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Abstract

Gaseous transport phenomena far from local equilibrium, i.e. when the flow reference

Knudsen number, defined as the ratio of the mean free path over a characteristic length, is

larger than 10−3, appear in several industrial processes and technological applications in vac-

uum technology and microsystems. Typical examples include the design and optimization

of vacuum gas distribution systems with piping, vacuum pumps, sensors and leak detection

equipment in high energy facilities (fusion reactors and accelerators) as well as condensation

and adsorption/desorption processes (e.g. cryopumping and CD/DVD metallization), mass

spectrometers, micro-filtering and porous media, micro-propulsion in satellite maneuvering and

vehicle reentry. The flow behavior in these systems cannot be properly captured by the typical

Navier-Stokes-Fourier approach and must be described based on kinetic theory of gases, as

described by the integro-differential Boltzmann equation or reliable kinetic model equations.

The most widely used and successfully implemented computational schemes in the solution of

kinetic equations are the deterministic Discrete Velocity Method (DVM) and the stochastic

Direct Simulation Monte Carlo (DSMC) scheme.

Non-equilibrium gas processes, also known as rarefied gas processes, in monatomic gases

have been widely studied in the literature, while the corresponding work in polyatomic gases

taking into consideration the internal degrees of freedom is rather limited. The present Ph.D.

thesis is focused on the investigation of the effect of the rotational and vibrational degrees of

freedom in polyatomic gas heat transfer, flow and adsorption processes in the whole range of

the Knudsen number (or gas rarefaction) from the free molecular through the transition up to

the slip and continuum regimes. The investigation is based on the numerical solution of typical

heat transfer and flow problems which are modeled by kinetic model equations and simulated

using both the DVM and the DSMC approaches.
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More specifically, conductive heat transfer through rarefied polyatomic gases confined be-

tween parallel plates and coaxial cylinders maintained at different temperatures is investigated.

It is assumed that gas molecules possess both rotational and vibrational degrees of freedom,

described by the classical rigid rotator and quantum harmonic oscillator models, respectively.

The approach is based on three kinetic models namely the Holway, Rykov and Andries mod-

els, as well as on the DSMC scheme supplemented by the Borgnakke-Larsen collision model.

The total collision frequency is computed according to the Inverse Power Law intermolecular

potential. Results are presented for the density as well as for the translational, rotational,

vibrational and total parts of the heat flux and of the temperature fields in a wide range of the

Knudsen number and for small, moderate and large temperature differences. All kinetic model

results compare very well to each other and with corresponding DSMC results, as well as with

experimental data verifying the validity of the simulations.

By considering in the beginning only the translational and rotational degrees of freedom,

it has been found that the total heat fluxes of diatomic and polyatomic gases are higher about

30 − 50% and 50 − 75% respectively than the corresponding ones obtained by the monatomic

modeling for both geometries. The influence of the type of gas-surface interaction has been

also investigated finding out that in most cases as the gas-surface interaction becomes more

diffusive the dimensionless total heat flux is increased. Then, the vibrational modes of the

molecules have been included and results have been obtained for N2, O2, CO2, CH4 and SF6

representing diatomic as well as linear and nonlinear polyatomic molecules with 1 up to 15

vibrational modes. The effect of the vibrational degrees of freedom is demonstrated. In diatomic

gases the vibrational heat flux varies from 5% up to 25% of the total one. Corresponding

results in polyatomic gases with a higher number of vibrational modes show that even at

low reference temperatures the contribution of the vibrational heat flux may be considerably

higher. For example in the case of SF6 at 300 K and 500 K the vibrational heat flux is about

67% and 76% respectively of the total heat flux. Furthermore, it is numerically proved that

the computed solutions are in agreement with the Chapman-Enskog approximation in a central

strip of the computational domain even at moderately large values of the rarefaction parameter

providing that the system Knudsen number is small. It is evident that modeling heat transfer

configurations with polyatomic gases must consider, and in most cases include, the effect of the

internal degrees of freedom even at ambient temperatures.

Next, the problem of polyatomic gas flow through circular tubes of various lengths has

been considered. Pressure driven rarefied gas flow of polyatomic gases through short tubes

in a wide range of the Knudsen number has been numerically investigated. The downstream
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over the upstream pressure ratio is taken very close to zero. Such flows are characterized by

low Reynolds numbers and high viscous losses and therefore short circular micro-tubes may be

used, instead of typical micro-nozzles, as low-thrust propulsion systems. A parametric study

on propulsion performance is performed based on the Holway kinetic model subject to diffuse

boundary conditions and the main computed quantities include the flow rate, the discharge

coefficient, the thrust and the impulse factor which are provided in terms of the gas rarefaction

and the tube dimensionless length. Furthermore, a comparison between corresponding poly-

atomic and monatomic results is performed and the effect of the internal degrees of freedom on

the results is investigated. It has been found that the overall propulsion efficiency in the case of

polyatomic gases compared to the one in monatomic gases is slightly improved. In general, the

effect of the rotational degrees of freedom on the macroscopic quantities is small except of the

temperature distribution, where the well-known observed minimum along the flow axis is less

pronounced. Also, it has been demonstrated that this type of flows, which have been simulated

so far only based on the DSMC method, can be also tackled by kinetic modeling.

This study has been extended in the case of flows through long tubes based on the infinite

capillary theory (fully developed flow) driven by pressure and temperature gradients. Simula-

tions are based on the Rykov model subject to diffuse-specular boundary conditions. In the

pressure driven flow the polyatomic results are very close to the corresponding monatomic ones,

while in the temperature driven flow, also known as thermal creep flow, there are significant

discrepancies. More specifically, the fully developed thermal creep heat flow rates in the case

of diatomic or linear polyatomic gases (e.g. N2, CO2) can be about 30− 40% higher than the

corresponding monatmomic ones. This deviation is further increased in the case of nonlinear

polyatomic gases (e.g. CH4) and can be about 50 − 65%. It is noted that as the Knudsen

number is increased the differences are also increased. The effect of the rotational degrees of

freedom on the gas flow rate in Poiseuille flow is small for all values of the Knudsen number.

However, the effect of the rotational degrees of freedom on the heat flow rate in Poiseuille flow

is greater and can reach 20− 30% at moderate values of the rarefaction parameter.

The effect of the internal degrees of freedom has been also considered in adsorption pro-

cesses. This investigation has been motivated by the design of multistage cryopumps and more

specifically by the design of a three-stage cryopump which is recently under consideration within

the EUROfusion programme. Since corresponding results in monatomic gases are not widely

available the investigation includes both monatomic and polyatomic gases.

The steady half-space single gas flow driven by an adsorbing planar wall is investigated

based on the solution of the BGK and Holway kinetic models. The mass and heat transfer
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between the gas and the plate are characterized by the sticking and thermal accommodation

coefficients, the surface temperature and the far upstream velocity and temperature. The

work is focused on the influence of partial thermal gas-surface interaction on all flow quantities

including the sticking coefficient. It has been found that as the gas thermal accommodation on

the surface is reduced, for prescribed adsorbing flux and temperature difference, the sticking

coefficient must be increased to sustain the prescribed flux or otherwise for the same sticking

coefficient the adsorbing flux is reduced. This behavior is enhanced as the difference, between

the surface and the far upstream temperatures, is increased. Overall, the effect of the thermal

accommodation coefficient is significant in all flow quantities and must be accordingly taken

into consideration. In general there is good agreement between monatomic and polyatomic

results and therefore, it is stated that in general the effects of the internal degrees of freedom

is small and does not exceed 10%. This is contributed to the low temperatures where these

processes take place. The investigation of the partial thermal accommodation effect may provide

a more clear interpretation of measurements of sticking coefficients, and conversely, improve

performance calculations for cryopumps.

Further, the adsorption process has been simulated in a two-dimensional flow configu-

ration in an effort to compare with corresponding experimental results and investigate the

feasibility of designing a three stage cryopump for the main vacuum pumping system of the

Demonstration Power Plant (DEMO) fusion facility. Based on inverse engineering procedures

the sticking coefficients of gases contained in the exhaust mixture on charcoal surfaces main-

tained at different temperatures may be estimated. Simulations have been performed for dif-

ferent sets of parameters and numerical data have been recovered for H2 and D2. Following a

comparison with experimental data, the values of the sticking coefficient for both gases have

been provided. In addition, the detailed flow structure in terms of all macroscopic quantities of

practical interest is viewed and the effect of the temperature of the adsorbing plate is reported.

Most important a significant amount of back flow in the inlet slit is observed highly influencing

the overall adsorption performance.

Overall, the theoretical/computational investigation performed in this thesis exhibits the

importance of the rotational and vibrational degrees of freedom of polyatomic gases in non-

equilibrium transport phenomena. It has been shown that ignoring the internal structure of

the molecules may yield erroneous results and large deviations between measurements and

calculations. The work provides some useful insight in the design and optimization of processes

and devices with polyatomic gases operating under rarefied conditions in a wide temperature

range.
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Επίδραση των βαθμών ελευθερίας περιστροφής και δόνησης

των πολυατομικών αερίων σε θέματα μεταφοράς θερμότητας,

ροών και προσρόφησης εκτός θερμοδυναμικής ισορροπίας

Χρήστος Τάντος

Πανεπιστήμιο Θεσσαλίας, Τμήμα Μηχανολόγων Μηχανικών, 2016

Επιβλέπων: Δρ. Δημήτριος Βαλουγεώργης, Καθηγητής

Περίληψη

Φαινόμενα μεταφοράς εκτός θερμοδυναμικής ισορροπίας, όπου ο αριθμόςKnudsen, ορισμένος

ως ο λόγος της μέσης ελεύθερης διαδρομής προς ένα χαρακτηριστικό μήκος του εκάστοτε προβλή-

ματος, είναι μεγαλύτερος από 10
−3
, απαντώνται σε πολλές βιομηχανικές εφαρμογές όπως στη

τεχνολογία κενού και σε μικροσυστήματα. Χαρακτηριστικά παραδείγματα αποτελούν ο σχεδιασμός

και η βελτιστοποίηση των συστημάτων κενού, ανίχνευσης διαρροών σε μονάδες υψηλής ενέργειας

(αντιδραστήρες σύντηξης και επιταχυντές), καθώς και σε διεργασίες συμπύκνωσης, προσρόφησης

και εκρόφησης (κρυογενικές αντλίες και επίστρωση μετάλλου σε CD/DVD), στην κατασκευή

φασματογράφων, στην χρήση πορωδών υλικών και σε μικροσυστήματα προώθησης διαστημικών

οχημάτων. Η μελέτη των φαινομένων μεταφοράς στα προαναφερθέντα συστήματα δεν μπορεί

να περιγραφεί επαρκώς μέσω της προσέγγισης Navier-Stokes-Fourier και απαιτείται η χρήση της

κινητικής θεωρίας των αερίων, όπως αυτή περιγράφεται από την ολοκληροδιαφορική εξίσωση Boltz-

mann είτε εναλλακτικά με αξιόπιστα κινητικά μοντέλα. Οι πιο ευρέως διαδεδομένες και επιτυχώς

εφαρμοσμένες υπολογιστικές μέθοδοι για την επίλυση των κινητικών εξισώσεων είναι η ντετερμιν-

ιστική μέθοδος των διακριτών ταχυτήτων (Discrete Velocity Method: DVM) και η στοχαστική

μέθοδος Direct Simulation Monte Carlo (DSMC).

Διεργασίες μονατομικών αερίων εκτός θερμοδυναμικής ισορροπίας, γνωστές και ως διερ-

γασίες αραιοποιημένων αερίων, έχουν μελετηθεί εκτενώς στην βιβλιογραφία. Αντίθετα, για την

περίπτωση των πολυατομικών αερίων λαμβάνοντας υπόψη τους εσωτερικούς βαθμούς ελευθερίας

των μορίων η επιστημονική έρευνα είναι αρκετά περιορισμένη. Η παρούσα διατριβή επικεντρώνεται

στην μελέτη της επίδρασης των βαθμών ελευθερίας περιστροφής και δόνησης των πολυατομικών

αερίων σε θέματα μεταφοράς θερμότητας, ροών και προσρόφησης εκτός θερμοδυναμικής ισορ-

ροπίας σε όλο το εύρος του αριθμού Knudsen (η αλλιώς της παραμέτρου αραιοποίησης), δηλαδή την
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ελεύθερη μοριακή περιοχή, την μεταβατική περιοχή και την υδροδυναμική περιοχή έως το συνεχές

όριο. Η μελέτη βασίζεται στην αριθμητική επίλυση τυπικών προβλημάτων μεταφοράς θερμότητας

και ροών, τα οποία μοντελοποιούνται με την εφαρμογή κινητικών εξισώσεων χρησιμοποιώντας τις

μεθόδους DVM και DSMC.

Πιο συγκεκριμένα, διερευνάται το πρόβλημα μεταφοράς θερμότητας σε πολυατομικά αέρια τα

οποία εσωκλείονται σε παράλληλες πλάκες και σε ομόκεντρους κυλίνδρους, που διατηρούνται σε

διαφορετικές θερμοκρασίες. Οι βαθμοί ελευθερίας περιστροφής και δόνησης των πολυατομικών

αερίων περιγράφονται από το μοντέλο περιστροφής συμπαγών μαζών (rigid rotators) και το μοντέλο

του απλού αρμονικού ταλαντωτή (quantum harmonic oscillator) αντίστοιχα. Η προσέγγιση

βασίζεται στα εξής τρία κινητικά μοντέλα Holway, Rykov και Andries, καθώς και στη στοχαστική

μέθοδο DSMC με χρήση του μοντέλου συγκρούσεων Borgnakke-Larsen. Η συχνότητα των συγ-

κρούσεων υπολογίζεται σύμφωνα με το μοντέλο ενδομοριακών συγκρούσεων ῾῾Inverse Power Law᾿᾿.

Αποτελέσματα παρουσιάζονται για την αριθμητική πυκνότητα καθώς και για την θερμοκρασία και

την θερμοροή εξαιτίας της μεταφορικής, περιστροφικής και ταλαντωτικής κίνησης των μορίων

σε ένα ευρύ φάσμα του αριθμού Knudsen όπως και για διάφορους λόγους θερμοκρασίας. Τα

αποτελέσματα που προκύπτουν από τα τρία κινητικά μοντέλα συγκρίνονται με τα αντίστοιχα απο-

τελέσματα της μεθόδου DSMC, καθώς και με πειραματικά δεδομένα εδραιώνοντας την αξιοπιστία

των προσομοιώσεων.

Θεωρώντας αρχικά μόνο τους μεταφορικούς και περιστροφικούς βαθμούς ελευθερίας των

μορίων η συνολική θερμοροή των αερίων με γραμμικά και μη γραμμικά μόρια υπολογίστηκε υψηλό-

τερη κατά 30 − 50% και 50 − 75% αντίστοιχα από εκείνη που υπολογίστηκε για μονατομικά

αέρια. Επίσης μελετήθηκε η επίδραση των διαφορετικών τύπων αλληλεπίδρασης αερίου-τοιχώματος,

αναδεικνύοντας στις περισσότερες περιπτώσεις ότι καθώς τα μόρια εκπέμπονται από το τοίχωμα πιο

διαχυτικά η συνολική θερμοροή αυξάνεται. Η μελέτη επεκτάθηκε και στην περίπτωση των βαθμών

ελευθερίας δόνησης, όπου εξετάζονται γραμμικά (N2, CO2, O2) και μη γραμμικά (CH4, SF6)

αέρια με βαθμούς δόνησης που να κυμαίνονται από 1 έως 15. Από αυτή την μελέτη αναδεικνύεται

η επίδραση των βαθμών ελευθερίας δόνησης των μορίων. Πιο συγκεκριμένα στην περίπτωση

των διατομικών αερίων η θερμοροή εξαιτίας της δόνησης των μορίων κυμαίνεται από 5% έως

25% της συνολικής. Αντίστοιχα αποτελέσματα στην περίπτωση των πολυατομικών αερίων με

πολλούς βαθμούς δόνησης αποδεικνύουν ότι ακόμη και σε χαμηλές θερμοκρασίες αναφοράς η

συνεισφορά της θερμοροής λόγω της δόνησης των μορίων είναι αρκετά υψηλή και εξαρτάται από

το εξεταζόμενο αέριο. Για παράδειγμα στην περίπτωση του SF6 στις θερμοκρασίες των 300

K και 500 K η θερμοροή λόγω δόνησης είναι περίπου 67% και 76% της συνολικής θερμοροής

αντίστοιχα. Επιπρόσθετα αποδεικνύεται αριθμητικά ότι τα αποτελέσματα είναι σε συμφωνία με την
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προσέγγιση Chapman-Enskog στο μέσο του υπολογιστικού πεδίου, ακόμη και σε μεγάλες τιμές

της παραμέτρου αραιοποίησης του αερίου με την προυπόθεση ότι ο αριθμός Knudsen αναφοράς του

όλου συστήματος λαμβάνει μικρές τιμές. Επομένως, η μοντελοποίηση του προβλήματος μεταφοράς

θερμότητας σε πολυατομικά αέρια θα πρέπει σίγουρα να λαμβάνει υπόψη του την επίδραση των

εσωτερικών βαθμών ελευθερίας ακόμη και σε θερμοκρασίες δωματίου.

Στη συνέχεια διερευνάται η ροή πολυατομικού αερίου διαμέσου αγωγού κυκλικής διατομής

διαφόρων μηκών. Πιο συγκεκριμένα, επιλύεται αριθμητικά η ροή πολυατομικού αερίου διαμέσου

αγωγών μικρού μήκους λόγω βαθμίδας πίεσης σε ένα ευρύ φάσμα του αριθμού Knudsen. Ο

λόγος της πίεσης στο δοχείο εκτόνωσης προς την πίεση στο δοχείο που συνδέεται στην είσοδο

του αγωγού λαμβάνει τιμή πολύ κοντά στο μηδέν. Τέτοιου είδους ροές χαρακτηρίζονται από

μικρούς αριθμούς Reynolds και μεγάλες ιξώδεις απώλειες καθιστώντας εφικτή την αντικατάσταση

των ακροφυσίων μικρών διαστάσεων με μικροαγωγούς πεπερασμένου μήκους στην περίπτωση των

μικροπροωθητικών συστημάτων. Πραγματοποιείται μια παραμετρική μελέτη των χαρακτηριστικών

της πρόωσης με βάση το κινητικό μοντέλο πολυατομικών αερίων Holway με την υπόθεση οριακών

συνθηκών πλήρους διάχυσης και ποσότητες όπως η παροχή μάζας (flow rate), ο συντελεστής

παροχής (discharge coefficient), η δύναμη ώθησης (thrust) και ο συντελεστής ώθησης (impulse

factor) παρουσιάζονται ως συνάρτηση της αραιοποίησης του αερίου και του μήκους του αγωγού.

Επιπρόσθετα πραγματοποιείται μια συστηματική σύγκριση μεταξύ πολυατομικών και μονατομικών

αερίων με στόχο την μελέτη της επίδρασης των εσωτερικών βαθμών ελευθερίας των μορίων στις

υπολογιζόμενες ποσότητες. Προέκυψε ότι η πρόωση επιτυγχάνεται ελαφρώς πιο αποτελεσματικά

στην περίπτωση των πολυατομικών αερίων σε σχέση με τα μονατομικά αέρια. Εν γένει, η επίδραση

των βαθμών ελευθερίας περιστροφής στις μακροσκοπικές ποσότητες είναι μικρή, εκτός από την

περίπτωση της θερμοκρασίας όπου η γνωστή πτώση της κατά μήκος της κατεύθυνσης της ροής είναι

λιγότερο έντονη. Επίσης αποδεικνύεται ότι αυτού του είδους οι ροές μπορούν να μοντελοποιηθούν

και με τη χρήση κινητικών μοντέλων αντί της ευρέως διαδεδομένης μεθόδου DSMC.

Η εν λόγω μελέτη επεκτάθηκε και στην περίπτωση των ροών σε αγωγούς μεγάλου μήκους,

λόγω βαθμίδας πίεσης και θερμοκρασίας κατά μήκος του πεδίου ροής, βασισμένη στη θεωρία της

πλήρως αναπτυγμένης ροής. Οι προσομοιώσεις έχουν βασιστεί στο κινητικό μοντέλο του Rykov με

την υπόθεση οριακών συνθηκών πλήρους διάχυσης. Στις ροές που οφείλονται σε βαθμίδες πίεσης,

τα αποτελέσματα για τα πολυατομικά αέρια είναι πολύ κοντά με τα αντίστοιχα των μονατομικών, ενώ

στην περίπτωση των ροών λόγω βαθμίδας θερμοκρασίας, γνωστές και ως ροές θερμικού ερπυσμού

(thermal creep flow), υπάρχουν σημαντικές αποκλίσεις. Πιο συγκεκριμένα, η ροή θερμότητας

στην περίπτωση των ροών θερμικού ερπυσμού για τα γραμμικά πολυατομικά αέρια (N2, CO2) είναι

περίπου 30 − 40% υψηλότερη από την αντίστοιχη των μονατομικών αερίων. Αυτή η απόκλιση
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μπορεί να αυξηθεί περαιτέρω στην περίπτωση των μη γραμμικών πολυατομικών αερίων (π.χ. CH4)

σε 50 − 65%. Αξίζει να σημειωθεί πως αυτές οι διαφορές γίνονται πιο έντονες όσο ο αριθμός

Knudsen αυξάνεται. Η επίδραση των βαθμών ελευθερίας λόγω περιστροφής στην παροχή μάζας

ροής που οφείλεται σε βαθμίδα πίεσης είναι πολύ μικρή για όλες τις τιμές του αριθμού Knudsen,

ενώ στην ροή θερμότητας η επίδραση τους είναι μεγαλύτερη και μπορεί να φτάσει το 20− 30% σε

μέσες τιμές του αριθμού Knudsen.

Η επίδραση των εσωτερικών βαθμών ελευθερίας συνυπολογίζεται και στην περίπτωση διερ-

γασιών προσρόφησης. Ερέθισμα για την εν λόγω μελέτη αποτέλεσε η σχεδίαση μιας κρυογενικής

αντλίας πολλαπλών σταδίων και πιο συγκεκριμένα μιας κρυογενικής αντλίας τριών σταδίων η οποία

πρόσφατα άρχισε να ερευνάται εντός του προγράμματος ελεγχόμενης θερμοπυρηνικής σύντηξης

(EUROfusion). Καθώς σχετικά αποτελέσματα για την περίπτωση των μονατομικών αερίων δεν

είναι ευρέως διαθέσιμα η έρευνα περιλαμβάνει τόσο μονατομικά όσο και πολυατομικά αέρια.

Η μόνιμη ροή αερίου σε ημιάπειρο χωρίο προκαλούμενη από μια προσροφητική επιφάνεια

μελετάται με χρήση των κινητικών μοντέλων BGK και Holway. Η μεταφορά μάζας και θερμότητας

μεταξύ του αερίου και της πλάκας χαρακτηρίζεται από τον θερμικό συντελεστή (thermal accom-

modation coefficient), τον συντελεστή προσρόφησης (sticking coefficient), την θερμοκρασία της

επιφάνειας και τις συνθήκες θερμοκρασίας και ταχύτητας μακριά από την επιφάνεια προσρόφησης.

Η παρούσα έρευνα επικεντρώνεται στην επίδραση που ασκεί η αλληλεπίδραση μεταξύ αερίου και

τοιχώματος στις ποσότητες που εκφράζουν τη ροή, και ιδιαίτερα του θερμικού συντελεστή και

του συντελεστή προσρόφησης. ΄Εχει παρατηρηθεί πως όσο ο θερμικός συντελεστής του αερίου

μειώνεται, για δεδομένη ροή προσρόφησης και θερμοκρασιακή διαφορά, ο συντελεστής προσρόφησης

θα πρέπει να αυξάνεται προκειμένου η ροή προσρόφησης να παραμένει σταθερή. Η συμπεριφορά

αυτή γίνεται πιο έντονη όσο η θερμοκρασιακή διαφορά μεταξύ της πλάκας και περιοχής μακριά από

αυτή αυξάνεται. Καταλήγουμε στο γεγονός πως η επίδραση του θερμικού συντελεστή σε όλες

τις ποσότητες που χαρακτηρίζουν τη ροή είναι πολύ σημαντική και συνεπώς πρέπει πάντοτε να

λαμβάνεται υπόψη. Γενικά η σύγκριση των αποτελεσμάτων μεταξύ μονατομικών και πολυατομικών

αερίων είναι καλή και εν γένει η επίδραση των εσωτερικών βαθμών ελευθερίας είναι σχετικά μικρή

και δεν ξεπερνά το 10%. Σε αυτό συμβάλλουν οι χαμηλές θερμοκρασίες στις οποίες λαμβάνει

χώρα η διεργασία της προσρόφησης. Η μελέτη του θερμικού συντελεστή θα μπορούσε να δώσει

μια πιο αξιόπιστη ερμηνεία στις μετρήσεις του συντελεστή προσρόφησης και συνεπώς να βελτιώσει

τους υπολογισμούς που έχουν γίνει για τις κρυογενικές αντλίες.

Επιπρόσθετα, η δισδιάστατη διεργασία προσρόφησης έχει μελετηθεί σε μια προσπάθεια σύγ-

κρισης με διαθέσιμα πειραματικά δεδομένα και μελέτης του σχεδιασμού μιας κρυογενικής αντλίας

τριών σταδίων για το κύριο σύστημα άντλησης του αντιδραστήρα DEMO (Demonstration Power

Institutional Repository - Library & Information Centre - University of Thessaly
20/05/2024 01:12:25 EEST - 13.59.53.151



Plant). Επίσης έχουν πραγματοποιηθεί προσομοιώσεις για διαφορετικές αριθμητικές και φυσικές

παραμέτρους για τα αέρια H2 και D2. Στη συνέχεια, μέσω μιας διαδικασίας σύγκρισης των

αριθμητικών αποτελεσμάτων με τα πειραματικά δεδομένα, προκύπτουν οι τιμές του συντελεστή

προσρόφησης για τα δυο αέρια. Επίσης παρουσιάζεται η λεπτομερής εικόνα της ροής για όλες τις

μακροσκοπικές ποσότητες με πρακτικό ενδιαφέρον, όπως και η επίδραση της θερμοκρασίας της

πλάκας προσρόφησης. Σημειώνεται ότι ένα σημαντικό ποσοστό ροής εξέρχεται από την επιφάνεια

εισόδου επιδρώντας σημαντικά στην απόδοση της διαδικασίας προσρόφησης.

Η θεωρητική/υπολογιστική μελέτη που πραγματοποιείται στην παρούσα διδακτορική διατριβή

αναδεικνύει τη σημαντικότητα των εσωτερικών βαθμών ελευθερίας περιστροφής και δόνησης σε

φαινόμενα μεταφοράς εκτός θερμοδυναμικής ισορροπίας. Μη λαμβάνοντας υπόψη την εσωτερική

δομή των αερίων προκύπτουν μεγάλες αποκλίσεις μεταξύ πειραματικών και υπολογιστικών αποτε-

λεσμάτων. Η παρούσα διατριβή παρέχει χρήσιμες πληροφορίες για τον σχεδιασμό και την βελτιστο-

ποίηση των διαδικασιών και συσκευών όπου εμπλέκονται πολυατομικά αέρια που λειτουργούν υπό

συνθήκες αραιοποίησης σε μεγάλο εύρος θερμοκρασιακών διαφορών.
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Chapter 1

Introduction

1.1 General concepts

The investigation of transport phenomena appearing in rarefied gas dynamics has at-

tracted a lot of scientific attention during the last decade mainly due to the increasing num-

ber of technological applications. In general, rarefied gas dynamics is introduced in gaseous

transport phenomena occurring at low density (or pressure) and/or in miniaturized systems.

Typical examples include industrial processes and devices in high altitude aerodynamics, micro

electromechanical systems (MEMS) and vacuum technology [1, 2]. In high altitude (i.e. low

density) aerodynamics and aerospace technology a lot of scientific work is focused on atmo-

spheric reentry of orbiting vehicles as well as satellite propulsion and maneuvering [3–5]. The

design and optimization of gaseous MEMS, manufactured in sizes from millimeters down to

micrometers, with components between 1 to 100 µm is an emerging technological field. There

are plenty of applications encountered in personal consuming devices (computer peripherals,

car and personal navigation devices, sports training devices, etc.), in automotive (airbag sys-

tems, vehicle security systems, automatic door locks, etc.), in biotechnology (polymerase chain

reaction, microsystems for DNA amplification and identification, micromachined scanning tun-

neling microscopes, biochips for detection of hazardous chemical and biological agents, etc.)

and in many other industrial and service domains (earthquake detection, leak detection, filters,

coating of CDs / DVDs, etc.) [6–10]. Vacuum technology has always been an application

1
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area for rarefied gas dynamics since in these systems and devices the pressure may range from

rough vacuum down to ultra-high vacuum [11]. The design and optimization of vacuum gas

distribution systems with piping, vacuum pumps, sensors and leak detection equipment in high

energy facilities (fusion reactors and accelerators) is a very critical issue in the smooth op-

eration of these facilities [12–14]. Also, condensation and adsorption/desorption processes in

cryopumping, leak detection in refrigeration systems, sampling, mass spectrometers and sensors

are typical applications in the wide field of vacuum technology and must be designed based on

rarefied gas dynamics [11, 15].

The gaseous transport phenomena appearing in all aforementioned applications are far

from local equilibrium and the hypothesis of continuum medium fails. In such situations,

the average distance travelled by moving particles between intermolecular collisions become

comparable to a characteristic length. As the flow departs from local equilibrium first the no

velocity slip and temperature jump conditions at the walls fail and then, as the departure from

local equilibrium is further increased, the well-known constitutive laws are not valid and as a

result the typical Navier-Stokes-Fourier approach is not applicable.

To deal with this limitation of the continuum theory, concepts derived from statistical

mechanics and the kinetic theory of gases, need to be involved. Then, the problem is described

by the integro-differential Boltzmann equation, devised by Ludwig Boltzmann in 1872 [16].

This equation describes the evolution of the velocity distribution function of particles, which

is a function of seven independent variables (time, position vector and molecular velocity vec-

tor). The Boltzmann equation, which is solved only numerically, at the right hand side, has

the collision integral term with a complex mathematical structure, which is commonly replaced

by suitable kinetic models. Several kinetic models have been proposed in the literature for

monatomic gases, mixtures of monatomic gases and polyatomic gases. In order to properly de-

fine the problem, the Boltzmann equation is supplemented by boundary conditions describing

the gas interaction with the boundaries. The most common one is the Maxwell diffuse-specular

boundary condition [17], where a part of the incident particles is diffusely reflected according to

a Maxwellian distribution, characterized by the conditions of the surface (velocity and temper-

ature) and the remaining part is reflected specularly (the normal to the surface component of

2
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the relative velocity reverses its direction, while the parallel to the surface components remain

unchanged). Alternatively, more complicated models may be applied. Solving the Boltzmann

equation for the unknown distribution function leads to the determination of the macroscopic

quantities of practical interest (density, velocity, temperature, stress tensor, heat flux) which

are obtained by the moments of the distribution function.

The solution of the Boltzmann equation in multidimensional problems is computationally

very expensive. However, with the developments of numerical and computational techniques,

this task has become computationally manageable. The most widely implemented computa-

tional schemes are the deterministic Discrete Velocity Method (DVM) [18] and the stochastic

Direct Simulation Monte Carlo (DSMC) method [19]. In the deterministic approach (DVM) it

is advisable to use kinetic model equations instead of the Boltzmann equation, applying dis-

cretization procedures in the physical, molecular velocity and time spaces. In the stochastic

approach (DSMC) simulation particles are used to represent a large number of real molecules

in a probabilistic manner following the collision rules and constrains of the Boltzmann equa-

tion. Nowadays, these mesoscale approaches, due to significant advancements in computational

methods and mainly due to the availability of high speed parallel programming, may be applied

in a computationally efficient manner even in the simulation of complex flow configurations in

a wide range of the gas rarefaction from the free molecular through the transition up to the

continuum regimes.

The above described modeling (Boltzmann equation, kinetic model equations, numerical

approaches) has been widely applied in the literature to successively describe both flow and heat

transfer problems with monatomic gases far from local equilibrium. However, in practice the

working gas may be polyatomic and the internal structure of the molecules has an important

effect on the macroscopic quantities. In this dissertation, the effects of the rotational and

vibrational degrees of freedom in heat transfer, flow and adsorption processes are investigated

based on the microscopic description of the gas, as described by the Boltzmann equation. The

approach is based on the Holway [20], Rykov [21] and Andries [22] kinetic models as well as on

the DSMC method supplemented by the Borgnakke-Larsen collision model [23]. The validity of

the simulations is confirmed by comparisons between the various kinetic models and the DSMC

3
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method as well as between simulations and experiments. A detailed description on the thesis

contents and structure is provided in the next section.

1.2 Dissertation content and structure

The thesis aims to the computational study of the effects of rotational and vibrational

degrees of freedom of polyatomic gases in heat transfer, flow and adsorption processes far from

local equilibrium in the whole range of the gas rarefaction. It is structured as follows:

In Chapter 2 the literature review is presented. It includes the basic concepts of kinetic

theory related to polyatomic gases (Boltzmann equation, kinetic models, boundary conditions),

the implemented computational approaches and an overview of the published work in heat

transfer between plates and cylinders, flow through capillaries and adsorption flows in rarefied

polyatomic gases.

In Chapters 3 and 4 the conductive heat transfer through rarefied polyatomic gases with

translational and rotational degrees of freedom, confined between parallel plates and coaxial

cylinders respectively maintained at different temperatures is investigated. The approach is

based on three kinetic models namely the Holway, Rykov and Andries models, as well as on

the DSMC scheme supplemented by the Borgnakke-Larsen collision model. The influence of

boundary conditions on the distribution of macroscopic parameters of various types is also

studied. Comparisons between results obtained by kinetic models and DSMC method as well

as between simulations and experimental data are performed. Results are presented for all the

heat fluxes and also for the density and temperatures fields in a wide range of the Knudsen

number subject to small, moderate and large temperature differences.

In Chapter 5 the effects of the vibrational modes on the heat transfer in polyatomic gases

confined between parallel plates are studied. The approach is based on the Holway model.

Results are presented for N2, O2, CO2, CH4 and SF6 representing diatomic as well as linear

and nonlinear polyatomic molecules with 1 up to 15 vibrational modes. The results include the

heat fluxes and the temperature and density distributions in a wide range of the rarefaction

parameter and for various ratios of the hot over the cold plate temperatures. Comparisons with

the DSMC method and experimental data are performed. Furthermore, it is numerically proved

4
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that the computed solutions are in agreement with the Chapman-Enskog approximation in a

central strip of the computational domain even at moderately large values of the rarefaction

parameter.

In Chapter 6 the polyatomic gas flows through circular tubes of various length are ex-

amined. The investigation includes pressure driven flows in short channels as well as pressure

and temperature driven flows in long channels in a wide range of the Knudsen number. In the

former case a parametric study on the propulsion characteristics is performed and the com-

puted quantities include the flow rate, the discharge coefficient, the thrust and the impulse

factor are provided in terms of the gas rarefaction and the tube dimensionless length. In the

latter case the flow is fully developed and the Poiseuille and thermal creep flows are studied.

The effect of the internal degrees of freedom on the results is investigated. The influence of the

tangential momentum accommodation coefficient on the flow rates is discussed. Comparisons

with experiments are also reported.

In Chapter 7 the adsorption process is investigated. A steady-state half-space gas flow

driven by an adsorbing planar wall is considered. The work is focused on the influence of the

internal degrees of freedom and the partial thermal gas-surface interaction on all flow quantities

including the sticking coefficient. Also comparisons with available numerical data in literature

are included. The work is extended in two dimensions in an effort to study the feasibility of

multistage cryopumps including a comparison with experimental data.

In Chapter 8 a summary with the associate main results plus some comments on future

work are provided.

1.3 Novelty and scientific contributions of the thesis

As discussed in Section 1.1, the dissertation is focused on the effect of the rotational and

vibrational degrees of freedom in polyatomic gas heat transfer, flow and adsorption processes in

the whole range of the Knudsen number. The investigation is based on the numerical solution

of typical heat transfer and flow problems which are modeled by kinetic model equations and

simulated using both the DVM and the DSMC approaches. The novel scientific contributions

of the dissertation are outlined:
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• Based on a detailed comparison with DSMC computational results and available in the

literature experimental data, the validity of the Holway, Rykov and Andries models to

simulate the specific polyatomic heat transfer, flow and adsorption configurations has

been verified.

• The Holway kinetic model has been accordingly adjusted to be applied in polyatomic

gases with molecules having more than two atoms in heat flow simulations.

• In conductive plane and cylindrical polyatomic heat transfer the portions of the rotational

and vibrational heat fluxes with regard to the total heat flux for various temperatures

differences in the whole range of the Knudsen number are reported (similarly for the

density and temperature distributions).

• In the case of conductive polyatomic heat transfer in coaxial cylinders the effect of the

radius ratio is examined.

• Following the detailed investigation of the effect of the vibrational degrees of freedom,

the major importance of the excited vibrational modes in certain polyatomic gases even

at ambient temperatures is clearly demonstrated (e.g. SF6).

• A detailed parametric study on the performance of micro-tubes as low-thrust propulsion

systems is performed finding out that the overall propulsion efficiency in polyatomic gases

compared to the one in monatomic gases is slightly improved.

• In pressure and temperature driven flows through long tubes, results are reported for

polyatomic gases with molecules having more than two atoms.

• Adsorption flow in one and two dimensions has been simulated based on kinetic modeling

(instead of the DSMC method).

• In adsorption processes the effect of the internal degrees of freedom is small mainly due

to the low temperatures where these processes take place.

• Based on inverse engineering procedures the sticking coefficients of H2 and D2 on charcoal

surfaces maintained at different temperatures have been estimated.
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All above scientific contributions in the field of rarefied polyatomic gas processes are reported

for first time in the literature and are considered as novel.
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Chapter 2

Literature review

2.1 The Knudsen number and flow regimes

In non-equilibrium or rarefied gas flows the main flow parameter is the Knudsen number

Kn, introduced by Knudsen around 1909 [24], defined as

Kn =
λ

D
, (2.1)

where the mean free path λ is defined as the average distance a particle travels between succes-

sive collisions and D is a characteristic length of the problem or a length scale of macroscopic

gradient, given by D = ρ/(∂ρ/∂x), where ρ is the fluid density. For the hard sphere molecules

the mean free path can be written as [17]

λ =
8

5

√
2kBT

πm

µ

P̂
, (2.2)

with µ being the dynamic viscosity of the gas in temperature T , P̂ is the pressure, kB is the

Boltzmann constant and m is the molecular mass. The Knudsen number can thus be interpreted

based on the ratio between the Mach number Ma and the Reynolds number Re as,

Kn =

√
πγ

2

Ma

Re
, (2.3)
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where γ is the specific heat ratio, while Ma and Re are the Mach and Reynolds numbers.

Alternatively, the rarefaction parameter δ is also commonly used, given by

δ =
P̂D
√
m

µ
√

2kBT
∼ 1

Kn
. (2.4)

According to the range of the properly chosen Knudsen number the flow regimes can be

classified as the continuum regime, slip regime, transition regime, and the free molecular regime.

Generally, when Kn < 0.001, the Navier-Stokes equations and the continuum model are valid

giving accurate results. When Kn is less than 0.1 but is larger than 0.01, some rarefied effects

such as the velocity slip and temperature jump appear, although the continuum model is still

valid applying a proper modification of the boundary conditions at the solid walls. For values

of Knudsen number lie between 0.1 and 100 a kinetic description of the gas is necessary, since

intermolecular collisions are reduced and the distribution function is not of Maxwellian type

and the use of the Boltzmann equation is needed. The Boltzmann equation describes the time-

evolution of the particle distribution function of a simple gas, and is the basic mathematical

model in rarefied gas dynamics. It is valid in all flow regimes and the macroscopic fluid dynamic

equations, such as the Navier-stokes, Burnett and Super-Burnett, can be derived from it.

2.2 The Boltzmann equation of polyatomic gases

In 1859 Maxwell [25] abandoned the idea that all gaseous molecules move with the

same speed and introduced the statistical approach to gaseous medium. Also, he introduced

the velocity distribution function and obtained its expression in the equilibrium state. Thus,

Maxwell gave the origin to the kinetic theory of gases. Then, in 1872 Boltzmann [26] introduced

the kinetic equation which determines the evolution of the distribution function for gaseous

systems being out of equilibrium. The first attempt for the kinetic description in polyatomic

gas was done by Wang Chang and Uhlenbeck [27] in 1951 utilizing a semi-classical approach.

A completely classical treatment was given later by Taxman in 1958 [28]. Usually at small

and moderate temperatures, the gas rotation of the gas molecules is modelled by rigid rotators

[29], while in some situations depending on the working gas and the temperature the vibration
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degrees of freedom are additionally included and described by the quantum harmonic oscillator

model [29]. When, as in the case considered in this thesis, intrinsic molecular angular momenta

(spin) have no preferential alignment, it is reasonable to describe molecular internal states

through a single variable, the internal energy Î. Then, a dilute gas of classical rigid rotators

undergoing binary collisions can be described by a kinetic equation having the following general

form [30]:

∂f̂

∂t
+ υ · ∂f̂

∂r̂
+ F̂ex ·

∂f̂

∂υ
= Q

(
f̂ , f̂

)
, (2.5)

where f̂(t, r̂,υ, Î) is the spin orientation averaged distribution function, t denotes the time, υ =

(ξx, ξy, ξz) is the velocity vector, r̂ = (x̂, ŷ, ẑ) is the position vector and F̂ex = (F̂ex,x, F̂ex,y, F̂ex,z)

is the field of the external forces, while the collision operator Q is given by

Q =

∞∫
−∞

∞∫
0

[
f̂
(
r̂,υ′1, Î

′
1, t
)
f̂
(
r̂,υ′, Î ′, t

)
− f̂

(
r̂,υ1, Î1, t

)
f̂
(
r̂,υ, Î , t

)]
ΩÎµ1 dÎ1d

3υ1, (2.6)

where Ω is defined as

Ω =

∫
S

d2ê′
Ê∫

0

(
Î ′
)µ
dÎ ′

Ê−Î′1∫
0

(
Î ′1

)µ
dÎ ′1

υ′r
2

υr
σ
(
Ê; ê′ · ê; Î ′, Î ′1 → Î , Î1

)
. (2.7)

Here, σ(Ê; ê′ · ê; Î ′, Î ′1 → Î , Î1) is the differential cross-section associated with a binary collision

which produces a pair of molecules in the final states (υ, Î), (υ1, Î1) from a pair of molecules

in the initial states (υ′, Î ′), (υ′
1, Î
′
1). The argument Ê denotes the conserved total energy in

the center of mass reference frame:

Ê =
1

4
mυ2r + Î + Î1 =

1

4
m (υ′r)

2
+ Î ′ + Î ′1. (2.8)

The unit vectors ê′ = υ′r/υ
′
r and ê = υr/υr have the directions of the relative velocities

υ′r = υ′1 − υ′ and υr = υ1 − υ before and after a collision, respectively. The exponent µ

takes the values 0 for j = 2 and 1/2 for j = 3, with j being the number of rotational degrees

of freedom. In Eq. (2.5) the left part of the equation describes the free flight of the particles
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under the influence of external forces F̂ex. The right hand of the equation is the collision

term and its complexity makes the solution of the Boltzmann equation a very difficult and

challenging task. An alternative definition of the Boltzmann equation in polyatomic gases with

several degrees of freedom (inducing rotational and vibrational states) can be found in [31].

All the details related to the vibrational degrees of freedom are discussed in Chapter 5. The

distribution function f̂(t, r̂,υ, Î) of the polyatomic Boltzmann equation satisfies the H-theorem

[1], introduced by Ludwig Boltzmann in 1872, which is a more general statement of the second

thermodynamic law and is a quantity that on the kinetic time scale measures the approach to

equilibrium.

Solving the Boltzmann equation for the unknown distribution function leads to the de-

termination of any quantity of practical interest. In particular, the macroscopic quantities are

found by appropriate moments of the distribution function, such as the following:

• Number density

n (r̂, t) =

∞∫
−∞

∞∫
0

f̂dÎdυ (2.9)

• Bulk velocity vector

û (r̂, t) =
1

n (r̂, t)

∞∫
−∞

∞∫
0

υf̂dÎdυ (2.10)

• Stress tensor

P̂ij (r̂, t) = m

∞∫
−∞

∞∫
0

(ξi − ûi) (ξj − ûj) f̂dÎdυ (2.11)

• Translational temperature

Ttr (r̂, , t) =
m

3kBn (r̂, t)

∞∫
−∞

∞∫
0

(υ − û)2f̂dÎdυ (2.12)

• Rotational temperature

Trot (r̂, t) =
2

jkBn (r̂, t)

∞∫
−∞

∞∫
0

f̂ ÎdÎdυ (2.13)
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• Total temperature

T (r̂, t) =
3Ttr (r̂, t) + jTrot (r̂, t)

3 + j
(2.14)

• Translational heat flux vector

Qtr (r̂, t) =
m

2

∞∫
−∞

∞∫
0

(υ − û) (υ − û)2f̂dÎdυ (2.15)

• Rotational heat flux vector

Qrot (r̂, t) =

∞∫
−∞

∞∫
0

(υ − û) f̂ ÎdÎdυ (2.16)

• Total heat flux vector

Q (r̂, t) = Qtr (r̂, t) +Qrot (r̂, t) (2.17)

• Total pressure

P̂ (r̂, t) = n (r̂, t) kBT (r̂, t) (2.18)

In Eqs. (2.9)-(2.17) the quantities with subscripts tr and rot are related to the translational and

rotational degrees of freedom respectively.

Due to the complexity of the collision term of the Boltzmann equation and immense

computational requirements associated with the solution of the Boltzmann equation, several

polyatomic kinetic models have been proposed to substitute the collision term. Alternatively,

the polyatomic Boltzmann equation can be solved using the stochastic method Direct Simula-

tion Monte Carlo which has been thoroughly tested in high Knudsen-number flows over the past

25 years [33, 34]. An important issue is the interaction of rarefied gases with solid surfaces and

significant effort has been made in the modelling of the boundary conditions. The polyatomic

kinetic models, the boundary conditions and the numerical methods widely used in literature

are presented in the next sections.

13

Institutional Repository - Library & Information Centre - University of Thessaly
20/05/2024 01:12:25 EEST - 13.59.53.151



Section 2.3

2.3 Polyatomic kinetic models

The mathematical complexity in dealing directly with the collision integrals appearing

in the formal kinetic theory of the Boltzmann equation for polyatomic gases compelled the

introduction of a great number of kinetic model equations. More specifically, the complicated

collision term eplaced by the kinetic models causing a remarkable reduction in the computational

solving effort. The kinetic models must satisfy the collision invariants of mass, momentum and

energy as well as the H-theorem. Moreover, the Chapman-Enskog analysis of those models

must lead to the correct calculation of transport coefficients such as bulk viscosity, viscosity

and thermal conductivity for translational and internal degrees of freedom.

In 1964, Morse [35] proposed an extension of the Bhatnagar-Gross-Krook model (BGK)

[36] for monatomic gases to polyatomic gases in which the internal degrees of freedom of the

molecules are represented by an additional energy variable in the distribution function, and

both elastic and inelastic collisions (the latter providing the coupling between translational and

internal energies) are characterized by constant collision frequencies. More elaborate kinetic

model equations for polyatomic gases can also be found in the literature, e.g., the works of Hol-

way [20], Hanson and Morse [37], Brau [38], Wood [39], McCormack [40], Rykov [21], Andries

[22], Marques [41] and Fernandes and Marques [42]. In the work of Hanson and Morse, kinetic

model equations for diatomic gases have been obtained by employing a diagonal approximation

in the linear operator of the Boltzmann equation. In Braus work, the inelastic collisions are

treated by a FokkerPlanck term whereas the elastic collisions are described by a single relax-

ationtime term. The kinetic model equation proposed by Wood uses the ellipsoidal statistical

model (formulated by Cercignani and Tironi [43] for the elastic collisions) which retains the

essential simplicity of the BGK model and allows the calculation of the correct value of the

Prandtl number. The McCormack model is an extension of the Hanson and Morse diatomic

gas model to a polyatomic gas. In the work of Marques, a classical kinetic model equation for

polyatomic gases is derived by replacing the Boltzmann collision operator by a single relaxation-

time term and keeping some of the main physical properties of the usual Navier-Stokes-Fourier

description. The model proposed by Fernandes and Marques replaces the Boltzmann collision
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operator by a single relaxation-time term which is compatible with Grads 6-moment approx-

imation and valid for the limiting case that the energy exchange between translational and

internal degrees of freedom is slow, but not negligible. It is noted that most of the aforemen-

tioned kinetic models belong to linearized kinetic theory, except from those proposed by Morse,

Holway, Brau, Rykov and Andries. The Holway, Rykov and Andries models have been applied

in the past to solve high speed flows providing very good agreement between simulations and

available experimental data [44, 45]. For this reason, these models are used in this thesis and

are presented in more detail below.

The Holway model [20] was established in 1966. This model was one of the first approaches

for polyatomic gases. In this model the collision term consists of two components corresponding

to elastic and inelastic collisions. The Holway model is similar to Morse model but there

are some differences. The elastic collision term used by Holway is different and satisfies the

requirement for conservation of particles in any state and not over all the states at it is in

the Morse model. Also, in the Morse model the definition of the heat capacity at constant

volume used in the temperature over all degrees of freedom is independent of the temperature,

something which is true only at very high temperatures [37]. The Holway model can be written

by

Q
(
f̂ , f̂

)
= νtr (n, Ttr)

(
f̂tr − f̂

)
+ νrot (n, Ttr)

(
f̂rot − f̂

)
, (2.19)

where νtr and νrot are the elastic and inelastic collision frequencies, while the elastic and inelastic

equilibrium distribution functions f̂tr and f̂rot are given by

f̂rot = n

(
m

2πkBT

)3/2

exp

[
−m(υ − û)2

2kBT

]
Îj/2−1

Γ (j/2) (kBT )j/2
exp

(
−Î
kBT

)
(2.20)

and

f̂tr = n̂(Î|ŷ)

(
m

2πkBTtr

)3/2

exp

[
−m(υ − û)2

2kBTtr

]
, (2.21)

respectively, where Γ is the gamma function, n̂(Î|ŷ) is the number density of molecules having

internal energy Î, n is the total number density, Ttr is the translational temperature and T is the

total temperature, as well as û = (ûx, ûy, ûz) and υ̂ = (ξx, ξy, ξz) are the bulk and molecular
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velocity vectors respectively. It is noted that as νrot → 0 the Holway model is reduced to

BGK model for monatomic gases [36]. The main disadvantage of this model is that cannot

recover the shear viscosity and the thermal conductivity simultaneously. Thus depending on

the problem which is under question, the proper elastic and inelastic collision frequencies must

be chosen. The H-theorem for this model can be proved in a straightforward manner following

the arguments leading to analogous proof of the BGK model and the corresponding analysis is

presented in Appendix B.

Another model, the Rykov model [21], appeared in 1975. Although its first version was

only for diatomic gases, recently in [46] the model has been extended to polyatomic gases. The

Rykov model consists of two components, one for the elastic collisions and the other for the

inelastic collisions, and can be written in the same way as the Holway model described by

the Eq. (2.19). The elastic and inelastic equilibrium distribution functions f̂tr and f̂rot for the

Rykov model read such that

f̂rot = n

(
m

2πkBT

)3/2

exp

[
−m(υ − û)2

2kBT

]
Îj/2−1

Γ (j/2) (kBT )j/2
exp

(
−Î
kBT

)
×[

1 +
2$0mQtr (υ − û)

15n(kBT )2

(
m(υ − û)2

2kBT
− 5

2

)
+

2$1 (1− κ)

j

mQrot (υ − û)

n(kBT )2

(
Î

kBT
− j

2

)]
(2.22)

and

f̂tr = n

(
m

2πkBTtr

)3/2

exp

[
−m(υ − û)2

2kBTtr

]
Îj/2−1

Γ (j/2) (kBTrot)
j/2

exp

(
−Î

kBTrot

)
×[

1 +
2mQtr (υ − û)

15n(kBTtr)
2

(
m(υ − û)2

2kBTtr
− 5

2

)
+

2 (1− κ)

j

mQrot (υ − û)

nk2BTtrTrot

(
Î

kBTrot
− j

2

)]
, (2.23)

where n is the number density, T is the temperature and Q is the heat flux vector. The

quantities with subscripts tr and rot are related to the translational and rotational degrees of

freedom. It is stated in [46] that the parameters $0 and $1 are chosen so that the thermal

conductivity obtained from the model equation is close to the experimental data in [47]. It is

also pointed that the parameter κ for a power intermolecular potential is constant. The Rykov

model recovers simultaneously both the viscosity and thermal conductivity coefficients, while
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in the limit case νrot → 0 is transformed to the Shakhov model [48] for monatomic gases. A

shortcoming of the Rykov model is that the H-theorem has not been proved for it yet.

Finally, the model proposed by Andries in 2000 [22] is presented. This model holds the

entropy inequality and provides correct expressions simultaneously for the viscosity and thermal

conductivity coefficients. In addition, preliminary calculations indicate good agreement with

corresponding results based on the Boltzmann equation. This model for monatomic gas is

reduced to the ES model [20]. Contrary to the aforementioned models, the collision term of

the Andries model is kept in compact form as it is in ES model, introducing a new ”artificial”

temperature which is accordingly decomposed into translational and rotational parts. The

model is written by

Q(f̂ , f̂) =

(
1

1− ν + θν

)
P̂tr

µ (Ttr)

(
f̂mod − f̂

)
, (2.24)

where

f̂mod =
nÎj/2−1

Γ (j/2)π3/2

√
det K̂ij(kTrel)

j/2
exp

[
−

3∑
i,j

(ξi − ûi) K̂−1ij (ξj − ûj)−
Î

kBTrel

]
, (2.25)

with

K̂ij = (1− θ)

[
(1− ν)

2kBTtr
m

δij + 2ν
P̂ij
nm

]
+ θ

2kBT

m
δij. (2.26)

The quantity Trel in Eq. (2.25) is a new artificial temperature which is defined as

Trel = θT + (1− θ)Trot. (2.27)

In Eqs. (2.24)-(2.27), Trot is the rotational temperature, T is the total temperature, P̂ij are the

components of the pressure tensor, P̂tr = nkBTtr is the translational pressure, µ(Ttr) is the

viscosity at translational temperature Ttr and δij is the Kronecker delta. The Andries model

is transformed to the ES monatomic model by taking θ = 0 and ν = −1/2. It is noted that

the entropy inequality (H-theorem) has been proved for this polyatomic kinetic model with

−1/2 ≤ ν < 1 and 0 ≤ θ < 1 in [22].
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The model kinetic equations obtained allow further simplification by averaging of the

distribution function over the variable Î. We introduce the functions ĝ and ĥ, described by

ĝ =

∞∫
0

f̂dÎ, ĥ =

∞∫
0

f̂ ÎdÎ, (2.28)

in order to eliminate the rotational energy variable to save computational memory and cost.

Multiplying the each kinetic model equation by 1 and Î and integrating the resulting equations

with respect to Î from zero to infinity, the kinetic equations can be transformed into two coupled

equations. The equilibrium distribution functions for the elastic and inelastic collisions for each

model are written as

• Holway model

ĝrot = n

(
m

2πkBT

)3/2

exp

[
−m(υ − û)2

2kBT

]
, ĥrot =

jkBT

2
ĝrot,

ĝtr = n

(
m

2πkBTtr

)3/2

exp

[
−m(υ − û)2

2kBTtr

]
, ĥtr =

jkBTrot
2

ĝtr.

(2.29)

• Rykov model

ĝrot = n

(
m

2πkBT

)3/2

exp

[
−m(υ − û)2

2kBT

][
1 +

2$0mQtr (υ − û)

15n(kBT )2

(
m(υ − û)2

2kBT
− 5

2

)]
,

ĝtr = n

(
m

2πkBTtr

)3/2

exp

[
−m(υ − û)2

2kBTtr

][
1 +

2mQtr (υ − û)

15n(kBTtr)
2

(
m(υ − û)2

2kBTtr
− 5

2

)]
,

ĥrot =
jkBT

2
ĝrot +

(
m

2πkBT

)3/2

exp

[
−m(υ − û)2

2kBT

]
$1 (1− κ)

mQrot (υ − û)

kBT
,

ĥtr =
jkBTrot

2
ĝtr +

(
m

2πkBTtr

)3/2

exp

[
−m(υ − û)2

2kBTtr

]
(1− κ)

mQrot (υ − û)

kBTtr
.

(2.30)
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• Andries model

ĝmod =
n

π3/2

√
det K̂ij

exp

[
−

3∑
i,j

(ξi − ûi) K̂−1ij (ξj − ûj)

]
,

ĥmod =
jkBTreln

2π3/2

√
det K̂ij

exp

[
−

3∑
i,j

(ξi − ûi) K̂−1ij (ξj − ûj)

]
.

(2.31)

The above kinetic equations are used in the next chapters for the modeling of the heat

transfer, flow and adsorption processes. Also, comprehensive analysis showing the advantages

and disadvantages of each model is performed.

2.4 Boundary conditions for polyatomic gases

The Boltzmann equation must be accompanied by the boundary conditions which de-

scribe the interaction between molecules and solid walls. The gap between solid state physics

and the kinetic theory of gases is bridged with the definition of the boundary conditions. The

limited knowledge on the interaction potential of the gas molecules with molecules of the solid

makes the theoretical investigation of the gas-surface interaction a very difficult task. In the

description of the interaction of the gas molecules with solid surface there are two simple mod-

els proposed by Maxwell [49] in 1879: the diffuse reflection model and the specular reflection

model.

On a boundary surface the velocity distribution function of incident particles f̂− is related

to that of reflected molecules f̂− in the polyatomic gases as [17]

ξnf̂
+
(
υ, Î

)
= −

∫
ξ′n≤0

∞∫
0

ξ′nf̂
−
(
υ′, Î ′

)
R
(
υ′,υ, Î , Î ′

)
dÎ ′dυ′, ξn ≥ 0, (2.32)

where ξn = ξ · n is a normal velocity component, n is the unit vector normal to the surface

directed to the gas. In Eq. (2.32) the velocity and the energy before and after the collision with

the solid wall are denoted by
(
υ′, Î ′

)
and

(
υ, Î

)
respectively. The explicit expression of the

scattering kernel R
(
υ′,υ, Î , Î ′

)
depends on the gas-surface interaction law. The well known
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diffuse scattering corresponds to the following kernel [1]

Rd

(
υ′,υ, Î , Î ′

)
=

m2

2π(kBTαtr)
2 exp

(
− mυ2

2kBTαtr

)
Îj/2−1

Γ (j/2) (kBTαrot)
j/2

exp

(
− Î

kBTαrot

)
, (2.33)

where Tαtr and Tαrot are two temperatures. Physically, it means that a particle can be reflected

to any direction independently of its velocity before the collision with a surface. The two

temperatures Tαtr and Tαrot can be determined from the balance equations for the translational

and rotational energies of the gas when it interacts with the wall. In [50] different models

have been proposed for the determination of Tαtr and Tαrot and are examined in Chapter 2. The

simplest is that the Tαtr and Tαrot are equal to the temperature of the wall Tw (Tαtr=T
α
rot=T

w).

Such an interaction is frequently called as the complete accommodation. In many practical

applications the diffuse scattering is well justified and provides reliable results. The final form

of the outgoing distribution from the wall is obtained by substituting Eq. (2.33) into Eq. (2.32)

as

f̂+
d = nw

(
m

2πkBTαtr

)3/2

exp

(
− mυ2

2kBTαtr

)
Îj/2−1

(kBTαrot)
j/2Γ (j/2)

exp

(
− Î

kBTαrot

)
. (2.34)

The specular reflection model assumes that the incident molecules reflect on the body surface as

the elastic spheres reflect on the entirely elastic surface, i.e., the normal to the surface component

of the relative velocity reverses its direction while the parallel to the surface components remain

unchanged. Thus the normal pressure originated from the reflected mofecules equals to that

originated from the incident molecules; the sheer stress subjected by the surface from the

reflected molecules has the opposite sign to that from the incident molecules and the net sheer

stress is zero; the total energy exchange with the surface is zero. An other widely used boundary

condition is the diffuse-specular boundary conditions defined as [1]

f̂+
ds = αM f̂

+
d + (1− αM) f̂−, (2.35)

where f̂− is the velocity distribution functions of molecules incident at the surface and αM

is the tangential momentum accommodation coefficient. This boundary condition allows to
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eliminate the discrepancy between simulations and experiments which is observed for some

noble gases, e.g. helium, neon etc. Experimental data on the accommodation coefficient of the

noble gases on various surfaces reported in [51]. However, some experimental data contradict to

theoretical results based on the boundary condition Eq. (2.35), hence more physical scattering

kernels should be used, e.g. that proposed by Cercignani and Lampis [52]. Some of the facts

that establish the superiority of this model are the distinction between the accommodation

of energy and momentum introducing two coefficients and the possibility of adjusting them

to obtain diffuse, specular or backscattering reflection which can occur on a rough surface.

Recently, the model has been extended to polyatomic gases [53]. A serious shortcoming of

the model is its inability to include the case of completely diffuse scattering with partial or

zero energy accommodation. Also, the model is purely classical and thus cannot realistically

describe energy exchange to and from vibrational states, where the separation of energy levels

is typically of the same order as, or larger than, kBT
w.

2.5 Numerical methods

The area of numerical simulation of rarefied gas flows is rapidly expanding due to the ap-

plicability of the rarefied gas dynamics theory in several practical applications (micromachines,

deposition techniques, fusion technology, etc.), requiring more and more computer simulations.

The numerical solution of the integral-differential Boltzmann equation in the case of polyatomic

gases, with the collision term and an unknown function having as many as eight arguments is so

difficult that many researchers envisaged various methods to solve the problems in transitional

regime, making them readily tackled. Some of these methods are characterized as analytical, for

instance the Moment method [54, 56] or the Method of elementary solutions [17, 54], and some

other as semi-analytical, for example the Integro-moment method [17, 55, 57]. Due to limita-

tions related to applicability range, generality, accuracy or complexity, two numerical methods

have prevailed: the Discrete Velocity Method (DVM) and the Direct Simulation Monte Carlo

(DSMC).

After the innovated work of Carleman [58], Broadwell [59], Huang et al. [60] and Ca-

banes [61], the deterministic DVM method has been developed into one of the most common
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techniques for solving the Boltzmann equation [1, 62] and simplified kinetic model equations

[17, 63] in the area of rarefied gas dynamics. The method has also been applied to solve mixture

problems [64, 65]. An extensive review article on internal rarefied gas flows including DVM ap-

plications has been given lately by Sharipov [17]. Recently, new models of discrete velocity gases

[66] and mixtures [67] have been introduced indicating that the method can be extended into

more general models including polyatomic gases [68]. Also, recent work shows that the DVM

method can also be employed when the form of kinetic models is non-linear producing accurate

results. The method is based on a discretization of the velocity and space variables by choos-

ing a suitable set of discrete velocities and by applying a consistent finite difference scheme,

respectively. Then, the collision integral term is approximated by an appropriate quadrature,

and the resulting discrete system of equations is solved in an iterative manner. It is noted that

the number of the iterations is rapidly increased as the Knudsen number is decreased, although

the results are considered valid in the whole range of the Knudsen number. The accuracy of the

results depends on the number of the chosen discrete velocities, as the number of the velocities

is increased more and more accurate results are provided.

The stochastic DSMC method, proposed by Bird [69] in the 1960s, is an alternative

method to DVM for simulation of rarefied gas flows, in which the mean free path of a molecule

is of the same order (or greater) of a representative physical length scale. Later, it was revealed

that the DSMC solves the Boltzmann equation [70]. Currently the DSMC method has been

applied to the solution of flows ranging from estimation of the space shuttle re-entry aerodynam-

ics, to the modeling micro-electro-mechanical systems (MEMS) [71–73]. In the DSMC method

simulation molecules which represent a large number of real molecules are used. Simulation

molecules are moved through a simulation of physical space in a realistic manner that is directly

coupled to physical time such that unsteady flow characteristics can be modeled. Intermolecular

collisions and molecule-surface collisions are calculated using probabilistic, phenomenological

models. Common collision models include the Hard Sphere model, the Variable Hard Sphere

(VHS) model [71], and the Variable Soft Sphere (VSS) model [71]. In the DSMC method

the anelastic collisions are dealt by Borgnakke-Larsen (BL) model [23] and by its quantum

extension [75] to describe collisions involving vibrational energy transfer when the vibrational
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degrees of freedom must be taken into account. The BL model describes energy transfer be-

tween internal and translational energies by assuming that a fraction of the total number of

collisions is elastic, i.e. no exchange between internal and translational energy occurs, whereas

the remaining fraction is composed by collisions in which rotational and/or vibrational energy

is exchanged according to prescribed probabilistic rules. Recently the quantum-kinetic (Q-K)

model proposed by Bird for study of chemically reacting gas [76]. The main drawback of the

method is the frequent occurrence of noisy results. Numerous parameters (i.e. size of cells,

number of representative molecules, number of samples) must be adjusted to obtain a good

representation of the gas.

The main numerical method used in this thesis is the DVM method, while the DSMC

method is used as an alternative technique for benchmarking purposes.

2.6 Polyatomic heat transfer

Heat transfer through stationary rarefied gases confined between solid surfaces continues

to be an active area of research. This is well justified since this heat transfer problem is

met in several technological applications including vacuum pressure gauges [78], vacuum solar

collectors [79], multilayer insulation blankets in space and cryogenic equipment [15], micro heat

exchangers and microsensors [80, 81]. It is also commonly used as a prototype set-up in order to

determine the thermal conductivity of gases [82] the temperature jump coefficient [83] and the

energy accommodation at the cold and hot surfaces, combining modeling and measurements [84–

86]. The case of the heat transfer through a monatomic gas has been extensively investigated.

The literature survey on this topic is very long and only some very recent papers for linear and

nonlinear kinetic treatment of single monatomic gases or mixtures of monatomic gases are cited

here [86–90]. However, the research work is not as extensive in the case of polyatomic gases,

where the contribution of the internal degrees of freedom to thermal effects is expected to be

important, leading to deviations from the corresponding monatomic results.

The polyatomic kinetic models by Morse [35], Holway [20] and Hanson and Morse [37] have

been implemented to solve the plane heat transfer and temperature jumps problems. Most of the

work refers to small temperature differences and the applied linearized kinetic model equations
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are solved via semi-analytical techniques and variational methods [91–94] as well as by an early

version of the discrete ordinates (velocity) method [95]. The model proposed by Rykov [21] has

also been implemented to solve heat transfer in diatomic gases confined between parallel plates

in a wide range of temperatures providing good agreement with experimental data [50]. Also,

experimental work in polyatomic gases between parallel plates has been performed in [96, 97]

and [85] measuring heat flow rates and thermal accommodation coefficients respectively.

The available research work of cylindrical heat conduction in rarefied polyatomic gases

is rather limited. There are only the early works of Lees and Liu [98] applying the two-

sided Maxwellian associated with the 4th order moment method and of Cipolla and Morse [99]

solving the Morse model by the Knudsen iteration scheme for small temperature differences.

Experimental work has been performed for very small temperature differences in [84] and for

larger differences in [79, 80]. The two latter works have direct relevance to the design of

evacuated solar collectors and Pirani micro sensors respectively. In [79], the DSMC method

[19] subject to the Borgnakke-Larsen collision scheme [23] has also been applied to provide

satisfactory data for desorbable gases which are difficult to obtain experimentally.

Similar work in the case of large temperature differences is very limited. Nonlinear heat

transfer in diatomic gases confined between two parallel plates has been solved based on the

Rykov model in [50] focusing on the influence of the boundary conditions on the density and

temperature distributions. The solution is based on the discrete ordinates (velocity) method,

while good agreement with experimental results [96, 97] has been observed. Thus, a detailed

investigation of the nonlinear conductive heat transfer through rarefied polyatomic gases con-

fined between two coaxial cylinders and two infinite parallel pates is needed. These heat transfer

configurations are investigated here, based on both deterministic and stochastic methodologies.

The deterministic modeling includes the direct solution of the Holway, Rykov and Andries

models, whereas the stochastic DSMC scheme is adopted to solve the Boltzmann equation in

combination with the Larsen-Borgnakke collision model.
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2.7 Polyatomic flows through capillaries

Rarefied gaseous flows in micro devices can be found almost everywhere in technological

applications, i.e. micro-electromechanical devices (MEMS), micro-sensors, pressure gauges,

vacuum pumps, pipe networks etc. It is noted that in all these applications the operation of

the system may be under low, medium, or high vacuum conditions. The majority of the studies

was made for monatomic gases based on the DSMC method [73, 100] as well as on the kinetic

models [101, 102]. However, the research work in polyatomic gas flow is limited and is referred

mainly to linear polyatomic gases. In [103–106] the Hanson-Morse and Rykov models have

been implemented to solve the fully developed diatomic flows under temperature and pressure

gradients through parallel plates and cylindrical tubes. The analysis shows that the calculated

quantities in the case of temperature driven flows can differ from the corresponding ones in the

monatomic gas by 30 to 40%.

The available research in the case of short channels is not as extensive in the case of

the long channels where the flow is fully developed. The study of short channels is more

difficult since the distribution function is four- or five-dimensional and the complete flow field,

including part of the upstream/downstream containers, must be included in the simulation.

In [107, 108] numerical investigation of the rarefied nitrogen gas flow through parallel plates

into vacuum is performed. Also, the dependence of the gas flow rate through the channel on

the Knudsen number, the wall temperature, the thermal accommodation coefficients and the

channel length is determined, showing that when a diatomic gas flow is computed with the

boundary conditions proposed in [50], which take into account the physics of the interaction

between diatomic molecules and the solid surface, the flow rates for diatomic and monatomic

gases differ. Also in [109] the temperature driven gas flows in both a two-dimensional finite

length microchannel and a cylindrical tube have been studied numerically, based on the DSMC

method supplemented with the Larsen-Borgnakke collision model, while in [110] experimental

data for nitrogen flow in channels are presented.

Since in many practical applications the working gas is polyatomic, and the available

work on flows with nonlinear molecules is limited, a part of this thesis deals with polyatomic

gas flows through long and short tubes.
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2.8 Polyatomic gas adsorption on solid surfaces

Gas adsorption processes are present in many natural, physical, biological, and chemical

systems and are widely used in industrial applications such as water purification, air condition-

ing (adsorption chillers), vapor deposition [111] and vacuum pumping (getters and cryogenic

pumps) [112]. At the gas-surface interface a Knudsen layer is developed and therefore, model-

ing of such flows is commonly based on kinetic equations or on the DSMC method. In [113],

the authors have studied one-dimensional steady flows of binary monatomic gas mixtures in

contact with an infinite planar wall which absorbs the two gas components at different rates

based on the DSMC method. Recently in [114], a 2D geometry, met in vacuum technology

devices like Nonevaporable getters (NEG) or cryogenic pumps [112], has been simulated. In

such devices the absorbing surfaces are organized in more or less densely packed arrays. An

other application area of the adsorption processes is the cryopumping. The cryopumps, where

the main operational mechanism is based on the adsorption process, have been proposed for

use in fusion reactors and their modelling is an attractive area for many researchers. In [115]

a numerical modeling, including comparisons with experimental data, of a high-performance

large-scale prototype cryopump of ITER (International Thermonuclear Experimental Reactor)

is performed based on the Test Particle Monte Carlo (TPMC), which is a simulation tool in the

collisionless flow regime. Next, the same configuration is modelled combining both DSMC and

TPMC methods in [116] providing detailed information of the gas flow field such as pressure

and temperature distributions, number of particles absorbed by each cryopanel, etc. In [117]

a three-stage compound cryopump for use in fusion reactors such as DEMO (DEMOnstration

Power Plant) is modelled based on the DSMC method.

All the aforementioned works are based on the DSMC method due to the geometry

complexity, while the corresponding work using kinetic models is rather limited. Moreover,

the main available work has been done for monatomic gases and the corresponding work in

polyatomic gases remained an open issue, that is studied in this thesis.
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Chapter 3

Conductive heat transfer in rarefied

polyatomic gases confined between

parallel plates

3.1 Introduction

A detailed computational investigation of conductive heat transfer through rarefied poly-

atomic gases confined between parallel plates is performed providing a complete description of

the heat flux, temperature and density distributions in terms of all involved parameters. The

formulation is based on the kinetic models proposed by Holway [20] and Rykov [21] as well as

on the more recently introduced model by Andries et al. [22]. In addition, the solution is also

obtained by the Boltzmann equation via the DSMC scheme supplemented by the Borgnakke-

Larsen collision model [23]. A systematic comparison between the results obtained by the three

kinetic models and the DSMC method, by ensuring equivalent translational and rotational

relaxation rates, is performed. The effect of the thermal accommodation at the boundaries

is also examined for various diffuse-specular reflection scenarios at the walls and comparisons

with corresponding experimental work are included. Overall, the influence of the number of

rotational degrees of freedom is investigated and the differences (and similarities) compared to

the corresponding monatomic gas heat transfer problem are pointed out.
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In the next section, the kinetic formulation of the three kinetic models with the associated

boundary conditions as well as the alternative stochastic DSMC method are described in detail.

Finally, the most important results are provided in the last section, where the effect of each

parameter is discussed.

3.2 The plane heat flow configuration

Consider a stationary polyatomic gas confined between two infinite parallel plates, fixed

at ŷ = ±H/2 and maintained at constant temperatures TH and TC respectively, with TH > TC ,

as it is seen in Fig. 3.1. Then, due to the temperature difference, a steady one-dimensional

heat flow is established in the direction normal to the plates and directed from the hot towards

the cold plate. The present analysis treats only the translational and rotational energy modes

ignoring the vibrational ones. A detailed analysis of the effects of the vibrational modes on

present heat transfer configuration is presented in Chapter 5.

Figure 3.1: The heat transfer configuration.

In the temperature range where the effects of vibrational degrees of freedom can be ne-

glected, the problem may be modelled by the Boltzmann equation for a gas of rigid rotators.

When intrinsic molecular angular momenta (spin) has no preferential alignment, the gas may be

described by a spin orientation averaged distribution function f̂
(
ŷ,υ, Î

)
, where υ = (ξx, ξy, ξz)

is the molecular velocity vector and Î is the internal energy, describing the molecular internal

states through a single variable [30]. In polyatomic gases the internal energy can be divided

in two parts, the energy of the translational motion and the energy associated to the internal
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structure. These energies are related to the corresponding so-called translational and rota-

tional temperatures and heat fluxes. Then, the macroscopic quantities of practical interest are

obtained by the moments of f̂ as

n (ŷ) =

∞∫
−∞

∞∫
−∞

∞∫
−∞

∞∫
0

f̂dÎdξxdξydξz, (3.1)

Ttr (ŷ) =
m

3kBn

∞∫
−∞

∞∫
−∞

∞∫
−∞

∞∫
0

υ2f̂dÎdξxdξydξz, (3.2)

Trot (ŷ) =
2

jkBn

∞∫
−∞

∞∫
−∞

∞∫
−∞

∞∫
0

Î f̂dÎdξxdξydξz, (3.3)

T (ŷ) =
3Ttr (ŷ) + jTrot (ŷ)

3 + j
, (3.4)

Qtr (ŷ) =
m

2

∞∫
−∞

∞∫
−∞

∞∫
−∞

∞∫
0

ξyυ
2f̂dÎdξxdξydξz, (3.5)

Qrot (ŷ) =

∞∫
−∞

∞∫
−∞

∞∫
−∞

∞∫
0

ξy Î f̂dÎdξxdξydξz, (3.6)

Q (ŷ) = Qtr (ŷ) +Qrot (ŷ) , (3.7)

P̂ii (ŷ) = m

∞∫
−∞

∞∫
−∞

∞∫
−∞

∞∫
0

ξ2i f̂dÎdξxdξydξz, i = x, y, z (3.8)

where n, T , Q and P̂ii, with kB being the Boltzmann constant and m the molecular mass, are

the number density, total (thermodynamic) temperature, total heat flux and normal stresses

respectively. The subscripts tr and rot denote the translational and rotational parts, while the

parameter j is the number of rotational degrees of freedom, with j = 2 for diatomic and linear

molecules and j = 3 in all other cases ( j = 0 refers to monoatomic molecules).

The main two parameters characterizing the problem are the normalized temperature

difference

β =
TH − TC

2T0
, (3.9)
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where T0 = (TH + TC) /2 is the reference temperature and the reference gas rarefaction param-

eter

δ0 =
P̂0H

µ0υ0
, (3.10)

where, µ0 is the gas viscosity at reference temperature T0, υ0 =
√

2kBT0/m is the most probable

molecular speed and P̂0 = n0kBT0 is a reference pressure. The average number density

n0 =
1

H

∫ H/2

−H/2
n (ŷ) dŷ, (3.11)

has been used to specify the density level. It is noted that δ0 ∈ [0,∞) and it is proportional

to the inverse Knudsen number, with the limiting values of δ0 = 0 and δ0 →∞ corresponding

to the free molecular and hydrodynamic limits respectively. In addition to the parameters β

and δ0 the problem is also characterized by the type of wall-gas interaction, which is defined

in Subsection 3.3.3. Here, the effect of all parameters on the translational and rotational

heat fluxes and temperature distributions as well as on the density distribution for polyatomic

gases is examined. This is achieved both in a deterministic and stochastic manner described in

Sections 3.3 - 3.4 respectively.

3.3 Polyatomic kinetic modeling

The effort of solving the Boltzmann equation either analytically or numerically, is sig-

nificantly reduced by substituting its collision term with reliable kinetic models. The two

well-known models introduced by Holway and Rykov as well as the more recently introduced

model by Andries, are implemented. All three models may be considered as BGK type models

and, for monatomic gases they are reduced to the BGK [36], Shakhov [48] and ES [20] models

respectively. The models by Holway and Rykov, where the collision integral consists of two

components corresponding to the elastic and inelastic collisions are described in Subsection

3.3.1. The model by Andries, where the collision term is kept in compact form as it is in the ES

model with a new artificial temperature which is accordingly decomposed into translational and

rotational parts, is provided in Subsection 3.3.2. The associated boundary conditions are given

30

Institutional Repository - Library & Information Centre - University of Thessaly
20/05/2024 01:12:25 EEST - 13.59.53.151



Section 3.3

in Subsection 3.3.3, while the translational and rotational relaxation rates of all models are

formulated in the Appendix A. The H-theorem has been proved in [22] for the Andries model

and following the arguments leading to analogous proof of the BGK model can be proved in a

straightforward manner for the Holway model as it is shown in Appendix B.

3.3.1 Models with elastic and inelastic collision terms

The Holway and Rykov models, which have been commonly applied with considerable

success in rarefied polyatomic gas flows and heat transfer configurations [45, 50, 118], are

formulated. Applying the projection process in energy space as it is shown in Chapter 2, for

the present one-dimensional heat transfer problem, both models may be written in a similar

compact form as

ξy
∂L̂

∂ŷ
=
P̂tr
µtr

Prχ
[(

1− 1

Z(i)

)(
L̂

(i)
tr − L̂

)
+

1

Z(i)

(
L̂

(i)
rot − L̂

)]
, (3.12)

where i = H,R for the Holway and the Rykov model respectively, Pr is the Prandtl num-

ber of the gas, with the parameter χ = 1 in the Holway model and χ = 0 in the Rykov

model, P̂tr = nkBTtr is the pressure defined by the translational temperature, µtr = µ (Ttr)

is the gas viscosity based on the translational temperature of the gas, while the parame-

ter 0 ≤
(
Z(i)
)−1 ≤ 1 indicates the fraction of rotational collisions of their total number. In

Eq. (3.12) the first and the second terms on the right hand side of equation describe elastic and

inelastic collisions respectively. The elastic collision conserves the translational energy, while

the inelastic collision exchanges the translational and rotational energies. Here, the vector of

the unknown distributions L̂ =
[
ĝ, ĥ
]T

depends on the spatial variable ŷ and the molecular

velocity vector υ = (ξx, ξy, ξz). The reference translational and rotational distribution functions

in Eq. (3.12) are given by L̂
(i)
tr =

[
ĝ
(i)
tr , ĥ

(i)
tr

]T
and L̂

(i)
rot =

[
ĝ
(i)
rot, ĥ

(i)
rot

]T
, where the components of

these vectors for each kinetic model are as follows
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• Holway model

ĝ
(H)
tr = n

(
m

2πkBTtr

)3/2

exp

(
−mυ2

2kBTtr

)
, ĥ

(H)
tr =

jkBTrot
2

ĝ
(H)
tr ,

ĝ
(H)
rot = n

(
m

2πkBT

)3/2

exp

(
−mυ2

2kBT

)
, ĥ

(H)
rot =

jkBT

2
ĝ
(H)
rot .

(3.13)

• Rykov model

ĝ
(R)
tr = ĝ

(H)
tr

[
1 +

2

15

mQtrξy

n(kTtr)
2

(
mυ2

2kBTtr
− 5

2

)]
,

ĥ
(R)
tr = ĝ

(H)
tr kBTrot

[
1 +

2

15

mQtrξy

n(kBTtr)
2

(
mυ2

2kBTtr
− 5

2

)
+ (1− κ)

mQrotξy
nk2BTtrTrot

]
,

ĝ
(R)
rot = ĝ

(H)
rot

[
1 +$0

2

15

mQtrξy

n(kBT )2

(
mυ2

2kBT
− 5

2

)]
,

ĥ
(R)
rot = ĝ

(H)
rot kBT

[
1 +$0

2

15

mQtrξy

n(kBT )2

(
mυ2

2kBT
− 5

2

)
+$1 (1− κ)

mQrotξy

n(kBT )2

]
.

(3.14)

The parameter κ = µ/ (mnD), where D is the gas self-diffusion coefficient, is a constant

which for a power intermolecular potential is varying between the values of 1/1.2 for hard

spheres and 1/1.543 for Maxwell molecules [120]. The parameters $0 and $1 can be chosen so

that the thermal conductivity obtained from the model equation is close to the experimental

data in [119]. Alternatively, following the theory in [47], once the constant κ and the rotational

collision number Z(R) are defined, the parameters $0 and $1 may be determined in order

to obtain the correct translational and rotational thermal conductivity coefficients from the

equations [47, 121] (
1 +

1−$0

2Z(R)

)−1
= 1− 1

2Z(R)

(
1− 2

5κ

)
, (3.15)

(
1 +

(1− κ) (1−$1)

Z(R)κ

)−1
= 1 +

3

4Z(R)

(
1− 2

5κ

)
. (3.16)
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Then, based on Eq. (3.15) and Eq. (3.16), the Prandtl number is given by [121]

Pr =
7

5Z(R)

[
3

2Z(R) + 1−$0

+
0.4

κZ(R) + (1− κ) (1−$1)

]−1
. (3.17)

In cases where the Pr number, along with the constant κ and the collision number Z(R), are

given, Eq. (3.17) and either of Eq. (3.15) and (3.16) may be used to define $0 and $1. At this

stage it is convenient to introduce the dimensionless quantities

y = ŷ/H, c = υ/υ0, g =
(
ĝ υ30

)/
n0, h =

(
ĥ υ30

)/
P̂0,

ρ = n/n0, Pii = P̂ii

/
(2n0kBT0),

τtr = Ttr/T0, τrot = Trot/T0, τ = (3τtr + jτrot)/(3 + j),

qtr = Qtr/(n0kBT0υ0), qrot = Qrot/(n0kBT0υ0), q = qtr + qrot,

(3.18)

where H is the distance between the plates and g = g (y, c), h = h (y, c) are the dimensionless

distribution functions. Employing the Inverse power law model (IPL), where the repulsive force

between two molecules is proportional to the inverse of the nth power of the distance between

their centers, for the dependence of viscosity on temperature [19]

µ

µ0

=

(
T

T0

)ω
, (3.19)

where ω = 1/2 + [2/(n− 1)] is the viscosity index, which for the limiting cases of hard sphere

(HS) and Maxwell Molecules (MM) takes the values 1/2 (n → ∞) and 1 (n = 5) respectively,

and based on the definition of the rarefaction parameter, Eq. (3.10) becomes

cy
∂L

∂y
= δ0ρ(τtr)

1−ωPrχ
[(

1− 1

Z(i)

)(
L

(i)
tr −L

)
+

1

Z(i)

(
L

(i)
rot −L

)]
, (3.20)

where L is the vector of the unknown dimensionless distribution functions g and h, while

components of the reference vectors L
(i)
tr =

[
g
(i)
tr , h

(i)
tr

]T
and L

(i)
rot =

[
g
(i)
rot, h

(i)
rot

]T
for each model

are given in dimensionless form as
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• Holway model

g
(H)
tr =

ρ

(πτtr)
3/2

exp

(
− c

2

τtr

)
, h

(H)
tr =

jρτrot

2(πτtr)
3/2

exp

(
− c

2

τtr

)
,

g
(H)
rot =

ρ

(πτ)3/2
exp

(
−c

2

τ

)
, h

(H)
rot =

jρτ

2(πτ)3/2
exp

(
−c

2

τ

)
.

(3.21)

• Rykov model

g
(R)
tr = g

(H)
tr

[
1 +

4

15

qtrcy
ρτ 2tr

(
c2

τtr
− 5

2

)]
,

h
(R)
tr = g

(H)
tr τrot

[
1 +

4

15

qtrcy
ρτ 2tr

(
c2

τtr
− 5

2

)
+ 2(1− κ)

qrotcy
ρτtrτrot

]
,

g
(R)
rot = g

(H)
rot

[
1 +$0

4

15

qtrcy
ρτ 2

(
c2

τ
− 5

2

)]
,

h
(R)
rot = g

(H)
rot τ

[
1 +$0

4

15

qtrcy
ρτ 2

(
c2

τ
− 5

2

)
+ 2$1(1− κ)

qrotcy
ρτ 2

]
.

(3.22)

Furthermore, for the specific problem under consideration the computational effort is

further reduced by eliminating, based on the so-called projection procedure, the cx and cz

components of the molecular velocity by introducing the following reduced distributions:

F (y, cy) =

∞∫
−∞

∞∫
−∞

gdczdcx,

G (y, cy) =

∞∫
−∞

∞∫
−∞

g
(
c2z + c2x

)
dczdcx,

S (y, cy) =

∞∫
−∞

∞∫
−∞

hdczdcx,

(3.23)
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and operate accordingly on Eq. (3.20) to reduce after some routine manipulation the final cou-

pled set of non-linear integro-differential equations

cy
∂Ψ

∂y
= δ0ρ(τtr)

1−ωPrχ
[(

1− 1

Z(i)

)(
Ψ

(i)
tr −Ψ

)
+

1

Z(i)

(
Ψ

(i)
rot −Ψ

)]
, (3.24)

where δ0 is the rarefaction parameter given by Eq. (3.10). Here, the vector of the unknown dis-

tributions Ψ = [F,G, S]T depends on two independent variables, namely y and cy. The trans-

lational and rotational relaxing distributions in Eq. (3.24) are given by Ψ
(i)
tr =

[
F

(i)
tr , G

(i)
tr , S

(i)
tr

]T
and Ψ

(i)
rot =

[
F

(i)
rot, G

(i)
rot, S

(i)
rot

]T
respectively, where the components of these vectors for each ki-

netic model are as follows:

• Holway model

F
(H)
tr =

ρ
√
πτtr

exp

(
−
c2y
τtr

)
, G

(H)
tr = τtrF

(H)
tr , S

(H)
tr =

j

2
τrotF

(H)
tr ,

F
(H)
rot =

ρ√
πτ

exp

(
−
c2y
τ

)
, G

(H)
rot = τF

(H)
rot , S

(H)
rot =

j

2
τF

(H)
rot .

(3.25)

• Rykov model

F
(R)
tr = F

(H)
tr

[
1 +

4

15

qtrcy
ρτ 2tr

(
c2y
τtr
− 3

2

)]
,

G
(R)
tr = τtrF

(H)
tr

[
1 +

4

15

qtrcy
ρτ 2tr

(
c2y
τtr
− 1

2

)]
,

S
(R)
tr = τrotF

(H)
tr

[
1 +

4

15

qtrcy
ρτ 2tr

(
c2y
τtr
− 3

2

)
+ 2 (1− κ)

qrotcy
ρτtrτrot

]
,

F
(R)
rot = F

(H)
rot

[
1 +$0

4

15

qtrcy
ρτ 2

(
c2y
τ
− 3

2

)]
,

G
(R)
rot = τF

(H)
rot

[
1 +$0

4

15

qtrcy
ρτ 2

(
c2y
τ
− 1

2

)]
,

S
(R)
rot = τF

(H)
rot

[
1 +$0

4

15

qtrcy
ρτ 2

(
c2y
τ
− 3

2

)
+ 2$1 (1− κ)

qrotcy
ρτ 2

]
.

(3.26)
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Applying the same non-dimensionalization and projection procedures in energy and ve-

locity spaces to the moments in Eqs. (3.1)-(3.8) and after some similar manipulation to the one

applied in the governing equations the macroscopic quantities are given in terms of F , G and

S, according to

ρ =

∞∫
−∞

Fdcy, (3.27)

τtr =
2

3ρ

∞∫
−∞

(
c2yF +G

)
dcy, τrot =

2

jρ

∞∫
−∞

Sdcy, τ =
3τtr + jτrot

3 + j
, (3.28)

qtr =

∞∫
−∞

(
c2yF +G

)
cydcy, qrot =

∞∫
−∞

Scydcy, q = qtr + qrot. (3.29)

The Holway model cannot recover the shear viscosity and thermal conductivity simulta-

neously and since here a purely heat transfer configuration is investigated the collision frequency

has been set to properly recover the property of thermal conductivity. The Rykov model, as

the Shakhov model for monatomic gases, recovers both coefficients. The Rykov model at its

present form is applicable only to diatomic gases (j = 2), while the Holway model is applicable

to polyatomic gases (j = 2, 3).

3.3.2 The ES-BGK model for polyatomic gases

The ES-BGK model for polyatomic gases proposed by Andries et al., has received less

attention since it has been proposed more recently. Its applicability is demonstrated in [44]

where some typical rarefied gas flows are solved and a comparison with corresponding results

based on the Boltzmann equation is provided. The ES-BGK model in terms of the unknown

distribution functions ĝ and ĥ is written as [22, 44]

ξy
∂L̂

∂ŷ
=
P̂tr
µtr

(
1

1− ν + θν

)(
L̂(A)
eq − L̂

)
, (3.30)
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where the superscript (A) denotes the Andries model and L̂ =
[
ĝ, ĥ
]T

is the vector of the

unknown distribution functions. For the problem under question,in this model the reduced

equilibrium distributions in Eqs. (3.30) are kept in a compact form L̂
(i)
eq =

[
ĝ
(A)
eq , ĥ

(A)
eq

]T
, where

ĝ(A)eq =
n

π3/2

√
K̂xxK̂yyK̂zz

exp
(
−ξ2xK̂−1xx − ξ2yK̂−1yy − ξ2zK̂−1zz

)
, (3.31)

ĥ(A)eq =
jnkBTrel

2π3/2

√
K̂xxK̂yyK̂zz

exp
(
−ξ2xK̂−1xx − ξ2yK̂−1yy − ξ2zK̂−1zz

)
, (3.32)

with

K̂ii = (1− θ)

[
(1− ν)

2kBTtr
m

+ 2ν
P̂ii
nm

]
+ θ

2kBT

m
, i = x̂, ŷ, ẑ. (3.33)

The quantity Trel in Eq. (3.32) is a new artificial temperature, which is accordingly

decomposed as

Trel = θT + (1− θ)Trot, (3.34)

where T and Trot are the total and rotational temperatures respectively. The relaxation pa-

rameters −1/2 ≤ ν < 1 and 0 ≤ θ ≤ 1 are chosen to recover the correct Prandtl number of

diatomic and polyatomic gases according to

2

3
≤ Pr =

1

1− ν + θν
<∞. (3.35)

For a monatomic gas a Prandtl of 2/3 is obtained by taking θ = 0 and ν = −1/2. In

that case the ES model kinetic model for monatomic gases is recovered. Furthermore, the

same processes of the non-dimensionalization and projection mentioned in Subsection 3.3.1 are

applied. More specifically, an additional reduced distribution added to the aforementioned set

of Eq. (3.23), which is defined by

R =

∞∫
−∞

∞∫
−∞

gc2xdczdcx. (3.36)
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In terms of the reduced dimensionless distribution functions the model, for the present

heat transfer problem is written as

cy
∂Ψ

∂y
= δ0ρ(τtr)

1−ω
(

1

1− ν + θν

)[
Ψ(A)
eq −Ψ

]
, (3.37)

where Ψ = [F,G, S,R]T is the vector of the unknown reduced distributions, while the reduced

equilibrium functions in Eq. (3.37) are kept in compact form Ψ
(A)
eq =

[
F

(A)
eq , G

(A)
eq , S

(A)
eq , R

(A)
eq

]T
,

where

F (A)
eq =

ρ√
πKyy

exp
[
−c2yK−1yy

]
,

G(A)
eq =

ρ (Kxx +Kzz)

2
√
πKyy

exp
[
−c2yK−1yy

]
,

S(A)
eq =

jρτrel

2
√
πKyy

exp
[
−c2yK−1yy

]
,

R(A)
eq =

ρKxx

2
√
πKyy

exp
[
−c2yK−1yy

]
,

(3.38)

with the tensor Kii, i = x, y, z , written as

Kii = (1− θ)
[
(1− ν) τtr + 2ν

Pii
ρ

]
+ θτ . (3.39)

The dimensionless artificial temperature temperature in Eq. (3.38) is given as τrel =

θτ + (1− θ) τrot. It is noted that the scales of the pressure P̂ii and the tensor K̂ii are set to 2P0

and υ20 respectively. The macroscopic quantities of number density ρ, translational, rotational

and total temperatures τtr, τrot and τ respectively as well as the corresponding heat fluxes qtr,

qrot and q are given by Eqs. (3.27)-(3.29), while the normal stresses in Eq. (3.39) are

Pxx =

∞∫
−∞

Rdcy, Pyy =

∞∫
−∞

Fc2ydcy, Pzz =

∞∫
−∞

(G−R) dcy. (3.40)

It is noted that the entropy inequality (H-theorem) has been proved for this polyatomic

kinetic model with −1/2 ≤ ν < 1 and 0 ≤ θ < 1 in [22]. Also, for all aforementioned models
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namely Holway, Rykov and Andries the conservation equation ∂q (y) /∂y = 0 is readily deduced,

which implies that the total heat flux q (y) remains constant along −1/2 ≤ y ≤ 1/2.

3.3.3 Boundary conditions

To close the problem the formulation of the boundary conditions at ŷ = ±H/2 for the

reflected distributions is provided. The classical Maxwell wall model is applied [122]. Hereby,

to distinguish between incident and reflected quantities the superscripts (−) and (+) are in-

troduced. In the investigation of gas flows with rotational degrees of freedom, the distribution

function of the particles reflected from the solid surfaces is taken in the form [123]

f̂+ = nw

(
m

2πkBTαtr

)3/2

exp

(
− mυ2

2kBTαtr

)
Îj/2−1

(kBTαrot)
j/2Γ (j/2)

exp

(
− Î

kBTαrot

)
. (3.41)

Introducing in Eq. (3.41), the same projection process in energy space as for the kinetic equa-

tions, leads to the following reflected reduced distributions at the boundaries ŷ = ±H/2

ĝ+ = nw

(
m

2πkBTαtr

)3/2

exp

(
− mυ2

2kBTαtr

)
, ĥ+ =

jkBT
α
rot

2
ĝ+, (3.42)

where nw is a parameter found from the no-flow condition as

nw = 2N̂

√
πm

2kBTαtr
, N̂ = −

∫
ξy<0

ξyĝ
−dξ, (3.43)

where, N̂ is the incident particle flux which is equal with the reflected particle flux. The param-

eters Tαtr and Tαrot are obtained as part of the solution from the energy balances at the surface.

The following three possible types of boundary conditions for determining the parameters Tαtr

and Tαrot are considered [50]
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• Boundary condition model I

In most occasions, experimental studies report only one energy accommodation coefficient

defined as

Ê+ = Ê− − α
(
Ê− − Êw

)
. (3.44)

The energy fluxes in Eq. (3.44) are obtained by adding the corresponding translational and

rotational parts, i.e. Ê− = Ê−tr + Ê−rot, Ê
+ = (2 + j/2) N̂kBT

α and Êw = (2 + j/2)N̂kBT
w,

while Tα = Tαtr = Tαrot. Introducing in Eqs. (3.42), the same normalization and projection

process in velocity space as for the kinetic equations, lead to the following reflected re-

duced distributions at the boundaries y = ±1/2

F+ =
ρw√
πτα

exp

(
−
c2y
τα

)
, G+ = ταF+, S+ =

j

2
ταF+, R+ =

1

2
ταF+, (3.45)

where τα = Tα/T0 based on Eq. (3.44) is given by

τα = ατw + (1− α)
2E−

(4 + j)N
(3.46)

while

E−

N
=

∞∫
0

(
c2yF

− +G− + S−
)
cydcy

∞∫
0

F−cydcy

. (3.47)

The parameter ρw in Eq. (3.45) is computed as

ρw =
2
√
π√
τα

∞∫
0

F−cydcy, (3.48)

with τw = Tw/T0. This approach with the one thermal accommodation coefficient has

been widely used in literature [50, 124] and the modelling remains efficient.

• Boundary condition model II

A more detailed description of the energy transfer between the gas and the plates includes

two energy accommodation coefficients one for the translational and one for rotational
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degrees of freedom defined as [50, 94, 124]

Ê+
tr = Ê−tr − αtr

(
Ê−tr − Êw

tr

)
, Ê+

rot = Ê−rot − αrot
(
Ê−rot − Êw

rot

)
, (3.49)

where Ê−tr and Ê−rot are the incident translational and rotational energy fluxes, Ê+
tr =

2N̂kBT
α
tr and Ê+

rot = (j/2) N̂kBT
α
rot are the reflected translational and rotational energy

fluxes, while Êw
tr = 2N̂kBT

w and Êw
rot = (j/2) N̂kBT

w are the translational and rotational

energy fluxes that would have been achieved if the reflected molecules were emitted in

thermal equilibrium at the surface. Adding the two reflected energy fluxes of the Eq. (3.49)

the total energy balance equation is given as

Ê+ = Ê− − αtr
(
Ê−tr − Êw

tr

)
− αrot

(
Ê−rot − Êw

rot

)
, (3.50)

where Ê+ and Ê− are the total reflected and incident energy fluxes respectively. The

reflected dimensionless reduced distributions at the boundaries y = ±1/2 are given as

F+ =
ρw√
πταtr

exp

(
−
c2y
ταtr

)
, G+ = ταtrF

+, S+ =
j

2
ταrotF

+, R+ =
1

2
ταtrF

+, (3.51)

where the parameter ρw is given by the Eq. (3.48). Also, based on the definition of

the two accommodation coefficients given in Eq. (3.49), the parameters ταtr = Tαtr/T0 and

ταrot = Tαrot/T0 are defined as

ταtr = αtrτ
w + (1− αtr)

E−tr
2N

, ταrot = αrotτ
w + (1− αrot)

2E−rot
jN

, (3.52)

with

E−tr
N

=

∞∫
0

(
c2yF

− +G−
)
cydcy

∞∫
0

F−cydcy

,
E−rot
N

=

∞∫
0

S−cydcy

∞∫
0

F−cydcy

. (3.53)

It is noted that for α = αtr = αrot the boundary condition model II is not the same with

the boundary condition model I, since in model I the two parameters Tαtr and Tαrot are

assumed to be equal, whereas in model II these two parameters are different in the general
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case. Furthermore, the boundary condition model II with the two thermal accommodation

coefficients, separate contributions from the different energy modes and provide a detailed

description of the energy transfer between the gas and the surface.

• Boundary condition model III

Furthermore, to take into account the cross energy transfer between the translational and

rotational modes two additional energy accommodations may be introduced into the two

thermal accommodation coefficients model resulting to a total of four coefficients, namely

αtr, αrot, α
rot
tr and αtrrot [50]. Transfer of such a type is considered if two terms added into

two expressions for the translational and rotational reflected energy fluxes of Eq. (3.49)

according to

Ê+
tr = Ê−tr − αtr

(
Ê−tr − Êw

tr

)
− αrottr

(
Ê−tr − Êw

tr

)
+ αtrrot

(
Ê−rot − Êw

rot

)
,

Ê+
rot = Ê−rot − αrot

(
Ê−rot − Êw

rot

)
− αtrrot

(
Ê−rot − Êw

rot

)
+ αrottr

(
Ê−tr − Êw

tr

)
.

(3.54)

The two Eqs. (3.54) are the equations of translational and rotational energy balance on the

plates. The energies of the translational and rotational degrees of freedom of the reflected

molecules are denoted by Ê+
tr and Ê+

rot as well as the translational Êw
tr and rotational Êw

rot

energy fluxes of the molecules which are in thermal equilibrium with the wall are the same

with those given for the boundary condition model II. It is noted that by adding the two

reflected energy fluxes of the Eq. (3.54) the total energy balance describing by Eq. (3.50)

is obtained. The coefficients αtr and αrot determine the fraction of the rotational and

translational energy transferred to the surface while the coefficients αrottr and αtrrot determine

the transition rates of translational to rotational energy and vice versa respectively. The

values of the four thermal accommodation coefficients can be determined experimentally

[50, 125]. The reflected reduced distributions at the boundaries in terms of F , G, S, R

are described by the Eqs. (3.51), while the parameter ρw is given by the Eq. (3.48). Based

on the rotational and translational energy balance on the wall of Eqs. (3.54), the two
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dimensionless parameters ταtr = Tαtr/T0 and ταrot = Tαrot/T0 in Eq. (3.51) are given as

ταtr =
E−tr
2N
− (αtr + αrottr )

(
E−tr
2N
− τw

)
+
αtrrot

2

(
E−rot
N
− j

2
τw
)
,

ταrot =
2E−rot
jN

− (αrot + αtrrot)

(
2E−rot
jN

− τw
)

+
4αrottr
j

(
E−tr
2N
− τw

)
,

(3.55)

where the ratios E−tr
/
N and E−rot

/
N are given in Eqs. (3.53). The boundary condition

model III allows a better adjustment to experimental results, but since the number of

parameters to be examined is increased this type of boundary conditions seems to be

more useful in investigations focused on specific comparisons between simulations and

experiments.

It is noted that in the manipulation of Eqs. (3.46), (3.52) and (3.55) the scales of the incident

energy flux and incident particle flux are set to P̂0υ0 and n0υ0 respectively. Moreover, the

thermal accommodation coefficients α, αtr, αrot, α
rot
tr and αtrrot vary between zero and unity. The

thermal accommodation coefficient α of the model I is related to the thermal accommodation

coefficients of the translational αtr and rotational degrees of freedom αrot of model II and III

according to

α =

αtr
(
E−tr − 2Nτw

)
+ αrot

(
E−rot −

j

2
Nτw

)
E−tr + E−rot −

(
2 +

j

2

)
Nτw

. (3.56)

Furthermore, in accordance with the experimental and theoretical papers [126, 127] it is ob-

tained that αtr ≥ αrot. The nonlinear set of Equations presented in Subsections 3.3.1 and

3.3.2 along with the different model boundary conditions presented in Subsection 3.3.3 pro-

vide a theoretically well-established kinetic formulation for the heat transfer problem under

consideration.

3.4 DSMC solution of the Boltzmann equation

In order to increase confidence into the predictions of the kinetic models described in the

previous section, the problem has also been studied by a DSMC particle scheme [19]. In general,
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the determination of the form of the collision cross section for polyatomic gases is not easy. As

it is well known, the dynamics of a binary molecular collision is much more complicated than

a binary atomic collision which is largely amenable to analytical treatment. Simple mechani-

cal models of translational-rotational coupling (rough spheres, loaded spheres, spherocylinders)

[128] are not flexible enough to fit experimental data on polyatomic species. Hence, the col-

lision dynamics and cross-sections have been obtained from the well-known phenomenological

model proposed by Borgnakke and Larsen [23]. The model can be easily adapted to reproduce

experimental translational-rotational relaxation rates with good accuracy [129]. Moreover, its

collision algorithm is very well suited to particle schemes used to obtain numerical solutions of

the Boltzmann equation [19].

In the particular form of the Borgnakke-Larsen model adopted here, collision dynamics

is organized as follows:

• The collision probability of two molecules in the pre-collision state
(
υ′, Î ′

)
,
(
υ′
1, Î
′
1

)
is proportional to σHSυ

′
r, where σHS = πd2 is the integral cross-section of hard sphere

molecules of diameter d and υ′r = ‖υ′
1 − υ′‖ is the relative velocity modulus.

• An individual collision is inelastic with probability 1/Z(DSMC) or elastic with probability

1 − 1/Z(DSMC). An inelastic collision gives rise to an exchange between translational

and rotational energies, as explained below. In an elastic collision pre- and post-collision

rotational energies do not change, i.e. Î = Î ′, Î1 = Î ′1 . Conservation of total energy then

implies υr = υ′r and, according to hard sphere impact dynamics, post-collision relative

velocity is written as υr = υrê , being ê a random vector uniformly distributed on the

unit sphere S.

• In an inelastic collision conserved total energy Ê of the center of mass reference frame:

Ê =
1

4
mυ2r + Î + Î1 =

1

4
mυ

′
r

2
+ Î ′ + Î ′1 (3.57)

is randomly partitioned between translational and rotational motion by sampling the

translational energy fraction Êtr/E from a given probability density function P1

(
Êtr/Ê

∣∣∣ j).

The available total rotational energy Êrot = Î+ Î1 = Ê−Êtr is then randomly distributed
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between the collision partners by sampling the fraction Î/Êrot from a given probability

density function P2

(
Î/Êrot

∣∣∣ j). The relative velocity after a collision is again written as

υr = υrê , where ê is a random unit vector and υr =

√
4Êtr/m. The specific form of the

probability densities P1

(
Êtr/Ê

∣∣∣ j) and P2

(
I/Êrot

∣∣∣ j) depends both on the number of

internal degrees of freedom and on the assumed intermolecular interaction [19]. In the

case of hard sphere interaction and j = 2 they take a particularly simple form [19, 30]

P1

(
Êtr/E

∣∣∣ 2) = 6
Êtr

Ê

(
1− Êtr

Ê

)
, (3.58)

P2

(
I/Êrot

∣∣∣ 2) = 1. (3.59)

The strength of translational-rotational coupling is determined by the mixing parameter

Z(DSMC) which can be made to depend on the local flow field temperature to fit experimental

relaxation rates [129]. As mentioned above, the hard sphere collision cross section has been

used in the DSMC simulations presented in this work. The choice is suggested by the limited

temperature range of the experimental measurements which allow to assume a constant value

of the total collision cross section. For the same reason, a similar choice has been made about

the rotational collision number, Z(DSMC), whose value has been assumed not to depend on

temperature, neglecting its weak temperature dependence in the case of air species [129]. In

the DSMC algorithm, the main hypothesis is that at each discrete time interval, particle motion

and intermolecular collisions are considered as two independent, uncoupled steps. The physical

space domain is discretized into cells, which are used to track model particles and calculate

the bulk properties. Each model particle in the simulation represents a large number of real

molecules in the physical system and is characterized by spatial position r̂(t̂), velocity υ(t̂)

and internal energy Î(t̂) associated with j rotational degrees of freedom. The particles states

are advanced from time t̂ to time t̂ + ∆t̂ in two stages. In the first stage gas-gas collisions

are neglected and particles move along straight lines with the constant velocity and rotational

energy they had at time t̂. In this free flight stage wall boundary conditions are applied to

change the velocity and internal energy of molecules hitting a wall. In the second stage, particle
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positions are kept fixed and equal to the final values resulting from the free flight. Particles

belonging to the same cell of the spatial grid are allowed to collide according to the rule described

above. Finally, macroscopic quantities are obtained by sampling and time averaging particles

microscopic states after the onset of steady flow conditions.

3.5 Results and discussion

In this section, results for the heat fluxes and the distributions of temperature and den-

sity obtained by the Holway, Rykov and Andries models as well as by the DSMC method in

a wide range of all involved parameters are presented in tabulated and graphical form. The

temperature ratio of the hot over the cold plate takes the values of TH/TC = (1 + β) / (1− β) =

[1.1, 3, 7, 10] covering the cases of small, moderate and large temperature differences, while the

reference gas rarefaction parameter δ0 ∈ [0, 100] varies in a wide range of the gas rarefac-

tion from the free molecular up to the slip regime. Three types of gas-surface interaction are

considered and comparisons with measurements under various conditions are included.

The results are organized as follows: In Subsection 3.5.1 the numerical parameters used

in the simulations are given. Subsection 3.5.2 presents results of the heat fluxes for diatomic

and polyatomic gases as well as a comparison between kinetic and DSMC results including

density and temperature fields. Subsection 3.5.3 describes the dependency of the heat fluxes

on the accommodation coefficients and finally, Subsection 3.5.4 is focused on comparison with

experiments. The computational results always coincide in the free molecular limit (δ0 = 0)

with the corresponding analytical results of the translational and rotational temperatures and

heat fluxes. Also, as δ0 is increased, the computed heat flux gradually tends to the analytical

one in the hydrodynamic limit. The analytical solutions in the two limits are provided in the

Appendix C.

3.5.1 Numerical parameters and the computing quantities

The kinetic model equations of Holway, Rykov and Andries with the associated moments

applying the three types of boundary conditions described above are solved numerically in
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a deterministic manner. The discretization is based on the discrete velocity method in the

molecular velocity space and on a second order control volume approach in the physical space.

The macroscopic quantities are computed by Gauss-Legendre quadrature. The implemented

algorithm is parallel in the velocity space and has been extensively applied in previous works

to solve with considerable success heat transfer configurations [89, 124]. The iteration process

between the kinetic equations and the corresponding moments of the distribution functions is

terminated when the convergence criteria

1

3K

K∑
i=1

[∣∣∣ρ(t+1)
i − ρ(t)i

∣∣∣+
∣∣∣τ (t+1)
i − τ (t)i

∣∣∣+
∣∣∣q(t+1)
i − q(t)i

∣∣∣] < ε, (3.60)

with t denoting the iteration index and K the number of nodes in the physical space, is fulfilled.

The kinetic results presented here have been obtained with 4001 equally spaced nodes and

96 molecular velocities being the roots of the corresponding Legendre polynomial, while the

tolerance parameter is set to ε = 10−8. Computations have been performed with a parallel

version of the code parallelizing in the molecular velocity space on 3 Intel R© CoreTM i5-3570

cpus at 3.40 GHz (total of 12 cores). The computational times per iteration for the BGK,

Shakhov, Holway, Andries and Rykov models are roughly speaking in the ratio 1:2:3:4:6, i.e.

the computational time of the polyatomic models is approximately three times higher than the

corresponding monatomic ones. It is noted that the total number of iterations for convergence

depends only on the reference rarefaction parameter and is independent of the model. To have

an idea of the required computational times, it is stated indicatively that the simulation of

the case δ0 = 50, TH/TC = 3 with the above defined parallelization and numerical parameters,

based on the Holway model, takes about 3.2min (serial execution time about 32 min).

The reported DSMC results have been obtained from simulations using not less than

1250 particles per cell. The spatial cell size ∆ŷ does not exceed 1/20 of the reference mean

free path. The time step ∆t̂ has been set equal to the minimum between the estimated time

a particle takes to cross a cell,
(
∆t̂
)
adv

= (∆ŷ
√
m)
/(√

kBTH
)
, and a small fraction

(
∆t̂
)
col

of

the minimum mean free time, based on the maximum value of the collision frequency in the

domain. Macroscopic quantities have been obtained by sampling microscopic particles states
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for 20 − 40 × 104 time steps after the estimated onset of steady conditions. The heat fluxes

dispersion within each sample allows estimating the statistical error associated with the Monte

Carlo method. In most of the cases the relative statistical error is well below 1%. Larger relative

standard deviations (around 2%) are found for the largest value of the rarefaction parameter and

the smallest temperature ratio. The computing time associated to a serial DSMC simulation

amounts to about 5× 10−8 per time step, per particle, on a workstation equipped with Intel R©

Xeon R© E5-2630 cpus, running at 2.3 GHz. For instance, the simulation of the case δ0 = 50,

TH/TC = 3 with 1000 spatial cells and particles, takes about 40 min to execute 3 × 105 time

steps and produce an accurate solution.

3.5.2 Comparison between kinetic and DSMC results

In Tables 3.1 and 3.2 the dimensionless translational and rotational heat fluxes respec-

tively obtained by all three kinetic models are compared for a diatomic gas (j = 2, Pr = 0.72)

with HS molecules. The temperature ratio and the reference gas rarefaction parameter take

the values of TH/TC = [1.1, 3, 10] and δ0 ∈ [0, 100] respectively. Since the translational

and rotational heat fluxes vary between the plates the tabulated results are at the hot plate

y = −1/2. Of course the total heat flux remains constant. The gas molecules are fully accom-

modated at the two plates. Furthermore, in order to ensure comparison compatibility between

the various kinetic models and according to the Appendix A (Eq. (A.4)), where the relax-

ation rates are discussed, the rotational collision numbers are set as Z(R) = Z(A) = 6.50 and

Z(H) = Z(A)×Pr = 4.67. Based on these values and κ = 1/1.2 (HS molecules) it is deduced that

$o = 0.458, $1 = 2.840 in the Rykov model and ν = −0.50, θ = 0.21 in the Andries model.

It is clearly seen that for both heat fluxes the agreement between the corresponding results

obtained by all three models is excellent (within two or even three significant figures for all

values of δ0 and TH/TC). The rotational heat flux is always about one-half of the corresponding

translational one, while in the free molecular limit, is exactly one-half. The results for δ0 = 0

coincide with the corresponding analytical ones estimated by Eqs. (C.5)-(C.6) in Appendix C.

It is noted that the dependency of the results on the values of Z(i) for the present heat

transfer configuration and for all values of δ0 and TH/TC tested, in all three models, is small,
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with the Holway model being the less sensitive one. Also, as Z(i) is increased the translational

heat flux tends to the heat flux of a monatomic gas, while the rotational heat flux remains

always about one-half of the translational one. To clearly demonstrate that, in Table 3.3,

the monatomic heat fluxes obtained by the BGK and Shakhov models are tabulated for the

same temperature ratios TH/TC and rarefaction gas parameter δ0 [130]. It is seen that the

monoatomic heat fluxes are close to and always a little bit higher than the translational part of

the corresponding diatomic heat flux, shown in Table 3.1, while the total diatomic heat fluxes

q = qtr + qrot are higher compared to the corresponding monatomic ones of Table 3.3 about

30− 50%.

A comparison between the dimensionless total heat fluxes obtained by the Andries model

and the DSMC method for a diatomic gas with Z(DSMC) = Z(A) = 5 (ν = −0.5, θ = 0.27) is

presented in Table 3.4. The particles reflection is purely diffuse at the walls. The temperature

ratio and the reference gas rarefaction parameter take the values of TH/TC = [1.1, 3, 7, 10]

and δ0 ∈ [0, 100] respectively. In all cases the agreement between the results is very good with

the relative error being less than 3%. Furthermore, the comparison is extended to the number

density distributions plotted in Fig. 3.2 as well as to the translational and rotational tempera-

ture distributions plotted in Fig. 3.3 for various typical values of δ0 and TH/TC demonstrating

excellent agreement between the deterministic and stochastic approaches. It is also seen that

the translational and rotational distributions are very close to each other and through Eq. (3.20)

it is deduced that τ ' τtr ' τrot, with the larger deviations occurring at larger temperature

differences and intermediate values of the gas rarefaction. Overall, the effectiveness of the An-

dries as well as of the Holway and Rykov models to simulate this heat transfer configuration is

clearly demonstrated.

In Table 3.5 the translational and rotational heat fluxes of a polyatomic gas (j = 3)

based on the Andries model with Z(A) = 6.50, ν = −0.50, θ = 0.21 and purely diffuse reflection

at the walls are tabulated. The results are at the hot plate for TH/TC = [1.1, 3, 7, 10] and

δ0 ∈ [0, 100]. Overall, the qualitative variation of the polyatomic heat fluxes in terms of

TH/TC and δ0 is similar to the diatomic ones. More specifically, the translational parts of the

polyatomic and diatomic heat fluxes are close, while the rotational part of the polyatomic heat
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flux is always higher than the corresponding one of the diatomic gas. Comparing the total

polyatomic heat fluxes with those in Tables 3.3, it is deduced that they are about 50 − 75%

higher than the corresponding monatomic ones. The analytical free molecular solutions are

fully recovered with the rotational part being 75% of the translational one.

3.5.3 Effect of accommodation coefficients

The effect of partial accommodation at the walls on the heat fluxes is investigated based

on the two types of boundary conditions presented in Subection 3.3.3. Results are provided for

the typical values TH/TC = [1.1, 3, 10], δ0 ∈ [0, 100] and they are based on the Holway kinetic

model.

First the boundary condition Eqs. (3.45)-(3.47) with the one energy accommodation co-

efficient α ∈ [0, 1], defined by Eq. (3.44), is considered. In Fig. 3.4, the dimensionless total heat

flux q of a diatomic gas (j = 2, Pr = 0.71, Z(H) = 5) with HS molecules in terms of α is

plotted. As expected the effect of α on the total heat flux becomes more significant as δ0 is

decreased, i.e. as the gas becomes more rarefied, while at δ0 = 100 the total heat flux is practi-

cally independent of α. Also, in almost all cases as α is increased the dimensionless total heat

flux is monotonically increased, which is physically justified since a larger portion of particles

is reflected with temperatures closer to the wall temperatures. However, for large temperature

differences this is true only at large δ0, while as δ0 is decreased a maximum heat flux is observed

at some α < 1. This is clearly shown at TH/TC = 10 and δ0 ≤ 0.1, where the maximum heat

flux is reached at about α = 0.95. It has been found that as the temperature ratio is further

increased the value of α where the maximum heat flux occurs is decreased. The behavior of

both the translational and rotational parts of the heat flux with respect to α is similar to the

one described here for the total heat flux and therefore is not shown separately. These findings

have also been confirmed by simulations with the other kinetic models and the DSMC approach.

In addition, the results for δ0 = 0 are in excellent agreement with the corresponding analytical

ones given in the Appendix C, where the detailed dependence of qfm on the parameters α and

β is shown in Fig. C.1.
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Next, the boundary condition Eqs. (3.51)-(3.53) with the two energy accommodation co-

efficients αtr ∈ [0, 1] and αrot ∈ [0, 1], defined by Eq. (3.49), is considered and the effect of the

accommodation coefficients on each of the translational and rotational parts of the heat flux

is investigated. In Fig. 3.5, the dimensionless translational heat flux qtr at the hot plate of a

diatomic gas (j = 2, Pr = 0.71, Z = 5) with HS molecules in terms of with αtr = 1 with αrot

as well as in terms of αtr with αrot = 1 is plotted. It is seen that the dependency of qtr on

αtr is very similar to the one observed before of q(H) on α . On the contrary qtr is actually

independent of αrot.

In Fig. 3.6, the corresponding plots for qrot are provided. The rotational heat flux depends

on both αtr and αrot. With regard to αtr the dependency is in general weak in small temperature

differences but becomes stronger as the temperature difference is increased and the gas becomes

more rarefied. It is interesting to observe that in these latter conditions as αtr is increased qrot

is decreased. With regard to αrot the dependency of the rotational heat flux is strong and as

αrot is increased, qrot is also increased.

The effect of the two thermal accommodation coefficients on the density and temperature

distributions is shown in Figs. 3.7 and 3.8 for a diatomic HS gas (j = 2, Pr = 0.71, Z = 5)

in the case of TH/TC = 10 and δ0 = 1. The dimensionless wall temperatures are τH = 1.82

and τC = 0.18. More specifically, in Fig. 3.7 the distributions of density and translational

temperature are plotted for various values of αtr with αrot = 1. It is seen that at small values

of αtr both distributions, even at this large temperature ratio, are almost anti-symmetric about

y = 0 (typical of a linear configuration) and then as is increased the anti-symmetry is vanished

(typical of a nonlinear configuration). The effect of the variation of αtr on the wall temperature

jump is more dominant at the cold rather than at the hot wall. The coefficient αrot has always a

very small effect or no effect at all on these distributions and therefore its effect is not plotted.

On the contrary, both αtr and αrot have an important effect on the rotational temperature

shown in Fig. 3.8. It is seen that as αtr is increased, τrot (y) is decreased in a uniform manner

along the distance y (the curves are almost parallel to each other). Also, at large values of

αrot, the τrot (y) distribution is symmetric and as αrot is decreased it becomes antisymmetric.

In addition, as TH/TC is decreased the effect of αtr and αrot on τrot (y) is drastically decreased.
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Furthermore, comparing the translational and rotational temperatures in Figs. 3.7 and

3.8 respectively with αtr ≤ 1 and αrot = 1 it is seen that τtr ' τrot only when αtr = 1 while as

αtr is reduced the translational and rotational temperatures start to depart from each other.

To clearly demonstrate that the two temperatures are plotted for αtr = 1, αrot = 0.2 and

αtr = 0.2, αrot = 1 at two different values of the reference gas rarefaction parameter in Fig. 3.9.

It is seen that for αtr 6= αrot, i.e., when translational and rotational energies are differently

accommodated at the walls, then the corresponding temperatures vary significantly (τtr 6= τrot)

and this difference becomes larger as δ0 is increased. Also, at δ0 = 0.1 the departure between

τtr and τrot is larger with the variation of αrot rather than of αtr. It is expected that similar

results will be obtained performing molecular dynamics simulations.

3.5.4 Comparison with experiments

A comparison with the early experimental results in [96, 97] and the more recent ones in

[85] is performed based on the kinetic Holway model and the DSMC method. In experiments

[85, 96] the temperature difference between the plates is small, while in [97] the temperature

difference is large, the gas is nitrogen (N2) and the associated energy accommodation coefficient

has been experimentally determined from heat transfer measurements at low pressures where

the Knudsen formula is valid, to be about α = 0.75−0.8. The simulations have been performed

for a diatomic HS gas with Pr = 0.71, while the rotational collision number for the DSMC

approach is taken to be Z(DSMC) = 5.

The comparison with [96] is shown in Fig. 3.10 in terms of the total heat flux normal-

ized with the corresponding free molecular heat flux versus the inverse of the reference Knudsen

number. The measured temperature of the hot plate and the temperature ratio are TH = 301.96

K and TH/TC = 1.0291 respectively, while the experimentally determined thermal accommo-

dation coefficient is α = 0.76. The Holway model simulations have been performed for these

data with Z(H) = 5 as well as with Z obtained by the Landau-Teller (L-T) expression [19]

based on the Lordi and Mates [131] experimental data. As it is seen the computed results are

in very good agreement with the experimental ones in the whole range of the inverse Knudsen

number. It is noted however, that the implemented gas-surface interaction model is not capable
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to capture both the heat flux and density variations presented in [96] simultaneously and to

achieve that more complex boundary conditions, as the ones in [50], are needed.

The comparison with [85] is shown in Fig. 3.11 in terms of the dimensionless total heat

flux q versus the inverse measured pressure. The measured temperatures of the hot and cold

plates are TH = 308.3 K and TC = 288.3 K respectively (TH/TC = 1.069), while the associated

experimentally estimated thermal accommodation coefficients are αH = 0.795 and αC = 0.808

[85]. Simulations have been performed for these data with the Holway model (Z(H) = 5).

Excellent agreement between the kinetic results and measurements is observed in the whole

range of measured pressures.

The comparison with [97] is shown in Fig. 3.12 in terms of the dimensionless density

distribution between the parallel plates. The temperatures of the hot and cold plates are

TH = 294 K and TC = 79 K respectively (TH/TC = 3.72). In this case the temperature difference

is large, while in the former comparisons it was small. The comparison covers a wide range of the

rarefaction parameter (1.52, 3.08, 4.64, 16.72), while the experimentally determined thermal

accommodation coefficient is α = 0.82. It is noted that in order to perform the comparison the

experimental rarefaction parameters have been accordingly converted having as the reference

number density the mean number density and not the number density at the center plane as it

is taken in [97]. Simulations have been performed for these data with the Holway model and

Z(H) = 5. The influence of the different models of boundary conditions described in Subsection

3.3.3 on the density distribution between the plates is investigated. In the boundary condition

model I the accommodation coefficient is taken equal to experimental value (α = 0.82). In

[50] the range of the parameters αtr = [0.7, 0.9] and αrot = [0.3, 0.8] for the heat transfer

problem through N2 is given. Moreover, in [126, 127] it is found that αrot ≤ αtr. Taking into

consideration the aforementioned and due to the fact that the coefficients αtr and αrot must

have a value equal to that measured experimentally (α = 0.82) according to Eq. (3.56) the

values αtr = 0.9 and αrot = 0.65 are chosen in the case of boundary condition model II. For

the boundary condition model III the values αtr = αrot = 0.82, αrottr = 0.18 and αtrrot = 0.01 are

used based on all the above information related to the coefficients αtr and αrot. The values

of the αtr and αrot are different in boundary condition model II and model III, since from all
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the available combinations these values of αtr and αrot for each model achieve the best fitting

with experimental data in [97]. As it is seen very good agreement between all three boundary

condition models and experiments is observed at large values of the rarefaction parameter,

since in this case the effects of the boundary conditions is small. However, at δ0 = 1.52 the

comparison between the density profiles obtained by the boundary condition model I and II

with the corresponding experimental data is not as good as for higher values of δ0. This is due

to the fact that the boundary condition model I and II do not take into account the energy

transfer between the translational and rotational degrees of freedom of the molecules as they

collide with the plates. As it is seen the boundary condition model III makes it possible to

obtain very good agreement in the whole examined range of the rarefaction parameter.

In order to obtain a more physical understanding of the heat transfer in monatomic and

polyatomic gases and to facilitate comparisons with experiments, in Fig. 3.13, some dimensional

total heat fluxes [W/m2] in terms of the reference pressure P̂0 [Pa] are given for the monatomic

gases of He and Ar (j = 0, Pr = 0.67), the diatomic gases of H2 and N2 (j = 2, Pr = 0.71)

and for the polyatomic gases of CO2 (j = 2, Pr = 0.75) and CH4 (j = 3, Pr = 0.75). The

distance between the plates is H = 5 mm with the temperature of the cold plate to be set at

TC = 293 K and temperature ratio TH/TC = 3. The reference pressure P̂0 ∈
[
10−3, 5× 102

]
Pa

is easily connected to the rarefaction parameter δ0, via Eq. (3.10) once the viscosity and the

most probable velocity of each gas is specified. All computations are based on the Holway model

and the IPL interaction law with ω = [0.66, 0.81, 0.67, 0.74, 0.93, 0.84] for He, Ar, H2, N2, CO2,

CH4 respectively. It is noted that the experimentally estimated rotational collision number of

these gases may vary between one and five [47]. However, the dependency of the results on Z

is small and therefore in all cases Z(H) = 5 is introduced. It is seen that, as expected, the heat

flux is monotonically increased with pressure. At highly rarefied atmospheres the heat flux is

proportional to gas pressure, then, in the transition regime the relation becomes more complex

and at dense atmospheres the heat flux depends weakly and finally is independent of pressure.

More importantly, it is observed in Fig. 3.13, that under the same conditions the heat

flux of different gases varies significantly. The largest heat fluxes are achieved for H2 followed

successively by the heat fluxes of He, CH4, N2, CO2 and Ar. This trend is valid in the whole
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range of pressure except for the curves of CO2 and Ar, which cross each other at some relatively

large pressure P̂0 > 1 Pa. In monatomic gases confined between surfaces the heat transfer is

increased as the molar mass of the gas is decreased and the molecular velocities are increased.

However, this remark cannot be generalized in the case of polyatomic gases since the additional

degrees of freedom result to additional heat transfer, as seen in Fig. 3.13, where in a wide range

of pressure the heat flux of CO2 is larger than that of Ar, while its molar mass is larger.

3.6 Concluding remarks

The problem of heat transfer through rarefied polyatomic gases confined between two

parallel plates maintained at different temperatures is solved based on three kinetic models

namely the ones proposed by Holway, Rykov and Andries as well as on the DSMC scheme

supplemented by the Borgnakke-Larsen collision model. Results for the heat fluxes and the

distributions of density and temperature are provided for small, moderate and large temperature

differences in a wide range of the gas rarefaction from the free molecular limit up to the slip

regime with full and partial energy accommodation at the boundaries. The three kinetic models

and the DSMC method provide very close values of the computed macroscopic quantities as

well as very good agreement with corresponding experimental data available in the literature.

In addition, the computational results perfectly match the analytical ones in the free molecular

limit and tend to the analytical ones in the hydrodynamic regime.

Based on the above, the validity of the implemented modeling approaches is demonstrated.

All kinetic models provide accurate results for the specific problem. The H-theorem has been

proved for the Andries model and can be readily obtained for the Holway model, while no

such proof exists for the Rykov model. Surely, the Holway model is the simplest to use since

it depends only on one parameter, the Prandtl number, but probably not accurate enough to

treat problems with combined heat transfer and flow phenomena. The Rykov model remains a

solid alternative for diatomic gases, while very recently has been extended to polyatomic gases

[46]. It is noted that for this specific heat transfer problem the dependency of the results on

the parameter indicating the strength of translational-rotational coupling is very small for all

kinetic models and the DSMC method (the Holway model is the less sensitive one).
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The total heat fluxes of diatomic and polyatomic gases have been found to be higher

about 30 − 50% and 50 − 75% respectively than the corresponding monatomic ones, with the

highest differences occurring in the free molecular limit. Furthermore, as the amount of elastic

compared to inelastic collisions is increased, the translational heat fluxes are slightly increased

and they tend to the monatomic ones, while the rotational heat fluxes are always about 50%

and 75% of the translational ones for diatomic and polyatomic gases respectively. Also, the

translational and rotational temperature distributions (as well as the total temperature) are

very close to each other for each set of parameters examined and they are similar to the corre-

sponding monatomic ones when the translational and rotational accommodation coefficients are

the same. On the contrary they depart from each other when the two coefficients are different.

In most cases as the thermal accommodation coefficient α is increased, i.e. the gas-surface in-

teraction becomes more diffusive, the dimensionless total heat flux is monotonically increased.

However, for adequately large temperature differences and efficiently high gas rarefaction levels

a non-monotonic behavior, with a maximum total heat flux at some α < 1, has been observed.

A detailed description of the behavior of the translational and rotational heat fluxes and tem-

peratures on the partial energy accommodation at the walls is provided. Finally, providing

some dimensional results, it has been found that while in monatomic gases the heat flux is

always increased as the molar mass is decreased, this is not necessarily the case in polyatomic

gases since the additional degrees of freedom result to additional heat transfer.

Overall, it is noted that the present work may be useful in the heat transfer design and

optimization of MEMS, vacuum sensors and other technological devices with polyatomic gases.

It is also noted that the presented results are in a range of heat transfer parameters where the

assumption of a gas of rigid rotators is justified.
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Table 3.1: Dimensionless translational heat fluxes qtr for a diatomic gas (j = 2, Pr = 0.72)
with HS molecules (ω = 0.5) at the hot plate (y = −1/2) and various values of δ0 and TH/TC
(Z(R) = Z(A) = 6.50, ν = −0.50, θ = 0.21, $o = 0.458, $1 = 2.840, Z(H) = 4.67).

δ0

TH/TC = (1 + β) / (1− β)

1.1 3.0 10.0

Andries Holway Rykov Andries Holway Rykov Andries Holway Rykov

0 5.37(-2) 5.37(-2) 5.37(-2) 5.06(-1) 5.06(-1) 5.06(-1) 5.98(-1) 5.98(-1) 5.98(-1)

0.1 5.11(-2) 5.11(-2) 5.09(-2) 4.84(-1) 4.84(-1) 4.83(-1) 5.83(-1) 5.83(-1) 5.88(-1)

1 3.79(-2) 3.79(-2) 3.77(-2) 3.65(-1) 3.65(-1) 3.66(-1) 4.68(-1) 4.67(-1) 4.82(-1)

5 1.92(-2) 1.92(-2) 1.95(-2) 1.92(-1) 1.92(-1) 1.95(-1) 2.75(-1) 2.75(-1) 2.85(-1)

10 1.21(-2) 1.21(-2) 1.23(-2) 1.22(-1) 1.22(-1) 1.25(-1) 1.84(-1) 1.84(-1) 1.90(-1)

50 3.03(-3) 3.03(-3) 3.10(-3) 3.13(-2) 3.13(-2) 3.20(-2) 4.96(-2) 4.96(-2) 5.07(-2)

100 1.56(-3) 1.57(-3) 1.60(-3) 1.62(-2) 1.62(-2) 1.66(-2) 2.58(-2) 2.58(-2) 2.64(-2)

Table 3.2: Dimensionless rotational heat fluxes qrot for a diatomic gas (j = 2, Pr = 0.72)
with HS molecules (ω = 0.5) at the hot plate (y = −1/2) and various values of δ0 and TH/TC
(Z(R) = Z(A) = 6.50, ν = −0.50, θ = 0.21, $o = 0.458, $1 = 2.840, Z(H) = 4.67).

δ0

TH/TC = (1 + β) / (1− β)

1.1 3.0 10.0

Andries Holway Rykov Andries Holway Rykov Andries Holway Rykov

0 2.68(-2) 2.68(-2) 2.68(-2) 2.53(-1) 2.53(-1) 2.53(-1) 2.99(-1) 2.99(-1) 2.99(-1)

0.1 2.54(-2) 2.54(-2) 2.51(-2) 2.40(-1) 2.40(-1) 2.39(-1) 2.90(-1) 2.90(-1) 2.91(-1)

1 1.80(-2) 1.80(-2) 1.74(-2) 1.74(-1) 1.74(-1) 1.69(-1) 2.24(-1) 2.24(-1) 2.24(-1)

5 8.55(-3) 8.55(-3) 8.11(-3) 8.59(-2) 8.59(-2) 8.20(-2) 1.25(-1) 1.24(-1) 1.21(-1)

10 5.27(-3) 5.27(-3) 4.98(-3) 5.39(-2) 5.38(-2) 5.12(-2) 8.18(-2) 8.18(-2) 7.85(-2)

50 1.31(-3) 1.31(-3) 1.25(-3) 1.36(-2) 1.36(-2) 1.29(-2) 2.17(-2) 2.16(-2) 2.05(-2)

100 6.79(-4) 6.79(-4) 6.44(-4) 7.05(-3) 7.04(-3) 6.68(-3) 1.12(-2) 1.12(-2) 1.07(-2)
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Table 3.3: Dimensionless heat flux for a monatomic gas with HS molecules (ω = 0.5) for various
values of δ0 and TH/TC based on the BGK and Shakhov models.

δ0

TH/TC = (1 + β) / (1− β)

1.1 3.0 10.0

BGK Shakhov BGK Shakhov BGK Shakhov

0 5.37(-2) 5.37(-2) 5.06(-1) 5.06(-1) 5.98(-1) 5.98(-1)

0.1 5.13(-2) 5.09(-2) 4.86(-1) 4.84(-1) 5.85(-1) 5.89(-1)

1 3.86(-2) 3.81(-2) 3.72(-1) 3.70(-1) 4.74(-1) 4.88(-1)

5 2.02(-2) 2.01(-2) 2.01(-1) 2.02(-1) 2.86(-1) 2.94(-1)

10 1.28(-2) 1.28(-2) 1.30(-1) 1.31(-1) 1.95(-1) 1.98(-1)

50 3.31(-3) 3.31(-3) 3.43(-2) 3.43(-2) 5.42(-2) 5.43(-2)

100 1.72(-3) 1.72(-3) 1.78(-2) 1.78(-2) 2.84(-2) 2.84(-2)

Table 3.4: Comparison between the dimensionless total heat fluxes q of the Andries model and the
DSMC method for a diatomic gas (j = 2, Pr = 0.73) with HS molecules (ω = 0.5) and various values
of δ0 and TH/TC (Z(DSMC) = Z(A) = 5, ν = −0.5, θ = 0.27).

δ0

TH/TC = (1 + β) / (1− β)

1.1 3.0 7.0 10.0

Andries DSMC Andries DSMC Andries DSMC Andries DSMC

0.1 7.64(-2) 7.55(-2) 7.24(-1) 7.21(-1) 8.90(-1) 8.87(-1) 8.73(-1) 8.70(-1)

1 5.56(-2) 5.57(-2) 5.36(-1) 5.35(-1) 6.86(-1) 6.81(-1) 6.89(-1) 6.81(-1)

5 2.74(-2) 2.80(-2) 2.74(-1) 2.80(-1) 3.77(-1) 3.82(-1) 3.95(-1) 3.99(-1)

10 1.71(-2) 1.75(-2) 1.73(-1) 1.78(-1) 2.46(-1) 2.52(-1) 2.62(-1) 2.68(-1)

50 4.26(-3) 4.38(-3) 4.41(-2) 4.55(-2) 6.47(-2) 6.68(-2) 6.99(-2) 7.23(-2)

100 2.20(-3) 2.28(-3) 2.28(-2) 2.38(-2) 3.36(-2) 3.50(-2) 3.63(-2) 3.78(-2)
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Table 3.5: Dimensionless translational and rotational heat fluxes for a polyatomic gas (j = 3,
Pr = 0.72) with HS molecules (ω = 0.5) at the hot plate (y = −1/2) and various values of δ0 and
TH/TC based on the Andries model (Z(A) = 6.50, ν = −0.50, θ = 0.21).

δ0

TH/TC = (1 + β) / (1− β)

1.1 3.0 7.0 10.0

qtr qrot qtr qrot qtr qrot qtr qrot

0 5.37(-2) 4.03(-2) 5.06(-1) 3.79(-1) 6.14(-1) 4.61(-1) 5.98(-1) 4.49(-1)

0.1 5.11(-2) 3.80(-2) 4.84(-1) 3.61(-1) 5.95(-1) 4.43(-1) 5.83(-1) 4.35(-1)

1 3.79(-2) 2.70(-2) 3.65(-1) 2.61(-1) 4.66(-1) 3.34(-1) 4.68(-1) 3.36(-1)

5 1.92(-2) 1.28(-2) 1.91(-1) 1.29(-1) 2.62(-1) 1.78(-1) 2.75(-1) 1.86(-1)

10 1.20(-2) 7.88(-3) 1.22(-1) 8.05(-2) 1.73(-1) 1.15(-1) 1.83(-1) 1.22(-1)

50 3.01(-3) 1.96(-3) 3.11(-2) 2.03(-2) 4.57(-2) 2.98(-2) 4.93(-2) 3.23(-2)

100 1.56(-3) 1.01(-3) 1.61(-2) 1.05(-2) 2.37(-2) 1.55(-2) 2.57(-2) 1.67(-2)
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Figure 3.2: Comparison between the dimensionless number density distributions ρ (y) of the
Andries model and the DSMC method for a diatomic HS gas (j = 2, Pr = 0.73, Z(DSMC) =
Z(A) = 5, ν = −0.5, θ = 0.27) and various values of δ0 with TH/TC = 1.1 (up), TH/TC = 3
(middle) and TH/TC = 10 (down).
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Figure 3.3: Comparison between the dimensionless translational τtr (y) and rotational τrot (y)
temperature distributions of the Andries model and the DSMC method for a diatomic HS gas
(j = 2, Pr = 0.73, Z(DSMC) = Z(A) = 5, ν = −0.5, θ = 0.27) and various values of δ0 with
TH/TC = 1.1 (up), TH/TC = 3 (middle) and TH/TC = 10 (down).
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Figure 3.4: Dimensionless total heat flux q of a diatomic HS gas (j = 2, Pr = 0.71, Z(H) = 5)
in terms of thermal accommodation coefficient α for various values of δ0 with TH/TC = 1.1 (up),
TH/TC = 3 (middle) and TH/TC = 10 (down) based on the Holway model.
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Figure 3.5: Dimensionless translational heat flux qtr at the hot plate of a diatomic HS gas (j = 2,
Pr = 0.71, Z(H) = 5) in terms of αtr (left) and αrot (right) for δ0 = [0.1, 1, 10] and TH/TC = 1.1
(up), TH/TC = 3 (middle), TH/TC = 10 (down) based on the Holway model.
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Figure 3.6: Dimensionless rotational heat flux qrot at the hot plate of a diatomic HS gas (j = 2,
Pr = 0.71, Z(H) = 5) in terms of αtr (left) and αrot (right) for δ0 = [0.1, 1, 10] and TH/TC = 1.1
(up), TH/TC = 3 (middle), TH/TC = 10 (down) based on the Holway model.

64

Institutional Repository - Library & Information Centre - University of Thessaly
20/05/2024 01:12:25 EEST - 13.59.53.151



Section 3.6

Figure 3.7: Dimensionless distributions of number density ρ (y) (left) and translational temper-
ature τtr (y) (right) of a diatomic HS gas (j = 2, Pr = 0.71, Z = 5) with TH/TC = 10 and δ0 = 1
for various values of αtr with αrot = 1, based on the Holway model.

Figure 3.8: Dimensionless distributions of rotational temperature τrot (y) of a diatomic HS gas
(j = 2, Pr = 0.71, Z = 5) with TH/TC = 10 and δ0 = 1 for various values of αtr with αrot = 1
(left) and αrot with αtr = 1 (right), based on the Holway model.
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Figure 3.9: Dimensionless distributions of translational τtr (solid lines) and rotational τrot
(dashed lines) of a diatomic HS gas (j = 2, Pr = 0.71, Z = 5) with αtr 6= αrot for TH/TC = 10
and δ0 = 0.1 (left) and δ0 = 10 (right), based on the Holway model.
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Figure 3.10: Comparison between the experimental data in [96] and the computational results
obtained by the Holway model and the DSMC method (gas: N2, Pr = 0.71, Z(DSMC) = 5,
TH/TC = 1.0291, TH = 301.96 K, α = 0.76, HS molecules).

Figure 3.11: Comparison between the experimental data in [85] and the computational results
obtained by the Holway model (gas: N2, Pr = 0.71, Z(H) = 5, TH = 308.3 K, TH/TC = 1.069,
αH = 0.795, αC = 0.808, HS molecules).
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Figure 3.12: Comparison between the experimental data in [97] and the computational results
obtained by the Holway model (gas: N2, Pr = 0.71, Z(H) = 5, TH = 294 K, TH/TC = 3.72,
αH = αC = 0.82, HS molecules).
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Figure 3.13: Dimensional heat flux through various gases enclosed between two plates with
distance H = 5 mm for TC = 293 K and TH/TC = 3 in terms of the reference pressure obtained
by the Holway model (Z(H) = 5, IPL model).
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Chapter 4

Conductive heat transfer in a rarefied

polyatomic gases confined between

coaxial cylinders

4.1 Introduction

The available research work of cylindrical heat conduction in rarefied polyatomic gases

is very limited and is mainly for small temperature differences. Thus, a detailed investigation

of the conductive heat transfer through rarefied polyatomic gases confined between two coaxial

cylinders is needed and it is tackled in this chapter considering only rotational degrees of

freedom. This heat transfer configuration is investigated here, based on the Holway [20] and

Rykov [21] models. Macroscopic quantities are provided for various radii ratios in a wide range of

the rarefaction parameter number and for small, moderate and large temperature differences.

Comparisons between kinetic models and DSMC results as well as between simulations and

available in the literature experimental data are presented and discussed. The validity of the

results is confirmed and the effects of all involved parameters on the heat flux and on the

temperature as well as on the density distributions are examined. Moreover, the influence

of the gas-surface interaction, as well as the influence of the number of rotational degrees of

freedom on the computed quantities are investigated.
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4.2 The cylindrical heat flow configuration

Consider two concentric stationary cylinders with radii RA, RB and the annular gap

< = {(x, y) : R2
A < x2 + y2 < R2

B} filled with a polyatomic gas at rest and arbitrary density

level. The temperatures of the inner and outer cylinder are maintained constant at TA and

TB respectively with TA > TB. The cylinders are assumed to be very long and variations in

the axial direction (end effects) are neglected. Then, due to the temperature difference there is

an axisymmetric conductive heat flow through the gas from the inner hot cylinder towards the

cold outer cylinder. The problem configuration is shown in Fig. 4.1. In the temperature range

where the effects of vibrational degrees of freedom can be neglected, and the gas temperature

is neither too high nor too low, so that the rotational degrees of freedom may be considered

classically the problem may be modeled by rigid rotators model [29].

Figure 4.1: Cross-sectional schema of the heat transfer between coaxial cylinders.

The investigation is based on the description of the state of a polyatomic gas using the

distribution function f̂
(
r̂,υ, Î

)
dependent on υ = (ξr, ξϑ, ξz) = (ξ cos θ, ξ sin θ, ξz), with υ2 =

ξ2 + ξ2z being the molecular velocity, the position vector r̂ and the rotational motion energy

Î. The objective is to estimate all macroscopic distributions in terms of the three parameters
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governing this heat transfer problem, namely the temperature difference between the cylindrical

walls, the ratio of the two cylindrical radii and the degree of gas rarefaction.

It is convenient to introduce these three parameters in dimensionless form, taking the

quantities at the outer cylinder as reference quantities. In particular

β =
TA − TB
TB

=
∆T

TB
(4.1)

is the normalized temperature difference

γ =
RA

RB

(4.2)

is the ratio of the inner over the outer radius and

δB =
RBP̂B
µBυB

(4.3)

is the reference gas rarefaction parameter. In the latter expression P̂B is a reference gas pressure,

measured when the system is in equilibrium (TA = TB), µB is the gas viscosity at reference

temperature TB and υB =
√

2kBTB/m, with kB being the Boltzmann constant and m the

molecular mass, is the most probable molecular speed. The problem is axially symmetric and

one-dimensional in the physical space RA < r̂ < RB. The macroscopic quantities of practical

interest are the number density distribution

n (r̂) =

2π∫
0

∞∫
0

∞∫
−∞

∞∫
0

f̂dÎdξzξdξdθ (4.4)

as well as the temperature and heat flux distributions denoted by T (r̂) and Q(r̂) respectively. In

polyatomic gases the internal energy can by divided in two parts, the energy of the translational

motion and the energy associated to the internal structure. These energies are related to the

corresponding temperatures and heat fluxes. Then, the translational, rotational and total
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(thermodynamic) temperatures are:

Ttr (r̂) =
m

3kBn

2π∫
0

∞∫
0

∞∫
−∞

∞∫
0

(
ξ2 + ξ2z

)
f̂dÎdξzξdξdθ, (4.5)

Trot (r̂) =
2

jkBn

2π∫
0

∞∫
0

∞∫
−∞

∞∫
0

f̂ ÎdÎdξzξdξdθ, (4.6)

T (r̂) =
3Ttr (r̂) + jTrot (r̂)

3 + j
. (4.7)

The subscripts tr and rot refer to translational and rotational parts respectively, with

j = 2 for diatomic and linear molecules and j = 3 in all other cases (nonlinear molecules). The

corresponding heat fluxes are:

Qtr (r̂) =
m

2

2π∫
0

∞∫
0

∞∫
−∞

∞∫
0

(
ξ2 + ξ2z

)
(ξ cos θ) f̂dÎdξzξdξdθ, (4.8)

Qrot (r̂) =

2π∫
0

∞∫
0

∞∫
−∞

∞∫
0

(ξ cos θ) f̂ ÎdÎdξzξdξdθ, (4.9)

Q (r̂) = Qtr (r̂) +Qrot (r̂) . (4.10)

Here, the effect of all involved parameters, namely of β, γ and δB on the heat flux,

temperature and density distributions for diatomic and polyatomic gases is examined. This

is achieved in a deterministic manner described in Section 4.3. The approach includes the

replacement of the rather complex collision term of Eq. (2.5) by the Holway and Rykov kinetic

models.

4.3 Kinetic formulation in cylindrical geometry

The effort of solving the Boltzmann either analytically or numerically, is significantly

reduced by substituting its collision term with reliable kinetic models. Here, for purposes

related mainly to benchmarking and validation of results the Holway and Rykov models are
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applied. The Rykov model at its present form is applicable only to diatomic gases (j = 2), while

the Holway model is more general and is applicable to polyatomic gases (j = 2, 3). Applying

the described projection process in energy space in Chapter 2, both models for the present

steady-state heat transfer configuration can be written in a similar form as [124, 132]

ξ cos θ
∂ĝ

∂r̂
− ξ sin θ

r̂

∂ĝ

∂θ
= ν

(i)
rot

(
ĝ
(i)
rot − ĝ

)
+ ν

(i)
tr

(
ĝ
(i)
tr − ĝ

)
, (4.11)

ξ cos θ
∂ĥ

∂r̂
− ξ sin θ

r̂

∂ĥ

∂θ
= ν

(i)
rot

(
ĥ
(i)
rot − ĥ

)
+ ν

(i)
tr

(
ĥ
(i)
tr − ĥ

)
, (4.12)

where the superscript i = H,R denotes the Holway (H) and Rykov (R) models respectively.

Here, the collision term consists of the elastic and inelastic collision parts, with the subscripts

tr referring to elastic and rot to inelastic, while ĝ
(i)
tr , ĥ

(i)
tr , ĝ

(i)
rot and ĥ

(i)
rot are the corresponding

relaxing distributions given by Eqs. (3.13) and (3.14) for the Holway and the Rykov models

respectively. The quantities ν
(i)
tr and ν

(i)
rot denote the frequency of the elastic and inelastic

collisions respectively. The collision frequencies ν
(i)
tr and ν

(i)
rot are specified as

ν
(i)
tr =

(
1− 1

Z(i)

)
P̂tr
µtr

Prχ, ν
(i)
rot =

1

Z(i)

P̂tr
µtr

Prχ, (4.13)

where Pr is the Prandtl number of the gas, with the parameter χ = 1 in the Holway model

(i = H) and χ = 0 in the Rykov model (i = R), while the parameter 1 ≤ Z <∞ indicates how

many collisions occur per single rotational collision. Also in Eqs. (4.13), P̂tr = nkBTtr is the

pressure defined by the translational temperature and µtr = µ (Ttr) is the gas viscosity based

on the translational temperature of the gas. At this stage the following dimensionless quantities

are introduced

r =
r̂

RB

, ζ =
ξ

υB
, cz =

ξz
υB
, g =

ĝυ3B
nB

, h =
ĥυ3B

P̂B
,

ρ =
n

nB
, τtr =

Ttr
TB

, τrot =
Trot
TB

, τ =
3τtr + jτrot

3 + j
,

qtr =
Qtr

P̂BυB
, qrot =

Qrot

P̂BυB
, q = qtr + qrot.

(4.14)
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All quantities with the subscript B are considered as reference quantities (P̂B = nBkBTB).

Here, g = g (r, ζ, θ, cz) and h = h (r, ζ, θ, cz) are the dimensionless distributions, with γ ≤ r ≤ 1

while c = (ζ cos θ, ζ sin θ, cz) is the dimensionless molecular velocity vector. Furthermore, ρ,

τ and q are the dimensionless distributions of number density, temperature and radial heat

flux respectively, with τtr, τrot, qtr, qrot denoting the corresponding dimensionless translational

and rotational parts. Next, the computational effort is further reduced by eliminating the cz

component of the molecular velocity by introducing the reduced distributions

F (r, ζ, θ) =

∞∫
−∞

gdcz, G (r, ζ, θ) =

∞∫
−∞

gc2zdcz, S (r, ζ, θ) =

∞∫
−∞

hdcz. (4.15)

By operating successively on Eq. (4.11) with the integral operators
∫

(.)dcz and
∫

(.)c2zdcz

as well as on Eq. (4.12) with
∫

(.)dcz, a system of three integro-differential equations is obtained,

which in compact vector form is written as

ζcosθ
∂Ψ

∂r
− ζsinθ

r

∂Ψ

∂θ
= δBρ(τtr)

1−ωPrχ
[(

1− 1

Z(i)

)(
Ψ

(i)
tr −Ψ

)
+

1

Z(i)

(
Ψ

(i)
rot −Ψ

)]
. (4.16)

Here, the vector of the unknown distributions Ψ = [F,G, S]T depends on three indepen-

dent variables, namely ρ, ζ and θ. Also, the reference gas rarefaction δB is given by Eq. (4.3). As

Z(i) →∞, the first two equations in Eq. (4.16) for i = H,R are transformed to the correspond-

ing reduced BGK and Shakhov equations for monatomic gas. In the derivation of Eq. (4.16) the

Inverse Power Law (IPL) interaction between particles has been introduced with ω ∈ [0.5, 1].

In addition, the translational and rotational relaxing distributions in Eq. (4.16) are given by

Ψ
(i)
tr =

[
F

(i)
tr , G

(i)
tr , S

(i)
tr

]T
and Ψ

(i)
rot =

[
F

(i)
rot, G

(i)
rot, S

(i)
rot

]T
respectively, where the components of

these vectors for each kinetic model are as follows

• Holway model

F
(H)
tr =

ρ

πτtr
exp

(
− ζ

2

τtr

)
, G

(H)
tr =

1

2
τtrF

(H)
tr , S

(H)
tr =

j

2
τrotF

(H)
tr ,

F
(H)
rot =

ρ

πτ
exp

(
−ζ

2

τ

)
, G

(H)
rot =

1

2
τF

(H)
rot , S

(H)
rot =

j

2
τF

(H)
rot .

(4.17)
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• Rykov model

F
(R)
tr = F

(H)
tr

[
1 +

4

15

qtrζ cos θ

ρτ 2tr

(
ζ2

τtr
− 2

)]
,

G
(R)
tr =

1

2
τtrF

(H)
tr

[
1 +

4

15

qtrζ cos θ

ρτ 2tr

(
ζ2

τtr
− 1

)]
,

S
(R)
tr = τrotF

(H)
tr

[
1 +

4

15

qtrζ cos θ

ρτ 2tr

(
ζ2

τtr
− 2

)
+ 2 (1− κ)

qrotζ cos θ

ρτtrτrot

]
,

F
(R)
rot = F

(H)
rot

[
1 +$0

4

15

qtrζ cos θ

ρτ 2

(
ζ2

τ
− 2

)]
,

G
(R)
rot =

1

2
τF

(H)
rot

[
1 +$0

4

15

qtrζ cos θ

ρτ 2

(
ζ2

τ
− 1

)]
,

S
(R)
rot = τF

(H)
rot

[
1 +$0

4

15

qtrζ cos θ

ρτ 2

(
ζ2

τ
− 2

)
+ 2$1 (1− κ)

qrotζ cos θ

ρτ 2

]
.

(4.18)

The parameters $0 and $1 are chosen so that the thermal conductivity obtained from

the model equation is close to the experimental data in [119], while the parameter κ for a

power intermolecular potential is constant. The parameters $0, $1 and κ are discussed in

detail in Chapter 3. The macroscopic quantities in Eqs. (4.16)-(4.18) in terms of the reduced

distributions F , G and S are obtained by operating accordingly on Eqs. (4.4)-(4.10). A similar

manipulation to the one applied in the governing equations is applied to deduce the following

moments

ρ =

2π∫
0

∞∫
0

Fζdζdθ, (4.19)

τtr =
2

3ρ

2π∫
0

∞∫
0

(
ζ2F +G

)
ζdζdθ, τrot =

2

jρ

2π∫
0

∞∫
0

Sζdζdθ, τ =
3τtr + jτrot

3 + j
, (4.20)

qtr =

2π∫
0

∞∫
0

(
ζ2F +G

)
(ζ cos θ) ζdζdθ, qrot =

2π∫
0

∞∫
0

S (ζ cos θ) ζdζdθ, q = qtr + qrot. (4.21)
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It is noted that by operating accordingly on Eq. (4.16) the conservation equation

∂ [rq (r)]

∂r
= 0 (4.22)

is readily deduced, which implies that the product rq (r) remain constant along γ ≤ r ≤

1. Therefore in the Section 4.5, results for the heat fluxes are presented only at the inner

hot cylinder where r = γ. In addition, this conservation equation is used for benchmarking

purposes. Furthermore, it is noted that upon convergence the conservation equation Eq. (4.22)

is accordingly satisfied in several significant figures. In addition, the numerical solutions at the

free molecular (δB = 0) and continuum (δB →∞) limits have an excellent agreement with the

corresponding analytical ones presented in Appendix C.

To close the problem formulation boundary conditions have to be assigned. The problem is

axially symmetric and therefore becomes one-dimensional in physical space. Thus, the boundary

conditions are only imposed in two points. Since, in many practical applications [80] the radius

ratio is characterized by large values the influence of the gas-surface interaction on the external

cylinder is so small that we may neglect it. Thus, the diffuse scattering is assumed on the outer

cylinder, while the boundary condition model I with one thermal accommodation coefficient

described in Chapter 3 is applied at the inner cylinder. Then, the outgoing distributions (+)

associated to Eq. (4.16) are at the inner wall (r = γ)

F+ =
ρw
πτα

exp

(
− ζ

2

τα

)
, G+ =

1

2
ταF+, S+ =

j

2
ταF+, (4.23)

where τα = Tα/TB is given by

τα = α (1 + β) + (1− α)
2E−

(4 + j)N
, (4.24)

while

E−

N
=

3π/2∫
π/2

∞∫
0

(ζ cos θ) (ζ2F− +G− + S−) ζdζdθ

3π/2∫
π/2

∞∫
0

(ζ cos θ)F−ζdζdθ

. (4.25)
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The parameter ρw is obtained by the no penetration condition according to

ρw = −2
√
π√
τα

3π/2∫
π/2

∞∫
0

(ζ cos θ)F−ζdζdθ. (4.26)

In the Eqs. (4.24)-(4.26) the superscript (-) denotes the incoming fluxes on the wall. At the

outer wall (r = 1) the following boundary conditions are applied

F+ =
1

π
exp

(
−ζ2

)
, G+ =

1

2
F+, S+ =

j

2
F+. (4.27)

Boundary conditions Eqs. (4.23)-(4.26) and Eq. (4.27) are valid for θ ∈ [−π/2, π/2]

and θ ∈ [π/2, 3π/2] respectively. The nonlinear vector Eq. (4.16) along with the associated

expressions Eqs. (4.17)-(4.18), the moments Eqs. (4.19)-(4.21) and the boundary conditions

Eqs. (4.23)-(4.27) provide a theoretically well-established closed kinetic formulation for the

heat transfer problem under consideration, which is solved numerically both for the Holway

and Rykov models in a deterministic manner.

4.4 Results and discussion

4.4.1 Numerical parameters and computing quantities

The molecular velocity space (ζ, θ), with ζ ∈ [0,∞), θ ∈ [0, 2π], and the physical space

r ∈ [γ, 1] are discretized. The continuum spectrum of magnitudes of the molecular velocity

vector is replaced by a set of discrete magnitudes ζm ∈ [0, ζmax], m = 1, 2, ...,M , which are

taken to be the roots of the Legendre polynomial of order M accordingly mapped from [−1, 1]

to [0, ζmax]. Also, by using a uniform grid, the angular space is divided into N intervals. Each

of the angular intervals is defined by its angle θn, n = 1, 2, ..., N . Finally, the distance between

the two cylinders is divided into K equal segments, defined by rk, k = 1, 2, ..., K + 1.

The integro-differential equations Eq. (4.16) are first discretized in the variable ζ and

the resulting equations are integrated over each spatial and angular intervals
[
rk−1/2, rk+1/2

]
and

[
θn−1/2, θn+1/2

]
. The moments Eq. (4.4)-(4.10) are numerically integrated by applying the
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trapezoidal rule and Gauss-Legendre quadrature in the polar angle θ and the velocity magnitude

ζ respectively. The resulting discretized equations for Ψk,m,n = [Fk,m,n, Gk,m,n, Sk,m,n]T with the

associated discretized moments are solved in an iterative manner which is concluded when the

convergence criteria

1

3 (K + 1)

K+1∑
i=1

[∣∣∣ρ(t+1)
i − ρ(t)i

∣∣∣+
∣∣∣τ (t+1)
i − τ (t)i

∣∣∣+
∣∣∣q(t+1)
i i − q

(t)
i

∣∣∣] < ε, (4.28)

with t denoting the iteration index, is fulfilled. The results presented in Section 5 have been

obtained with M = 24, N = 400 and K = 800 for γ ≥ 0.1 and K = 2000 for γ < 0.1, while

the termination parameter is set to ε = 10−8. Recently, the implemented numerical scheme has

been applied to solve with considerable success heat transfer configurations [124, 132].

Results in graphical and tabulated form are presented for the macroscopic quantities in

terms of all parameters involved in the problem. In particular, in Subsection 4.4.2 the macro-

scopic quantities obtained by the Holway and Rykov kinetic models as well as by the DSMC

method in a wide range of all parameters involved in the problem are presented for linear (j = 2)

and nonlinear (j = 3) polyatomic molecules in tabulated and graphical form. The influence

of the rotational degrees of freedom on the translational, rotational and total heat fluxes in

the case of the cylindrical geometry is investigated in Subsection 4.4.3. More specifically, heat

fluxes distributions are provided for diatomic and polyatomic gases enclosed between cylinders

with the normalized temperature difference β = [0.1, 1, 10], the radii ratio γ = [1/2, 1/10, 1/65]

and the gas rarefaction parameter δB varying from the free molecular limit up to the hydro-

dynamic regime. Finally, in Subsection 4.4.4 comparisons between computational results and

experimental data available in literature are performed.

4.4.2 Comparison between kinetic models and DSMC

In Table 4.1, the dimensionless translational and rotational heat fluxes computed by

the Holway and Rykov models (j = 2) are given for various β and δB with γ = 1/2. The

tabulated results are at the surface r = γ of the inner cylinder. The enclosed gas is nitrogen

(N2) and the inverse power law (IPL) model with ω = 0.74 has been applied. In the case
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of the Rykov model, the parameters in Eq. (4.18) are set to $0 = 0.2354, $1 = 0.3049 and

κ = 0.645 [45, 106]. Results are provided for Z = 1 and 5, which are indicative for this type

of simulations since, Z = 1 means that only inelastic collisions occur, while Z = 5 refers to

the situation where the amount of inelastic collisions is small compared to the elastic ones. In

the last column the corresponding heat fluxes obtained by the Shakhov model for a monatomic

gas are given. It is observed that the agreement between the results of the Holway and Rykov

models is, in general, very good. As expected, at δB = 0 identical results are provided and then

as δB is increased the deviation between the Holway and Rykov heat fluxes is increased. Also,

in terms of the parameter Z the agreement is better as Z is increased. The largest discrepancies

are about 10% and they are occurring at Z = 1 and δB = 10 (independent of β). According

to Eq. (3.17) for fixed values of the parameters $0 = 0.2354, $1 = 0.3049 and κ = 0.645

the Prandtl number of the Rykov model is a function of the parameter Z taking the values

Pr = 0.71 and 0.91 for Z = 1 and 5 respectively. In order to achieve a consistent comparison for

Z = 1 between the Holway and Rykov models the Prandtl number used in the Holway model

is taken equal to the Prandtl number obtained by the Rykov model. Thus, in Table 4.2 the

corresponding comparison performed in Table 4.1 for Z = 1 is presented for Pr = 0.91. As it

is seen the comparison is very good with the maximum relative error being less than 2%. In

both models the rotational heat fluxes are about half of the corresponding translational ones

(at δB = 0, qrot is exactly one-half of qtr). It is clearly seen that the Rykov model is more

sensitive to the variation of Z, compared to the Holway model which, at least for this set of

parameters, is slightly affected and only at large values of δB. In both models as Z is increased,

the translational heat fluxes are increased approaching those of the Shakhov model (Z →∞).

The values of qtr, at Z = 5, are already close enough to the corresponding q of the Shakhov

model. The total heat fluxes q = qtr + qrot of N2 for the Rykov and Holway models are higher

about 22− 50% and 36− 50% respectively than the corresponding monatomic heat fluxes. It is

noted that the analytical free molecular results in Appendix C are recovered to all significant

figures, while the conservation Eq. (4.22) is fully satisfied. The heat flux distributions between

the cylinders are readily reduced by multiplying the tabulated values by the ratio γ/r.
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In Table 4.3, a comparison between the results obtained by the Holway model and the

DSMC method [132] for a diatomic gas (j = 2) enclosed between cylinders with γ = 1/2 and

various values of β and δ0 is performed. Based on the hard sphere (HS) model the dimensionless

translational and rotational heat fluxes for Z = 1 and 5 at r = γ are provided. It is important

to note that in order to facilitate comparisons between the DSMC and kinetic results, the gas

rarefaction parameter δ0 is defined in terms of a reference pressure P̂0 given by P̂0 = n0kBTB

(instead of P̂B = nBkBTB), where n0 is an average reference number density defined as

n0 =
2

R2
B −R2

A

∫ RB

RA

n (r̂) r̂dr̂. (4.29)

Therefore, the Holway kinetic heat fluxes presented in Table 4.3 are not directly compatible

with the ones in Table 4.1. The variation of the DSMC heat fluxes in terms of the problem

parameters (β, δ0, Z) is exactly the same as for the kinetic models. More importantly, in all

cases the quantitative agreement between the Holway and DSMC results is excellent with the

largest discrepancies not exceeding 5%. For completeness purposes the monatomic modelling

results based on the Shakhov model are also included.

The comparison is continued in Figs. 4.2 and 4.3, where the distributions of density and

temperatures respectively, obtained by the Holway and DSMC approaches, are plotted for the

indicative values of β = 0.1, 1, 10 and δ0 = 0.2, 2, 20. As it is observed in Fig. 4.2, the

corresponding density distributions are in excellent agreement for all β and δ0, with the relative

plots actually coinciding on each other. Furthermore, in Fig. 4.3 the agreement between the

corresponding translational and rotational temperature distributions is again very good in all

cases with an exception at β = 10 and δ0 = 20, where a small deviation between the relative

plots is observed. It is also seen that the translational and rotational temperatures for the same

set of parameters are almost identical. Therefore, Eq. (4.20) yields τ ≈ τtr ≈ τrot. Observing

the results presented so far (Tables 4.1, 4.2 and 4.3 and Figs. 4.2 and 4.3) it is deduced that

the deterministic modeling based on two different kinetic model equations namely the Holway

and Rykov models and the stochastic modeling based on the DSMC method provide similar

results in simulating polyatomic gas heat transfer between coaxial cylinders in a wide range of

problem parameters.
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4.4.3 Effects of cylindrical geometry on heat fluxes

In this subsection the study is focused on the dependency of the translational, rotational

and total heat fluxes on 0 ≤ δB ≤ 10, γ and β. The presented results are for δB = [0, 0.1, 1, 4, 10],

γ = [1/2, 1/10, 1/65] and β = [0.1, 1, 10]. Also, the influence of the thermal accommodation

coefficient α on the heat transfer characteristics is studied by providing numerical results for

q (r = γ) in terms of the parameter 0 ≤ α ≤ 1 of the boundary condition model I with one

thermal accommodation coefficient, which is applied at inner cylinder. Furthermore, the simple

approximate expression for the heat flux proposed in [98] is tested for different values of the

parameters δ0, γ and β. The simulations have been performed for diatomic (j = 2) and

polyatomic (j = 3) hard sphere gases (ω = 1/2) with Pr = 0.71 and Z = [1, 3, 5].

In Table 4.4, the translational, rotational and total heat fluxes of a diatomic gas (j = 2)

are presented for δB = [0, 0.1, 1, 4, 10], γ = [1/2, 1/10, 1/65] and β = [0.1, 1, 10]. These di-

mensionless results demonstrate the effect of all parameters on the heat fluxes including the

effect of the radius ratio, which has not been shown before. Furthermore, they may be used for

reference purposes in future computational and experimental studies. Therefore, in order to be

as general as possible for diatomic gases, they are obtained based on the Holway model, which

depends only on the parameter Z. Also, based on the literature, the value of Z = 3 used in the

simulations is the most suitable one covering a wide range of diatomic gases. The behaviour

of the polyatomic heat fluxes in terms of δB, γ and β, qualitatively is similar to that of the

monatomic ones (are also included for comparison purposes), i.e., they are increased slowly as

γ is decreased, they are increased almost proportionally to β and they are decreased as δB is

increased. Quantitatively however, they vary significantly, with the diatomic heat fluxes being

36− 50% higher. Also, qrot is about one-half of qtr, with the latter one being close and always

smaller to the heat flux of the Shakhov model.

In Table 4.5, the translational, rotational and total heat fluxes for a polyatomic gas (j = 3)

are presented for δB = [0, 0.1, 1, 4, 10], γ = 1/2 and β = [0.1, 1, 10]. The results are based on

the Holway model and since no results for j = 3 have been presented so far, the parameter Z

is set to Z = 1 and 5. The variation of all heat fluxes in terms of δB and β, as well as of Z

is similar to the one for a diatomic gas (see Tables 4.1 and 4.3). The numerical solutions at
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δB = 0 are exactly the same to all tabulated significant figures with the ones obtained by the

analytical expressions given in Appendix C with j = 3. Also, at δB = 0, qrot is 75% (instead

of 50% in diatomic gases) of qtr. This relation applies approximately to all δB > 0 independent

of β, with rotational heat fluxes being about 75% of the translational ones, while the latter

ones are close to the translational heat fluxes of a diatomic (and monatomic) gas. As a result,

the dimensionless total heat fluxes of polyatomic gases are about 58 − 75% higher than the

corresponding monatomic ones.

In Fig. 4.4 the dimensionless total heat flux q of a diatomic gas (j = 2, Pr = 0.71, Z = 5)

with HS molecules in terms of α is plotted. Results are given for δB = [0.1, 1, 10], γ = [1/2, 1/10]

and β = [0.1, 1, 10]. As expected the effect of the thermal accommodation coefficient α on the

total heat flux is increased as the rarefaction parameter is decreased. Also, in all cases as α is

increased the dimensionless total heat flux is also increased, which is physically justified since

as α is increased the temperature of the particles leave from the inner cylinder is increased

approaches the temperature of the cylinder. Moreover, it is seen that the behaviour of the total

heat flux in terms of α is independent of the radius ratio γ. Qualitatively similar behaviour is

observed for the translational and rotational heat fluxes and therefore is not shown separately.

It has been proposed in [98] that the heat flux between confined coaxial cylinders may

be computed in the whole range of the rarefaction parameter, assuming small temperature

differences and large radius ratios, according to

1

q
=

1

qfm
+

1

qc
, (4.30)

where qfm and qc are the corresponding free molecular and continuum heat fluxes, which are

given for the cylindrical geometry in Appendix C. It has been observed in [86] that in monatomic

gases this expression remains valid well beyond the introduced assumptions providing easy-to-go

results. Here, this investigation is extended to N2 and in Fig. 4.5, a comparison is made between

the computed heat fluxes based on the Rykov model for the large temperature difference of

β = 10, γ = [1/2, 1/10, 1/65] and in a wide range of δB, with the corresponding ones obtained

by the empirical Eq. (4.30). It is seen that the agreement is excellent for δB < 10 and then as δB

is further increased there are some discrepancies which are increased as γ is decreased. However,
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the overall agreement remains good and becomes even better as β is decreased. Therefore this

expression may also be implemented in polyatomic gases for engineering purposes when the

temperature distributions are not needed.

4.4.4 Comparison with experiments

A comparison with experimental data available in the literature is performed in terms

of the total heat fluxes. In [84], in an effort to estimate the energy accommodation coefficient

of various gases, a detailed experimental investigation has been performed for heat transfer in

rarefied gases between coaxial cylinders maintained at a very small temperature difference. It

has been found that in the case of N2 the interaction with the wall is almost purely diffusive.

These dimensionless experimental data for N2 with γ = 1/65 and TB = 300 K (see Tables 2 and

3 in [84]) are compared, in Fig. 4.6, with the corresponding computational ones, based on the

Rykov model. Since the temperature difference is very small and in order to avoid introducing

a specific temperature difference, the linearized Rykov model has been applied. The linearized

formulation of the Rykov model for the problem under question is described in Appendix D.

It is noted that the nonlinear Rykov model with β < 0.1 provides very similar results with

those of its linearized version. Simulations are performed with $0 = 0.2354, $1 = 0.3049 and

κ = 0.645 [106] for N2 while the parameter Z is chosen equal to 3 in order to obtain a Prandtl

number equal to 0.73, which is a good estimation for the Prandtl number of N2 [133]. The

results obtained by the Rykov model are in very good agreement with the experimental results

in a wide range of the gas rarefaction δB ∈
[
1, 102

]
. On the contrary, the heat fluxes obtained

by the linearized Shakhov kinetic model, also shown in Fig. 4.6, are erroneous underestimating

the experimental ones about 50%. In [84] experimental data for D2 are also reported. In Fig. 4.7

the results obtained from the Holway kinetic model with β = 0.01, α = 0.479, j = 2, Pr = 0.66,

ω = 0.67 [84, 134] are compared with the corresponding experimental data in [84] for D2. Very

good agreement is observed in a wide range of the rarefaction parameter δB between simulations

and experiments. In the same comparison the numerical results obtained with α = 1 are shown

for completeness purposes. For small values of the rarefaction parameter δB the total heat flux

with α = 1 is about two times higher than the corresponding one with α = 0.479.
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Next, a comparison with the experimental data in [80] is also performed in Fig. 4.8, in

dimensional form. Now, the inner diameter is RA = 75 µm, the radius ratio γ = 1/667, the

temperature of the outer cylinder TB = 298 K and the temperature difference ∆T (β = 0.336).

The computational total heat fluxes, based on the DSMC method and the Rykov model, with

Z = 3, are in very good agreement with the experimental ones, while once again the heat

fluxes based on the Shakhov model for monatomic gases are significantly smaller than the

experimental ones. As it is seen the comparison is in a wide range of the reference pressure P̂B

varying from 1 Pa up to 103 Pa, with the corresponding gas rarefaction parameter δB varying

from 6 up to 2600. It is noted that as δB is increased the computational results tend to the

analytical ones obtained by Eq. (C.21). Overall, the comparison studies in Figs. 4.6, 4.7 and 4.8

with the experimental data in [84] and [80] respectively, validate the simulation results.

In order to obtain a more physical understanding of the heat transfer in monatomic and

polyatomic gases and to facilitate comparisons with experiments, in Fig. 4.9, some dimensional

total heat fluxes [W/m2] in terms of the reference pressure P̂B [Pa] are given for the monatomic

gases of He and Ar, the diatomic gases of H2 and N2 and for the polyatomic gas of CO2. The

inner diameter is RA = 1 cm with γ = [1/2, 1/10], while the reference temperature is TB = 293

K with β = [0.1, 1]. The reference pressure P̂B ∈
[
10−3, 10

]
Pa and is easily connected to

the rarefaction parameter δB, via Eq. (4.3) once the viscosity and the most probable velocity

of each gas is specified. All computations are based on the Holway model with Z = 3 and

the IPL model (ω = [0.66, 0.81, 0.67, 0.74, 0.93] for He, Ar, H2, N2, CO2 respectively). In all

cases, as expected, the heat flux is monotonically increased with pressure. At highly rarefied

atmospheres the heat flux is proportional to gas pressure, then, in the transition regime the

relation becomes more complex and at dense atmospheres the heat flux depends weakly and

finally is independent of pressure. Also, the heat fluxes for β = 1 are about one order magnitude

higher than the corresponding ones for β = 0.1, while the effect of γ is not that important with

the heat fluxes being slightly decreased as the gap between the cylinders is increased.

More importantly, it is observed in Fig. 4.9, that under the same conditions the heat

flux of different gases varies significantly. The largest heat fluxes are achieved for H2 followed

successively by the heat fluxes of He, N2, CO2 and Ar. This trend is valid in the whole range of

86

Institutional Repository - Library & Information Centre - University of Thessaly
20/05/2024 01:12:25 EEST - 13.59.53.151



Section 4.5

pressure except for the curves of CO2 and Ar, which cross each other at some relatively large

pressure P̂B > 1Pa. It is well known that in heat transfer through monatomic gases confined

between coaxial cylinders, the dimensional heat flux is increased as the molar mass of the gas

is decreased (see Fig. 9 in [89]). However, this remark cannot be generalized in the case of

polyatomic gases since, as seen in Fig. 4.9, in a wide range of pressure the heat flux of CO2 is

larger than that of Ar, while its molar mass is larger.

4.5 Concluding remarks

The problem of heat transfer through rarefied polyatomic gases confined between two

coaxial cylindrical surfaces maintained at different temperatures is solved based on the Holway

and Rykov kinetic models. The quantitative behavior of the radial heat flux is examined in a

wide range of the gas rarefaction parameter, small, moderate and large normalized temperature

differences and various radius ratios. The deduced density and temperature (translational,

rotational, total) distributions are also provided. The results obtained by the two kinetic

models are in good agreement, with the Rykov model being more sensitive, compared to the

Holway model, in the variation of the mixing parameter indicating the strength of translational-

rotational coupling. Very good agreement between the Holway model and DSMC results for

HS molecules has also been observed. In addition, the computational results match perfectly

the analytical ones in the free molecular and continuum limits. These findings along with

the successful comparison between simulations and available experimental data for polyatomic

gases associated to small and large temperature differences demonstrate the validity of the

implemented modeling approaches.

The translational and rotational as well as the total temperatures are very close to each

other for all parameters examined here and they are similar to the corresponding monatomic

ones. In contrary, the total heat fluxes for polyatomic gases are significantly higher than those

for monatomic gases. More specifically, the heat fluxes of diatomic and polyatomic gases,

obtained by the Holway model, are higher about 36− 50% and 58− 75% respectively than the

corresponding ones obtained by the Shakhov model, with the highest differences occurring in

the free molecular limit. As the amount of elastic compared to inelastic collisions is increased,
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the translational heat fluxes are increased and they tend to the monatomic ones, while always

the rotational heat fluxes are about 50% and 75% of the translational ones for diatomic and

polyatomic gases respectively. Furthermore, it has been found that the simple expression in

Eq. (4.30), proposed in [98], provides reasonably accurate results in a wide range of parameters,

while another observation of practical interest is that, while in monatomic the dimensional heat

flux is increased as the molar mass is decreased, this is not necessarily the case in polyatomic

gases.

Overall, it may be stated that the implementation of the Holway model is more flexible

to polyatomic gases, while the Rykov model, although seems to be more accurate, is limited

to additional experimental data for the specific gas under consideration. It is hoped that the

present work may be useful in engineering purposes as well as in comparisons with experimental

results.

88

Institutional Repository - Library & Information Centre - University of Thessaly
20/05/2024 01:12:25 EEST - 13.59.53.151



Section 4.5

Table 4.1: Heat fluxes at the inner hot cylinder (r = γ) with γ = 1/2 for N2 (ω = 0.74, j = 2,
Pr = 0.71) based on the Holway and Rykov models.

β δB

Z = 1 Z = 5
q

qtr qrot qtr qrot

Rykov Holway Rykov Holway Rykov Holway Rykov Holway Shakhov

0.1

0 5.64(-2) 5.64(-2) 2.82(-2) 2.82(-2) 5.64(-2) 5.64(-2) 2.82(-2) 2.82(-2) 5.64(-2)

0.1 5.57(-2) 5.58(-2) 2.78(-2) 2.79(-2) 5.58(-2) 5.58(-2) 2.79(-2) 2.79(-2) 5.59(-2)

1 4.97(-2) 5.10(-2) 2.46(-2) 2.52(-2) 5.12(-2) 5.11(-2) 2.54(-2) 2.52(-2) 5.15(-2)

4 3.65(-2) 3.96(-2) 1.75(-2) 1.90(-2) 3.98(-2) 3.97(-2) 1.92(-2) 1.89(-2) 4.08(-2)

10 2.37(-2) 2.72(-2) 1.11(-2) 1.27(-2) 2.75(-2) 2.74(-2) 1.28(-2) 1.25(-2) 2.87(-2)

1

0 5.64(-1) 5.64(-1) 2.82(-1) 2.82(-1) 5.64(-1) 5.64(-1) 2.82(-1) 2.82(-1) 5.64(-1)

0.1 5.57(-1) 5.58(-1) 2.78(-1) 2.79(-1) 5.59(-1) 5.58(-1) 2.79(-1) 2.79(-1) 5.60(-1)

1 4.98(-1) 5.11(-1) 2.47(-1) 2.53(-1) 5.14(-1) 5.11(-1) 2.56(-1) 2.53(-1) 5.18(-1)

4 3.73(-1) 4.01(-1) 1.81(-1) 1.94(-1) 4.05(-1) 4.02(-1) 1.97(-1) 1.93(-1) 4.15(-1)

10 2.53(-1) 2.86(-1) 1.20(-1) 1.35(-1) 2.90(-1) 2.88(-1) 1.37(-1) 1.34(-1) 3.02(-1)

10

0 5.64 5.64 2.82 2.82 5.64 5.64 2.82 2.82 5.64

0.1 5.57 5.58 2.79 2.79 5.61 5.58 2.81 2.79 5.62

1 5.00 5.10 2.49 2.53 5.24 5.10 2.62 2.53 5.31

4 3.86 4.08 1.91 2.00 4.25 4.08 2.11 2.00 4.37

10 2.86 3.10 1.40 1.51 3.24 3.11 1.59 1.50 3.37
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Table 4.2: Heat fluxes at the inner hot cylinder (r = γ) with (γ = 1/2) for N2 (ω = 0.74, j = 2,
Pr = 0.91) based on the Holway and Rykov models.

β δB

Z = 1

qtr qrot

Rykov Holway Rykov Holway

0.1

0 5.64(-2) 5.64(-2) 2.82(-2) 2.82(-2)

0.1 5.57(-2) 5.57(-2) 2.78(-2) 2.78(-2)

1 4.97(-2) 4.97(-2) 2.46(-2) 2.44(-2)

4 3.65(-2) 3.65(-2) 1.75(-2) 1.74(-2)

10 2.37(-2) 2.38(-2) 1.11(-2) 1.10(-2)

1

0 5.64(-1) 5.64(-1) 2.82(-1) 2.82(-1)

0.1 5.57(-1) 5.57(-1) 2.78(-1) 2.78(-1)

1 4.98(-1) 4.98(-1) 2.47(-1) 2.46(-1)

4 3.73(-1) 3.73(-1) 1.81(-1) 1.79(-1))

10 2.53(-1) 2.54(-1) 1.20(-1) 1.19(-1)

10

0 5.64 5.64 2.82 2.82

0.1 5.57 5.56 2.79 2.78

1 5.00 4.97 2.49 2.47

4 3.86 3.83 1.91 1.88

10 2.86 2.84 1.40 1.37
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Table 4.3: Heat fluxes at the inner hot cylinder (r = γ) with γ = 1/2 for a diatomic gas (j = 2,
Pr = 0.71) with HS molecules, based on the Holway model and the DSMC method.

β δ0

Z = 1 Z = 5
q

qtr qrot qtr qrot

Holway DSMC Holway DSMC Holway DSMC Holway DSMC Shakhov

0.1

0.2 5.59(-2) 5.61(-2) 2.79(-2) 2.80(-2) 5.59(-2) 5.62(-2) 2.79(-2) 2.79(-2) 5.61(-2)

2 4.73(-2) 4.81(-2) 2.30(-2) 2.36(-2) 4.73(-2) 4.89(-2) 2.30(-2) 2.30(-2) 4.81(-2)

8 3.08(-2) 3.09(-2) 1.44(-2) 1.49(-2) 3.09(-2) 3.26(-2) 1.42(-2) 1.40(-2) 3.23(-2)

20 1.79(-2) 1.76(-2) 8.18(-3) 8.30(-3) 1.81(-2) 1.89(-2) 8.03(-3) 7.76(-3) 1.93(-2)

1

0.2 5.98(-1) 6.01(-1) 2.98(-1) 3.00(-1) 5.98(-1) 6.02(-1) 2.98(-1) 2.99(-1) 6.01(-1)

2 5.16(-1) 5.26(-1) 2.52(-1) 2.59(-1) 5.17(-1) 5.35(-1) 2.52(-1) 2.53(-1) 5.30(-1)

8 3.42(-1) 3.45(-1) 1.61(-1) 1.66(-1) 3.44(-1) 3.62(-1) 1.59(-1) 1.57(-1) 3.60(-1)

20 2.03(-1) 2.01(-1) 9.35(-2) 9.53(-2) 2.05(-1) 2.14(-1) 9.18(-2) 8.94(-2) 2.18(-1)

10

0.2 6.85 6.85 3.42 3.42 6.85 6.85 3.42 3.41 7.00

2 6.48 6.64 3.19 3.26 6.48 6.65 3.17 3.17 6.99

8 4.85 4.94 2.32 2.38 4.86 5.06 2.29 2.24 5.27

20 3.26 3.27 1.53 1.56 3.29 3.43 1.50 1.46 3.54
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Table 4.4: Heat fluxes at the inner hot cylinder (r = γ) for a diatomic gas (j = 2, Pr = 0.71) with
HS molecules.

γ β δB
Holway (Z = 3) Shakhov

qtr qrot q q

1/2

0.1

0 5.64(-2) 2.82(-2) 8.46(-2) 5.64(-2)

0.1 5.58(-2) 2.79(-2) 8.37(-2) 5.59(-2)

1 5.10(-2) 2.51(-2) 7.62(-2) 5.15(-2)

4 3.95(-2) 1.88(-2) 5.84(-2) 4.07(-2)

10 2.72(-2) 1.25(-2) 3.97(-2) 2.86(-2)

1

0 5.64(-1) 2.82(-1) 8.46(-1) 5.64(-1)

0.1 5.58(-1) 2.79(-1) 8.37(-1) 5.59(-1)

1 5.09(-1) 2.51(-1) 7.60(-1) 5.15(-1)

4 3.95(-1) 1.90(-1) 5.84(-1) 4.08(-1)

10 2.77(-1) 1.29(-1) 4.06(-1) 2.91(-1)

10

0 5.64 2.82 8.46 5.64

0.1 5.57 2.78 8.35 5.62

1 4.99 2.48 7.47 5.22

4 3.84 1.87 5.71 4.11

10 2.81 1.35 4.15 3.04

1/10

0.1

0 5.64(-2) 2.82(-2) 8.46(-2) 5.64(-2)

0.1 5.61(-2) 2.80(-2) 8.41(-2) 5.61(-2)

1 5.32(-2) 2.64(-2) 7.96(-2) 5.38(-2)

4 4.51(-2) 2.19(-2) 6.70(-2) 4.66(-2)

10 3.41(-2) 1.62(-2) 5.04(-2) 3.62(-2)

1

0 5.64(-1) 2.82(-1) 8.46(-1) 5.64(-1)

0.1 5.61(-1) 2.80(-1) 8.41(-1) 5.62(-1)

1 5.30(-1) 2.63(-1) 7.93(-1) 5.39(-1)

4 4.45(-1) 2.17(-1) 6.62(-1) 4.63(-1)

10 3.37(-1) 1.61(-1) 4.98(-1) 3.57(-1)

10

0 5.64 2.82 8.46 5.64

0.1 5.60 2.80 8.40 5.66

1 5.22 2.60 7.82 5.61

4 4.21 2.08 6.29 4.70

10 3.17 1.55 4.72 3.50

1/65

0.1

0 5.64(-2) 2.82(-2) 8.46(-2) 5.64(-2)

0.1 5.63(-2) 2.82(-2) 8.45(-2) 5.63(-2)

1 5.55(-2) 2.77(-2) 8.32(-2) 5.57(-2)

4 5.29(-2) 2.62(-2) 7.91(-2) 5.35(-2)

10 4.80(-2) 2.36(-2) 7.17(-2) 4.94(-2)

1

0 5.64(-1) 2.82(-1) 8.46(-1) 5.64(-1)

0.1 5.63(-1) 2.82(-1) 8.45(-1) 5.64(-1)

1 5.55(-1) 2.77(-1) 8.31(-1) 5.58(-1)

4 5.25(-1) 2.60(-1) 7.85(-1) 5.34(-1)

10 4.70(-1) 2.32(-1) 7.02(-1) 4.87(-1)

10

0 5.64 2.82 8.46 5.64

0.1 5.63 2.82 8.45 5.65

1 5.52 2.76 8.27 5.70

4 5.07 2.52 7.59 5.50

10 4.32 2.14 6.47 4.75
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Table 4.5: Heat fluxes at the inner hot cylinder (r = γ) with γ = 1/2 for a polyatomic gas (j = 3,
Pr = 0.71) with HS molecules based on the Holway model.

β δB
Z = 1 Z = 5

qtr qrot q qtr qrot q

0.1

0 5.64(-2) 4.23(-2) 9.87(-2) 5.64(-2) 4.23(-2) 9.87(-2)
0.1 5.58(-2) 4.18(-2) 9.76(-2) 5.58(-2) 4.18(-2) 9.76(-2)
1 5.10(-2) 3.77(-2) 8.87(-2) 5.10(-2) 3.77(-2) 8.87(-2)
4 3.94(-2) 2.83(-2) 6.77(-2) 3.96(-2) 2.82(-2) 6.78(-2)
10 2.70(-2) 1.88(-2) 4.58(-2) 2.72(-2) 1.86(-2) 4.58(-2)

1

0 5.64(-1) 4.23(-1) 9.87(-1) 5.64(-1) 4.23(-1) 9.87(-1)
0.1 5.58(-1) 4.18(-1) 9.76(-1) 5.58(-1) 4.18(-1) 9.76(-1)
1 5.08(-1) 3.77(-1) 8.86(-1) 5.09(-1) 3.77(-1) 8.86(-1)
4 3.94(-1) 2.85(-1) 6.79(-1) 3.95(-1) 2.84(-1) 6.79(-1)
10 2.76(-1) 1.94(-1) 4.70(-1) 2.77(-1) 1.92(-1) 4.69(-1)

10

0 5.64 4.23 9.87 5.64 4.23 9.87
0.1 5.57 4.17 9.74 5.57 4.17 9.74
1 4.99 3.72 8.71 4.99 3.72 8.71
4 3.82 2.82 6.64 3.84 2.81 6.65
10 2.79 2.03 4.82 2.81 2.01 4.82
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Figure 4.2: Dimensionless density distributions with γ = 1/2 for a diatomic gas (j = 2,
Pr = 0.71) with HS molecules, based on the Holway model and the DSMC method.
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Figure 4.3: Dimensionless translational and rotational temperature distributions with γ = 1/2
for a diatomic gas (j = 2, Pr = 0.71) with HS molecules, based on the Holway model and the
DSMC method.
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Figure 4.4: Dimensionless total heat flux q of a diatomic HS gas (j = 2, Pr = 0.71, Z = 5) in
terms of thermal accommodation coefficient α for various values of δB and β = 0.1 (up), β = 1
(middle), β = 10 (down) with γ = 1/2 (left) and γ = 1/10 (right) based on the Holway model.
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Figure 4.5: Comparison of the radial heat flux at the inner hot cylinder q (r = γ) for N2 and
β = 10 with corresponding results of Eq. (4.30).
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Figure 4.6: Comparison between computational and experimental [84] dimensionless heat fluxes
q(r = γ) for N2 confined between two cylinders with RA = 100 µm, γ = 1/65 and maintained at
a very small temperature difference with TB = 300 K.

Figure 4.7: Comparison between computational and experimental [84] dimensionless heat fluxes
q(r = γ) for D2 confined between two cylinders with RA = 100 µm, γ = 1/65 and maintained at
a very small temperature difference with TB = 300 K.
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Figure 4.8: Comparison between computational and experimental [80] dimensional heat fluxes
Q (r = γ) for N2 and air respectively, confined between two cylinders with RA = 75 µm, γ = 1/667
and maintained at a temperature difference of ∆T = 100 K, with TB = 298 K.
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Figure 4.9: Dimensional heat fluxQ (r = γ) through various gases enclosed between two cylinders
with RA = 1 cm and γ = [1/2, 1/10], maintained at TB = 293 K and β = [0.1, 1], in terms of the
reference pressure P̂B obtained by the Holway model (Z = 3, IPL model).
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Chapter 5

Effects of vibrational degrees of

freedom on the heat transfer in

polyatomic gases confined between

parallel plates

5.1 Properties of polyatomic gases

In general, it is advisable to consider vibrational excitation when the problem charac-

teristic temperature exceeds 25− 30% of the gas characteristic vibrational temperature which

varies significantly for each gas. For instance, for O2 and N2 the characteristic vibrational

temperatures are 2256 K and 3371 K respectively, whereas for CO2 and SF6 the lowest ones

are 960 K and 520 K respectively [19, 135].

Polyatomic gases with relatively low and moderate characteristic vibrational temperatures

are very common in several industrial processes and technological applications running in a wide

range of operating temperatures. A typical example of low excitation temperature gases is SF6,

which is used in the electronics industry (plasma etching and chemical vapor deposition), in the

magnesium production (die casting), in the fusion technology (as insulating gas into neutral

beam injector high voltage towers and transmission lines) and in other applications including
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gas-air tracing, leak detection, soundproof windows, etc. [136–138]. Other gases with moderate

excitation temperatures may be involved in piezoelectric sensing technologies [139] for use at

high temperatures (> 800 ◦C), in the automotive industry and in micro-electro-mechanical

systems for aeronautics and space applications (e.g. micro rocket engines) [140], as well as in

natural and environmental processes. Modeling of these processes should include the effect of

the excited vibrational modes, if agreement between measurements and calculations is to be

obtained.

Here, the same simple heat transfer configuration as in Chapter 3 is considered taking

into account however the vibrational degrees of freedom. The whole approach is based on the

Holway kinetic model [20]. The translational, rotational, vibrational and total temperature

distributions and the corresponding heat fluxes are presented for a wide range of the involved

parameters. Comparisons between the simulations based on the Holway kinetic model and the

DSMC method [173] as well as between simulations and experimental data [141] are shown and

discussed. The influence of the vibrational degrees of freedom on the heat fluxes for CO2, CH4

and SF6 at low reference temperatures is investigated, while corresponding high temperature

calculations with N2 and O2 are mainly performed for model testing and results validation. The

properties including the characteristic vibrational temperatures of all gases examined here are

given in Table 5.1. Furthermore, thermal conductivities predicted by the considered gas models

have been estimated exploiting the good agreement between the kinetic solutions and their

hydrodynamic (Chapman-Enskog) approximations, which occurs for moderately high values of

the rarefaction parameter, in a central strip of the domain [142, 143].
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Table 5.1: Properties of working gases (in the 3rd column the numbers in parenthesis indicate
degeneracy)

Gas Θv [K] m× 10−26 [Kg] µ0 [µPa s] ω j

N2 3371 4.65 61.40 0.69

2

O2 2256 5.31 72.51 0.66

CO2

960(2)

7.31 62.01 0.71930(1)

3390(1)

CH4

1880(3)

2.66 41.12 0.68

3

2200(2)

4200(1)

4350(3)

SF6

520(3)

24.3 59.82 0.69

760(3)

890(3)

930(2)

1120(1)

1390(3)

5.2 Basic definitions

Consider the state of a stationary nonpolar polyatomic gas confined between two infinite

parallel plates fixed at ŷ = ±H/2 and maintained at constant temperatures TH and TC respec-

tively, with TH > TC . Then, due to temperature difference a conductive heat flow through the

gas from the hot plate to the cold plate is induced.

The adopted models include translational, rotational and vibrational energy modes of the

molecules assuming that the translational and the rotational energies are continuous, while the

vibrational energy is discrete. The rotation and vibration of the gas molecules are described

by the rigid rotator and quantum the harmonic oscillator models respectively. The rotational

mode can be described as having a constant number of degrees of freedom at all temperatures

which is j = 2 for linear molecules and j = 3 for non-linear molecules.
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On the contrary, the effective number of vibrational degrees of freedom varies with tem-

perature. For the simple quantum harmonic oscillator assumed here they are defined as [29]

ζv (T ) =
2

T

N∑
i=1

Θv,i

exp (Θv,i/T )− 1
, (5.1)

where N is the total number of vibrational modes given by N = 3M − 5 for linear molecules

and N = 3M − 6 for nonlinear molecules with M being the number of atoms in the molecule.

Also, Θv,i is the characteristic vibrational temperature of vibrational mode i given by

Θv ,i =
~$i

kB
, (5.2)

where ~ = 1.05457× 10−34 J s is the reduced Planck constant, $i is the vibrational frequency

of the gas molecules and kB = 1.38065 × 10−23 J/K is the Boltzmann constant. At very high

temperature each vibrational mode is linked to 2 degrees of freedom, from which one describes

the linear distance between the two atoms and the other describes the speed of vibration. In

diatomic gases at high temperature ζv → 2, while in polyatomic gases ζv takes higher values

depending on the specific gas and the applied temperature.

Depending on the accuracy desired level, the presence of the dissociation must be included

when the characteristic temperature exceeds 3− 6% of the gas characteristic dissociation tem-

perature. It is noted that for most of the diatomic gases at these temperatures the atom mass

fraction is less than 10% [135]. For instance the dissociation temperatures of N2 and O2 are

113500 K and 59500 K respectively.

In the absence of dissociation the state of a polyatomic gas is determined by its distribution

function f̂S

(
ŷ,υ, Î

)
, where S = {S1, S2, . . . SN}, with Si = 0, 1, 2, . . ., represents the vibrational

quantum states, that depends on the space coordinate ŷ, the molecular translational velocity

υ = (ξx, ξy, ξz) and the energy of rotational motion Î [20, 29]. Then, the macroscopic quantities

of practical interest are obtained by the moments of f̂S as [20, 144]

n (ŷ) =
∞∑
S=0

∞∫
−∞

∞∫
0

f̂SdÎdυ, (5.3)
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Etr (ŷ) =
3kBTtr (ŷ)

2
=
m

2n

∞∑
S=0

∞∫
−∞

∞∫
0

υ2f̂SdÎdυ, (5.4)

Erot (ŷ) =
jkBTrot (ŷ)

2
=

1

n

∞∑
S=0

∞∫
−∞

∞∫
0

Î f̂SdÎdυ, (5.5)

Evib (ŷ) =
ζv (Tvib (ŷ)) kBTvib (ŷ)

2
=

1

n

∞∑
S=0

∞∫
−∞

∞∫
0

(
N∑
i=1

~$iSi

)
f̂SdÎdυ, (5.6)

Ttot (ŷ) =
3 Ttr (ŷ) + j Trot (ŷ) + ζv (Tvib (ŷ)) Tvib (ŷ)

3 + j + ζv (Ttot (ŷ))
, (5.7)

Qtr (ŷ) =
m

2

∞∑
S=0

∞∫
−∞

∞∫
0

ξyυ
2f̂SdÎdυ, (5.8)

Qrot (ŷ) =
∞∑
S=0

∞∫
−∞

∞∫
0

ξy Î f̂SdÎdυ, (5.9)

Qvib (ŷ) =
∞∑
S=0

∞∫
−∞

∞∫
0

ξy

(
N∑
i=1

~$iSi

)
f̂SdÎdυ, (5.10)

Qtot (ŷ) = Qtr (ŷ) +Qrot (ŷ) +Qvib (ŷ) . (5.11)

In Eqs. (5.3)-(5.11), n (ŷ) is the number density, Etr (ŷ), Erot (ŷ), Evib (ŷ) are the mean particle

energies and Qtr (ŷ), Qrot (ŷ), Qvib (ŷ) are the heat fluxes related to the translational, rotational

and vibrational motion of the molecules respectively, with Ttr (ŷ), Trot (ŷ), Tvib (ŷ) denoting the

corresponding temperatures. Also Ttot (ŷ) is the total temperature and Qtot (ŷ) is the total heat

flux of all degrees of freedom.

The problem in dimensionless form is prescribed by the ratio of the high over the low

plate temperatures

β =
TH
TC

(5.12)

and the reference gas rarefaction parameter

δ0 =
P̂0H

µ0υ0
, (5.13)
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where µ0 is the gas viscosity at reference temperature T0 = (TH + TC)/2, P̂0 = n0kBT0 is

the reference pressure and υ0 =
√

2kBT0/m, with m denoting the molecular mass, is the

most probable molecular speed at T0. The reference number density n0 is given by Eq. (3.11).

The cases of δ0 = 0 and δ0 → ∞ correspond to the free molecular and hydrodynamic limits

respectively. In addition, the dimensionless vibrational temperatures

θv,i =
Θv ,i

T0
, (5.14)

depending upon the working gas under consideration, are specified.

The effect of all involved parameters on the heat transfer problem is investigated focusing

of course on the effect of θv,i since it is the parameter which characterizes the importance of

the vibrational degrees of freedom. This is achieved via the Holway kinetic model described in

Section 5.3.

5.3 Holway kinetic model with vibrational degrees of

freedom

As it has been shown in Chapter 3 the Holway kinetic model has been applied with

considerable success in the present heat transfer configuration providing good agreement with

the DSMC method and the experimental data. Since here a purely heat transfer configuration

is investigated the collision frequency has been set to properly recover the thermal conductiv-

ity coefficient and for the present heat transfer configuration the Holway model taking into

consideration the translational, rotational and vibrational degrees of freedom can be written as

ξy
∂f̂S
∂ŷ

= ν̂tot

[(
1− 1

Zr
− 1

Zv

)(
f̂
(t)
S − f̂S

)
+

1

Zr

(
f̂
(t,r)
S − f̂S

)
+

1

Zv

(
f̂
(t,r,v)
S − f̂S

)]
, (5.15)
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where

f̂
(t)
S = nS(Î|ŷ)

(
m

2πkBTtr

)3/2

exp

(
− mυ2

2kBTtr

)
,

f̂
(t,r)
S = n̂S(ŷ)

(
m

2πkBT r

)3/2

exp

(
− mυ2

2kBT r

)
Îj/2−1

(kBT r)
j/2Γ (j/2)

exp

(
− Î

kBT r

)
,

f̂
(t,r,v)
S = n

(
m

2πkBTtot

)3/2

exp

(
− mυ2

2kBTtot

)
Îj/2−1

(kBTtot)
j/2Γ (j/2)

exp

(
− Î

kBTtot

)

×
N∏
i=1

[
1− exp

(
− ~$i

kBTtot

)]
exp

−
N∑
i=1

~$iSi

kBTtot

 .

(5.16)

Here, ν̂tot = [Pr (Ttr)nkBTtr]/µ (Ttr) is the total collision frequency where Pr (Ttr) is the Prandtl

number and µ (Ttr) is the viscosity both depending on the translational temperature. The pa-

rameters 1 ≤ Zr, Zv <∞ define how many collisions occur per single rotational and vibrational

collisions respectively. It is noted that Zr, Zv must be chosen in such a way that the rotational

and vibrational relaxations governed by the Holway model match the corresponding relaxations

obtained by the DSMC method when these approaches are compared. This task is performed

in Appendix A. Also n is the total number density defined by Eq. (5.3), n̂S is the total number

density in vibrational state S and nS is the number density of molecules having rotational

energy Î in vibrational state S. Finally, T r (ŷ) is the common temperature of the rotational

and translational modes given by T r (ŷ) = [3Ttr (ŷ) + jTrot (ŷ)]/(3 + j).

In order to reduce the computational cost the following three reduced density distributions

one for the mass and two for the internal energy (rotational and vibrational) are introduced

ĝ =
∞∑
S=0

∞∫
0

f̂SdÎ, ĥ =
∞∑
S=0

∞∫
0

Î f̂SdÎ, ŵ =
∞∑
S=0

∞∫
0

(
N∑
i=1

~$iSi

)
f̂SdÎ. (5.17)

For the specific problem under consideration the computational effort is further reduced by

eliminating the ξx and ξz components of the molecular velocity by introducing the reduced
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distributions

F̂ =

∞∫
−∞

∞∫
−∞

ĝ dξzdξx, Ĝ =

∞∫
−∞

∞∫
−∞

ĝ
(
ξ2z + ξ2x

)
dξzdξx,

K̂ =

∞∫
−∞

∞∫
−∞

ĥ dξzdξx, L̂ =

∞∫
−∞

∞∫
−∞

ŵ dξzdξx.

(5.18)

Operating accordingly with the appropriate summation and integral operators, defined by

Eqs. (5.17) and (5.18), on Eq. (5.15) and introducing the following dimensionless quantities

y = ŷ/H, c = υ/υ0, I = Î
/
kBT0, ρ = n/n0,

F = υ0F̂
/
n0, G = Ĝ

/
(n0υ0), K = υ0K̂

/
P̂0, L = υ0L̂

/
P̂0,

τi = Ti/T0, qi = Qi

/(
P̂0υ0

)
, ei = Ei/(kBT0),

(5.19)

where the subscript i = tr, rot, vib, tot refers to translational, rotational, vibrational or total

quantities, the following system of kinetic equations may be obtained in vector form

cy
∂Ψ

∂y
= νtot

[(
1− 1

Zr
− 1

Zv

)(
Ψ(t) −Ψ

)
+

1

Zr

(
Ψ(t,r) −Ψ

)
+

1

Zv

(
Ψ(t,r,v) −Ψ

)]
. (5.20)

Here, Ψ = [F, G, K, L]T are the unknown reduced distributions, which depend on the dimen-

sionless space and molecular velocity independent variables y and cy. Also, δ0 is the reference

gas rarefaction given by Eq. (5.13) and νtot = δ0ρ(τtr)
1−ωPr (τtr) is the dimensionless collision

frequency. The relaxing distributions in Eq. (5.20) are given by Ψ(i) =
[
F (i), G(i), K(i), L(i)

]T
,

with i = (t) , (t, r) , (t, r, v), where

F (t) =
ρ
√
πτtr

exp

(
−
c2y
τtr

)
, F (t,r) =

ρ√
πτ r

exp

(
−
c2y
τ r

)
, F (t,r,v) =

ρ
√
πτtot

exp

(
−
c2y
τtot

)
,

G(t) = τtrF
(t), G(t,r) = τ rF (t,r), G(t,r,v) = τtotF

(t,r,v),
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K(t) =
j

2
τrotF

(t), K(t,r) =
j

2
τ rF (t,r), K(t,r,v) =

j

2
τtotF

(t,r,v),

L(t) =
ζv (τvib)

2
τvibF

(t), L(t,r) =
ζv (τvib)

2
τvibF

(t,r), L(t,r,v) =
ζv (τtot)

2
τtotF

(t,r,v).

(5.21)

In the derivation of Eq. (5.20) the Inverse Power Law (IPL) interaction between particles has

been introduced with the parameter ω taking the values of 1/2 and 1 for hard sphere (HS) and

Maxwell (MM) interactions respectively.

The same non-dimensionalization and projection procedures are applied to the moments

in Eqs. (5.3)-(5.11), to find that the macroscopic quantities are given in terms of F , G, K and

L according to

ρ =

∞∫
−∞

Fdcy, etr =
3 τtr

2
=

1

ρ

∞∫
−∞

(
c2yF +G

)
dcy,

erot =
j τrot

2
=

1

ρ

∞∫
−∞

Kdcy, evib =
ζv (τvib) τvib

2
=

1

ρ

∞∫
−∞

Ldcy,

qtr =

∞∫
−∞

(
c2yF +G

)
cydcy, qrot =

∞∫
−∞

Kcydcy, qvib =

∞∫
−∞

Lcydcy,

qtot = qvib + qrot + qtr, τ r =
3 τtr + j τrot

3 + j
, τtot =

3 τtr + j τrot + ζv (τvib) τvib
3 + j + ζv (τtot)

,

(5.22)

where

ζv (τvib) =
2

τvib

N∑
i=1

θv,i
exp (θv,i/τvib)− 1

and ζv (τtot) =
2

τtot

N∑
i=1

θv,i
exp (θv,i/τtot)− 1

(5.23)

are the vibrational degrees of freedom in dimensionless temperatures τvib and τrot respectively.

From Eq. (5.20) the energy conservation equation ∂qtot/∂y = 0 is readily reduced and it is

implemented to benchmark the computations.

Next, the boundary conditions are defined. The typical purely diffuse boundary conditions

are implemented where the distribution function of the particles departing by the two plates
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takes the form [144]

f̂
(+)
S = nw

(
m

2πkBTw

)3/2

exp

(
− mυ2

2kBTw

)
Îj/2−1

(kBTw)j/2Γ (j/2)
exp

(
− Î

kBTw

)

×
N∏
i=1

[
1− exp

(
− ~$i

kBTw

)]
exp

−
N∑
i=1

~$iSi

kBTw

 . (5.24)

The superscript (+) denotes outgoing distributions, Tw (±1/2) is either the cold or the

hot temperatures of the plates and nw (±1/2) is a parameter specified by the condition of no

penetration at the walls. Introducing in Eq. (5.24), the same normalization and projection as

for the kinetic equations, lead to the outgoing distributions

F
(+)
±1/2 =

ρw,±1/2√
πτw

exp

(
−
c2y
τw

)
, G

(+)
±1/2 =

ρw,±1/2
√
τw√

π
exp

(
−
c2y
τw

)
,

K
(+)
±1/2 =

jρw,±1/2
√
τw

2
√
π

exp

(
−
c2y
τw

)
, L

(+)
±1/2 =

ζv (τw) ρw,±1/2
√
τw

2
√
π

exp

(
−
c2y
τw

) (5.25)

at y = ±1/2, where ρw is specified by applying the no penetration condition at the walls as

ρw,±1/2 =
2
√
π

√
τw

∞∫
0

F
(−)
±1/2cydcy. (5.26)

In Eqs. (5.25) and (5.26) the superscripts (+) and (−) denote outgoing and impinging distribu-

tions respectively. Also, τw = Tw/T0 in terms of the temperature ratio β is equal to 2β/(β + 1)

at y = −1/2 (hot wall) and 2/ (β + 1) at y = 1/2 (cold wall).

The governing equations (5.20) and (5.21) with the associated expressions (5.22) subject

to boundary conditions (5.25)-(5.26) are solved numerically in an iterative manner. More

specifically for prescribed values of β, δ0 and θv,i the iteration map starts by assuming all needed

macroscopic quantities. The kinetic equations (5.20)-(5.21) are solved numerically discretizing

in the physical space by the control volume approach and in the molecular velocity space by the

discrete velocity method to yield the reduced distributions F , G, K and L, which are introduced
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into the moment equations (5.22) and (5.26). Integration is performed via the Gauss-Legendre

quadrature to find the new estimates of all bulk quantities which are introduced in the next

iteration. The iteration process is terminated when convergence criteria

1

3K

K∑
i=1

[∣∣∣ρ(t+1)
i − ρ(t)i

∣∣∣+
∣∣∣τ (t+1)
tot,i − τ

(t)
tot,i

∣∣∣+
∣∣∣q(t+1)
tot,i − q

(t)
tot,i

∣∣∣] < ε, (5.27)

with t denoting the iteration index and K the number of nodes in the physical space, is fulfilled.

The kinetic results presented here have been obtained with ∆y = 0.2× 10−3 and 96 molecular

velocities being the roots of the corresponding Legendre polynomial.

5.4 Results and discussion

Results for the density, temperature and heat flux distributions are obtained by the

Holway kinetic model for β = [1.1, 4, 5, 11] covering small, moderate and large temperature

differences, δ0 ∈ [0, 100] representing heat transfer flow from the free molecular up to the slip

regime and θv = [0.1, 1, 2, 5] corresponding to mean temperatures T0 higher, equal and lower

compared to the characteristic vibrational temperature. At θv = 0.1 almost all vibrational

degrees of freedom are fully excited, while at θv = 5 almost no vibrational excitation occurs.

The results are organized as follows: Benchmarking is displayed in Subsection 5.4.1 by

comparing the kinetic model with the DSMC results for N2 and O2, as well as simulations

with experimental data for N2, CO2, CH4 and SF6. In Subsection 5.4.2, general results for

all macroscopic quantities are presented for diatomic gases in terms of β, δ0, θv including a

sensitivity analysis of the dependency of the heat fluxes on Zr, Zv. Finally, in Subsection 5.4.3

results for the specific gases of N2, O2, CO2, CH4 and SF6 are presented showing the effect of

the vibrational degrees of freedom on the total heat fluxes and on the translational, rotational

and vibrational parts. Also the concept of the effective thermal conductive in polyatomic gases

is investigated.
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5.4.1 Benchmarking

The comparison between the Holway kinetic model and the DSMC method is performed

considering N2 and O2 as working gases (j = 2). To have a valid comparison it is ensured that

the two approaches have the same relaxation rates and therefore the relaxation parameters

of the Holway model are accordingly fixed. Following common practice the DSMC relaxation

parameters are set as Z
(DSMC)
r = 5 and Z

(DSMC)
v = 50 [29] and then following Appendix A, the

Holway relaxation parameters are Z
(H)
r = 2.47, Z

(H)
v = 24.7 for N2 and Z

(H)
r = 2.62, Z

(H)
v = 26.2

for O2. Furthermore, in both approaches the viscosity index takes the values ω = 0.74 for N2

and ω = 0.66 for O2 to reproduce the recommended data in [145]. Also, the Pr number in the

kinetic model simulations is independent of temperature and equal to Pr = 0.764 and 0.751 for

N2 and O2 respectively to ensure that the thermal conductivities obtained by the two methods

are equal to each other.

In Tables 5.2 and 5.3, a comparison between the results obtained by the Holway model

and the DSMC method is performed for N2 and O2 respectively. In both tables δ0 ∈ [0, 100],

β = 5 and θv = 1 (the mean temperature T0 is taken equal to the characteristic vibrational

temperatures of 3371 K for N2 and 2256 K for O2). In all cases the agreement between the

results, taking into account the different models implemented in the two approaches, is very

good. The translational heat fluxes computed by the Holway model are smaller than the DSMC

ones, while it is the other way around for the rotational and vibrational heat fluxes. The largest

relative error occurs in the vibrational heat fluxes being always however less than 10%, while

in the total heat fluxes is less than 1%. The results at δ0 = 0 are in excellent agreement with

the analytical free molecular ones presented in Appendix C.

The comparison is extended to the number density as well as to the translational, rota-

tional and vibrational temperature distributions plotted in Fig. 5.1 for various values of values

of δ0. Excellent agreement between the deterministic and stochastic approaches is shown. It is

also observed that for large values of δ0 the translational, rotational and vibrational are ther-

mally equilibrated (τtr = τrot = τvib), while as the rarefaction level of the gas is increased the

three temperatures depart from each other with the vibrational temperature being higher than

the other two.

112

Institutional Repository - Library & Information Centre - University of Thessaly
20/05/2024 01:12:25 EEST - 13.59.53.151



Section 5.4

Next, a comparison with the experimental data in [141] is performed in Fig. 5.2 based on

the Holway kinetic model in terms of the thermal conductivity. More specifically the experimen-

tal data for the thermal conductivities of N2, CO2, CH4 and SF6 obtained from Tables 1, 5, 7 and

9 respectively in [141] are shown in terms of the corresponding temperatures 300 ≤ T ≤ 3273

(K). Simulations have been also performed close to the hydrodynamic limit at δ0 = 100, with

TC = 300 K and TH = 3273 K (T0 = 1786.5 K, β = 10.91) and for all these gases (gas properties

including characteristic vibrational temperatures are shown in Table 5.1). The rotational and

vibrational collision numbers are Zr = 5 and Zv = 50. The Pr number is taken as a function

of temperature according to the data in ([141]; see Tables 1, 5, 7 and 9). Once the problem is

solved, an effective thermal conductivity keff (y) is determined based on the Fourier law, which

in the present dimensionless notation reads as

qtot =

(
m

2kBδ0µ0

)
keff (y)

∂τtot
∂y

, (5.28)

with the spatial derivative ∂τtot/∂y being approximated by central differences. Previous studies

(see [142] and references therein for monatomic gases and [143] for a diatomic gas), have shown

that keff (y) approximates extremely well the Chapman-Enskog value of the thermal conduc-

tivity in a central strip of the domain, provided its boundaries are sufficiently far from the walls

where Knudsen layers cause deviations from hydrodynamic behavior. The computed keff (y)

is plotted in Fig. 5.2 and compared to the experimental one. As it is seen the computational

results are in excellent agreement with the experimental data in the whole region between the

plates except very close to the boundaries, i.e., inside the thin Knudsen layers which are present

even at δ0 = 100 and where the Fourier constitutive law is not valid.

Based on all above the effectiveness of the Holway kinetic model to simulate this heat

transfer configuration is demonstrated. Also, the efficiency of the implemented computational

scheme and the accuracy of the deduced numerical results are verified.
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5.4.2 Effect of vibrational degrees of freedom

The effect of θv on the heat fluxes and other macroscopic quantities is investigated. The

analysis is kept as general as possible and therefore only diatomic gases (j = 2) with hard

sphere (HS) molecules (ω = 0.5) are considered.

However, before we proceed it is interesting to examine the effect of the prescribed collision

numbers Zr and Zv on the results. A computational sensitivity analysis related to these two

parameters is shown in Tables 5.4 and 5.5. The temperature ratio of the two plates is taken large

and equal to β = 5, while the parameter θv = [0.1, 5]. Also, the results are for δ0 × Pr = 71.4

without being necessary to specify exactly either of the two quantities. However, since for a

diatomic gas Pr ' 0.7 the analysis is performed, in purpose, at high values of δ0 ' 102, where the

effect of the rotational and vibrational degrees of freedom is more dominant. Based on the above

input data, in Table 5.4, all heat fluxes are tabulated by keeping the vibrational collision number

constant, Zv = 50, while the rotational one varies as Zr ∈ [3, 80]. The corresponding results

for constant rotational number Zr = 5 and the vibrational number varying as Zv ∈
[
5, 103

]
are tabulated in Table 5.5. As Zr is increased, with Zv being constant, qtr is slightly increased

not more than 2% and qrot is slightly decreased not more than 3%. Also qvib and qtot are not

affected at all for the significant figures shown. These observations are valid for both θv = 0.1

and 5. As Zv is increased, with Zr being constant, the variation in qtr and qrot is very small

not exceeding 5% for both θv. More interesting is the effect of Zv on qvib, which for θv = 0.1

is decreased about only by 3%, while for θv = 5 is decreased by 36%. However, in this latter

case the vibrational heat flux is one order of magnitude smaller than the translational one

and therefore, once again, there is no variation of the total heat flux qtot with respect to the

vibrational collision number. The fact that the total heat flux remains invariant in terms of Zr

and Zv is of major importance and reduces the introduced modeling error, particularly when

performing comparisons with experimental work. The effect of Zr and Zv on the density and

temperatures distributions is negligible. Also, in general the effect of Zr and Zv is decreased as

the temperature difference between the plates is decreased.

Next, in Table 5.6 the translational, rotational and vibrational heat fluxes as percentage

of the total heat flux along with the total heat fluxes are provided for a diatomic HS gas
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(j = 2, ω = 0.5) and for various values of θv and of the product δ0 × Pr with β = 1.1. The

collision numbers are set to Zr = 5 and Zv = 50. The percentage results are at the hot

plate (y = −1/2), while qtot remains constant between the plates. Depending upon θv the

ratios of the translational, rotational and vibrational heat fluxes over the total one vary as

0.5 ≤ qtr/qtot ≤ 0.66, 0.23 ≤ qrot/qtot ≤ 0.32 and 0.05 ≤ qvib/qtot ≤ 0.25 respectively. As

expected, independently of θv, the rotational heat flux is about 43− 50% of the corresponding

translational ones. Also, as θv is decreased the vibrational part becomes of the same order of

the rotational one and corresponds to about 25% of the total heat flux. This is justified by the

fact that as the parameter θv is decreased the mean temperature is increased causing activation

of a larger number of vibrational degrees of freedom. It is noted that in the case of θv = 0.1

the vibrational degrees of freedom are almost fully excited with ζv ∼= 1.9. The corresponding

mean values of ζv for θv = 1 and 5 is about 1.2 and 0.07 respectively. These results are valid in

the whole range of the gas rarefaction examined. It is noted that the percentage of each part

of heat flux to the total heat flux remains almost constant with regard to δ0.

The dimensionless translational etr (y), rotational erot (y) and vibrational evib (y) energies

of a diatomic HS gas (j = 2, ω = 0.5, Zr = 5, Zv = 5) are shown in Fig. 5.3 for various

values of δ0×Pr with β = 1.1 and θv = [0.1, 5]. The translational and vibrational energies are

independent of θv, while the vibrational energy depends strongly on θv. Therefore the latter one

is presented in two subfigures. The vibrational energy for θv = 0.1 is approximately 28 times

higher than the corresponding one for θv = 5, with the exact number depending on the position

between the plates and on the gas rarefaction. The difference in the vibrational distribution

energies between θv = 0.1 and θv = 5 is increased moving from the hot plate towards the cold

plate wall. Also, all energies are higher, as they should, near the hot wall than the corresponding

ones at the cold wall.

In Fig. 5.4 the dimensionless vibrational temperature is plotted for the same input pa-

rameters as in Fig. 5.3. At large δ0 × Pr the vibrational temperatures for θv = [0.1, 5] almost

coincide, while as δ0 × Pr (or δ0) is decreased they depart from each other with τvib (y) for

θv = 5 being higher than the corresponding ones for θv = 0.1. This latter observation is proba-

bly not expected but it may be explained by considering the reported vibrational energies for
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θv = [0.1, 5] in Fig. 5.3 and the vibrational temperature in diatomic gases given by

τvib =
θv

ln
(

1 + θv
evib

) . (5.29)

Based on the above this behavior is contributed to the relative decrease of evib with regard to

the increase of θv. This behavior is also seen in the analytical expressions provided in the free

molecular limit in Appendix C. Furthermore, the parameter θv has no effect on the number

density distribution and the corresponding plots are omitted. Since θv has a very small effect

on the translational and rotational temperatures they are not plotted here and they may be

found in Chapter 3. In large values of δ0 the vibrational temperature is thermally equilibrated

with the translational and rotational temperatures (τtr ' τrot ' τvib) independent of θv.

5.4.3 Heat fluxes for specific gases

At this subsection some results are provided for the nonpolar polyatomic gases of N2,

O2, CO2, CH4 and SF6 based on the Holway kinetic model. Results are provided for the typical

values of Z
(H)
r = 5 and Z

(H)
v = 50 with temperature ratio β = 1.1 in a wide range of the

rarefaction parameter δ0. Two values of the reference mean temperature T0 = 500 K and 2000

K are considered. The parameters of each gas are given in Table 1 and the Pr number is a

function of temperature according to [141].

In Fig. 5.5 the rotational, vibrational and total heat fluxes at the hot wall (y = −1/2)

are given in a wide range of the rarefaction parameter δ0. It is seen that the rotational heat

fluxes are in practice independent of the mean temperature T0. The rotational heat fluxes qrot

of the linear gases (N2, O2, CO2) are very close to each other (almost coincide) and the same

happens for the nonlinear gases (CH4, SF6) with the latter ones being 30−60% higher than the

former ones for both T0. The vibrational heat fluxes depend on T0 and this dependency becomes

stronger as depending upon the working gas, the characteristic vibrational temperatures are

decreased and the number of vibrational degrees of freedom is increased. The vibrational heat

fluxes of N2 and O2 are about the same with small dependency on T0. However, for CO2 there

is a significant difference in qvib as the mean temperature is increased from 500 K to 2000
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K, which becomes even larger in the cases of CH4 and SF6. More specifically, since the SF6

contains 15 vibrational modes and most of them are well excited at T0 = 500 K is characterized

compared to the other gases by the largest vibrational heat flux which is about 74 − 76% of

the total heat flux. Computations for SF6 have been also performed with T0 = 300 K. As it

is seen in Fig. 5.6 the resulting to a vibrational heat flux corresponds up to 67% of the total

heat flux. On the other hand, since the one vibrational mode of N2 is fully activated at 3371

K, its vibrational heat flux is only about 2% and 19% of the total heat flux when the mean

temperature is T0 = 500 K and 2000 K respectively. With regard to δ0, it is noted that the

previous remark, related to diatomic gases, i.e. that the percentage of each part of heat flux to

the total heat flux remains almost constant in the whole range of gas rarefaction (see Table 5.6),

is also valid for linear and nonlinear polyatomic gases.

In monatomic gases it has been shown that when the flow is in the hydrodynamic regime

with non-continuum effects (large local gradients) the effective thermal conductivity concept

may be successfully applied to compute the corresponding heat fluxes [142]. A similar inves-

tigation is performed here for polyatomic gases. In Fig. 5.7, indicative results of the variation

of the effective thermal conductivity keff (y), computed according to Eq. (5.28), over the corre-

sponding experimental values in [141] are plotted along the distance between the plates. The

working gas is N2 (ω = 0.69, j = 2) with δ0 = 50, β = 1.1, 4 and θv = 3.371 (T0 = 3371 K).

It is noted that the computed effective and experimental thermal conductivities (also seen in

Fig. 5.2) are not constant within the domain but they are both decreasing moving from the hot

towards the cold plate along with the temperature. It is seen that in the region approximately

defined by −0.45 ≤ y ≤ 0.45 the ratio is constant and equal to one, clearly indicating that

under both weakly (β = 1.1) or highly (β = 4) non-equilibrium conditions the Fourier law

works satisfyingly far from the boundaries, i.e., outside the Knudsen layers. Also, the hot wall

Knudsen layer is thicker than the corresponding one at the cold wall since the mean free path is

an increasing function of temperature at constant pressure. Corresponding results are readily

obtained for the other polyatomic gases. Thus, the effective thermal conductivity approxima-

tion may be also applied in polyatomic gases provided that the system Knudsen number is

small.
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5.5 Concluding remarks

The problem of heat transfer through rarefied polyatomic gases between parallel plates

maintained at different temperatures has been considered by taking into consideration the gas

rotational and vibrational degrees of freedom. The solution is obtained by the Holway kinetic

model and the DSMC method. The very good agreement between the two approaches as well as

with experimental data clearly demonstrates the capability of the Holway model to accurately

simulate polyatomic gas heat transfer in the whole range of gas rarefaction for small, moderate

and large temperature differences between the plates.

The translational, rotational, vibrational and total heat fluxes of N2, O2, CO2, CH4 and

SF6 are computed to examine the effect of the mean reference temperature and of the gas

rarefaction with regard to the characteristic vibrational temperatures and the corresponding

number of vibrational degrees of freedom of each gas. It has been shown that for gases with low

and moderate characteristic excitation temperatures (e.g. CO2, CH4 and SF6) the vibrational

heat flux may be, even at ambient temperatures, a significant portion of the total heat flux

independent of the gas rarefaction. For example in the case of SF6 at reference temperatures of

300 K and 500 K the vibrational heat fluxes are 67% and 76% respectively of the corresponding

total ones. The effective thermal conductivity approximation has been also studied finding

out that it can be successfully applied in polyatomic gases to study non-equilibrium effects

providing that the system Knudsen number is small.

Overall, the present work aims to provide some useful insight in the heat transfer design

and optimization of technological applications operating in a temperature range where the

vibrational modes of the involved gases are excited and must be taken into consideration. It is

evident that in such heat transfer and flow configurations modeling must include the effect of

the vibrational degrees of freedom.
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Table 5.2: Dimensionless heat fluxes for N2 (j = 2, Pr = 0.764) with IPL molecules (ω = 0.74) at
the hot plate (y = −1/2) for various values of δ0, β = 5 (TH = 5618 K, TC = 1124 K, T0 = 3371 K)

and θv = 1 (Z
(DSMC)
r = 5, Z

(DSMC)
v = 50, Z

(H)
r = 2.47, Z

(H)
v = 24.7).

δ0
qtr qrot qvib qtot

Holway DSMC Holway DSMC Holway DSMC Holway DSMC

0 6.00(-1) 3.00(-1) 2.62(-1) 1.16

0.1 5.76(-1) 5.76(-1) 2.86(-1) 2.83(-1) 2.49(-1) 2.47(-1) 1.11 1.11

1 4.35(-1) 4.41(-1) 2.07(-1) 2.01(-1) 1.81(-1) 1.72(-1) 8.23(-1) 8.14(-1)

5 2.32(-1) 2.43(-1) 1.05(-1) 1.02(-1) 9.24(-2) 8.45(-2) 4.29(-1) 4.30(-1)

10 1.49(-1) 1.58(-1) 6.65(-2) 6.53(-2) 5.95(-2) 5.42(-2) 2.75(-1) 2.77(-1)

50 3.82(-2) 4.05(-2) 1.68(-2) 1.65(-2) 1.57(-2) 1.43(-2) 7.07(-2) 7.13(-2)

100 1.97(-2) 2.08(-2) 8.68(-3) 8.35(-3) 8.15(-3) 7.48(-3) 3.66(-2) 3.66(-2)

Table 5.3: Dimensionless heat fluxes for O2 (j = 2, Pr = 0.751) with IPL molecules (ω = 0.66) at
the hot plate (y = −1/2) for various values of δ0, β = 5 (TH = 3760 K, TC = 752 K, T0 = 2256 K)

and θv = 1 (Z
(DSMC)
r = 5, Z

(DSMC)
v = 50, Z

(H)
r = 2.62, Z

(H)
v = 26.2).

δ0
qtr qrot qvib qtot

Holway DSMC Holway DSMC Holway DSMC Holway DSMC

0 6.00(-1) 3.00(-1) 2.62(-1) 1.16

0.1 5.76(-1) 5.76(-1) 2.86(-1) 2.84(-1) 2.50(-1) 2.47(-1) 1.11 1.11

1 4.38(-1) 4.42(-1) 2.09(-1) 2.01(-1) 1.82(-1) 1.73(-1) 8.29(-1) 8.17(-1)

5 2.35(-1) 2.43(-1) 1.06(-1) 1.02(-1) 9.33(-2) 8.49(-2) 4.34(-1) 4.30(-1)

10 1.51(-1) 1.57(-1) 6.73(-2) 6.53(-2) 6.01(-2) 5.42(-2) 2.78(-1) 2.76(-1)

50 3.87(-2) 4.03(-2) 1.70(-2) 1.65(-2) 1.59(-2) 1.43(-2) 7.16(-2) 7.11(-2)

100 2.00(-2) 2.08(-2) 8.80(-3) 8.52(-3) 8.25(-3) 7.40(-3) 3.71(-2) 3.67(-2)
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Table 5.4: Effect of Zr on the translational, rotational, vibrational and total heat fluxes at the hot
plate (y = −1/2) for a diatomic HS gas (j = 2, ω = 0.5) with β = 5, δ0 × Pr = 71.4 and Zv = 50.

Zr
qtr qrot qvib qtot

θv = 0.1 θv = 5 θv = 0.1 θv = 5 θv = 0.1 θv = 5 θv = 0.1 θv = 5

3 2.13(-2) 2.02(-2) 9.35(-3) 8.85(-3) 9.02(-3) 3.81(-3) 3.97(-2) 3.29(-2)

5 2.14(-2) 2.03(-2) 9.29(-3) 8.80(-3) 9.02(-3) 3.81(-3) 3.97(-2) 3.29(-2)

7.5 2.14(-2) 2.03(-2) 9.25(-3) 8.76(-3) 9.02(-3) 3.81(-3) 3.97(-2) 3.29(-2)

10 2.15(-2) 2.03(-2) 9.22(-3) 8.73(-3) 9.02(-3) 3.81(-3) 3.97(-2) 3.29(-2)

20 2.15(-2) 2.04(-2) 9.15(-3) 8.66(-3) 9.02(-3) 3.81(-3) 3.97(-2) 3.29(-2)

40 2.16(-2) 2.05(-2) 9.10(-3) 8.61(-3) 9.02(-3) 3.81(-3) 3.97(-2) 3.29(-2)

60 2.16(-2) 2.05(-2) 9.08(-3) 8.59(-3) 9.02(-3) 3.81(-3) 3.97(-2) 3.29(-2)

80 2.16(-2) 2.05(-2) 9.07(-3) 8.58(-3) 9.02(-3) 3.81(-3) 3.97(-2) 3.29(-2)

Table 5.5: Effect of Zv on the translational, rotational, vibrational and total heat fluxes at the hot
plate (y = −1/2) for a diatomic HS gas (j = 2, ω = 0.5) with β = 5, δ0 × Pr = 71.4 and Zr = 5.

Zv
qtr qrot qvib qtot

θv = 0.1 θv = 5 θv = 0.1 θv = 5 θv = 0.1 θv = 5 θv = 0.1 θv = 5

5 2.12(-2) 2.00(-2) 9.30(-3) 8.76(-3) 9.21(-3) 4.15(-3) 3.97(-2) 3.29(-2)

10 2.13(-2) 2.01(-2) 9.28(-3) 8.76(-3) 9.15(-3) 4.08(-3) 3.97(-2) 3.29(-2)

25 2.13(-2) 2.02(-2) 9.28(-3) 8.77(-3) 9.07(-3) 3.95(-3) 3.97(-2) 3.29(-2)

70 2.14(-2) 2.03(-2) 9.30(-3) 8.82(-3) 9.00(-3) 3.73(-3) 3.97(-2) 3.29(-2)

100 2.14(-2) 2.04(-2) 9.30(-3) 8.85(-3) 8.97(-3) 3.63(-3) 3.97(-2) 3.29(-2)

400 2.15(-2) 2.07(-2) 9.32(-3) 8.99(-3) 8.91(-3) 3.10(-3) 3.97(-2) 3.28(-2)

700 2.15(-2) 2.09(-2) 9.32(-3) 9.06(-3) 8.89(-3) 2.83(-3) 3.97(-2) 3.28(-2)

1000 2.15(-2) 2.10(-2) 9.32(-3) 9.10(-3) 8.88(-3) 2.66(-3) 3.97(-2) 3.27(-2)
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Figure 5.1: Comparison between the dimensionless density and temperature distributions of the
Holway model and the DSMC method for N2 (j = 2, Pr = 0.764) with VHS molecules (ω = 0.74)

or various values of δ0, β = 5 (TH = 5618 K, TC = 1124 K, T0 = 3371 K) and θv = 1 (Z
(DSMC)
r = 5,

Z
(DSMC)
v = 50, Zr = 2.47, Zv = 24.7).
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Figure 5.2: Comparison between the experimental thermal conductivities in [141] with TC = 300
K, TH = 3273 K and the corresponding computed ones obtained by the Holway model with
δ0 = 100 and β = 10.9 (Zr = 5, Zv = 50) for various gases.
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Figure 5.3: Dimensionless translational (left-up), rotational (right-up) and vibrational (down)
energy distributions for a diatomic HS gas (j = 2, ω = 0.5) with β = 1.1, various values of δ0×Pr
and θv = [0.1, 5] (Zr = 5, Zv = 50).
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Figure 5.4: Dimensionless vibrational temperature distributions for a diatomic HS gas (j = 2,
ω = 0.5) with β = 1.1, various values of δ0 × Pr and θv = [0.1, 5] (Zr = 5, Zv = 50).
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Figure 5.5: Dimensionless rotational (up), vibrational (middle) and total (down) heat fluxes at
the hot plate (y = −1/2) in terms of δ0 for various polyatomic gases, with β = 1.1 and T0 = 500 K
(left) and T0 = 2000 K (right) (Zr = 5, Zv = 50).
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Figure 5.6: Dimensionless translational, rotational, vibrational and total heat fluxes at the hot
plate (y = −1/2) in terms of δ0 for SF6, with β = 1.1 and T0 = 300 K (Zr = 5, Zv = 50).

Figure 5.7: Ratio keff/k between the plates for N2 (ω = 0.69, j = 2) at θv = 3.371 K (Zr = 5,
Zv = 50).
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Chapter 6

Polyatomic flows through circular

capillaries

6.1 Introduction

Flows through long channels have been considered by many researchers and for various

geometries [146–148] both numerically and experimentally. The wide availability of results

comes from the simplifications occurring because of the fully developed flow conditions (the

pressure is constant at each cross section). The problem admits, firstly, linearization (due to

the smallness of the pressure and temperature differences) and, secondly, further simplification

due to the fact that the tube is very long. However, in many practical situations [149, 150] the

length of the tube is comparable with its radius and the whole problem is described by large

pressure differences. For instance, micro-nozzles are often used as low-thrust propulsion systems

in order to produce accurate orbital maneuvers in micro-satellites. Therefore, a systematic study

of the gas flow in such devices is needed in order to determine the optimal geometry and design.

It is well known that, at low Reynolds numbers, the viscous losses in micronozzles become large

enough making the concept of a nozzle expansion useless and micronozzles can be replaced by

short circular tubes. In such cases the problem is described by the non-linear theory of short

tubes described in [151]. The majority of the studies in literature was made for monatomic

gases [73, 100, 102], while corresponding work in the case of polyatomic gases is very limited.
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Here, the rarefied gas flow of polyatomic gases through short and long circular tubes

is modelled via the Holway and Rykov polyatomic kinetic models respectively. The study is

focused on polyatomic gas expansion into very low pressures through short circular tubes in

a wide range of the Knudsen number based on the Holway model. The kinetic modeling of

flows through short tubes is described in Sections 6.2 - 6.4 while the corresponding results

including the deduced flow rate, discharge coefficient, thrust the impulse factor in terms of

flow and geometric parameters as well as the effects of the internal degrees of freedom on the

aforementioned quantities are presented in Section 6.8.

The study is extended in the case of polyatomic gas flows through tubes of infinite length

under a given small pressure gradient (Poiseuille flow) or a small temperature gradient (Thermal

creep flow) based on the Rykov kinetic model. The simulation results are compared to available

numerical results for nitrogen in [106]. Also, the thermomolecular pressure effect in polyatomic

gases is considered and the simulation results are compared with corresponding experimental

data in literature [152]. The formulation of the problem for long tubes is described in Sections

6.5 - 6.7 while the corresponding results are given in Section 6.9.

6.2 Pressure driven polyatomic flows through short tubes

In the case of short tubes the assumption of constant density at each cross-section is not

valid and the flow becomes two- or three-dimensional. As a consequence, the complete geometry

must be simulated, including a part of the reservoirs before and after the tube. Thus, the flow of

polyatomic gas through a tube of radius R and finite length L is considered. The tube connects

two large reservoirs A and B, which are maintained at constant pressures P̂A and P̂B, with

P̂B/P̂A = 0.01. The walls and the gas in the container areas far from the tube are maintained

at the same temperature TA = TB = T0. The computational domain consists of two large

computational areas, which correspond to the upstream and downstream reservoirs including

an intermediate area which contains the tube. The flow configuration and the computational

domain are shown in Fig. 6.1.
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Figure 6.1: Flow configuration and computational domain.

6.3 Governing equations and macroscopic quantities

The investigation is based on the description of the state of a polyatomic gas using the

distribution function f̂
(
r̂, ẑ,υ, Î

)
, which is a function of the spatial coordinates r̂ and ẑ, the

molecular velocity vector υ = (ξ cos θ, ξ sin θ, ξz), where ξ2 = ξ2x + ξ2y and θ = tan−1 (ξy/ξx), and

the rotational motion energy Î. Since the investigation is limited to the case of pressure driven

flow the expected variation of temperature in the flow field is small and the nonlinear Holway

kinetic model is implemented. For the specific problem under consideration the computational

effort is reduced by eliminating, based on a projection procedure, the Î component of energy

by introducing the reduced distributions ĝ and ĥ as it was described in Chapter 2. Then, for

the present flow problem the Holway model may be written in dimensional form as [123, 153]

ξ cos θ
∂ĝ

∂r̂
− ξ sin θ

r̂

∂ĝ

∂θ
+ ξz

∂ĝ

∂ẑ
=
P̂tr
µtr

[
1

Z
(ĝrot − ĝ) +

(
1− 1

Z

)
(ĝtr − ĝ)

]
,

ξ cos θ
∂ĥ

∂r̂
− ξ sin θ

r̂

∂ĥ

∂θ
+ ξz

∂ĥ

∂ẑ
=
P̂tr
µtr

[
1

Z

(
ĥrot − ĥ

)
+

(
1− 1

Z

)(
ĥtr − ĥ

)]
,

ĝtr = n

(
m

2πkBTtr

)3/2

exp

[
−m(υ − û)2

2kBTtr

]
, ĥtr =

jkBTrot
2

ĝtr,

ĝrot = n

(
m

2πkBT

)3/2

exp

(
−m(υ − û)2

2kBT

)
, ĥrot =

jkBT

2
ĝrot,

(6.1)
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where 0 < Z−1 ≤ 1 is a parameter and j is the number of rotational degrees of freedom (j = 0

refers to monoatomic molecules, j = 2 for diatomic and linear polyatomic molecules and j = 3

for nonlinear polyatomic molecules). Also, n is the number density, P̂ is the pressure, û is the

velocity vector and T is the total (thermodynamic) temperature. The subscripts tr and rot

denote the translational and rotational parts.

The left reservoir conditions, i.e. the number density nA and pressure P̂A, with P̂A =

nAkBT0 from the ideal gas law, are chosen as reference quantities. Then, all quantities of

interest are non-dimensionalized according to

z =
ẑ

R
, r =

r̂

R
, ζ =

ξ

υ0
, cz =

ξz
υ0
, g =

ĝυ30
nA

, h =
ĥυ30

P̂A
,

ρ =
n

nA
, u =

û

υ0
, p =

P̂

P̂A
, τtr =

Ttr
T0
, τrot =

Trot
T0

, τ =
3τtr + jτrot

3 + j
,

(6.2)

where υ0 =
√

2kBT0/m, with m and kB denoting the molecular mass and the Boltzmann

constant respectively, being the most probable molecular speed.

It is seen that the distribution functions g = g (z, r, ζ, θ, cz) and h = h (z, r, ζ, θ, cz) are

five dimensional for the current problem and no projection in the velocity space is possible. the

final dimensionless form of the governing equations is

ζ cos θ
∂g

∂r
− ζ sin θ

r

∂g

∂θ
+ cz

∂g

∂z
= δ0ρ

√
τtr

[(
1− 1

Z

)
(gtr − g) +

1

Z
(grot − g)

]
,

ζ cos θ
∂h

∂r
− ζ sin θ

r

∂h

∂θ
+ cz

∂h

∂z
= δ0ρ

√
τtr

[(
1− 1

Z

)
(htr − h) +

1

Z
(hrot − h)

]
,

gtr =
ρ

(πτtr)
3/2

exp

[
−(c− u)2

τtr

]
, htr =

j

2
τrotgtr,

grot =
ρ

(πτ)3/2
exp

[
−(c− u)2

τ

]
, hrot =

j

2
τgrot,

(6.3)

where c = (ζ, θ, cz), with θ = [0, π] since the distribution function is axisymmetrical, is the
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dimensionless velocity vector in cylindrical coordinates and δ0 is the reference rarefaction pa-

rameter defined as

δ0 =
P̂AR

µ0υ0
, (6.4)

with µ0 being the reference viscosity at temperature T0. The rarefaction parameter is pro-

portional to the inverse Knudsen number, with the limiting values at δ0 = 0 and δ0 → ∞

corresponding to the free molecular and hydrodynamic limits respectively. It is noted that in

the derivations of the Eq. (6.3) the hard sphere model has been used and therefore the variation

of the viscosity is proportional to the square root of the temperature (µ/µ0 =
√
T/T0).

The macroscopic quantities of practical interest are obtained by the moments of g and h

for the problem examined here as [102]

ρ (z, r) = 2

∞∫
−∞

π∫
0

∞∫
0

ζgdζdθdcz, (6.5)

ur (z, r) =
2

ρ

∞∫
−∞

π∫
0

∞∫
0

ζ2 cos θgdζdθdcz, (6.6)

uz (z, r) =
2

ρ

∞∫
−∞

π∫
0

∞∫
0

ζczg dζdθdcz, (6.7)

τtr (z, r) =
4

3ρ

∞∫
−∞

π∫
0

∞∫
0

[
(ζ cos θ − ur)2 + (ζ sin θ)2 + (cz − uz)2

]
ζgdζdθdcz, (6.8)

τrot (z, r) =
4

jρ

∞∫
−∞

π∫
0

∞∫
0

ζh dζdθdcz, (6.9)

τ (z, r) =
3τtr (z, r) + jτrot (z, r)

3 + j
. (6.10)

An other quantity with practical interest is the mass flow rate Ṁ [Kg/s] defined as the rate of

movement of gas mass through a unit area. The dimensionless mass flow rate through the tube
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is given as

W =
Ṁ υ0√
πR2 P̂A

= 4
√
π

1∫
0

ρ (L, r) uz (L, r) rdr. (6.11)

For a typical micronozzle, thrust F̂t [N] and impulse factor ÎSP [s] are essential parameters

in order to describe its performance and efficiency. The specific impulse is a measure of the

impulse per unit of gas flow that is expended, while thrust is a measure of the momentary force

supplied by a particular propulsion system. A higher number of impulse factor means better

performance, since the less gas flow is needed to gain a given amount of momentum. Both

quantities, thrust and impulse factor, should be investigated while the efficiency of a propulsion

system is examined. Dimensionless thrust Ft and thrust per unit mass flow rate ISP are defined

as [154]

Ft =
F̂t

πR2 P̂A
= 2

1∫
0

[
2ρ (L, r) u2z (L, r) + p (L, r)

]
r dr (6.12)

and

ISP =
ÎSPgr

√
m√

2πkBT0
=
Ft
W
, (6.13)

where gr = 9.81 m/s2 is the gravity acceleration and p = ρτ is the dimensionless pressure.

Furthermore, the discharge coefficient Cd is calculated, which is defined as [154]

Cd =
Ṁ υ0

√
πR2 P̂A

√
2 π γ

(
2

γ+1

) γ+1
2(γ−1)

=
W

√
2πγ

(
2

γ+1

) γ+1
2(γ−1)

, (6.14)

where γ = (5 + j)/(3 + j) is the ratio of the specific heats of the gas. The discharge coefficient

is the ratio of the actual mass flow rate over the mass rate of flow of an ideal gas through an

isentropic nozzle. Another interesting parameter in such flows is the Mach number given by

Ma =
|û|
cs

=

√
2

γ
|u| , (6.15)

where cs =
√
γkBT0/m is the speed of sound and |u| =

√
u2r + u2z is the magnitude of u.

In Subsection 6.8.2 all the aforementioned quantities are calculated for a wide range of the

parameters characterizing the flow: the reference rarefaction parameter δ0, the channel aspect
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ratio L/R, the parameter Z and the number of the rotational degrees of freedom j.

6.4 Boundary conditions

To close the kinetic description of the flows through short tubes the formulation of the

boundary conditions is provided. For the open boundaries (A), (B), (F) and (G), a Maxwellian

distribution is supposed based on the local values of the pressure and temperature assuming

zero bulk velocity. The incoming distributions at the surfaces (A) and (B) in terms of the

distribution functions g and h are

g+ =
1

π3/2
exp

(
−c2

)
, h+ =

j

2

1

π3/2
exp

(
−c2

)
(6.16)

and at the surfaces (F) and (G) are

g+ =
PB
PA

1

π3/2
exp

(
−c2

)
, h+ =

PB
PA

j

2

1

π3/2
exp

(
−c2

)
. (6.17)

Furthermore, on the solid walls (C), (D) and (E) purely diffuse type boundary conditions are

considered. Then, the outgoing distributions from the surfaces (C), (D) and (E) can be written

as

g+ =
ρw
π3/2

exp
(
−c2

)
, h+ =

j

2

ρw
π3/2

exp
(
−c2

)
, (6.18)

where the parameters ρw are given by the no-penetration condition at the walls (unormal = 0).

More specifically, the parameters ρw at each wall are

C : ρw = 4
√
π

∞∫
0

π∫
0

∞∫
0

ζczg
−dζdθdcz,

D : ρw = 4
√
π

∞∫
−∞

π/2∫
0

∞∫
0

ζ2 cos θg−dζdθdcz,

E : ρw = −4
√
π

0∫
−∞

π∫
0

∞∫
0

ζczg
−dζdθdcz,

(6.19)
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where the superscript (-) denotes the incoming distributions at the surfaces. Finally, specular

reflection is imposed at r = 0 due to the axial symmetry

g+ (0, z, ζ, θ, cz) = g− (0, z, ζ, π − θ, cz) , (6.20)

for angles in θ ∈ [0, π/2].

Summarizing, the formulation of the flow through short tubes is described by the kinetic

equations (6.3) coupled by the macroscopic quantities (6.5)-(6.10) and subject to the boundary

conditions (6.16)-(6.20). The set of integro-differential Eq. (6.3) with the boundary conditions

Eq. (6.16)-(6.20) are solved numerically discretizing in the physical space by the control volume

approach and in the molecular velocity space by the discrete velocity method. The macroscopic

quantities are computed by Gauss-Legendre quadrature in the velocity magnitudes and trape-

zoidal rule in the polar angles. It is noted that due to the very large computational effort the

physical grid refinement technique is applied, which is described as follows: Initially, the phys-

ical mesh is uniformly distributed with only 10 intervals per unit length in each direction. The

simulation is performed with this grid and, after convergence has been reached, it is repeated

in a refined mesh, where the number of intervals at each physical direction has been doubled,

using the previous solution as an initial condition. This procedure is repeated until the final

number of nodes has been reached in order to avoid a large number of iterations for the dense

grid. The implemented algorithm has been extensively applied in previous works to solve with

considerable success non-linear flows of monatomic gases through short tubes due to pressure

and temperature gradients [102, 155]. Therefore, a detailed description of the numerical algo-

rithm is omitted, since it can be found in [102, 156]. Finally, the iteration process is terminated

when the convergence criteria

1

4K

K∑
i=1

[∣∣∣ρ(t+1)
i − ρ(t)i

∣∣∣+
∣∣∣τ (t+1)
i − τ (t)i

∣∣∣+
∣∣∣u(t+1)
z,i − u(t)z,i

∣∣∣+
∣∣∣u(t+1)
r,i − u(t)r,i

∣∣∣] < ε, (6.21)

with t denoting the iteration index and K the number of nodes in the physical space, is fulfilled,

while the termination parameter is set to ε = 10−9.
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6.5 Pressure and temperature driven polyatomic flows

through long tubes

A polyatomic gas flow through a long circular tube with radius R connecting two large

reservoirs A and B is considered. The reservoir A is maintained at constant pressure and

temperature P̂A and TA respectively, while the reservoir B is maintained at constant pressure

and temperature P̂B and TB respectively, with P̂A > P̂B and TA < TB. Moreover, the pressure

and temperature differences are assumed to be small compared to their arithmetic means

P̂A − P̂B �
P̂A + P̂B

2
, TA − TB �

TA + TB
2

. (6.22)

The flow configuration is shown in Fig. 6.1. When the reservoirs are maintained at different

temperatures in order to mantain the temperature difference the gas begins to move from the

cold vessel to the hot one even when there is no pressure drop. This phenomenon is called the

thermal creep. If the system is closed, a pressure drop is established between the vessels. The

pressure drop causes a gas flow which is opposite to the thermal creep so that the whole mass

flow through the capillary vanishes in the stationary state. This is the so-called thermomolecular

pressure effect. The thermomolecular pressure effect has been investigated for monatomic gases

in [157], while the corresponding work in polyatomic gases is not available. Here the aim is to

investigate the thermomolecular pressure effect in polyatomic gases based on the assumptions

of the long tube (R� L) and of the small pressure and temperature differences. The study is

based on the Rykov kinetic model, since this model can describe correctly the isothermal and

nonisothermal polyatomic gas flow simultaneously for any rarefaction level of the gas.

6.6 Linearization for long tubes

By taking (R � L) the flow is considered as fully developed, and then, end effects at

the inlet and the outlet of the channel are ignored. In addition, due to the small pressure and

temperature differences assumed here in the flow direction the problem can be linearized as
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[17, 106]

ĝ = f̂ (M)
w (1 + L) , ĥ =

j

2
kBTwf̂

(M)
w (1 +H) , (6.23)

with

f̂ (M)
w = nw

(
m

2πkBTw

)3/2

exp

(
−mυ2

2kBTw

)
, (6.24)

where L (r̂,υ) and H (r̂,υ) are the unknown linearized distribution functions, 0 ≤ r̂ ≤ R is the

radial spatial coordinate and υ = (ξ cos θ, ξ sin θ, ξz), with θ = tan−1 (ξy/ξx), is the molecular

velocity vector in cylindrical coordinates. It is noted that the unknown linearized distribution

functions L and H are independent of the longitudinal coordinate ẑ. The ẑ− dependence enters

implicitly in the local-Maxwellian function f̂
(M)
w , since the number density nw, the temperature

Tw and the pressure P̂w = nwkBTw depend on the longitudinal coordinate ẑ− direction and are

constant at each cross section. In addition, at each cross section the translational, rotational

and total temperatures are equal to each other and equal to Tw (Ttr = Trot = T = Tw).

The equations for the perturbation functions L and H can be written as [17, 46, 106]

ξ cos θ
∂L

∂r̂
− ξ sin θ

r̂

∂L

∂θ
= v (L0 − L)− ξz

d ln P̂w
dẑ

− ξz
(

mυ2

2kBTw
− 5

2

)
d lnTw
dẑ

,

ξ cos θ
∂H

∂r̂
− ξ sin θ

r̂

∂H

∂θ
= v (H0 −H)− ξz

d ln P̂w
dẑ

− ξz
(

mυ2

2kBTw
− 3

2

)
d lnTw
dẑ

,

L0 = 2
mξzûz
2kBTw

+

(
$0 − 1

Z
+ 1

)
2

15
Qtr

mξz

P̂wkBTw

(
mυ2

2kBTw
− 5

2

)
,

H0 = 2
mξzûz
2kBTw

+

(
$0 − 1

Z
+ 1

)
2

15
Qtr

mξz

P̂wkBTw

(
mυ2

2kBTw
− 5

2

)
+

(
$1 − 1

Z
+ 1

)
(1− κ)Qrot

2mξz

jP̂wkBTw
,

(6.25)

where v = P̂w/µ(Tw) is the collision frequency, µ(Tw) is the viscosity at temperature Tw, Z−1

is a parameter which indicates the fraction of the rotational collisions of their total number,

j is the number of the rotational degrees of freedom taking the values 2 and 3 for linear and

nonlinear polyatomic molecules. Also, the parameters $0 and $1 are determined in order

to obtain the correct translational and rotational thermal conductivity coefficients from the
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Eqs. (3.15) and (3.16), while κ is a constant which for a power intermolecular potential varies

between the values of 1/1.2 for hard spheres and 1/1.543 for Maxwell molecules. Furthermore,

following similar manipulations as for the Eqs. (6.25), the velocity ûz, the translational heat

flux Qtr and the rotational heat flux Qrot in terms of the perturbation functions L and H are

obtained as

ûz (r̂) =
1

nw

∞∫
−∞

2π∫
0

∞∫
0

ξξzf̂
(M)
w Ldξdθdξz, (6.26)

Qtr (r̂) =
m

2

∞∫
−∞

2π∫
0

∞∫
0

ξξz

(
υ2 − 5kB

m
Tw

)
f̂ (M)
w Ldξdθdξz, (6.27)

Qrot (r̂) =
jkBTw

2

∞∫
−∞

2π∫
0

∞∫
0

ξξzf̂
(M)
w (H − L) dξdθdξz, (6.28)

where m is the molecular mass and kB is the Boltzmann constant. The Eqs. (6.25)-(6.28) hold

true in any cross section of the tube. Taking the values of the macroscopic parameters in a

certain cross section ẑ = ẑ0 as reference quantities the following non-dimensional quantities are

introduced

r =
r̂

R
, ζ =

ξ

υ0
, cz =

ξz
υ0
, f (M)

w =
f̂
(M)
w υ30
n0

, uz =
ûz
υ0
, qtr =

Qtr

P̂0υ0
, qrot =

Qrot

P̂0υ0
, (6.29)

with υ0 =
√

2kBT0/m and P̂0 = n0kBT0 being the most probable molecular speed and the

reference pressure respectively. It is obvious that n0 = nw, T0 = Tw and P̂0 = P̂w. The problem

can be further simplified eliminating the variable cz introducing the following integrals

F =
1√
π

∞∫
−∞

Lcz exp
(
−c2z

)
dcz, (6.30)

G =
1√
π

∞∫
−∞

Lc3z exp
(
−c2z

)
dcz, (6.31)
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S =
1√
π

∞∫
−∞

Hcz exp
(
−c2z

)
dcz. (6.32)

Then the system of equations (6.25) is rewritten as

ζ cos θ
∂F

∂r
− ζ sin θ

r

∂F

∂θ
= δ0 (F0 − F )− 1

2

[
XP +

(
ζ2 − 1

)
XT

]
,

ζ cos θ
∂G

∂r
− ζ sin θ

r

∂G

∂θ
= δ0 (G0 −G)− 3

4

(
XP + ζ2XT

)
,

ζ cos θ
∂S

∂r
− ζ sin θ

r

∂S

∂θ
= δ0 (S0 − S)− 1

2

(
XP + ζ2XT

)
,

F0 = uz +

(
$0 − 1

Z
+ 1

)
2

15
qtr
(
ζ2 − 1

)
,

G0 =
3uz
2

+

(
$0 − 1

Z
+ 1

)
1

5
qtrζ

2,

S0 = uz +

(
$0 − 1

Z
+ 1

)
2

15
qtr
(
ζ2 − 1

)
+

(
$1 − 1

Z
+ 1

)
(1− κ)

2qrot
j

,

(6.33)

while the macroscopic quantities uz, qtr and qrot are given by

uz =
1

π

2π∫
0

∞∫
0

ζF exp
(
−ζ2

)
dζdθ, (6.34)

qtr =
1

π

2π∫
0

∞∫
0

ζ

[
F

(
ζ2 − 5

2

)
+G

]
exp

(
−ζ2

)
dζdθ, (6.35)

qrot =
j

2π

2π∫
0

∞∫
0

ζ(S − F ) exp
(
−ζ2

)
dζdθ, (6.36)

while the total heat flux is defined as q = qrot + qtr. In Eq. (6.33) the parameter δ0 is the

rarefaction parameter defined as

δ0 =
P̂0R

µ0υ0
(6.37)
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and the parameters XP and XT are the dimensionless pressure and temperature gradients which

are determined by the following formulas

XP =
R

P̂w

∂P̂w
∂ẑ

, XT =
R

Tw

∂Tw
∂ẑ

. (6.38)

The gas-wall interaction is modeled by the Maxwell diffuse-specular reflection condition [17].

At the boundaries we have

ĝ+ = αM f̂
(M)
w + (1− αM) ĝ−, ĥ+ = αM

j

2
kBTwf̂

(M)
w + (1− αM) ĥ−, (6.39)

where ĝ+, ĥ+ and ĝ−, ĥ− are the distributions representing particles departing and arriving

at the wall, respectively, while f̂
(M)
w is the Maxwellian defined by the wall temperature. The

parameter αM is the so-called tangential momentum accommodation coefficient and denotes

the portion of the particles reflecting diffusively from the wall. Applying the above described

procedure (nondimensionalization, linearization, projection) the boundary conditions for the

reduced distribution functions F , G and S at r = 1 become [17]

F+ (1, ζ, θ) = (1− αM)F− (1, ζ, π − θ) ,

G+ (1, ζ, θ) = (1− αM)G− (1, ζ, π − θ) ,

S+ (1, ζ, θ) = (1− αM)S− (1, ζ, π − θ) ,

(6.40)

while at r = 0 using the symmetry condition become

F+ (0, ζ, θ) = F− (0, ζ, π − θ) ,

G+ (0, ζ, θ) = G− (0, ζ, π − θ) ,

S+ (0, ζ, θ) = S− (0, ζ, π − θ) .

(6.41)

Boundary conditions (6.40) and (6.41) are valid for θ ∈ [π/2, 3π/2] and θ ∈ [−π/2, π/2] respec-

tively.
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The linear integrodifferential equation (6.33), supplemented by the corresponding macro-

scopic quantities (6.34)-(6.36) and subject to the boundary conditions (6.40) and (6.41), are

solved numerically. The implemented numerical scheme has been described, in detail, for chan-

nels with circular, rectangular, and triangular cross sections in the case of monatomic gases

in a series of previous works [146–148]. In all cases, the kinetic equation is discretized in the

molecular velocity space by the discrete velocity method and in the physical space by typical

finite difference scheme. Then, the discretized equations are solved in an iterative manner.

The kinetic solution depends on three dimensionless parameters, namely, the reference

rarefaction parameter δ0, the accommodation coefficient αM and the parameter Z. Moreover, in

the Rykov model the parameters $0, $1 and κ ,depending on the working gas, must be specified

as it has already been described previously. Based on the kinetic solution, several overall

macroscopic quantities of practical interest may be deduced. The main calculated quantities

are the dimensionless mass (W ) and heat (E) flow rates, which are defined as

W =
Ṁυ0

πR2P̂0

= 4

1∫
0

uzrdr (6.42)

and

E =
2Ė

πR2P̂0υ0
= 4

1∫
0

qrdr, (6.43)

where Ṁ [Kg/s] and Ė [J/s] are the dimensional mass and heat flow rates respectively. In

polyatomic gases the dimensionless heat flow rate (E) can be written as a sum of the two heat

flow rates, one related to the translational degrees of freedom and the other related to the

rotational degrees of freedom

E = Etr + Erot, Etr = 4

1∫
0

qtrrdr, Erot = 4

1∫
0

qrotrdr. (6.44)
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Based on the assumption of the small pressure and temperature differences the flow rates (W )

and (E) can be split in two parts [17]

W = −WPXP +WTXT , E = EPXP − ETXT , Ei = Etr,i + Erot,i, i = P, T. (6.45)

Here the coefficients WP , Etr,P and Erot,P are obtained by solving the Poiseuille problem

(XP = 1, XT = 0), while for the coefficients WT , Etr,T and Erot,T the thermal creep flow (XP = 0,

XT = 1) is solved. It is noted that the dimensionless mass flow rate (WT ) due to temperature

difference can be obtained from the solution of the Poiseuille problem using the Onsager relation

[17]

WT = EP . (6.46)

Eq. (6.46) is used for benchmarking purposes in order to estimate the accuracy of the calcula-

tions.

6.7 Thermomolecular pressure effect

The thermomolecular pressure effect pointed out by Reynolds [159] and named by him as

thermal transpiration. Knudsen [158] continued the experimental investigations of the effect,

while Maxwell [122] gave some theoretical explanations of this phenomenon. The thermomolec-

ular pressure effect is very important due to its scientific importance including calculations of

the Eucken factor, rotational collision number and other thermal properties of polyatomic gases.

Furthermore, the thermomolecular pressure effect is useful in practice because in many studies

it is necessary to calculate the pressure P̂A in a reservoir maintained at temperature TA, from

a measured pressure P̂B in an other reservoir which is maintained at different temperature TB.

The pressures P̂A, P̂B and the temperatures TA, TB are related by the law [17, 157]

P̂B

P̂A
=

(
TB
TA

)γ
, (6.47)

where the coefficient γ depends on many parameters: length-to-radius ratio of the tube, type

of the gas, nature of the gas-surface interaction, etc. It is noted that the coefficient γ depends
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strongly on the rarefaction parameter δ0 given by Eq. (6.37). If the pressure and temperature

drops are small according to Eq. (6.23) the coefficients WP and WT do not vary along the tube.

Then, the coefficient γ is calculated setting W = 0 in Eq. (6.45)

γ =
WT

WP

. (6.48)

Under small temperature and pressure differences, the coefficients WP and WT are taken for

any value of the rarefaction parameter between its values at the inlet (ẑ = 0) and at the outlet

(ẑ = L) of tube.

6.8 Results and discussion of flows through short tubes

Calculations have been carried out in the range of the rarefaction parameter δ0 from 0

to 10, i.e. in the free molecular and transition regimes and for L/R = 1 and 5. The limits

of the variation of the parameter Z in a shock wave are 1 and 5, so the choice of Z = 3 for

the problem under question is reasonable. Some indicative simulations have been performed

for Z = 6 showing very small effect on the calculated quantities. The presented results have

been obtained for purely diffuse boundary conditions and the HS model. All the discretization

parameters used are displayed in Table 6.1. It is noted that the supercomputing facility of

Helios in Japan provided the computational resources for the simulations. Tabulated results

for macroscopic quantities as well as plotted results for the distribution of various macroscopic

quantities are presented in Subsection 6.8.1. In Subsection 6.8.2 the quantities appearing in

the parametric study on propulsion performance of micro tubes are shown. Also, the influence

of the rotational degrees of freedom is investigated and the differences-similarities compared to

the corresponding monatomic modelling are pointed out.
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Table 6.1: Discrete velocity algorithm numerical parameters

Initial number of nodes per unit length in each direction 10
Number of grid levels 4
Final nodes per unit length Nx = Nr 80
Discrete angles in (0, π) 160
Discrete magnitudes 16× 16
Convergence criterion < 10−9

Container sizes 15× 15

6.8.1 Flow rates and field distributions

In Table 6.2 the dimensionless flow rate W for j = 0, 2, 3 (j = 0 refers to monatomic

gases) is given. It is noted that the simulation for j = 0 has been performed based on the BGK

model for monatomic gases. Clearly, the effect of the internal degrees of freedom on the gas

flow rate is very small for all values of the rarefaction parameter and for both L/R = 1 and

5. It is noted however that for δ0 = 1 and 10, W is decreased as j is increased. Also, W is

increased as the length of the channel is decreased and the rarefaction parameter is increased.

More specifically, the flow rate for δ0 ∈ [0.1, 1] increases very slowly and then more rapidly for

δ0 ∈ [1, 10]. Additional simulations have been performed with Z = 6 for δ0 = 1 and L/R = 1

and 5 showing that the mass flow rate does not change more than 0.1%.

In Fig. 6.2 the distributions of the Mach number along the symmetry axis r = 0 for

L/R = 1 and 5 at δ0 = 10 are shown. The Mach number far upstream is almost zero and is

increased in the region just before the tube, while after the tube it is rapidly decreased. It

is seen that as the number of the internal degrees of freedom is increased the Mach number

is increased due to the decrease of the ratio of the specific heat while the magnitude of the

velocity vector in the two types of gas is almost the same.

In Fig. 6.3 the distributions of the dimensionless axial velocity, pressure, and temperature

along the symmetry axis r = 0 for δ0 = 0.1 and 10 with L/R = 1 are shown. In Fig. 6.4 the

corresponding results for L/R = 5 are presented. Starting with the pressure variation, it is seen

that far upstream is equal to one, then it is rapidly decreased through the tube and finally after

the tube it gradually approaches the far downstream conditions. As expected the axial velocity
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has the same behavior with the Mach number. The maximum value of the velocity is increased

as δ0 is increased. The axial velocity and the pressure profiles in polyatomic gases (j = 2, 3)

are quantitatively very close to corresponding profiles for monatomic gases. The temperature

equals unity in most of the domain, while inside the tube is decreased. The minimum value

of the temperature distribution is decreased as the rarefaction of the gas is increased and the

ratio L/R is increased. In the case of polyatomic gases the translational τtr and total τrot

temperatures have the same qualitative behavior with the temperature of the monatomic gas.

The rotational temperature τrot is maintained almost constant in the whole domain for small

δ0, but as the rarefaction level of the gas is decreased it is also decreased in the same way as

the translational and total temperatures.

Distributions of the dimensionless axial velocity and temperatures in the radial direction

at the middle (z = L/2R) of the tube are shown in Fig. 6.5 for δ0 = 1 and δ0 = 10 with L/R = 1.

As expected, the velocities follow a parabolic type shape having minimum and maximum values

at the wall and at the center of the tube, respectively. The velocity profiles of diatomic gases

(j = 2) are almost identical with the corresponding monatomic profiles. The corresponding

temperature profiles are also shown. In all cases a temperature drop across the tube (radial

direction) is observed. For δ0 = 1, the translational temperature of a diatomic gas is close to

the corresponding temperature of a monatomic gas, while the rotational temperature is kept

almost constant. For δ0 = 10, the translational temperature of a diatomic gas is higher than

the temperature of a monatomic gas, while the rotational temperature is not constant anymore

and it is reduced moving from the wall towards the center of the tube.

For completeness purposes in Fig. 6.6, a more complete picture of the flow field is provided

for L/R = 1. Isolines of the number density, axial velocity and temperatures (translational,

rotational and total) along with the streamlines are plotted for δ0 = 0.1 and δ0 = 10. It is

seen that the structure of the flow field between rarefied and dense atmospheres is different. At

δ0 = 0.1 the density is almost symmetric with regard to the y axis, while at δ0 = 10 there is

no symmetry. Also, as the atmosphere becomes more dense, the flow accelerates faster and the

maximum axial velocity is increased. Furthermore, the ray effect are quite strong in the low

rarefaction fields due to the discontinuities of the distribution function. For both values of δ0 the
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translational and total temperatures are decreased slightly inside the channel and more intense

at the outlet of the tube. However, the rotational temperature remains constant at δ0 = 0.1,

while at δ0 = 10 is decreased in the same way as the translational and total temperatures as it

has been already observed in Fig. 6.3.

6.8.2 Propulsion characteristics of micro-tubes

In Table 6.2 the variation of the dimensionless thrust Ft, the impulse factor ISP and

the discharge coefficient Cd in terms of the rarefaction parameter δ0 and the ratio L/R is

presented. The thrust is increased as the rarefaction parameter δ0 is increased and the ratio L/R

is decreased. It is clear that the propulsion efficient is increased as the tube length is decreased.

Similarly to the flow rates, the rotational degrees of freedom and the parameter Z have a small

effect on the values of Ft. It is seen however, that as j is increased Ft is slightly increased. As

the flow becomes more rarefied, ISP is decreased. The increment of the rotational degrees of

freedom leads to an increment of the impulse factor. This is well expected since the impulse

factor is defined as the ratio of the thrust over the flow rate, with the former one increasing and

the latter one decreasing as j is increased. The discharge coefficient Cd decreases by increasing

the tube ratio L/R, while for fixed L/R, Cd is increased as δ0 is increased. In addition, as the

rotational degrees of freedom are increased from zero to two and then to three the coefficient Cd

is increased. This is due to the fact that the ratio of the specific heats of the gas is decreased as

j is increased, taking also into account that the flow rates of the two types of gases are about

the same. Overall it may be concluded that the propulsion characteristics of polyatomic gas

expansion through micro-tubes are slightly improved compared to the corresponding ones in

the case of monatomic gases.

In order to facilitate comparisons with experiments, in Fig. 6.7 the dimensional mass

flow rate Ṁ [Kg/s], thrust F̂t [N] and impulse factor ÎSP [s] are presented in terms of the

reference pressure P̂A [Pa] for two monatomic gases (He, Ne), one diatomic gas (N2) and for

one polyatomic gas (CH4). The length and the radius of the tube is L = R = 0.05 cm. The

reference temperature is T0 = 295 K. As it is seen as the molecular weight of the gas is decreased

the mass flow rate is also decreased. This behaviour is well expected because from Eq. (6.11) the
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mass flow rate is proportional to the square root of the molecular mass for the same pressure,

temperature and dimensionless mass flow rate W . The thrust F̂t is almost independent of the

gas and depends only on the pressure. Both quantities, mass flow rate and thrust, are increased

as the reference pressure is increased and the atmosphere becomes more dense. Finally, the

impulse factor changes slightly with the pressure and depends strongly on the working gas.

This is justified by the fact that the dimensional impulse factor is inversely proportional to the

square root of the molecular mass and depends slightly on the molecular structure as it is seen

on Table 6.2. Similar qualitatively behaviour is observed for L = 5R = 0.25 cm, therefore the

corresponding figures are omitted.

6.9 Flow rates and thermomolecular pressure effect in

long tubes

The problem of the fully developed flows of polyatomic gases through long tubes depends

on the parameter Z, the rarefaction parameter δ0, the number of the rotational degrees of

freedom j, the parameter κ and on the tangential momentum accommodation coefficient αM .

The main calculations were carried out for Z = 1 and 5 and for δ0 ∈ [0, 100]. Values for

the parameter κ for various polyatomic gases are given in [120], while for a given κ and Z

the quantities $0 and $1 are chosen according to Eqs. (3.15) and (3.16). Three typical values

of the accommodation coefficient αM have been examined namely 0.5, 0.8 and 1. Depending

on the value of rarefaction parameter δ0, the discretization has been progressively refined to

ensure grid independent results up to several significant figures. The presented results are for

400 angles in [0, π], 800 nodes in radial direction and for 80 discrete magnitudes.

A comparison with the numerical results in [106] is performed in Tables 6.3 and 6.4 for

N2 (j = 2, $0 = 0.2354, $1 = 0.3049, κ = 0.645) and various values of δ0, with αM = 1. The

dimensionless mass and heat flow rates under pressure (XP = 1, XT = 0) and temperature

(XP = 0, XT = 1) gradients, based on the Rykov kinetic model, for Z = 1 and 5 are provided.

In this case of the pressure driven flow, the heat flow due to the rotational degrees of freedom

is always 0 (Erot,P = 0) [106]. As it is seen the comparison between the present results and the
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corresponding results in [106] is very good with the relative error being less than 1%. Also the

Eq. (6.46) is clearly fulfilled in the whole range of δ0. Overall, the accuracy of the numerical

results is clearly demonstrated.

In order to examine the effect of the rotational degrees of freedom in Tables 6.5 and 6.6 the

corresponding mass flow and heat flow rates are shown for the linear polyatomic CO2 (j = 2)

and for the nonlinear polyatomic gas CH4 (j = 3). For completeness and comparison purposes,

the corresponding results obtained by the Shakhov model for monatomic gases are also given.

The parameter κ for CO2 and CH4 is taken equal to 0.633 and 0.690 respectively [120]. Values of

$0 and $1 for CO2 (Z = 1 : $0 = 0.549, $1 = 1.373; Z = 5 : $0 = 0.618, $1 = 1.451) and for

CH4 (Z = 1 : $0 = 0.288, $1 = 1.462; Z = 5 : $0 = 0.446, $1 = 1.554) are chosen according

to Eqs. (3.15) and (3.16). It is seen that the mass flow rates WP are very close to those obtained

by the Shakhov model for all values of the rarefaction parameter δ0. However, the effect of the

rotational degrees of freedom on the heat flow EP is greater and amounts to 20−30% at Z = 1

and moderate values of the rarefaction parameter. Independently of the parameter δ0, with

increase in Z the mass WP and heat EP flow rates approach the corresponding values obtained

by the Shakhov model. The results for WT are omitted since heat flow rates in Poiseuille

flow are identical to the mass flow rates in thermal creep flows. As with Poiseuille flow, Etr,T

increases as Z is increased. However, Erot,T increases as Z decreases because the rotational

thermal conductivity increases with decreasing Z [46]. The heat flow ET = Etr,T + Erot,T of

the linear polyatomic gases (N2, CO2) can be higher about 30 − 40% than the corresponding

monatomic heat flow, while this difference in the case of nonlinear polyatomic gas (CH4) can

reach 50 − 65%. Furthermore, the rotational heat flow rate of nonlinear polyatomic gases is

higher about 40 − 50% than the heat flow of the linear polyatomic gases. It is noted that

the rotational heat flow rates of nonlinear polyatomic gases are one-and-a-half times larger

than those of diatomic gases, provided the values of Z, $0, $1, κ for diatomic and nonlinear

polyatomic gases are the same.

The effect of the tangential momentum accommodation coefficient αM on the flow rates

is shown on Tables 6.7 and 6.8. Two values of the tangential momentum accommodation

coefficient namely αM = 0.5 and αM = 0.8 are considered. It is noted that the values of the

149

Institutional Repository - Library & Information Centre - University of Thessaly
20/05/2024 01:12:25 EEST - 13.59.53.151



Section 6.10

parameters $0 = 0.2354, $1 = 0.3049 and κ = 0.645 are the same with those used in the

simulations of N2 for αM = 1 (Tables 6.3 and 6.4). It is seen that as αM is decreased the mass

flow rates in the Poiseuille flow and the heat flow rates in the thermal creep flow are increased

for all values of the rarefaction parameter δ0. However, the heat flow rate EP in Poiseuille

flow for large values of the rarefaction parameter (δ0 > 1) is decreased as αM decreases. All

these observations have been already mentioned for monatomic gases in literature [17, 157]. It

is noted that the results for αM 6= 1 are qualitatively similar with those obtained for αM = 1

regarding the effect of internal degrees of freedom on the mass and heat flow rates for both

types of flow.

Next, the thermomolecular pressure effect in the case of polyatomic gases with rotational

degrees of freedom is investigated in a wide range of rarefaction parameter δ0 from 0 to 30.

In Fig. 6.8 the numerical results for the coefficient γ are given in terms of the rarefaction

parameter δ0. Two gases are examined namely N2 and CH4 with 2 and 3 rotational degrees of

freedom respectively. The results are provided for two indicative values Z = 1 and 5, while the

parameters $0, $1 and κ are chosen to be the same with those given in Tables 6.3 - 6.6 for

N2 and CH4. Also in Fig. 6.8, for comparison purposes the results obtained from the Shakhov

model for monatomic gases are shown. As it seen the coefficient γ of N2 is almost the same

with those obtained for CH4 independently of the parameter Z. Also, it is deduced that for

moderate values of the rarefaction parameter δ0 the coefficient γ = EP/WP of monatomic gases

is higher than the corresponding one of polyatomic gases. The highest differences can reach

30− 40% at Z = 1. It is noted that at δ0 = 0 the results obtained by the monatomic modeling

and the corresponding polyatomic ones coincide. Furthermore, as the parameter Z is increased

the differences between monatomic and polyatomic calculations on γ are decreased.

A comparison with experimental data in [152] is performed in Fig. 6.9. The working gas

is N2, while the temperature is T = 544 K. The parameters Z and κ for N2 at T = 544 K

are taken equal to 3.513 and 0.752 respectively. Then based on the Eqs. (3.15) and (3.16) we

obtain $0 = 0.499 and $1 = 1.967. As it is seen very good agreement is observed between the

simulations and experiments in the whole range of the rarefaction parameter.
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6.10 Concluding remarks

The nonlinear polyatomic flows through short and long tubes have been investigated.

The nonlinear flows through short tube due to small pressure differences (P̂B/P̂A = 0.01) have

been studied based on the Holway kinetic model subject to Maxwell boundary conditions. The

quantitative behaviour of all macroscopic quantities in terms of the rarefaction parameter δ0,

L/R and j are examined in detail. Also, the characteristic parameters of short tubes operating

as propulsion systems in the case of polyatomic gases have been computed. It is found that

the effect of the rotational degrees of freedom on the macroscopic quantities is small except

in the case of temperature distributions. It may be concluded that the overall propulsion

efficiency in the case of polyatomic gases compared to the one in monatomic gases is slightly

improved. The analysis has been extended to include pressure and temperature driven flows

through long tubes using the Rykov kinetic model. The very good agreement with available

numerical results in literature along with the successful comparison between simulations and

experiments demonstrate the validity of the modelling. It is shown that the main effect of the

rotational degrees of freedom exhibits itself in a flow under small temperature difference, while

the effect of the rotational degrees of freedom on the mass flow rates through long tubes in the

case of the small pressure differences is almost negligible. More specifically the heat flow of

the linear polyatomic gases (N2, CO2) can be higher about 30 − 40% than the corresponding

monatomic heat flow, while this difference in the case of nonlinear polyatomic gas (CH4) can

reach 50 − 65%. Finally, the thermomolecular pressure effect in the case of polyatomic gases

has been considered, showing that the coefficient γ = EP/WP of monatomic gases is higher

than the corresponding one of polyatomic gases. The highest differences can reach 30− 40% at

Z = 1.
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Table 6.2: Dimensionless flow rate W , thrust Ft, impulse factor ISP and discharge coefficient Cd in
terms of the rarefaction parameter and tube length to radius ratio.

j

δ0

0 0.1 1 10

L/R = 1 L/R = 5 L/R = 1 L/R = 5 L/R = 1 L/R = 5 L/R = 1 L/R = 5

W

0 0.6658 0.3071 0.6781 0.3099 0.7612 0.3344 1.070 0.5487

2 0.6658 0.3071 0.6779 0.3099 0.7598 0.3341 1.053 0.5435

3 0.6658 0.3071 0.6779 0.3099 0.7594 0.3341 1.049 0.5421

Ft

0 0.4500 0.2079 0.4591 0.2103 0.5215 0.2293 0.7623 0.3867

2 0.4834 0.2232 0.4925 0.2255 0.5546 0.2442 0.7859 0.4027

3 0.4918 0.2270 0.5009 0.2293 0.5629 0.2480 0.7922 0.4069

ISP

0 0.6759 0.6771 0.6771 0.6786 0.6852 0.6857 0.7123 0.7049

2 0.7261 0.7268 0.7265 0.7275 0.7300 0.7309 0.7463 0.7409

3 0.7386 0.7392 0.7388 0.7398 0.7413 0.7423 0.7556 0.7506

Cd

0 0.3658 0.1687 0.3725 0.1703 0.4182 0.1837 0.5879 0.3014

2 0.3879 0.1789 0.3950 0.1806 0.4427 0.1947 0.6136 0.3167

3 0.3945 0.1819 0.4017 0.1836 0.4500 0.1980 0.6213 0.3212
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Table 6.3: Dimensionless flow rates WP , EP and WT of N2 ($0 = 0.2354, $1 = 0.3049, κ = 0.645)
in the Poiseuille (XP = 1, XT = 0) and thermal creep (XP = 0, XT = 1) flows.

δ0
Z = 1 Z = 5

Present work [106] Present work [106]

WP

0 1.5045 1.4962 1.5045 1.4962
0.1 1.4051 1.4043 1.4082 1.4075
0.5 1.3896 1.3889 1.3982 1.3975
1 1.4619 1.4612 1.4731 1.4724
10 3.5662 3.5647 3.5737 3.5724
100 26.02 26.00 26.02 26.01

EP

0 0.7522 0.7424 0.7522 0.7424
0.1 0.6028 0.6008 0.6172 0.6156
0.5 0.4300 0.4288 0.4678 0.4666
1 0.3368 0.3356 0.3830 0.3820
10 0.0744 0.0742 0.0950 0.0948
100 0.0083 0.0082 0.0107 0.0108

WT

0 0.7523 0.7461 0.7523 0.7461
0.1 0.6029 0.6023 0.6171 0.6166
1 0.3367 0.3364 0.3831 0.3826
10 0.0743 0.0742 0.0950 0.0948
100 0.0083 0.0084 0.0107 0.0106

Table 6.4: Dimensionless heat flow rates (Etr,T , Erot,T ) of N2 ($0 = 0.2354, $1 = 0.3049, κ = 0.645)
in the thermal creep flow (XP = 0, XT = 1).

δ0

Z = 1 Z = 5
Present work [106] Present work [106]
Etr,T Erot,T Etr,T Erot,T Etr,T Erot,T Etr,T Erot,T

0 3.3852 1.5046 3.3608 1.4944 3.3852 1.5046 3.3608 1.4944
0.1 2.7964 1.2454 2.7878 1.2414 2.863 1.2772 2.8556 1.274
1 1.4246 0.622 1.4204 0.6202 1.6176 0.7116 1.6134 0.7098
10 0.2522 0.1052 0.2522 0.1052 0.3186 0.1322 0.3184 0.1332
100 0.027 0.0111 0.027 0.0112 0.0345 0.0143 0.0346 0.0142
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Table 6.5: Dimensionless flow rates WP and EP in the Poiseuille flow (XP = 1, XT = 0).

δ0

Rykov
ShakhovCO2 CH4

Z = 1 Z = 5 Z = 1 Z = 5

WP

0 1.5045 1.5045 1.5045 1.5045 1.5045
0.1 1.4067 1.4086 1.4054 1.4084 1.4090
1 1.4673 1.4748 1.4628 1.4740 1.4764
10 3.5696 3.5749 3.5667 3.5744 3.5761
100 26.02 26.02 26.02 26.02 26.02

WT=EP

0 0.7522 0.7522 0.7522 0.7522 0.7522
0.1 0.6101 0.6190 0.6040 0.6182 0.6208
1 0.3590 0.3898 0.3403 0.3868 0.3968
10 0.0837 0.0984 0.0758 0.0968 0.1020
100 0.0094 0.0111 0.0084 0.0110 0.0116

Table 6.6: Dimensionless heat flow rates (Etr,T , Erot,T ) in the thermal creep flow (XP = 0, XT = 1).

δ0

Etr,T Erot,T
ShakhovCO2 CH4 CO2 CH4

Z = 1 Z = 5 Z = 1 Z = 5 Z = 1 Z = 5 Z = 1 Z = 5
0 3.385 3.385 3.385 3.385 1.505 1.505 2.257 2.257 3.385

0.1 2.830 2.871 2.802 2.868 1.311 1.293 1.953 1.926 2.880
1 1.517 1.646 1.439 1.633 0.8329 0.7647 1.198 1.099 1.675
10 0.282 0.329 0.257 0.324 0.1822 0.1528 0.250 0.211 0.341
100 0.0304 0.0358 0.0275 0.0352 0.0200 0.0165 0.0272 0.0227 0.0372
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Table 6.7: Dimensionless flow rates WP and EP of N2 ($0 = 0.2354, $1 = 0.3049, κ = 0.645) in the
Poiseuille flow (XP = 1, XT = 0) for αM = 0.5 and αM = 0.8.

δ0
Z = 1 Z = 5

αM = 0.5 αM = 0.8 αM = 0.5 αM = 0.8

WP

0 4.514 2.257 4.514 2.257
0.1 3.695 2.000 3.708 2.005
0.5 3.340 1.889 3.359 1.901
1 3.328 1.936 3.345 1.949
10 5.394 4.031 5.401 4.038

WT=EP

0 2.257 1.128 2.257 1.128
0.1 1.266 0.798 1.334 0.824
0.5 0.631 0.498 0.722 0.551
1 0.414 0.364 0.493 0.421
10 0.0648 0.0706 0.0833 0.0905

Table 6.8: Dimensionless heat flow rates (Etr,T , Erot,T ) of N2 ($0 = 0.2354, $1 = 0.3049, κ = 0.645)
in the thermal creep flow (XP = 0, XT = 1) for αM = 0.5 and αM = 0.8.

δ0

Z = 1 Z = 5
αM = 0.5 αM = 0.8 αM = 0.5 αM = 0.8

Etr,T Erot,T Etr,T Erot,T Etr,T Erot,T Etr,T Erot,T
0 10.155 4.514 5.078 2.257 10.155 4.514 5.078 2.257

0.1 6.240 2.769 3.801 1.692 6.578 2.931 3.924 1.751
0.5 3.075 1.334 2.314 1.016 3.519 1.538 2.560 1.131
1 1.947 0.833 1.615 0.700 2.317 0.998 1.864 0.814
10 0.262 0.109 0.256 0.107 0.333 0.138 0.324 0.135
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Figure 6.2: Distributions of the Mach number for L/R = 1 (left) and L/R = 5 (right) with
δ0 = 10 along the symmetry axis.
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Figure 6.3: Dimensionless distributions of axial velocity (up), pressure (middle) and tempera-
tures (down) for δ0 = 0.1 (left) and δ0 = 10 (right) with L/R = 1 along the symmetry axis.
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Figure 6.4: Dimensionless distributions of axial velocity (up), pressure (middle) and tempera-
tures (down) for δ0 = 0.1 (left) and δ0 = 10 (right) with L/R = 5 along the symmetry axis.

158

Institutional Repository - Library & Information Centre - University of Thessaly
20/05/2024 01:12:25 EEST - 13.59.53.151



Section 6.10

Figure 6.5: Distributions of axial velocity (left) and temperatures (right) for δ0 = 1 (up) and
δ0 = 10 (down) with L/R = 1 at z = L/(2R).
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Figure 6.6: Diatomic gas flow (j = 2) through a tube for L/R = 1 and δ0 = 0.1 (left) and δ0 = 10
(right): isolines of axial velocity, number density and temperatures (translational, rotational and
total).

160

Institutional Repository - Library & Information Centre - University of Thessaly
20/05/2024 01:12:25 EEST - 13.59.53.151



Section 6.10

Figure 6.7: Dimensional mass flow rate Ṁ , Thrust F̂t and impulse factor ÎSP of various gases
with reference temperature T0 = 295 K through tube with L = R = 0.05 cm.
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Figure 6.8: Thermomolecular pressure effect γ as function of the rarefaction parameter δ0 for
N2, CH4 with Z = 1 and 5 and for monatomic gases.

Figure 6.9: Comparison between computational and experimental [152] measurements of the
thermomolecular pressure effect for N2 at T = 544 K.
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Chapter 7

Rarefied polyatomic gas flows driven

by adsorption

7.1 The sticking coefficient and the thermal accommo-

dation coefficient

Gas adsorption processes are present in many practical applications, as seen in literature

review. Due to mass transfer a gas adsorption flow is induced. Since in most cases the surface

temperature is lower (or much lower) than the gas temperature in the bulk flow, heat transfer

is also present. Thus, gas adsorption flow combines both mass and heat transfer. Actually, at

the boundary between the gaseous and condensed phase the difference between the distribution

function of impinging and re-emitted molecules creates a Knudsen layer [1] to be described by

kinetic equations. The modeling of such flows is commonly based on kinetic theory by applying

the Boltzmann equation or kinetic model equations [1] or alternatively the Direct Simulation

Monte Carlo Method (DSMC) [19].

In gas adsorption a fraction of molecules impinging to the surface is adsorbed (stick to

the surface), while the remaining fraction is re-emitted (reflected) into the gas. This fraction is

expressed in terms of the sticking coefficient αSC ∈ [0, 1] which is a measure of the probability

that a molecule landing on the surface will permanently stick on it and provides an indication
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of the effectiveness of gas removal from the system. The sticking coefficient is defined as [11]

αSC =
N̂− − N̂+

N̂−
, (7.1)

where N̂− and N̂+ are the particle fluxes impinging to and reflected from the surface respec-

tively. It may be estimated as a free parameter by matching experimental with corresponding

computational results characterizing a specific gas-surface set up (surface porosity, gas type,

gas and surface temperatures). Then, these estimates may be applied in deriving boundary

conditions for the simulation of adsorption processes in similar set-ups. Following this proce-

dure the sticking coefficients of several gases for cryopanels coated with activated carbon at

very low temperatures have been estimated [160, 161] and then, they have been applied in the

numerical modeling of cryopumps used in the main pumping systems of magnetic confinement

fusion reactors [116, 117].

It is noted that all available work is based on the assumption that the emitted particles

are in thermal equilibrium with the surface, i.e., the reflected particles have the same tem-

perature with that of the adsorption surface. In cases however, where the temperatures of

the surface and of the gas far from the surface differ significantly it is reasonable to argue

that the reflected particles are not fully thermally accommodated at the surface. This type of

gas-surface thermal interaction is modeled by the so-called thermal accommodation coefficient

αTAC [85]. Combining computational and experimental results it has been shown that it varies

as αTAC ∈ [0, 1] [84–86], while in light gases may be significantly less than one. For instance in

[84] the measured values of the thermal accommodation coefficient for He and D2 on polished

surfaces is about 0.4 and 0.5 respectively. Furthermore, in [162] it is observed that for light

gases the surface roughness effect on the thermal accommodation coefficient is in vicinity only

of 10 − 20%. Thus, it is reasonable to argue that even in rough surfaces imperfect thermal

accommodation may occur.
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Here, the thermal accommodation coefficient for that fraction of the incident molecular

stream which is reflected from the surface can be written as [144]

αTAC =
(1− αSC) Ê− − Ê+

(1− αSC) Ê− − Êw
. (7.2)

In Eq. (7.2), Ê− is the incident energy flux, Ê+ is the reflected energy flux and Êw is the energy

flux that would have been achieved if the reflected molecules were in thermal equilibrium with

the surface. For αSC = 0, the thermal accommodation coefficient is reduced to the typical

one introduced in purely heat transfer problems presented in Chapter 3 (αTAC = α). The first

step of the modeling of adsorption process is to consider an ideal one-dimensional steady flow

of a rarefied gas that is absorbed with given sticking and thermal accommodation coefficients

onto a planar wall. The corresponding analysis including the numerical results are presented

in Sections 7.2 - 7.5. Next, the modeling is extented to a 2D geometry which represents

the TIMO (Test facility for ITER Model pump) open panel experiment, conducted in the

TIMO-2 (Upgrade of the Test facility for ITER Model pump) test facility at KIT (Karlsruhe

Institute of Technology, Germany), aiming at gaining a deeper understanding of cryoadsorption

phenomena. Combining computational results with experimental data, the values of the sticking

coefficients of different gases are estimated, supporting decision making related to the design

of the cryogenic pumping system. The corresponding analysis, including representative results,

is presented in Sections 7.6. Finally, the concluding remarks of the present work are given in

Section 7.7.

7.2 Half space adsorption flow

Consider an ideal polyatomic gas occupying the half space x̂ > 0 bounded by a planar

infinite plate located at x̂ = 0, with x̂ being the coordinate which spans the direction normal

to the plate. The flow setup is shown in Fig. 7.1. The gas motion is generated by the adsorbing

plate maintained at uniform temperature Tw, while the mass and heat transfer between the gas

and the plate are characterized by the sticking coefficient αSC ∈ [0, 1] and thermal accommoda-

tion coefficient αTAC ∈ [0, 1]. Far upstream the gas is at local equilibrium at some temperature
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T∞ ≥ Tw flowing with some velocity û∞ in the negative x̂ direction. As shown in Fig. 7.1, the

flow is one-dimensional normal to the plate. The molecular velocity vectors υ = (ξx, ξy, ξz),

with ξx < 0 and ξx > 0 refer to incoming and outgoing particles. In spite of the simplicity of

the flow configuration the relationship among the flow parameters and their effect on the flow

bulk quantities have not been fully investigated yet.

In Section 7.3 the kinetic formulation of the gas 1D adsorption flow is presented while in

Section 7.4 a detailed description of the modeling of the gas-surface interaction is given. Then,

in the Section 7.5 the numerical results are presented.

Figure 7.1: Half-space flow configuration.

7.3 Basic equations

Applying the projection procedure in energy space, as described in Chapter 2, the adsorp-

tion polyatomic flow is governed by the steady-state one-dimensional Holway kinetic equation

given by

ξx
∂L̂

∂x̂
= ν

[(
1− 1

Z

)(
L̂tr − L̂

)
+

1

Z

(
L̂rot − L̂

)]
. (7.3)
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Here, the main unknown is the distribution functions L̂ (x̂,υ) =
[
ĝ (x̂,υ) , ĥ (x̂,υ)

]T
, with

υ = (ξx, ξy, ξz) being the molecular velocity vector, ν = P̂tr

/
µtr, where P̂tr is the local trans-

lational pressure defined by the translational temperature and µtr is the viscosity at local

translational temperature Ttr, is the total collision frequency and Z ∈ [1,∞) is a collision

parameter. The reference translational and rotational distribution functions in Eq. (7.3) are

given by L̂tr =
[
ĝtr, ĥtr

]T
and L̂rot =

[
ĝrot, ĥrot

]T
, where the components of these vectors are

as follows

ĝtr =
n

(2πRTtr)
3/2

exp

[
−(ξx − ûx)2 − ξ2y − ξ2z

2RTtr

]
, ĥtr =

jkBTrot
2

ĝtr,

ĝrot =
n

(2πRT )3/2
exp

[
−(ξx − ûx)2 − ξ2y − ξ2z

2RT

]
, ĥrot =

jkBT

2
ĝrot,

(7.4)

where j is the number of rotational degrees of freedom and R = kB/m is the gas constant with

m and kB being the molecular mass and the Boltzmann constant respectively. Also, the number

density n, the x̂-component of the bulk velocity ûx (the other two components are zero), the

translational temperature Ttr, the rotational temperature Trot and the total temperature T are

defined by the moments of ĝ and ĥ as follows:

n (x̂) =

∞∫
−∞

∞∫
−∞

∞∫
−∞

ĝdξxdξydξz (7.5)

ûx (x̂) =
1

n

∞∫
−∞

∞∫
−∞

∞∫
−∞

ξxĝdξxdξydξz (7.6)

Ttr (x̂) =
m

3nkB

∞∫
−∞

∞∫
−∞

∞∫
−∞

[
(ξx − ûx)2 + ξ2y + ξ2z

]
ĝdξxdξydξz (7.7)

Trot (x̂) =
2

jnkB

∞∫
−∞

∞∫
−∞

∞∫
−∞

ĥdξxdξydξz (7.8)

T (x̂) =
3Ttr (x̂) + jTrot (x̂)

3 + j
(7.9)
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Other macroscopic quantities of some practical interest in the present work are the translational

pressure defined by the equation of state P̂tr = nkBTtr, where kB is the Boltzmann constant,

the normal pressure

P̂xx (x̂) = m

∞∫
−∞

∞∫
−∞

∞∫
−∞

(ξx − ûx)2ĝdξxdξydξz (7.10)

and the energy and heat fluxes due to translational and rotational degrees of freedom in the x

direction given by

Êtr (x̂) =
m

2

∞∫
−∞

∞∫
−∞

∞∫
−∞

υ2ξxĝdξxdξydξz, Êrot (x̂) =

∞∫
−∞

∞∫
−∞

∞∫
−∞

ξxĥdξxdξydξz (7.11)

and

Qtr (x̂) =
m

2

∞∫
−∞

∞∫
−∞

∞∫
−∞

[
(ξx − ûx)2 + ξ2y + ξ2z

]
(ξx − ûx) ĝdξxdξydξz,

Qrot (x̂) =

∞∫
−∞

∞∫
−∞

∞∫
−∞

(ξx − ûx) ĥdξxdξydξz,

(7.12)

respectively, where the subscripts tr and rot refer to translational and rotational parts. As it

is well known correct expressions for both viscosity and thermal conductivity cannot be proved

simultaneously based on the Holway approximation. In spite of this pitfall and its simplicity

it has been numerically demonstrated that it is a very reliable model for solving nonisothermal

flows deducing results which are very close to the corresponding ones obtained by solving other

kinetic models and the DSMC method [163, 164]. It is noted that for j = 0 and as Z →∞ the

Holway model is transformed into BGK model for monatomic gases.

It is convenient to rewrite the governing equations in dimensionless form using the far

upstream (x̂ → ∞) macroscopic distributions as reference quantities. Thus, the dimensionless

number density, velocity, temperatures (rotational, translational and total), normal stress in
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x− direction, translational pressure, energy fluxes and heat fluxes are defined as

ρ =
n

n∞
, ux =

ûx
υ∞

, τtr =
Ttr
T∞

, τrot =
Trot
T∞

, τ =
3τtr + jτrot

3 + j
, pxx =

P̂xx

2P̂∞
,

ptr =
P̂tr

P̂∞
, etr =

Êtr

P̂∞υ∞
, erot =

Êrot

P̂∞υ∞
, qtr =

Qtr

P̂∞υ∞
, qrot =

Qrot

P̂∞υ∞

(7.13)

respectively. All quantities with the subscript∞ are the reference quantities, with υ∞ =
√

2RT∞

and P̂∞ = n∞kBT∞ being the most probable molecular speed and the pressure far upstream

respectively. In equilibrium state Ttr = Trot = T∞. The equivalent mean free path far upstream,

defined as [17, 165]

λ∞ =
2√
π

µ(T∞)υ∞

P̂∞
, (7.14)

is taken as the characteristic length. The dimensionless distribution functions are given by

g = ĝυ3∞/n∞ and h = ĥυ3∞/P̂∞, while the dimensionless length and molecular velocity vector

are defined as x = x̂/λ∞ and c = υ/υ∞ respectively.

Furthermore, the computational effort is significantly reduced by eliminating, based on

the well-known projection procedure, the y− and z− components of the molecular velocity

vector c = [cx, cy, cz]. This is achieved by introducing the reduced distributions:

F (x, cx) =

∞∫
−∞

∞∫
−∞

gdcydcz,

G (x, cx) =

∞∫
−∞

∞∫
−∞

g
(
c2y + c2z

)
dcydcz,

S (x, cx) =

∞∫
−∞

∞∫
−∞

hdcydcz.

(7.15)

Next, operating successively on the dimensionless form of Eqs. (7.3)-(7.12) with the integral

operators
∫∞
−∞

∫∞
−∞ (.) dcydcz and

∫∞
−∞

∫∞
−∞ (.)

(
c2y + c2z

)
dcydcz, yields the following system of
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three integro-differential equations for the reduced distributions functions

cx
∂Ψ

∂x
=

2√
π
ρ
√
τtr

[(
1− 1

Z

)
(Ψtr −Ψ) +

1

Z
(Ψrot −Ψ)

]
, (7.16)

where Ψ = [F,G, S]T is the vector with unknown distributions. The translational and rotational

relaxing distributions in Eq. (7.16) are given by Ψtr = [Ftr, Gtr, Str]
T and Ψrot = [Frot, Grot, Srot]

T

respectively, where the components of these vectors are read as

Ftr =
ρ
√
πτtr

exp

[
−(cx − ux)2

τtr

]
, Gtr = τtrFtr, Str =

j

2
τrotFtr,

Frot =
ρ√
πτ

exp

[
−(cx − ux)2

τ

]
, Grot = τFrot, Srot =

j

2
τFrot,

(7.17)

while the moments in terms of F , G and S are given as

ρ =

∞∫
−∞

Fdcx, ux =
1

ρ

∞∫
−∞

cxFdcx, (7.18)

τtr =
2

3ρ

∞∫
−∞

[
(cx − ux)2F +G

]
dcx, τrot =

2

jρ

∞∫
−∞

Sdcx, pxx =

∞∫
−∞

(cx − ux)2Fdcx, (7.19)

qtr =

∞∫
−∞

(cx − ux)
[
(cx − ux)2F +G

]
dcx, qrot =

∞∫
−∞

(cx − ux)Sdcx, (7.20)

etr =

∞∫
−∞

cx
(
c2xF +G

)
dcx, erot =

∞∫
−∞

cxSdcx. (7.21)

In the formulation of the basic equations Eqs. (7.16) the hard-sphere (HS) intermolecular

interaction model has been applied. It is noted that all conservation principles are easily

deduced by taking appropriate moments of the governing equations. Eqs. (7.16) are multiplied

successively by 1, cx and c2x and the resulting equations are integrated over the molecular

velocity space to yield, after some typical manipulations, the following conservation equations:
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• Mass:
∂

∂x
(ρux) = 0 (7.22)

• x− momentum:
∂

∂x

(
pxx + ρu2x

)
= 0 (7.23)

• Energy:
∂

∂x
(etr + erot) = 0 (7.24)

The above conservation equations are applied to benchmark the accuracy of the numerical

scheme.

7.4 Gas-surface interaction

The adsorption process on the planar surface at x̂ = 0 is modeled by prescribing the

distribution of reflected molecules according to

f̂ (0,υ) =
nw

(2πRTα)3/2
exp

(−ξ2x − ξ2y − ξ2z
2RTα

)
Îj/2−1

(kBTα)j/2Γ (j/2)
exp

(
− Î

kBTα

)
, ξx > 0.

(7.25)

It should be noted that rotational degrees of freedom are described by the rotational energy Î,

since no preferential alignment of molecular spinning motion is possible in the present problem.

In Eq. (7.25) the parameters nw and Tα may be defined as follows.

The parameter nw is specified by substituting Eq. (7.25) into the expression of the reflected

particle flux N̂+ =
∫
ξx>0

∫∞
0
ξxf̂ (0,υ) dÎdυ to deduce N̂+ = nw

√
RTα/

√
2π. In this expression

the definition of the sticking coefficient given by Eq. (7.1) is introduced, to find

nw = (1− αSC)

√
2π

RTα
N̂−, (7.26)

where N̂− = −
∫
ξx<0

∫∞
0
ξxf̂ (0,υ) dÎdυ is the incident particle flux.

The parameter Tα, which has been introduced in the boundary condition in order to

take into account partial thermal accommodation, is defined by substituting Eq. (7.25) into
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the expression for the reflected energy flux Ê+ =
∫
ξx>0

∫∞
0

(
m
2
υ2 + Î

)
ξxf̂ (0,υ) dÎdυ. In the

resulting expression, Eq. (7.26) is introduced to yield Ê+ = (2 + j/2) (1− αSC) N̂−kBT
α. Op-

erating similarly in the case of full thermal accommodation (now Tα is replaced by Tw) is readily

deduced that Êw = (2 + j/2) (1− αSC) N̂−kBTw. These two expressions for Ê+ and Êw are

substituted into Eq. (7.2) for the thermal accommodation coefficient to find

Tα = αTACTw + (1− αTAC)
2Ê−

(4 + j) kBN̂−
, (7.27)

where Ê− = −
∫
ξx<0

∫∞
0

(
m
2
υ2 + Î

)
ξxf̂ (0,υ) dÎdυ is the total incident energy flux. Thus,

boundary condition (7.25) for the reflected molecules is fully defined in terms of the impinging

distribution, which is part of the solution.

Far upstream (x̂→∞) the gas flow is described by a Maxwellian written as

f̂∞ (υ) =
n∞

(2πRT∞)3/2
exp

[
−(ξx − û∞)2 − ξ2y − ξ2z

2RT∞

]
Îj/2−1

(kBT∞)j/2Γ (j/2)
exp

(
− Î

kBT∞

)
.

(7.28)

At that end the distribution function and the resulting macroscopic quantities should not

depend on the spatial variable x̂.

Next, the projection procedure in energy space is applied according to ĝ =
∫∞
0
f̂dÎ and

ĥ =
∫∞
0
f̂ ÎdÎ. Then, the boundary conditions are non-dimensionalized and the projection

procedure in the velocity space is introduced in the same manner as in the basic equations.

Following this routine manipulation at x = 0 the emitted reduced distributions for cx > 0 are

F (0, cx) =
ρw√
πτα

exp

(
− c

2
x

τα

)
, G (0, cx) = ταF (0, cx) , S (0, cx) =

j

2
ταF (0, cx) , (7.29)

where the parameters ρw and τα are given by

ρw = (1− αSC)
2
√
π√
τα
N−, τα = αTACτw + (1− αTAC)

2e−

(4 + j)N−
, (7.30)
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with the incident particle and energy fluxes computed as

N− = −
∫

cx<0

cxF (0, cx) dcx, e− = −
∫

cx<0

cx
[
c2xF (0, cx) +G (0, cx) + S (0, cx)

]
dcx, (7.31)

while at x̂→∞ the Maxwellian takes the form

F∞ = G∞ =
2

j
S∞ =

1√
π

exp
[
−(cx − u∞)2

]
. (7.32)

In Eqs. (7.29)-(7.32), the dimensionless quantities are ρw = nw/n∞, u∞ = û∞/υ∞, τα = Tα/T∞,

τw = Tw/T∞, N− = N̂−/ (υ∞n∞) and e− = Ê−/
(
P̂∞υ∞

)
.

Based on the above dimensionless formulation the flow parameters involved in the present

one-dimensional adsorption flow problem are four, namely the coefficients αSC and αTAC , the

temperature ratio τw and the velocity u∞. Commonly, the dimensionless velocity at infinity

u∞ is presented via the Mach number far upstream, defined as Ma∞ = |û∞| /c∞, where c∞ =
√
γRT∞ is the corresponding sound speed [153]. Since for a polyatomic gas the ratio of the

specific heats is γ = (5 + j)/(3 + j) it is seen that Ma∞ = |u∞|
√

(6 + 2j) / (5 + j).

7.5 Results and discussion of the half space adsorption

The governing equations (7.16) with the associated expressions (7.17)-(7.21) subject

to boundary conditions (7.29)-(7.32) are solved numerically in an iterative manner. More

specifically for prescribed values of αSC , αTAC and τw the iteration map starts by assuming all

needed macroscopic quantities including the far upstream velocity u∞ as well as the parameters

nw and τα. The kinetic equations (7.16) are solved to yield the reduced distributions F , G and

S, which are introduced into the moment equations (7.18)-(7.21) as well as in the flux equations

(7.31) to find the new estimates of all bulk quantities which are now introduced in the next

iteration. The iteration process is terminated when the imposed convergence criteria is fulfilled.

Upon convergence the correct value of u∞ is recovered. Thus, the present problem is properly

defined only when three out of the four involved parameters are given. If all parameters both at

the plane surface and far upstream are defined no steady-state flow conditions may be reached.
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Here, we have chosen to compute u∞ (or the associated Mach number Ma∞) as a function of

the remaining three parameters, i.e.,

u∞ = u∞ (αSC , αTAC , τw) . (7.33)

The discretization of the kinetic equations in the molecular velocity space is based on

the discrete velocity method. In the physical space a second order control volume approach is

applied using non-uniform grid spacing which follows the geometric sequence ∆xi = ∆x1×ri−1,

with ∆x1 = 4×10−7 and r = 1.0009 (the subscript i = 1, ..., K refers to the nodes in the physical

space). The macroscopic quantities are computed by Gauss quadrature. The results presented

in the next section have been obtained with about 15000 nodes in the physical space and 16

molecular speeds, while the convergence criteria to be fulfilled is

1

3K

K∑
i=1

[∣∣∣ρ(t+1)
i − ρ(t)i

∣∣∣+
∣∣∣τ (t+1)
i − τ (t)i

∣∣∣+
∣∣∣u(t+1)
i − u(t)i

∣∣∣] < ε. (7.34)

In (7.34) the superscript t denotes the iteration index and ε = 10−5 is the tolerance parame-

ter. For αSC = 0 the solution of the corresponding half-space purely heat transfer solution is

recovered.

A validation of the modeling approach and of the accuracy of the results is displayed

in Subsection 7.5.1. In Subsection 7.5.2, the effect of the rotational degrees of freedom on

the computed quantities is presented. Next, in Subsection 7.5.3 results are presented and

discussed for the macroscopic velocity and the Mach number far upstream, as well as for the

half space distributions of density, velocity, temperature and pressure in terms of the sticking

and thermal accommodation coefficients varying between zero and one and for typical values

of the temperature ratio τw = Tw/T∞. The dependency of the thickness of the Knudsen layer

on the flow parameters and the inclusion of an effective wall temperature to approximately

compensate the thermal accommodation effect are also discussed. Finally, in Subsection 7.5.4

some dimensional results for specific gases are presented.

At this point it is useful to note that since the upstream quantities are taken as the

reference quantities, ρ∞ = 1 and thus |u∞| = |N∞| = |αSCN−|, i.e. is equal to the upstream
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net particle flux and to the adsorbed particle flux (all in dimensionless form) and therefore

characterizes the intensity of the adsorption process.

7.5.1 Benchmarking

The accuracy of the results has been confirmed in several ways. In all cases the length

L of the computational domain, i.e., the distance between the plate and the position on the x-

axis, where the far upstream boundary condition is imposed, has been computationally checked

to be long enough to properly recover space independent quantities at that end. Several runs

have been performed for the same set of parameters by increasing L until no variation in the

numerical results is observed. Grid independency of the results is also confirmed. Furthermore,

in all tested cases, the computed macroscopic distributions fulfill the conservation laws derived

in the Section 7.3. Based on the prescribed numerical parameters, convergence of the results

up to at least three significant figures is confirmed.

To further validate the accuracy of the results a comparison with available corresponding

results in the literature for monatomic gases (j = 0) is performed. In [113] the same flow

configuration has been studied for αTAC = 1 based on the DSMC method. In Fig. 7.3, which

reports the upstream Mach number Ma∞ versus αSC , a comparison is performed between the

results of the present work and the corresponding ones in [113] for τw = Tw/T∞ = 1 and 0.25.

It is clearly seen that although the two computational approaches are completely different (the

present one is deterministic, while the one in [113] is stochastic) the agreement between the

results in the whole range of the sticking coefficient and for both temperature ratios is excellent

with the relative error being less than 1%. Also, as shown in Fig. 7.3, increasing the Ma∞ leads

to higher values of αSC . In addition, as τw is reduced, i.e., the temperature difference between

the upstream gas and surface temperatures ∆T = T∞ − Tw is increased, for the same αSC ,

the Ma∞ is increased, which means that the adsorption process becomes more intense. This

remark may be alternatively stated by saying that as τw is reduced, for the same Ma∞, a lower

αSC is needed in the specific adsorption processes. As expected the effect of ∆T is important.
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7.5.2 Effect of the internal degrees of freedom

In this subsection the study is focused on the dependency of the macroscopic quantities

on the rotational degrees of freedom. Results are presented for linear (j = 2) and nonlinear

molecules (j = 3) and for Z = 1, 3 and 5, which are indicative for this type of simulations.

All the results in this subsection are for αTAC = 1. In Fig. 7.4 the upstream Mach number

Ma∞ is plotted as a function of the αSC for j = 2 and Tw/T∞ = 0.05. The results obtained for

Z = 1 are compared with the corresponding ones for Z = 5. It is clearly seen that the effect of

the parameter Z on the upstream Mach number Ma∞ is negligible. Also, it is noted that the

distributions of the macroscopic quantities are not affected by the variation of the parameter

Z.

In Fig. 7.5 a comparison between the upstream Mach number Ma∞ curves for j = 0 with

the corresponding curves for j = 2 and 3 is provided. Two temperature ratios are considered

namely Tw/T∞ = 0.05 and 1. Furthermore, the parameter Z is assumed to be temperature

independent and set equal to 3. The chosen value is not specific for a particular substance and

it simply appears to be reasonable for low temperature flows of polyatomic gases [166]. As it is

shown the upstream Mach number Ma∞ suffers a small drop when j changes from 2 to 0. The

difference between a linear molecule and a nonlinear one with 3 rotational degrees of freedom

is considerably smaller (< 3%). For instance, at αSC = 0.9 and j = 2 the Mach number is

increased about 6% for Tw/T∞ = 0.05, while is about 9% for Tw/T∞ = 1.

In Fig. 7.6 the dimensionless distributions of the number density ρ(x), the normalized

velocity |u (x) /u∞| and dimensionless translational τtr(x), rotational τrot(x) and total tem-

peratures τ(x) are plotted for temperature ratio Tw/T∞ = 0.05 with the sticking coefficients

αSC = [0.1, 0.7] and j = [0, 2, 3]. As it is seen the number density and velocity profiles of

diatomic (j = 2) and polyatomic (j = 3) gases are almost identical with the corresponding

monatomic (j = 0) profiles for both values of the sticking coefficient. The gas rotational, trans-

lational and total temperatures far from the adsorption plate are equal to each other and are

decreased close to the adsorption surface. For αSC = 0.1 the three temperatures translational,

rotational and total are equal to each other and are almost identical with the corresponding

monatomic profile of temperature. However, at αSC = 0.7 there exists a narrow strip, about
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one mean free path wide, in which temperatures take different values. Temperature differences

are not large with the monatomic profile being very close to the corresponding profile of the

polyatomic translational temperature, while the rotational temperature takes lower values. It is

noted that the differences between linear and nonlinear polyatomic profiles are almost negligible.

Overall the effect of the rotational degrees of freedom on the computed quantities is very

small (about 10%) in the present problem. Therefore, for the rest of the chapter the analysis

is performed for monatomic gases with the results being applicable even for polyatomic gases.

7.5.3 Effect of partial thermal accommodation

Next, we focus on the main objective of the present work which is the investigation of

the effect of αTAC on the adsorption process. In Fig. 7.7, the magnitude of the computed far

upstream velocity u∞ is plotted as a function of αSC for αTAC = [1, 0.8, 0.2] and τw = Tw/T∞ =

[1, 0.27, 0.05]. For τw = 1, the effect of αTAC is negligible. This is well expected since when the

surface and upstream temperatures are equal there is no heat transfer mechanism. However, as

τw is reduced (the temperature difference is increased) heat transfer is enhanced and as a result

the effect of αTAC is also increased. In general, |u∞| is reduced as αTAC is reduced, i.e., as

the gas thermal accommodation at the plate becomes less complete. This is physically justified

since, in practice, a lower thermal accommodation at the surface corresponds (at some sense)

to some smaller temperature difference ∆T than the imposed one. Indicatively, at fixed values

of αSC = 0.7 and τw = 0.27, when αTAC = 0.8 and 0.2, the reductions in |u∞|, compared to the

ones for αTAC = 1, are 9% and 27% respectively. The corresponding reductions at τw = 0.05

are 20% and 42%. Also, for prescribed adsorbing flux and temperature difference, as αTAC is

reduced, the sticking coefficient must be increased to sustain the prescribed flux. For instance

in the case of τw = 0.05, when αTAC is reduced from 1 to 0.2, in order to preserve |u∞| ' 0.6

the sticking coefficient is increased about 25%. The effect of αTAC becomes more important

at low and intermediate values of αSC between 0.1 and 0.8. Overall, the effect of αTAC is of

similar importance with τw.

It is noted that the specific temperature ratios of 0.27 and 0.05 have been selected because,

for T∞ = 300 K, they correspond to Tw = 80 K and 15 K respectively, which are two typical
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temperatures in the design of multistage cryopumps [167] including the design of a three-stage

cryopump that is recently under consideration within the EUROfusion programme [168]. Of

course, they are also indicative for other temperature ratios covering a wide range of temperature

differences.

Based on the results of Fig. 7.7 it may be useful to attempt to compensate the effect

of αTAC < 1 by introducing an effective wall temperature T effw > Tw associated always with

perfect thermal accommodation (αTAC = 1). It should be like a weighted average temperature

and therefore it is defined as

T effw = αTACTw + (1− αTAC)T∞. (7.35)

In Fig. 7.8, the magnitude of the computed far upstream velocity |u∞| is plotted as

a function of αSC for T effw /T∞ = 0.81 and 0.24 with αTAC = 1. In the same figure the

corresponding results for Tw/T∞ = 0.05 with αTAC = 0.2 and 0.8, which are the parameters

used to obtain the two specific values of T effw /T∞, are also plotted for comparison purposes. In

general the agreement is good at high and moderate values of αSC and it deteriorates as αSC

is further decreased. At αSC = 0.1 the disagreement is about 30%. In general the effective

temperature approach may be useful for practical applications when computational resources

are limited.

A more detailed insight in the adsorption flow characteristics is displayed in Figs 7.9, 7.10,

7.11 and 7.12, where the dimensionless distributions of number density, velocity magnitude,

temperature and pressure are displayed for two temperature ratios τw = [0.05, 0.27] with the

sticking and thermal accommodation coefficients taking the typical values of αSC = [0.1, 0.5, 0.9]

and αTAC = [0.2, 0.8, 1] respectively. In all cases the distance along the horizontal axis from

the plate is in mean free paths and the total indicated length corresponds to the length L of

the computational domain. This length also corresponds to the thickness of the adsorption

Knudsen layer where non-equilibrium transport phenomena occur. As shown in Figs 7.9, 7.10,

7.11 and 7.12, it is influenced from both αSC and τw. It is evident that increasing the sticking

coefficient αSC leads to lower values of L, which means that the far upstream conditions are

recovered faster in a smaller number of mean free paths x̂/λ∞ from the adsorption surface. The
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effect of the temperature difference is not that clear but it has been observed that decreasing

τw reduces the thickness L.

In Fig. 7.9, the number density profile ρ(x) is plotted. The shape of ρ(x) is qualitatively

similar for both τw = 0.05 and 0.27. However, in the former case (i.e. as the plate temperature

is decreased), it is changing more rapidly reaching to higher number densities at the plate. The

far upstream number density is (as it should) always equal to one. For αTAC = 1 and 0.8, as

x is reduced, for all values of αSC , the number densities are monotonically increased reaching

their highest values on the surface (x = 0). In particular, for αSC = 0.1 the two profiles are very

close and then for αSC = 0.5 and 0.9 there is a departure between the profiles with the number

density taking lower values as the sticking coefficient is increased. This behavior remains the

same for αTAC = 0.2 and αSC = 0.1. On the contrary for αTAC = 0.2 and αSC = 0.5 and 0.9,

as x is reduced, the number densities are monotonically reduced reaching their lowest values at

x = 0. Overall, increasing the sticking coefficient leads to lower values of density. For values of

αTAC low enough, the number density is even lower than the far upstream value. This behavior

in terms of the thermal accommodation is physically explained since, as pointed out above,

as αTAC is decreased the gas is reflected from the surface with a temperature larger than the

surface temperature and as a result the gas density is decreased.

In Fig. 7.10, the normalized velocity magnitude |u (x) /u∞| is plotted. As expected in

most cases the magnitude of the gas velocity is reduced as it approaches the adsorption surface.

This speed decrease is reduced as αTAC is decreased and finally for αTAC = 0.2 and αSC = 0.9

the gas moves faster as it approaches the plate. This behavior is the inverse of the one observed

for the number density and it is fully justified since as shown in the Section 7.3 the particle

flux conservation law ρ (x)u (x) = u∞ applies.

The corresponding dimensionless temperature profiles τ (x) are displayed in Fig. 7.11.

The gas temperature far upstream is equal to one and then in most cases, as expected, the

temperature is monotonically decreased approaching to the adsorption surface. This situation

is reversed only at αSC = 0.9 and 0.5 combined with αTAC = 0.2, resulting to gas temperatures

close to the plate higher than the far upstream ones. It may be justified by considering that

the thermal energy transferred by the reflected particles at the wall may be larger than the

179

Institutional Repository - Library & Information Centre - University of Thessaly
20/05/2024 01:12:25 EEST - 13.59.53.151



Section 7.5

corresponding amount of particles at some location far from the wall and therefore, it appears

only for αSC < 1 and it is enhanced as both ∆T = T∞ − Tw and αTAC are decreased.

The pressure profiles are shown in Fig. 7.12. In all cases the variation of pressure obeys the

equation of state p (x) = ρ (x) τ (x). As αSC is decreasing, independent of αTAC , the half-space

pressure distribution becomes more uniform, which is well expected since the purely half-space

heat transfer problem is recovered. It is also noted that the behavior of the normal pressure

pxx (x) is similar to p and therefore is not displayed.

The dimensionless density and temperature in the limiting case where αSC = 1 are shown

in Fig. 7.13 for τw = 0.05 with αTAC = 1 and 0.2. As it is seen the solution does not depend

on the thermal accommodation coefficient. This is expected, since all particles are adsorbed

and there are no reflected particles. Also, both the number density and temperature are mono-

tonically reduced as x is reduced. Comparing these profiles with the corresponding ones for

αSC = 0.9 and αTAC = 1 it is seen that there is a resemblance in temperatures, while the

densities behave in an opposite manner (the one for αSC = 0.9 is increased as x is reduced).

All simulations reported above are based on the HS model. Corresponding simulations

have been performed for the Maxwell intermolecular potential deducing results which are very

close to the ones by the HS model. Therefore it is stated that the choice of the intermolecular

potential model has negligible effect on the present adsorption flow problem.

7.5.4 Sticking coefficients of specific gases

Closing this section is useful to provide some results in dimensional form. The dimen-

sionless results presented in Fig. 7.7 are applied to plot in Fig. 7.14 the net molar flux in terms

of the sticking coefficient for specific monatomic gases namely protium (1H), helium (He), neon

(Ne) and xenon (Xe) for reference upstream pressure P̂∞ = 0.1 Pa, temperature T∞ = 300

K and temperature ratio τw = Tw/T∞ = 0.05. This is easily performed as follows: For the

prescribed P̂∞ and T∞ the far upstream number density is obtained from the equation of state

(P̂∞ = n∞kBT∞). Then, the far upstream velocity is computed as û∞ = υ∞ |u∞|, where

υ∞ =
√

2kBT∞/m is known for the specific gas and |u∞| is obtained from Fig. 7.7. Finally, the

net particle flux is computed as N̂∞ = n∞û∞ which is divided by the Avogadro number to be
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converted into the net molar flux N̂
(molar)
∞ [mol/(m2s)] shown, versus αSC for αTAC = [0.2, 0.8, 1],

in Fig. 7.14.

It is clearly seen that as the thermal accommodation coefficient is reduced the net molar

flux N̂
(molar)
∞ , which is equal to the adsorbed molar flux at the surface, is reduced. It is readily

deduced, from the above dimensionalization, that the ratio of the net molar fluxes of two

gases, for prescribed αSC , αTAC and τw, is inversely proportional to the square route of their

molar masses. Thus, it is stated that under the same prescribed reference conditions and

coefficients, higher adsorption molar flow rate is sustained as the gas becomes lighter. Also,

the net molar flux is directly proportional to the reference pressure P̂∞. In that sense following

the demonstration procedure shown here the dimensionless results of the previous subsection

can be readily applied in a wide range of reference conditions and various gases for comparison

with experiments and other practical purposes.

7.6 Modelling of a prototype cryopump

In the framework the EUROfusion TFV (tritium-matter injection-vacuum) project, the

Karlsruhe Institute of Technology (KIT) has taken the lead to develop for DEMO (DEMOn-

stration Power Plant) a new concept for the reactor exhaust vacuum systems, consisting of

continuously working and non-cryogenic pumps, i.e. metal foil pump, mercury diffusion pump,

and mercury liquid ring pump. Due to the risk inherent to this new concept, cryogenic pumps,

which reliability and efficiency for fusion reactors have been already proven, are developed in

parallel as a fall-back solution. The aim of the project is the development of an integrated

design of a multi-stage cryopump fulfilling all DEMO requirements.

Cryogenic pumping systems are well known and used in various applications including the

vacuum systems of ITER (The way, an experimental fusion reactor) [169]. The key mechanism

is the sorption of gas on a surface. In order for the whole process to be efficient, the surface

has to be cooled down to a proper level. Thus, high cryogenic loads are required. The surface

temperature is of the order of a few degrees Kelvin and this is one of the shortcomings of cryop-

umps. In addition, due to the needed periodic regeneration process, the continuous operation

of such systems is not possible unless multiple pumping units are used. On the other hand,
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cryopumps have no moving parts and their operation has been proved reliable and quite stable.

Furthermore, multistage configurations are capable of gas separation, a requirement that is

critical for DEMO. Finally, multistage design can reduce the cryogenic loads since each stage

can be at different temperature, suitable for the gases that each stage is assumed to adsorb,

while in the single stage design the temperature has to be cooled to the lowest gas adsorption

temperature.

The operation is based on the sorption phenomenon where an activated charcoal surface is

cooled down to the point where a sufficient portion of the gas to be pumped, is removed. The key

feature that characterizes the efficiency of the process is the sticking coefficient. The estimation

of the sticking coefficient is not a straightforward procedure and requires both experimental

tests and gas flow simulations. The experiments are performed in the TIMO-2 (Upgrade of the

Test facility for ITER Model pump) test facility at KIT in order to measure pumping speeds

on an activated carbon surface. A CAD view of the experimental set up is shown in Fig. 7.15

with the basic parts of the configuration. The experimental work, including the description of

the experimental configuration, is presented in [170] and is not repeated here.

Due to the fact that pressure level is quite small and gas flow is in the transition or even

in the free molecular regimes conventional fluid dynamics, based on the well-known Navier-

Stokes equations, is improper to simulate such flows since the continuum medium hypothesis

is not valid. Consequently, a deterministic or stochastic kinetic approach must be used. Since,

the effect of the internal degrees of freedom on the macroscopic quantities, as it is shown in

Subsection 7.5.2, is very small the simulation of the TIMO open panel test configuration is

based on the Bhatankar-Gross-Krook model for monatomic gases. In the Subsection 7.6.1 the

kinetic formulation of the problem, including the governing equations, the boundary conditions

and the macroscopic quantities, is described in detail. Next, the description of the choice of the

input parameters in the modeling is presented Subsection 7.6.2. Finally, in Subsection 7.6.3 the

numerical results focusing on the comparison with experimental data and on the computation

of the sticking coefficients are discussed.
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7.6.1 Kinetic modeling of the TIMO open panel test setup

The detailed geometry of the experimental configuration shown in Fig. 7.15 is complex.

The external vessel and the radiation shield are both cylindrical, while the pumping inlet and the

adsorbing plate are orthogonal. Consequently neither cylindrical nor Cartesian computational

grids are fully suitable for the simulation of the whole flow field while coupling of two grids

requires a fully three-dimensional computational domain. The corresponding computational

cost is very high (actually not manageable) because it requires the solution of the kinetic

equations in a six-dimensional space (3D in the physical space plus 3D in the velocity space).

Therefore, certain simplifications in the flow setup are introduced. Following previous work

performed by the DSMC method [116] the flow field is simulated in a two-dimensional x̂ − ŷ

geometry. This approach has been proved efficient in computational terms and accurate enough

for engineering purposes.

The flow is modeled by the nonlinear BGK model equation subject to purely diffuse

boundary conditions. The main unknown is the distribution function f̂ = (x̂, ŷ,υ), with

υ = (ξx, ξy, ξz) being the molecular velocity vector. It is convenient to introduce the follow-

ing non-dimensional quantities:

x =
x̂

R
, y =

ŷ

R
, c =

ξ

υ0
, f =

f̂υ30
n0

, ρ =
n

n0

, u =
û

υ0
, τ =

T

T0
, p =

P̂

P̂0

, N =
N̂

n0υ0
, (7.36)

where R is the radius of the pump, υ0 =
√

2RT0, with R denoting the individual gas constant,

is the reference velocity at reference temperature T0, n0 is the reference number density and

P̂0 = n0kBT0 is the reference pressure with kB denoting the Boltzmann constant. In Eqs. (7.36)

the quantities ρ, u = (ux,uy), τ , p = ρτ and N = (Nx,Ny) are the dimensionless number

density, velocity vector, temperature, pressure and particle flux vector respectively. The inlet

conditions of the pump are chosen as reference quantities. In Fig. 7.2, the geometry imported in

the numerical algorithm is presented in non-dimensional with the radius of pump being R = 890

mm. The injection pipe is also included while the gas enters the pump through the pump inlet.

The geometry is based on the device drawings provided by KIT.
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Figure 7.2: 2D geometry used for the simulation in non-dimensional form.

The non-dimensional quantities are introduced into the governing equation of the BGK

model to yield [101, 102]

ζ cos θ
∂f

∂x
+ ζ sin θ

∂f

∂y
= δ0ρτ

1−ω

{
ρ

(πτ)3/2
exp

[
− (c− u)2

τ

]
− f

}
, (7.37)

where ω = [1/2, 1] is the viscosity index and δ0 is the rarefaction parameter defined as

δ0 =
P̂0R

µ (T0) υ0
, (7.38)

with µ (T0) being the reference viscosity at reference temperature T0. Moreover, for computa-

tional purposes it is convenient to express the components (cx, cy, cz) of the particle velocity

in terms of cylindrical coordinates (ζ cos θ, ζ sin θ, cz). For the specific problem the computa-

tional effort is decreased by eliminating the cz component introducing the following reduced

distributions functions

F (x, y, cx, cy) =

∞∫
−∞

f (x, y, cx, cy, cz)dcz, G (x, y, cx, cy) =

∞∫
−∞

c2zf (x, y, cx, cy, cz)dcz, (7.39)
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into Eq. (7.37). After some typical manipulation the following coupled set of non-linear integro-

differential equations is reduced:

ζ cos θ
∂F

∂x
+ ζ sin θ

∂F

∂y
= δ0ρτ

1−ω

{
ρ

πτ
exp

[
−(ζ cos θ − ux)2 − (ζ sin θ − uy)2

τ

]
− F

}
,

ζ cos θ
∂G

∂x
+ ζ sin θ

∂G

∂y
= δ0ρτ

1−ω

{
ρ

2π
exp

[
−(ζ cos θ − ux)2 − (ζ sin θ − uy)2

τ

]
−G

}
.

(7.40)

The macroscopic quantities ρ, ux, uy and τ are expressed in terms of F and G as

ρ (x, y) =

2π∫
0

∞∫
0

Fζdζdθ, (7.41)

ux (x, y) =
1

n

2π∫
0

∞∫
0

ζ cos θFζdζdθ, (7.42)

uy (x, y) =
1

n

2π∫
0

∞∫
0

ζ sin θFζdζdθ, (7.43)

τ (x, y) =
2

3n

2π∫
0

∞∫
0

(
ζ2F +G

)
ζdζdθ − 2

3

(
u2x + u2y

)
. (7.44)

Also, the particle fluxes in x− and y− are given as Nx (x, y) = ux (x, y) ρ (x, y) and Ny (x, y) =

uy (x, y) ρ (x, y) respectively. An other interesting quantity is the Mach number defined as

Ma =
√

(6/5)
(
u2x + u2y

)
. Applying the projection procedure, the simulation of the TIMO open

panel test setup has been reduced to a 4D problem without losing any of the physical findings

of the flow.

Next, the formulation of the boundary conditions is presented. The outgoing distributions

from the surfaces (A), (B), (C), (D), (E), (F), (G), (H), (I), (J), (K), (L), (M), (Q), (R), (S)

have a Maxwellian form with the number density obtained by the inlet conditions at the inlet of

the pump (S) or by the condition of the no-penetration at the walls (A), (B), (C), (D), (E), (F),

(G), (H), (I), (J), (K), (L), (M), (Q), (R). The surfaces with their notation are shown in Fig. 7.2.
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The distributions of the outgoing molecules from all surfaces denoted by the superscript (+) in

terms of the reduced distributions F and G are defined as [101, 102]

F+ =
ρi
πτi

exp

(
−ζ2

τi

)
, G+ =

ρi
2π

exp

(
−ζ2

τi

)
, (7.45)

where the subscript i =(A), (B), (C), (D), (E), (F), (G), (H), (I), (J), (K), (L), (M), (Q), (R),

(S) is used to discern between the different surfaces. It is noted that the surfaces (A), (B), (C),

(Q), (R), (S) are maintained at the same temperature T0, the surfaces (D), (E), (F), (G), (H),

(I), (J) are maintained at a lower temperature Tw,1 while the surfaces at the adsorption panel

(K), (L), (M) are maintained at an even lower temperature Tw,2 (T0 > Tw,1 > Tw,2). Due to the

reference values selection, the values ρS = 1 and τS = 1 are obtained at the inlet of the pump

(surface (S)) while for the other surfaces the parameter ρi is determined by

ρi =
2
√
π

τi

θ2,i∫
θ1,i

∞∫
0

ζ2ϕi (θ)F
−dζdθ. (7.46)

The possible values of the quantities ϕi (θ), θ1,i, θ2,i and τi are

A : ϕA (θ) = − cos θ, θ1,A = π/2, θ2,A = 3π/2, τA = 1, (7.47)

B : ϕB (θ) = sin θ, θ1,B = 0, θ2,B = π, τB = 1, (7.48)

C : ϕC (θ) = cos θ, θ1,C = −π/2, θ2,C = π/2, τC = 1, (7.49)

D : ϕD (θ) = − sin θ, θ1,D = π, θ2,D = 2π, τD = Tw,1/T0, (7.50)

E : ϕE (θ) = cos θ, θ1,E = −π/2, θ2,E = π/2, τE = Tw,1/T0, (7.51)

F : ϕF (θ) = sin θ, θ1,F = 0, θ2,F = π, τF = Tw,1/T0, (7.52)

G : ϕG (θ) = − sin θ, θ1,G = π, θ2,G = 2π, τG = Tw,1/T0, (7.53)

H : ϕH (θ) = − cos θ, θ1,H = π/2, θ2,H = 3π/2, τH = Tw,1/T0, (7.54)
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I : ϕI (θ) = sin θ, θ1,I = 0, θ2,I = π, τI = Tw,1/T0, (7.55)

J : ϕJ (θ) = cos θ, θ1,J = −π/2, θ2,J = π/2, τJ = Tw,1/T0, (7.56)

K : ϕK (θ) = − cos θ, θ1,K = π/2, θ2,K = 3π/2, τK = Tw,2/T0, (7.57)

L : ϕL (θ) = cos θ, θ1,L = −π/2, θ2,L = π/2, τL = Tw,2/T0, (7.58)

Q : ϕQ (θ) = − cos θ, θ1,Q = π/2, θ2,Q = 3π/2, τQ = 1, (7.59)

R : ϕR (θ) = − sin θ, θ1,R = π, θ2,R = 2π, τR = 1, (7.60)

where Tw,1 and Tw,2 are the temperature of the thermal shield walls and the adsorbing plate

respectively. In all cases with superscripts (-) denoting the incoming distributions at the wall.

The modeling of the adsorption process on surface (M) is based on the definition of the sticking

coefficient αSC presented in detail in Subsection 7.4. The outgoing distributions from the

adsorption surface are given in Eq. (7.45), while the parameters τM and ρM are calculated as

M : τM =
Tw,2
T0

, ρM = (1− αSC)
2
√
π

√
τM

π/2∫
−π/2

∞∫
0

ζ2 cos θF−dζdθ. (7.61)

At the surface (O) (y = 0) specular refection is imposed due to the axial symmetry according

to

F+ (x, 0, ζ, θ) = F+ (x, 0, ζ,−θ) , G+ (x, 0, ζ, θ) = G+ (x, 0, ζ,−θ) . (7.62)

Summarizing the formulation, it is noted that the kinetic modeling of the TIMO open

panel test setup is described by the kinetic equations (7.40) coupled by the moments (7.41)-

(7.44) and subject to boundary conditions (7.45)-(7.62). The discretization of the kinetic equa-

tions in the molecular velocity space is based on the discrete velocity method, while a second

order control volume is applied in the physical space. The macroscopic quantities are calculated

by Gauss-Legendre quadrature. The convergence criterion of the iteration process is

1

3K

K∑
i=1

[∣∣∣ρ(t+1)
i − n(t)

i

∣∣∣+
∣∣∣τ (t+1)
i − τ (t)i

∣∣∣+
∣∣∣u(t+1)
i − u(t)i

∣∣∣] < ε, (7.63)
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where the superscript t denotes the iteration index, K is the total number of nodes in phys-

ical space and ε is the tolerance parameter. In Table 7.1 the discretization parameters used

are given. It is noted that the numerical code is parallel based on message passing interface

(MPICH2). The parallelization of the kinetic algorithm is implemented in the molecular ve-

locity space. This is a simple and natural way of parallelization inherent in the structure

of the algorithm reducing significantly the required computational effort. The estimates of

the distribution functions at each processor are summed to estimate the updated macroscopic

quantities. Before starting a new iteration, the macroscopic quantities and the impermeability

constants are synchronized and re-transmitted to each processor. The scaling characteristics of

the implemented parallelization are quite good and details can be found in [101, 102].

The solution of the problem depends on five dimensionless parameters, namely the rar-

efaction parameter δ0, the temperature ratios Tw,1/T0 and Tw,2/T0, the sticking coefficient αSC

and the viscosity index ω.

Table 7.1: Numerical parameters used in simulations.

Number of nodes in x− direction 3451
Number of nodes in y− direction 765
Discrete angles in (0, π) 100
Discrete magnitudes 24
Convergence criterion < 10−4

7.6.2 Specification of the input parameters

As it is seen in Fig. 7.2 the whole geometry of the pump assuming x − y geometry is

imported, i.e. both vacuum vessel and the internal radiation shield, in the simulations except

the baffle fins in order to avoid coupling different types of computational grids.

Following the experimental campaign that took place at KIT, two out of the four gases

(H2, D2, Ne and He) that have been tested during the experimental campaign, namely H2 and

D2, have been simulated. The walls of the external vessel are at temperature T0 = 300 K,

which is also the temperature of the injected gas. Following the experimental parameters, the

thermal shield walls are at Tw,1 = 80 K D2 (Tw,1 = 85 K for H2) and the adsorbing plate are
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at Tw,2 = 18 K according to the basic scenario discussed in [171]. The reference viscosity at

temperature T0 = 300 K is 8.95 × 10−6 Pa s for H2 and 1.26 × 10−5 Pa s for D2, while their

molecular masses are 2.016 gr/mole and 4.023 gr/mole respectively. The viscosity index for

both gases is ω = 0.67. It is noted that the developed software is suitable in simulating a much

wider spectrum of gases.

It is important to note that the number of required simulations is significantly increased

due to the proper implementation of the boundary condition at the inlet of the pump where

the only known parameter is the throughput of the gas. Simulation tools require specific flow

parameters at open boundaries, like local pressure and velocity. When these quantities are

unknown, the typical treatment is to assume a Maxwellian distribution for the incoming to the

vacuum vessel particles through the inlet of the pump, and setting the flow rate due to this

incoming flow equal to the experimental value. This approach assumes that the portion of the

particles crossing the inlet of the pump in the opposite direction is negligible. Nevertheless,

following some extensive numerical experimentation, it has been clearly demonstrated that a

significant amount of particles will exit from the vessel through the injection pipe. Thus, in

order to achieve the net throughput to be equal to the experimental one (200 sccm), a much

higher throughput for the incoming particles has to be assumed and this requires a number of

simulations before the proper value is adjusted.

In order to achieve the required value for the throughput at the injection pipe outlet, the

only solution is the try and error method. A first guess is used initially and depending on the

recovered results, a new estimation is used resulting to multiple simulations for the recovery of

the correct flow field for each set of parameters. Consequently, the required resources for each

simulation are significantly increased.

It is noted that the desired experiment value of the gas net throughput of 200 sccm (0.338

Pa m3/s) can be obtained for different combined values of the sticking coefficient αSC and the

rarefaction parameter δ0. Next, for each set of values αSC and δ0 the pumping speed SR [m3/s]

is estimated based on the numerical results using the following expression

SR =
N̂

P1

, (7.64)
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where N̂ [Pa m3/s] is the net gas throughput through the inlet of the pump and P1 [Pa] is the

pressure displayed in Fig. 7.2. Then, the sticking coefficient is estimated through the calculated

values of the pumping speed that match the ones obtained from the experiments for the same

gas net throughput.

7.6.3 Comparison with experiment and computation of the sticking

coefficient

Tabulated numerical results obtained for H2 for various values of the sticking coefficient

αSC are presented in Table 7.2. In all cases the net gas flow is about 200 sccm close to the

experimental one. It is seen that as the sticking coefficient is decreased and the adsorbing plate

is not removing gas from the flow domain, the injected gas flow is increased to maintain the

net gas flow close to the experimental one and as expected the pressure P1 is also increased.

More specifically, the throughput for the incoming particles has drastically increased reaching

values much higher than 2000 sccm (for αSC = 0.1) in order to achieve net flux of 200 sccm.

Taking into account the fact that as the pressure is increased, the convergence rate for the

algorithm is decreased and more time is required for the convergence of the numerical code.

It is observed that the kinetic simulation results are close to the ones obtained by the Test

Particle Monte Carlo method (TPMC). Taking into account that TPMC is valid only in the

free molecular regime and that for most of the cases the flow is in the transition regime, in

addition to the different modeling approach and geometry (TMPC is solving the detailed 3D

flow configuration) the discrepancy of 10% in the lower limit of the transition regime (large

αSC) is reasonable. On the other end, for small values of αSC , where the flow is in the typical

transition regime, the discrepancy of 30% or more can be easily justified since TPMC does

not take into account particle collisions. Furthermore, comparing the experimental result of a

pumping speed of 2.61 m3/s with the computational pumping speeds obtained for various values

of the sticking coefficient it is concluded that a value of the sticking coefficient αSC = 0.03 is

the one that matches best the experimental result.

In Table 7.3, the obtained results for D2 are presented. The experimental pumping speed

for D2 is in the same order of magnitude to that of H2 and because of that the sticking coefficient
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should also be in the same order to the one for H2. Therefore, simulations have been performed

for small values of the sticking coefficient and more specifically for αSC < 0.1. In general similar

remarks, as before, can be made. The throughput of the incoming particles is significantly

enlarged as αSC is reduced, to achieve the net particles flux of 200 sccm at the injection pipe

outlet. The estimated value of the sticking coefficient in the case of D2 is about αSC = 0.064.

Next, the axial velocity, density, temperature, pressure as well as Mach number isolines

of H2 are presented in Fig. 7.16 and 7.17 for two indicative values of the sticking coefficient

αSC = 0.07 and 0.7. Small vortices are created close to the thermal shield, both inside and

outside of it. All of them are of small magnitude, especially the ones in the gap between

the vacuum vessel and the thermal shield. As the sticking coefficient αSC is decreased and

the pressure is increased the vortices are gradually increased. The density and the pressure

variances in the vacuum vessel are quite small in both cases and significant changes are limited

only in the space enclosed by the thermal shield. In addition, as expected the temperature of the

gas at the inlet of the pump is equal to one and then is monotonically decreased approaching

the adsorption surface, where its minimum value is observed. As it is seen, increasing the

sticking coefficient leads to lower values of the density in the flow field. Finally, the contours of

the Mach number give an idea for the magnitude of the velocity. As the sticking coefficient is

decreased the Mach number is also decreased since the intensity of the adsorption is decreased.

Moreover, the Mach number behind the adsorption panel is almost zero for both cases of αSC .

7.7 Concluding remarks

To sum up, the adsorption process has been investigated based on the BGK and Holway

model kinetic equations for monatomic and polyatomic gases respectively. First, the steady

one-dimensional half-space flow of a polyatomic gas in the presence of an absorbing planar wall

is investigated. The involved flow parameters include the sticking αSC and thermal accommo-

dation αTAC coefficients, the ratio of the surface temperature over the far upstream temperature

Tw/T∞ and the upstream normalized velocity u∞. Overall the effect of the rotational degrees

of freedom on the computed quantities is very small (about 10%). Therefore, the dimensionless
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results of monatomic gases may be also used in the case of polyatomic gases. Particular atten-

tion is given on the effect of the value of αTAC on u∞, as well as on the half space macroscopic

distribution of density, velocity, temperature and pressure, for various prescribed values of αSC

and Tw/T∞. It has been found that as the thermal accommodation of the gas on the surface is

reduced the adsorbing flux is also reduced or otherwise for a prescribed adsorbing flux the stick-

ing coefficient must be increased. Furthermore, the effect of partial thermal accommodation is

enlarged as the difference, between the surface temperature and the far upstream temperature,

is increased. Overall, the effect of αTAC is significant in all flow quantities and the type of

thermal gas-surface interaction must be accordingly taken into consideration.

Next, the modelling of a three stage prototype cryopump where the adsorption is the main

process has been performed. For this reason a 2D kinetic adsorption code has been developed to

simulate the experimental device configuration (TIMO open panel setup). Massive simulations

have been performed for different sets of parameters following the experimental setup used

at KIT. More specifically, numerical data have been recovered for H2 and D2 and different

values of the sticking coefficient. Simulation results have been compared with experimental

data, providing the values of the sticking coefficient for both gases (αSC = 0.03 for H2 and

αSC = 0.064 for D2). These results have been also compared with the corresponding ones

by the TPMC and will be also compared soon with corresponding DSMC (Direct Simulation

Monte Carlo) results.
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Figure 7.3: Upstream Mach number Mα∞ as a function of the sticking coefficient αSC for
thermal accommodation coefficient αTAC = 1 and temperature ratio τw = [1, 0.25] based on the
present kinetic model and the DSMC method [113].

193

Institutional Repository - Library & Information Centre - University of Thessaly
20/05/2024 01:12:25 EEST - 13.59.53.151



Section 7.7

Figure 7.4: Upstream Mach number Mα∞ as function of the sticking coefficient αSC for j = 2
and τw = 0.05 with Z = 1 and 5.

Figure 7.5: Upstream Mach number αTAC = [1, 0.2] as function of the sticking coefficient αSC
for j = [0, 2, 3] with Z = 3 and temperature ratios τw = 0.05 (left) and τw = 1 (right).
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Figure 7.6: Dimensionless density (up), normalized velocity magnitude (middle) and dimen-
sionless translational, rotational and total temperatures (down) for j = [0, 2, 3] with Z = 3,
temperature ratio τw = 0.05 and sticking coefficients αSC = [0.1, 0.7].
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Figure 7.7: Upstream velocity |u∞| as a function of the sticking coefficient αSC for thermal
accommodation coefficient αTAC = [1, 0.8, 0.2] and temperature ratio τw = [1, 0.27, 0.05].
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Figure 7.8: Comparison between the results obtained by using the ratio T effw /T∞ = [0.24, 0.81]
and αTAC = 1 with the corresponding ”exact” ones.
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Figure 7.9: Dimensionless number density ρ(x) for temperature ratios τw = [0.05, 0.27] with
sticking coefficient αSC = [0.1, 0.5, 0.9] and thermal accommodation coefficient αTAC = [1, 0.8, 0.2].
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Figure 7.10: Dimensionless velocity magnitude |u (x) /u∞| for temperature ratios τw =
[0.05, 0.27] with sticking coefficient αSC = [0.1, 0.5, 0.9] and thermal accommodation coefficient
αTAC = [1, 0.8, 0.2].
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Figure 7.11: Dimensionless temperature τ(x) for temperature ratios τw = [0.05, 0.27] with
sticking coefficient αSC = [0.1, 0.5, 0.9] and thermal accommodation coefficient αTAC = [1, 0.8, 0.2].
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Figure 7.12: Dimensionless pressure p(x) for temperature ratios τw = [0.05, 0.27] with sticking
coefficient αSC = [0.1, 0.5, 0.9] and thermal accommodation coefficient αTAC = [1, 0.8, 0.2].
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Figure 7.13: Dimensionless number density ρ(x) and temperature τ(x) for temperature ratio
τw = 0.05 with sticking coefficient αSC = 1 and thermal accommodation coefficient αTAC =
[1, 0.2].
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Figure 7.14: Net molar flux N̂
(molar)
∞ [mol/(m2s)] of various gases as a function of the sticking

coefficient αSC for thermal accommodation coefficient αTAC = [1, 0.8, 0.2] with P̂∞ = 0.1 Pa,
T∞ = 300 K and τw = 0.05.
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Figure 7.15: CAD views of the TIMO open panel pump and position of the pressure gauges.
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Figure 7.16: Dimensionless axial velocity, number density, temperature, pressure and Mach
number isolines of H2 (ω = 0.67) for αSC = 0.07.
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Figure 7.17: Dimensionless axial velocity, number density, temperature, pressure and Mach
number isolines of H2 (ω = 0.67) for αSC = 0.7.
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Chapter 8

Concluding remarks

The research work reported in this thesis is focused on the computational study of

non-equilibrium transport phenomena in polyatomic gases in the whole range of the Knudsen

number. More specifically, the effects of the rotational and vibrational degrees of freedom in

polyatomic heat transfer, flow and adsorption processes based on the kinetic theory of gases

are investigated. It is assumed that gas molecules possess both rotational and vibrational

degrees of freedom, described by the rigid rotator and quantum harmonic oscillator models,

respectively. Kinetic model equations have been computationally solved both deterministically

and stochastically using the Discrete Velocity and the Direct Simulation Monte Carlo methods

respectively. Results in terms of bulk quantities with practical interest, such as heat and mass

flow rates, including comparisons between the kinetic models and the DSMC results as well as

between simulations results and experimental data available in literature, are presented. A brief

description of the investigated flow setups with the major contributions is outlined in Sections

8.1-8.3, while some future work perspectives are presented in Section 8.4. It is noted that the

present work may be useful in the design and optimization of MEMS, vacuum sensors and other

technological devices with polyatomic gases.

Overall, the theoretical/computational investigation performed in this thesis exhibits the

importance of the rotational and vibrational degrees of freedom of polyatomic gases in non-

equilibrium transport phenomena. It has been shown that ignoring the internal structure of

the molecules may yield erroneous results and large deviations between measurements and
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calculations. The work provides some useful insight in the design and optimization of processes

and devices with polyatomic gases operating under rarefied conditions in a wide temperature

range.

8.1 Polyatomic heat transfer

The problem of conductive heat transfer through rarefied non-polar polyatomic gases

confined between infinite long parallel plates and coaxial cylinders maintained at different tem-

peratures is investigated. The analysis is based on three kinetic models namely the ones pro-

posed by Holway, Rykov and Andries as well as on the DSMC method supplemented by the

Borgnakke-Larsen collision model. The quantitative behavior of the radial heat fluxes, tempera-

tures and densities are examined in a wide range of the gas rarefaction parameter and for small,

moderate and large normalized temperature differences at various radius ratios. The three ki-

netic models and the DSMC method provide very close values of the computed macroscopic

quantities as well as very good agreement with corresponding experimental data available in

the literature. In addition, the computational results perfectly match the analytical ones in the

free molecular limit and tend to the analytical ones in the hydrodynamic regime.

The total heat fluxes of linear and non-linear polyatomic gases have been found to be

higher about 30−50% and 50−75% respectively, than the corresponding monatomic ones, with

the highest differences occurring in the free molecular limit. As the amount of elastic compared

to inelastic collisions is increased, the translational heat fluxes are slightly increased and they

tend to the monatomic ones, while always the rotational heat fluxes are about 50% and 75%

of the translational ones for diatomic and polyatomic gases respectively. Concerning the effect

of the vibrational degrees of freedom it is strongly depending on the number of vibrational

degrees of freedom as well as on the activation vibrational temperature of the working gas.

Therefore, different gases, namely N2, O2, CO2, CH4 and SF6 representing diatomic as well as

linear and nonlinear polyatomic molecules with 1 up to 15 vibrational modes are considered.

In diatomic gases the vibrational heat flux varies from 5% up to 25% of the total one, while

corresponding results in polyatomic gases with high number of vibrational modes show that even

at low reference temperatures the contribution of the vibrational heat flux may be considerably
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higher. For example, in the case of SF6 at 300 K and 500 K the vibrational heat flux is computed

to be 67% and 76% respectively of the total heat flux.

Moreover, the effect of the thermal accommodation at the boundaries has also been ex-

amined for various diffuse-specular reflection scenarios. In most cases as the thermal accom-

modation coefficient is increased, i.e. the gas-surface interaction becomes more diffusive, the

dimensionless total heat flux is monotonically increased. The effective thermal conductivity ap-

proximation has been also studied finding out that it can be successfully applied in polyatomic

gases to study non-equilibrium effects provided that the system Knudsen number is small.

8.2 Polyatomic flows

Polyatomic gas flows through short and long tubes have been studied. More specifi-

cally, the pressure driven rarefied polyatomic gas flow through short tubes into vacuum has

been numerically investigated based on the Holway kinetic model subject to diffuse boundary

conditions. Such flows are characterized by low Reynolds numbers and high viscous losses and

therefore short circular micro-tubes may be used instead of typical micro-nozzles. The propul-

sion characteristics including the flow rate, the thrust, the impulse factor and the discharge

coefficient as well as the distributions of the macroscopic quantities with practical interest have

been obtained. It is found that the effect of the rotational degrees of freedom on the macro-

scopic quantities is small except in the case of temperature distributions. It may be concluded

that the overall propulsion efficiency in the case of polyatomic gases compared to the one in

monatomic gases is slightly improved. Also, it has been demonstrated that this type of flows,

which have been simulated so far only based on the DSMC method, can be also tackled by

kinetic modeling.

Also, the flow of a polyatomic rarefied gas in a capillary tube of infinite length driven by

small pressure gradients (Poiseuille flow) or small temperature gradients (thermal creep flow)

has been studied based on the Rykov model. Very good agreement with available numerical

results and experimental data in literature for diatomic gases has been obtained. The effect of

the rotational degrees of freedom on the mass flow rates due to pressure differences, as in the

case of the short tubes, is almost negligible. On the contrary, there is a significant effect on the
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Section 8.3

thermal creep flow, where in diatomic and linear polyatomic gases the heat flow rate may be

higher about 30− 40% than the corresponding monatomic one, while this difference can reach

50− 65% in the case of nonlinear polyatomic gases.

8.3 Polyatomic gas adsorption on solid surfaces

Gas adsorption flow has been investigated based on the Bhatnagar-Gross-Krook and

Holway kinetic model equations for monatomic and polyatomic gases respectively. The one-

dimensional half-space flow of a polyatomic gas in the presence of an absorbing planar wall

has been considered. Overall the effect of the rotational degrees of freedom on the computed

quantities is about 10%. Therefore, the dimensionless results of monatomic gases may be also

used in the case of polyatomic gases. Furthermore, the influence of the partial thermal gas

surface interaction on all flow quantities including the sticking coefficient has been studied. It

has been found that as the gas thermal accommodation on the surface is reduced for prescribed

adsorbing flux and temperature difference the sticking coefficient must be increased to sustain

the prescribed flux or otherwise for the same sticking coefficient the adsorbing flux is reduced.

This behavior is further enhanced as the difference, between the surface and the far upstream

temperature is increased, which is commonly the case in cryogenic applications. Overall, the

effect of the thermal accommodation coefficient is significant in all flow quantities and the type

of thermal gas-surface interaction must be accordingly taken into consideration.

The study of the adsorption process is extended to the case of a two-dimensional con-

figuration in order to simulate an open panel experiment, conducted at a test facility at the

Karlsruhe Institute of Technology (KIT) in Germany. Combining computational results with

experimental data, the values of the sticking coefficients of different gases have been estimated,

supporting decision making related to the design of the cryogenic pumping system. Massive

simulations have been performed for different sets of parameters following the experimental

setup used at KIT. Simulations have been performed for different sets of parameters and nu-

merical data have been recovered for H2 and D2. Following a comparison with experimental

data, the sticking coefficient for both gases has been provided. In addition, the detailed flow

structure in terms of all macroscopic quantities of practical interest is viewed and the effect of
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Section 8.4

the temperature of the adsorbing plate is reported. Most important a significant amount of

back flow in the inlet slit is observed highly influencing the overall adsorption performance.

8.4 Future work

Continuation and further development of the present research may be performed in the

following directions:

• Transport phenomena in rarefied binary gas mixtures consisting of polyatomic gases have

not been investigated so far and it is a field where the knowledge and experience obtained

in the present work could be very useful in the investigation of such processes. Particularly,

simulating adsorption processes with such gases is very interesting both theoretically and

technologically (e.g. cryopumps).

• Extending the present computational work by including dissociation and electronic ex-

citation in polyatomic molecules using basic principles of the kinetic theory is also very

promising. This will provide a more thorough understanding and lead to improved com-

parisons with experimental data for gases having low excitation energies.

• Estimation of the slip and jump coefficients in the case of polyatomic gases may be now

performed in a relatively straightforward manner. Having these coefficients for polyatomic

gases will allow the implementation of continuum mechanics equations with velocity slip

and temperature jump boundary conditions for moderately small Knudsen number. This

analysis is available in monatomic gases but very limited work has been done in polyatomic

gases.

• The investigation of the feasibility of the three stage cryopump concept for the main

vacuum pumping system of the Demonstration Power Plant (DEMO) fusion facility will

be continued. More detailed comparisons with experimental data will be performed.

• Modification of the parallelized numerical codes developed here in order to be executed

by GPUs with CUDA is an action which definitely must be seriously considered. This

modification will result to high performance improvements and allow simulations of the

real geometry without simplifications.
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Appendix A

Relaxation rates in a homogeneous gas

A.1 Rotational relaxation

Comparisons between the translational-rotational relaxation rates of the applied kinetic

model equations and those of the DSMC method with the Borgnakke-Larsen collision model

are performed. Consider a spatially homogeneous polyatomic gas at a constant equilibrium

total temperature but different initial rotational and translational temperatures. Then, the

rotational and translational temperatures will evolve and relax toward the constant equilibrium

total temperature with a common rate determined by the collision frequency and rotational

relaxation parameter Z. By operating accordingly on the kinetic model equations the time

evolution of the translational-rotational temperatures may be obtained. Then, the parameter

Z(i) is accordingly fixed to ensure equivalent translational and rotational relaxation rates in

order to have a consistent comparison. The kinetic model equations Eq. (3.24) and Eq. (3.37)

are rewritten for a time-dependent homogeneous system, i.e., by adding the time derivative term

and omitting all space derivatives terms. Then, they are accordingly combined and the resulting

equations are integrated over the velocity space to yield the following relaxation equations for

each model:

• Holway

dτtr
dt

=
8

5
√
π

Pr

√
τtr

Z(H)
[τ − τtr] ,

dτrot
dt

=
8

5
√
π

Pr

√
τtr

Z(H)
[τ − τrot] (A.1)
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• Rykov

dτtr
dt

=
8

5
√
π

√
τtr

Z(R)
[τ − τtr] ,

dτrot
dt

=
8

5
√
π

√
τtr

Z(R)
[τ − τrot] (A.2)

• Andries

dτtr
dt

=
8

5
√
π

√
τtr

Z(A)
[τ − τtr] ,

dτrot
dt

=
8

5
√
π

√
τtr

Z(A)
[τ − τrot] (A.3)

All above equations have been deduced by introducing hard-sphere interactions (ω = 1/2)

and the dimensionless time t = t̂/ (λ0/υ0), with λ0 = 1/
(√

2πd2n0

)
being the mean free path of

hard sphere molecules and d denoting the molecular diameter, as well as the equation ∂n/∂t = 0.

It is also noted that in the relaxation equations of the Andries model Z(A) = (1− ν + θν) /θ

and Pr = (1− ν + θν)−1.

The relaxation rates of the kinetic model equations have been compared numerically with

the corresponding ones of the DSMC method. It has been found that by setting

Z(DSMC) = Z(A) (ν, θ) = Z(R) ($0, $1) =
Z(H)

Pr
, (A.4)

where Z(DSMC) denotes the rotation collision parameter in the DSMC simulations, nearly identi-

cal translational-rotational relaxation rates are produced in all cases. The relations between the

rotational collision numbers of the three kinetic models, shown in Eq. (A.4), are well justified by

Eqs. (A.1)-(A.3), while their connection to Z(DSMC) is validated numerically. Some indicative

results are demonstrated in Fig. A.1, where the time evolution of the translational and rotational

temperatures towards the equilibrium temperature for a diatomic gas with Pr = 0.73 and initial

conditions τtr (0) = 3 and τrot (0) = 1, are shown. It is seen that for Z(DSMC) = Z(R) = Z(A) = 5

and Z(H) = 3.65 excellent agreement in the relaxation towards equilibrium between all models is

obtained. The rotational collision number Z(A) has been obtained with ν = −0.5 and θ = 0.273,

while Z(H) = Z(DSMC) Pr. On the contrary for the Holway model presents a slower relaxation

towards equilibrium. Eq. (A.4) is used in Section 3.5.2 to define the rotational collision number

for the various kinetic models and the DSMC method in order to have a consistent comparison

between the computed heat fluxes.
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A.2 Vibrational relaxation

In the study of the heat transfer in polyatomic gases confined between parallel plates

including the translational, rotational and vibrational degrees of freedom of the molecules in

order to achieve a proper comparison between the Holway kinetic model and the DSMC method,

it is necessary to match the rotational and vibrational relaxation rates of the two approaches

by accordingly fixing the collision numbers Z
(i)
r and Z

(i)
v , with the superscript i being (H)

and (DSMC) in the case of the Holway model and the DSMC method respectively. The

corresponding analysis for the rotational relaxation rates has been done in Section A.1.

Consider a spatially homogeneous diatomic gas at a constant equilibrium total temper-

ature and an initial vibrational temperature which is different than the initial translational

and rotational temperatures which are set equal to each other. Then, all partial temperatures

will evolve and relax toward the constant equilibrium total temperature with a common rate

determined by the collision frequency and vibrational relaxation numbers Z
(i)
r and Z

(i)
v . By

operating accordingly on the kinetic model equations the time evolution of the temperatures

may be obtained. Then, the parameters Z
(i)
r and Z

(i)
v are accordingly fixed to ensure equiv-

alent translational, rotational and vibrational relaxation rates in order to have a consistent

comparison.

The kinetic model Eqs. (5.15) are rewritten for a time-dependent homogeneous system,

i.e., by adding the time derivative term and omitting all space derivatives terms. Then, they are

accordingly combined and the resulting equations are integrated over the velocity and energy

spaces to yield the following relaxation kinetic equations

dTtr

dt̂
= Pr

T 1−ω
tr P̂0

T 1−ω
0 µ (T0)

[
1

Z
(H)
v

(Ttot − Ttr) +
2

5

1

Z
(H)
r

(Trot − Ttr)
]
, (A.5)

dTrot

dt̂
= Pr

T 1−ω
tr P̂0

T 1−ω
0 µ (T0)

[
1

Z
(H)
v

(Ttot − Trot) +
3

5

1

Z
(H)
r

(Ttr − Trot)
]
, (A.6)

d [Tvibζv (Tvib)]

dt̂
=

Pr

Z
(H)
v

T 1−ω
tr P̂0

T 1−ω
0 µ (T0)

[Ttotζv (Ttot)− Tvibζv (Tvib)] . (A.7)

All quantities are defined in Chapter 5. The number density remains constant in time ∂n/∂t̂ = 0.
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The relaxation rates of the kinetic model equations have been compared numerically with the

corresponding ones of the DSMC method and it has been found that good agreement is observed

by setting [172]

Z
(H)
i =

Pr

30

(
6− 4

α

)(
4− 4

α

)
Z

(DSMC)
i , (A.8)

where i = r, v and α = 4/(2ω − 1) is a parameter of the inverse power law potential which

varies between the limits for Maxwell molecules (α = 4) and hard sphere molecules (α→∞).

Indicative results are demonstrated in Fig. A.2, where the time evolution of the trans-

lational, rotational and vibrational temperatures toward the equilibrium temperature for a

diatomic gas (Pr = 0.764, ω = 0.74, P̂0 = 0.1 Pa, µ (T0) = 94.55 µPa s) [145] with initial

temperatures T
(i)
tr (0) = T

(i)
rot (0) = 3371 K and T

(i)
vib (0) = 6742 K, are shown. It is seen that for

Z
(DSMC)
v = 50 and Z

(DSMC)
r = 5 there is very good agreement provided that using Eq. (A.8),

Z
(H)
v = 24.7 and Z

(H)
r = 2.47. Eq. (A.8) is used in Subsection 5.4.1 to define the rotational

and vibrational collision numbers for the Holway kinetic model and the DSMC method in order

to have a consistent comparison between the computed heat fluxes and the other macroscopic

quantities.
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Figure A.1: Translational-rotational relaxation in a homogeneous gas.

Figure A.2: Translational-rotational-vibrational relaxation in a homogeneous gas.
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Appendix B

The H-Theorem for the Holway model

In classical statistical mechanics, the H-theorem, introduced by Ludwig Boltzmann in

1872, describes the tendency to decrease the quantity H (defined below) in a nearly-ideal gas of

molecules [1]. As this quantity H was meant to represent the entropy of thermodynamics, the

H-theorem was an early demonstration of the power of statistical mechanics as it claimed to

derive the second law of thermodynamics. The H-theorem may be considered as more general

than the second law of thermodynamics, which states that entropy cannot decrease, because it

applies even far from equilibrium, while the entropy is defined only in equilibrium. However,

the H-theorem has been proven only for dilute gases whereas the second law applies to any

system in equilibrium. The H-theorem is formulated as [1]

∂H
∂t̂

+
∂Hi

∂x̂i
≤ 0, i = x̂, ŷ, ẑ (B.1)

where

H =

∞∫
−∞

∞∫
0

f̂ ln f̂ dÎdυ, Hi =

∞∫
−∞

∞∫
0

υif̂ ln f̂ dÎdυ. (B.2)
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Multiplying Eq. (2.5) by ln f̂ and integrating the resulting equation over Î and υ and after some

routine manipulation is obtained

∂

∂t̂

∞∫
−∞

∞∫
0

f̂ ln f̂ dÎdυ +
∂

∂x̂i

∞∫
−∞

∞∫
0

υif̂ ln f̂dÎdυ =

=

∞∫
−∞

∞∫
0

[
νtr

(
f̂tr − f̂

)
+ νrot

(
f̂rot − f̂

)]
ln f̂dÎdυ, (B.3)

where vcoll is the collision frequency. In the derivation of Eq. (B.3) the collision invariant of

mass has been used. Also, the following two equations can be easily proved for the Holway

model
∞∫

−∞

∞∫
0

(
f̂tr − f̂

)
ln f̂trdÎdυ = 0,

∞∫
−∞

∞∫
0

(
f̂rot − f̂

)
ln f̂rotdÎdυ = 0. (B.4)

From the Eqs. (B.3)-(B.4) it is obtained

∂

∂t̂

∞∫
−∞

∞∫
0

f̂ ln f̂ dÎdυ +
∂

∂x̂i

∞∫
−∞

∞∫
0

υif̂ ln f̂dÎdυ =

=

∞∫
−∞

∞∫
0

[
νtr

(
f̂tr − f̂

)
ln

(
f̂

f̂tr

)
+ νrot

(
f̂rot − f̂

)
ln

(
f̂

f̂rot

)]
dÎdυ. (B.5)

The collision frequencies νtr and νrot are necessarily greater than 0 and the terms

(
f̂tr − f̂

)
ln

(
f̂

f̂tr

)
,
(
f̂rot − f̂

)
ln

(
f̂

f̂rot

)
, (B.6)

are always lower than 0. We have therefore at the first order

∂

∂t̂

∞∫
−∞

∞∫
0

f̂ ln f̂ dÎdυ +
∂

∂x̂i

∞∫
−∞

∞∫
0

υif̂ ln f̂dÎdυ ≤ 0. (B.7)

Consequently the H-theorem for the Holway model is proven.
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Appendix C

Analytical solutions

In some cases, it is possible to derive analytical solutions in the two limits of the Knudsen

number: the free molecular regime (δ0 = 0) and the hydrodynamic regime (δ0 → ∞). Closed

form expressions are provided here, used as benchmarking criteria for our numerical methods.

C.1 Free molecular regime

In the collisionless regime (δ0 = 0), the right hand side of the Boltzmann equation vanishes

and the problem can be solved analytically by the method of characteristics.

• Heat transfer between parallel plates

In the free molecular limit (δ0 = 0) the right hand side of the Eqs. (3.24) and (3.37) be-

comes zero and then based on the associated boundary conditions closed form expressions

for the reduced distributions functions Ψ are readily deduced, which are substituted into

the moment equations Eqs. (3.27)-(3.29) to yield analytical results for the macroscopic dis-

tributions. It is noted that in the free molecular limit all moments are independent of y

and remain constant at any position between the plates. Following this procedure and us-

ing boundary conditions (3.45) and (3.46), the translational and rotational temperatures

in terms of the thermal accommodation coefficient α and the normalized temperature
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difference β are written as

τtr,fm (α, β) = τrot,fm (α, β) =

√
γ2 − 1

γ
, (C.1)

while the translational and rotational heat fluxes are given by

qtr,fm (α, β) =

(
1 +

1

γ

)3/2

(
1− γ +

√
γ2 − 1

)
√
π

−
(

1− 1

γ

)3/2

(
1 + γ −

√
γ2 − 1

)
√
π

, (C.2)

and

qrot,fm (α, β) =
j

4
qtr,fm (α, β) (C.3)

respectively, where γ = (2− α) / (αβ). For the specific case of purely diffuse reflection

(α = 1 and γ = 1/β), Eqs. (C.1)-(C.3) are reduced to

τtr,fm (β) = τrot,fm (β) =
√

1− β2, (C.4)

qtr,fm (β) =
2√
π

[
(1 + β)

√
1− β − (1− β)

√
1 + β

]
(C.5)

and

qrot,fm (β) =
j

4
qtr,fm (β) . (C.6)

The number density remains constant and equal to 1 (ρfm = 1). In the case of the

study that includes vibrational degrees of freedom the vibrational temperature and heat

flux may be included. Following the corresponding process which has been applied for

the translational and rotational heat flux and using the boundary conditions (5.25) and

(5.26) along with the moments (5.22) the vibrational heat flux is given as

qvib,fm =
1

2
√
π

√
τw,Cτw,H

√
τw,C +

√
τw,H

[τw,Hζv (τw,H)− τw,Cζv (τw,C)] , (C.7)

where τw,H = TH/T0 and τw,C = TC/T0, while ζv is the vibrational degrees of freedom

as defined by Eq. (5.23). In the case of diatomic gases an analytical expression for the
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vibrational temperature can be obtained as

τvib,fm =
θv

ln

[
1 + 2θv

√
τw,C +

√
τw,H

τw,H
√
τw,Cζv (τw,H) + τw,C

√
τw,Hζv (τw,C)

] , (C.8)

while the corresponding expression for polyatomic gases takes the form

τvib,fm =
τw,H
√
τw,Cζv (τw,H) + τw,C

√
τw,Hζv (τw,C)

ζv (τvib,fm)
(√

τw,C +
√
τw,H

) . (C.9)

In Fig. C.1 the free molecular total heat flux qfm = qtr,fm+qrot,fm is plotted for a diatomic

gas (j = 2) in terms of the parameters α and β. It is seen that at small β, qfm is

monotonically increased with the thermal accommodation coefficient α and the maximum

qfm occurs at α = 1. However, at large β the corresponding behavior is non-monotonic

and the maximum qfm appears at some value of α < 1. Similar results have also been

obtained in Subsection 3.5.3 for δ0 > 0, provided that the temperature difference is

adequately large and the gas rarefaction parameter remains low.
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Figure C.1: The free molecular total heat flux qfm in terms of the thermal accommodation
coefficient α and the normalized temperature difference β.

• Heat transfer between coaxial cylinders

The right hand side of Eq. (4.16) becomes zero and in the case of Maxwell diffuse boundary

conditions the reduced distribution functions are given for θ ∈ [−π/2, π/2] by

F+ =
ρw

π (1 + β)
exp

(
− ζ2

1 + β

)
, G+ =

1

2
(1 + β)F+, S+ =

j

2
(1 + β)F+ (C.10)

and for θ ∈ [π/2, 3π/2] by

F+ =
1

π
exp

(
−ζ2

)
, G+ =

1

2
F+, S+ =

j

2
F+. (C.11)

where the impermeability parameter is found from the no penetration condition to be

ρw =
1√

1 + β
. (C.12)

Then, substituting Eqs. (C.10)-(C.12) into the moment Eqs. (4.19)-(4.21) and following a

straightforward manipulation yields

ρfm(r, β) =
1

π

(
θ1√

1 + β
− θ1 + π

)
, (C.13)
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τtr,fm(r, β) = τrot,fm(r, β) =
1

ρfm(r, β)π

[
θ1

(√
1 + β

)
+ π − θ1

]
, (C.14)

qtr,fm(r, β) =
βγ

r
√
π
, qrot,fm(r, β) =

jβγ

4r
√
π
, qfm(r, β) =

(
1 +

j

4

)
βγ

r
√
π
. (C.15)

In Eqs. (C.13) and (C.14) the discontinuity angle θ1 = sin−1 (γ/r) is displayed in Fig. (4.1).

Obviously the results do not depend on the type of model and are exactly the same for the

Holway and Rykov models. It is seen that in the free molecular limit for j = 2 and j = 3

the rotational heat flux is one half and three quarters respectively of the corresponding

translational one, while in the case of a monatomic gas (j = 0) the rotational is equal to

zero and the translational is equal to the total heat flux. It is noted that the numerical

solution for δB = 0 is in excellent agreement with the analytical results of Eqs. (C.13)-

(C.15).

C.2 Hydrodynamic regime

In the continuum regime (δ0 →∞), we can apply the hydrodynamic equations.

• Heat transfer between parallel plates

In the hydrodynamic limit (δ0 →∞) the Fourier law is introduced into the energy equa-

tion to yield the total heat flux

dq̂

dŷ
=

d

dŷ

(
k
dT

dŷ

)
= 0, (C.16)

where k is the thermal conductivity. If Euler splitting of the internal modes of energy

transfer is assumed, the polyatomic value of the thermal conductivity is [47]

k =

(
15

4
+
j

2

)
µR, (C.17)

where j = 0, 2, 3 is the number of the rotational degrees of freedom, µ is the viscos-

ity and R = kB/m is the individual gas constant. Applying the same process of the

non-dimensionalization mentioned in Subsection 3.3.1 and introducing the dependence of
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viscosity on temperature according to Eq. (3.19) the dimensionless heat flux is written as

q (δ0 →∞) =

(
5

4
+
j

6

) [(1 + β)3/2 − (1− β)3/2
]

δ0
. (C.18)

The tabulated numerical results in Subsection 3.5.2 for j = 0, 2, 3 tend to the correspond-

ing analytical results of Eq. (C.18) at large values of the gas rarefaction parameter.

• Heat transfer between coaxial cylinders

Based on the Fourier law, the dimensionless heat flux for a monatomic gas with HS

molecules confined between two cylinders has been obtained analytically in [89]. It is

noted that the ratio of the thermal conductivity k of a polyatomic gas over its viscosity

µ introducing the Eucken correction, can be written as [47]

k

µ
=

9cp − 5cυ
4

, (C.19)

where cp and cυ are the specific heats at constant pressure and temperature respectively

given, in terms of the degrees of freedom j = 0, 2, 3, by

cp =
kB
m

5 + j

2
, cυ =

kB
m

3 + j

2
. (C.20)

Then, following the same procedure as in [89], it is readily deduced that

q(δB →∞) = −
(

5

4
+
j

6

) [(β + 1)3/2 − 1
]

rδB ln γ
. (C.21)

For j = 0, Eq. (C.21) is reduced to the monatomic heat flux in [89], while for j = 2, 3 the

corresponding diatomic and polyatomic heat fluxes are obtained. The present numerical

results for large values of the gas rarefaction parameter tend to the analytical results of

Eq. (C.21).
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Appendix D

Heat conduction at small temperature

difference based on Rykov model

Here, the heat conduction in rarefied diatomic gases confined between two stationary

coaxial cylinders at small temperature differences is investigated based on the Rykov model (R-

model). The notation is kept the same as those presented in Chapter 4. When the temperature

difference ∆T is small, the distribution functions can be linearized as follows [17]

ĝ = f̂0 (1 + Lβ) , ĥ = kBTB f̂0 (1 +Hβ) , β << 1 (D.1)

where L and H are the unknown perturbation functions and f̂0 is the local Maxwellian in the

equilibrium conditions

f̂0 = nB

(
m

2πkBTB

)3/2

exp

(
−mυ2

2kBTB

)
(D.2)

where nB is the number density of the gas on the outer cylinder and TB is the temperature of

the outer cylinder.
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Introducing the following non-dimensional quantities

r =
r̂

RB

, ζ =
ξ

υB
, cz =

ξz
υB
, ρ =

n− nB
nB

1

β
,

τtr =
Ttr − TB
TB

1

β
, τrot =

Trot − TB
TB

1

β
, τ =

3τtr + jτrot
3 + j

,

qtr =
Qtr

PBυB

1

β
, qrot =

Qrot

PBυB

1

β
, q = qtr + qrot

(D.3)

and Substituting Eqs. (D.1) into the kinetic equations Eqs. (4.11) and (4.12), the linearized

R-model that in the cylindrical coordinates reads as

ζ cos θ
∂L

∂r
− ζ sin θ

r

∂L

∂θ
= δB (L0 − L) ,

ζ cos θ
∂H

∂r
− ζ sin θ

r

∂H

∂θ
= δB (H0 −H) ,

L0 = ρ+

[
1

Z
τ +

(
1− 1

Z

)
τtr

](
ζ2 − 3

2

)
+

(
$0 − 1

Z
+ 1

)
4

15
qtrζ cos θ

(
ζ2 − 5

2

)
,

H0 = ρ+
2

5Z
(τrot − τtr)

(
ζ2 − 3

)
+ τrot + τtr

(
ζ2 − 3

2

)
+

(
$0 − 1

Z
+ 1

)
4

15
qtrζ cos θ

(
ζ2 − 5

2

)
+ 2

(
$1 − 1

Z
+ 1

)
(1− κ)qrotζ cos θ.

(D.4)

where δB is the rarefaction parameter defined in Eq. (4.3). The moments of the perturbation

functions ρ, τ , τtr, τrot, qtr and qrot are given as

ρ =
1

π3/2

2π∫
0

∞∫
0

∞∫
−∞

L exp
(
−ζ2 − c2z

)
dczζdζdθ, (D.5)

τtr =
1

π3/2

2π∫
0

∞∫
0

∞∫
−∞

L

(
2

3
ζ2 − 1

)
exp

(
−ζ2 − c2z

)
dczζdζdθ, (D.6)

τrot =
1

π3/2

2π∫
0

∞∫
0

∞∫
−∞

(H − L) exp
(
−ζ2 − c2z

)
dczζdζdθ, (D.7)
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qtr =
1

π3/2

2π∫
0

∞∫
0

∞∫
−∞

Lζ cos θ

(
ζ2 − 5

2

)
exp

(
−ζ2 − c2z

)
dczζdζdθ, (D.8)

qrot =
1

π3/2

2π∫
0

∞∫
0

∞∫
−∞

Hζ cos θ exp
(
−ζ2 − c2z

)
dczζdζdθ. (D.9)

To eliminate the velocity cz the following three reduced functions are introduced

F =
1√
π

∞∫
−∞

L exp
(
−c2z

)
dcz,

G =
1√
π

∞∫
−∞

L

(
c2z −

1

2

)
exp

(
−c2z

)
dcz,

S =
1√
π

∞∫
−∞

H exp
(
−c2z

)
dcz.

(D.10)

Then, Eqs. (D.4) are written in compact form as

ζ cos θ
∂Ψ

∂r
− ζ sin θ

r

∂Ψ

∂θ
= δB (Ψ0 −Ψ) , (D.11)

where Ψ = [F,G, S]T is the vector of the unknown distribution functions, while the components

of the vector Ψ0 = [F0, G0, S0]
T are defined as follows

F0 = ρ+

[
1

Z
τ +

(
1− 1

Z

)
τtr

] (
ζ2 − 1

)
+

(
$0 − 1

Z
+ 1

)
4

15
qtrζ cos θ

(
ζ2 − 2

)
,

G0 =
τ

2Z
+

(
1− 1

Z

)
τtr
2

+

(
$0 − 1

Z
+ 1

)
2

15
qtrζ cos θ,

S0 = ρ+
2

5Z
(τrot − τtr)

(
ζ2 − 5

2

)
+ τrot + τtr

(
ζ2 − 1

)
+

(
$0 − 1

Z
+ 1

)
4

15
qtrζ cos θ

(
ζ2 − 2

)
+ 2

(
$1 − 1

Z
+ 1

)
qrotζ cos θ(1− κ).

(D.12)
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The macroscopic quantities (Eqs. (D.5)-(D.9)) written in terms of the reduced distribution

functions F , G and S as

ρ =
1

π

2π∫
0

∞∫
0

F exp
(
−ζ2

)
ζdζdθ, (D.13)

τtr =
2

3π

2π∫
0

∞∫
0

[
F (ζ2 − 1)−G

]
exp

(
−ζ2

)
ζdζdθ, (D.14)

τrot =
1

π

2π∫
0

∞∫
0

(S − F ) exp
(
−ζ2

)
ζdζdθ, (D.15)

qtr =
1

π

2π∫
0

∞∫
0

ζ cos θ
[
F (ζ2 − 2)−G

]
exp

(
−ζ2

)
ζdζdθ, (D.16)

qrot =
1

π

2π∫
0

∞∫
0

ζ cos θS exp
(
−ζ2

)
ζdζdθ. (D.17)

To close the formulation of the linearized Rykov model the boundary conditions have to be

assigned. Although the numerical formulation would allow more general wall scattering mod-

els, purely diffuse type boundary conditions are considered. Applying, the same linearization

(Eqs. (D.1)), dimensionalization (Eqs. (D.3)) and projection (Eqs. (D.10)) processes as for the

governing equations, the linearized form of the outgoing distributions associated to Eqs. (D.11)

are at the inner wall (r = γ)

F+ = ρw +
(
ζ2 − 1

)
, G+ =

1

2
, S+ = ρw + ζ2, (D.18)

and at the outer wall (r = 1)

F+ = G+ = S+ = 0. (D.19)

The parameter ρw in Eqs. (D.18) is determined via the impermeability condition as

ρw = − 2√
π

3π/2∫
π/2

∞∫
0

ζ2 cos θF− exp
(
−ζ2

)
dζdθ − 1

2
. (D.20)
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The nonlinear vector Eqs. (D.11) along with the associated expressions (D.12), the moments

(D.13-D.17) and the boundary conditions (D.18-D.20) provide a theoretically well-established

closed kinetic formulation for the heat transfer problem under small temperature differences

based on the R-model.

In Table D.1 a comparison between the heat fluxes obtained from the linear Rykov

model with the corresponding results based on the nonlinear Rykov is performed. The dimen-

sionless translational, rotational and total heat fluxes are given for various δB with γ = 1/2

and γ = 1/10. The enclosed gas is nitrogen (N2) with ω = 0.74, $0 = 0.2354, $1 = 0.3049,

κ = 0.645 and Z = 5 [106]. Simulations based on the nonlinear Rykov model have been

performed for β = 0.01. It is noted that in order to compare the results from the nonlinear

Rykov model with the corresponding ones obtained from the linear Rykov they are divided by

β = 0.01. The percentage error between the nonlinear (NL) and linear (L) heat flows, defined

as error = |(qNL − qL)/qNL| × 100 is less that 1% for all δB and γ. So, the presented linear

form of the Rykov model can be applied at small temperature differences, giving results very

close to the corresponding results based on the nonlinear Rykov model.

Table D.1: Heat fluxes at the inner hot cylinder (r = γ) for N2 (j = 2) based on the linear and
nonlinear Rykov model (Z = 5, ω = 0.74, $o = 0.2354, $1 = 0.3049, κ = 0.645).

γ δB
qtr qrot q

Linear Nonlinear Linear Nonlinear Linear Nonlinear

1/2

0.1 5.59(-1) 5.57(-1) 2.79(-1) 2.78(-1) 8.38(-1) 8.36(-1)

0.5 5.37(-1) 5.35(-1) 2.67(-1) 2.67(-1) 8.04(-1) 8.02(-1)

1 5.11(-1) 5.10(-1) 2.54(-1) 2.53(-1) 7.65(-1) 7.63(-1)

5 3.70(-1) 3.68(-1) 1.76(-1) 1.76(-1) 5.46(-1) 5.44(-1)

10 2.72(-1) 2.70(-1) 1.26(-1) 1.26(-1) 3.99(-1) 3.97(-1)

1/10

0.1 5.61(-1) 5.60(-1) 2.81(-1) 2.80(-1) 8.42(-1) 8.40(-1)

0.5 5.49(-1) 5.48(-1) 2.74(-1) 2.74(-1) 8.24(-1) 8.22(-1)

1 5.35(-1) 5.34(-1) 2.67(-1) 2.66(-1) 8.02(-1) 8.00(-1)

5 4.36(-1) 4.35(-1) 2.13(-1) 2.13(-1) 6.50(-1) 6.47(-1)

10 3.48(-1) 3.46(-1) 1.67(-1) 1.66(-1) 5.15(-1) 5.13(-1))
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