The study is
focused on polyatomic gas expansion into very low pressures through short circular tubes in
a wide range of the Knudsen number based on the Holway model. The kinetic modeling of
flows through short tubes is described in Sections 6.2 - 6.4 while the corresponding results
including the deduced flow rate, discharge coefficient, thrust the impulse factor in terms of
flow and geometric parameters as well as the effects of the internal degrees of freedom on the
aforementioned quantities are presented in Section 6.8.

The study is extended in the case of polyatomic gas flows through tubes of infinite length
under a given small pressure gradient (Poiseuille flow) or a small temperature gradient (Thermal
creep flow) based on the Rykov kinetic model. The simulation results are compared to available
numerical results for nitrogen in [106]. Also, the thermomolecular pressure effect in polyatomic
gases is considered and the simulation results are compared with corresponding experimental
data in literature [152]. The formulation of the problem for long tubes is described in Sections

6.5 - 6.7 while the corresponding results are given in Section 6.9.

6.2 Pressure driven polyatomic flows through short tubes

In the case of short tubes the assumption of constant density at each cross-section is not
valid and the flow becomes two- or three-dimensional. As a consequence, the complete geometry
must be simulated, including a part of the reservoirs before and after the tube. Thus, the flow of
polyatomic gas through a tube of radius R and finite length L is considered. The tube connects
two large reservoirs A and B, which are maintained at constant pressures P, and ]53, with
PB / PA = 0.01. The walls and the gas in the container areas far from the tube are maintained
at the same temperature Ty = Tp = Ty. The computational domain consists of two large
computational areas, which correspond to the upstream and downstream reservoirs including
an intermediate area which contains the tube. The flow configuration and the computational

domain are shown in Fig.6.1.
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Figure 6.1: Flow configuration and computational domain.

6.3 Governing equations and macroscopic quantities

The investigation is based on the description of the state of a polyatomic gas using the
distribution function f (f, sov, 1 ), which is a function of the spatial coordinates 7 and 2, the
molecular velocity vector v = (£ cos,Esin b, &,), where &% = &2 +§Z and § = tan' (¢,/¢,), and
the rotational motion energy I. Since the investigation is limited to the case of pressure driven
flow the expected variation of temperature in the flow field is small and the nonlinear Holway
kinetic model is implemented. For the specific problem under consideration the computational
effort is reduced by eliminating, based on a projection procedure, the I component of energy
by introducing the reduced distributions ¢ and h as it was described in Chapter 2. Then, for

the present flow problem the Holway model may be written in dimensional form as [123, 153]

0§  £sinfdg oG P.[1 . X 1y, .

6—= — —= = — — 1—— —

§ cos 57 50 + & 2 o |Z (Grot — 9) + 7 (Ger — )1,
Oh  &£sinfoh oh P, 1 /- . N /. -
60— — — — = — (hyot — h 1— =) (hy—h
s e T e T T {Z< rot )*( Z) (fa )} !
6.1

Y G S e ) I S X oy
Gtr = QWkBT‘tr p QkBﬂr ) tr — 9 Gtr,

. m 3/26 —m(v — @) B JjkpT .

grot =N 27TkBT XPp Qk?BT ) rot — 2 grot7
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where 0 < Z~1! <1 is a parameter and j is the number of rotational degrees of freedom (j = 0
refers to monoatomic molecules, 7 = 2 for diatomic and linear polyatomic molecules and 7 = 3
for nonlinear polyatomic molecules). Also, n is the number density, P is the pressure, 4 is the
velocity vector and T is the total (thermodynamic) temperature. The subscripts tr and rot
denote the translational and rotational parts.

The left reservoir conditions, i.e. the number density n4 and pressure ]5,4, with PA =
nakgTy from the ideal gas law, are chosen as reference quantities. Then, all quantities of

interest are non-dimensionalized according to

A N A3 iL 3
2237 7’217 €:£7 szgv g:%a h: 2007
R R Vo Vo na Py
(6.2)
n w U P T'tr Trot 37—7&7" + .7 Trot
= —, = —, = =T =7 Trot = 7 T = —F5 7
P nA Vo P Py T, T 3+

where vy = \/W, with m and kp denoting the molecular mass and the Boltzmann
constant respectively, being the most probable molecular speed.

It is seen that the distribution functions g = ¢ (z,7,(,0,¢.) and h = h(z,7,(,0,c,) are
five dimensional for the current problem and no projection in the velocity space is possible. the

final dimensionless form of the governing equations is

Jg Csin@@g 8 1 1
B . 89 = 60p\/Tir {( Z) (9er —9) + 7 (Grot 9)} ’

oh sin ¢ (9h 6]1 1 1
 cos 96_ < . 89 = S0P/ Tir {(1 — Z) (hir — h) + - (Rt — h)} ,
- . (6.3)
Gtr = P €xXp _(c — U) ) htr = S TrotGtr,
(7?7'”)3/ 2 T 2
_ .
p —(c—u j
Grot = (7”_)3/2 exXp ( - ) 5 hrot = ETgrota
where ¢ = ((,6,c,), with § = [0, 7] since the distribution function is axisymmetrical, is the
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dimensionless velocity vector in cylindrical coordinates and ¢ is the reference rarefaction pa-

rameter defined as .
_ P4R

50 )
Moo

(6.4)

with o being the reference viscosity at temperature T;. The rarefaction parameter is pro-
portional to the inverse Knudsen number, with the limiting values at oo = 0 and 6y — oo
corresponding to the free molecular and hydrodynamic limits respectively. It is noted that in
the derivations of the Eq. (6.3) the hard sphere model has been used and therefore the variation
of the viscosity is proportional to the square root of the temperature (u/uo = /T /Tp)-

The macroscopic quantities of practical interest are obtained by the moments of g and h

for the problem examined here as [102]

p(z,7) :2]o j /OngdCdecz, (6.5)
—o0 0 0

o0 m o0

Uy (2,7’):%/ //C2 cos fgdCdfdc,, (6.6)

—oco 0 0
u, (z,r) = % / / / Ce.g dCdfde,, (6.7)
—oo 0 0

T (2,7) = Bip / / / [(C cosf — ur)2 + (¢ sin 0)* + (c. — uz)Q] Cgdldfde,, (6.8)
—oo 0 0
4 o s o0
Trot (2,7) = ﬁ/ 0/ O/(thdecz, (6.9)

o 37—1‘,7" <Z> 71) + jTrot (Za T)

- 6.10
3+7 ( )

T(z,7)

An other quantity with practical interest is the mass flow rate M [Kg/s] defined as the rate of

movement of gas mass through a unit area. The dimensionless mass flow rate through the tube
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is given as
. 1
MUQ /
W=——"—"F"—=4v7 L,r) u, (L,r)rdr. 6.11
T \/_Op()() (6.11)

For a typical micronozzle, thrust F, [N] and impulse factor Igp [s] are essential parameters
in order to describe its performance and efficiency. The specific impulse is a measure of the
impulse per unit of gas flow that is expended, while thrust is a measure of the momentary force
supplied by a particular propulsion system. A higher number of impulse factor means better
performance, since the less gas flow is needed to gain a given amount of momentum. Both
quantities, thrust and impulse factor, should be investigated while the efficiency of a propulsion
system is examined. Dimensionless thrust F; and thrust per unit mass flow rate Igp are defined

as [154]
1

~

F,
F, = - :2/ [2p(L,r) u(L,7)+p(L,r)] rdr (6.12)
7TR2PA

and R
Top = Ispgrym _ F
B farkaTy, W'

where g, = 9.81 m/s? is the gravity acceleration and p = p7 is the dimensionless pressure.

(6.13)

Furthermore, the discharge coefficient Cj is calculated, which is defined as [154]

M
Cy = o - W , (6.14)

y+1 Y+l
~ 2(y—1) 2(v—1)
\/%RQPA\/QTF’}/ <%) K \/27’(’7(%) K

where v = (5 + 7)/(3 + 7) is the ratio of the specific heats of the gas. The discharge coefficient
is the ratio of the actual mass flow rate over the mass rate of flow of an ideal gas through an

isentropic nozzle. Another interesting parameter in such flows is the Mach number given by

U 2
Ma =2 \ﬁmy, (6.15)
Cg Y

where ¢ = \/7vkpTo/m is the speed of sound and |u| = \/u? + u? is the magnitude of wu.

In Subsection 6.8.2 all the aforementioned quantities are calculated for a wide range of the

parameters characterizing the flow: the reference rarefaction parameter dy, the channel aspect
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ratio L/ R, the parameter Z and the number of the rotational degrees of freedom j.

6.4 Boundary conditions

To close the kinetic description of the flows through short tubes the formulation of the
boundary conditions is provided. For the open boundaries (A), (B), (F) and (G), a Maxwellian
distribution is supposed based on the local values of the pressure and temperature assuming
zero bulk velocity. The incoming distributions at the surfaces (A) and (B) in terms of the

distribution functions g and h are

1 i1
+ 2 + 2
g =5 exp( c), h =50 exp( c) (6.16)
and at the surfaces (F) and (G) are
Pg 1 Pgj 1
- 2 + 2
g P, w3/2 exp (=), h Py 2 w32 exp (—¢7). (6.17)

Furthermore, on the solid walls (C), (D) and (E) purely diffuse type boundary conditions are
considered. Then, the outgoing distributions from the surfaces (C), (D) and (E) can be written

as

+_ Puw

9" = gpexp (=), M= I exp (—c?) (6.18)

where the parameters p,, are given by the no-penetration condition at the walls (tnorma = 0).

More specifically, the parameters p,, at each wall are

C M:%ﬁ///@f«%m,
0 0 O

0o T/2 oo

D: pw—4ﬁ/ //(%os@g‘d(d@dcz, (6.19)
—oco 0 O

0 =

E:%=4ﬁ//7@mwmm
0

—oo 0
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where the superscript (-) denotes the incoming distributions at the surfaces. Finally, specular

reflection is imposed at r = 0 due to the axial symmetry

+(0727C797Cz) :g_ (0727C77T_976Z)7 (620)

for angles in 0 € [0, 7/2].

Summarizing, the formulation of the flow through short tubes is described by the kinetic
equations (6.3) coupled by the macroscopic quantities (6.5)-(6.10) and subject to the boundary
conditions (6.16)-(6.20). The set of integro-differential Eq. (6.3) with the boundary conditions
Eq. (6.16)-(6.20) are solved numerically discretizing in the physical space by the control volume
approach and in the molecular velocity space by the discrete velocity method. The macroscopic
quantities are computed by Gauss-Legendre quadrature in the velocity magnitudes and trape-
zoidal rule in the polar angles. It is noted that due to the very large computational effort the
physical grid refinement technique is applied, which is described as follows: Initially, the phys-
ical mesh is uniformly distributed with only 10 intervals per unit length in each direction. The
simulation is performed with this grid and, after convergence has been reached, it is repeated
in a refined mesh, where the number of intervals at each physical direction has been doubled,
using the previous solution as an initial condition. This procedure is repeated until the final
number of nodes has been reached in order to avoid a large number of iterations for the dense
grid. The implemented algorithm has been extensively applied in previous works to solve with
considerable success non-linear flows of monatomic gases through short tubes due to pressure
and temperature gradients [102, 155]. Therefore, a detailed description of the numerical algo-
rithm is omitted, since it can be found in [102, 156]. Finally, the iteration process is terminated

when the convergence criteria

o0 _ 0

(t+1) (1)

2,0 uz,i + (H_l) (t)

u 8Y) T‘Z

u

} < (6.21)

+ |7

+

>
with ¢ denoting the iteration index and K the number of nodes in the physical space, is fulfilled,

while the termination parameter is set to ¢ = 107°.
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6.5 Pressure and temperature driven polyatomic flows
through long tubes

A polyatomic gas flow through a long circular tube with radius R connecting two large
reservoirs A and B is considered. The reservoir A is maintained at constant pressure and
temperature P4 and T4 respectively, while the reservoir B is maintained at constant pressure
and temperature Py and Tg respectively, with Py > Pgand Ty < Tp. Moreover, the pressure
and temperature differences are assumed to be small compared to their arithmetic means

R P+ Py Ty+Tp

Py—Pp < Ty —Tp K

6.22
2, - (622)

The flow configuration is shown in Fig.6.1. When the reservoirs are maintained at different
temperatures in order to mantain the temperature difference the gas begins to move from the
cold vessel to the hot one even when there is no pressure drop. This phenomenon is called the
thermal creep. If the system is closed, a pressure drop is established between the vessels. The
pressure drop causes a gas flow which is opposite to the thermal creep so that the whole mass
flow through the capillary vanishes in the stationary state. This is the so-called thermomolecular
pressure effect. The thermomolecular pressure effect has been investigated for monatomic gases
in [157], while the corresponding work in polyatomic gases is not available. Here the aim is to
investigate the thermomolecular pressure effect in polyatomic gases based on the assumptions
of the long tube (R < L) and of the small pressure and temperature differences. The study is
based on the Rykov kinetic model, since this model can describe correctly the isothermal and

nonisothermal polyatomic gas flow simultaneously for any rarefaction level of the gas.

6.6 Linearization for long tubes

By taking (R < L) the flow is considered as fully developed, and then, end effects at
the inlet and the outlet of the channel are ignored. In addition, due to the small pressure and

temperature differences assumed here in the flow direction the problem can be linearized as
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17, 106]
g=fM@+1r), h= %kBwafuM) (1+ H), (6.23)
with
. m 3/2 2
M) = 6.24
i =m(pmz) e (a0 ) 24

where L (7,v) and H (7, v) are the unknown linearized distribution functions, 0 < 7 < R is the
radial spatial coordinate and v = (£ cosf,&sin6,&,), with 6 = tan™! (§,/&,), is the molecular
velocity vector in cylindrical coordinates. It is noted that the unknown linearized distribution
functions L and H are independent of the longitudinal coordinate 2. The Z— dependence enters
implicitly in the local-Maxwellian function ﬁ(UM), since the number density n,,, the temperature
T, and the pressure Pw = nykpgT,, depend on the longitudinal coordinate Z— direction and are
constant at each cross section. In addition, at each cross section the translational, rotational
and total temperatures are equal to each other and equal to T, (T3, = Trot =T = T)).

The equations for the perturbation functions L and H can be written as [17, 46, 106]

OL  &sinfdL _ o(L _L)_gdlnﬁ’w_ mv? 5\ dInT,
or T 0 s dz 2%ksT, 2) di
OH EsinfOH _ dln P, mv? 3\ dlnT,
or  F 00 v(Ho—H) = &—— ¢ <2kBTw_§) FE
mgzaz wo — 1 5 va 5 (625)
Lo =2 "5 -
0 s +( Z ) BY e (Zk:BTw 2)
mfzaz wo — 1 6 va 5
Hy =2 _2
T ( Z ) B E T <2kBTw 2)
w1 — 1 2m5z
+ +1 ro
( Z ) ( )Q tij/{ZBT

where v = P, /1(T,) is the collision frequency, u(T,) is the viscosity at temperature T,,, Z~!
is a parameter which indicates the fraction of the rotational collisions of their total number,
J is the number of the rotational degrees of freedom taking the values 2 and 3 for linear and
nonlinear polyatomic molecules. Also, the parameters wy and w; are determined in order

to obtain the correct translational and rotational thermal conductivity coefficients from the
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Egs. (3.15) and (3.16), while x is a constant which for a power intermolecular potential varies
between the values of 1/1.2 for hard spheres and 1/1.543 for Maxwell molecules. Furthermore,
following similar manipulations as for the Egs. (6.25), the velocity ., the translational heat
flux @y and the rotational heat flux @),.; in terms of the perturbation functions L and H are

obtained as

@ () = - 7 7 70 €& S Lagdode.. (6.26)
—o0 0
Qu (7) = % ]o 7 ]O &€ (zﬂ - %T ) F Ldgdbde., (6.27)
—oo 0
co 21 oo
]k; Ty
Qru (7) = 2 é 0/ [ eedon i - 1y dgase.. (6.25)

where m is the molecular mass and kp is the Boltzmann constant. The Egs. (6.25)-(6.28) hold
true in any cross section of the tube. Taking the values of the macroscopic parameters in a
certain cross section Z = Zj as reference quantities the following non-dimensional quantities are
introduced

F(M) 3 .
C: =, Cc, = —, f(M) — fw Yo _ Uz QtT Qrot (629)

72
= = U= Q= = Grot = =
7 w ) z ) T ) T0
R Vg Vo Mo Vg U0 Po’UO

r =

with vy = \/2kgTy/m and ]50 = nokpTy being the most probable molecular speed and the
reference pressure respectively. It is obvious that ng = n,,, Ty = T, and po = Pw. The problem

can be further simplified eliminating the variable ¢, introducing the following integrals

1 [e.e]
F= NG / Le, exp (—¢2) dc, (6.30)
G = = 7 Ll exp (—c2) dc (6.31)
ﬁ 4 z 2 .
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/ He, exp (—c2) dc.. (6.32)

Then the system of equations (6.25) is rewritten as

OF (sinf OF 1
CCOSQ@T ] 5(F0—F)—§{XP+<€2_1)XT],
oG _ (sind 0G 3
¢ cos 3 — 230 = Jp (GO—G)—Z(XP+C2XT)7
0S (sinfoS 1
Ccos@8 . 89—50(50—5)—§(XP+<2XT)a
1 (6.33)
0 —
Fo—uz+( ~ +1> e (C=1),
_ 3u, wo — 9
GO 9 ( 7 + ) 5QtrC )
o wo — 1 2 o w1 — 1 . 2(]7"075
while the macroscopic quantities u,, ¢ and ¢,,; are given by
//CF exp (—¢?)dc¢do, (6.34)
1 2w oo
Gr = ;//g {F (42 — g) + G] exp (—¢?)d¢d, (6.35)
0 0
2w oo
Grot = 2‘7—% //g (S — F)exp (—C)dCdo, (6.36)
0

while the total heat flux is defined as ¢ = ¢t + ¢»- In Eq. (6.33) the parameter Jy is the
rarefaction parameter defined as R
RR

HoUo
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and the parameters Xp and X are the dimensionless pressure and temperature gradients which

are determined by the following formulas

R 0P, R OT
Xp = ot = ——2 .
e p, 0 T T, 02 (6.38)

The gas-wall interaction is modeled by the Maxwell diffuse-specular reflection condition [17].

At the boundaries we have

~

gt =aufM 4+ (1—ay) g, ht= aM%kBwafUM) + (1 —ay)h, (6.39)

where g7, ht and g, h~ are the distributions representing particles departing and arriving
at the wall, respectively, while fqng) is the Maxwellian defined by the wall temperature. The
parameter ap; is the so-called tangential momentum accommodation coefficient and denotes
the portion of the particles reflecting diffusively from the wall. Applying the above described
procedure (nondimensionalization, linearization, projection) the boundary conditions for the

reduced distribution functions F', G and S at r = 1 become [17]
F7(1,¢,0) = (1 — o) F~ (1,¢,m—0),
Gt (1,4,0)=(1—ay)G (1,(,m—0), (6.40)
ST(1,(,0)=(0—ay)S™ (1,¢(,7—0),
while at » = 0 using the symmetry condition become
F7(0,¢,0) = F~(0,¢,m—6),
G*(0,¢,0) =G (0,(,m—6), (6.41)
S*(0,¢,0) =5 (0,¢,m—0).

Boundary conditions (6.40) and (6.41) are valid for 6 € [r/2,37/2] and 0 € [—7/2, /2] respec-

tively.
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The linear integrodifferential equation (6.33), supplemented by the corresponding macro-
scopic quantities (6.34)-(6.36) and subject to the boundary conditions (6.40) and (6.41), are
solved numerically. The implemented numerical scheme has been described, in detail, for chan-
nels with circular, rectangular, and triangular cross sections in the case of monatomic gases
in a series of previous works [146-148]. In all cases, the kinetic equation is discretized in the
molecular velocity space by the discrete velocity method and in the physical space by typical
finite difference scheme. Then, the discretized equations are solved in an iterative manner.

The kinetic solution depends on three dimensionless parameters, namely, the reference
rarefaction parameter 9y, the accommodation coefficient oy, and the parameter Z. Moreover, in
the Rykov model the parameters wy, w; and k ,depending on the working gas, must be specified
as it has already been described previously. Based on the kinetic solution, several overall
macroscopic quantities of practical interest may be deduced. The main calculated quantities

are the dimensionless mass (W) and heat (E) flow rates, which are defined as

1

M
W= 0 :4/uzrdr (6.42)
7TR2P0
0
and
2F /
E=—rxn—= 4/qrdr, (6.43)
7TR2P0U0

where M [Kg/s] and E [J/s] are the dimensional mass and heat flow rates respectively. In
polyatomic gases the dimensionless heat flow rate (E) can be written as a sum of the two heat
flow rates, one related to the translational degrees of freedom and the other related to the

rotational degrees of freedom

1 1

E=FEy, + Erot, FEiy = 4/Qt7’frd"na Erot = 4/Q7’otrdr- (644)
0 0
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Based on the assumption of the small pressure and temperature differences the flow rates (W)

and (E) can be split in two parts [17]
W =-WpXp+WrXy, E=FEpXp— ErXr, E;=FEy;+ Ei, 1=PT. (6.45)

Here the coefficients Wp, E;, p and E,, p are obtained by solving the Poiseuille problem
(Xp =1, Xy = 0), while for the coefficients Wr, Ey,. r and E,.. 1 the thermal creep flow (Xp = 0,
Xr =1) is solved. It is noted that the dimensionless mass flow rate (W7) due to temperature
difference can be obtained from the solution of the Poiseuille problem using the Onsager relation
17

Wp = Ep. (6.46)

Eq. (6.46) is used for benchmarking purposes in order to estimate the accuracy of the calcula-

tions.

6.7 Thermomolecular pressure effect

The thermomolecular pressure effect pointed out by Reynolds [159] and named by him as
thermal transpiration. Knudsen [158] continued the experimental investigations of the effect,
while Maxwell [122] gave some theoretical explanations of this phenomenon. The thermomolec-
ular pressure effect is very important due to its scientific importance including calculations of
the Eucken factor, rotational collision number and other thermal properties of polyatomic gases.
Furthermore, the thermomolecular pressure effect is useful in practice because in many studies
it is necessary to calculate the pressure PA in a reservoir maintained at temperature T4, from
a measured pressure Pg in an other reservoir which is maintained at different temperature T'z.

The pressures Py, Py and the temperatures Ty, T are related by the law [17, 157]

P Tz\"
mkzge (—B> : (6.47)
PA TA

where the coefficient v depends on many parameters: length-to-radius ratio of the tube, type

of the gas, nature of the gas-surface interaction, etc. It is noted that the coefficient v depends
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strongly on the rarefaction parameter dy given by Eq. (6.37). If the pressure and temperature
drops are small according to Eq. (6.23) the coefficients Wp and Wy do not vary along the tube.
Then, the coefficient v is calculated setting W = 0 in Eq. (6.45)

= (6.48)

fy

Under small temperature and pressure differences, the coefficients Wp and Wy are taken for
any value of the rarefaction parameter between its values at the inlet (2 = 0) and at the outlet

(2 = L) of tube.

6.8 Results and discussion of flows through short tubes

Calculations have been carried out in the range of the rarefaction parameter dy from 0
to 10, i.e. in the free molecular and transition regimes and for L/R = 1 and 5. The limits
of the variation of the parameter Z in a shock wave are 1 and 5, so the choice of Z = 3 for
the problem under question is reasonable. Some indicative simulations have been performed
for Z = 6 showing very small effect on the calculated quantities. The presented results have
been obtained for purely diffuse boundary conditions and the HS model. All the discretization
parameters used are displayed in Table 6.1. It is noted that the supercomputing facility of
Helios in Japan provided the computational resources for the simulations. Tabulated results
for macroscopic quantities as well as plotted results for the distribution of various macroscopic
quantities are presented in Subsection 6.8.1. In Subsection 6.8.2 the quantities appearing in
the parametric study on propulsion performance of micro tubes are shown. Also, the influence
of the rotational degrees of freedom is investigated and the differences-similarities compared to

the corresponding monatomic modelling are pointed out.
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Table 6.1: Discrete velocity algorithm numerical parameters

Initial number of nodes per unit length in each direction 10
Number of grid levels 4
Final nodes per unit length N, = N, 80
Discrete angles in (0, 7) 160
Discrete magnitudes 16 x 16
Convergence criterion <107
Container sizes 15 x 15

6.8.1 Flow rates and field distributions

In Table 6.2 the dimensionless flow rate W for 7 = 0,2,3 (5 = 0 refers to monatomic
gases) is given. It is noted that the simulation for j = 0 has been performed based on the BGK
model for monatomic gases. Clearly, the effect of the internal degrees of freedom on the gas
flow rate is very small for all values of the rarefaction parameter and for both L/R = 1 and
5. It is noted however that for 0o = 1 and 10, W is decreased as j is increased. Also, W is
increased as the length of the channel is decreased and the rarefaction parameter is increased.
More specifically, the flow rate for §, € [0.1, 1] increases very slowly and then more rapidly for
d € [1,10]. Additional simulations have been performed with Z = 6 for g = 1 and L/R =1
and 5 showing that the mass flow rate does not change more than 0.1%.

In Fig.6.2 the distributions of the Mach number along the symmetry axis r = 0 for
L/R =1 and 5 at §y = 10 are shown. The Mach number far upstream is almost zero and is
increased in the region just before the tube, while after the tube it is rapidly decreased. It
is seen that as the number of the internal degrees of freedom is increased the Mach number
is increased due to the decrease of the ratio of the specific heat while the magnitude of the
velocity vector in the two types of gas is almost the same.

In Fig. 6.3 the distributions of the dimensionless axial velocity, pressure, and temperature
along the symmetry axis r = 0 for §p = 0.1 and 10 with L/R = 1 are shown. In Fig.6.4 the
corresponding results for L/R = 5 are presented. Starting with the pressure variation, it is seen
that far upstream is equal to one, then it is rapidly decreased through the tube and finally after

the tube it gradually approaches the far downstream conditions. As expected the axial velocity
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has the same behavior with the Mach number. The maximum value of the velocity is increased
as dg is increased. The axial velocity and the pressure profiles in polyatomic gases (j = 2, 3)
are quantitatively very close to corresponding profiles for monatomic gases. The temperature
equals unity in most of the domain, while inside the tube is decreased. The minimum value
of the temperature distribution is decreased as the rarefaction of the gas is increased and the
ratio L/R is increased. In the case of polyatomic gases the translational 7, and total 7.,
temperatures have the same qualitative behavior with the temperature of the monatomic gas.
The rotational temperature 7,, is maintained almost constant in the whole domain for small
0o, but as the rarefaction level of the gas is decreased it is also decreased in the same way as
the translational and total temperatures.

Distributions of the dimensionless axial velocity and temperatures in the radial direction
at the middle (z = L/2R) of the tube are shown in Fig. 6.5 for 6 = 1 and §p = 10 with L/R = 1.
As expected, the velocities follow a parabolic type shape having minimum and maximum values
at the wall and at the center of the tube, respectively. The velocity profiles of diatomic gases
(j = 2) are almost identical with the corresponding monatomic profiles. The corresponding
temperature profiles are also shown. In all cases a temperature drop across the tube (radial
direction) is observed. For §y = 1, the translational temperature of a diatomic gas is close to
the corresponding temperature of a monatomic gas, while the rotational temperature is kept
almost constant. For 9, = 10, the translational temperature of a diatomic gas is higher than
the temperature of a monatomic gas, while the rotational temperature is not constant anymore
and it is reduced moving from the wall towards the center of the tube.

For completeness purposes in Fig. 6.6, a more complete picture of the flow field is provided
for L/R = 1. Isolines of the number density, axial velocity and temperatures (translational,
rotational and total) along with the streamlines are plotted for o = 0.1 and &y = 10. It is
seen that the structure of the flow field between rarefied and dense atmospheres is different. At
0o = 0.1 the density is almost symmetric with regard to the y axis, while at d; = 10 there is
no symmetry. Also, as the atmosphere becomes more dense, the flow accelerates faster and the
maximum axial velocity is increased. Furthermore, the ray effect are quite strong in the low

rarefaction fields due to the discontinuities of the distribution function. For both values of dy the
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translational and total temperatures are decreased slightly inside the channel and more intense
at the outlet of the tube. However, the rotational temperature remains constant at dyp = 0.1,
while at 09 = 10 is decreased in the same way as the translational and total temperatures as it

has been already observed in Fig.6.3.

6.8.2 Propulsion characteristics of micro-tubes

In Table 6.2 the variation of the dimensionless thrust F;, the impulse factor Isp and
the discharge coefficient Cy in terms of the rarefaction parameter d, and the ratio L/R is
presented. The thrust is increased as the rarefaction parameter Jy is increased and the ratio L/ R
is decreased. It is clear that the propulsion efficient is increased as the tube length is decreased.
Similarly to the flow rates, the rotational degrees of freedom and the parameter Z have a small
effect on the values of Fj. It is seen however, that as j is increased Fj is slightly increased. As
the flow becomes more rarefied, Isp is decreased. The increment of the rotational degrees of
freedom leads to an increment of the impulse factor. This is well expected since the impulse
factor is defined as the ratio of the thrust over the flow rate, with the former one increasing and
the latter one decreasing as j is increased. The discharge coefficient Cy decreases by increasing
the tube ratio L/R, while for fixed L/R, Cy is increased as dg is increased. In addition, as the
rotational degrees of freedom are increased from zero to two and then to three the coefficient Cy
is increased. This is due to the fact that the ratio of the specific heats of the gas is decreased as
J is increased, taking also into account that the flow rates of the two types of gases are about
the same. Overall it may be concluded that the propulsion characteristics of polyatomic gas
expansion through micro-tubes are slightly improved compared to the corresponding ones in
the case of monatomic gases.

In order to facilitate comparisons with experiments, in Fig.6.7 the dimensional mass
flow rate M [Kg/s], thrust F; [N] and impulse factor Isp [s] are presented in terms of the
reference pressure P4 [Pa] for two monatomic gases (He, Ne), one diatomic gas (N,) and for
one polyatomic gas (CHy). The length and the radius of the tube is L = R = 0.05 cm. The
reference temperature is Ty = 295 K. As it is seen as the molecular weight of the gas is decreased

the mass flow rate is also decreased. This behaviour is well expected because from Eq. (6.11) the
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mass flow rate is proportional to the square root of the molecular mass for the same pressure,
temperature and dimensionless mass flow rate W. The thrust F} is almost independent of the
gas and depends only on the pressure. Both quantities, mass flow rate and thrust, are increased
as the reference pressure is increased and the atmosphere becomes more dense. Finally, the
impulse factor changes slightly with the pressure and depends strongly on the working gas.
This is justified by the fact that the dimensional impulse factor is inversely proportional to the
square root of the molecular mass and depends slightly on the molecular structure as it is seen
on Table 6.2. Similar qualitatively behaviour is observed for L = 5R = 0.25 cm, therefore the

corresponding figures are omitted.

6.9 Flow rates and thermomolecular pressure effect in
long tubes

The problem of the fully developed flows of polyatomic gases through long tubes depends
on the parameter Z, the rarefaction parameter dy, the number of the rotational degrees of
freedom j, the parameter £ and on the tangential momentum accommodation coefficient ay;.
The main calculations were carried out for Z = 1 and 5 and for d, € [0,100]. Values for
the parameter k for various polyatomic gases are given in [120], while for a given x and Z
the quantities wy and w; are chosen according to Egs. (3.15) and (3.16). Three typical values
of the accommodation coefficient aj; have been examined namely 0.5, 0.8 and 1. Depending
on the value of rarefaction parameter &y, the discretization has been progressively refined to
ensure grid independent results up to several significant figures. The presented results are for
400 angles in [0, 7], 800 nodes in radial direction and for 80 discrete magnitudes.

A comparison with the numerical results in [106] is performed in Tables 6.3 and 6.4 for
Ny (j =2, wy = 0.2354, w; = 0.3049, k = 0.645) and various values of &y, with oy = 1. The
dimensionless mass and heat flow rates under pressure (Xp = 1, Xy = 0) and temperature
(Xp =0, X7 = 1) gradients, based on the Rykov kinetic model, for Z =1 and 5 are provided.
In this case of the pressure driven flow, the heat flow due to the rotational degrees of freedom

is always 0 (E,o;p = 0) [106]. As it is seen the comparison between the present results and the
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corresponding results in [106] is very good with the relative error being less than 1%. Also the
Eq. (6.46) is clearly fulfilled in the whole range of dy. Overall, the accuracy of the numerical
results is clearly demonstrated.

In order to examine the effect of the rotational degrees of freedom in Tables 6.5 and 6.6 the
corresponding mass flow and heat flow rates are shown for the linear polyatomic COs (j = 2)
and for the nonlinear polyatomic gas CHy (j = 3). For completeness and comparison purposes,
the corresponding results obtained by the Shakhov model for monatomic gases are also given.
The parameter x for COy and CHy is taken equal to 0.633 and 0.690 respectively [120]. Values of
wo and @, for COy (Z =1: wy = 0.549, @y = 1.373; Z =5: wy = 0.618, w; = 1.451) and for
CHy (Z=1:wy=0288, wy; =1462; Z =5: wy = 0.446, w; = 1.554) are chosen according
to Egs. (3.15) and (3.16). It is seen that the mass flow rates Wp are very close to those obtained
by the Shakhov model for all values of the rarefaction parameter d,. However, the effect of the
rotational degrees of freedom on the heat flow Ep is greater and amounts to 20 —30% at Z = 1
and moderate values of the rarefaction parameter. Independently of the parameter oy, with
increase in Z the mass Wp and heat Ep flow rates approach the corresponding values obtained
by the Shakhov model. The results for Wy are omitted since heat flow rates in Poiseuille
flow are identical to the mass flow rates in thermal creep flows. As with Poiseuille flow, Ej,.
increases as Z is increased. However, E,, r increases as Z decreases because the rotational
thermal conductivity increases with decreasing Z [46]. The heat flow Ep = Ey. 1 + E,o 17 of
the linear polyatomic gases (N3, CO3) can be higher about 30 — 40% than the corresponding
monatomic heat flow, while this difference in the case of nonlinear polyatomic gas (CHy4) can
reach 50 — 65%. Furthermore, the rotational heat flow rate of nonlinear polyatomic gases is
higher about 40 — 50% than the heat flow of the linear polyatomic gases. It is noted that
the rotational heat flow rates of nonlinear polyatomic gases are one-and-a-half times larger
than those of diatomic gases, provided the values of Z, wy, w;, k for diatomic and nonlinear
polyatomic gases are the same.

The effect of the tangential momentum accommodation coefficient oy, on the flow rates
is shown on Tables 6.7 and 6.8. Two values of the tangential momentum accommodation

coefficient namely a,; = 0.5 and aj; = 0.8 are considered. It is noted that the values of the
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parameters wy = 0.2354, w; = 0.3049 and x = 0.645 are the same with those used in the
simulations of Ny for apy = 1 (Tables 6.3 and 6.4). It is seen that as ay is decreased the mass
flow rates in the Poiseuille flow and the heat flow rates in the thermal creep flow are increased
for all values of the rarefaction parameter d;. However, the heat flow rate Ep in Poiseuille
flow for large values of the rarefaction parameter (99 > 1) is decreased as ay; decreases. All
these observations have been already mentioned for monatomic gases in literature [17, 157]. It
is noted that the results for a,; # 1 are qualitatively similar with those obtained for ay, = 1
regarding the effect of internal degrees of freedom on the mass and heat flow rates for both
types of flow.

Next, the thermomolecular pressure effect in the case of polyatomic gases with rotational
degrees of freedom is investigated in a wide range of rarefaction parameter o, from 0 to 30.
In Fig.6.8 the numerical results for the coefficient v are given in terms of the rarefaction
parameter dg. Two gases are examined namely Ny and CH, with 2 and 3 rotational degrees of
freedom respectively. The results are provided for two indicative values Z = 1 and 5, while the
parameters wy, w; and K are chosen to be the same with those given in Tables 6.3 - 6.6 for
N, and CHy. Also in Fig. 6.8, for comparison purposes the results obtained from the Shakhov
model for monatomic gases are shown. As it seen the coefficient v of Ny is almost the same
with those obtained for CH4 independently of the parameter Z. Also, it is deduced that for
moderate values of the rarefaction parameter , the coefficient v = Ep/Wp of monatomic gases
is higher than the corresponding one of polyatomic gases. The highest differences can reach
30 — 40% at Z = 1. It is noted that at o = 0 the results obtained by the monatomic modeling
and the corresponding polyatomic ones coincide. Furthermore, as the parameter Z is increased
the differences between monatomic and polyatomic calculations on v are decreased.

A comparison with experimental data in [152] is performed in Fig.6.9. The working gas
is Ny, while the temperature is T' = 544 K. The parameters Z and k for Ny at T' = 544 K
are taken equal to 3.513 and 0.752 respectively. Then based on the Egs. (3.15) and (3.16) we
obtain wy = 0.499 and w; = 1.967. As it is seen very good agreement is observed between the

simulations and experiments in the whole range of the rarefaction parameter.
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6.10 Concluding remarks

The nonlinear polyatomic flows through short and long tubes have been investigated.
The nonlinear flows through short tube due to small pressure differences (]53 / Py = 0.01) have
been studied based on the Holway kinetic model subject to Maxwell boundary conditions. The
quantitative behaviour of all macroscopic quantities in terms of the rarefaction parameter g,
L/R and j are examined in detail. Also, the characteristic parameters of short tubes operating
as propulsion systems in the case of polyatomic gases have been computed. It is found that
the effect of the rotational degrees of freedom on the macroscopic quantities is small except
in the case of temperature distributions. It may be concluded that the overall propulsion
efficiency in the case of polyatomic gases compared to the one in monatomic gases is slightly
improved. The analysis has been extended to include pressure and temperature driven flows
through long tubes using the Rykov kinetic model. The very good agreement with available
numerical results in literature along with the successful comparison between simulations and
experiments demonstrate the validity of the modelling. It is shown that the main effect of the
rotational degrees of freedom exhibits itself in a flow under small temperature difference, while
the effect of the rotational degrees of freedom on the mass flow rates through long tubes in the
case of the small pressure differences is almost negligible. More specifically the heat flow of
the linear polyatomic gases (No, CO3) can be higher about 30 — 40% than the corresponding
monatomic heat flow, while this difference in the case of nonlinear polyatomic gas (CHy) can
reach 50 — 656%. Finally, the thermomolecular pressure effect in the case of polyatomic gases
has been considered, showing that the coefficient v = Ep/Wp of monatomic gases is higher
than the corresponding one of polyatomic gases. The highest differences can reach 30 — 40% at

Z =1.
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Table 6.2: Dimensionless flow rate W, thrust F;, impulse factor Igp and discharge coefficient Cy in
terms of the rarefaction parameter and tube length to radius ratio.

do
j 0.1 10
L/R=1|L/R=5|L/R=1|L/R=5|L/R=1|L/R=5|L/R=1|L/R=5
0| 0.6658 0.3071 0.6781 0.3099 0.7612 0.3344 1.070 0.5487
W | 2] 0.6658 0.3071 0.6779 0.3099 0.7598 0.3341 1.053 0.5435
3 0.6658 0.3071 0.6779 0.3099 0.7594 0.3341 1.049 0.5421
0 0.4500 0.2079 0.4591 0.2103 0.5215 0.2293 0.7623 0.3867
F |2 0.4834 0.2232 0.4925 0.2255 0.5546 0.2442 0.7859 0.4027
3| 0.4918 0.2270 0.5009 0.2293 0.5629 0.2480 0.7922 0.4069
0 0.6759 0.6771 0.6771 0.6786 0.6852 0.6857 0.7123 0.7049
Isp | 2 0.7261 0.7268 0.7265 0.7275 0.7300 0.7309 0.7463 0.7409
3 0.7386 0.7392 0.7388 0.7398 0.7413 0.7423 0.7556 0.7506
0| 0.3658 0.1687 0.3725 0.1703 0.4182 0.1837 0.5879 0.3014
Cyqy | 2 0.3879 0.1789 0.3950 0.1806 0.4427 0.1947 0.6136 0.3167
3 0.3945 0.1819 0.4017 0.1836 0.4500 0.1980 0.6213 0.3212

Institutional Repository - Library & Information Centre - University of Thessaly

20/05/2024 01:12:25 EEST - 13.59.53.151

152




Section 6.10

Table 6.3: Dimensionless flow rates Wp, Ep and Wr of Na (wg = 0.2354, w; = 0.3049, £ = 0.645)
in the Poiseuille (Xp =1, X7 = 0) and thermal creep (Xp =0, X7 = 1) flows.

5 Z =1 Z =5
O |[Present work | [106] | Present work | [106]
0 1.5045 1.4962 1.5045 1.4962
0.1 1.4051 1.4043 1.4082 1.4075
W 0.5 1.3896 1.3889 1.3982 1.3975
1 1.4619 1.4612 1.4731 1.4724
10 3.5662 3.5647 3.5737 3.5724
100 26.02 26.00 26.02 26.01
0 0.7522 0.7424 0.7522 0.7424
0.1 0.6028 0.6008 0.6172 0.6156
o 0.5 0.4300 0.4288 0.4678 0.4666
1 0.3368 0.3356 0.3830 0.3820
10 0.0744 0.0742 0.0950 0.0948
100 0.0083 0.0082 0.0107 0.0108
0 0.7523 0.7461 0.7523 0.7461
0.1 0.6029 0.6023 0.6171 0.6166
Wr | 1 0.3367 0.3364 0.3831 0.3826
10 0.0743 0.0742 0.0950 0.0948
100 0.0083 0.0084 0.0107 0.0106

Table 6.4: Dimensionless heat flow rates (Ey. 1, Eror 1) of No (g = 0.2354, w; = 0.3049, k = 0.645)
in the thermal creep flow (Xp =0, X7 =1).

Z =1 Z =5
do | Present work [106] Present work [106]
Etr,T Erot,T Etr,T Erot,T Etr,T Erot,T Etr,T Erot,T
0 | 3.3852 | 1.5046 | 3.3608 | 1.4944 | 3.3852 | 1.5046 | 3.3608 | 1.4944
0.1 | 2.7964 | 1.2454 | 2.7878 | 1.2414 | 2.863 | 1.2772 | 2.8556 | 1.274
1 | 1.4246 | 0.622 | 1.4204 | 0.6202 | 1.6176 | 0.7116 | 1.6134 | 0.7098
10 | 0.2522 | 0.1052 | 0.2522 | 0.1052 | 0.3186 | 0.1322 | 0.3184 | 0.1332
100 | 0.027 | 0.0111 | 0.027 | 0.0112 | 0.0345 | 0.0143 | 0.0346 | 0.0142
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Table 6.5: Dimensionless flow rates Wp and Ep in the Poiseuille flow (Xp =1, X7 = 0).

Rykov
(50 COQ CH4 Shakhov
Z=1|Z=5|2=1|2Z=5

0 | 1.5045 | 1.5045 | 1.5045 | 1.5045 | 1.5045
0.1 | 1.4067 | 1.4086 | 1.4054 | 1.4084 | 1.4090

We 1 114673 | 1.4748 | 1.4628 | 1.4740 | 1.4764
10 | 3.5696 | 3.5749 | 3.5667 | 3.5744 | 3.5761
100 | 26.02 | 26.02 | 26.02 | 26.02 26.02
0 |0.7522 | 0.7522 | 0.7522 | 0.7522 | 0.7522
0.1 | 0.6101 | 0.6190 | 0.6040 | 0.6182 | 0.6208
Wr=FEp

1 10.3590 | 0.3898 | 0.3403 | 0.3868 | 0.3968
10 | 0.0837 | 0.0984 | 0.0758 | 0.0968 | 0.1020
100 | 0.0094 | 0.0111 | 0.0084 | 0.0110 | 0.0116

Table 6.6: Dimensionless heat flow rates (Ey. 7, Eyot,7) in the thermal creep flow (Xp =0, X7 = 1).

Etr,T Erot,T
50 C02 CH4 COQ CH4 Shakhov
=1 \Z=5|2Z=1|2Z=5|Z=1|Z=5|Z=1|2=5
0 | 3.385 | 3.385 | 3.385 | 3.385 | 1.505 | 1.505 | 2.257 | 2.257 3.385
0.1 | 2.830 | 2.871 | 2.802 | 2.868 | 1.311 | 1.293 | 1.953 | 1.926 2.880
1 1.517 | 1.646 | 1.439 | 1.633 | 0.8329 | 0.7647 | 1.198 | 1.099 1.675
10 | 0.282 | 0.329 | 0.257 | 0.324 | 0.1822 | 0.1528 | 0.250 | 0.211 0.341
100 | 0.0304 | 0.0358 | 0.0275 | 0.0352 | 0.0200 | 0.0165 | 0.0272 | 0.0227 | 0.0372
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Table 6.7: Dimensionless flow rates Wp and Ep of Ny (wwy = 0.2354, @y = 0.3049, k = 0.645) in the
Poiseuille flow (Xp =1, Xp = 0) for apy = 0.5 and apy = 0.8.

5 7 =1 Z=5

O Tay =05 ay =08 ay =05 ay =08

0 4.514 2.257 4.514 2.257

0.1 3.695 2.000 3.708 2.005

Wp 0.5 3.340 1.889 3.359 1.901

1 3.328 1.936 3.345 1.949

10 | 5.394 4.031 5.401 4.038

0 2.257 1.128 2.257 1.128

0.1 1.266 0.798 1.334 0.824

Wr=Ep [ 05| 0.631 0.498 0.722 0.551

1 0.414 0.364 0.493 0.421

10 | 0.0648 0.0706 0.0833 0.0905

Table 6.8: Dimensionless heat flow rates (Ey. 1, Eror ) of No (g = 0.2354, w1 = 0.3049, k = 0.645)
in the thermal creep flow (Xp =0, X7 = 1) for ap; = 0.5 and a; = 0.8.

Z=1 Z=5
50 CYM:05 OéM:O8 OéM:O5 OéM:08
Etr,T Erot,T Etr,T Erot,T Etr,T Erot,T Etr,T Erot,T
0 | 10.155 | 4.514 | 5.078 | 2.257 | 10.155 | 4.514 | 5.078 | 2.257
0.1 | 6.240 | 2.769 | 3.801 | 1.692 | 6.578 | 2.931 | 3.924 | 1.751
0.5 3.075 | 1.334 | 2.314 | 1.016 | 3.519 | 1.538 | 2.560 | 1.131
1 1.947 | 0.833 | 1.615 | 0.700 | 2.317 | 0.998 | 1.864 | 0.814
10 | 0.262 | 0.109 | 0.256 | 0.107 | 0.333 | 0.138 | 0.324 | 0.135
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Figure 6.2: Distributions of the Mach number for L/R = 1 (left) and L/R = 5 (right) with
0o = 10 along the symmetry axis.
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Figure 6.3: Dimensionless distributions of axial velocity (up), pressure (middle) and tempera-
tures (down) for dg = 0.1 (left) and dp = 10 (right) with L/R = 1 along the symmetry axis.
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Figure 6.4: Dimensionless distributions of axial velocity (up), pressure (middle) and tempera-
tures (down) for dgp = 0.1 (left) and dp = 10 (right) with L/R = 5 along the symmetry axis.

158

Institutional Repository - Library & Information Centre - University of Thessaly
20/05/2024 01:12:25 EEST - 13.59.53.151



Section 6.10

07‘...|.‘..|-‘.‘|-."|-."| gy
01 02 03 04 05 06 07

Uy

Figure 6.5: Distributions of axial velocity (left) and temperatures (right) for 6o = 1 (up) and
dp = 10 (down) with L/R =1 at z = L/(2R).
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Figure 6.6: Diatomic gas flow (j = 2) through a tube for L/R = 1 and dy = 0.1 (left) and dy = 10

(right): isolines of axial velocity, number density and temperatures (translational, rotational and
total).
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Figure 6.7: Dimensional mass flow rate M, Thrust Fy and impulse factor Isp of various gases
with reference temperature 7y = 295 K through tube with L = R = 0.05 cm.
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Figure 6.8: Thermomolecular pressure effect v as function of the rarefaction parameter dg for
Ny, CH4 with Z =1 and 5 and for monatomic gases.
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Figure 6.9: Comparison between computational and experimental [152] measurements of the
thermomolecular pressure effect for Ny at T'= 544 K.
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Chapter 7

Rarefied polyatomic gas flows driven

by adsorption

7.1 The sticking coefficient and the thermal accommo-
dation coefficient

Gas adsorption processes are present in many practical applications, as seen in literature
review. Due to mass transfer a gas adsorption flow is induced. Since in most cases the surface
temperature is lower (or much lower) than the gas temperature in the bulk flow, heat transfer
is also present. Thus, gas adsorption flow combines both mass and heat transfer. Actually, at
the boundary between the gaseous and condensed phase the difference between the distribution
function of impinging and re-emitted molecules creates a Knudsen layer [1] to be described by
kinetic equations. The modeling of such flows is commonly based on kinetic theory by applying
the Boltzmann equation or kinetic model equations [1] or alternatively the Direct Simulation
Monte Carlo Method (DSMC) [19].

In gas adsorption a fraction of molecules impinging to the surface is adsorbed (stick to
the surface), while the remaining fraction is re-emitted (reflected) into the gas. This fraction is
expressed in terms of the sticking coefficient age € [0, 1] which is a measure of the probability

that a molecule landing on the surface will permanently stick on it and provides an indication
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of the effectiveness of gas removal from the system. The sticking coefficient is defined as [11]

asc = ————, 7.1
s I (7.1)

where N~ and N7 are the particle fluxes impinging to and reflected from the surface respec-
tively. It may be estimated as a free parameter by matching experimental with corresponding
computational results characterizing a specific gas-surface set up (surface porosity, gas type,
gas and surface temperatures). Then, these estimates may be applied in deriving boundary
conditions for the simulation of adsorption processes in similar set-ups. Following this proce-
dure the sticking coefficients of several gases for cryopanels coated with activated carbon at
very low temperatures have been estimated [160, 161] and then, they have been applied in the
numerical modeling of cryopumps used in the main pumping systems of magnetic confinement
fusion reactors [116, 117].

It is noted that all available work is based on the assumption that the emitted particles
are in thermal equilibrium with the surface, i.e., the reflected particles have the same tem-
perature with that of the adsorption surface. In cases however, where the temperatures of
the surface and of the gas far from the surface differ significantly it is reasonable to argue
that the reflected particles are not fully thermally accommodated at the surface. This type of
gas-surface thermal interaction is modeled by the so-called thermal accommodation coefficient
arac [85]. Combining computational and experimental results it has been shown that it varies
as arac € [0, 1] [84-86], while in light gases may be significantly less than one. For instance in
[84] the measured values of the thermal accommodation coefficient for He and Dy on polished
surfaces is about 0.4 and 0.5 respectively. Furthermore, in [162] it is observed that for light
gases the surface roughness effect on the thermal accommodation coefficient is in vicinity only
of 10 — 20%. Thus, it is reasonable to argue that even in rough surfaces imperfect thermal

accommodation may occur.
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Here, the thermal accommodation coefficient for that fraction of the incident molecular

stream which is reflected from the surface can be written as [144]

1— E-—FET
apap = L ase) BT Z BT (7.2
(1 — Ozsc) E-— FEw

In Eq. (7.2), £~ is the incident energy flux, E* is the reflected energy flux and E* is the energy
flux that would have been achieved if the reflected molecules were in thermal equilibrium with
the surface. For agc = 0, the thermal accommodation coefficient is reduced to the typical
one introduced in purely heat transfer problems presented in Chapter 3 (arac = «). The first
step of the modeling of adsorption process is to consider an ideal one-dimensional steady flow
of a rarefied gas that is absorbed with given sticking and thermal accommodation coefficients
onto a planar wall. The corresponding analysis including the numerical results are presented
in Sections 7.2 - 7.5. Next, the modeling is extented to a 2D geometry which represents
the TIMO (Test facility for ITER Model pump) open panel experiment, conducted in the
TIMO-2 (Upgrade of the Test facility for ITER Model pump) test facility at KIT (Karlsruhe
Institute of Technology, Germany), aiming at gaining a deeper understanding of cryoadsorption
phenomena. Combining computational results with experimental data, the values of the sticking
coefficients of different gases are estimated, supporting decision making related to the design
of the cryogenic pumping system. The corresponding analysis, including representative results,
is presented in Sections 7.6. Finally, the concluding remarks of the present work are given in

Section 7.7.

7.2 Half space adsorption flow

Consider an ideal polyatomic gas occupying the half space £ > 0 bounded by a planar
infinite plate located at £ = 0, with & being the coordinate which spans the direction normal
to the plate. The flow setup is shown in Fig. 7.1. The gas motion is generated by the adsorbing
plate maintained at uniform temperature 7T, while the mass and heat transfer between the gas
and the plate are characterized by the sticking coefficient age € [0, 1] and thermal accommoda-

tion coefficient arac € [0, 1]. Far upstream the gas is at local equilibrium at some temperature
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T, > T, flowing with some velocity ., in the negative  direction. As shown in Fig. 7.1, the
flow is one-dimensional normal to the plate. The molecular velocity vectors v = (&;,&,.€.),
with & < 0 and &, > 0 refer to incoming and outgoing particles. In spite of the simplicity of
the flow configuration the relationship among the flow parameters and their effect on the flow
bulk quantities have not been fully investigated yet.

In Section 7.3 the kinetic formulation of the gas 1D adsorption flow is presented while in
Section 7.4 a detailed description of the modeling of the gas-surface interaction is given. Then,

in the Section 7.5 the numerical results are presented.

\ o
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Figure 7.1: Half-space flow configuration.

7.3 Basic equations

Applying the projection procedure in energy space, as described in Chapter 2, the adsorp-

tion polyatomic flow is governed by the steady-state one-dimensional Holway kinetic equation

&g—g =v Kl - %) (Jitr - E) - % (imt —~ L)} . (7.3)

given by
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Here, the main unknown is the distribution functions L (z,v) = [Q (,v),h (2, v) T, with
v = (&,&,, &) being the molecular velocity vector, v = P, / fer, where P, is the local trans-
lational pressure defined by the translational temperature and gy, is the viscosity at local
translational temperature T}, is the total collision frequency and Z € [1,00) is a collision
parameter. The reference translational and rotational distribution functions in Eq. (7.3) are

. . 1T . . AT
given by L;. = [Qm htr] and L,, = |:§rot7 hmt] , where the components of these vectors are

as follows
o NG mw) -G-8 kT,
" nrT, T | 2RT, |
] i (7.4)
~ n ex _(53[: - az)Q - 65 - 53 }AL JkBT
grot (27TRT>3/2 p 2RT 9 rot — 2 grot7

where 7 is the number of rotational degrees of freedom and R = kg/m is the gas constant with
m and kg being the molecular mass and the Boltzmann constant respectively. Also, the number
density n, the -component of the bulk velocity 4, (the other two components are zero), the
translational temperature T},, the rotational temperature 7,,; and the total temperature 1" are

defined by the moments of g and h as follows:

[c.ole olNe o)

///mww@ (7.5)

[© < JuNNe oo ¢

= [ ] [ Gadedsac. (7.6)

—00 —00 —00

[c.olENe olNe o)

T, (& 3nkB/// W+ €2+ €7] G, de,de. (7.7)

—00 —00 —0O0

Toot (7) = jka 7 /OO /ooﬁdfxdfydfz (7.8)

—00 —00 —O0

Sﬂr ( ) + jTrot (i‘)
3+

T(z)=
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Other macroscopic quantities of some practical interest in the present work are the translational
pressure defined by the equation of state ptr = nkgTyr, where kg is the Boltzmann constant,

the normal pressure
o

Pr (8) =m /OO 70 [ (&~ ) gaadsyde. (7.10)

—00 —00 —0OQ
and the energy and heat fluxes due to translational and rotational degrees of freedom in the x

direction given by

(o olNe olNe o) [ o lNe olNe o)

Be@) = [ [ [ veatsdgie. Bu = [ [ [ehigagae @y

—00 —00 —OO —00 —O0 —O0

and

Qu (@) =" / / / 2= )"+ €4 ) (6 — ) GG

(7.12)

(o ole oo o)

Qute) = [ [ [ (- ) hae.dgyae.

—00 —00 —00
respectively, where the subscripts ¢r and rot refer to translational and rotational parts. As it
is well known correct expressions for both viscosity and thermal conductivity cannot be proved
simultaneously based on the Holway approximation. In spite of this pitfall and its simplicity
it has been numerically demonstrated that it is a very reliable model for solving nonisothermal
flows deducing results which are very close to the corresponding ones obtained by solving other
kinetic models and the DSMC method [163, 164]. It is noted that for j = 0 and as Z — oo the
Holway model is transformed into BGK model for monatomic gases.

It is convenient to rewrite the governing equations in dimensionless form using the far
upstream (Z — oo) macroscopic distributions as reference quantities. Thus, the dimensionless

number density, velocity, temperatures (rotational, translational and total), normal stress in
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A

x— direction, translational pressure, energy fluxes and heat fluxes are defined as

p= n w. = Uy T = E’I‘ T - Trot - 37—157“ + jTrot D . Pmm
- ) x ) tr — ) rot — 3 - . 9 Tr — A
Moo Voo T T 3+ 2P,
(7.13)
Ptr Etr o Erot _ Qtr _ Qrot
Cir = = ) Erot = = ) Gir = = ) Grot = %
o0 Uoo o0 Uoo Pootoo

=V2RT,

respectively. All quantities with the subscript oo are the reference quantities, with v,

and Py = nookpTs being the most probable molecular speed and the pressure far upstream
rot = Tno. The equivalent mean free path far upstream,

respectively. In equilibrium state 73, =

2 p(Tx)vs (7.14)

>\oo: ~ )
VT Py

is taken as the characteristic length. The dimensionless distribution functions are given by

defined as [17, 165]

g = gu3 /ne and h = fwg’o / ]500, while the dimensionless length and molecular velocity vector

are defined as © = & /A, and ¢ = v/v4 respectively.
Furthermore, the computational effort is significantly reduced by eliminating, based on

the well-known projection procedure, the y— and z— components of the molecular velocity

vector ¢ = [¢,, ¢y, ¢;|. This is achieved by introducing the reduced distributions:

F(x,¢c,) = / /gdcydcz,

G(x,¢;) = / / g (¢ + ) deyde., (7.15)
S(z,c.) = / / hdc,dc,.

Next, operating successively on the dimensionless form of Egs. (7.3)-(7.12) with the integral

operators % [% () deyde, and [7 [% () (¢2 4 ¢2) deyde., yields the following system of
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three integro-differential equations for the reduced distributions functions

o = o | (1) (B = 9+ (W - ) (7.16)

where ¥ = [F,G, S ]T is the vector with unknown distributions. The translational and rotational
relaxing distributions in Eq. (7.16) are given by ¥y, = [F},., Gy, StT]T and W,..; = [Frot, Grot, Smt]T

respectively, where the components of these vectors are read as

2 .
Ftr = r exXp [M 5 Gtr = TtrFtra StT‘ = %TTCtFﬂ“?

vV Tty Ttr
(7.17)
F’rot = L exXp _(Cﬂc—_uiﬁ)2 y Grat - TFrota Srot = ZTPjroty
T T 2

while the moments in terms of F'; G and S are given as

o 1 o
p= /chx, Uy = — / e Fde,, (7.18)

p
T = | [(co —w) F+Gldecy, Toor=— [ Sdco, paw= [ (co—uy) Fdey, (7.19)
3p. i E

qir = / (Cx - u:c) [(CI - ux)2F + G:| dcg, Qrot = / (CSC o Ux) Sdcl? (720)
Cip = / Cy (ciF + G) dcy,  €ror = / cpSdey. (7.21)

In the formulation of the basic equations Eqgs. (7.16) the hard-sphere (HS) intermolecular
interaction model has been applied. It is noted that all conservation principles are easily
deduced by taking appropriate moments of the governing equations. Eqs. (7.16) are multiplied
successively by 1, ¢, and ¢ and the resulting equations are integrated over the molecular

velocity space to yield, after some typical manipulations, the following conservation equations:
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o Mass:
0
= (pus) = 0 (7.22)
e I— momentum:
0
= (D pr2) = 0 (7.23)
e Energy:
0
% (etr + erot) =0 <724>

The above conservation equations are applied to benchmark the accuracy of the numerical

scheme.

7.4 (Gas-surface interaction

The adsorption process on the planar surface at £ = 0 is modeled by prescribing the

distribution of reflected molecules according to

: My & - &6 - & [ I
f(0,v :—exp< Y , exp | — , & > 0.
(0.) (2w RT*)3/ 2RT® (kgTe)*T (j/2) kpTe
(7.25)
It should be noted that rotational degrees of freedom are described by the rotational energy I ,
since no preferential alignment of molecular spinning motion is possible in the present problem.
In Eq. (7.25) the parameters n,, and T may be defined as follows.
The parameter n,, is specified by substituting Eq. (7.25) into the expression of the reflected
particle flux N+ = [ 650 I &/ (0,v) dIdv to deduce N* = n,v/RT®/+/2x. In this expression
the definition of the sticking coefficient given by Eq. (7.1) is introduced, to find

2
N
RT ’

Ny = (1 — Oésc) (726)

where N— = fg Y &.f (0,v) dIdv is the incident particle flux.
The parameter T, which has been introduced in the boundary condition in order to

take into account partial thermal accommodation, is defined by substituting Eq. (7.25) into
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the expression for the reflected energy flux B+ = f§m>0 I (%02 - f) ./ (0,v)dIdv. In the
resulting expression, Eq. (7.26) is introduced to yield Et = (2 +j/2) (1 — age) N~ kgT®. Op-
erating similarly in the case of full thermal accommodation (now 7 is replaced by T,,) is readily
deduced that E* = (2+ 5/2) (1 — age) N kpT,,. These two expressions for E* and E* are

substituted into Eq. (7.2) for the thermal accommodation coefficient to find

A

2~

@+ i) kol (727)

T = aracTw + (1 — arac)
where B~ = — f§x<0 I (%UZ + _f) &.f (0,v)dIdv is the total incident energy flux. Thus,
boundary condition (7.25) for the reflected molecules is fully defined in terms of the impinging
distribution, which is part of the solution.

Far upstream (Z — 00) the gas flow is described by a Maxwellian written as

fw) e = —(&r — fio)” — 2 — &2
> R P 2RT,

Ji/2-1 I

(kT PT(5/2) <_kBToo> |
(7.28)

At that end the distribution function and the resulting macroscopic quantities should not
depend on the spatial variable z.

Next, the projection procedure in energy space is applied according to g = fooo fdf and
h = fooo ff dl. Then, the boundary conditions are non-dimensionalized and the projection
procedure in the velocity space is introduced in the same manner as in the basic equations.

Following this routine manipulation at z = 0 the emitted reduced distributions for ¢, > 0 are

, _
F(0,6) = 2% exp (—C—> . G(0,e) =TF (0,¢), S(0,¢)=27F(0,¢,), (7.29)

T T 2

where the parameters p,, and 7% are given by

2/m 2e”
w = (1 —«a N, 7% =apacTe+ (1 —« —_— 7.30
P ( SC)\/T—a TAC ( TAC) (4+])N— ( )

172

Institutional Repository - Library & Information Centre - University of Thessaly
20/05/2024 01:12:25 EEST - 13.59.53.151



Section 7.5

with the incident particle and energy fluxes computed as

N~ =— / o F (0,¢,) des, € = — / Ca [EF (0,¢2) + G (0,¢:) + S (0, ¢) | des,  (7.31)

cz<0 cz<0

while at Z — oo the Maxwellian takes the form

Foo =Gy = ;500 = % exp [— (¢ — uoo)2] . (7.32)

In Egs. (7.29)-(7.32), the dimensionless quantities are p, = Ny, /Moo, Uoo = Uoo/ Voo, T = T /T,
7w =Tw/To, N~ = N~/ (vaottne) and e~ = £/ (fz,ovoo).

Based on the above dimensionless formulation the flow parameters involved in the present

one-dimensional adsorption flow problem are four, namely the coefficients asc and arac, the

temperature ratio 7, and the velocity u,,. Commonly, the dimensionless velocity at infinity

Us 18 presented via the Mach number far upstream, defined as Mao, = |lso| /Coo, Where co =

VYRT, is the corresponding sound speed [153]. Since for a polyatomic gas the ratio of the

specific heats is v = (5 + 7)/(3 + j) it is seen that Mas, = |uc| /(6 +27) / (5 + j).

7.5 Results and discussion of the half space adsorption

The governing equations (7.16) with the associated expressions (7.17)-(7.21) subject
to boundary conditions (7.29)-(7.32) are solved numerically in an iterative manner. More
specifically for prescribed values of asc, arac and 7, the iteration map starts by assuming all
needed macroscopic quantities including the far upstream velocity u., as well as the parameters
ny, and 7%. The kinetic equations (7.16) are solved to yield the reduced distributions F', G' and
S, which are introduced into the moment equations (7.18)-(7.21) as well as in the flux equations
(7.31) to find the new estimates of all bulk quantities which are now introduced in the next
iteration. The iteration process is terminated when the imposed convergence criteria is fulfilled.
Upon convergence the correct value of u., is recovered. Thus, the present problem is properly
defined only when three out of the four involved parameters are given. If all parameters both at

the plane surface and far upstream are defined no steady-state flow conditions may be reached.
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Here, we have chosen to compute us, (or the associated Mach number Ma.,) as a function of

the remaining three parameters, i.e.,

Uso = Uoo (04307 arac, Tw) . (7-33)

The discretization of the kinetic equations in the molecular velocity space is based on

the discrete velocity method. In the physical space a second order control volume approach is

applied using non-uniform grid spacing which follows the geometric sequence Ax; = Axy x ri=1

with Az; = 4x 107 and r = 1.0009 (the subscript i = 1, ..., K refers to the nodes in the physical
space). The macroscopic quantities are computed by Gauss quadrature. The results presented
in the next section have been obtained with about 15000 nodes in the physical space and 16

molecular speeds, while the convergence criteria to be fulfilled is

1
(t+1) _ Pz(t)

1
P t+1) _ _(®)

T. T.

| : ugt+1) . ugt)

+ +

| K
T ; [ } < (7.34)
In (7.34) the superscript ¢ denotes the iteration index and ¢ = 107° is the tolerance parame-
ter. For age = 0 the solution of the corresponding half-space purely heat transfer solution is
recovered.

A validation of the modeling approach and of the accuracy of the results is displayed
in Subsection 7.5.1. In Subsection 7.5.2, the effect of the rotational degrees of freedom on
the computed quantities is presented. Next, in Subsection 7.5.3 results are presented and
discussed for the macroscopic velocity and the Mach number far upstream, as well as for the
half space distributions of density, velocity, temperature and pressure in terms of the sticking
and thermal accommodation coefficients varying between zero and one and for typical values
of the temperature ratio 7, = T,,/T. The dependency of the thickness of the Knudsen layer
on the flow parameters and the inclusion of an effective wall temperature to approximately
compensate the thermal accommodation effect are also discussed. Finally, in Subsection 7.5.4
some dimensional results for specific gases are presented.

At this point it is useful to note that since the upstream quantities are taken as the

reference quantities, p = 1 and thus |us| = |Noo| = |aseN7|, i.e. is equal to the upstream
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net particle flux and to the adsorbed particle flux (all in dimensionless form) and therefore

characterizes the intensity of the adsorption process.

7.5.1 Benchmarking

The accuracy of the results has been confirmed in several ways. In all cases the length
L of the computational domain, i.e., the distance between the plate and the position on the z-
axis, where the far upstream boundary condition is imposed, has been computationally checked
to be long enough to properly recover space independent quantities at that end. Several runs
have been performed for the same set of parameters by increasing L until no variation in the
numerical results is observed. Grid independency of the results is also confirmed. Furthermore,
in all tested cases, the computed macroscopic distributions fulfill the conservation laws derived
in the Section 7.3. Based on the prescribed numerical parameters, convergence of the results
up to at least three significant figures is confirmed.

To further validate the accuracy of the results a comparison with available corresponding
results in the literature for monatomic gases (j = 0) is performed. In [113] the same flow
configuration has been studied for arac = 1 based on the DSMC method. In Fig. 7.3, which
reports the upstream Mach number Ma,, versus agc, a comparison is performed between the
results of the present work and the corresponding ones in [113] for 7, = T,,/T = 1 and 0.25.
It is clearly seen that although the two computational approaches are completely different (the
present one is deterministic, while the one in [113] is stochastic) the agreement between the
results in the whole range of the sticking coefficient and for both temperature ratios is excellent
with the relative error being less than 1%. Also, as shown in Fig. 7.3, increasing the Ma., leads
to higher values of agc. In addition, as 7, is reduced, i.e., the temperature difference between
the upstream gas and surface temperatures AT = T, — T, is increased, for the same agc,
the Ma., is increased, which means that the adsorption process becomes more intense. This
remark may be alternatively stated by saying that as 7, is reduced, for the same Ma,, a lower

agco is needed in the specific adsorption processes. As expected the effect of AT is important.
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7.5.2 Effect of the internal degrees of freedom

In this subsection the study is focused on the dependency of the macroscopic quantities
on the rotational degrees of freedom. Results are presented for linear (j = 2) and nonlinear
molecules (7 = 3) and for Z = 1, 3 and 5, which are indicative for this type of simulations.
All the results in this subsection are for arac = 1. In Fig.7.4 the upstream Mach number
May, is plotted as a function of the age for j = 2 and T, /T, = 0.05. The results obtained for
Z =1 are compared with the corresponding ones for Z = 5. It is clearly seen that the effect of
the parameter Z on the upstream Mach number Ma., is negligible. Also, it is noted that the
distributions of the macroscopic quantities are not affected by the variation of the parameter
Z.

In Fig. 7.5 a comparison between the upstream Mach number Ma., curves for j = 0 with
the corresponding curves for j = 2 and 3 is provided. Two temperature ratios are considered
namely T,,/To = 0.05 and 1. Furthermore, the parameter Z is assumed to be temperature
independent and set equal to 3. The chosen value is not specific for a particular substance and
it simply appears to be reasonable for low temperature flows of polyatomic gases [166]. As it is
shown the upstream Mach number Ma., suffers a small drop when j changes from 2 to 0. The
difference between a linear molecule and a nonlinear one with 3 rotational degrees of freedom
is considerably smaller (< 3%). For instance, at agc = 0.9 and j = 2 the Mach number is
increased about 6% for T,,/T, = 0.05, while is about 9% for T,/T = 1.

In Fig.7.6 the dimensionless distributions of the number density p(z), the normalized
velocity |u (x) /us| and dimensionless translational 7;,.(x), rotational 7,.(x) and total tem-
peratures 7(z) are plotted for temperature ratio T,,/T, = 0.05 with the sticking coefficients
ase = [0.1,0.7] and j = [0,2,3]. As it is seen the number density and velocity profiles of
diatomic (j = 2) and polyatomic (j = 3) gases are almost identical with the corresponding
monatomic (j = 0) profiles for both values of the sticking coefficient. The gas rotational, trans-
lational and total temperatures far from the adsorption plate are equal to each other and are
decreased close to the adsorption surface. For age = 0.1 the three temperatures translational,
rotational and total are equal to each other and are almost identical with the corresponding

monatomic profile of temperature. However, at aige = 0.7 there exists a narrow strip, about
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one mean free path wide, in which temperatures take different values. Temperature differences
are not large with the monatomic profile being very close to the corresponding profile of the
polyatomic translational temperature, while the rotational temperature takes lower values. It is
noted that the differences between linear and nonlinear polyatomic profiles are almost negligible.

Overall the effect of the rotational degrees of freedom on the computed quantities is very
small (about 10%) in the present problem. Therefore, for the rest of the chapter the analysis

is performed for monatomic gases with the results being applicable even for polyatomic gases.

7.5.3 Effect of partial thermal accommodation

Next, we focus on the main objective of the present work which is the investigation of
the effect of arac on the adsorption process. In Fig. 7.7, the magnitude of the computed far
upstream velocity ., is plotted as a function of age for arac = [1,0.8,0.2] and 7, = T\, /Too =
[1,0.27,0.05]. For 7, = 1, the effect of arc is negligible. This is well expected since when the
surface and upstream temperatures are equal there is no heat transfer mechanism. However, as
T 1s reduced (the temperature difference is increased) heat transfer is enhanced and as a result
the effect of arac is also increased. In general, |uy| is reduced as arac is reduced, i.e., as
the gas thermal accommodation at the plate becomes less complete. This is physically justified
since, in practice, a lower thermal accommodation at the surface corresponds (at some sense)
to some smaller temperature difference AT than the imposed one. Indicatively, at fixed values
of age = 0.7 and 7, = 0.27, when arac = 0.8 and 0.2, the reductions in |us|, compared to the
ones for arsc = 1, are 9% and 27% respectively. The corresponding reductions at 7, = 0.05
are 20% and 42%. Also, for prescribed adsorbing flux and temperature difference, as apac is
reduced, the sticking coefficient must be increased to sustain the prescribed flux. For instance
in the case of 7, = 0.05, when az4¢ is reduced from 1 to 0.2, in order to preserve |us| ~ 0.6
the sticking coefficient is increased about 25%. The effect of arac becomes more important
at low and intermediate values of agc between 0.1 and 0.8. Overall, the effect of apac is of
similar importance with 7.

It is noted that the specific temperature ratios of 0.27 and 0.05 have been selected because,

for T,, = 300 K, they correspond to T, = 80 K and 15 K respectively, which are two typical
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temperatures in the design of multistage cryopumps [167] including the design of a three-stage
cryopump that is recently under consideration within the EUROfusion programme [168]. Of
course, they are also indicative for other temperature ratios covering a wide range of temperature
differences.

Based on the results of Fig. 7.7 it may be useful to attempt to compensate the effect
of arac < 1 by introducing an effective wall temperature Tfjf f > T, associated always with
perfect thermal accommodation (arac = 1). It should be like a weighted average temperature

and therefore it is defined as
T = apacTy + (1 — apac) Tee. (7.35)

In Fig.7.8, the magnitude of the computed far upstream velocity |u.| is plotted as
a function of agc for TS/ /T, = 0.81 and 0.24 with arsc = 1. In the same figure the
corresponding results for T,,/T,, = 0.05 with arac = 0.2 and 0.8, which are the parameters
used to obtain the two specific values of T¢// /T, are also plotted for comparison purposes. In
general the agreement is good at high and moderate values of age and it deteriorates as age
is further decreased. At agc = 0.1 the disagreement is about 30%. In general the effective
temperature approach may be useful for practical applications when computational resources
are limited.
A more detailed insight in the adsorption flow characteristics is displayed in Figs 7.9, 7.10,
7.11 and 7.12, where the dimensionless distributions of number density, velocity magnitude,
temperature and pressure are displayed for two temperature ratios 7, = [0.05,0.27] with the
sticking and thermal accommodation coefficients taking the typical values of age = [0.1,0.5,0.9]
and arac = [0.2,0.8, 1] respectively. In all cases the distance along the horizontal axis from
the plate is in mean free paths and the total indicated length corresponds to the length L of
the computational domain. This length also corresponds to the thickness of the adsorption
Knudsen layer where non-equilibrium transport phenomena occur. As shown in Figs 7.9, 7.10,
7.11 and 7.12, it is influenced from both agc and 7,. It is evident that increasing the sticking
coefficient age leads to lower values of L, which means that the far upstream conditions are

recovered faster in a smaller number of mean free paths /A, from the adsorption surface. The
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effect of the temperature difference is not that clear but it has been observed that decreasing
Ty Teduces the thickness L.

In Fig. 7.9, the number density profile p(x) is plotted. The shape of p(z) is qualitatively
similar for both 7, = 0.05 and 0.27. However, in the former case (i.e. as the plate temperature
is decreased), it is changing more rapidly reaching to higher number densities at the plate. The
far upstream number density is (as it should) always equal to one. For arac = 1 and 0.8, as
x is reduced, for all values of agc, the number densities are monotonically increased reaching
their highest values on the surface (x = 0). In particular, for agc = 0.1 the two profiles are very
close and then for age = 0.5 and 0.9 there is a departure between the profiles with the number
density taking lower values as the sticking coefficient is increased. This behavior remains the
same for arac = 0.2 and age = 0.1. On the contrary for arsc = 0.2 and age = 0.5 and 0.9,
as x is reduced, the number densities are monotonically reduced reaching their lowest values at
x = 0. Overall, increasing the sticking coefficient leads to lower values of density. For values of
arac low enough, the number density is even lower than the far upstream value. This behavior
in terms of the thermal accommodation is physically explained since, as pointed out above,
as arac is decreased the gas is reflected from the surface with a temperature larger than the
surface temperature and as a result the gas density is decreased.

In Fig.7.10, the normalized velocity magnitude |u () /us| is plotted. As expected in
most cases the magnitude of the gas velocity is reduced as it approaches the adsorption surface.
This speed decrease is reduced as ar ¢ is decreased and finally for a7 0 = 0.2 and age = 0.9
the gas moves faster as it approaches the plate. This behavior is the inverse of the one observed
for the number density and it is fully justified since as shown in the Section 7.3 the particle
flux conservation law p (x) u () = us applies.

The corresponding dimensionless temperature profiles 7 (x) are displayed in Fig.7.11.
The gas temperature far upstream is equal to one and then in most cases, as expected, the
temperature is monotonically decreased approaching to the adsorption surface. This situation
is reversed only at agc = 0.9 and 0.5 combined with arac = 0.2, resulting to gas temperatures
close to the plate higher than the far upstream ones. It may be justified by considering that
the thermal energy transferred by the reflected particles at the wall may be larger than the
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corresponding amount of particles at some location far from the wall and therefore, it appears
only for agc < 1 and it is enhanced as both AT =T, — T,, and arac are decreased.

The pressure profiles are shown in Fig. 7.12. In all cases the variation of pressure obeys the
equation of state p (z) = p (z) 7 (x). As age is decreasing, independent of ar ¢, the half-space
pressure distribution becomes more uniform, which is well expected since the purely half-space
heat transfer problem is recovered. It is also noted that the behavior of the normal pressure
Pz () is similar to p and therefore is not displayed.

The dimensionless density and temperature in the limiting case where age = 1 are shown
in Fig.7.13 for 7, = 0.05 with arac = 1 and 0.2. As it is seen the solution does not depend
on the thermal accommodation coefficient. This is expected, since all particles are adsorbed
and there are no reflected particles. Also, both the number density and temperature are mono-
tonically reduced as z is reduced. Comparing these profiles with the corresponding ones for
asc = 0.9 and arac = 1 it is seen that there is a resemblance in temperatures, while the
densities behave in an opposite manner (the one for age = 0.9 is increased as « is reduced).

All simulations reported above are based on the HS model. Corresponding simulations
have been performed for the Maxwell intermolecular potential deducing results which are very
close to the ones by the HS model. Therefore it is stated that the choice of the intermolecular

potential model has negligible effect on the present adsorption flow problem.

7.5.4 Sticking coefficients of specific gases

Closing this section is useful to provide some results in dimensional form. The dimen-
sionless results presented in Fig. 7.7 are applied to plot in Fig. 7.14 the net molar flux in terms
of the sticking coefficient for specific monatomic gases namely protium ('H), helium (He), neon
(Ne) and xenon (Xe) for reference upstream pressure Py, = 0.1 Pa, temperature Th, = 300
K and temperature ratio 7, = T,,/Ts = 0.05. This is easily performed as follows: For the
prescribed P, and T, the far upstream number density is obtained from the equation of state
(]500 = NeokpTs). Then, the far upstream velocity is computed as s = U |Uso|, Where
Voo = \/m is known for the specific gas and |us| is obtained from Fig. 7.7. Finally, the

net particle flux is computed as NOO = Nyl Which is divided by the Avogadro number to be
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converted into the net molar flux N [mol/(m?2s)] shown, versus agc for arac = [0.2,0.8, 1],

in Fig. 7.14.

It is clearly seen that as the thermal accommodation coefficient is reduced the net molar
flux N which is equal to the adsorbed molar flux at the surface, is reduced. It is readily
deduced, from the above dimensionalization, that the ratio of the net molar fluxes of two
gases, for prescribed age, arac and 7, is inversely proportional to the square route of their
molar masses. Thus, it is stated that under the same prescribed reference conditions and
coefficients, higher adsorption molar flow rate is sustained as the gas becomes lighter. Also,
the net molar flux is directly proportional to the reference pressure P... In that sense following
the demonstration procedure shown here the dimensionless results of the previous subsection
can be readily applied in a wide range of reference conditions and various gases for comparison

with experiments and other practical purposes.

7.6 Modelling of a prototype cryopump

In the framework the EUROfusion TFV (tritium-matter injection-vacuum) project, the
Karlsruhe Institute of Technology (KIT) has taken the lead to develop for DEMO (DEMOn-
stration Power Plant) a new concept for the reactor exhaust vacuum systems, consisting of
continuously working and non-cryogenic pumps, i.e. metal foil pump, mercury diffusion pump,
and mercury liquid ring pump. Due to the risk inherent to this new concept, cryogenic pumps,
which reliability and efficiency for fusion reactors have been already proven, are developed in
parallel as a fall-back solution. The aim of the project is the development of an integrated
design of a multi-stage cryopump fulfilling all DEMO requirements.

Cryogenic pumping systems are well known and used in various applications including the
vacuum systems of ITER (The way, an experimental fusion reactor) [169]. The key mechanism
is the sorption of gas on a surface. In order for the whole process to be efficient, the surface
has to be cooled down to a proper level. Thus, high cryogenic loads are required. The surface
temperature is of the order of a few degrees Kelvin and this is one of the shortcomings of cryop-
umps. In addition, due to the needed periodic regeneration process, the continuous operation

of such systems is not possible unless multiple pumping units are used. On the other hand,
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cryopumps have no moving parts and their operation has been proved reliable and quite stable.
Furthermore, multistage configurations are capable of gas separation, a requirement that is
critical for DEMO. Finally, multistage design can reduce the cryogenic loads since each stage
can be at different temperature, suitable for the gases that each stage is assumed to adsorb,
while in the single stage design the temperature has to be cooled to the lowest gas adsorption
temperature.

The operation is based on the sorption phenomenon where an activated charcoal surface is
cooled down to the point where a sufficient portion of the gas to be pumped, is removed. The key
feature that characterizes the efficiency of the process is the sticking coefficient. The estimation
of the sticking coefficient is not a straightforward procedure and requires both experimental
tests and gas flow simulations. The experiments are performed in the TIMO-2 (Upgrade of the
Test facility for ITER Model pump) test facility at KIT in order to measure pumping speeds
on an activated carbon surface. A CAD view of the experimental set up is shown in Fig.7.15
with the basic parts of the configuration. The experimental work, including the description of
the experimental configuration, is presented in [170] and is not repeated here.

Due to the fact that pressure level is quite small and gas flow is in the transition or even
in the free molecular regimes conventional fluid dynamics, based on the well-known Navier-
Stokes equations, is improper to simulate such flows since the continuum medium hypothesis
is not valid. Consequently, a deterministic or stochastic kinetic approach must be used. Since,
the effect of the internal degrees of freedom on the macroscopic quantities, as it is shown in
Subsection 7.5.2, is very small the simulation of the TIMO open panel test configuration is
based on the Bhatankar-Gross-Krook model for monatomic gases. In the Subsection 7.6.1 the
kinetic formulation of the problem, including the governing equations, the boundary conditions
and the macroscopic quantities, is described in detail. Next, the description of the choice of the
input parameters in the modeling is presented Subsection 7.6.2. Finally, in Subsection 7.6.3 the
numerical results focusing on the comparison with experimental data and on the computation

of the sticking coefficients are discussed.
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7.6.1 Kinetic modeling of the TIMO open panel test setup

The detailed geometry of the experimental configuration shown in Fig.7.15 is complex.
The external vessel and the radiation shield are both cylindrical, while the pumping inlet and the
adsorbing plate are orthogonal. Consequently neither cylindrical nor Cartesian computational
grids are fully suitable for the simulation of the whole flow field while coupling of two grids
requires a fully three-dimensional computational domain. The corresponding computational
cost is very high (actually not manageable) because it requires the solution of the kinetic
equations in a six-dimensional space (3D in the physical space plus 3D in the velocity space).
Therefore, certain simplifications in the flow setup are introduced. Following previous work
performed by the DSMC method [116] the flow field is simulated in a two-dimensional & — g
geometry. This approach has been proved efficient in computational terms and accurate enough
for engineering purposes.

The flow is modeled by the nonlinear BGK model equation subject to purely diffuse
boundary conditions. The main unknown is the distribution function f = (z,9,v), with
v = (&,&,,&.) being the molecular velocity vector. It is convenient to introduce the follow-

ing non-dimensional quantities:

& g I3 fop n " T P N
= — = — = — = — = — = — = — = — s N: s 736
t=p Y=g e fE S == T = p Z oo (7:36)

where R is the radius of the pump, vy = v/2RT, with R denoting the individual gas constant,
is the reference velocity at reference temperature Ty, ng is the reference number density and
By = nokgT, is the reference pressure with kg denoting the Boltzmann constant. In Eqs. (7.36)
the quantities p, u = (u,,uy,), 7, p = pr and N = (IN,, N,) are the dimensionless number
density, velocity vector, temperature, pressure and particle flux vector respectively. The inlet
conditions of the pump are chosen as reference quantities. In Fig. 7.2, the geometry imported in
the numerical algorithm is presented in non-dimensional with the radius of pump being R = 890
mm. The injection pipe is also included while the gas enters the pump through the pump inlet.

The geometry is based on the device drawings provided by KIT.
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Figure 7.2: 2D geometry used for the simulation in non-dimensional form.

The non-dimensional quantities are introduced into the governing equation of the BGK

model to yield [101, 102]

ox oy

™

2
ceos02L 4 csinod) — g, prie { p3/2 exp [M] - f} , (7.37)
(m7) T

where w = [1/2, 1] is the viscosity index and Jy is the rarefaction parameter defined as

PyR

by = —
’ w (To) vo

(7.38)

with u (Tp) being the reference viscosity at reference temperature Ty. Moreover, for computa-
tional purposes it is convenient to express the components (¢, ¢y, c,) of the particle velocity
in terms of cylindrical coordinates ({ cosf,(sinf,c,). For the specific problem the computa-
tional effort is decreased by eliminating the ¢, component introducing the following reduced

distributions functions

F(xa%cxucy): /f(xayucxvcwcz)dcm G(x,y,cz,cy): /Cif(ma%cwacyac,z)daza (739)
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into Eq. (7.37). After some typical manipulation the following coupled set of non-linear integro-

differential equations is reduced:

[ 2 . 27
CCOSHa—F +Csin96_F = Gopri ﬁeXp —(Ceos —ug)” — (Csind — u,) ~_r\
Ox y T T
] ) (7.40)
2 . 2
G cos 68_@ + (sin 96—G = Gopr! ¥ S exp (Ceost —uy)” — (Csind —uy)” | al
O dy 2 -

The macroscopic quantities p, u,, u, and 7 are expressed in terms of F' and G as

2m o0

p(:v,y)z//FCdCdH, (7.41)

21 oo

1
ug (x,y) = — ¢ cosOFCd(dl, (7.42)
2
2T o0
uy (x,y) = %//(sin OF¢d(do, (7.43)
00
27 o0
T (z,y) = % // (¢C°F + G) ¢d¢de — § (u +u). (7.44)
00

Also, the particle fluxes in z— and y— are given as N, (z,y) = u, (z,y) p (z,y) and N, (z,y) =
uy (x,y) p(z,y) respectively. An other interesting quantity is the Mach number defined as

Ma = \/ (6/5) (u% + uf/) Applying the projection procedure, the simulation of the TIMO open
panel test setup has been reduced to a 4D problem without losing any of the physical findings
of the flow.

Next, the formulation of the boundary conditions is presented. The outgoing distributions
from the surfaces (A), (B), (C), (D), (E), (F), (G), (H), (I), (J), (K), (L), (M), (Q), (R), (S)
have a Maxwellian form with the number density obtained by the inlet conditions at the inlet of
the pump (S) or by the condition of the no-penetration at the walls (A), (B), (C), (D), (E), (F),
(G), (H), (), (J), (K), (L), (M), (Q), (R). The surfaces with their notation are shown in Fig. 7.2.
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The distributions of the outgoing molecules from all surfaces denoted by the superscript (+) in

terms of the reduced distributions F' and G are defined as [101, 102]

=27 exp<_c2>, G+:&exp(_g2), (7.45)

TT; T; 2 T

where the subscript ¢ =(A), (B), (C), (D), (E), (F), (G), (H), (I), (J), (K), (L), (M), (Q), (R),
(S) is used to discern between the different surfaces. It is noted that the surfaces (A), (B), (C),
(Q), (R), (S) are maintained at the same temperature Tp, the surfaces (D), (E), (F), (G), (H),
(I), (J) are maintained at a lower temperature 7,,; while the surfaces at the adsorption panel
(K), (L), (M) are maintained at an even lower temperature T, o (7o > T\y1 > Tip2). Due to the
reference values selection, the values ps = 1 and 79 = 1 are obtained at the inlet of the pump

(surface (S)) while for the other surfaces the parameter p; is determined by

02,i co

pi= 2 [ [ oo acas (7.46)

91,1' 0

The possible values of the quantities ¢; (0), 61, 62, and 7; are

Ar pa(0)=—cosh, Ora=m/2, bpa=31/2, Ta=1, (7.47)

B: ¢p(0)=sinl, 6p=0, bpp=m 715=1, (7.48)

C: wc(0)=cosl, bho=-7/2, byo=7/2, 7c=1, (7.49)

D: ¥D (9) = —sin 07 el,D =T, 92,D = 27T, D = Tw71/T0, (750)

E . PE (9) = COS 6‘, 917]_«7 = —7T/2, 9275; = 71'/2, T — Tw,l/Tg, (751)

F: op(@)=sind, 6p=0, bhr=m, 7p="T,:/To, (7.52)

G: pa (0) = —sin6, 91,0 =T, 92,6‘ =27, Tg= Tw,l/TO, (753)

H . YH (9) = —COSG, Hl,H :7'('/2, 927]-[ :37T/2, TH:Tw,l/Tm (754)
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I: ¢ (0)=sin6, 60,;=0, Oyy=m, 711 ="T4u1/To, (7.55)

J: ws(0)=cosb, 0,;=—-7/2, Os;5=71/2, 7T5="T4u1/To, (7.56)
K: ¢g(0)=—cosl, b x=7/2, O =31/2, 7Tk ="Tu2/T0, (7.57)
L: (@) =cosl, 01p,=-7/2, Oy =m7/2, 7 ="T,2/T0, (7.58)
Q: @g(0)=—cosb, b9g=m/2, by09=31/2, T19=1, (7.59)
R: ¢r(f)=—sinf, O r=m Oyp=2m, 7r=1, (7.60)

where T),; and T, » are the temperature of the thermal shield walls and the adsorbing plate
respectively. In all cases with superscripts (-) denoting the incoming distributions at the wall.
The modeling of the adsorption process on surface (M) is based on the definition of the sticking
coefficient age presented in detail in Subsection 7.4. The outgoing distributions from the

adsorption surface are given in Eq. (7.45), while the parameters 75, and py, are calculated as

TI'/2 o0
T, 2\/m _
M: 71y= T(;Q’ oy = (1 — aSC)\/T\/__M / /(2 cosOF~d(db. (7.61)
—7/2 0

At the surface (O) (y = 0) specular refection is imposed due to the axial symmetry according
to
F™(2,0,(,0) = F" (2,0,¢(,-0), G*(2,0,(,0) =G (z,0,¢(,—0). (7.62)

Summarizing the formulation, it is noted that the kinetic modeling of the TIMO open
panel test setup is described by the kinetic equations (7.40) coupled by the moments (7.41)-
(7.44) and subject to boundary conditions (7.45)-(7.62). The discretization of the kinetic equa-
tions in the molecular velocity space is based on the discrete velocity method, while a second
order control volume is applied in the physical space. The macroscopic quantities are calculated
by Gauss-Legendre quadrature. The convergence criterion of the iteration process is
(t+1) (t)

T - T

p§t+1) . nz(t) u§t+1) . u@(t)

+ +

1 K

} <, (7.63)
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where the superscript ¢ denotes the iteration index, K is the total number of nodes in phys-
ical space and ¢ is the tolerance parameter. In Table 7.1 the discretization parameters used
are given. It is noted that the numerical code is parallel based on message passing interface
(MPICH2). The parallelization of the kinetic algorithm is implemented in the molecular ve-
locity space. This is a simple and natural way of parallelization inherent in the structure
of the algorithm reducing significantly the required computational effort. The estimates of
the distribution functions at each processor are summed to estimate the updated macroscopic
quantities. Before starting a new iteration, the macroscopic quantities and the impermeability
constants are synchronized and re-transmitted to each processor. The scaling characteristics of
the implemented parallelization are quite good and details can be found in [101, 102].

The solution of the problem depends on five dimensionless parameters, namely the rar-
efaction parameter &y, the temperature ratios 1,1 /1y and T, /70, the sticking coefficient age

and the viscosity index w.

Table 7.1: Numerical parameters used in simulations.

Number of nodes in x— direction | 3451
Number of nodes in y— direction 765
Discrete angles in (0, 7) 100
Discrete magnitudes 24
Convergence criterion <1074

7.6.2 Specification of the input parameters

As it is seen in Fig. 7.2 the whole geometry of the pump assuming = — y geometry is
imported, i.e. both vacuum vessel and the internal radiation shield, in the simulations except
the baffle fins in order to avoid coupling different types of computational grids.

Following the experimental campaign that took place at KIT, two out of the four gases
(Hg, Dy, Ne and He) that have been tested during the experimental campaign, namely Hy and
D,, have been simulated. The walls of the external vessel are at temperature Ty = 300 K,
which is also the temperature of the injected gas. Following the experimental parameters, the

thermal shield walls are at T,,; = 80 K D, (T},1 = 85 K for Hy) and the adsorbing plate are
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at T,y 2 = 18 K according to the basic scenario discussed in [171]. The reference viscosity at
temperature Ty = 300 K is 8.95 x 107% Pa s for Hy and 1.26 x 1075 Pa s for D,, while their
molecular masses are 2.016 gr/mole and 4.023 gr/mole respectively. The viscosity index for
both gases is w = 0.67. It is noted that the developed software is suitable in simulating a much
wider spectrum of gases.

It is important to note that the number of required simulations is significantly increased
due to the proper implementation of the boundary condition at the inlet of the pump where
the only known parameter is the throughput of the gas. Simulation tools require specific flow
parameters at open boundaries, like local pressure and velocity. When these quantities are
unknown, the typical treatment is to assume a Maxwellian distribution for the incoming to the
vacuum vessel particles through the inlet of the pump, and setting the flow rate due to this
incoming flow equal to the experimental value. This approach assumes that the portion of the
particles crossing the inlet of the pump in the opposite direction is negligible. Nevertheless,
following some extensive numerical experimentation, it has been clearly demonstrated that a
significant amount of particles will exit from the vessel through the injection pipe. Thus, in
order to achieve the net throughput to be equal to the experimental one (200 sccm), a much
higher throughput for the incoming particles has to be assumed and this requires a number of
simulations before the proper value is adjusted.

In order to achieve the required value for the throughput at the injection pipe outlet, the
only solution is the try and error method. A first guess is used initially and depending on the
recovered results, a new estimation is used resulting to multiple simulations for the recovery of
the correct flow field for each set of parameters. Consequently, the required resources for each
simulation are significantly increased.

It is noted that the desired experiment value of the gas net throughput of 200 scem (0.338
Pa m3/s) can be obtained for different combined values of the sticking coefficient agc and the
rarefaction parameter d;. Next, for each set of values age and dp the pumping speed Sg [m?/s]

is estimated based on the numerical results using the following expression

N
- 64
Sp R (7.64)
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where N [Pa m?/s] is the net gas throughput through the inlet of the pump and Py [Pa] is the
pressure displayed in Fig. 7.2. Then, the sticking coefficient is estimated through the calculated
values of the pumping speed that match the ones obtained from the experiments for the same

gas net throughput.

7.6.3 Comparison with experiment and computation of the sticking

coefficient

Tabulated numerical results obtained for Hy for various values of the sticking coefficient
age are presented in Table 7.2. In all cases the net gas flow is about 200 sccm close to the
experimental one. It is seen that as the sticking coefficient is decreased and the adsorbing plate
is not removing gas from the flow domain, the injected gas flow is increased to maintain the
net gas flow close to the experimental one and as expected the pressure P; is also increased.
More specifically, the throughput for the incoming particles has drastically increased reaching
values much higher than 2000 sccm (for age = 0.1) in order to achieve net flux of 200 sccm.
Taking into account the fact that as the pressure is increased, the convergence rate for the
algorithm is decreased and more time is required for the convergence of the numerical code.
It is observed that the kinetic simulation results are close to the ones obtained by the Test
Particle Monte Carlo method (TPMC). Taking into account that TPMC is valid only in the
free molecular regime and that for most of the cases the flow is in the transition regime, in
addition to the different modeling approach and geometry (TMPC is solving the detailed 3D
flow configuration) the discrepancy of 10% in the lower limit of the transition regime (large
agc) is reasonable. On the other end, for small values of age, where the flow is in the typical
transition regime, the discrepancy of 30% or more can be easily justified since TPMC does
not take into account particle collisions. Furthermore, comparing the experimental result of a
pumping speed of 2.61 m?3 /s with the computational pumping speeds obtained for various values
of the sticking coefficient it is concluded that a value of the sticking coefficient age = 0.03 is
the one that matches best the experimental result.

In Table 7.3, the obtained results for Dy are presented. The experimental pumping speed

for D5 is in the same order of magnitude to that of Hy and because of that the sticking coefficient
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should also be in the same order to the one for Hy. Therefore, simulations have been performed
for small values of the sticking coefficient and more specifically for age < 0.1. In general similar
remarks, as before, can be made. The throughput of the incoming particles is significantly
enlarged as ag¢ is reduced, to achieve the net particles flux of 200 sccm at the injection pipe
outlet. The estimated value of the sticking coefficient in the case of Dy is about agc = 0.064.
Next, the axial velocity, density, temperature, pressure as well as Mach number isolines
of Hy are presented in Fig.7.16 and 7.17 for two indicative values of the sticking coefficient
asc = 0.07 and 0.7. Small vortices are created close to the thermal shield, both inside and
outside of it. All of them are of small magnitude, especially the ones in the gap between
the vacuum vessel and the thermal shield. As the sticking coefficient age is decreased and
the pressure is increased the vortices are gradually increased. The density and the pressure
variances in the vacuum vessel are quite small in both cases and significant changes are limited
only in the space enclosed by the thermal shield. In addition, as expected the temperature of the
gas at the inlet of the pump is equal to one and then is monotonically decreased approaching
the adsorption surface, where its minimum value is observed. As it is seen, increasing the
sticking coefficient leads to lower values of the density in the flow field. Finally, the contours of
the Mach number give an idea for the magnitude of the velocity. As the sticking coefficient is
decreased the Mach number is also decreased since the intensity of the adsorption is decreased.

Moreover, the Mach number behind the adsorption panel is almost zero for both cases of agc.

7.7 Concluding remarks

To sum up, the adsorption process has been investigated based on the BGK and Holway
model kinetic equations for monatomic and polyatomic gases respectively. First, the steady
one-dimensional half-space flow of a polyatomic gas in the presence of an absorbing planar wall
is investigated. The involved flow parameters include the sticking agc and thermal accommo-
dation ar ¢ coefficients, the ratio of the surface temperature over the far upstream temperature
T, /T and the upstream normalized velocity u.,. Overall the effect of the rotational degrees

of freedom on the computed quantities is very small (about 10%). Therefore, the dimensionless
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results of monatomic gases may be also used in the case of polyatomic gases. Particular atten-
tion is given on the effect of the value of a0 on us, as well as on the half space macroscopic
distribution of density, velocity, temperature and pressure, for various prescribed values of agc
and T, /T . It has been found that as the thermal accommodation of the gas on the surface is
reduced the adsorbing flux is also reduced or otherwise for a prescribed adsorbing flux the stick-
ing coefficient must be increased. Furthermore, the effect of partial thermal accommodation is
enlarged as the difference, between the surface temperature and the far upstream temperature,
is increased. Overall, the effect of arac is significant in all flow quantities and the type of
thermal gas-surface interaction must be accordingly taken into consideration.

Next, the modelling of a three stage prototype cryopump where the adsorption is the main
process has been performed. For this reason a 2D kinetic adsorption code has been developed to
simulate the experimental device configuration (TIMO open panel setup). Massive simulations
have been performed for different sets of parameters following the experimental setup used
at KIT. More specifically, numerical data have been recovered for Hy and Dy and different
values of the sticking coefficient. Simulation results have been compared with experimental
data, providing the values of the sticking coefficient for both gases (asc = 0.03 for Hy and
asc = 0.064 for D). These results have been also compared with the corresponding ones
by the TPMC and will be also compared soon with corresponding DSMC (Direct Simulation

Monte Carlo) results.
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Figure 7.3: Upstream Mach number Moo, as a function of the sticking coefficient ago for
thermal accommodation coefficient arsc = 1 and temperature ratio 7, = [1,0.25] based on the
present kinetic model and the DSMC method [113].
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Figure 7.4: Upstream Mach number M., as function of the sticking coefficient ago for j = 2
and 7, = 0.05 with Z =1 and 5.
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Figure 7.5: Upstream Mach number apsc = [1,0.2] as function of the sticking coefficient age
for j =1[0,2, 3] with Z = 3 and temperature ratios 7, = 0.05 (left) and 7, = 1 (right).
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Figure 7.6: Dimensionless density (up), normalized velocity magnitude (middle) and dimen-
sionless translational, rotational and total temperatures (down) for j = [0,2,3] with Z = 3,

temperature ratio 7,, = 0.05 and sticking coefficients age = [0.1,0.7].
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Figure 7.7: Upstream velocity |us| as a function of the sticking coefficient agc for thermal
accommodation coefficient apac = [1,0.8,0.2] and temperature ratio 7, = [1,0.27,0.05].
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Figure 7.8: Comparison between the results obtained by using the ratio T /Too = [0.24,0.81]
and arac = 1 with the corresponding ”exact” ones.
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Figure 7.9: Dimensionless number density p(z) for temperature ratios 7, = [0.05,0.27] with
sticking coefficient agc = [0.1,0.5,0.9] and thermal accommodation coefficient apac = [1,0.8,0.2].
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Figure 7.10: Dimensionless velocity magnitude |u(x)/us| for temperature ratios 7, =
[0.05,0.27] with sticking coefficient g = [0.1,0.5,0.9] and thermal accommodation coefficient
arac = [1,0.8,0.2].
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Figure 7.11: Dimensionless temperature 7(x) for temperature ratios 7, = [0.05,0.27] with

sticking coefficient agc = [0.1,0.5,0.9] and thermal accommodation coefficient apac = [1,0.8,0.2].
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coefficient avge = [0.1,0.5,0.9] and thermal accommodation coefficient arac = [1,0.8,0.2].
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Figure 7.13: Dimensionless number density p(x) and temperature 7(x) for temperature ratio
Tw = 0.05 with sticking coefficient agc = 1 and thermal accommodation coefficient arac =

[1,0.2].
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Figure 7.14: Net molar flux Nimotar) [mol/(m?s)] of various gases as a function of the sticking
coefficient avge for thermal accommodation coefficient arac = [1,0.8,0.2] with Py, = 0.1 Pa,
T = 300 K and 7, = 0.05.
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Figure 7.15: CAD views of the TIMO open panel pump and position of the pressure gauges.
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Figure 7.16: Dimensionless axial velocity, number density, temperature, pressure and Mach
number isolines of Hy (w = 0.67) for avger = 0.07.
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Figure 7.17: Dimensionless axial velocity, number density, temperature, pressure and Mach
number isolines of Hy (w = 0.67) for agc = 0.7.
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Chapter 8

Concluding remarks

The research work reported in this thesis is focused on the computational study of
non-equilibrium transport phenomena in polyatomic gases in the whole range of the Knudsen
number. More specifically, the effects of the rotational and vibrational degrees of freedom in
polyatomic heat transfer, flow and adsorption processes based on the kinetic theory of gases
are investigated. It is assumed that gas molecules possess both rotational and vibrational
degrees of freedom, described by the rigid rotator and quantum harmonic oscillator models,
respectively. Kinetic model equations have been computationally solved both deterministically
and stochastically using the Discrete Velocity and the Direct Simulation Monte Carlo methods
respectively. Results in terms of bulk quantities with practical interest, such as heat and mass
flow rates, including comparisons between the kinetic models and the DSMC results as well as
between simulations results and experimental data available in literature, are presented. A brief
description of the investigated flow setups with the major contributions is outlined in Sections
8.1-8.3, while some future work perspectives are presented in Section 8.4. It is noted that the
present work may be useful in the design and optimization of MEMS, vacuum sensors and other
technological devices with polyatomic gases.

Overall, the theoretical /computational investigation performed in this thesis exhibits the
importance of the rotational and vibrational degrees of freedom of polyatomic gases in non-
equilibrium transport phenomena. It has been shown that ignoring the internal structure of

the molecules may yield erroneous results and large deviations between measurements and
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calculations. The work provides some useful insight in the design and optimization of processes
and devices with polyatomic gases operating under rarefied conditions in a wide temperature

range.

8.1 Polyatomic heat transfer

The problem of conductive heat transfer through rarefied non-polar polyatomic gases
confined between infinite long parallel plates and coaxial cylinders maintained at different tem-
peratures is investigated. The analysis is based on three kinetic models namely the ones pro-
posed by Holway, Rykov and Andries as well as on the DSMC method supplemented by the
Borgnakke-Larsen collision model. The quantitative behavior of the radial heat fluxes, tempera-
tures and densities are examined in a wide range of the gas rarefaction parameter and for small,
moderate and large normalized temperature differences at various radius ratios. The three ki-
netic models and the DSMC method provide very close values of the computed macroscopic
quantities as well as very good agreement with corresponding experimental data available in
the literature. In addition, the computational results perfectly match the analytical ones in the
free molecular limit and tend to the analytical ones in the hydrodynamic regime.

The total heat fluxes of linear and non-linear polyatomic gases have been found to be
higher about 30 —50% and 50 — 75% respectively, than the corresponding monatomic ones, with
the highest differences occurring in the free molecular limit. As the amount of elastic compared
to inelastic collisions is increased, the translational heat fluxes are slightly increased and they
tend to the monatomic ones, while always the rotational heat fluxes are about 50% and 75%
of the translational ones for diatomic and polyatomic gases respectively. Concerning the effect
of the vibrational degrees of freedom it is strongly depending on the number of vibrational
degrees of freedom as well as on the activation vibrational temperature of the working gas.
Therefore, different gases, namely No, Oy, CO,, CHy and SFg representing diatomic as well as
linear and nonlinear polyatomic molecules with 1 up to 15 vibrational modes are considered.
In diatomic gases the vibrational heat flux varies from 5% up to 25% of the total one, while
corresponding results in polyatomic gases with high number of vibrational modes show that even

at low reference temperatures the contribution of the vibrational heat flux may be considerably
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higher. For example, in the case of SFg at 300 K and 500 K the vibrational heat flux is computed
to be 67% and 76% respectively of the total heat flux.

Moreover, the effect of the thermal accommodation at the boundaries has also been ex-
amined for various diffuse-specular reflection scenarios. In most cases as the thermal accom-
modation coefficient is increased, i.e. the gas-surface interaction becomes more diffusive, the
dimensionless total heat flux is monotonically increased. The effective thermal conductivity ap-
proximation has been also studied finding out that it can be successfully applied in polyatomic

gases to study non-equilibrium effects provided that the system Knudsen number is small.

8.2 Polyatomic flows

Polyatomic gas flows through short and long tubes have been studied. More specifi-
cally, the pressure driven rarefied polyatomic gas flow through short tubes into vacuum has
been numerically investigated based on the Holway kinetic model subject to diffuse boundary
conditions. Such flows are characterized by low Reynolds numbers and high viscous losses and
therefore short circular micro-tubes may be used instead of typical micro-nozzles. The propul-
sion characteristics including the flow rate, the thrust, the impulse factor and the discharge
coefficient as well as the distributions of the macroscopic quantities with practical interest have
been obtained. It is found that the effect of the rotational degrees of freedom on the macro-
scopic quantities is small except in the case of temperature distributions. It may be concluded
that the overall propulsion efficiency in the case of polyatomic gases compared to the one in
monatomic gases is slightly improved. Also, it has been demonstrated that this type of flows,
which have been simulated so far only based on the DSMC method, can be also tackled by
kinetic modeling.

Also, the flow of a polyatomic rarefied gas in a capillary tube of infinite length driven by
small pressure gradients (Poiseuille flow) or small temperature gradients (thermal creep flow)
has been studied based on the Rykov model. Very good agreement with available numerical
results and experimental data in literature for diatomic gases has been obtained. The effect of
the rotational degrees of freedom on the mass flow rates due to pressure differences, as in the

case of the short tubes, is almost negligible. On the contrary, there is a significant effect on the
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thermal creep flow, where in diatomic and linear polyatomic gases the heat flow rate may be
higher about 30 — 40% than the corresponding monatomic one, while this difference can reach

50 — 65% in the case of nonlinear polyatomic gases.

8.3 Polyatomic gas adsorption on solid surfaces

Gas adsorption flow has been investigated based on the Bhatnagar-Gross-Krook and
Holway kinetic model equations for monatomic and polyatomic gases respectively. The one-
dimensional half-space flow of a polyatomic gas in the presence of an absorbing planar wall
has been considered. Overall the effect of the rotational degrees of freedom on the computed
quantities is about 10%. Therefore, the dimensionless results of monatomic gases may be also
used in the case of polyatomic gases. Furthermore, the influence of the partial thermal gas
surface interaction on all flow quantities including the sticking coefficient has been studied. It
has been found that as the gas thermal accommodation on the surface is reduced for prescribed
adsorbing flux and temperature difference the sticking coefficient must be increased to sustain
the prescribed flux or otherwise for the same sticking coefficient the adsorbing flux is reduced.
This behavior is further enhanced as the difference, between the surface and the far upstream
temperature is increased, which is commonly the case in cryogenic applications. Overall, the
effect of the thermal accommodation coefficient is significant in all flow quantities and the type
of thermal gas-surface interaction must be accordingly taken into consideration.

The study of the adsorption process is extended to the case of a two-dimensional con-
figuration in order to simulate an open panel experiment, conducted at a test facility at the
Karlsruhe Institute of Technology (KIT) in Germany. Combining computational results with
experimental data, the values of the sticking coefficients of different gases have been estimated,
supporting decision making related to the design of the cryogenic pumping system. Massive
simulations have been performed for different sets of parameters following the experimental
setup used at KIT. Simulations have been performed for different sets of parameters and nu-
merical data have been recovered for Hy and Ds. Following a comparison with experimental
data, the sticking coefficient for both gases has been provided. In addition, the detailed flow

structure in terms of all macroscopic quantities of practical interest is viewed and the effect of
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the temperature of the adsorbing plate is reported. Most important a significant amount of

back flow in the inlet slit is observed highly influencing the overall adsorption performance.

8.4 Future work

Continuation and further development of the present research may be performed in the

following directions:

e Transport phenomena in rarefied binary gas mixtures consisting of polyatomic gases have
not been investigated so far and it is a field where the knowledge and experience obtained
in the present work could be very useful in the investigation of such processes. Particularly,
simulating adsorption processes with such gases is very interesting both theoretically and

technologically (e.g. cryopumps).

e Extending the present computational work by including dissociation and electronic ex-
citation in polyatomic molecules using basic principles of the kinetic theory is also very
promising. This will provide a more thorough understanding and lead to improved com-

parisons with experimental data for gases having low excitation energies.

e Estimation of the slip and jump coefficients in the case of polyatomic gases may be now
performed in a relatively straightforward manner. Having these coefficients for polyatomic
gases will allow the implementation of continuum mechanics equations with velocity slip
and temperature jump boundary conditions for moderately small Knudsen number. This
analysis is available in monatomic gases but very limited work has been done in polyatomic

gases.

e The investigation of the feasibility of the three stage cryopump concept for the main
vacuum pumping system of the Demonstration Power Plant (DEMO) fusion facility will

be continued. More detailed comparisons with experimental data will be performed.

e Modification of the parallelized numerical codes developed here in order to be executed
by GPUs with CUDA is an action which definitely must be seriously considered. This
modification will result to high performance improvements and allow simulations of the

real geometry without simplifications.
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Appendix A

Relaxation rates in a homogeneous gas

A.1 Rotational relaxation

Comparisons between the translational-rotational relaxation rates of the applied kinetic
model equations and those of the DSMC method with the Borgnakke-Larsen collision model
are performed. Consider a spatially homogeneous polyatomic gas at a constant equilibrium
total temperature but different initial rotational and translational temperatures. Then, the
rotational and translational temperatures will evolve and relax toward the constant equilibrium
total temperature with a common rate determined by the collision frequency and rotational
relaxation parameter Z. By operating accordingly on the kinetic model equations the time
evolution of the translational-rotational temperatures may be obtained. Then, the parameter
Z® is accordingly fixed to ensure equivalent translational and rotational relaxation rates in
order to have a consistent comparison. The kinetic model equations Eq. (3.24) and Eq. (3.37)
are rewritten for a time-dependent homogeneous system, i.e., by adding the time derivative term
and omitting all space derivatives terms. Then, they are accordingly combined and the resulting
equations are integrated over the velocity space to yield the following relaxation equations for

each model:

e Holway

thr o 8 vV Tir dTrot o 8 \V Ter
dt - 5ﬁ Pr Z(H) [7— - Ttr]v dt - 5ﬁ Pr Z(H) [T - Trot]
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e Rykov

dt o 5\/%2(1%) [T—Tt'r]7 di = 5ﬁZ(R) [T—Tmt] (A 2)
e Andries

thT — 8 V Ttr dTrot . 8 \/ Tir

dt 5\/772(,4) [T—Ttr], dr 5\/7_TZ(A) [T—'rmt] (A'g)

All above equations have been deduced by introducing hard-sphere interactions (w = 1/2)
and the dimensionless time ¢ = £/ (Ao /vp), with Ag = 1/ (vV27d?ng) being the mean free path of
hard sphere molecules and d denoting the molecular diameter, as well as the equation On/dt = 0.
It is also noted that in the relaxation equations of the Andries model Z() = (1 — v + 0v) /0
and Pr= (1 — v +6v) "

The relaxation rates of the kinetic model equations have been compared numerically with

the corresponding ones of the DSMC method. It has been found that by setting

7/(H)

7(DSMC) _ 7(A) (v,0) = AR (o, 1) = Pr ’
Tr

(A4)

where Z(PSMC) denotes the rotation collision parameter in the DSMC simulations, nearly identi-
cal translational-rotational relaxation rates are produced in all cases. The relations between the
rotational collision numbers of the three kinetic models, shown in Eq. (A.4), are well justified by
Eqgs. (A.1)-(A.3), while their connection to Z(P%MY) is validated numerically. Some indicative
results are demonstrated in Fig. A.1, where the time evolution of the translational and rotational
temperatures towards the equilibrium temperature for a diatomic gas with Pr = 0.73 and initial
conditions 73, (0) = 3 and 7, (0) = 1, are shown. It is seen that for Z(PSMC) = Z(B) — 7(4) — 5
and Z) = 3.65 excellent agreement in the relaxation towards equilibrium between all models is
obtained. The rotational collision number Z) has been obtained with v = —0.5 and 6 = 0.273,
while Z() = Z(PSMC) Py On the contrary for the Holway model presents a slower relaxation
towards equilibrium. Eq. (A.4) is used in Section 3.5.2 to define the rotational collision number
for the various kinetic models and the DSMC method in order to have a consistent comparison

between the computed heat fluxes.
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A.2 Vibrational relaxation

In the study of the heat transfer in polyatomic gases confined between parallel plates
including the translational, rotational and vibrational degrees of freedom of the molecules in
order to achieve a proper comparison between the Holway kinetic model and the DSMC method,
it is necessary to match the rotational and vibrational relaxation rates of the two approaches
by accordingly fixing the collision numbers 7Y and 7, with the superscript i being (H)
and (DSMC) in the case of the Holway model and the DSMC method respectively. The
corresponding analysis for the rotational relaxation rates has been done in Section A.l.

Consider a spatially homogeneous diatomic gas at a constant equilibrium total temper-
ature and an initial vibrational temperature which is different than the initial translational
and rotational temperatures which are set equal to each other. Then, all partial temperatures
will evolve and relax toward the constant equilibrium total temperature with a common rate
determined by the collision frequency and vibrational relaxation numbers 7 and 78, By
operating accordingly on the kinetic model equations the time evolution of the temperatures
may be obtained. Then, the parameters Z and 2% are accordingly fixed to ensure equiv-
alent translational, rotational and vibrational relaxation rates in order to have a consistent
comparison.

The kinetic model Egs. (5.15) are rewritten for a time-dependent homogeneous system,
i.e., by adding the time derivative term and omitting all space derivatives terms. Then, they are
accordingly combined and the resulting equations are integrated over the velocity and energy

spaces to yield the following relaxation kinetic equations

dT,, o Tp“h [ 1 2 1

i =Py [ T g e )
AT TPy [ 31

i ey [z T~ T b g g e =Tl | -
d[TyinCo (T Pr T “PR

TuinGe (Tvi)] _ o B (g () — Tonto (To)] (A7)

dt 2 T (Ty)

All quantities are defined in Chapter 5. The number density remains constant in time 9n/0t = 0.
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The relaxation rates of the kinetic model equations have been compared numerically with the

corresponding ones of the DSMC method and it has been found that good agreement is observed

P 4 4
2" =5 (6 - a) (4 - a) ZPSM), (A8)

by setting [172]

where i = r, v and @ = 4/(2w — 1) is a parameter of the inverse power law potential which
varies between the limits for Maxwell molecules (o = 4) and hard sphere molecules (o« — 00).

Indicative results are demonstrated in Fig. A.2, where the time evolution of the trans-
lational, rotational and vibrational temperatures toward the equilibrium temperature for a
diatomic gas (Pr = 0.764, w = 0.74, Py = 0.1 Pa, u(Tp) = 94.55 pPa s) [145] with initial
temperatures 7, (0) = T (0) = 3371 K and Tg; (0) = 6742 K, are shown. It is seen that for

rot

quDSMC) = 50 and ZT(DSMC) = 5 there is very good agreement provided that using Eq. (A.8),

Z8" = 24.7 and Z") = 2.47. Eq. (A.8) is used in Subsection 5.4.1 to define the rotational
and vibrational collision numbers for the Holway kinetic model and the DSMC method in order
to have a consistent comparison between the computed heat fluxes and the other macroscopic

quantities.
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Figure A.1l: Translational-rotational relaxation in a homogeneous gas.
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Figure A.2: Translational-rotational-vibrational relaxation in a homogeneous gas.

221

Institutional Repository - Library & Information Centre - University of Thessaly
20/05/2024 01:12:25 EEST - 13.59.53.151



Institutional Repository - Library & Information Centre - University of Thessaly
20/05/2024 01:12:25 EEST - 13.59.53.151



Appendix B

The H-Theorem for the Holway model

In classical statistical mechanics, the H-theorem, introduced by Ludwig Boltzmann in
1872, describes the tendency to decrease the quantity H (defined below) in a nearly-ideal gas of
molecules [1]. As this quantity H was meant to represent the entropy of thermodynamics, the
H-theorem was an early demonstration of the power of statistical mechanics as it claimed to
derive the second law of thermodynamics. The H-theorem may be considered as more general
than the second law of thermodynamics, which states that entropy cannot decrease, because it
applies even far from equilibrium, while the entropy is defined only in equilibrium. However,
the H-theorem has been proven only for dilute gases whereas the second law applies to any

system in equilibrium. The H-theorem is formulated as [1]

OH  OH,; A
—= < — .
Y + 3z, <0, i=2,9,2 (B.1)
where o w e
H://flnfdfdv, "Hi://viflnfdfdv. (B.2)
—> 0 —oo 0
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Multiplying Eq. (2.5) by In f and integrating the resulting equation over I and v and after some

routine manipulation is obtained

aooooA o o0 00 ) o
— 1 1 i f 1 Idv =
at//fnfdvaraxl//vfnfddv
—oo 0 —oo 0

=7 7 ir (fir = F) + voor (fror = )| falaw, (B.3)
—oo 0

where vy is the collision frequency. In the derivation of Eq.(B.3) the collision invariant of

mass has been used. Also, the following two equations can be easily proved for the Holway

model o = o
/ / ft?” ln ftrd[d’u - O / frot - ln fy-otd[dv — O (B4)
—c0 0 —oo 0

From the Egs. (B.3)-(B.4) it is obtained

aooooA o 5 0o oo A o
— 1 1 if 1 Idv =
at//fnfddwr%//vfnfddv
—o0 0

—oo 0
// [ vir (for = (Jf:) + Vror (fmt—f) In <fft>] dldv. (B.5)

The collision frequencies vy, and v, are necessarily greater than 0 and the terms

o (Y (S
(ftr—f)1n<f>, (fmt—f)ln<f ) (B.6)

tr rot

are always lower than 0. We have therefore at the first order

5 ooooA o

— In fdld
6t//fnf Y
—oo 0

Consequently the H-theorem for the Holway model is proven.

vif In fdldv < 0. (B.7)
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Appendix C

Analytical solutions

In some cases, it is possible to derive analytical solutions in the two limits of the Knudsen
number: the free molecular regime (dp = 0) and the hydrodynamic regime (5o — o0). Closed

form expressions are provided here, used as benchmarking criteria for our numerical methods.

C.1 Free molecular regime

In the collisionless regime (5y = 0), the right hand side of the Boltzmann equation vanishes

and the problem can be solved analytically by the method of characteristics.

e Heat transfer between parallel plates
In the free molecular limit (§y = 0) the right hand side of the Egs. (3.24) and (3.37) be-
comes zero and then based on the associated boundary conditions closed form expressions
for the reduced distributions functions ¥ are readily deduced, which are substituted into
the moment equations Eqgs. (3.27)-(3.29) to yield analytical results for the macroscopic dis-
tributions. It is noted that in the free molecular limit all moments are independent of y
and remain constant at any position between the plates. Following this procedure and us-
ing boundary conditions (3.45) and (3.46), the translational and rotational temperatures

in terms of the thermal accommodation coefficient o and the normalized temperature
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difference [ are written as

Ttr,fm (Oé,ﬁ) = Trot,fm (Oé,ﬁ) - Tu (C]')

while the translational and rotational heat fluxes are given by

Ger,m (@, B) = (1 %)3/2 <1 ~ 7+ﬁ72 _ 1> — (1 - %)3/2 <1 il _\/7?72 _ 1) , (C.2)
and .
Grot, i (01, 8) = L g (a1, B) (C3)

4

respectively, where v = (2 — a) / (af3). For the specific case of purely diffuse reflection
(=1and v=1/8), Egs. (C.1)-(C.3) are reduced to

Tir,fm (5) = Trot,fm (6) =V 1 - 627 (C4)

oy (9) = == [(1L+8) V=B = (1= 8) VT+ 7] (C5)
and .
Qrot,fm (ﬁ) - iqw,fm (6) . (06)

The number density remains constant and equal to 1 (pg,, = 1). In the case of the
study that includes vibrational degrees of freedom the vibrational temperature and heat
flux may be included. Following the corresponding process which has been applied for
the translational and rotational heat flux and using the boundary conditions (5.25) and

(5.26) along with the moments (5.22) the vibrational heat flux is given as

1 v Tw,CTw,H
2ﬁ A /Tw,C + A /Tw,H

Quib, fm = [Tw,Hgv (Tw,H) - Tw,CCv (Tw,C)] ; (C7>

where 7,y = Ty /Ty and 7, = T¢/To, while ¢, is the vibrational degrees of freedom

as defined by Eq.(5.23). In the case of diatomic gases an analytical expression for the
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vibrational temperature can be obtained as

0,
n v
Tw,HA/ Tw,CCU (Tw,H) + Tw,C/ Tw,HCU (Tw,C)
while the corresponding expression for polyatomic gases takes the form
Tw,HA/ Tw,C’Cv (Tw,H) + Tw,C/ Tw,HCv (Tw7C)
Tvib,fm = : (C.9)

Cv (Tvib,fm) (\/Tw,C + \/Tw,H)

In Fig. C.1 the free molecular total heat flux qsm = Gir, fm + Grot, fm is Plotted for a diatomic
gas (j = 2) in terms of the parameters o and J. It is seen that at small 5, g, is
monotonically increased with the thermal accommodation coefficient o and the maximum
qfm occurs at a = 1. However, at large 3 the corresponding behavior is non-monotonic
and the maximum ¢y, appears at some value of o < 1. Similar results have also been
obtained in Subsection 3.5.3 for J; > 0, provided that the temperature difference is

adequately large and the gas rarefaction parameter remains low.
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Figure C.1: The free molecular total heat flux ¢y, in terms of the thermal accommodation
coefficient o and the normalized temperature difference S.

e Heat transfer between coaxial cylinders
The right hand side of Eq. (4.16) becomes zero and in the case of Maxwell diffuse boundary

conditions the reduced distribution functions are given for 6 € [—x /2,7 /2] by

 Pu ¢? 1 _J
F*-m‘”@m) Gr =3+ AFT, ST=5(+pHFT (C10)

and for 0 € [7/2,37/2] by

1 1 '
= —exp (—¢*), G*= S 5t = %F+. (C.11)

where the impermeability parameter is found from the no penetration condition to be

1

— (C.12)

Puw =

Then, substituting Eqgs. (C.10)-(C.12) into the moment Eqgs. (4.19)-(4.21) and following a

straightforward manipulation yields

0
pym(rs B) = % <\/11—5 4, —|-7r> | (C.13)
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Tor pn (s B) = Troto g (1, B) ;mw 0 (VIFB) +m-61], (C.14)

- pfm(/ra
benlr8) = o gl ) = 2 gt = (143) 2L (o

In Egs. (C.13) and (C.14) the discontinuity angle ; = sin™* (/) is displayed in Fig. (4.1).
Obviously the results do not depend on the type of model and are exactly the same for the
Holway and Rykov models. It is seen that in the free molecular limit for j =2 and j = 3
the rotational heat flux is one half and three quarters respectively of the corresponding
translational one, while in the case of a monatomic gas (j = 0) the rotational is equal to
zero and the translational is equal to the total heat flux. It is noted that the numerical

solution for dp = 0 is in excellent agreement with the analytical results of Egs. (C.13)-

(C.15).

C.2 Hydrodynamic regime

In the continuum regime (69 — 00), we can apply the hydrodynamic equations.

e Heat transfer between parallel plates
In the hydrodynamic limit (§y — oo) the Fourier law is introduced into the energy equa-

tion to yield the total heat flux

dg d [ dT
S e 1
i~ (F) = 10

where k is the thermal conductivity. If Euler splitting of the internal modes of energy

transfer is assumed, the polyatomic value of the thermal conductivity is [47]

15
k=—+4+%)uR C.17
(5 +3) (©17)
where 7 = 0,2,3 is the number of the rotational degrees of freedom, p is the viscos-

ity and R = kp/m is the individual gas constant. Applying the same process of the

non-dimensionalization mentioned in Subsection 3.3.1 and introducing the dependence of
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viscosity on temperature according to Eq. (3.19) the dimensionless heat flux is written as

. 3/2 1 a\3/2
q(0p — 00) = (Z + ‘é) [<1 ) 5 S ] : (C.18)

The tabulated numerical results in Subsection 3.5.2 for j = 0, 2, 3 tend to the correspond-

ing analytical results of Eq. (C.18) at large values of the gas rarefaction parameter.

e Heat transfer between coazial cylinders
Based on the Fourier law, the dimensionless heat flux for a monatomic gas with HS
molecules confined between two cylinders has been obtained analytically in [89]. Tt is
noted that the ratio of the thermal conductivity & of a polyatomic gas over its viscosity

@ introducing the Eucken correction, can be written as [47]

k  9¢c, — 5c,
r_Zr T 1
. 1 , (C.19)

where ¢, and ¢, are the specific heats at constant pressure and temperature respectively

given, in terms of the degrees of freedom 7 = 0,2, 3, by

_kgd+y _kp3+j
Cp = ET7 Cy = ET <C20>
Then, following the same procedure as in [89], it is readily deduced that
. 5\ B+ -1 o
q(B—H)O)__(Z—i_é) ropln-y ' (C.21)

For j =0, Eq. (C.21) is reduced to the monatomic heat flux in [89], while for j = 2,3 the
corresponding diatomic and polyatomic heat fluxes are obtained. The present numerical

results for large values of the gas rarefaction parameter tend to the analytical results of

Eq. (C.21).
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Appendix D

Heat conduction at small temperature

difference based on Rykov model

Here, the heat conduction in rarefied diatomic gases confined between two stationary
coaxial cylinders at small temperature differences is investigated based on the Rykov model (R-
model). The notation is kept the same as those presented in Chapter 4. When the temperature

difference AT is small, the distribution functions can be linearized as follows [17]
g=Ffo(1+LB), h=kgTefo(1+HP), B<<I1 (D.1)
where L and H are the unknown perturbation functions and fo is the local Maxwellian in the

. m 3/2 —ma?
= D.2
fO nB<27TI€BTB) eXP (2/€BTB> ( )

where npg is the number density of the gas on the outer cylinder and Tp is the temperature of

equilibrium conditions

the outer cylinder.
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Introducing the following non-dimensional quantities

r ¢ £ &, n—ngl
r== = Cr = —, = e
Rp UB UB P ng 3
Crtr - TB 1 Trot - TB 1 3Ttr + jTrot
Tir = 25 Trot = 2 T= : ) D.3
' Ty B Ty 3+ (B-3)
— Qtr l Qrot - _ +
qir PBUB Ba Qrot = PB Up ﬁ q qtr Qrot

and Substituting Eqs. (D.1) into the kinetic equations Egs. (4.11) and (4.12), the linearized

R-model that in the cylindrical coordinates reads as

0L (sinfOL

Ccos&ar 5 =0p(Ly— L),
OH CsmeaH
CCOSQ@T vy =0 (Ho— H),

Lo=p+ |:%T + <1 - %) Ttr:| (C2 - ;) + (wOZ_ ! + 1> 145(]“«( cos 6 ((2 — g) . (D.4)

2 3
57 (Trot 7_tr) ((2 - 3) + Trot + Tir (§2 - 5)

wo—l 4 2 5 wl—l
+( 7 —1—1) 15qtrgcose<§—2)+2< 7 +1)(1—/@)qrot§cos€.

where 05 is the rarefaction parameter defined in Eq. (4.3). The moments of the perturbation

Hoy=p+—

functions p, T, Ty, Trots Qi and @o¢ are given as

2w oo oo
1
= — Lexp —(t—c )dczgdgde (D.5)
73/
==l
1 2m oo o0 9
Tir = 375 L (—C2 — 1) exp (—¢* — ¢2) de.CdCdb, (D.6)
/ z
{146
1 2m oo o0
Trot = —373 (H— L)exp (—¢* — ) de.CdCdb, (D.7)
=[]/
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2T o0 o

1 5
Ur =33 // / L( cosf (<2 — 5) exp (—¢* = ¢2) de.¢d(db, (D.8)
0 0 —©
1 2T 00 00
Grot = —375 / / / H( cosflexp (—¢* — ¢2) de.¢ddb. (D.9)
0 0 —o

To eliminate the velocity c, the following three reduced functions are introduced

o0

1
F= ﬁ / Lexp (—cz) dc,,
G—L]OL 02—1 exp(—cZ)dc (D.10)
ﬁ z 2 z Z .

1 (e 9]
S = N / H exp (—c2) de..

Then, Egs. (D.4) are written in compact form as

8_\Il_Csin08_\I!_

Ceosf— 00

op (Po — ), (D.11)

where ¥ = [F, G, S]" is the vector of the unknown distribution functions, while the components

of the vector ¥o = [Fy, Go, SO]T are defined as follows

Fy=p+ [17—1— (1—1) Ttr] (CQ—l) + (wo—l —l—l) ithCcos.G(CZ—Z),

A Z Z 15
T 1 Ttr wo—l 2
=t (1-=)* 1) = 0
Go 22+( Z) 2 +( z )15(-’“5COS ’
(D.12)
S:p-i-i(T — Tir) C2—§ + Toot + T (P — 1)
0 57 rot tr 92 rot tr

wo—l 4 wl—l
+< 7 +1>1—5qtrgcosﬁ(g2—2)+2< 7 +1)qmt§0050(1—/<¢).
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The macroscopic quantities (Egs. (D.5)-(D.9)) written in terms of the reduced distribution
functions F', G and S as

1
p= ;//Fexp(—(z) ¢d¢de, (D.13)
0 0
2w oo
2
Ter = 37// [F(¢* —1) — G] exp (—¢?) ¢d¢ab, (D.14)
0 0
1 2w oo
— X 2 .
TTOt_W//S Fep( C)Cd(d@ (D.15)
21 oo
%//CCOSQ (C*—2)— } exp (—§2) ¢d¢do, (D.16)
1 2w o0
Grot = }O/O/CCOS 0S exp (—CQ) ¢dde. (D.17)

To close the formulation of the linearized Rykov model the boundary conditions have to be
assigned. Although the numerical formulation would allow more general wall scattering mod-
els, purely diffuse type boundary conditions are considered. Applying, the same linearization
(Egs. (D.1)), dimensionalization (Egs. (D.3)) and projection (Egs.(D.10)) processes as for the
governing equations, the linearized form of the outgoing distributions associated to Egs. (D.11)

are at the inner wall (r = )
1
F*=p,+ (CQ - 1) S 9’ St =pu+ (D.18)

and at the outer wall (r = 1)
=GT=5"=0. (D.19)

The parameter p,, in Egs. (D.18) is determined via the impermeability condition as

371'/2 o0
2 1
Pu = BV /C2 cosOF ~ exp (—(?) d¢df — 5 (D.20)
w/2 0
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The nonlinear vector Eqgs. (D.11) along with the associated expressions (D.12), the moments
(D.13-D.17) and the boundary conditions (D.18-D.20) provide a theoretically well-established
closed kinetic formulation for the heat transfer problem under small temperature differences
based on the R-model.

In Table D.1 a comparison between the heat fluxes obtained from the linear Rykov
model with the corresponding results based on the nonlinear Rykov is performed. The dimen-
sionless translational, rotational and total heat fluxes are given for various dp with v = 1/2
and 7 = 1/10. The enclosed gas is nitrogen (Ny) with w = 0.74, wy = 0.2354, w; = 0.3049,

= 0.645 and Z = 5 [106]. Simulations based on the nonlinear Rykov model have been
performed for f = 0.01. It is noted that in order to compare the results from the nonlinear
Rykov model with the corresponding ones obtained from the linear Rykov they are divided by
f = 0.01. The percentage error between the nonlinear (NL) and linear (L) heat flows, defined
as error = |(qvz — qr)/qnr| % 100 is less that 1% for all 5 and 7. So, the presented linear
form of the Rykov model can be applied at small temperature differences, giving results very

close to the corresponding results based on the nonlinear Rykov model.

Table D.1: Heat fluxes at the inner hot cylinder (r =+) for Ny (j = 2) based on the linear and
nonlinear Rykov model (Z =5, w = 0.74, w, = 0.2354, w; = 0.3049, x = 0.645).

dir Arot q
K o Linear | Nonlinear | Linear | Nonlinear | Linear | Nonlinear
0.1 | 5.59(-1) | 5.57(-1) | 2.79(-1) | 2.78(-1) | 8.38(-1) | 8.36(-1)
0.5 | 5.37(-1) | 5.35(-1) | 2.67(-1) | 2.67(-1) | 8.04(-1) | 8.02(-1)
1/2 1 | 5.11(-1) | 5.10(-1) | 2.54(-1) | 2.53(-1) | 7.65(-1) | 7.63(-1)
5 13.70(-1) | 3.68(-1) | 1.76(-1) | 1.76(-1) | 5.46(-1) | 5.44(-1)
10 | 2.72(-1) | 2.70(-1) | 1.26(-1) | 1.26(-1) | 3.99(-1) | 3.97(-1)
0.1 | 5.61(-1) | 5.60(-1) | 2.81(-1) | 2.80(-1) | 8.42(-1) | 8.40(-1)
0.5 | 549(-1) | 548(-1) | 2.74(-1) | 2.74(-1) | 8.24(-1) | 8.22(-1)
1/10 | 1 | 5.35(-1) | 5.34(-1) | 2.67(-1) | 2.66(-1) | 8.02(-1) | 8.00(-1)
5 14.36(-1) | 4.35(-1) | 2.13(-1) | 2.13(-1) | 6.50(-1) | 6.47(-1)
10 | 3.48(-1) | 3.46(-1) | 1.67(-1) | 1.66(-1) | 5.15(-1) | 5.13(-1))
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