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Abstract 

Tank fire incidents take place mainly in petroleum refineries, oil terminals or storage tanks 

and they can prove to be catastrophic. During the last years, engineering societies 

(American petroleum institute, National Fire Protection Association etc) have published 

strict engineering guidelines and standards for the construction, material selection, design 

and safe management of storage tanks. Nevertheless, tank fire incidents are increasing in 

the last decades. The problem addressed in this thesis is the thermal buckling behavior of 

steel oil-storage cylindrical tanks under fire loading induced by an adjacent tank. The 

interest is focused on the case of fixed-roof tanks. The study is conducted numerically 

through the Finite Element method. The general purpose Finite Element code MSC Marc, 

which is optimized for non-linear problems, is used for the simulation. Three-dimensional 

models are developed using shell elements. A simplified approach of a conical roof is 

adopted for the simulation. Moreover, a thermal load pattern is used for the simulation of 

the fire-induced load. The pattern considers square cosine temperature variation around the 

circumference of the heated tank and uniform temperature distribution along the height of 

the cylindrical shell. The problem is solved through non-linear transient thermal/structural 

numerical analysis considering large displacements in the formulation of the mathematical 

model. The basic objective is the evaluation of the deflection field of thin-walled steel 

cylindrical shells under non-uniform temperature distribution around the circumference of 

the tank, taking into account the restraints (axial and rotational) that are induced at the 

upper and lower base of the cylinder due to the base-support and the fixed-roof conditions 

respectively and the degradation of material mechanical properties at elevated 

temperatures. Furthermore, the critical buckling temperatures for oil-storage tanks are 

calculated. Initially the problem is solved through non-linear geometric analysis, 

considering linear elastic material law and the corresponding results are given. A more 

realistic approach follows and the thermal buckling behavior of the steel storage tank is 

evaluated taking into account the material’s non-linearity at elevated temperatures. In both 

cases, the effect of the roof stiffness in the critical buckling temperature is studied. 

Parametric numerical analyses are conducted in order to reveal the main factors that affect 

the thermal buckling behavior of oil-storage fixed-roof tanks. The parameters that are 

considered are the initial geometric imperfections, the level of the stored liquid and the 

circumferential range of the heated zone of the tank. It is found that the behavior of the 

tank depends strongly to the aforementioned parameters. The results of the analyses 

indicate that the empty tanks buckle for low temperature levels with respect to the tanks 

that are partially filled. Moreover, the effect of the roof stiffness is revealed and is shown 

that tanks that use stiff roofs buckle earlier with respect to the tanks of slender roofs. It is 

concluded that the effect of initial geometric imperfections and plasticity of steel should be 

included in the numerical simulation. 
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Chapter 1. Introduction 

1.1 Motivation 

Although tank fires are rare, the number of the identified tank fire incidents is increasing 

during the last decades, as indicated in the detailed review of Brandforsk Project (Persson and 

Lönnermark, 2004). Most of the accidents occur in petroleum refineries, oil terminals or 

storage tanks and they are related to fire and explosions.  According to Chang and Lin (2006) 

30% of the tank fires were caused mainly due to lightning and human errors, including poor 

operations and maintenance. Other causes were equipment failure, sabotage, crack and 

rupture, leak and line rupture, static electricity, open flames etc.  

Storage tanks contain large volume of flammable and hazardous liquids and a fire accident 

may result in socio-economical losses, injuries, deaths, stock devaluation or company 

bankruptcy and environmental disasters. During the last years engineering societies such as 

the American petroleum institute (API), the American institute of chemical engineers 

(AIChE), the American society of mechanical engineers (ASME), and the National Fire 

Protection Association (NFPA) have published strict engineering guidelines and standards for 

the construction, material selection, design and safe management of storage tanks. Although 

most companies are following the instructions, oil tank fire accidents are still happening.  

Recently, a massive fire and explosions incident of oil tanks in a storage facility near Kiev 

(Figure 1-1) killed five firefighters and various Ukrainian officials gave contradicting reports 

indicating the environmental situation in Kiev after the blaze. On December 11, 2005 a 

catastrophic tank fire took place at the Buncefield Oil Storage Depot in the north of London 

(Figure 1-2). International attention was given in the specific fire event since it was the largest 

fire in Europe and significant alert was placed on the serious risks that may arise. The fire 

event motivated the scientific research in order to better understand the major cause of tank 

explosions and fire spread (Johnson 2010, Atkinson et al. 2015, Mishra 2013). In Mishra 

(2013) it is indicated that the accidents may occur due to different reasons ranging from 

malfunctioning of an installed mechanical device to mistakes committed by members of the 

personnel. The consequence of such failure results in abrupt release of stored fuels that allow 

collecting and forming a vapor cloud around. Depending on the flammability and the 

availability of a potential source of ignition as a vapor cloud may lead to a severe explosion 

which is referred in the literature as Vapor Cloud Explosion (VCE).  

In all these cases the understanding of the sequence of the events that took place involving the 

explosions, the fire spread and the thermal/structural behavior of oil tanks is demanding. 

Some research studies are focused on domino effect that is responsible for severe accidents 
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that took place in the chemical and process industry (Landucci, 2009, Khan and Abbasi, 1999; 

Lees, 1996 ) and on the safety and security distance of flammable liquid storages tanks (Lin, 

2011).  Another aspect that arises is the possibility that the thermal induced deformations of 

heated tanks (Figure 1-2c,d) to have a triggering effect for the leakage or the spill of the 

stored oil (Liu, 2011). This means that the deflected tank configuration may actually 

accelerate a possible explosion and thus contribute to the catastrophic failure. Thus, it 

becomes important to study the thermal/structural behavior of oil steel tanks and the failure 

modes in order to discover their role in the sequence of the devastating events and to proceed 

to fire safety assessment.    

  

Figure 1-1  Kiev oil tank fire event. 

  

(a) (b) 

  

(c) (d) 

Figure 1-2. Buncefield Oil Storage Depot fire event. 
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1.2 Overview –Aim 

The main hazards associated with tanks containing flammable fluids are the explosions and 

the fire attack. Explosions are the major cause of structural damage in most of the fire events 

identified until now. On the other hand the tank failure due to fire load seems to be of similar 

importance.  

In the case of a fire engulfed tank, that contains flammable liquids such as oil, it can be easily 

foreseen that the tank will collapse due to the material degradation at elevated temperatures. 

The temperature rise in these cases is high enough and come up to 1200°C which is the 

melting point of steel. If the fire does not spread, the fire engulfed tank is actually the heat 

generator for the adjacent tanks. The heat is transferred mainly through radiation and becomes 

the thermal load for the neighbor tanks. In this case in the adjacent tank the temperature 

distribution is non-uniform in both the circumferential and the axial direction and depends on 

the position of the fire engulfed tank. Thus, there exists an important temperature difference 

between the hotter and the colder part of the heated tank and significant compressive stress 

may arise due to restrained thermal expansion. The reduction of mechanical properties of steel 

in conjunction with the thermal induced stresses may lead to thermal buckling and failure of 

the tank.  

In order to minimize the risk, several organizations (e.g. APO, NFPA, EPA etc) propose 

guidelines regarding the tank layout in the oil depot. The suggested layout takes into account 

the accessibility of fire-fighting vehicles and the safe distances between the process plant and 

residential infrastructures.  The minimum distance between the tanks is calculated through the 

heat flux between the fire engulfed tank and the adjacent tank and obviously this varies as the 

distance between them changes.  The distance at which the heat flux becomes equal to 4.732 

kW/m
2
 is considered to be the safe inter-tank distance since no material is expected to ignite 

with a heat flux lower than this value (Sengupta et al. 2010). Nevertheless, questions arise if 

these limits are assuring the structural integrity of the heated adjacent tanks. This heat flux is 

equal to the energy radiated from a black body with a temperature of 260°С. In another 

research a critical temperature of 540°С is deemed to be a threshold for the safety of steel 

tanks (Liu, 2011, Beyler 2004b) in determining safe separations. Recent research activity in 

this area (Silva Santos and Landesmann 2014, Fontenelle 2012) demonstrated that the 

temperature variation on the target tank can be up to 800°С depending on the type of stored 

fuel (gasoline or ethanol), the structural tank side wall material (steel or concrete) and the 

incidence of wind. Specifically, in the study of Silva Santos and Landesmann (2014) it is 

indicated that the minimum safety distances are changing rapidly with the wind and that the 

presentNFPA30:2012 design recommendations need to be modified, in order to achieve a 

satisfactory failure prediction for different storage fuels (e.g. ethanol). The previous indicate 

that the minimum safety distances do not take into account all the involved factors that may 
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affect the behavior of the heated tanks during the burning stage of the fire-engulfed tank. 

Further research should be conducted in order to study the behavior of the heated tanks which 

can be affected by both material degradation at elevated temperatures and thermal induced 

stresses.     

The basic objective of this thesis is to study the fire behavior of steel fixed-roof oil storage 

tanks heated by an adjacent tank. The problem actually is the evaluation of the deflection field 

of thin-walled steel cylindrical shells under non-uniform temperature distribution around the 

circumference of the tank taking into account the restraints (axial and rotational) that are 

induced at the upper and lower base of the cylinder due to the support and the fixed-roof 

conditions respectively and the degradation of material mechanical properties at elevated 

temperatures. The problem is solved numerically using the Finite Element method. Three 

dimensional models are developed for the simulation of the fire behavior of the storage tank. 

A thermal pattern, available in the literature, is used to simulate the thermal load induced in 

the heated tank by the adjacent fire-engulfed tank. Parametric analyses are conducted in order 

to reveal the key factors that mainly affect the behavior of the heated tank.  

1.3 Organization 

The thesis is organized in seven Chapters. The second Chapter presents a detailed literature 

overview concerning the older and the most recent published research studies related to the 

objectives of this thesis. Specifically, the literature overview is focused on three different 

issues. First, the most relevant analytical/numerical/experimental scientific studies concerning 

the thermal buckling of shells are presented. Next, the available models for the simulation of 

pool fires that are proposed ion the literature are referred. Finally, the most relevant studies 

concerning the basic objective of this thesis are described in detail. 

Chapter 3 focuses on the basic principles of heat transfer theory and on the basic concepts 

concerning the modeling in the context of fire engineering. First, the basic mechanisms of 

heat transfer, convection, conduction and radiation are discussed. In the sequel, the basic 

elements for the application of the theory to the numerical simulation of heat transfer are 

presented. This Chapter contains also the solutions that are suggested by EN 1991-1-2 in 

order to find analytical solutions for the heat transfer problem in the case of steel sections. 

The fourth Chapter deals with the material properties of steel at elevated temperatures. Both 

the mechanical and the thermal properties are discussed. The first aspect is the mathematical 

model used in order to describe the non-linear temperature dependent stress-strain relationship 

at elevated temperatures, according to guidelines of EN 1993-1-2. Finally, the thermal 

properties, including the thermal conductivity and the specific heat are provided. 

Chapter 5 presents the steel oil-storage tank that is studied in thesis and defines the problem 

that is solved. Details about the numerical modelling are given. Specifically, first the three-
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dimensional shell finite element is presented and details about the thermal load pattern that is 

used in the study for the simulation of the fire-induced load are given. Moreover, the problem 

is solved through Linear Buckling analysis (LBA) in order to take some primary results for 

the thermal buckling behavior of the heated tank.    

The thermal buckling behavior of the heated cylindrical tank is studied in detail in Chapter 6. 

The numerical analysis techniques that are used for the simulation and the solution of the 

problem are presented. First the problem is solved through geometric non-linear analysis, 

taking into account linear elastic material law and the corresponding results are given. 

Specifically, the results are given mainly in terms of critical buckling temperature which 

indicates the occurrence of the instability and the buckling takes place in the tank. A more 

realistic approach follows and the thermal buckling behavior of the steel storage tank is 

solved taking into account the material non-linearity at elevated temperatures. In both cases, 

the effect of the roof stiffness in the critical buckling temperature is studied.    

Finally, in the last Chapter (Chapter 7), parametric numerical analyses are conducted in order 

to reveal the main factors that affect the thermal buckling behavior of oil-storage fixed-roof 

tanks. The parameters that are considered are the geometric initial imperfections, the level of 

the stored liquid and the circumferential range of the heated zone of the tank. It is found that 

the behavior of tank depends strongly to the aforementioned parameters. 
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Chapter 2. State of the art/Literature Review 

This Chapter presents a state of the art report on the main scientific areas of this thesis which 

is the thermal buckling of cylindrical oil tanks heated by an adjacent tank. Although the 

impact of this problem is important, limited studies are devoted to the investigation of the 

behavior of heated tanks during a fire event. This review covers the most relevant scientific 

studies for the thermal buckling of shells that are included in the literature. Next, a brief 

review concerning the pool fire models available in the literature is presented and finally, the 

most related studies concerning the fire behavior of cylindrical tanks are reviewed. 

 

2.1 Thermal Buckling of shells 

Thin shells as structural elements are broadly used in civil, mechanical, architectural, 

aeronautical, and marine engineering. In mechanical engineering, shell forms are used in 

piping systems and pressure vessels. Aircrafts, missiles, rockets, ships, and submarines are 

examples of the use of shells in aeronautical and marine engineering. Accurate structural 

analysis of composite cylindrical shells is of great importance in aerospace industry as it 

closely relates to aircraft fuselage design. Since the load-carrying capability of thin shells is 

mostly determined by the buckling load, it is very important to determine a reliable and 

accurate value of this load for design purposes, especially in the case of thin-walled structures 

subjected to mechanical and thermal loadings. 

Thornton (1993) has conducted a detailed review of the research on thermal buckling of plates 

and shells. A brief review of this study is presented here. Initially cylindrical shells were 

investigated to determine the potential thermal buckling of frame-reinforced fuselages in 

aircrafts in high speed flights. In these studies it was derived that because of the aerodynamic 

heating, thin cylindrical shells experience higher temperatures than the heavier reinforcing 

frames. The shells subjected to higher temperatures tend to expand in a radial way more 

significantly than the restraining frame, thus inducing compressive circumferential membrane 

stresses Nθ(x), Figure 2-1. 

 

Figure 2-1: Circumferential Membrane Force induced by Temperature Distribution in T(x) in Cylindrical Shells 

(Thornton, 1993) 
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At early stages the research was focused in determining the critical skin temperature levels for 

buckling due to compressive membrane stresses, leading to the solution of the linear Donnell 

stability equations in uncoupled form for thermal buckling of cylindrical shells.  

Zuk (1957) described a solution method by assuming Nx, Nxθ are equal to zero and Nθ is 

proportional to   , following the assumption that the temperature rise ΔT of the shell is 

achieved uniformly. In this case the Nθ membrane force varies trigonometrically with x and is 

compressive over the length of the shell. Assuming a shape for w that satisfied zero deflection 

and slope at each end of the shell, he used Galerkin's method to satisfy the above equation 

approximately. This resulted in an expression that allowed the determination of the critical 

buckling temperature of a clamped cylindrical shell although no numerical results were 

presented.  

In a later study, Johns (1959, 1962) indicated that the circumferential stresses that appear at 

the frame’s junction and thin shell are localized and decrease rapidly away from the support. 

For that reason, he proposed a function for the circumferential stress that decreased 

exponentially with x. Hoff (1957b) presented an analysis for the buckling of a simply 

supported cylindrical shell where the circumferential stresses are determined from a pre-

buckling analysis. The displacement components u, v, w were assumed as infinite series of 

trigonometric functions that satisfied simply-supported boundary conditions. At the two ends 

of the shell (x = 0, L), the radial and circumferential displacements as well as the axial 

membrane stress and the axial bending moment were assumed to vanish. This approach led to 

an infinite determinant for the critical buckling stress. The pre-buckling circumferential 

membrane force is obtained by first solving for the displacement w from the linear 

equilibrium equation, assuming a uniform rise ΔT in the shell temperature. As a conclusion it 

was pointed out that circumferential thermal stresses due to a uniform temperature rise are not 

likely to cause elastic buckling. In a similar study, Anderson (1962a) developed a similar 

theory to calculate the buckling temperature of a uniformly heated, ring-stiffened shell 

including axial compression, by using a shell theory by Batdorf and considering both simply 

supported and clamped shell end conditions. As in Hoff’s study, the paper concluded that 

buckling of a ring-stiffened cylinder due to uniform temperature alone will not occur for small 

values of a/h. Nevertheless, the paper noted that for large values of a/h (e.g. a/h = 2000), such 

buckling can occur. Sunakawa (1962) also investigated the deformation and buckling of 

cylindrical shells due to aerodynamic heating. The book by Johns (1965) gives a simple 

formula for the critical temperature for buckling by circumferential membrane stresses, 

 
  cr

h
k

a   
(2.1) 

where k depends on the boundary conditions. This work on cylinders with uniform 

temperatures was used as a basis on applications to fuselages with the assumption of 
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axisymmetric heating. At a later stage, investigation began on cylinders that were not 

uniformly heated around their circumference.  

Gossard and Seide (1952) on a previous research on flat plates with spatial temperature 

gradients had established that for relatively small spatial temperature gradients, thermal 

buckling could occur. Moreover, Abir and Nardo (1959) investigated thermal buckling of 

circular cylindrical shells with circumferential temperature gradients. For a simply supported 

shell, they investigated buckling due to the variation of the axial membrane force N around 

the shell circumference (Figure 2-2).  

 

Figure 2-2: Longitudinal Membrane Force Nx induced by Temperature Distribution T(θ) in Cylindrical Shell 

(Thornton, 1993). 

The study concluded that the critical value of the axial thermal stress distribution occurs at a 

value equal to the critical stress in uniform axial compression. For a fully restrained cylinder 

the axial compression stress for a temperature increase ΔT , the critical buckling temperature 

for uniform compression is: 

 
2 0.5

1

[3(1 ] 
  


cr

h

a
  

(2.1) 

 

The elastic instability of a cylindrical shell under an arbitrary circumferential variation of 

axial stress was also studied by Bijlaard and Gallagher (1960) and their conclusions were 

consistent with Abir and Nardo. In a similar study, Hill (1959) studied buckling of circular 

cylindrical shells heated along an axial strip in a more analytically and experimentally 

manner. More precisely, they used the Donnell shell equations and attempted a solution using 

a Ritz method, and that by assuming that a simplified axial thermal stress distribution occurs 

where the stress is constant in x but varies around the circumference. Aluminium and steel 

cylinders were experimentally locally heated by infrared lamps, and 2 types of cylinder-end 

conditions were employed. Thermocouples were used to measure the temperatures and Linear 

Variable Differential Transformers (LVDTs) were used to measure the displacements.
 

Thermal buckling analyses of perfect cylindrical shells of isotropic and homogeneous 

materials and cylindrical shells of composite materials based on Donnell and improved 

Donnell stability equations ( Donnell 1950, 1965 and 1958) are studied by Eslami et al. (1996 

and 1999). A number of thermal buckling problems of practical importance, such as uniform 

temperature rise, radial, and axial temperature differences are discussed in the papers. It is 
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emphasized here that while the Donnell equilibrium equation is basically developed on the 

Love-Kirchhoff hypothesis and the Sander’s nonlinear strain-displacement relations. It is 

shown by Eslami that resulting buckling loads predicted for long cylindrical shells are 

improved when the improved stability equations are used. Supplementary, in Eslami (1998), 

analytical solutions for the critical temperature of imperfect shells submitted to gradient 

temperature are given. The thermal loads which are studied are the uniform temperature rise, 

the linear radial and axial temperature differences.  

Buckling of the cylinders appeared where the buckling deformations were strongly dependant 

on the end conditions of the experiment. For aluminium cylinders with a/h = 430, critical 

buckling temperatures were relatively low ) depending on end conditions. These experimental 

results for the critical buckling temperature were considered to be in reasonable agreement 

with the theoretical calculations. However, the study showed the difficulty and complexity of 

performing analytical predictions for the thermal buckling stresses due to localized 

temperature distributions and demonstrated the practical problems of creating experimental 

end conditions consistent with a mathematical model.  

Anderson and Card (1962) in their study described the case where several stainless steel ring-

stiffened cylinders were subjected to a pure bending moment and heated rapidly until 

buckling occurred. For most of the cylinders the heating was non-uniform around the 

circumference. Temperature and deflections were measured at several locations, and in some 

tests strains were measured. Strains were successfully measured below 175°F, but the rest of 

the data were unreliable for higher temperatures. An elementary thermal stress theory was 

found to be inadequate for the prediction of the thermal stresses.  

In a related paper, Anderson (1962b) reviews theoretical and experimental investigations on 

buckling of cylinders due to both circumferential and axial thermal stresses. The paper 

indicates that the severity of the circumferential thermal stress is strongly dependent on the 

boundary conditions and suggested the need for additional experimental results. For cylinders 

that are heated non-uniformly, the paper discusses the difficulty of predicting axial thermal 

stresses and identified the need for research in thermal buckling of longitudinally stiffened 

cylindrical shells for launch vehicles. 

In the mid-1960s, the Stanford University group of NJ Hoff continued to investigate thermal 

buckling of cylinders. Three papers describe further research on buckling of thin circular 

cylinders heated along an axial strip. Hoff, Chao and Madsen (1964) analytically study the 

problem assuming uniform compressive axial stress to occur in a narrow strip while the rest of 

the shell is stress free. The shell is assumed very long, and Donnell's equations are used. The 

results of the analysis support the earlier conclusion of Abir and Nardo (1959) that the critical 

stress of the heated strip is the same as the critical stress of a complete cylindrical shell 

subjected to uniform compression unless the heated strip is very small. With very narrow 
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heated strips, the critical stress rises rapidly as the strip width decreases.  

Ross et al.(1965) continued and extended the experimental studies initiated by Hill. A series 

of stainless steel and cold-rolled steel cylinders were heated along an axial strip by infrared 

heat lamps. End supports were designed to simulate fully-fixed conditions. The instruments 

used included thermocouples as well as a microphone to provide an audio signal at the 

occurrence of buckling. The heated width varied (from 1.5% to 18%) of the total shell 

circumference. Tests were conducted by subjecting the cylinders instantaneously to maximum 

heating from the infrared lamps and axial and circumferential temperature distributions were 

then recorded until the shell buckled. Computations were performed with the Donnell theory 

using measured circumferential temperature distributions. As a result, some agreement of 

analysis with experiment was fair, but it was judged good enough for the authors to confirm 

previous conclusions of several investigators that the buckling temperature corresponding to 

uniform axial compression provides a lower limit of stability for thin cylindrical shells 

subjected to highly non-uniform circumferential healing.  

Hoff and Ross (1967) performed further analysis of the problem using the experimental 

temperature distributions and obtained reasonable agreement with the experimental data. The 

consistent trend demonstrated by these analyses was that experimental critical buckling 

temperatures were consistently higher than values predicted by analyses. This trend was in 

direct contradiction to the well-established trend that for mechanical loads experimental 

critical buckling values are consistently lower than predicted values.  

Ross, Hoff, and Horton (1966) conducted additional experiments to address the thermal 

buckling anomaly. Six stainless-steel cylinders (a/h = 344) and five cold rolled steel cylinders 

(a/h = 291) were heated axi-symmetrically by an array of twelve infrared heat lamps. The 

cylinder’s ends were longitudinally restrained and clamped. The test procedure was 

essentially the same as used by Ross et al (1965). Upon heating, a test cylinder experienced 

thermal expansion in the radial direction, and the thin cylindrical shell became barrel-shaped. 

Ultimately, the shell buckled near the clamped end supports. However, after comparing the 

experimental results with the predictions of available shell-buckling theories, there was poor 

agreement. It was finally concluded that because the cylinder "barrels out" during heating, the 

axial compressive stress is reduced resulting in higher critical temperatures than is predicted 

by linear buckling theory.  

Hoff (1965) and Ross (1966) also investigated the use of simple models to explain thermal 

buckling of shells. Hoff used a two-bar mechanism with a nonlinear spring, and Ross used a 

beam-column with a nonlinear spring. Gellatly, Bijlaard, and Gallagher (1965) investigated 

thermal buckling of sandwich cylindrical shells for simply and clamped supports. Using the 

approach of Hoff (1957b), critical buckling temperatures were determined for circumferential 

stresses varying with x. Numerical results were presented for isotropic and sandwich 
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cylinders.  

Chang and Card (1970,1971) at NASA Langley developed programs for analyzing thermal 

buckling of orthotropic, multi-layered, cylindrical shells stiffened by uniform, equally spaced 

rings and stringers. Thermal effects are taken into account by specifying axi-symmetric 

temperature distributions in the shell and stiffeners. The theory was developed from strain 

energy expressions corresponding to nonlinear Donnell-von Karman displacements, and 

equilibrium equations were derived by the principle of minimum potential energy. These 

equations were separated into equations governing axi-symmetric pre-buckling behaviour and 

equations governing behaviour at buckling. The ends of the stiffened cylinder were assumed 

to be free to expand longitudinally. In the analyses thermal buckling occurs as a consequence 

of circumferential compressive stresses introduced by radial restraint at the boundaries and/or 

from restraints resulting from differences in expansion between the stiffeners and shell. 

Thermal buckling behaviour of un-stiffened, ring-stiffened, stringer-stiffened and 

ring/stringer-stiffened shells was investigated. For un-stiffened cylinders the numerical 

solutions were validated by comparisons with the analytical solutions of Hoff (1957b) and 

Sunakawa (1962). Recall that the Hoff analysis (1957b) of a simply supported cylinder under 

hoop stresses varying in the x direction predicted buckling at a very high temperature.  

Chang and Card's computer analysis of the same cylinder was unable to determine this critical 

buckling temperature, as no buckling temperature could be found within a practical 

temperature range. The difference between the two analyses was determined to lie in the 

assumptions made in the linearized Donnell pre-buckling equations employed by Hoff where 

rotations and derivatives of rotations are neglected. These pre-buckling rotations were 

included in the Chang and Card formulation, but when these terms were suppressed the Chang 

and Card predictions were in agreement with Hoff. The conclusion was that the pre-buckling 

rotations are required, and for simple supports the buckling temperature is beyond the elastic 

range. Chang and Card's predictions were in good agreement with Sunakawa's analysis for a 

clamped cylinder since Sunakawa's shell theory included pre-buckling rotations.  

For ring-stiffened cylinders the comparisons made were successfully with Anderson's analysis 

(1962b). Thermal buckling studies of an aluminium large diameter, longitudinally stiffened 

cylinder and a titanium ring- and stringer-stiffened cylinder were also conducted. At about the 

same time, Bushnell of the Lockheed Palo Alto Research Laboratory was developing a 

computer program called BOSOR for the general analysis of shells of revolution. 

Applications of BOSOR to thermal buckling are described in a book (1989) and several 

papers (1971a, b, 1973). The BOSOR program is based on an energy formulation with the 

method of finite differences. Axi-symmetric ring-stiffened shells are assumed. The program 

has been used to solve several of the thermal buckling problems mentioned previously and 

also other, more complex, thermal buckling problems. Bushnell (1971a) solves the Hoff 
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(1957b) problem of the simply supported cylinder subjected to a uniform temperature rise. 

Buckling of a ring-stiffened aluminium cylinder subjected to axial compression, external 

pressure and various temperature distributions is also studied in detail. The effect of ring-out-

of-plane bending stiffness on thermal buckling of ring-stiffened cylinders is discussed by 

Bushnell (1971b) and demonstrated to be important.  

Bushnell and Smith (1971) describe calculations of thermal stresses and buckling of non-

uniformly heated cylinders and cones. The BOSOR program was used to analyze several 

cylinder tests including the studies of Hill (1959), Anderson and Card (1962), Ross, Mayers 

and Jaworski (1965), as well as Ross, Hoff, and Horton (1966). These analyses are valuable 

because they represent the first systematic comparison of computational results with 

experimental data.  

In addition, the computational approach permitted issues to be addressed that previously had 

been intractable because of limitations of analytical methods. Particular attention was given to 

the effect of boundary conditions on predicted stress and critical temperatures. For example, 

the anomaly raised in the experimental study of Ross et al (1966) is attributed to undesired 

flexibility in the experimental boundary condition. The paper also concluded that for shells 

which are long compared to a boundary layer, critical temperatures of uniformly heated 

monocoque cylinders and cones are as sensitive to initial imperfections as are critical axial 

loads.  

In a later paper, Bushnell (1973) used BOSOR to study thermal buckling of cylinders with 

axi-symmetric thermal discontinuities. The first problem considered was buckling of a 

cylinder heated halfway along its length. The problem was considered because of questions 

raised by the Hoff (1957b) problem of thermal buckling due to circumferential stresses. 

Bushnell reached the same conclusions that Chang and Card: pre-buckling rotations should be 

included in the analysis, and elastic buckling will not occur for the simply supported cylinder 

with uniform temperature. The second problem considered was a clamped cylindrical shell 

(a/h = 2540) analyzed and tested by Johns (1962). A BOSOR analysis (with pre-buckling 

rotations) of the Johns' cylinder predicted a critical temperature of 150°C whereas the 

experimental value was 324°C.  

Subsequent investigation showed that the large difference between computational results and 

tests could be explained by the presence of temperature gradients near the boundaries of the 

cylinder. The study concluded that critical buckling temperature calculations are sensitive and 

dependant to the shape of the temperature distribution. In order to obtain better correlation 

between predictions and tests, temperature distributions had to be measured carefully and the 

spatial variations included in the analysis.  

Two papers in the mid-1970s analyzed thermal buckling of orthotropic cylindrical shells. 

Gupta and Wang (1973) used a Rayleigh-Ritz approach to analyze a simply-supported 
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orthotropic shell with uniform temperature. Pre-buckling rotations were not considered. 

Parametric studies illustrated the effects of the axial and circumferential coefficients of 

thermal expansion. Radhamohan and Venkataramana (1975) analyzed an orthotropic clamped 

cylindrical shell using an approach based on Sanders' nonlinear shell theory. Effects of pre-

buckling rotations, different forms of clamped boundary conditions and other parameters were 

studied. A brief paper by Belov (1978) described an experimental study of stability of 

cylindrical shells partially filled with liquid. The study was motivated by aerodynamic heating 

of fuel tanks. In the experimental program, cylindrical shells were subjected to heating and 

were loaded by axial compression and internal pressure. Although good agreement between 

calculations and experiment data was stated, details of the analysis and tests were not given. 

In the late 1970s, two test programs on buckling of cylinders with combined mechanical and 

thermal loads were conducted at the Technion in Israel. Frum and Baruch (1976) describe 

buckling of cylindrical shells heated along two opposite generators. A series of 46 tests of 

aluminium cylinders with a/h = 301 were conducted. The end supports were designed to be 

fully restrained and axial loads were applied by a hydraulic jack. There were also two infrared 

line heaters installed above and below the shell. The temperature distribution was measured 

with thermocouples, and displacements were measured with LVDTs. The instant of buckling 

was detected with a microphone. The effects of the u displacement boundary conditions were 

studied, and the authors concluded that previous investigators had not treated the condition 

with enough care. They also concluded that the u displacement has a dominant influence on 

the buckling results. Comparisons of experimental data with computations are only fair. The 

experimental data was used to construct an axial load-temperature interaction curve.  

Ari-Gur, Baruch and Singer (1979) described buckling of cylindrical shells under combined 

axial preload, non-uniform heating and torque. Similar test cylinders and the test rig employed 

in the previous study were used after modifications to allow torsion. A series of 35 tests were 

conducted. A temperature-torque interaction curve was developed from the experimental data. 

Studies of thermal buckling of laminated composite circular cylinders began in the 1980s and 

continue to the present time. So far, the studies have been analytical. However experimental 

studies have not yet been conducted.  

Wilcox and Ma (1989) used an energy approach to derive a set of equilibrium equations based 

on classical thin shell theory with Donnell's assumptions. Galerkin's method with an assumed 

trigonometric variation for w for a simply-supported cylinder leads to a matrix eigen-value 

problem. For critical buckling temperatures for various composite parameters such as 

lamination angle, numerical results were presented.  

Finally, Thangaratnam et al (1990) used the finite element method to conduct parameter 

studies of a simply supported cylinder with uniform temperature. Birman (1990) studied the 

thermally induced dynamic response of reinforced composite cylinders. The study was based 
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upon Donnell's theory of geometrically nonlinear shells and includes axial and ring stiffeners. 

Solutions were developed for a simply supported cylinder subjected to a uniform rise in 

temperature. The paper concludes that if a shell is subject to an instantaneous rise in 

temperature it exhibits stable steady-state oscillations.  However, if the temperature exceeds a 

critical buckling level, the character of the response changes and the deflections can increase 

dramatically. 

2.2 Pool Fires 

A pool fire is defined as a buoyant diffusion flame in which the fuel is configured horizontally 

(Hamins et al., 1995). The fuel can be liquid gas or solid. The fuel bed may be of arbitrary 

geometry but for simplicity reasons most studies consider a circular shape and the single 

geometrical parameter that is used is the pool diameter. The main characteristics of the fire 

hazard are the total heat release rate, the flame spread rate and the power radiated to the 

surroundings. Fire hazard can be modified by ambient conditions such as the absence or 

presence of an enclosure, wind, currents or ventilation.  

Depending on the fuel and the size of the fire, up to 20 % of the fuel mass is converted to 

smoke particulate in the combustion process (SFPE, 1999). This smoke shields much of the 

luminous flame region from the viewer, and it is this luminous flame region that is the source 

of most of the thermal radiation. This shielding effect is most pronounced for fires that are 

tens or hundreds of meters in diameter because of the decreased efficiency of combustion at 

these scales (McGrattan et al. 2000). Figure 2-3 illustrates a large liquid fuel fire.  

 

Figure 2-3: Large liquid fuel fire scheme (McGrattan et al. 2000) 

There are many mathematical predictive tools that are used to assess the consequences of 

hydrocarbon pool fires and these vary from empirical models to more complicated 
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Computational Fluid Dynamics (CFD) calculations. Empirical models characterize the 

geometry of the pool fire, using correlations based on dimensionless modelling and the results 

of appropriate experiments. These models are divided into two types: point source models and 

solid flame models (Figure 2-4). 

 

(a) Point source model (b) Solid flame model (convectional) (c) Solid flame model (modified) 

Figure 2-4: Thermal radiation models 

Point source models are the simplest type of empirical models and can be used to predict the 

radiant heat flux around a fire. Cowley and Johnson (1992) asserted that the point source 

model can be used, fairly reliably, to predict radiant heat flux beyond approximately five pool 

diameters from the flame. 

Solid flame models apply correlations based on appropriate experiments to derive a flame 

shape, which is dependent on factors such as fuel type and wind-speed. 

Generally, a well-defined geometrical shape, such as a cylinder or a cone, is used to represent 

the flame shape. Further correlations are used to estimate the emissive power of the flame. 

The radiant heat flux at the target is obtained by calculating the view factor of the flame from 

the position and orientation of the target. CFD models solve the partial differential equations 

(Navier-Stokes equations) that describe fluid flow across a vast grid of cells, known as a 

mesh. In order for them to predict fire behaviour, they must incorporate sub-models that 

describe the chemical and physical processes that occur in the fire. Radiant heat transfer is 

solved by means of an enthalpy conservation term that arises within the Navier-Stokes 

equations (Cox and Kumar, 2002), while, as stated by Cowley and Johnson (1992), 

CFD models provide a rigorous framework for solving combustion problems but, at present, 

they are essentially research tools. The CFD sub-models pertaining to combustion, smoke 

production and radiative heat transfer do not yield as good a prediction of radiant heat from a 

pool fire to external objects as those offered by the available empirical models. 

Although CFD models are capable of predicting a wide range of fire scenarios, providing that 

the input is correctly specified, there are distinct disadvantages associated with these models: 

they require a great deal of time and effort, in terms of both human effort (i.e., input) and 

computational effort (in solving the Navier-Stokes equations). 
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2.3 Tanks heated by fire 

The most relevant study concerning the thermal buckling behavior of steel tanks is the PhD 

dissertation conducted by Liu (2012). This thesis presents a systematic exploration of the 

potential thermal and structural behaviours of an oil tank when one of its neighbour tanks is 

on fire. The main objectives of this thesis were to reveal the thermal distribution patterns 

developed in an oil tank under the heating from an adjacent tank fire, to understand the 

underlying mechanism responsible for the buckling of tank structure, and to explore the 

influences of various thermal and geometrical parameters on the buckling temperature of the 

tanks. The study began with analytical solutions for stresses and deformations in a partially 

filled roofless cylindrical tank under an idealized axisymmetrical heating regime involving 

thermal discontinuity at the liquid level. The results demonstrate that large compressive 

circumferential membrane stresses occur near the bottom boundary for an empty tank and 

near the liquid level for a partially-filled tank. Heat transfer analysis was conducted to explore 

the temperature distribution developed in the tank when the fire reaches a steady state. 

Parameters and assumptions used in the adopted pool fire model were carefully examined. 

The results show that a rather non-uniform distribution of temperature is developed in the 

tank especially around the tank circumference. A simple model was then proposed to describe 

the temperature distribution based on the numerical heat transfer analysis. The accuracy of the 

proposed temperature distribution model for predicting the structure behaviour was evaluated 

by comparing its predictions with those using directly the temperature distribution obtained 

from the numerical heat transfer analysis. Extensive geometric and material nonlinear 

analyses were carried out to capture the buckling behaviour of the tank using both the 

proposed temperature distribution and that from heat transfer analysis. It was found large 

vertical compressive membrane stresses are induced in the tank, causing buckling. The 

influence of fire diameter, location, liquid filling level and tank geometry were investigated. 

A recent paper (Godoy and Batista, 2012), presents computational modeling and results of 

steel storage tanks under heat induced by an adjacent fire. In this research, modeling is 

restricted to the structural behavior of the tank, with emphasis on thermal buckling of the 

shell. Two tanks that buckled under a huge fire in Bayamo´ n, Puerto Rico in 2009, are 

investigated in detail: a small tank with a self-supported conical roof, and a large tank in 

which the conical roof is supported by a set of rafters and columns. For a tank that is empty, 

the results show that a relatively low temperature is enough to produce static buckling of the 

shell. In pre-buckling states, the cylindrical shell has thermal expansion; at the critical state 

the displacements reverse and inwards displacements are observed at advanced post-buckling 

states. Parametric studies are performed to understand the influence of the shell thickness, the 

level of fluid stored in the tank, the area affected by fire in the circumferential direction, and 

the temperature gradient through the thickness. The buckling modes are compared with real 

deflection of tanks that were affected by fire. 
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The study of Batista and Godoy (2013) reports the computational results of an investigation of 

oil storage tanks with the shape of an open cylindrical shell under thermal loads induced by 

fire. Interest in this problem has arisen as a consequence of a catastrophic fire that affected an 

oil storage facility in Puerto Rico in 2009 that caused the failure of 21 large tanks. To identify 

patterns of deformations that could be expected under various fire conditions, computer 

modeling has been carried out for one tank geometry. It is assumed that fire occurs outside the 

tank and induces an increasing temperature field affecting part of the external surface in the 

circumferential direction. The nonlinear shell response is modeled using finite elements under 

thermal loads and self-weight. The nonlinear behavior is computed to identify thermal 

buckling of the shell as a limit point. The response is initially computed for empty tanks, and 

the influence of various factors is investigated, including the liquid stored, a temperature 

gradient across the thickness, the circumferential zone affected by fire, and the shell 

thickness. The results for open tanks show that the location of large out-of-plane 

displacements attributable to thermal buckling coincides with the heated zone. The 

importance of thermal gradients in the thickness to the buckling load and mode are shown. 

It is concluded that there is limited research till now on thermal buckling under fire loading 

since only three studies exist in this area. The present thesis aims to reconsider the same 

problem that is covered by the aforementioned studies and to look thoroughly to the 

mechanisms of thermal buckling of fixed-roof steel tanks.  
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Chapter 3. Elements of heat transfer theory 

This Chapter focuses on the heat transfer theory, applied in fire-engineering problems, for the 

determination of the temperature-profile of the structural members. Since, the problem of the 

fire development in the enclosure is solved; the gas-temperature time-history is obtained. The 

heat transfer from the hot-gases to the surfaces of the structural members takes place through 

convection and radiation. Then, the heat is transferred through the conduction mechanism. 

The differential equation that describes the problem of heat conduction is solved by the 

application of the appropriate solid-fluid boundary conditions that describe radiation and the 

convection mechanisms. It is noted that the governing equations of the problem are non-linear 

and the problem should be solved numerically, using the finite element method. The last part 

of the Chapter presents analytical, simplified solutions that are suggested in EN 1993-1-2 for 

the determination of the temperature profile of steel sections.   

3.1 Convection 

Convection is the heat transfer at the interface between a fluid and a solid element. The 

distinction between the forced and natural convection depends on the motion of the fluid. Free 

or natural convection takes place when the heat is transferred by the circulation of fluids (in 

this case the hot air) due to buoyancy from the density changes induced by the heating itself. 

On the other hand, in the case where the fluid flows on the solid surface at speed, the 

convection is called forced. Heat transfer through convection takes place only when a fluid 

comes in contact with a solid surface. 

3.2 Radiation 

Thermal radiation is the exchange of energy by means of electromagnetic waves that are 

emitted from a surface or an object. As in the case of light, these electromagnetic waves can 

be absorbed, transmitted or reflected on a surface. Heat transfer through radiation always 

takes place when the temperature of a fluid or a solid increases, regardless it comes in contact 

with another body.  

3.3 Heat conduction 

The one-dimensional heat conduction is governed by the well-known law of Fourier which is 

written in the form 

 
dT

Q k
dx

   (3.1) 
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where dx  is an infinitesimal thickness of a specific material, Q  (resp. dT ) is the heat flux 

(resp. the temperature difference) across this thickness and k  is the thermal conductivity of 

the material. The thermal conductivity is normally dependent on the material temperature and 

this fact makes the solution of even the simplest problems nonlinear, requiring a numerical 

method for their treatment. Values for the thermal conductivity for different structural 

materials can be found in many sources. EN 1993-1-2 has incorporated the thermal 

conductivity properties for the various structural materials. Details for steel and concrete will 

be given in the sequel. 

In civil engineering structures, heat transfer occurs usually in three dimensions. In this case, 

an infinitesimal material volume dx dy dz   is considered. The application of the energy 

conservation principle in this case implies that for stationary heat transfer the heat inflow in 

the element should be equal to the heat outflow from it and leads to the partial differential 

equation: 

 

2 2 2

2 2 2
0x y z

T T T
k k k

x y z

  
  

  
  (3.2) 

where xk , yk , zk  are the thermal conductivities of the material in each one of the three spatial 

directions. In transient state heat transfer, the temperature on a material volume increases or 

decreases over time. The transient state heat conduction partial differential equation is written 

in the form: 

 
2 2 2

2 2 2x y z

T T T T
k k k C

x y z t


   
  

   
 (3.3) 

where   is the density of the material and C  is its specific heat. As in the case of the thermal 

conductivity coefficient, the specific heat is normally dependent on the temperature of the 

material. In cases that phase changes occur, the function that describes the specific heat may 

not be continuous. Moreover, in the case of porous materials, as e.g. the concrete, the specific 

heat is affected by the evaporation phenomena that occur over a range of temperatures. 

Details for the materials treated here will be given in Chapter 6. 

3.4 Boundary conditions 

Boundary conditions should be applied in order to find a solution to equation 5.3. In heat 

transfer, the boundary conditions are of three general types. 

 

Adiabatic boundary conditions 

 

Adiabatic boundaries can be treated as a special case of the general fixed flux boundary 

conditions.  No heat exchange takes place across such a boundary and the adiabatic boundary 

condition is written in the form: 
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0n

T
k

n


 

   

(3.4) 

Adiabatic boundaries are used in order to simulate symmetry conditions (no heat exchange 

takes place along the symmetry axis or surface) or boundaries which are almost completely 

insulated. 

 

Fixed temperature boundary conditions 

 

This is the simplest form of boundary conditions, where in specific points of the material, or 

along edges or surfaces the temperature is assumed known: 

 0T T      (3.5) 

Fixed flux boundary conditions 

 

In this case, the heat flux in a direction normal to a boundary surface is assumed known. This 

boundary condition is written in the form 

 
0n

T
k q

n


 


 (3.6) 

where nk  is the thermal conductivity measured in the direction normal to the boundary 

surface and 0q  is the known heat flux. A special case of this boundary condition is that of an 

adiabatic boundary. Across such a boundary no heat exchange takes place, therefore the heat 

flux is equal to zero. The adiabatic boundary condition is therefore written in the form: 

 0n

T
k

n


 


 (5.7) 

Adiabatic boundary conditions are used in order to simulate symmetry conditions (no heat 

exchange takes place along the symmetry axis or surface) or boundaries which are almost 

completely insulated. 

 

Boundary conditions at solid-fluid boundaries 

 

In the case that solid boundaries are in contact with moving fluids, the following boundary 

condition can be written: 

 ( )n f f s f

T
k h T T h T

n


    


 (3.8) 

where fh is the heat transfer coefficient and T  is the temperature difference between the 

fluid and the solid boundary surface. In this case fT  is the fluid ambient temperature 

(assumed as known) and sT  is the temperature of the solid surface, which is not a priori 

known, but is calculated as a result of the solution process. For cases which are of interest in 

structural analysis problems, both convective and radiation heat exchange takes place and 
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Equation 5.8 can be written in the form 

 4 4( ) ( )n f s r f s

T
k a T T T T

n

  


    


 (3.9) 

where  

a and  are coefficients that depend on the side of the structural elements (fire side or 

ambient temperature air side) 

 is the configuration or view factor, 

r  is the resultant emissivity (which depends on the fluid and solid emissivities) and 

  is the Stefan-Boltzmann constant. 

 

The first part of the r.h.s. of Equation 5.9 is known as the convective term whereas the second 

one is known as the radiative term. 

The term r  can be evaluated by the simple formula 

 r f s     (5.10) 

where f is the emissivity of fire (usually taken equal to 1.0) and s is the emissivity of the 

structural material. 
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Chapter 4. Material properties at elevated temperatures 

The properties of steel at elevated temperatures are very important for the analysis of 

structures subjected to fire. Taking into account the conclusions of studies that have been 

conducted in the past from various researchers, it is obvious that it is of great importance to 

simulate numerically the dependence of material properties to temperature, in order to study 

the response of structures in fire conditions. The dependence of all mechanical-thermal 

properties of materials to temperature contributes to a more complex numerical analysis. The 

following section describes the mechanical and thermal properties of steel, which are adopted 

in the present study, complied with the mathematical models as are proposed in EN 1993-1-2. 

For heating rates between 2 and 50 K/min, the strength and deformation properties of steel at 

elevated temperatures are obtained by the stress-strain curve of Figure 4-1. The stress-strain 

curve of structural steel at high temperatures is quite different from that at ambient 

temperature as it is illustrated in Figure 4-2. The elastic range is followed by an elliptic 

branch, occurring until the suggested strain limit of εy,θ=2%. A yield plateau appears in the 

last part of the curve until strain is up to εt,θ=15%. The variation of the stress-strain 

relationship, for structural steel S275, as the temperature increases is presented in Figure 4-2. 

Structural steel begins to lose strength at temperatures above 400°C. The reduction is 

immediate and at the temperature of 800°C the yield stress is equal to 11% of its initial value. 

In the present study, it is assumed that steel melts at the temperature of 1200°C where its 

strength is becoming zero.  

f y,θ....effective y ield  strength

f p,θ....p roportional limit

Ea,θ....slope of the linear elastic range

εp,θ....strain  at the proportionallimit

εy,θ....y ield  strain

εt,θ....limiting  strain  for y ield  strength

f p,θ

f y,θ

εp,θ εy,θ εt,θ

stress

strain  

Figure 4-1: Stress-strain relationships of structural steel at elevated temperatures. 
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Figure 4-2:  Stress-strain relationships of structural steel S275 at elevated temperatures. 

At elevated temperatures, effective yield strength, proportionality limit and slope of linear 

elastic range are reduced according to factors specified on Table 3.1 EN 1993-1-2 for 

structural steel.  

An important issue that determines the behaviour of steel during fire exposure is the 

temperature induced strains. These strains include the thermal expansion and the creep strain. 

The thermal expansion coefficient of steel α has a great importance in modeling composite 

structures under fire conditions. The dependence of the coefficient α on temperature is 

illustrated in Figure 4-3. Additionally, it is well known that the creep strain appears during the 

heating of metals. In fire-engineering only the primary and the secondary creep strains are 

considered, due to the short time of fire-exposure. Various models have been proposed in the 

literature (Plen model, Dorn-Harmathy model etc.). The incorporation of the creep strain 

models in the calculations is a demanding task. For simplicity, the effect of creep is implicitly 

taken into account to the stress-strain relationship, according to EN 1993-1-2. 

The temperature dependent thermal properties are thermal conductivity and specific heat. It is 

obvious from equation (2) that the thermal conductivity k and the specific heat C are the basic 

thermal properties defining the temperature distribution in a structural member. The thermal 

conductivity of structural steel reduces as the temperature increases as it is shown in Figure 

4-4. 

The specific heat is increasing slightly at elevated temperatures until 600°C. In the range 

between 600°C and 900°C the specific heat increases rapidly until the value of 5000 J/kg K at 

735°C (Figure 4-5). This occurs due to the phase transition of steel at this temperature. The 

thermal properties of reinforcing steel and structural steel are identical.  
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Figure 4-3: Thermal expansion of steel. 
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Figure 4-4: Thermal conductivity of steel. 
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Figure 4-5: Specific heat of steel. 
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Chapter 5. The case study – Primary results 

This Chapter initially presents the cylindrical fixed-roof tank that is studied in this thesis and 

defines the problem that is solved. Next, the problem is solved through Linear Buckling 

analysis (LBA) in order to take some primary results for the thermal buckling behavior of the 

heated tank.  

5.1 Case Study 

The typical cylindrical thin-walled tank which is considered in this study has uniform wall 

thickness of 10mm, is 20m high and the diameter equal to 20m (Figure 5-1). The tank is used 

for oil storage with density equal to 0.74tn/m
3
.  The roof is considered conical with slope 

equal to 10°. Actually, it is more realistic to use internal trusses to support the roof in order to 

enhance the roof stiffness. In this study the roof it is chosen to be simulated through the 

conical shell roof approach in order to simplify the calculations. It would be more accurate to 

include the details of the roof structure but this would not have any profit to this study, since 

as it would be proved in the following the roof is not a key parameter and that the main 

problems occur in the heated zone of the tank and the roof remains intact.  This is realistic in 

most cases but it depends on the roof stiffness. To this end, parametric studies are conducted 

in order to discover the effect of the roof stiffness to the fire-behavior of the heated tank and 

to the final failure modes. The roof stiffness is modified using different shell thickness. Two 

extreme cases are considered and the thickness of the roof shell ( rt ) is taken equal to the 

thickness of the cylindrical tank ( ct ) and on the other side it is considered 100 times thicker. 

Parametric study is performed for intermediate values i.e. 1 100rt  .  

 

Figure 5-1: Geometry of the cylindrical tank. 
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5.2 Thermal loading 

In the problem that is considered in this study, the thermal loading of the heated tank is 

generated from the fire-engulfed adjacent tank and the dominant mechanism of heat transfer is 

radiation. In this case, it is expected that the temperature distribution will be non-uniform. The 

side of the tank which is on the face of the source tank will be hot comparing with the 

opposite face which may be not affected by the fire. The higher temperature of the heated tank 

will be detected to the meridian of incidence of fire and the temperature will be decreased at 

medians that are further away in the circumferential direction. Moreover, it is logical to 

assume that the level of the stored liquid can affect the temperature pattern in the vertical 

direction. I particular the upper part of the tank which is not in contact with the stored liquid 

will be heated more than the lower part due to the fact that the heat transfer coefficient of air 

is low (in the upper part) and the thermal inertia of the stored liquid is high (in the lower part).   

Pool-fire semi-empirical models available in the literature can be used in order to determine 

the temperature distribution of the heated tank. Alternatively, the temperature field can be 

determined numerically through Computational Fluid Dynamics analysis or through the Finite 

Element method. This problem is rather complicated and the evaluation of the temperature 

field of the heated tank is out of the scope of this thesis. The findings of the study of Liu 

(2012) are found to be reasonable and to describe adequately the complicated phenomenon 

and they are adopted for the simulation of the thermal loading of the heated tank.  

Specifically, it is considered that when the source tank is of the same diameter, only half of 

the heated tank is submitted to temperature rise (Figure 5-2). As the diameter of the burning 

tank is increased it produces wider spread of heated zone in the target tank. On contrary the 

heated zone of the target tank is eliminated. Two different circumferential temperature 

patterns are adopted and they are illustrated in Figure 5-2 for the case of the half heated tank 

( 0 90  ). The square cosine function 

 

  
(a) Square cosine pattern (b) Cosine pattern 

Figure 5-2: Temperature pattern of the heated tank. 
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The square cosine pattern is given by the expression: 

  2

0 0

0

cos
2

0

m aT


 



  
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    



 

if 0   

(5.1) 

if 0   

While the equation that describes the cosine pattern is: 

 0 0

0

cos

0

m aT






  
   

    



 

if 0   

(5.2) 

if 0   

where   is the circumferential coordinate, 0  is the critical angle that defines the heated zone, 

0mT  is the temperature of the most heated meridian and 0aT is the ambient temperature.  

The different circumferential temperature patterns are used in order to study the sensitivity of 

the structural fire behavior of the heated tank to the temperature distribution.  

Regarding the vertical direction two different cases are considered. In the case of the empty 

tank the temperature is considered constant along the vertical direction. In the case where the 

tank is partially filled a trilinear distribution is taken into account (Figure 5-3). In the upper 

part the temperature pattern already described is used.  In the lower zone where the tank is in 

contact with the stored liquid, the temperature is considered to be equal to the temperature of 

the liquid i.e. the ambient temperature. Between the upper and the lower zone, a transition 

zone is introduced in order to simulate the heat conduction from the upper hot zone to the 

lower cold zone. The length of the transition zone is equal to 0.20m and the temperature 

decreases linear based on the temperature pattern used for the upper zone. 

 

Figure 5-3: Trilinear temperature pattern along the vertical direction 

The roof is considered either “hot” or “cool”. These two conditions correspond to the effects 

due to different flame heights in the adjacent fire-engulfed tank. In the case where the roof is 

“hot”, the temperature pattern at the circumferential direction is the same with the one that is 

used for the tank and it is assumed to vary linearly with the radial coordinate.     
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5.3 Numerical modelling 

The problem is solved numerically using the Finite Element (FE) method. The numerical 

model is developed using the nonlinear finite element code MSC-Marc (2011). The three-

dimensional model that is developed for the simulation of the behavior of the thin-walled steel 

tank uses the element of type 75 of the library of MSC-Marc (2011). This is a four-node, 

thick-shell element with global displacements and rotations as degrees of freedom. Bilinear 

interpolation is used for the coordinates, displacements and the rotations. The membrane 

strains are obtained from the displacement field; the curvatures from the rotation field. The 

transverse shear strains are calculated at the middle of the edges and interpolated to the 

integration points. In this way, a very efficient and simple element is obtained which exhibits 

correct behavior in the limiting case of thin shells. 

The steel tank is pinned at the base and the conical roof is connected with the rest of the 

cylindrical tank using the same nodes. The thermal loading is actually imposed as fixed nodal 

temperature using the temperature pattern already described in Section 5.2 and no-heat 

exchange takes place. The material properties are temperature dependent as it is defined in EN 

1993-1-2.  

The meshing at both circumferential and vertical coordinated should be carefully chosen to 

capture the possible buckles that may arise. Considering results of the literature (Liu 2012, 

Godoy and Batista-Abreu 2012) significant compression forces appear at the near the 

boundaries and at the liquid surface and fine mesh is requires in the specific regions. The 

discretization should be non-uniform in order to decrease the total number of the finite 

elements that are used in the simulation in order to avoid excessive computational cost and to 

capture accurately the local buckling phenomena that may arise due to large compressive 

forces. Mesh sensitivity study is conducted, using Linear Bucking Analysis, in order to 

determine the mesh of the cylindrical tank and is presented in the following section.  

5.4 Primary Results - Linear Bucking Analysis (LBA) 

The first step is to conduct Linear Bucking Analysis (LBA) aiming to evaluate the bucking 

modes and the critical temperature values. In the specific type of analysis the steel is 

considered elastic and the modulus of elasticity decrease as the temperature is increased. The 

coefficient of thermal expansion is also taken into account and for simplicity is assumed to be 

constant.  Although the response of the heated thin-walled tank is non-linear, the results of 

buckling analysis present a good approximation of the final failure and the possible 

global/local bucking phenomena.  

In the LBA the incremental loading is the temperature pattern presented in Section 5.2 and 

both the schemes for the “cool” and “hot” roof are adopted. The gravity load is included in the 

preloading stage and is imposed in the first step of the analysis.   
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5.4.1 Mesh Sensitivity Study 

Since there is no analytical solution for comparison with the numerical results concerning the 

critical temperature and the buckling mode, mesh sensitivity study is performed. A more 

dense mesh is adopted near the base, at the liquid surface and at the upper bound of the 

cylindrical shell as it is illustrated in Figure 5-4.  

 

Figure 5-4: Mesh of the tank and the refined zones.  

Regarding the circumferential direction, the reference mesh size is considered equal to 1° 

while in the vertical coordinate the loose mesh is 0.05m and the refined mesh is 0.005m. This 

mesh scheme is considered to be the reference state. The reference critical buckling 

temperature that results from the reference LBA and corresponds to the first eigenmode is 

compared to the respective critical values that result from analysis with different meshing 

schemes. The results are presented in Table 5-1.  

Circumferential mesh Vertical mesh (coarse zone) Vertical mesh (fine zone) Critical temperature 

0.5° 0.0025 0.025 133°C 

0.5° 0.005 0.05 136°C 

1° 0.0025 0.025 138.5 °C 

1° 0.005 0.05 143°C 

3° 0.0025 0.025 164°C 

3° 0.005 0.05 167°C 

6° 0.0025 0.025 195°C 

6° 0.005 0.05 197°C 

Table 5-1: Results of sensitivity study. 

It is concluded that the temperature of less dense meshing schemes deviate from the reference 

critical temperature and the critical values are ascending.  On the contrary, as the mesh (in 

both refined and non-refined regions) becomes dense, the results converge to the reference 
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case. Thus the meshing scheme of the reference case is adopted in this study.  

It is noted that for the mesh sensitivity study the roof thickness rt  is considered to be two 

times the thickness of the cylindrical shell ( ct ) i.e. 2r ct t . In the case where the roof shell 

thickness is less than this value, the roof buckling mode takes place at very low temperature 

as it will be presented in the next Section.   

5.4.2 Results of LBA 

The results of LBA analyses indicate the buckling load (temperature) for both temperature 

patterns (square cosine and cosine patterns) taking into account the “cool” roof scheme and 

different roof to cylindrical shell thickness ratios, are presented in Table 5-2 for the first 12 

buckling modes. The buckling temperature is actually the temperature of the most heated 

meridian of the tank i.e. the meridian of incidence of fire. The negative eigenvalues 

correspond to the case where the tank is submitted to decreasing temperature history that 

follows the specific patterns. These buckling modes are out of interest of this study. It is 

noticeable that the eigenmodes appear in pairs for the same eigenvalue and the one is 

symmetric while the other is antisymmetric.   

It can be concluded that the fixed-roof tank buckles earlier i.e. in lower temperature in the 

case of square cosine pattern in comparison with the cosine pattern. Additionally, it is 

indicated that the results concerning the buckling temperature are almost the same if the roof 

is considered “hot” or “cool”, thus the heating of roof is not a sensitive parameter for this 

problem. This can be attributed to the fact that the buckling temperature of the cylindrical 

shell does not exceeds the level of 200°C and the modulus of elasticity of steel is slightly 

reduced. Thus, the restraint introduced by the fixed roof to the cylindrical cell is almost the 

same in both cases (“hot” and “cool” roof).     

The eigenmodes are illustrated in Figure 5-5, Figure 5-6and Figure 5-7 for the square cosine 

and the cosine temperature patterns respectively. In both cases, the circumferential wave 

length is smaller compared with the respective length in the vertical direction and this denotes 

the sensitivity of the results to the meshing discretization in the circumferential direction. 

Furthermore, the square cosine temperature pattern inserts stronger circumferential 

temperature gradient and leads to higher buckling modes and lower buckling temperature in 

comparison with the cosine pattern.  

Actually, the problem can be decomposed in two different problems. The first one involves 

the differential thermal expansion due to the temperature pattern in the circumferential 

direction which generated the respective stresses in this direction due to the restrained thermal 

expansion. In the second problem meridional compression forces arise due to the restrain 

introduced by the fixed roof. These forces obviously are dependent on the stiffness of the 

roof. 
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 Square cosine temperature pattern Cosine T. P. 

eigenmode 2r ct t  3r ct t  5r ct t  10r ct t  100r ct t  2r ct t  

1 138.5 133.8 129.2 126.1 146.4 -176 

2 138.5 133.8 129.2 126.1 146.4 -176 

3 -139.8 -135 -130.3 -127.2 156.4 -188.8 

4 -139.8 -135 -130.3 -127.2 157 -188.8 

5 -139.9 -135.1 -130.4 -127.3 161.7 -193.2 

6 -139.9 -135.1 -130.4 -127.3 -165.2 -193.2 

7 140.8 136 -130.4 128 -165.2 -198.3 

8 140.8 136 131.3 128 -165.2 -198.3 

9 156.2 151.8 147.4 144.2 -165.2 -198.6 

10 156.2 151.8 147.4 144.2 165.4 -198.6 

11 160.4 154.8 149.5 145.8 169.8 202.5 

12 160.4 154.8 149.5 145.8 170.2 202.6 

Table 5-2: Critical buckling temperatures for the fixed-roof tank. 
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Figure 5-5: 1
st
 and 2

nd
 buckling modes of fixed-roof tank for the square cosine temperature pattern (cool roof) 
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Figure 5-6: 7
th
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th

 buckling modes of fixed-roof tank for the square cosine temperature pattern 

  
1

st
 eigenmode (elevation view)  2

nd
 eigenmode(elevation view) 

Figure 5-7: Buckling modes of fixed-roof tank for the cosine temperature pattern (cool roof). 
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Chapter 6. Thermal buckling of fixed-roof heated tanks  

The thermal buckling behavior of the heated cylindrical tank is studied in detail in this 

Chapter. The numerical analysis techniques that are used for the simulation and the solution 

of the problem are presented. First the problem is solved through Geometric non-linear 

analysis, taking into account linear elastic material law and the corresponding results are 

given. Specifically, the results are given mainly in terms of critical buckling temperature 

which indicates the occurrence of the instability and the buckling takes place in the tank. A 

more realistic approach follows and the thermal buckling behavior of the steel storage tank is 

solved taking into account the material non-linearity at elevated temperatures. In both cases, 

the effect of the roof stiffness in the critical buckling temperature is studied.    

6.1 Numerical analysis 

The fire behavior of the fixed-roof tank (target), heated by the adjacent (source) tank is 

simulated using the finite element method and the problem is solved through non-linear 

transient thermal/structural numerical analysis considering large displacements in the 

formulation of the mathematical problem. The numerical model, described in the previous 

Chapter (Chapter 5) is used and the square cosine pattern is adopted in order to simulate the 

thermal load. During the analysis the temperature is increased linearly through driven table 

input and the temperature of the most heated generator is the variable that replaces the load in 

the equilibrium path. For the empty tank the unique concurrent mechanical-static load is the 

gravity load. In the case where the liquid is present the hydrostatic pressure is also taken into 

account.  It is noted that the temperature profile of the heated tank is prescribed according to 

the thermal pattern and actually no heat transfer takes place. Specifically, the fixed 

temperature boundary condition is use in order to define the temperature-history foe each 

need of the numerical model.  The non-heated zone is assumed to be at ambient temperature.  

The arc-length method is utilized for the evaluation of the equilibrium path of the structural 

system and the AUTO STEP scheme, available in MSC Marc, is used. In this case, the 

primary control of the load step is based upon the number of recycles needed to obtain 

convergence. There are a number of optional user-specified criteria that can be used to 

additionally control the load step.  

Here, the artificial damping energy based time stepping scheme is used. This scheme is 

appropriate for solving problems where instabilities (local or global) are expected to occur. 

The basic idea behind this scheme is that du*M*du/dt (with du the incremental displacement 

vector, M the lumped mass matrix based on a unit density and dt the time increment) is used 
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to define a damping energy rate. Based on the user defined damping ratio (default = 0.0002), 

the amount of artificial damping energy is related to the actual strain energy. For a linear case, 

the total amount of damping energy will be equal to the total strain energy times the damping 

ratio. For cases where instabilities occur, the amount of damping energy is increased to 

stabilize the solution. The actual amount of damping energy is available on the post file as a 

global variable. By comparing the estimated (damping) energy with the actual values, the time 

increment is either increased or decreased. By comparing the estimated (damping) energy 

with the actual values, the time increment can be increased or decreased. 

An illustrative description of the method is included in Simulia (2008) and it is forwarded 

here. While the model is stable, the viscous forces and, therefore, the viscous energy 

dissipated are negligible compared with the strain energy of the system. Thus, the additional 

artificial damping has no effect on the structural behavior. If a local region becomes 

unstable, the local velocities increase and, consequently, part of the strain energy released is 

dissipated by the applied damping. Normally the examined structure is stable at the beginning 

of the step and that instabilities may develop in the course of the step. Such condition is 

assumed in the numerical implementation of the damping parameter. The first increment of 

the step is stable without the need to apply a damping. The damping factor is then determined 

in such a way that the dissipated energy for a given increment with characteristics similar to 

the first increment is a small fraction of the extrapolated strain energy. The fraction is called 

the dissipated energy fraction and has a default small value of 0.0002 but the user is free to 

assign an even smaller or larger value. The damping factor is controlled by the convergence 

history and the ratio of the energy dissipated by the viscous damping to the total strain 

energy. If the convergence behavior is problematic because of instabilities or rigid body 

modes, the damping factor is automatically increased. On the other hand, damping factor 

may also be reduced automatically if instabilities and rigid body modes subside.  

Since the phenomenon is mainly dominated by the thermal forces due to the restrained 

thermal expansion the problem initially is solved through geometric non-linear analysis 

(GNA) assuming elastic temperature-dependent material law. In the sequel, the elastic-plastic 

material law is incorporated in the numerical model and geometric/material non-linear 

analysis is conducted in order to reveal the effect of steel hardening to the behavior of the 

heated tank. Parametric analyses with respect to the yield stress of steel indicate that in the 

case of low-yield steel, the elastoplastic material behavior stabilizes the behavior of the heated 

tank and contributes beneficially since the premature occurrence of elastic thermal buckling is 

prevented. If high-strength steel is adopted, the structural behavior is dominated by the 

thermal buckling and the plasticity can be omitted during the numerical analysis. 

6.2  Evaluation of the thermal behavior of heated tank through GNA 

Figure 6-1 illustrates the deformed shape of the fixed-roof cylindrical empty tank at 
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characteristic levels of temperature of the most heated generator, in the case where the roof is 

considered ten times thicker that the cylindrical shell. It is note that in this case the roof of the 

tank is considered to be at ambient temperature (cool roof). The global buckling takes place at 

temperature equal to 145°C and the deformed configuration of the heated tank near the 

buckling (Figure 6-1a) is dominated by the first buckling mode as it is shown in Figure 5-5  

and the buckling temperature predicted using GNA is slightly higher comparing with the 

corresponding value that comes from LBA. During the post-buckling stage (Figure 6-1b) the 

geometry if the cylindrical shell becomes complicated and large displacements can be 

detected at the crest of the buckles. It is also observed that the deformed shape of the 

cylindrical tank (Figure 6-1c) becomes different as temperature increases and successive 

buckling appear at multiple areas. This can be more obvious in Figure 6-2 where the radial 

displacement field of the cylindrical tank is captured at representative levels of temperature. It 

can be noted that the displacement field of the tank changes rapidly during the buckling stage.  

   
(a)  Near buckling (T=145 °C) (b) Post-buckling (T=147°C)  (c) Post-buckling (T=190°C) 

Figure 6-1: Deformed shape of the cylindrical tank during GNA ( 10r ct t ). 

The buckling zones are totally different at the early stages of the buckling (Figure 6-2a) and at 

the post-buckling stage (T=145°C) where the temperature of the most heated generator is 

147°C. Moreover, during the post-buckling stage the buckles are spreading (zone A in Figure 

6-3) and multiple buckles take place (zone C in Figure 6-3). Relative large values of the radial 

displacements are observed during the post buckling stage and they are ten times higher than 

the corresponding values at the early stage of buckling.   

In Figure 6-3, the temperature-radial displacement curves for the nodes at the crest of the 

buckles in zones A, B and C are presented. It is observed that initial the buckling takes place 

in region A and almost immediately in zone B. Specially in zone B a sudden jump of the 

radial displacement  from positive to negative values takes place for temperature near 145°C. 

In zone C the radial displacement of the node at the crest of the buckle increases until the first 

buckling (in zones B and C) takes place. Next, it is slightly modified until temperature equal 
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to 190°C, where it jumps to negative values. This identifies a (second) local buckling of the 

cylindrical shell. The phenomenon is rather complicated due to both the temperature gradient 

along the circumferential direction and the degradation of modulus of elasticity of steel as 

temperature increases.  

 

  

 

(a) Near buckling (T=145 °C) (b) Post-buckling (T=147°C) 

 

  

 

(c) Post-buckling (T=190°C) (d) Post-buckling (T=200°C) 

Figure 6-2: Snapshots of radial displacement field of cylindrical tank (heated side) at various at characteristic 

temperature levels ( 10r ct t ). 
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In order to explain the complicated phenomena that arise in the heated tank, the tensor of 

Cauchy stresses are plotted for various paths along the cylindrical shell. Figure 6-4 presents 

both the circumferential and meridional stresses around the circumference of the cylindrical 

tank at the mid-height (z=10m) at the pre and post-buckling stage.  Specifically, the half of 

the circumference is plotted since the phenomenon is symmetric with respect to x-axis. The 

value 0  correspond to the most heated generator, while 180  identifies the opposite 

generator that is allocated in the side of the tank that is not heated i.e. the interval 

0 90   lies on the heated region while the interval 90 180   is at ambient 

temperature.  
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Figure 6-3: Temperature-radial displacement curves at crest of buckles in Zones A. B and C ( 10r ct t ). 

During the pre-buckling stage, the pattern around the circumference shows axial compression 

due to restrained expansion over the heated face (0 45   ) with a corresponding axial 

tension (to satisfy axial equilibrium) in the side zone ( 45 90   ), followed by axial 

compression again on the cold back face (to satisfy global moment equilibrium). It is noted 

that the magnitude of the circumferential stresses is smaller with respect to the values of 

meridional stresses. At the early stage of heating, the heated face is in compression in 

circumferential direction ( 0 45   ) and in tension in the rest of the hot zone.  This pattern 

becomes more complicated and changes between tension and compression as the temperature 

increases (T=95°C). The circumferential stresses become insignificant in the cold face of the 

tank. Buckling occurs on the heated side because of the large compressive stress accompanied 

with a reduced modulus of the steel there. On the cool side, the compressive stress is slightly 

smaller and the modulus is not reduced so it is not critical there.  

During the post-buckling stage the magnitude of both meridional and circumferential stresses 

increases significantly and the patterns of the stresses along the circumference change rapidly 

as the temperature increases. Near the buckling temperature (T=145°C) significant 

compressive stress arise in the heated zone (30 45   ). In the sequel, as the temperature 

increases (post buckling stage) the most compressed part of the cylindrical shell (taking in to 

Zone A 

Zone B 

Zone C 
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account both meridional and circumferential stresses) lies between15 30   .  

The radial displacement pattern around the circumference of the cylindrical tank at mid-height 

(z=10m) for both pre-buckling and post-buckling stage are plotted in Figure 6-5. During the 

pre-buckling stage positive radial displacements (the positive values indicate displacement 

vector is oriented out of the surface) arise in the bigger part of the cylindrical shell, both in hot 

and in cool faces. This pattern changes at all after the buckling, where the magnitude of the 

radial displacements is considerably increased and negative values are detected for 

15 30   and 50 70   . The previous verify the deformed shape of the cylindrical 

shell, illustrated in Figure 6-2. 
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(a) Pre-buckling stage 
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(b) Pre-buckling and post-buckling stage 

Figure 6-4: Cauchy stress components around the circumference of cylindrical tank at mid-height (z=10m) for 

various levels of temperature of most heated generator. 
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Figure 6-5: Radial displacement around the circumference of cylindrical tank at mid-height (z=10m) for various 

levels of temperature of most heated generator. 

The meridional and circumferential stress patterns around the circumference of the cylindrical 

tank for different levels of vertical coordinate (z) are depicted in Figure 6-6. During the pre-

buckling stage, the meridional stress pattern is the same along the height of the tank. The 

bigger values are observed in the base (z=2.5m) of the tank due to the restraint of the clamped 

end and the magnitude of the stresses is reduced away from the base. Moreover, the bigger 

compression stresses are noted in the most heated generator ( 0  ).  Near the buckling 

temperature, the meridional stress pattern around the circumference and along the height of 

the tank remains the same and the magnitude of the stresses increases as the temperature is 

escalated. At the post-buckling stage (T=190°C), the stress patterns are more complicated. A 

detailed description is given in Figure 6-7. The maximum values of compressive meridional 

stresses appear at z=7.5m and z=15m for 45  and 0  respectively. The range of 

compression and tension zones is continuously modified along the height of the tank.  Also it 

is not that the cold face of the tank (120 180   ), remains in compression during the post-

buckling stage and the values are relatively small.  

The magnitude of circumferential stresses is insignificant during the pre-buckling stage. The 

bigger compression values are observed near the base of the tank close to the most heated 

generator, due to the fixed boundary conditions. The stress pattern is altered near the buckling 

temperature and the stresses become important at the post-buckling stage. Figure 6-8 presents 

a detailed view of circumferential stress patterns around the circumference of the cylindrical 

tank at different levels of vertical coordinate (z) for T=190°C. It can be seen that the 

maximum negative values are reported at z=7.5m. z=12.5 and z=15m 

for 45  , 22.5  and 0  respectively. The most important compression forces take 

place in the range of 0 60   for all the rings. The circumferential stresses are trivial in 

the cold face of the tank (90 180   ). 

 

Institutional Repository - Library & Information Centre - University of Thessaly
02/06/2024 20:36:34 EEST - 18.222.76.217



Thermal buckling of fixed-roof heated tanks 

40 

-80000

-60000

-40000

-20000

0

20000

40000

60000

80000

0

1
5

3
0

4
5

6
0

7
5

9
0

1
0
5

1
2
0

1
3
5

1
5
0

1
6
5

1
8
0

M
e
ri

d
io

n
a
l 
s
tr

e
s
s
 (

K
P

a
)

Circumferential coordinate (degrees)

z=2.5m
z=5m
z=7.5m
z=10m
z=12.5m
z=15m
z=17.5m

 
-2000

-1500

-1000

-500

0

500

1000

1500

0

1
5

3
0

4
5

6
0

7
5

9
0

1
0
5

1
2
0

1
3
5

1
5
0

1
6
5

1
8
0

C
ir
c
u
m

fe
re

n
ti
a
l 
s
tr

e
s
s
 (

K
P

a
)

Circumferential coordinate (degrees)

z=2.5m
z=5m
z=7.5m
z=10m
z=12.5m
z=15m
z=17.5m

 
Pre-buckling (T=98°C) 
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Near-buckling (T=135°C) 
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Post-buckling (T=190°C) 

Figure 6-6: Stress patterns around the circumference of the cylindrical tank for different levels of vertical 

coordinate (z).  
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Figure 6-7: Detailed meridional stress patterns around the circumference of the cylindrical tank at different levels 

of vertical coordinate (z) for T=190°C. 
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Figure 6-8: Detailed circumferential stress patterns around the circumference of the cylindrical tank at different 

levels of vertical coordinate (z) for T=190°C. 

The meridional stress pattern along the height of the tank for different heated generators 

( 0 , 15 , 30 , 45          ) of the cylindrical shell and the corresponding distribution of 

radial displacements are plotted in Figure 6-10. Before buckling and close to the critical 

temperature, the variation of the meridional stress along the height of the generators is almost 

linear except the upper and the lower base of the tank. In these zones, large compressive and 
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tensile stresses are detected locally, due to the constraint provided by the fixed boundary and 

the roof of the tank respectively. After buckling, the distribution of meridional stresses 

becomes non-linear and the important compressive forces take place in the body of the 

cylinder (i.e. far from the upper and lower base of the tank).  The maximum values of 

negative stresses are detected between the generators 30  and 45  . Regarding the 

radial displacements, it can be seen that at the post-buckling stage, the maximum values are 

recorded in a zone upper of the mid-height of the tank for the most heated generator ( 0  ) 

and this zone is transferred downwards in the less heated generators i.e. moving from 

0  to 45  .    
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θ=15° 

Figure 6-9: Meridional stress and radial displacement along generators of the cylinder in heated zone (θ=0° and 

15°). 
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Figure 6-10: Meridional stress and radial displacement along generators of the cylinder in heated zone (θ=30° 

and 45°). 

Figure 6-11 presents the distribution of the shear stress component around the circumference 

of the cylindrical tank at the mid-height for different levels of temperature of the most heated 

generator that correspond to the pre-buckling, neat buckling and post-buckling stage. As it can 

be observed in Figure 6-12 , the distribution of shear stress is almost uniform along the height 

of the cylinder during at the pre-buckling stage and the maximum values are recorded near the 

upper and lower base of the cylinder. The shear stresses can be connected to the gradient of 

temperature around the circumference of the cylinder. The distribution at the mid-height of 

the tank is antisymmetric with respect to the x-axis, and in half of the heated zone the shear 

stresses are negative ( 0 90   ) while in the rest zone the values are positive 

( 270 360   ). The same holds for the back-clod zone. Considering the heated face, the 

maximum values are recorded in 45° away from the most heated generator i.e. for 

45  and 45   . It is noted that the shear stresses during the pre-buckling stage are 

bigger than the respective values of the circumferential stresses and smaller compared with 

the values of the meridional components. After buckling the shear stress pattern becomes 
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more complicated as it is depicted in both Figure 6-11 and Figure 6-12.   

It can be concluded that the buckling phenomenon can be attributed to both meridional and 

shear stress that appear in the zone 45 45     of the circumference of the cylindrical 

shell due to restrained thermal expansion at the axial direction and to the gradient of 

temperature around the circumference of the cylinder. The coexistence of compressive 

meridional and shear stresses leads to the occurrence of the diagonal buckling mode. The 

contribution of compressive circumferential stresses seems to be less important.   
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Figure 6-11: Shear stress pattern around the circumference of the cylindrical tank at mid-height (z=10m). 

 

  

 

(a) pre- buckling  (b) Post-buckling  

Figure 6-12: Shear stress distribution in the hated ace of the cylindrical tank.  
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All, the previous remarks describe in detail the complicated thermal/structural behavior of the 

cylindrical steel tank and they are in accordance with the deflected configuration of the tank 

as it is presented in Figure 6-1 and Figure 6-2.  Moreover, it is underlined that it is quite 

difficult to describe the global behavior of the tank due to the multiple local and global 

buckling phenomena that are detected.  The global evaluation of the behavior of the heated 

tank can be obtained if the artificial damping energy based time stepping scheme is used. 

Specifically, the evolution of the ratio of artificial damping energy to the total strain energy of 

the system with the temperature depicts accurately the occurrence of buckling phenomena. 

Figure 6-13 presents the temperature evolution of the energy dissipation fraction. It can be 

observed that initially, the value of the fraction is set 0.1 and in the sequel the magnitude of 

the fraction decreases as the temperature increases, if no instability occurs. For temperature 

equal to 145°C, a sudden jump takes place and this indicates the occurrence of the global 

buckling. In the sequel, the magnitude of the fraction is reduced since and this branch 

corresponds to the post-buckling stage. For T=190°C, a new jump occurs due to the 

occurrence of the local buckling in zone C as it is illustrated in Figure 6-3. The sequence of 

buckling phenomena is as they are defined in the curve of the temperature evolution of the 

energy dissipation fraction (1), (2) and (3) correspond to the deformed configurations of the 

cylindrical tank as they are illustrated in Figure 6-1a,  Figure 6-1b and Figure 6-1c 

respectively.  It is noted that the jump amplitude depends on the range of the buckling area. A 

global buckling instability corresponds to larger jump comparing with a local bucking 

phenomenon. For this reason the first jump in the diagram between points 1 and 2 is 

considerably larger than the second jump. Moreover, it is observed that the fraction of the 

artificial damping energy of the system presents the vertical braches in the case where the 

velocities of the nodes are coming important (in the case of static loading the velocities are 

minor and this is a basic separation between static and dynamic problems). Actually in this 

mathematical scheme, the nodal velocities are calculated (which may or may not have a 

physical meaning in the context of the problem being solved) and the artificial damping 

energy becomes considerable if the magnitude of velocities is important i.e. the buckling is 

instantaneous. For this reason in the post-buckling branch of the diagram (2 up to 3) although 

the buckling regions are spreading out, no sudden jumps ae taking place.  
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Figure 6-13: Evolution of ratio of artificial damping energy to the total strain energy with temperature 

( 10r ct t ).  

The advantage of using artificial damping scheme is more obvious in modelling the cases that 

involve multiple occurrences of buckling along the thermal loading path. Such a situation is 

typical in the thermal buckling of tanks with slender roof (e.g. r ct t ) where the tank roof 

often buckles before the tank wall. This case is presented in Figure 6-14 and the 

corresponding deformed shapes of the cylindrical tank are illustrated in Figure 6-15. In this 

case of slender roof, the first instability that occurs is the buckling of the roof (point 1) and the 

second jump corresponds to the buckling of the cylindrical shell (point 2). 
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Figure 6-14: Evolution of ratio of artificial damping energy to the total strain energy with temperature ( r ct t ).  

  
(a) Point 1 (b) Point 2 

Figure 6-15: The deformed shape of the cylindrical tank at characteristic levels of temperature for the slender 

roof case ( r ct t ).    
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Effect of roof stiffness to the structural behavior of fixed roof heated tank 

The failure modes of the heated cylindrical tank and the corresponding radial displacement 

field, for different values of roof thickness, are presented in Figure 6-16, Figure 6-17Figure 

6-18. Two different modes are observed. In the case where the roof is slender ( r ct t  and 

1.5r ct t ), the roof of the tank buckles. This failure mode is altered for thicker roofs ( 

2r ct t ) and the buckling of the cylindrical wall takes place. It is observed that the buckling 

mode of the tank wall is very sensitive to the ration of roof thickness to the tank wall 

thickness. In case of restively stiff roofs the final mode may be either shear-diagonal global 

buckling e.g. (Figure 6-16c) or local buckling which occurs near the boundaries where large 

meridional, circumferential and shear membrane stresses are present (e.g. Figure 6-18).  

  

 
(a) r ct t  

  

 
(b) 1.5r ct t  

Figure 6-16: Failure modes of the heated tank and the corresponding radial displacement field for roof 

thickness r ct t  and 1.5r ct t . 
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(c) 2r ct t  

  

 
(a) 3r ct t  

  

 
(b) 5r ct t  

Figure 6-17: Failure modes of the heated tank and the corresponding radial displacement field for roof thickness 

2r ct t , 3r ct t  and  5r ct t . 
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(c) 10r ct t  

  

 
100r ct t  

Figure 6-18: Failure modes of the heated tank and the corresponding radial displacement field for roof thickness 

10r ct t and 100r ct t . 

Figure 6-19 presents the evolution of the critical buckling temperature of the heated fixed-roof 

tank as the ratio of roof thickness to cylindrical shell thickness increases. Two different 

branches are detected. In the ascending branch, as the thickness of roof increases, the buckling 

temperature is also accordingly escalated and this holds for 2c r ct t t   i.e. the stiffer roof 

buckles for higher level of temperature. It is noted that in the case of very slender roofs e.g. 

r ct t the roof of the tank buckles at extremely low temperature less than 40°C. The peak 

point is recorded for the case of 2r ct t where the critical buckling temperature is equal to 

164°C. In the descending branch 2 100c r ct t t  , as the thickness of roof increases the 

buckling temperature is decreased. This can be attributed to the fact that the thicker roof is 

actually stiffer and subsequently the degree of restraint at the upper base of the tank increases 

and bigger axial membrane stresses are induced in the cylindrical wall due to the restraint to 
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differential thermal expansion. The decrease of the critical buckling temperature in the 

extreme case where 100r ct t is 39% comparing with the pick value that correspond to the 

case where 2r ct t . The previous indicate that the roof stiffness is a crucial parameter for the 

fire behavior of the cylindrical tank.    

Due to the fact that the cylindrical wall buckling is expected to result in more serious 

consequences during a pool fire, comparing with the roof buckling, the interest in this study is 

mainly focused on the cases that lie in the descending branch of the curve presented in Figure 

6-19. A more detailed view of the problem can be obtained from the stress patterns in the wall 

of the tank. Figure 6-20 presents the axial and circumferential stress patterns around the 

circumference of the cylindrical tank in two different rings (z=1m and z=10m) at the pre-

buckling stage as the ratio of the roof thickness to the wall thickness increases. Near the base 

of the tank (z=1m), the magnitude of the meridional stresses is important for all the cases that 

are studied here. The maximum values appear in the case of 100r ct t .A logical sequence is 

noted and the magnitude of stresses is escalated as the thickness of the roof increases. During 

the post-buckling stage, higher values of both membrane stresses occur near the lower base of 

the tank for all the case studies. Moreover, the circumferential stresses are important at near 

the fixed end and minor in the body of the tank. The meridional stress distributions along the 

height of the tank for the most heated generator and for various values of ratio of roof 

thicknesses to cylinder shell thickness are presented in Figure 6-21.   It is observed that in the 

body of the cylindrical shell ( 2.5 z 17.5  ) the most heated generator is in compression, 

while the significant values of meridional stress (both positive and negative) are recorded at 

the upper and lower end of the cylindrical shell (Figure 6-22). The stress concentration at the 

boundaries is a local phenomenon and it is attributed to the restraint due to the clamped end 

conditions and to the restraints that are induced due to the presence of the fixed roof.  

Moreover, the magnitude of shear stresses (Figure 6-23) increases as the shell of the roof 

becomes thicker.   
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Figure 6-19: Critical buckling temperature for empty fixed-roof cylindrical tank for different roof thickness. 
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(a) z=1m 
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(b) z=10m 

Figure 6-20: Stress patterns around the circumference of the cylindrical tank before buckling (T=80°C) for 

various roof thickness.  
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(a) total diagram (b) detailed diagram for 2.5 z 17.5   

Figure 6-21: Meridional stress distribution along the height of the cylindrical tank for the most heated generator 

for various values of roof thickness (pre-buckling stage, T=80°C). 
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Figure 6-22: Meridional stress distribution along the height of the cylindrical tank for the most heated generator 

for roof thickness 2r ct t , 5r ct t , 10r ct t  and 100r ct t  (pre- buckling stage ,T=80°C). 
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Figure 6-23: Shear stress pattern around the circumference of the cylindrical tank before buckling (T=80°C) for 

various roof thickness (z=10m). 
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Effect of thermal roof pattern to the thermal behavior of the fixed roof tank 

In the case where the “hot” roof thermal pattern is adopted, the behavior of the tank is similar 

comparing with the case of the cool roof. Figure 6-24 presents the evolution of the critical 

buckling temperature as the roof thickness increases, for the case where the “hot” roof is 

included in the analysis. The results concerning the “cool” roof are also quoted in the same 

Figure. In can be observed that the critical buckling temperature for the “hot” roof scheme is 

very close comparing to the case where the “cool” roof is used. Specifically, the buckling 

temperature for the “hot” roof is slightly increased with respect to the “cool” roof case. 

Actually, for the same roof thickness, the “hot” roof is less stiff with respect to the “cool” roof 

since the modulus of elasticity of steel reduces at elevated temperatures. This indicates that 

the “hot” roof induces lower degree of restraint to the tank, with respect to the cold roof and 

subsequently the degree of restraint at the upper base of the tank decreases and reduced axial 

membrane stresses are induced in the cylindrical wall due to the restraint to thermal 

expansion. The previous indicate that the fire behavior of the cylindrical tank is insensitive to 

the specific parameter and that the “hot” scheme can be omitted from the numerical analyses.   
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Figure 6-24: Evolution of critical buckling temperature with the ratio of roof thickness to cylindrical shell 

thickness, for both hot and cool roof schemes.  

6.3 Evaluation of the thermal behavior of heated tank through GMNA 

In this section, the elastic-plastic material law is implemented in the numerical model. The 

goal is to reveal the effect of plasticity to the thermal buckling phenomena that arise as the 

temperature of the tank increases.  First, a sensitivity study is conducted, with respect to the 

roof stiffness i.e. for escalated roof to cylindrical wall thickness considering elastoplastic 

behavior (S275). In the sequel, the effect of the magnitude of yield strength of steel in studied.    

Effect of roof stiffness to the structural behavior of the fixed-roof heated tank 

Figure 6-25 presents the evolution of the critical buckling temperature with the ratio of roof to 
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cylindrical shell thickness. In all cases the “cool” roof pattern is adopted and the tank is 

supposed to be empty. The results, in terms of critical buckling temperature are compared 

with the corresponding values for the elastic model and the diagram includes the respective 

values for the elastic tank. The response of the elastic-plastic heated tank follows the 

corresponding behavior of the elastic tank, in terms of critical buckling temperature. Two 

different branches can be detected and the limit point for the elastic-plastic tank is the case of 

2.5r ct t . In the ascending branch, the failure mode is dominated from the roof buckling 

values of roof thickness 1.5 c r ct t t  while for thicker roofs (1.5 2.5 c r ct t t ) the tank wall 

buckling takes place. The same failure mode (cylinder wall buckling) is detected also in the 

descending branch of the curve. The final failure modes are included in Figure 6-26 

(T=400°C). Moreover it is observed that for slender roof tanks ( 1.5 c r ct t t ) the buckling 

temperature of the elastoplastic tank is higher than the corresponding values that arise from 

the GNA analysis. For more stiff roofs ( 2.5 100 r ct t ) the phenomenon is reversed and the 

predicted buckling temperature is lower for the cases where the elastoplastic law of steel is 

adopted in the analyses. The previous indicate that the elastoplastic material law should be 

taken into account for the evaluation of the behavior of steel tanks under fire conditions.     

The evolution of the dissipated energy fraction with temperature for different escalated values 

of roof to cylindrical shell thickness is also presented in Figure 6-25. It can be observed that 

the maximum jump is detected for the case where the roof buckling takes place ( 1.5r ct t ). In 

this actually a global buckling roof mode is detected, while in the rest cases where the 

buckling takes place in the wall of the cylinder, the buckling mode is local and it is appears in 

the base of the tank in the hated face of the tank, for o o30 30    as it is illustrated in 

Figure 6-27.   

 

 

 

 

 

Institutional Repository - Library & Information Centre - University of Thessaly
02/06/2024 20:36:34 EEST - 18.222.76.217



Thermal buckling of fixed-roof heated tanks 

56 

0

50

100

150

200

250

0 10 20 30 40 50 60 70 80 90 100

C
ri
ti
c
a
l 
b
u
c
k
lin

g
 t

e
m

p
e
ra

tu
re

 (
°C

)

Ratio of roof thickness to shell thickness

Elastoplastic (S275)

Elastic

 

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0 50 100 150 200 250 300 350 400

D
a

m
p

im
g

 E
n

e
rg

y/
T

o
ta

l 
s
tr

a
in

 E
n

e
rg

y

Critical buckling temperature (°C)

tr=1.5tc

tr=2tc

tr=2.5tc

tr=5tc

tr=10tc

 

Figure 6-25: Critical buckling temperature for the heated tank for escalated roof stiffness and the corresponding 

curves of evolution of energy dissipation fraction with the temperature. 

   

(a) r ct t  (b) 1.5r ct t  (c) 2r ct t  

   

(d) 2.5r ct t  (e) 10r ct t  (f) 100r ct t  

Figure 6-26: Deformed shape of the heated tank for escalated values of roof stiffness. 
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(a) Pre-buckling stage (T= 178°C) (b)  Near buckling (T= 193°C) 

 

  

 

(c) Post-buckling stage (T= 450°C) (d) Post-buckling stage (T= 800°C) 

Figure 6-27: Deformed configuration of the tank ( 2.5r ct t ) for different levels of temperature of most heated 

generator.  

The radial displacement fields for various values of roof to cylindrical shell thickness are 
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presented in Figure 6-28. In all the cases included in this figure the temperature of the most 

heated generator is T=400°C. It can be observed that as the stiffness of the roof increases, the 

magnitude of the radial displacements is escalated and furthermore, the buckles near the lower 

base of the tank are growing and the phenomenon spreads in heated region far away from the 

most heated generator.    

 

 

  

 

(e) 2r ct t  (f) 5r ct t  

 

  

 

(g) 10r ct t  (h) 100r ct t  
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Figure 6-28: Radial displacement field for various values of roof stiffness for the temperature of most heated 

generator equal to 400°C. 

 

 
  

(a) 0.5r ct t  (b) r ct t  (c) 1.5r ct t  

   

(a) 2r ct t  (b) 10r ct t  (c) 100r ct t  

 

Figure 6-29: Equivalent plastic strain field for escalated roof stiffness. 

Effect of yield strength of steel to the structural behavior of the fixed-roof heated 

tank 

Figure 6-30 presents the evolution of the critical buckling temperature of the heated tank as 

the yield strength of steel increases for two different cases of roof stiffness 2r ct t and 

10r ct t . Five different cases are studied with respect to the yield strength which are S235, 

S275, S355, S420 and S460. In all cases the “cool” roof pattern is adopted and the tank is 

supposed to be empty. The critical buckling temperature that results from the GNA analysis is 

included. According to the results of the analyses, in the case of low-yield steel (S235), the 
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elastoplastic material behavior contributes beneficially since the premature occurrence of 

elastic thermal buckling is prevented.  If high-strength steel is adopted, the structural behavior 

is dominated by the thermal buckling and the plasticity can be omitted during the numerical 

analysis. Specifically for steel with yield strength up 275MPa, the predicted critical buckling 

temperature is on almost in the same level with the case where the elastic behavior is adopted 

in the analyses. For both cases of roof stiffness that are studied, fluctuations are detected 

around the elastic critical temperature for yield strength 275 460 yf Mpa. In the case of 

460yf MPa   the critical predicted temperatures that result from GNA and GMNA analyses 

are almost identical. Figure 6-31, Figure 6-32Figure 6-33 illustrate the Equivalent Von-Mises 

and Equivalent plastic strain fields in the pre-buckling stage. As it is shown, for low strength 

steel (S235) the base of the tank on the front side of the heated face is plastified before 

thermal buckling takes palce. Since the buckling occurs in the same region, it is concluded 

that the behaviour of the tank is dominated by the elastic-plastic buckling. The limits of the  

plastification zone near the base of the tank is deriorated as the yield strength increases and in 

the case of S460 the behaviour of the tank is dominated by the elastic buckling. The previous 

indicate that, if high-strength steel is adopted, the structural behavior is dominated by the 

thermal buckling and the plasticity can be omitted during the numerical analysis.   

Regarding, the curves that describe the evolution of the fraction of the artificial damping 

energy to the total strain energy, it can be seen that the jump that specifies the occurrence of 

buckling is enlarged as the yield strength of steel is escalated. This indicates that the region 

where the buckling occurs is enlarged for high strength steel. This remark is in accordance 

with the final deformed configurations of the heated tanks as they are presented in Figure 

6-34Figure 6-35.  
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Figure 6-30: Effect of yield strength of steel on critical buckling temperature and the corresponding curves of the 

evolution of fraction of damping energy with temperature.    
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Equivalent Von-Mises stress field Equivalent plastic strain field 

 

  

 

Equivalent Von-Mises stress field Equivalent plastic strain field 

(a) S275 

Figure 6-31: Equivalent Von-Mises and Equivalent plastic strain fields in the pre-buckling stage for the case of 

10r ct t  (S235 and S275). 
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Equivalent Von-Mises stress field Equivalent plastic strain field 

S355 

 

  

 

Equivalent Von-Mises stress field Equivalent plastic strain field 

S420 

Figure 6-32: Equivalent Von-Mises and Equivalent plastic strain fields in the pre-buckling stage for the case of 

10r ct t  (S355 and S420). 
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Equivalent Von-Mises stress field Equivalent plastic strain field 

S460 

Figure 6-33: Equivalent Von-Mises and Equivalent plastic strain fields in the pre-buckling stage for the case of 

10r ct t  (S460). 

   
235 275 355 

  

 

420 460  

Figure 6-34: Deformed configuration of the heated tank for different magnitude of yield strength of steel (front 

view). 
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235 275 355 

  

 

420 460  

Figure 6-35: Deformed configuration of the heated tank for different magnitude of yield strength of steel 

(elevation view). 

The equivalent plastic strain filed for escalated values of the ratio of roof to cylindrical shell 

thickness are illustrated in Figure 6-29. For tanks with slender roofs ( 1.5 c r ct t t ) plastic 

deformations appear in both roof and base of the cylinder while in the case of more slender 

roofs ( 2 100 c r ct t t ) the plastic strain field in limited in the upper and the lower base of the 

cylinder. It is observed that the equivalent plastic strain field spreads in the base of the 

cylindrical tank as the roof becomes thicker. In the case of 100r ct t , the plastisfication is 

detected in only in the lower base of the tank. 

Finally, Figure 6-36 compares the evolution of the plastic strain energy of the structural 

system with the temperature of the most heated generator for different values of yield strength 

of steel. It is concluded that the effect of the plasticity is reduced as the yield strength of steel 

increases and that the phenomenon approaches the elastic behavior in the case where high 

strength steel is used.  
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Figure 6-36: Effect of steel yield strength to plastic strain energy of the tank ( 2r ct t ). 
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Chapter 7. Parametric studies 

This Chapter presents parametric studied concerning the basic parameters that may affect the 

structural behavior of a heated tank during a pool fire event. The parameters that are 

considered are the geometric initial imperfections, the level of the stores liquid (oil) and the 

zone of the tank that is affected by the fire.    

7.1 Effect of initial imperfections 

Initial imperfections are incorporated in the geometry of the steel tank for a more realistic 

assessment of its behavior. There are many different ways to introduce initial geometric 

imperfections in structural members. A simple way in the context of finite element analysis is 

to extract the buckling eigenmodes and introduce them as imperfections with a specific 

amplitude. More specifically, the normalized buckling mode is multiplied by a scale factor, 

leading to certain maximum amplitude and the resulting displacements are added to the initial 

coordinates of the structural member. For the case studied here, the first eigenmode is used as 

it is defined in Chapter 5. The amplitude of the initial imperfections that is used for the 

analysis is taken equal to 1mm, 2mm, 5mm and 10mm i.e. the ratio of the amplitude of the 

initial imperfections to the thickness of the shell is considered equal to 0.1, 0.2, 0.5 and 1 

respectively. 

The imperfection sensitivity study for three different values of roof to cylindrical shell 

thickness ratio is presented in Figure 7-1. It is observed the critical buckling temperature is 

reduced as the amplitude of the geometric initial imperfections is scaled up and this holds for 

all the cases that are studied. This reduction is more obvious for tanks that use less stiff roofs 

i.e. for low values of roof to cylindrical shell thickness ratio. Specifically, for the cases of 

2r ct t and 10r ct t , the reduction of the critical buckling temperature is around 33% 

comparing with the critical values of temperature that result from the analyses of perfect 

models i.e. the models with no-initial imperfections. The corresponding reduction is almost 

25% when the stiffer roof is used ( 100r ct t ). The final deformed configurations of the tank 

and the radial displacement fields, are depicted in Figure 7-2 and Figure 7-4 for the cases of 

2r ct t and 100r ct t   respectively.  It is noted that the deformed shape of the cylindrical tank 

is affected by the amplitude of the initial imperfections that is used.  For relatively small 

amplitude, failure mode is almost local and is detected in the base of the tank in the front face 

of the most heated region. As the amplitude of the initial imperfection increases, the 

phenomenon spreads in the body of the tank and becomes global.    
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Figure 7-1: Imperfection sensitivity of an empty fixed-roof tank for different roof to cylindrical shell thickness 

ratio. 

  

 
(a) Amplitude of initial imperfections equal to 1mm 

  

 
(b) Amplitude of initial imperfections equal to 2mm 

Figure 7 2: Final deformed shape and radial displacement field for the case of  2r ct t (continued) 
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(c) Amplitude of initial imperfections equal to 5mm 

  

 
(d) Amplitude of initial imperfections equal to 10mm 

Figure 7-2: Final deformed shape and radial displacement field for the case of 2r ct t  

  

 
(a) Amplitude of initial imperfections equal to 1mm 

Figure 7-3: Final deformed shape and radial displacement field for the case of 100r ct t (continued) 
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(b) Amplitude of initial imperfections equal to 2mm 

 
 

 
(c) Amplitude of initial imperfections equal to 5mm 

 
 

 
(d) Amplitude of initial imperfections equal to 10mm 

Figure 7-4: Final deformed shape and radial displacement field for the case of 100r ct t  
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In order to look thoroughly in the effect of initial imperfection to the buckling behavior of the 

heated tank, the deformed configuration of the structural system during the fire exposure is 

depicted in Figure 7-5 ( 5r ct t ) and amplitude of initial imperfections 1mm). It is observed 

that at the 142
nd

 step of the analysis, the deflected configuration of the tank is mainly affected 

by the first eigenmode of the modal analysis, while in the next step for minor increase of 

temperature (0.005°C), the contribution of the first eigenmode is insignificant and the 

deflected shape in mainly affected the local buckling mode at the base of the tank (9
th

 

eigenmode according to LBA). This sudden change indicates that this temperature (T=124.85) 

consists a bifurcation point for the solution.  

   

During Buckling - Step 142 During Buckling -Step 143 Psot-buckling Buckling  

(T=124.846°C) (T=124.851°C) (T=128°C) 

Figure 7-5: Deformed configuration of the tank ( 5r ct t ) for different levels of temperature of most heated 

generator. 

7.2 Effect of level of stored liquid 

The stored liquid is included in the numerical analysis through the hydrostatic pressure that is 

induced and no other fluid/solid interaction is taken into account. The critical buckling 

temperature variation with the level of stored liquid is depicted in Figure 7-6 for variable roof 

stiffness ( 2r ct t , 10r ct t  and 100r ct t ). The post-buckling deflected shapes are shown in 

Figure 7-7 Figure 7-8. As the level of the stored liquid increases, the buckling temperature is 

scaled up. For low levels of stored liquid, the buckling temperature is very close to the value 

that corresponds to an empty tank. Buckling always occurs near the liquid surface and spreads 

into the empty part, as shown in Figure 7-7Figure 7-8.  Also it is noted that in the case of 

slender roof ( 2r ct t ), the buckling temperature of the tank is almost constant for liquid level 

up to the half of the height of the tank. It is concluded that the level of the stored liquid has a 

significant influence on the buckling behavior of the cylindrical tank.  
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Figure 7-6: Influence of the level of stored liquid to the critical buckling temperature for different roof to 

cylindrical shell thickness ratios. 

   
2.5lz m  5lz m  10lz m  

  

 

15lz m  17.5lz m   

Figure 7-7: Influence of level of liquid to the deformed shape of the tank for 2r ct t . 
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2.5lz m  5lz m  10lz m  

  

 

15lz m  17.5lz m   

Figure 7-8: Influence of level of liquid to the deformed shape of the tank for 10r ct t . 
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15lz m  17.5lz m   

Figure 7-9: Influence of level of liquid to the deformed shape of the tank for 100r ct t . 
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7.3 Effect of size of heated zone 

If the size of the adjacent tank fire is changed, the target tank is exposed to heating in a zone 

of different size. The circumferential range of the heated zone models this effect. Here, 

characteristic angles θ0 (see Eq. 5.1) of 45°, 120°, 135° and 150° are studied. The buckling 

temperatures of the empty tanks are shown in Figure 7-10. It is observed that the critical 

buckling temperature scales up as the heated zone is expanded. When the hated zone of the 

tank is narrow, buckles concentrate within the zone. When the heated zone is wider (θ0 =120° 

and 135°), buckles take place in the cool zone of the tank. This is altered for the case where 

the heated zone covers almost all the circumference of the tank (θ0 =150°), where the 

buckling occurs again in the heated zone and near the bottom boundary. 
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Figure 7-10: Influence of the size of the heated zone to the critical buckling temperature for different roof to 

cylindrical shell thickness ratios. 
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ο

0 45   

  
ο

0 120   

  
ο

0 135   

  
ο

0 150   

Figure 7-11: Influence of the size of the heated zone to the deflected shape of the tank ( 2r ct t ). 
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Conclusions 

The present thesis addresses the problem of the behavior of steel oil-storage cylindrical tanks 

under thermal loading induced by an adjacent fire-engulfed tank. The study is focused on a 

fixed-roof tank with radius equal to 10m and 20m high. The problem is handled numerically 

through the Finite Element methodology.  Geometric non-linear analysis is used and the arc-

length method is utilized for the evaluation of the equilibrium path of the structural system. 

Primary results are obtained through LBA. It is concluded that the critical buckling 

temperature of the storage tanks depends on the roof stiffness which is modified by using 

different thickness for the roof shell. Moreover it is observed that the thermal pattern of the 

roof (“cool” or “hot”) does not affect the thermal buckling behavior of the tank.   

Moreover the thermal buckling of empty cylindrical tanks is studied through GNA. In the case 

where the elastic material law is adopted in the numerical analyses, the empty tanks buckle 

for low levels of temperature depending on the roof stiffness. Specifically, the critical 

buckling temperature of empty tanks lies between 100°C and 170°C for slender and stiff roofs 

respectively. The failure mode of the tank depends also on the stiffness of the roof. The 

deflected shape of the tank in the post-buckling stage indicates roof buckling for tanks with 

very slender roofs and this turns to cylindrical wall buckling as the stiffness of the roof 

increases. In order to obtain more realistic results, the non-linear elastic plastic law of steel at 

elevated temperatures is included in the analyses. Once more, it is concluded that the thermal 

buckling behavior of the tank depends on the roof stiffness and two different buckling modes 

are distinguished for slender and stiff roofs. The predicted critical buckling temperature for 

elastoplastic tanks is lower with respect to the values that arise from the elastic tanks if the 

yield strength of the steel is equal to 275MPa.  Furthermore, the results indicate that both the 

critical buckling temperature and the post-buckling deflected shape of the tank are strongly 

affected by the yield strength of the steel adopted. For high strength steel the empty tanks 

buckle earlier compared with the case where low strength steel is used. Specifically, as the 

yield strength of steel increases the thermal buckling behavior of the tank tends to the case 

where the elastic material law is used.     

The next step was the incorporation of initial geometric imperfections in the numerical model. 

From that it is concluded that the critical buckling temperature and failure mode of the 

cylindrical tank are affected by the adopted amplitude of the initial imperfections. This is 

valid for both slender and stiff roofs and the phenomenon is more significant when the tanks 

are using slender roofs. In this case, the reduction of the critical buckling temperature is 

almost 35% with respect to the perfect model.  Moreover, the deformed shape of the 
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cylindrical tank is affected by the amplitude of the initial imperfections used.  For relatively 

small amplitudes, failure mode is almost local and is detected in the base of the tank in the 

most heated region. As the amplitude of the initial imperfection increases, the phenomenon 

spreads to the body of the tank and becomes global.    

Next, it is proved that another important parameter that strongly influences the thermal 

buckling behavior of storage tanks is the level of the stored liquid. It is observed that as the 

level of the stored liquid increases, the buckling temperature is scaled up. For low levels of 

stored liquid, the buckling temperature is very close to the value that corresponds to an empty 

tank. Buckling always occurs near the liquid surface and spreads to the empty part. Also it is 

noted that in the case of slender roofs, the buckling temperature of the tank is almost constant 

for liquid level up to the half of the height of the tank. Generally, the presence of the liquid in 

the tank increases the buckling temperature as a result of the beneficial effect of internal 

pressure which causes circumferential tension. 

Finally, parametric study is conducted with respect to the circumferential range of the heated 

zone. It is concluded that that the critical buckling temperature scales up as the heated zone is 

expanded. When the heated zone of the tank is narrow, buckles concentrate within the zone. 

When the heated zone is wider (θ0 =120° and 135°), buckles take place in the cool zone of the 

tank. This is altered for the case where the heated zone covers almost all the circumference of 

the tank (θ0 =150°), with buckling occurring again in the heated zone and near the bottom 

boundary.
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