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Abstract 
 

The detailed structure of normal shock waves is a fundamental research problem with 

important applications and it is commonly implemented to benchmark the validity of novel 

numerical schemes investigating and describing the state of a gas far from local equilibrium. 

The most powerful approaches to handle this type of flows is the Direct Simulation Monte 

Carlo method and the numerical solution of the Boltzmann equation or of reliable kinetic 

model equations. The present work is based on the latter approach. 

In particular, the non-linear Bhatnagar-Gross-Krook (BGK), ellipsoidal statistical (ES) 

and Shakhov (S) kinetic models, subject to Rankine-Hugoniot boundary conditions, are 

applied, to solve the one dimensional compressible normal shock wave problem. The 

intermolecular collisions are modeled by the inverse power law model. The computational 

scheme is based on finite volume in the physical space and on the discrete velocity method 

in the molecular velocity space. A Navier-Stokes solution is also obtained based on a typical 

4th-order Runge-Kutta integration. 

The kinetic solution is obtained in a wide range of the Mach number (up to 25) with 

the local Knudsen number varying in the whole range of gas rarefaction. The numerical 

results include the distributions of all macroscopic quantities of practical interest including 

the perpendicular and normal temperatures as well as the shock thickness in terms of the 

Mach number. In addition the detailed structure of the distribution function in several 

positions is provided based on the BGK, ES and S models. A detailed comparison with 

previous computational results available in the literature by the DCMC method and the direct 

solution of the full Boltzmann equation (BE) as well as with experimental work is performed. 

Based on the numerical results it is clearly demonstrated that the S model is the most 

reliable choice for normal shock waves because it compares very well with the DSMC, BE 

and experimental results for all Mach numbers tested. It is noted that the computational 

effort is significantly reduced when model equations, instead of the DSMC method or the 

BE are introduced. An interesting issue is that as the Mach number is increased the shock 

thickness is rapidly decreased up to a characteristic Mach number and then is increased in 

a very slow pace. This minimum thickness of the shock front which is observed at about 

Mach number equal to 3 is analogous to the so-called Knudsen minimum and it has been 

also reported in previous theoretical and experimental works. Also, both the hard sphere 

and Maxwell intermolecular models are applied. It is found that the applied intermolecular 

potential model significantly influences the bulk quantities and shock structure due to the 

large temperature gradients and therefore, reliable intermolecular models corresponding to 

real gases must be introduced. Furthermore, the range of the validity of the Navier-Stokes 

equations along with the corresponding distribution functions in high Mach numbers are 



 

 

tested and it is concluded that the classical Navier-Stokes approach is valid only for small 

Mach numbers resulting to flow conditions close to local equilibrium. 

 



 

 

Nomenclature 
 

f  distribution function 
0f

 
absolute Maxwellian 

Mf   the local Maxwellian 

g  distribution function, dimensionless 

  reduced distribution function 

   reduced distribution function 

k  Boltzmann constant, [J/K]
Kn  Knudsen number, dimensionless 

m  mean molecular mass, [kg]
M  Mach number, dimensionless 

1M  upstream Mach number, dimensionless 

n  number density, [number of particles/m3] 

P  pressure of the gas, [Pa] 

0P  equilibrium pressure of the gas, [Pa] 
q  heat flux vector, dimensionless 

    ̂q  heat flux vector, [W/m2] 

R  gas constant, [J/(kgK)] 

Re  Reynolds number, dimensionless 

T  temperature of the gas, K
û  macroscopic velocity vector, [m/sec]
u  macroscopic velocity vector, dimensionless 

u  normalized macroscopic velocity vector, dimensionless 

1u  upstream macroscopic velocity vector, dimensionless 

2u  downstream macroscopic velocity vector, dimensionless 

0u  most probable molecular velocity, [m/sec] 

v  collision frequency 

ic  molecular velocity vector, dimensionless 

refc  reference molecular velocity vector, dimensionless 

x, y,z  coordinates, dimensionless 

ˆ ˆ ˆx, y,z  coordinates, [m] 

 

Greek 

  ratio of specific heats, dimensionless 

0  mean free path of the molecules, m
  viscosity of the gas, Pa sec
  molecular velocity vector, m/sec



 

 

  number density, dimensionless 

  normalized number density, dimensionless 

ij̂  stress tensor, [PaN/m2] 

ij  stress tensor, dimensionless 

  temperature of the gas, dimensionless 

  parallel (or longitudinal) temperature of the gas, dimensionless 

  perpendicular temperature of the gas, dimensionless 

̂  normalized temperature of the gas, dimensionless 

  intermolecular model being implemented, dimensionless 

n  exponent of the intermolecular force law for DCMC, dimensionless 

  perturbation 

i  specific internal energy 

  speed of sound, [m/sec] 
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Chapter 1 

Introduction 
 

1.1 Main characteristics of shock waves 

Violent disturbances that occur from detonation of explosives from the flow 

through rocket nozzles, supersonic flight of projectiles or from impact on solids, differ 

greatly from the "linear" phenomena of sound, light or electromagnetic signals. The 

propagation of violent disturbances is governed by nonlinear differential equations, and 

as a consequence the familiar laws of superposition, reflection, and refraction cease to 

be valid. For example, shock front is one of these occurrences. Across shock fronts the 

medium undergoes sudden and often considerable changes in velocity, pressure, and 

temperature. Even when the start of the motion is perfectly continuous, shock 

discontinuities may later arise automatically. Yet, under other conditions, just the 

opposite may happen; initial discontinuities may be smoothed out immediately. Hence, 

shock waves are nearly instantaneous changes in the particle velocity, pressure, 

temperature, entropy and density in a solid, liquid or gaseous medium [1]. Shock waves 

form when a wave following the loading profile of an initial disturbance moves faster 

than the leading edge. The increase in the trailing edge velocity occurs because the 

sound speed of a material increases as the density increases. In other words the leading 

edge of the shock wave compresses the material thereby increasing the density. 

Subsequently, the portion of the wave traveling through the higher density material 

moves faster until it catches the leading edge. This steep wave is now a nearly 

instantaneous change in the material state and is called a shock wave.  

Shock front thicknesses are finite and on the order of the molecular mean free 

path of the medium, on the order of four mean free paths for gases and one mean free 

path for solids. For example, for ambient pressure range the mean free path is 68 nm, 

for low vacuum is 0.1 to 100 μm, for medium vacuum is 0.1 to 100 mm and for high 

vacuum is 10 cm to 1 km [2]. Moreover, irreversible conditions exist within the shock 

front due to plastic deformation (solids), viscous shear stress and heat conduction 

(solids, liquids, gases) as material flows in the direction of the shock. While conditions 

in the shock front are non-adiabatic, irreversible and non-equilibrium, outside the 

shock front the material is assumed to be adiabatic and reversible. This is graphically 

illustrated in Fig. 1.1. 
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Figure 1.1: Shock front thickness is on the order of the molecular mean free path 

of the medium, i.e. Δx~4 for a gas and Δx~1 for solids [1]. 

In relation to a stationary point some finite distance from the shock front the 

processes are adiabatic because the shock velocity is much greater than the sound 

speed of the medium. Since conduction occurs at speeds much slower than the speed 

of sound there is insufficient time for conduction to occur between the shock front and 

the material immediately behind or in front of the shock. Within the shock front the 

mechanism that increases the temperature and pressure is momentum transfer and the 

irreversibilities associated with this process are approximated by heat conduction. In 

addition, processes away from the shock front are assumed to be reversible, i.e. when 

unloaded the material returns to its initial state. Thus, away from the shock front 

processes are assumed isentropic. 

To compute the shock wave structure, it should be understood that the small 

length scales are usually considered to be too minute to resolve numerically. Using 

the continuum approach, with very high computational resolution, it is able to 

numerically resolve the shock front in Argon gas under various loading conditions. 

However, the Navier- Stokes (NS) equations [3] do not apply after a certain Mach 

number, since the theory of continuous medium collapses and the methods based on 

kinetic theory must be considered. 

 

1.2  Literature review 

There are several approaches in order to compute the shock wave structure. In this 

thesis two of them namely kinetic modeling and the typical NS approaches are 

examined. To understand their differences, the so-called Knudsen number is 

introduced. This characteristic number, which determines the degree of gas rarefaction 
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and the area in which continuum model equations are valid, is defined by the 

relationship [4]  

 M
Kn

L 2 Re

 
   (1.1) 

where L is a characteristic dimension of the problem, λ the mean free path of the 

particles, γ the ratio of specific heats, M the Mach number and Re the Reynolds number. 

The mean free path is defined as the average distance travelled by molecules between 

collisions. The importance of the Knudsen number is presented in Fig. 1.2. 

 

 
Figure 1.2: Knudsen number regimes [5]. 

It is the most important parameter that can be used to describe the non-equilibrium 

properties of the gas, which in a shock wave can be defined as a relation between the 

mean free path and the shock thickness. In the shock wave, macroscopic properties of 

the gas can change very rapidly within a short distance, which is about several mean 

free paths and the Knudsen number becomes quite large. The NS equations are valid in 

the continuum and slip regimes shown in Fig. 1.2, while kinetic modeling is valid in 

the whole range of the Knudsen number but becomes computationally expensive in 

small Knudsen numbers. Nevertheless, strong shock waves post a computational 

challenge in the study of stationary highly non- equilibrium flows. 

 

1.2.1  Continuum models 

It has been proved that the shock wave structure can be described well by fluid 

dynamic equations in the sense that NS equations give good agreement with the 

experimental data only at Mach numbers M<1.3 [3]. When the rarefied non-equilibrium 

effect is large, the macroscopic fluid models for viscous stress and heat transfer break 

down. Moreover, when applying the Burnett and super Burnett equations (or the so-

called extended hydrodynamic approach) in the shock prediction some non-physical 

oscillations were found to appear in the solution even at M=2 [6]. 

Furthermore, in order to provide an improvement on the continuum equations, 

Mott-Smith [7] proposed a solution to the Boltzmann equation which is based upon 

assuming that the local distribution function is composed of weighted parts of the 
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upstream and downstream equilibrium distributions. This bimodal method gives thicker 

shocks than the NS equations and considerably better agreement with experimental 

results at large Mach numbers as indicated by Schmidt [8]. 

Finally, in Grad method [9]
 
and extended irreversible thermodynamics [10], a large 

number of hydrodynamic partial differential equations must be solved to get reasonable 

accuracy. The famous Grad’s 13-moment method is successful in simulating the shock 

profile below the critical value M=1.65. When increasing the number of moments in 

extended thermodynamics, the solution converges rather slowly. Therefore, a large 

number of moments is required to get the accurate shock structure at large Knudsen 

numbers. At Mach numbers M<9.36, for example, one needs up to 15180 moments 

in extended hydrodynamics (506 one-dimensional equations). Hence, there is a need 

for accurate models which give reliable solutions with lower computational costs. 

 

1.2.2  Experiments 

Many experiments have been reported on shock thickness measurements, usually 

based on the density profile. Robben and Talbot [11] have made available their density 

profile data at M=10.7 from which the argon shock thicknesses are obtained. These 

measurements have been made in a low density wind tunnel and hence at very low free-

stream temperatures. Alsmeyer [3] has published density profiles at M=8 using argon 

and shock thicknesses at various Mach numbers. Measurements of density profiles in 

an argon shock formed in a shock tube experiment are also reported by Schmidt [8] for 

M=2.8, 4, 6, and 8. At the larger Mach number, the temperatures within the shock 

become quite high. Finally, for M=25 there is an experiment by Pham‐Van‐Diep, Erwin 

and Muntz, who acquired the velocity distribution functions for certain spots and then 

compared them with DCMC results [12]. Most of the described experimental work is 

used in Chapter 4 to compare the present computational results with measurements. 

 

1.2.3  Kinetic models 

Due to the inadequacy of the continuum models to capture the shock thickness 

properly a different approach for solving shock waves is examined which is based on 

the kinetic theory related to dilute gases as founded by Maxwell and Boltzmann. 

A particle at time t is characterized by its position vector  x, y,zr  and its 

molecular velocity vector  x y z, ,  ξ ,  ,    . The basic unknown is the 

function f , which is called distribution function of the particles and it is defined so 

that the quantity   3 3f r, ,t d rd  is the expected number of particles contained in the 

volume 3d r  around r with molecular velocity in 3d  around ξ at the time t. The 

distribution function f  satisfies the Boltzmann transport equation. 
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 *f f

J f , f
ˆt r


 

 
 

 (1.2) 

The left hand side of Eq. (1.2) represents the material derivative, is linear and it is 

treated with techniques from partial differential equations. The right-hand side of Eq. 

(1.2) represents the balance between molecules «lost» or «gained» during the binary 

molecular collisions. The term J (f, f*) is the nonlinear collision integral that describes 

the net effect of populating and depopulating particles through collisions on the 

distribution function. The collision integral is the source of difficulty in obtaining 

analytical or even numerical solutions of the Boltzmann equation. This term depends 

on the model of intermolecular potential, which is the way the particles interact during 

the collisions. 

Equation (1.2) is therefore a non-linear integro-differential equation and describes 

the evolution of the distribution function in a state far from equilibrium 

thermodynamics. In the case where we have absolute thermodynamic equilibrium, the 

distribution function takes the form of the famous Maxwell equilibrium distribution, 

which is the solution of Eq. (1.2), without changes in time and space. The absolute 

Maxwellian is given by the relationship 

 

 

     
22 2

x x y y z zo

3/ 2

ii

ˆ ˆ ˆu u un
f exp

2RT2 RT

  



     
  
 
 

 

(1.3) 

where n the number density, T the temperature and u the macroscopic velocity vector, 

which is usually zero since we refer to  absolute thermodynamic equilibrium conditions. 

The Boltzmann equation is valid from the continuum flow regime to the free 

molecule flow. So, theoretically a direct Boltzmann solver which is valid in the whole 

range of Knudsen number can be developed if the numerical discretization is properly 

designed. In the framework of deterministic approximation, the most popular class of 

methods is based on the so called discrete velocity or discrete ordinates method of the 

Boltzmann equation [1]. These methods use regular discretization of particle velocity 

space. Most of these methods can give accurate numerical solution for high Knudsen 

number flows, such as those from the upper transition to the free molecule regime. 

However, in the continuum flow regime, the requirement of time step in these methods 

being less than the particle collision time makes them computationally intensive[13]. 

One of the outstanding numerical techniques available for solving the Boltzmann 

equation is the direct simulation Monte Carlo (DSMC) [14] method. The DSMC 

method is a widely used technique in the numerical prediction of low-density flows. 

However, in the continuum–transition regime, where the density is not low enough, the 

DSMC requires a large number of particles for accurate simulation, which makes the 

technique expensive in terms of both the computation time and the memory 

requirement. At present, the accurate modelling of realistic configurations, such as 
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aerospace vehicles in 3D by the DSMC method for Kn 1 , is beyond the currently 

available computing power. The DSMC method requires that the time step and cell size 

are less than the particle collision time and mean free path, which subsequently 

introduce enormous computational cost in the high-density regime. 

A more efficient approach is to solve relaxation-type kinetic equations, which are 

approximations of the Boltzmann equation, such as the Bhatnagar-Gross-Krook (BGK) 

equation [15], the Shakhov model [16] and the ellipsoidal statistical BGK model [17]. 

Many features of transitional flows are properly described by that sort of approximating 

equations. 

 

1.3  Shock wave applications 

The study of the internal structure of shock fronts is of interest for many reasons. 

At first this problem attracted attention as purely a theoretical one, the solution of which 

aided in understanding the physical mechanism of shock compression, as a truly 

remarkable phenomenon in gas dynamics. Later shock waves have been employed in 

laboratories with the aim of obtaining high temperatures and of studying various 

processes which take place in gases at high temperatures, as for example, vibrational 

excitation in molecules, molecular dissociation, chemical reactions, ionization, and 

radiation. Theoretical considerations of the shock front structure enable one to deduce 

from the experimental data a good deal of valuable information about the rates of these 

processes. Finally, the study of the structure of very strong shock fronts in which 

radiation plays an important role helps to clarify the problem of such an important 

characteristic as the luminosity of the shock front and makes it possible to explain some 

interesting optical effects observed in strong explosions in air. 

In general, shock waves exist in many fields such as detonations, astrophysics, 

granular flows and aerospace engineering. Shock wave research has traditionally 

developed as an element of high-speed gas dynamics supporting supersonic flights and 

atmospheric reentry of space vehicles. For example, as a spacecraft re-enters the earth's 

atmosphere, it is traveling very much faster than the speed of sound. Typical low earth 

orbit re-entry speeds are near 17,500 mph and the Mach number is 25. The main 

characteristic of re-entry aerodynamics is that the temperature of the flow is so great 

that the chemical bonds of the diatomic molecules of the air are broken. The molecules 

break apart producing an electrically charged plasma around the aircraft and strong 

shock waves are generated on the lower surface of the spacecraft. Also, another 

valuable macroscopic quantity for the spacecraft re-entry is the heat flux in order to 

create adequate heat protection on the spacecraft surface [18]. Furthermore, 

recompression shocks appear when the flow over a transonic body is decelerated to 

subsonic speeds and are usually generated by transonic wings or turbines. The flow 
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over the suction side of a transonic wing is accelerated to a supersonic speed and the 

resulting re-compression can be by either Prandtl-Meyer compression or by the 

formation of a normal shock. This shock is of particular interest to designers because it 

can cause separation of the boundary layer at the point where it touches the transonic 

profile. This can then lead to full separation and stall on the profile, higher drag, or 

shock-buffet, a condition where the separation and the shock interact in a resonance 

condition, causing resonating loads on the underlying structure [19]. 

Shock wave phenomena also exist in nature. Astrophysical environments feature 

many different types of shock waves. Some common examples are supernovae shock 

waves or blast waves travelling through the interstellar medium, the bow shock caused 

by the Earth's magnetic field colliding with the solar wind and shock waves caused by 

galaxies colliding with each other. Another interesting type of shock in astrophysics is 

the quasi-steady reverse shock or termination shock that terminates the ultra-relativistic 

wind from young pulsars [20]. 

Moreover, shock waves have been successfully applied to medical therapy. 

Extracorporeal shock wave lithotripsy (ESWL) has been a success in noninvasive 

removal of urinary tract stones. Recently, shock wave therapy has been further 

developed for the revascularization of cerebral embolism, drug delivery, and other 

interesting therapeutic methods. Meanwhile shock waves have been used in orthopedics 

and traumatology to treat insertion tendinitis, avascular necrosis of the head of femur 

and other necrotic bone alterations. Another field of shock wave application is the 

treatment of tendons, ligaments and bones on horses in veterinary medicine. The idea 

behind using shock wave therapy for orthopedic diseases is the stimulation of healing 

in tendons, surrounding tissue and bones. This is a completely different approach 

compared to urology where shock waves are used for disintegration [21]. 

 

1.4  Thesis objectives and outline  

The present work has the following objectives:  

(i) Solve the monatomic normal gas shock structure problem based on the BGK, S 

and ES kinetic modes using the discrete ordinate algorithm in a wide range of the 

Mach number and perform a comparison between the three models. Compute all 

bulk quantities of practical interest including shock thickness. 

(ii) Validate the developed algorithm by a comparison with previous numerical results 

obtained by the DCMC and BE solvers and conclude which kinetic model is the 

most efficient one. 

(iii) Compare the results with the experimental profiles in order to further demonstrate 

the validity and accuracy of the kinetic modeling approach. 



Chapter 1: Introduction 

8 

 

(iv) Determine the range of validity of the classical Navier- Stokes approach in terms 

of the Mach number and estimate roughly the critical Mach number above which 

this approach fails. 

The structure of the thesis is arranged as follows: Following the present in 

introduction, the shock structure and the problem formulation are described, by the 

hydrodynamic and the kinetic approach, in Chapter 2. Moreover, the Navier-Stokes 

distribution is acquired and the three kinetic models are presented along with the 

associated boundary conditions and macroscopic quantities. The numerical schemes for 

both approaches are reported in Chapter 3. In Chapter 4, extensive computational 

results are presented. In particular, macroscopic distributions for various Mach numbers 

including the shock thickness are provided. The comparison of kinetic models with 

DCMC and BE results as well as with measurements is performed.  In addition, the 

range of validity of the NS approach is examined. Finally, in Chapter 5, a brief outline 

of the present work, followed by some concluding remarks and description of future 

work is presented. 
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Chapter 2  

Problem description and formulation 
 

2.1  Shock wave structure 

Usually, changes in macroscopic parameters in regions of continuous flow occur 

very slowly in comparison with the rates of the relaxation processes which lead to the 

establishment of thermodynamic equilibrium. Each gas particle at any instant of time 

is in the state of thermodynamic equilibrium which corresponds to the slowly changing 

macroscopic variables, as though the particle "follows" the changes in the variables. 

Therefore, when considering shock discontinuities within the framework of the 

hydrodynamics of an ideal fluid, it is proper to assume the state of the gas on both sides 

of the discontinuity to be in equilibrium. The density, pressure, etc. change very rapidly 

in the thin transition layer, through which the gas passes from its initial state of 

thermodynamic equilibrium into its final, also equilibrium state. The thermodynamic 

equilibrium inside shock front can be appreciably disturbed. Therefore, in studying the 

internal structure of a shock front it is necessary to consider the kinetics of relaxation 

processes and to investigate in detail the mechanism of the establishment of the final 

state of thermodynamic equilibrium in the fluid which is attained behind the shock 

front.  

The mathematical theory of shock front structure is based on the assumption that 

the structure is steady. The time it takes the fluid in a shock wave to go from the initial 

to the final state is very short, much shorter than the characteristic times over which the 

flow variables change in the continuous flow region behind the shock front. In exactly 

the same way, the front thickness is much less than the characteristic length scale over 

which the state of the gas behind the front changes significantly, for example, the 

distance from the shock front to the piston "pushing" the wave (the piston moves with 

a non-uniform speed, in general). In the short time during which the shock wave 

traverses a distance of the order of the front thickness, its propagation velocity, 

pressure, and the other flow variables behind the front remain practically unchanged. 

However, the kinetics of the internal processes which take place within a shock front 

propagating through a gas with given initial conditions depend only on the wave 

strength. Therefore over some relatively long period, each of the gas particles flowing 

into the shock discontinuity passes through the same sequence of states as the preceding 

ones. In other words, the distribution of the various variables across the shock front 

forms a "frozen" picture which moves during this period as an entity together with the 

front [20].  
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In the following sections the characteristic properties of the structure of shock 

fronts are considered in detail. The Rankine–Hugoniot conditions, also referred to as 

Rankine–Hugoniot relations, form the relationships between the states on both sides of 

a shock wave in a one-dimensional flow in fluids. They are named in recognition of the 

work carried out by Scottish engineer and physicist William John Macquorn Rankine 

and French engineer Pierre Henri Hugoniot and they are provided in Section 2.1.1. 

Another crucial parameter which can describe the shock profile well is the shock 

thickness that is explained in Section 2.1.2. 

 

2.1.1  Rankine-Hugoniot (R-H) relations 

In order to compute the shock structure, a propagating shock wave is considered 

in the rest frame of the shock. Un-shocked gas approaches from the +x direction 

moving faster than its sound speed and passes through the shock. 

Pre-shock conditions: ρ1, u1, T1. 

Post-shock conditions: ρ2 > ρ1, u2 < u1, T2 > T1. 

 

Figure 2.1: Notation 

The relations (“jump conditions”) between ρ1, u1, T1 and ρ2, u2, T2 are derived for 

a steady-state, plane-parallel shock. The velocity u is perpendicular to the shock front 

and the fluid properties depend only on the distance to the front [22]. Within the shock 

front, viscous effects are important. However, outside this layer, viscous effects are 

small on scales larger than the mean free path (MFP). The shock wave connects the 

equilibrium states for the density, velocity and temperature ρ1, u1, T1 ahead of the 

shock at x    and the equilibrium quantities ρ2, u2, T2 behind the shock at x   . 

The conservation equations are  
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   

d
Q ,u, p 0 Q ,u, p constant

dx
     

(2.1) 

and although the quantities Q involve viscous terms, these can be ignored outside the 

shock zone and can therefore derive the jump conditions from equations that don’t 

involve viscosity terms. The continuity, momentum equation, thermal energy and 

kinetic energy conservation equations are applied and the following assumptions are 

made: steady-state / t 0   , plane-parallel / z 0   , / y 0   , / x d / dx   . 

Also, gravity and viscosity can be ignored. Hence, these equations become 

 
 

d
u 0

dx
   

(2.2.a) 

 du 1 dP

dx dx
   

(2.2.b) 

 
 i

d du
u P

dx dx
    

(2.2.c) 

 
2d 1 dP

u u u
dx 2 dx


 

  
 

 
(2.2.d) 

where εi is the specific internal energy of the fluid. Integrating the Eqs. (2.2), it is 

deduced that 

 
1 1 2 2u u   (2.3.a) 

 2 2

1 1 1 2 2 2u P u P     (2.3.b) 

 2 21 2
1 2

1 2

P P1 1
u u

2 1 2 1

 

   
  

 
 

(2.3.c) 

Following some mathematical manipulation, the well-known Rankine-Hugoniot jump 

conditions are formed: 

  
 

 
 

1

22 1

1 2 2

1

1 p
1

1 pu

1u p

1 p













 






 (2.4) 

Even though the physics of the shock region may be complicated, these conditions 

follow only from conservation of mass, momentum, and energy without involving any 

advanced treatment. They inter-relate the ratios of density, pressure and velocity across 

a shock wave. 

The dimensionless number that characterizes the strength of a shock is the Mach 

number defined as the ratio of the shock speed to the upstream sound speed:  

 2

1
1 1

1

1 1

uu
M

a p




   (2.5) 

The factor in the square root can be viewed as a ratio of “ram pressure” to thermal 

pressure in the pre-shock gas, or as a ratio of kinetic energy density to thermal energy 

density. A further manipulation of the R-H relations yields 
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 2

1 2 *u u a  (2.6.a) 

  

   

2

*

2 2

1 1

1a 1 1
2

u 1 2 M 1



 

 
  

  
 (2.6.b) 

Equation (2.6.a) is called the Prantdl or Meyer relation with the subscript * denoting 

the sonic condition. Also, Eq. (2.6.b) is derived from the energy equation involving the 

upstream conditions and the sonic conditions. Hence, the shock jump conditions are 

expressed as 

  

 

2

12 1

2

1 2 1

1 Mu

u 1 M 2



 


 

 
 (2.7.a) 

  2

12

1

2 M 1p

p 1

 



 



 (2.7.b) 

Together these conditions imply 

    

 

2 2

1 12

2 2
1 1

2 M 1 2 M 1T

T 1 M

  



         


 (2.7.c) 

Equations (2.7) are very useful because they provide the macroscopic ratios in terms 

only of the upstream Mach number. 

 

2.1.2  Shock thickness 

One of the main parameters which can well describe the shock profile is the shock 

thickness. It is defined as the maximum slope of the density profile given by 

 

 
2 1

max
d / dx

 





  (2.8) 

In Fig. 2.2, this parameter is shown in dimensionless form as 1/   where 1  is the 

upstream mean free path along with the temperature and density distributions across 

the shock wave. Another quantity of some practical interest is the temperature-density 

separation denoted as 1/   and defined as the distance between the two points at 

which 0.5  and 0.5   respectively. 

It is evident from that the order of magnitude of the front thickness is  

 
1

1 2

1

M
~

M 1
 


 (2.9) 

Also, from the definition of the Knudsen number it is deduced that  

 

 

1 1

2 1

max

Kn

d / dx

 

 



 


 
(2.10) 

Hence, it is obvious that the reciprocal shock thickness is the local Knudsen number. 
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Figure 2.2: Shock thickness [12] 

It has been found that Eq. (2.10) is valid only at small Mach numbers. A more precise 

definition of the Knudsen number in the case of high Mach numbers is reported by 

Macrossan [23] where 

 

 

1
1

2 1

max

Kn M

d / dx



 






 
(2.11) 

Exactly the same definition is given by Bird for high-speed expanding flows [14] where 

this quantity is also specified as the local “breakdown parameter”. 

In a weak shock wave when 1M 1 1  the front thickness is given by  

1 1~ / ( M 1)    and therefore can be equal to many molecular free paths. In the case 

when M1=2, the front thickness is approximately equal to three molecular free paths λ1 

[24]. In the limiting case of a very strong wave ( M  ), the front thickness is given 

by 1 1~ / M 0   , i.e., it tends to zero. The statement that the front thickness 

vanishes as the wave strength increases should not be taken literally. The fact is that 

when the front thickness becomes of the order of a mean free path, the hydrodynamic 

theory loses its meaning, since it is based on the assumption that the gradients are small 

or otherwise that the mean free path is small in comparison with the distance over which 

appreciable changes in the flow variables take place. Hence, the theory is simply 

inapplicable for sufficiently strong waves. It is evident physically that the thickness of 

the shock front for a wave of any strength cannot become smaller than the mean free 

path, since the gas molecules flowing into the discontinuity must make at least several 

collisions in order to scatter the directed momentum and to convert the kinetic energy 

of the directed motion into the kinetic energy of random motion (into heat). At the same 

time, the thickness of the shock front in the case of a strong wave cannot include many 
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mean free paths, since the molecules of the incident stream loose, on the average, an 

appreciable fraction of their momentum during each collision.  

The problem of the structure of strong shock fronts must be treated on the basis of 

the kinetic theory of gases. Hence, there are numerical studies that are concerned with 

the improvement of the simple theory presented above, by taking the dependence of the 

transport coefficients on temperature into account and by calculating the effect of the 

Prandtl number on the front structure. However, they do not contribute anything new 

in principle beyond the particular case considered above, and at best are of interest for 

the case of weak waves only. 

 

2.2  Hydrodynamic approach 

2.2.1  Governing equations 

The steady one-dimensional compressible Navier-Stokes equations are given by 

[25]: 

 

2

xx

xx

ˆnu
d

ˆ ˆ ˆnu p 0
dx

ˆ ˆ ˆ ˆnuH u q





 
 

   
   

 (2.12) 

where σxx is the xx component of the viscous stress tensor and q is the heat flux which 

are given by 

 
xx

ˆ4 du
ˆ

ˆ3 dx
   (2.13.a) 

 

 
dT

q̂
ˆPr 1 dx




 


 (2.13.b) 

Integrating the Eqs (2.12) results to 

 
1

2

xx 2

3xx

ˆnu C

ˆ ˆ ˆnu p C

ˆ ˆ ˆ ˆ CnuH u q





   
   

     
       

 (2.14) 

Then, this set of equations is applied inside and outside the viscous shock to get 

 
o 1nu nu C   (2.15.a) 

  2 2

xx 2o
ˆ ˆ ˆ ˆ ˆnu p nu p C      (2.15.b) 

  xx 3o
ˆ ˆ ˆuH u q nuH C      (2.15.c) 

where the subscript o denotes the outside state, while the inside state has no subscript. 

However, since xx
ˆ q̂ 0    outside the viscous shock where the solution is constant 

and since the right hand side terms are all constant Eqs. (2.15) may be further simplified. 

Equation (2.15.a) becomes ˆnu m  and then is substituted into other Eqs. (2.15.b) and 

(2.15.c) to find that 

 
xx 2

ˆ ˆmu p C     (2.16.a) 
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 2

2 3

1 3
ˆ ˆ ˆq mu nu C u C

2 2
     (2.16.b) 

These results are substituted back into Eqs. (2.13) to yield 

 
 2

ˆdu 3
ˆ ˆmu p C

dx 4
    (2.17.a) 

 
2

2 3

dT 2 Pr 1 3
ˆ ˆmu Tm C u C

dx 5 2 2

 
    

 
 (2.17.b) 

It is convenient to introduce the following dimensionless quantities: 

 

1

T

T
  ,

1

n

n
  , x

i 1

û
u

2RT
 ,

1

p̂
p

p
 ,

i 1 1

q̂
q

2RT p
  

(2.18.a) 

 
x

x

i 1

c
2RT


 , 1

1

1 1

16

5 n 2 RT





 , 

1

x̂
x


 , 

 

 
1 1


  

  

 
  
 

 
(2.18.b) 

Therefore, Eqs. (2.17) can be written as  

 
1 1

1 2

Cdu 6
C u C

dx u5

 




  
   

 
 (2.19.a) 

 2
1 1 1

3 2

C u 3Cd 32 Pr
C u C

dx 2 225

 




  
     

 
 (2.19.b) 

This is a system of nonlinear ordinary differential equations (ODE) for u and τ (the 

viscosity µ depends on τ). 

To integrate the system, the Mach number 1M  is chosen on the left side of the 

shock and the left and right states are set up as follows: 

 

1 1  , 1 1

5
u M

6
 , 1 1  , 1p 1  (2.20.a) 

  

 

2

1

2 2

1

1 M

1 M 2









 
, 1 1

2

2

M
u




  (2.20.b) 

    

 

2 2

1 12

2 2
1 1

2 M 1 2 M 1T

T 1 M

  



         


, 
 

 2

2 1

1 2
p 1 M 1

1



 

 
   

 
 (2.20.c) 

All variables are in dimensionless form. Also, the constants in Eqs. (2.19) are computed 

by the left (or the right) state as 

 
1 1 1C m u   (2.21.a) 

 2

2 1 1 1C u p   (2.21.b) 

 
21

3 1 1 1

p 1
C u u

1 2






 
  

 
 (2.21.c) 

The NS solution is based on the numerical integration of Eqs. (2.19) subject to the 

upstream and downstream conditions (2.20) and it is performed by a 4th order Runge-

Kutta scheme. 



Chapter 2: Problem description  

16 

 

2.2.2  Navier- Stokes distribution 

In order to identify the reasons that Navier- Stokes equations cannot capture the 

shock thickness above a certain Mach number, the NS distribution function is defined 

and computed [26]. It is given by 

      
2 2 2

i i j jij x x y zx xNS M
ˆ ˆu uˆ ˆˆ ˆ uq u 2

f f 1 1
ˆ ˆp 2RT pRT 5 RT

          
     

    

 (2.22) 

where 

 

 

 
2 2 2

x x y zM

3/ 2

ii

ûn
f exp

2RT2 RT

  



   
  

  

 (2.23) 

The non-dimensional parameters in Eq. (2.18) are used plus the dimensionless 

distribution  

  
3

i 1

1

f 2RT
g

n
  (2.24) 

Then, Eq. (2.22) reads as  

      
2 2 2

ij i i j j x x y zx xNS M
c u c u c u c c2 q c u 4

g g 1 1
p p 5



  

      
     

    

 (2.25) 

with 

  
2 2 2

x x y zM

3/ 2 3/ 2

c u c c
g exp



  

   
  

  

 (2.26) 

Next, the projection procedure, (described in the next section) is applied in order 

to eliminate the molecular velocities in the y and z direction. The reduced distribution 

functions are 

 
 x x y z y zY(x,c ) g x, , , d d    

 

 

    (2.27.a) 

 
   2 2

x y z x y z y z(x,c ) g x, , , d d       
 

 

    (2.27.b) 

Following the detailed derivation presented in the Appendix 1 it is deduced that  

   
  

2

zz 2x x x xNS

x

xM yy xx

x

2q

2 p p 5 p

c u c u
Y Y 1 4 c u

  




   
       

    


  (2.28) 

where  

  
2

x xM
c u

Y exp




 
  

  

 (2.29) 

and  

   
  

2

zz yy x 2x x x xx xNS M

x x

c u c u2q

p
1

p 5 p
4 c u 3  



  



   
      

    


  (2.30) 
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where  

  
2

x xM
c u

exp
 




 
  

  

 (2.31) 

Once the NS solution is recovered by solving Eq. (2.19) it is possible to substitute 

the computed bulk quantities into Eqs (2.28) and (2.30) to deduce the NS distribution 

functions which will be compared with the corresponding kinetic ones to investigate 

the differences at a mesoscale level. 

 

2.3  Kinetic models 

2.3.1  General form 

The governing equations for all three kinetic models can all be written in the 

following one-dimensional form 

 
 eq

x

f f
v f f

t x


 
  

 
 (2.32) 

where f the distribution function, feq the equilibrium distribution function, and v the 

collision frequency. The Maxwell distribution fM, is expressed as 

 

 

 
2 2 2

x x y zM

3/ 2

ii

ûn
f exp

2RT2 RT

  



   
  

  

 (2.33) 

Assuming steady-state conditions Eq. (2.32) is rewritten as 

 
 eq

x

f
v f f

x



 


 (2.34) 

In addition, the viscosity is proportional to temperature according to the inverse power 

law 

  

 
1 1


  

  

 
  
 

 (2.35) 

Hence, the collision frequency can be deduced to 

 
1 1 1 1

1 1 1 1 1

nRT nRTP nRT n n
v

n n

 
 

      

   
      

   
 (2.36) 

and Eq. (2.34) is written as 

 

 
1

eq1
x

1 1 1

pf n
f f

nx






 



 
  

  
 (2.37) 

by BR k / m . Based on the same non- dimensionalization as above yields  

 
 1 eq

x

g 8
c g g

x 5

 



 


 (2.38) 

The applied projection procedure has been extensively used over the years in 

solving flow and heat transfer problems using kinetic equations. The main idea is to 

eliminate, depending upon the problem geometry and physics, one or two components 
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of the molecular velocity vector and as a result to reduce significantly the required 

computational effort. This can be achieved through a formal mathematical procedure. 

The governing equations are integrated accordingly over the space of the appropriate 

component of the molecular velocity yielding a reduced set of equations, which do not 

include the component of the molecular velocity upon which the integration has been 

performed. Hence, the system of equations is reduced into two functions that depend 

only on x and cx. The two functions Y and Φ are 

 
 x x y z y zY(x,c ) g x, , , d d    

 

 

    (2.39.a) 

 
   2 2

x y z x y z y z(x,c ) g x, , , d d       
 

 

    (2.39.b) 

and they obey the following transports equations: 

 
 1 eq

x

Y 8
c Y Y

x 5

 



 


 (2.40.a) 

 
 1 eq

x

8
c

x 5


   




 


 (2.40.b) 

In the next sections the corresponding equilibrium distributions for each model are 

formulated. 

 

2.3.2  The BGK model 

The steady-state 1D Bhatnagar-Gross-Krook (BGK) model is described by  

 
    x

f
ˆ ˆv f n,u,T f t,r,

x
 


 


 (2.41) 

where f the distribution function, fM the local Maxwellian and v the collision frequency. 

The local equilibrium distribution feq, is expressed as 

 

 

 
2 2 2

x x y zeq M

3/ 2

ii

ûn
f f exp

2RT2 RT

  



   
   

  

 (2.42) 

This model constitutes the simplest possible approach of the collision term and the basis 

upon which other more advanced subsequent models have been developed. The 

equilibrium distribution function for the BGK model is  

  
2 2 2

x x y zeq

3/ 2 3/ 2

c u c c
g exp



  

   
  

  

 (2.43) 

while after the projections, the reduced distribution functions become  

  
2

x xeq
c u

exp





 
  

  

 (2.44.a) 

  
21/ 2

x xeq
c u

exp
 




 
  

  

 (2.44.b) 
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As it is well known the BGK model is a reliable model mainly for isothermal flows. 

 

2.3.3  The Shakhov (S) model 

An improved version, has been presented in 1974 by Shakhov, known as the S 

model. The steady-state 1D S model is described by the equation 

 
 

 
2

eq

x 2

BB

m uf P 2m 5
f 1 q u f

x 2k T 215n k T


 



     
       

       

 (2.45) 

The diversification of the BGK model presented in the distribution equilibrium which 

now includes the heat flux terms, making possible the export of results with sufficient 

precision for non-isothermal flows. The Shakhov model is capable to estimate 

simultaneously both the transport coefficients of viscosity and thermal conductivity 

correctly, yielding the correct Prandtl number of 2/3 for monatomic gases (the BGK 

yields the wrong Prandtl number of 1). The equilibrium distribution for the S model is  

     
2 22 2

x x y z x x x x xeq

3/ 2 3/ 2 2

c u c c q c u 2 c u2
g exp 1 5

15



    

        
       

        

 (2.46) 

while after the projections, the reduced distribution functions become  

      
2 2

x x x x x x xeq

2

c u q c u 2 c u2
exp 1 3

15




  

      
      

       

 (2.47.a) 

      
2 21/ 2

x x x x x x xeq

2

c u q c u 2 c u2
exp 1 1

15

 


  

      
      

       

 
(2.47.b) 

 

2.3.4  The ellipsoidal statistical (ES) model  

The steady-state 1D ES model is described by the equation 

 
 eq

x

f P
Pr f f

x





 


 (2.48) 

with f being the distribution function and ν is the collision frequency. By substituting 

Pr=1 it can be seen that the BGK expression is retrieved. The characteristic value for 

monatomic gases, Pr=2/3, has been used in the following calculations. The collision 

term is retained in its non-linear form with 

 

 
  

3
eq

i i j j ij3/ 2
i , j 1

n
ˆ ˆf exp u u

2
  

  

 
    

 
  (2.49) 

where 

 
    

3
3

ij ij i i j j

i , j 1

ˆ ˆ1 RT u u fd      




        (2.50) 

Equation (2.49) for the present problem is written as 
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 

 
2 2 2

y zx xeq

3/ 2

xx yyxx yy

ûn
f exp

2 22

 

   

 
   

  

 (2.51) 

where 

 
   

2 3

xx x
ˆ1 RT u fd

mn


   





       (2.52.a) 

 
 

2 3

yy x

1
ˆ1 RT u fd

2 2mn


   





 
    
 

    (2.52.b) 

with  1 Pr / Pr   . 

In order to compute the parameter λ22 it has been considered that σzz=σyy. The other 

components of the stress tensor are all zero. The governing equations are slightly 

different in this model because they contains Prantdl number and are given by 

 
 1 eq

x

g 8
c Pr g g

x 5

 



 


 (2.53.a) 

 
 1 eq

x

Y 8
c Pr Y Y

x 5

 



 


 (2.53.b) 

 
 1 eq

x

Y 8
c Pr

x 5

   



 


 (2.53.c) 

The equilibrium distribution function for the ES model is  

  
2 2 2

y zx xeq

3/ 2
xx yyxx yy

c cc u
g exp

k kk k





 
   

  

 (2.54) 

where 

 
 k 1 


  


    

(2.55.a) 

 
yy

1
k 1

2 2



  



 
   
 

 
(2.55.b) 

Finally, after the projections, the reduced distribution functions become 

  
2

x xeq
c u

Y exp
kk 





 
  

  

 (2.56.a) 

  
2

yy x xeq
k c u

exp
kk 






 
  

  

 (2.56.b) 

It is noted that the ES model has been originally formulated to tackle anisotropic 

problems such as shock waves. Also it possesses the advantages of the S model related 

to the correct estimation of the transport coefficients and the Prandtl number.  
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2.4  Boundary conditions 

In order to close the problem, the upstream and downstream boundary conditions 

must be defined. Since far upstream and downstream equilibrium conditions are 

assumed the corresponding distributions are Maxwellians given by: 

 

 

 
2 2 2

x x1 y z1
1 3/ 2

i 1i 1

un
f exp

2RT2 RT

  



   
  

  

 (2.57.a) 

 

 

 
2 2 2

x x2 y z2
2 3/ 2

i 2i 2

un
f exp

2RT2 RT

  



   
  

  

 (2.57.b) 

In dimensionless form they are written as  

 

 

 
2 2 2

x x1 y z1
1 3/ 2

11

c u c c
g exp





   
  

  

 (2.58.b) 

 

 

 
2 2 2

x x2 y z2
2 3/ 2

22

c u c c
g exp





   
  

  

 (2.58.a) 

After applying the projection procedure, the reduced distribution functions become  

  
2

x x22
2

22

c u
Y exp





 
  

  

 (2.59.a) 

  
2

x x22 2

2

2

c u
exp

 




 
  

  

 (2.59.b) 

  
2

x x2

1 1

2

c u1
Y exp



 
   

  

 (2.59.c) 

It is obvious that the number density, temperature and the velocity are needed in order 

to compute the boundary conditions. At x    the dimensionless bulk quantities are: 

 
  i 1x

1 1 1 1

i 1 i 1

RTû 5
u x M M M

2 62RT 2RT

 
       (2.60.a) 

 
1 1   1 1   (2.60.b) 

At x    the Rankine- Hugoniot relations are used to find 

  

 

2

1

2 2

1

1 M

1 M 2







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 
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 
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
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      
 
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1 1
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1

2 1 M 2 M 1

1 M

  




   



 (2.61.c) 

Equations (2.60) and (2.61) are employed to close the problem and to compute the 

kinetic solution. 
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2.5  Macroscopic quantities 

Following the computation of the reduced distribution functions, the macroscopic 

distributions are evaluated. They include the number density, the velocity, the total 

temperature as well as its components namely the parallel and perpendicular 

temperatures, the stress tensor and the heat flux. The detailed derivation is given in 

Appendix B, while here only the definitions are provided: 

 

Number 

density: 

 x x( x ) x,c dc 




   (2.62) 

 

Velocity: 

 

 x x x x

1
u ( x ) c x,c dc







   
(2.63) 

 

Temperature: 

 

 

     
2

x x x x x

2
( x ) c u Y x,c x,c dc

3
 







    
(2.64) 

 

Parallel 

temperature: 

 

 

   
2

x x x x

2
( x ) c u Y x,c dc

3








   (2.65) 

 

Perpendicular 

temperature: 

 

 

 x x

2
( x ) x,c dc

3
 









   (2.66) 

Heat flux: 

       3 3 2 2

x x x x x x x x x x x xq c u 3c u 3c u Y x,c c u x,c dc




       
    

(2.67) 

 

Parallel stress: 

 

   
2

xx x x x xc u Y x,c dc 




    
(2.68) 

Perpendicular 

stress:  yy zz x xx,c dc   






     (2.69) 

 

2.6  The variable hard sphere (VHS) model  

A molecular model is established through the definition of the intermolecular 

potential φ which is related to the spherically symmetric force F between the molecules. 

The force F is strongly repulsive at short distances and weakly attractive at larger 

distances. In general, the simplest acceptable model is chosen and in most cases the 

attractive component is neglected. 

Here, the variable hard sphere model introduced by Bird [27] is applied. This is a 

hard sphere molecule with a diameter d that is a function if the relative velocity cr. In 

the variable hard sphere (VHS) model it is assumed that  
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  ref r ,ref rd d c / c


  (2.70) 

where the subscript ref denotes reference values and the exponent ω is a parameter. It 

is easily proved that the variation of viscosity with temperature is the same as that in 

the inverse power law (IPL). It was mentioned before that the inverse power law is 

used, so the viscosity takes the same form just with an adjustment of the exponent ω. 

    (2.71) 

where  

  

 

n 31

2 n 1






 (2.72) 

and n is exponent of the intermolecular force law that is usually used with DCMC 

method. 

The hard sphere (HS) and the Maxwell (M) intermolecular potential models are 

the two limiting cases of the VHS or the IPL model. As it has been pointed out by 

setting the parameter ω=0.5 (or n  ) the hard sphere model is obtained, while by 

setting ω=1 (or n 5 ) the Maxwell model is obtained. These limiting values 

correspond to theoretical gases, while in real gases the parameter ω varies as 

0.5 1  .  
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Chapter 3  

Computational methods 
 

3.1  Numerical scheme of Navier-Stokes equations 

The implemented solution is presented in Gilbard and Paolucci [28], while a more 

detailed description is given in the text by Masatsuka [25]. 

A one-dimensional grid is defined by the set of nodes {xk} = x1, x2, x3, ... xN, where 

N is the total number of nodes in the grid. Τhe system is integrated from the downstream 

area and it begins from xN to xN−1 with the initial values:  N 2u x u    where   is a 

small number (e.g., 101 10   ) and  N 2x    with a very small step δx compared 

with N N 1x x  . Then, the same procedure is applied between two adjacent nodes, k and 

k−1, where k=N−1,… 3, 2, with the solutions at x =xk as the initial values. The classical 

fourth-order Runge-Kutta scheme [29] is applied with  k k 1x x x / 1000   between 

the two nodes, k and k−1. It is important that the last step in the integration between 

two nodes needs to be adjusted to finish exactly at k k 1x x  .  

Moreover, the small number ϵ is essential to obtaining a meaningful solution. In 

fact, if 0  , the computation fails and the correct upstream state of the shock is not 

reached because the right hand side of the system (2.19) is exactly zero. Hence, the 

location of the shock depends on the magnitude of ϵ, but if ϵ is large enough (e.g., 

0.1  ), then the shock profile isn’t computed properly in the downstream area. In 

addition, the correct transition to the upstream area is achieved through the constants 

C1, C2 and C3 which are the equal for the downstream and upstream area due to the 

conservation of mass, momentum and energy. 

In order to find the solution, it is necessary to integrate the ODE’s (2.19.a) and 

(2.19.b) from x=x0 to x=xi and find the velocity ui and the temperature Ti at x=xi. So, 

the ODE’s are integrated from x=x0 to x=xi in 1000 steps by the classical 4th order 

Runge-Kutta method. A trial step at the midpoint of an interval is used to cancel out 

lower-order error terms. The fourth-order formula is 

 x=x+dx  

(3.1) 

 
 1

1
K =V+ dx rhs V  

2
  

 
 2 1

1
K V+ dx rhs K

2
 =   

 
 3 2

1
K V+ dx rhs K

2
 =   

 
   1 2 3 3

1 1
V= K +2K +K -V + dx rhs K

3 6
  
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where the rhs is the right hand part of the Eqs. (2.19). Finally, when the ODE’s are 

solved, the following quantities are computed  

 
iu u  (3.2.a) 

 
i   (3.2.b) 

 
1C / u   (3.2.c) 

 
1

xx 1 2

C
C u C

u


     (3.2.d) 

 

 
2 1

1 2 3

C1
q C u C u C

2 1




   


 (3.2.e) 

where the constants C1, C2, C3 have been computed by the equations (2.21). 

 

3.2  Numerical schemes of kinetic models  

3.2.1  Iteration Procedure 

Since the methodology is the same for all three kinetic models it is described based 

on the S model equations. To solve these equations an iterative procedure is applied 

between the kinetic equations and the associated moments of the distribution function 

which appear in the expressions of the equilibrium distribution. In order to minimize 

computational time, the open-mpi interface has been used.  

The kinetic equations may be written as  
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c Y Y
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


 

 


 (3.3.a) 

 
 

k 1/ 2
k k1 k eq k 1/ 28

x 5


   




 

 
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 (3.3.b) 

where Yeq, Φeq are given by Eqs. (2.47.a, 2.47.β). The bulk quantities involved in the 

computations are 
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
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




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     

2 k 1/ 2 k 1/ 2k 1

x x x x xk 1
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c u Y x,c x,c dc

3
 




 





    
(3.4.c) 

       
1 1k 1 k 1 k kk 1 3 3 2 2 k 1 k 1
2 2

x x x x x x x x x x x xq c u 3c u 3c u Y x,c c u x,c dc


     



           


 

(3.4.d) 

The indexes k, k+1/2 and k+1 indicate the steps needed in the iteration process which 

is described as follows: The bulk quantities are known from the previous iteration. 

Thus, the equilibrium distributions Yeq, Φeq are computed. Then, the kinetic equations 

are solved for the unknown distributions Y, Φ. Finally, updated estimates of the local 

macroscopic quantities are computed based on the moments of the distribution 
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functions Y, Φ. This concludes one iteration. The iteration process is terminated when 

convergence is achieved. The code is parallel. The solution of the kinetic equations is 

performed in several CPUs. The results are transferred into a single CPU to compute 

the moments. The iteration procedure is explained graphically in Figure 3.1. 

 

Grid generationStart
Calculation of Rankine-Hugoniot 

relations
Initial guess of 

macroscopic quantities

Iteration index
Calculation of 

distribution functions
Estimation of local 

macroscopic quantities

Reduce all quantities from all 
cores into a single 

Check upon 
convergence

YES

NO

END

 

Figure 3.1: Flow chart of the algorithm 

3.2.2  Discretization of in the physical and molecular space  

A finite volume scheme [30] has been applied here for the discretization of the 

governing equations (2.40) in the physical space. Hence, the operator A is applied  
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on Eq. (2.40) to yield 
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By setting 
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the equations are transformed into 
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The discretized equations are rewritten for negative and positive velocities:  

 for negative velocities xc 0  
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 for positive velocities 
x
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Here, the following definitions have been introduced: 
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(3.11) 

 

3.2.3  Numerical Integration 

After obtaining the values of Y and Φ, it is necessary to integrate over the 

velocity space to obtain the macroscopic quantities needed for the next iteration. This 
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is achieved by using the simple trapezoidal rule which is a 3rd order scheme technique 

for approximating the definite integral 

 b

a

f (x)dx  (3.12) 

It is mentioned that using trapezoidal rule instead of Gauss–Legendre quadrature, which 

is considered as a more advanced numerical integration algorithm, is necessary because 

the computed distribution functions do not match with the Gauss distribution. Hence, 

using trapezoidal rule with a uniform grid it may require a denser grid but it is also safer 

from the computational point of view in catching the irregularities of the distribution 

function. 

The velocity domain is discretized into N equally spaced segments, or N+1 grid 

points a = x1 < x2 < ... < xN+1 = b, where the grid spacing is h=(b-a)/N. The 

approximation to the integral becomes  
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By applying the trapezoidal rule, the macroscopic distributions are estimated: 
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Obtaining the correct result is achieved with two important parameters. Firstly, in 

the upstream region, the spacing between the discrete velocities has to be short in order 

to define accurately the highly peaked distribution functions. Secondly, the widely 

spread distribution functions in the downstream region require the discrete molecular 

velocities to be extended in a wide range [31]. Therefore, the integration limits are 

selected from the Rankine – Hugoniot relations and are given by the empirical relation 

provided by Shakhov [32] 
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2 x 2 13 T c 3 T u     (3.22) 

Equation (3.22) provide a good hint for the integrations limits. However, it is observed 

that these limits have to be expanded to at least 10  units. This method produces 

excellent results, but for each Mach number, the range of the discrete velocities has to 

be adjusted properly in order to minimize CPU time requirements. In the next section, 

the computational time is presented along with some attempts to reduce it. 

Furthermore, since there is no solid boundary present in this problem, the shock 

may be located anywhere in space. It is thus necessary to place it arbitrarily on the 

numerical grid. The midpoint of the shock is taken to be where the density profile 

reaches the value 0.5. As the iterations proceed, there is a tendency for the shock to 

translate slightly in space so that the numerical grid must be shifted accordingly. 

Enough grid points must be taken to insure that all of the shock structure is included, 

since the extent of the shock in physical space is unknown a priori. 

 

3.2.4  CPU time requirements 

It is important to optimize the numerical scheme in order to get accurate results 

with the minimum computational cost. The required CPU time is presented in terms of 

the Mach number in Figure 3.2 for the numerical solution of the steady state shock 

wave problem using the BGK, S and ES models. The results describe the computational 

time per CPU core in minutes for two different domains (both start at -30 mean free 

paths and then one finishes at +20 and the second at +30). Even though, the range in 

the physical space is less important than the molecular velocity space it is still 

significant to optimize it. If the length of the physical domain is larger than needed the 

results will be accurate but the computational time is rapidly increased. 

Observing the CPU time in Fig. 3.2, it is obvious that the ES model requires the 

shortest time at each Mach number in both domains, while the BGK model takes the 

longest time to converge. Especially in the Mach numbers of 2 and 3, the CPU 

requirements are 1827.4 and 1450.2 minutes well above the corresponding ones for the 

ES model. For these cases, the iteration procedure converges very slowly after the 

maximum error becomes 0.00003. However, further reduction of the physical space to 

[-20,20] and [-10,10] reduces time requirements to 161.09 and 3.27 minutes 

respectively but unfortunately, these small physical domains provide accurate results 

only at small Mach numbers. Moreover, the S model CPU requirements are between 

those of the BGK and ES models and considering the very good agreement with DSMC 

and BE results as well as with experiments which will be shown in Chapter 5, seems to 

be the most reliable model for normal shock wave simulations. 
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Generally speaking is very difficult to withdraw general rules or guidelines about 

discretization in the physical and velocity spaces. Hence, tailor oriented discretization 

with respect to the Mach number is needed. 

 

 

Figure 3.2: Computational time in minutes per cpu for the BGK, S and ES 

models, for different Mach numbers and two physical domains. 

 

.
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Chapter 4  

Results and discussion 
 

4.1  Numerical and flow parameters 

The numerical results presented here have been obtained using the double 

projected kinetic equations for the BGK, S and ES model as they have been described 

in Chapter 3. In order to achieve good accuracy in the numerical results, the 

computational algorithm makes use of 9001 nodes in the spatial discretization at Mach 

number 1.2 and 6001 nodes at Mach numbers 3, 8 and 25. However, at Mach numbers 

15 and 20 the nodes are reduced to 1001 and the results are exactly the same with the 

higher number of nodes. The cases with 1001 nodes have been run in an Intel core i5 

4690, 3.5 GHz CPU, the cases for the Mach numbers 1.2 and 3 in six Intel core i5 2500, 

3.3 GHz CPU’s and the remaining cases in eight Intel core i5 3570, 3.4 GHz CPU’s. 

The termination criterion for the iterative process has been set as the sum of the 

maximum relatives errors between the macroscopic quantities of the flow and equal to 

10-5.  

Moreover, the density, temperature and velocity profiles are presented in a 

normalized form given by  
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 (4.1) 

where the subscript 1 and 2 refer to upstream and downstream boundary conditions 

respectively. The normalized density is used everywhere, while the normalized velocity 

and temperature are used only in section 4.6. In the other sections the results for the 

velocity and temperature as well as for all other bulk quantities are presented in the 

dimensionless form described in Section 2. 

Furthermore, the computed results correspond to a viscosity law which is 

according to the experimental conditions. For example, for Argon gas, Schmidt [8] 

suggests ω=0.68, Alsmeyer [3] suggests ω=0.72, while for pressure 101.325 Pa and 

temperature 0o C, the real viscosity index is ω=0.81.  

The numerical parameters for the kinetic models and the Navier-Stokes equations 

are tabulated in Tables 4.1 and 4.2 respectively. They include the range in the physical 

domain in mean free paths and in the molecular velocity space in dimensionless units. 

The number of nodes in both spaces is also provided. The viscosity index is specified 

as well as the perturbation parameter in the hydrodynamic solution.  
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Table 4.1: Parameters for BGK, S and ES models 

Parameters M1=1.2 M1=3 M1=8 M1=15 M1=20 M1=25 

Nodes 9001 6001 6001 1001 1001 6001 

Physical 

Domain 
[-30,30] [-20,20] [-30,20] [-50,50] [-50,50] [-50,50] 

Range 

between 

molecular 

velocities 

[-10,10] [-10,10] [-23,31] [-35,49] [-61,61] [-61,61] 

Space 

between 

molecular 

velocities 

0.119 0.24 0.3 0.3 0.3 0.3 

Δx 0.0066 0.01 0.00833 0.1 0.1 0.0166 

Viscosity 

temperature 

index (ω) 

0.5 0.5 0.68 0.68 0.68 0.66 

 

Table 4.2: Parameters for Navier Stokes equations  

Parameters Ma=1.2 Ma=2 Ma=3 Ma=8 

Nodes 9001 10001 6001 6001 

Physical 

Domain 
[-30,30] [-30,30] [-30,30] [-30,30] 

Perturbation 

(ε) 
0.00001 0.00001 0.00001 0.00001 

Viscosity 

temperature 

index (ω) 

0.5 0.5 0.5 0.68 

 

4.2  Macroscopic distributions for various Mach number 

Results of the macroscopic distributions are provided in a wide range of the Mach 

number. In all cases only monatomic gases with the non-equilibrium state limited to the 

translational energy mode are considered. Comparisons are made with available 

computational results obtained by other methods as well as with experimental results. 

In all figures the x -coordinate is normalized by 
1

/ 2  where λ1 is the mean free path 

of the gas molecules at the upstream conditions. 

Figures 4.1, 4.3 4.5, 4.7, 4.9 and 4.10 present density, temperature, velocity and 

heat flux distributions inside the shock layer for various Mach numbers based on the S, 

ES and BGK models and Figs. 4.2, 4.4, 4.6, 4.8, 4.10 and 4.12 present the 

corresponding perpendicular, parallel and total temperatures. As a general remark it is 
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stated that there is qualitatively agreement between the three kinetic models. Therefore, 

the detailed discussion of the macroscopic quantities in terms of the shock strength (i.e. 

the Mach number) will be based on the S model, while the comparison between the 

results of the three models will be also included. In all these figures the x-axis is in 

numbers of mean free paths (MFP). As it is mentioned before, the midpoint of the shock 

x=0 is taken to be where the normalized density profile reaches the value 0.5. The 

number of MFPs for M1=1.2 is about 28, then for M1=3 is decreased down to 6 and then 

as the Mach number is further increased the number of MFPs is monotonically 

increased but in a small pace reaching finally at M1=25 the number of 10 MFPs. It is 

noted that these lengths are the ones needed to properly recover the upstream and 

downstream conditions including the proper shock thickness at each Mach number.  

 Number density 

The shock front is commonly presented with the number density profile. In all 

cases the number density is increased, while the proper upstream and downstream 

conditions are recovered. Observing carefully the density variation, it is seen that the 

profile is smooth at M1=1.2 and then it gets steeper at M1=3. This is expected since the 

flow departs from equilibrium. It is interesting to note however, that at M1=8, the 

density variation is not as rapid as before and it starts getting smoother as the Mach 

number is further increased. As it is stated in Section 2 the number density variation 

provides an indication of the shock thickness in terms of the Mach number and the 

departure of local equilibrium. More specifically it seems that there is a minimum 

thickness in moderate Mach numbers which corresponds to Knudsen numbers in the 

transition flow regime. A more thorough discussion on the shock thickness is provided 

in Section 4.3. 

 Velocity 

The velocity distribution is always decreased along the shock wave. Far upstream 

corresponds to the imposed Mach number and then it is gradually reduced to its 

downstream value to fulfill the R-H relations. In the upstream area, the gradient is 

steeper that in the downstream area. As the Mach number is increased, the velocity 

gradient increases and more kinetic energy is dissipated. For example, for M1=1.2, the 

initial velocity is u1=1.09 and the final is u2=0.844, while for M1=25, the corresponding 

values are 22.82 and 5.73 respectively. Hence, the velocity decrease and the transition 

from the upstream to the downstream local equilibrium conditions become more abrupt 

as the upstream Mach number is increased. 

 Pressure 

The pressure distribution is related to temperature and density according to the 

equation of state. The pressure increase along the shock wave is qualitatively similar 

with that of the number density. Quantitatively however, the pressure gradient is much 
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steeper than the density one due to the rapid modification of the temperature profile as 

well. Also, the maximum value of the pressure distribution changes rapidly with the 

increase of the Mach number. With the Mach number changing from 1.2 to 25 the 

maximum pressure increases about 50 times.  

 Heat flux 

The heat flux is taking negative values since the heat flux vector is in the negative 

x direction. Far upstream and downstream there is no temperature gradient and therefore 

its value is zero. The variation of the heat flux between the two limiting equilibrium 

states is non monotonic. More specifically starting far upstream the heat flux is 

decreased up to some point located few mean free paths before x=0 and then it is 

increased again. The variation is according to the temperature gradient along the flow 

field. Although the Fourier law is not always valid particularly in the case of high Mach 

numbers the heat flux is still proportional to the temperature gradient. Overall, the 

absolute value of the heat flux is rapidly increased with the increase of the Mach 

number. It increases several orders of magnitude as the Mach number is increased from 

1.2 up to 25. Indicatively, for M1=1.2, it is q=-0.03, while for M1=25 it is q=-3662.7. 

The shape of the heat flux distribution continues to be similar in all Mach numbers, but 

its negative peak is moved towards the upstream area as the Mach number is increased. 

For M1=1.2, it is close to x=0 and the profile is almost symmetric.  

 Parallel and perpendicular temperatures 

In highly anisotropic flows is useful to investigate separately the so-called parallel 

and perpendicular temperatures. They both increase along the shock wave flow field. 

At M1=1.2 the profiles of both temperatures are increased smoothly. As the Mach 

number is increased the perpendicular temperature distributions remain smooth, while 

on the contrary the parallel (or longitudinal) is changing more rapidly and for M1>2 a 

temperature overshoot is observed few mean free paths before x=0. In all these cases 

the profile versus the shock distance is non monotonic and the peak is always computed 

at the middle of the shock front. The temperature overshoot in the longitudinal 

temperature is defined by Eq. (2.65) and the following identity is obtained by Yen [33]: 

 
2

1 2 21 1
1 15M 3 5M

3

  


 

  
    

   

 (4.2) 

The   temperature is differentiated with respect to ρ, and it is evaluated 

downstream (ρ=ρ2) in order to obtain (apart from positive constant factors) 2

19 5M . 

Τhus, the parallel temperature has always an overshoot (since the density is monotonic) 

for  
1/ 2

1
M 9 / 5 1.3416  . This overshoot is rather marked and this explains the 

overshoot in the temperature (the transversal temperature being always monotonic) 

[34]. This abruptly behavior increases its order of magnitude along with the Mach 
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number and the distance is also increased in order to decay this perturbation. In both 

temperatures the gradient in the upstream area is steeper than in the downstream area.  

 Total temperature 

The total temperature is the sum of the parallel and the perpendicular temperature. 

Hence, its behavior has the added effects of both components. However, the overshoot 

that is mentioned before, it can’t be seen easily in these figures. The profiles are more 

close to the perpendicular ones, although they are more stip. Therefore, the temperature 

decomposition is always necessary and it reveals an important phenomenon in the 

shock wave structure. 

 

In addition, the temperature-density separation presents a complex behavior for all 

the three kinetic models. The BGK model has the shortest distance while, the S model 

has the longest. For M1=1.2 and for the S model, the temperature-density separation   

is at 1.65, it decreases at 1.53 for M1=3, but it is increased again until M1=25, where it 

reaches its maximum value at 3.72. Therefore, it is clear that as the Mach number is 

increased, the non-equilibrium phenomena are more intense. 

Closing this section it is noted that the other two kinetic models provide results for 

the macroscopic quantities which have a similar behavior with the one discussed above 

for the S model. More specifically there is very good agreement between ES and S 

models, while there are discrepancies which may become significant between the BGK 

and the other two models. This is due to the incorrect Prandtl number deduced by the 

BGK model. Only Xu and Huang [35] managed to produce good results with the BGK 

model but in their scheme, the Prandtl number is inserted through the correction of the 

heat flux in the update of the macroscopic variables and therefore effects the 

construction of the equilibrium state in the collision term as well as the update of the 

gas distribution function. As noted before, the ES model agrees well with the S model, 

but there are some cases with significant deviation, especially at high Mach numbers. 

In all the macroscopic distributions, the models differ significantly in the upstream area, 

while in the downstream area, the deviations are lesser. 
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Figure 4.1: Normalized density, pressure, velocity and heat flux for upstream 

Mach number M1=1.2 obtained by the BGK, ES and S models. 

 

 

 

 



Chapter 4: Results  

37 

 

 

 

 

Figure 4.2: Parallel, perpendicular and total temperature for upstream Mach 

number M1=1.2 by the BGK, ES and S models. 
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Figure 4.3: Normalized density, pressure, velocity and heat flux for upstream 

Mach number M1=3 by the BGK, ES and S models. 
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Figure 4.4: Parallel, perpendicular and total temperature for upstream Mach 

number M1=3 by the BGK, ES and S models. 
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Figure 4.5: Normalized density, pressure, velocity and heat flux for upstream 

Mach number M1=8 by the BGK, ES and S models. 
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Figure 4.6: Parallel, perpendicular and total temperature for upstream Mach 

number M1=8 by the BGK, ES and S models. 
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Figure 4.7: Normalized density, pressure, velocity and heat flux for upstream 

Mach number M1=15 by the BGK, ES and S models. 
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Figure 4.8: Parallel, perpendicular and total temperature for upstream Mach 

number M1=15 by the BGK, ES and S models. 
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Figure 4.9: Normalized density, pressure, velocity and heat flux for upstream 

Mach number M1=20 by the BGK, ES and S models. 
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Figure 4.10: Parallel, perpendicular and total temperature for upstream Mach 

number M1=20 by the BGK, ES and S models. 
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Figure 4.11: Normalized density, pressure, velocity and heat flux for upstream 

Mach number M1=25 by the BGK, ES and S models. 
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Figure 4.12: Parallel, perpendicular and total temperature for upstream Mach 

number M1=25 by the BGK, ES and S models. 
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4.3  Shock thickness and effect of intermolecular potential 

Figure 4.13 presents the reciprocal shock thickness versus Mach numbers from 1 

up to 25 for argon gas with ω=0.72. Apart from the kinetic models, both experimental 

data [3] and DSMC solutions [35] are also included for several Mach numbers. Figure 

4.14 present the evolution of the Knudsen number versus the Mach number along with 

the results from the S model. At the beginning, the reciprocal shock thickness is 

increased very rapidly and the maximum value is reached at about M1=3. Afterwards, 

it is decreased, while the Mach number is further increased. As it is mentioned before 

that the number of MFPs is minimum at M1=3 which is confirmed with the reciprocal 

shock thickness. Also, observing carefully it is seen that near the continuum low Mach 

number limit, the S and the ES model have a better agreement with the experimental 

data. This is expected because the S model and the ES model deduce accurately the NS 

solution in the continuum regime. However, as the Mach number is increased not only 

the BGK but also the ES results do not agree well with the experimental data. This 

comparison clearly demonstrates the growing discrepancy between the ES and BGK 

models with experiment at large Mach numbers. Also, the BGK thickness is thinner 

than that of the ellipsoidal model at low Mach number, while as the Mach number is 

increased, the calculated shock thickness shows small differences between the two 

models. However, the S model seems to have very good agreement with the 

experimental data in the whole range of the Mach number. Even at about M1=5 where 

the most significant deviation is spotted for the other models, the S model behaves very 

well. It is also seen that the DCMC and the S model solutions are very close at low 

Mach numbers, but as the Mach number increases, the two approaches begin to disperse 

with the S model solution always being very close to measurements. Overall, the 

Knudsen number is increased while the local Kn is decreased after M1=4. 

Observing Figs. 4.15 and 4.16, it is clear that the intermolecular potential has 

significant impact on the density and temperature shock profiles. This comparison is 

presented only for the S model since similar effects are found for the ES and the BGK 

models. In the upstream area, the temperature is greatly affected from the 

intermolecular potential, while in the downstream area, the results based on the two 

intermolecular models seem to converge. For M1=1.2, the intermolecular potential has 

minimum effect on the profiles, while for M1=8 and 25 there are large differences. The 

bulk distributions obtained for various real gases, such as Argon with ω=0.72, are 

placed between the limiting cases of hard sphere and Maxwell molecules. In all cases 

the hard sphere model provides results much closer to the ones corresponding to real 

gases compared to the Maxwell model, which is quite unrealistic. From the point of 

view of the CPU time requirement, the case with the Maxwell model needs always the 

shortest time to converge, while the hard sphere model needs the longest time because 
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it has to traverse the longest distance in order to reach its solution. In conclusion, the 

effect is increased as the Mach number is increased, while the CPU time requirement 

is decreased. 
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Figure 4.13: Reciprocal shock thickness versus Mach numbers for based on the 

BGK, ES and S models, the DSMC method [35] and experimental data [3] for Argon. 

 

Figure 4.14: Knudsen number versus Mach numbers for Argon gas (the 

reciprocal shock thickness based on the model is also shown). 
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Figure 4.15: Effect of the intermolecular potential on the density profile based on 

the S model for upstream Mach numbers M1=1.2, 8 and 25. 



Chapter 4: Results  

52 

 

 

 

 

Figure 4.16: Effect of the intermolecular potential on the temperature profile 

based on the S model for upstream Mach numbers M1=1.2, 8 and 25. 
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4.4  Comparison of kinetic models with Boltzmann equation, 

DCMC and experiments 

The kinetic model results are compared with corresponding ones based on the 

direct solution of the Boltzmann equation (BE), the DCMC method and experiments. 

The comparison with the BE is based on the solution provided by Ohwada [36] for hard 

sphere molecules at M1=1.2 and 3. Figure 4.17 presents the density profiles inside the 

shock layer for all kinetic models and the Boltzmann equation. It is clearly seen that the 

S and ES models produce identical results at M1=1.2, while there are small differences 

with the BGK model. At M1=3 the S model keeps having very good agreement with the 

BE, while the ES results have some differences particularly in the upstream region. 

Following the validation with the Boltzmann equation, the results from the kinetic 

models are compared with the DCMC solutions provided in [35, 37, 38]. In Fig. 4.18 

the density profiles are presented, for M1= 8 and 11 with ω=0.72 and for M1=25 with 

ω=0.75. Observing carefully the density variation, it is seen that the S model complies 

with the DCMC solutions for the three Mach numbers. As it is mentioned before, the 

differences between the S and the other two models are increased with the Mach 

number. However, for Mach number 25, the ES model seems to produce better results.  

To further validate the capability of the gas-kinetic algorithm in computing the 

higher-order macroscopic moments of the distribution function, the heat flux qx and the 

viscous normal stresses σxx and σyy are compared in Fig. 4.19 for M1= 8. The heat flux 

qx and viscous stresses σxx and σyy have been normalized by dividing by the product of 

the density times and the most probable velocity in the cubic power. It can be distinctly 

revealed that the profiles of the heat flux and the viscous stress are not symmetric across 

x=0. The agreement between the DSMC results and the kinetic models is very good in 

the downstream area, while the major differences exist in the front of the shock wave. 

In addition, the S and the ES models seem to be more close to the DCMC solution rather 

than the BGK model. In terms of the stresses, it is noted that the ES model agrees better 

with the DCMC results than the other two models. 

The measured density profiles from Schmidt [8] at M1=2.8 and 8 are presented in 

Fig. 4.20 along with the computed results. Once again the results based on the S model 

are in better agreement compared to the other two. Furthermore, in Fig. 4.21, the 

computed results are compared with another set of measurements that is obtained by 

Alsmeyer [3]. The cases are for M1=8 and 9 with viscosity-temperature index ω=0.72. 

The variations that become apparent at M1=2.8, are now more obvious. The differences 

between density profiles for ES and BGK models become less distinguishable and both 

models give poorer agreement with experiment as the Mach number increases. The 

density profiles are always too steep, especially for the BGK model which seems to be 
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the most inadequate. However, the S model continues to give the proper solution and it 

seems to have better agreement with ω=0.72 rather than ω=0.68. 

The helium shock structure calculations for M1=25 are presented in Fig. 4.22. The 

distribution functions from the S model are compared with the experimental data in 

Pham-Van Diep et al [12]. The gas distribution functions are presented directly at 

different locations inside the shock layer. The locations of the normalized density for 

the distribution function presentation are at ρ = 0.291, 0.332 and  ρ = 0.610, 0.636. In 

order to compare the same quantities, the velocity distribution function has been 

normalized with its maximum value. Also, the x axis is normalized with the reference 

molecular velocity where the maximum distribution function is observed. The 

comparison appears to be good and the most significant deviation is for the downstream 

part, where there is a spot that the calculated results do not agree with the measured 

profile. Finally, it seems that the distribution functions are not too sensitive to the 

locations inside the shock layer.  
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Figure 4.17: Density profiles at M1=1.2 and 3 in a hard-sphere shock structure 

computed by the BGK, ES and S models and the Boltzmann equation [36]. 
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Figure 4.18: Density profiles at M1=8 and 11 with ω=0.72 and at M1=25 with 

ω=0.75 in an Argon shock structure computed by the BGK, ES and S models and the 

DSMC method [35, 37, 38]. 
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Figure 4.19: Heat flux and normal stress profiles at M1 = 8 computed by the 

BGK, ES and S models and the DSMC method [38]. 
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Figure 4.20: Density profiles at M1= 2.8 for ω=0.75 and M1=8 for ω=0.68 in Argon 

computed by the BGK, ES and S models and comparison with the experimental data in [8]. 
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Figure 4.21: Density profiles at M1= 8 and 9 for ω=0.72 in Argon computed by 

the BGK, ES and S models and comparison with the experimental data in [3]. 
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Figure 4.22: Gas distribution functions at M1=25 helium shock layer computed 

by S model and comparison with the experiment data in [12] at different locations 

with normalized densities (ρ=0.291, 0.332, 0.610, 0.636). 
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4.5  Distribution functions of the BGK, ES and S model in various 

positions for different Mach numbers 

The shape of the reduced distribution functions Y and Φ at several locations as 

computed by the BGK, ES and S models are presented. Even though, the results are not 

projected, two of the locations are in the upstream area, one is in the middle of the shock 

front and the remaining two in the downstream area. Also, the equilibrium distribution 

function Yeq and Φeq of each model are also shown in order to observe the departure of 

the distributions from the corresponding equilibrium ones (it is not shown for except 

for M1=1.2 because in this small Mach number they are almost identical). The detailed 

discussion of the distribution functions in terms of the molecular velocity is based on 

the S model which seems to be the most promising one. 

Figures 4.23, 4.25 and 4.27 present the distribution function Y for all three models 

and for M1=1.2, 8 and 25, while Figures 4.24, 4.26 and 4.28 present the corresponding 

results for the distribution function Φ. For M1=1.2, both the distribution functions are 

similar which is expected because the solution is the continuum area where all the 

solutions give close-by results. Moreover, the equilibrium distribution functions are 

very close to the computed and the only small variations are seen in the middle of the 

shock front. It is interesting to note that at M1=8, the distribution functions obtain non-

equilibrium shape within the shock wave. The transition from the sharply peaked 

upstream distribution to that corresponding to the downstream equilibrium state is 

clearly indicated. However, the distribution function contribution is initially formed 

about a negative velocity rather than about the downstream equilibrium flow velocity. 

The small peak barely seen on the curve corresponding to the most forward location 

indicates that a small number of oncoming molecules undergo collisions far upstream. 

This behavior in the distribution function grows and moves to the right in cx as one 

progresses through the shock it finally forms the distribution of the downstream flow. 

Also, the highly peaked shape corresponding to the upstream conditions exhibits a 

similar behavior since the magnitude of the peak decreases. However, its location in cx 

does not change noticeably. Both the distribution functions present this behavior, while 

it seems to be more significant for Y. 

It is also noted that even in the downstream area where the shape between the 

distribution function Y of the three kinetic models is similar, their maximum values are 

different. However, in the upstream area, there are quantitatively and qualitatively 

deviations. For example, at locations 36 and 39, the distributions are very steep for the 

ES and the BGK models, while the profile for the S model is smoother. In addition, the 

S and the BGK profiles are similar in the middle of the shock front, while the ES model 

presents a more abruptly shape and a peak that is correlated with the upstream behavior. 

All these discrepancies are encountered in the distribution function Y and for M1=8. 
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Although, for M1=25, they are decayed and the profiles become similar for all models. 

This is also observed in the Φ distribution where the variations are minor between the 

models. Finally, it is clear that the equilibrium distribution functions always 

overestimate the computed results in the middle of the shock, while in the upstream 

area, they underestimate the computed profiles. 
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Figure 4.23: Distribution functions Y by the BGK, ES and S models along with 

the corresponding equilibrium distributions for M1=1.2. 
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Figure 4.24: Distribution function Φ by the BGK, ES and S models along with 

the corresponding equilibrium distributions for M1=1.2 
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Figure 4.25: Distribution functions Y by the BGK, ES and S models along with 

the corresponding equilibrium distributions for M1=8. 
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Figure 4.26: Distribution function Φ by the BGK, ES and S models along with 

the corresponding equilibrium distributions for M1=8. 
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Figure 4.27: Distribution functions Y by the BGK, ES and S models along with 

the corresponding equilibrium distributions for M1=25 
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Figure 4.28: Distribution function Φ by the BGK, ES and S models along with 

the corresponding equilibrium distributions for M1=25. 
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4.6  Range of validity of the Navier-Stokes approach 

One of the main objectives of this thesis is to examine the validity of the Navier- 

Stokes approach. Hence, after it is established that the S model complies much better 

with the experiments as well as with the DCMC and BE solutions than the other two 

models, its results are compared with the hydrodynamic approach. The comparisons are 

made for the hard sphere molecules at M1=1.2, 2 and 3. They are not applied in very 

strong shock waves because it is well expected that the NS approach will fail. The case 

of M1=8 is also presented in order to demonstrate the inadequacy of the continuum 

theory. 

Figures 4.29, 4.30, 4.31 and 4.32 show the density, temperature, velocity and heat 

flux inside a shock layer by both approaches. At M1=1.2 the standard NS solution is 

very close to the S model solution. However, the results from the hydrodynamic 

approach begin to differ in greater Mach numbers. More specifically the discrepancies 

are evident at M1=2 and 3 and this particularly true in the heat fluxes. As expected the 

NS solution completely fails at M1=8. In general, the critical Mach number for the 

validity of the NS equations is about M1=1.4. At that Mach number the reciprocal shock 

thickness is 0.1, which happens to be the starting point of the transition regime and the 

limiting point where the NS solution is valid. Hence, it is obvious that NS solutions are 

seriously deviated from the results of the S model, so that the continuum predictions 

seem to be invalid for shock Mach numbers greater than two, which confirms previous 

works on weak shock waves [39]. The variations are rapidly increased for M1=8 and 

the profiles of all the macroscopic quantities are extremely steep. More specifically, the 

density has lesser deviations while the most significant ones are presented in the heat 

flux. The deviations are also present in the locations and of course in the thickness of 

the shock wave. 

It is also seen that there is a prominent increase in the separation distance between 

the temperature and density profiles as the Mach number is increased from 1.2 up to 8 

which manifests that the normal shock wave is a non-equilibrium flow with large 

departures from thermodynamic equilibrium. Finally, it is interesting to note that the 

prediction of the heat flux distribution is so poor that the macroscopic continuum theory 

based on the Chapmann-Enskog expansion has difficulty in describing sensitive higher-

order flow moments of the distribution function. 

Figures 4.33, 4.34 and 4.35 present the distribution functions YNS and ΦNS which 

are compared with the corresponding distribution functions from the S model for 

M1=1.2, 2, 3 and 8. At Mach numbers 2, 3 and 8, the position of the shock wave is 

different for the S model than the NS equations. Therefore, in order to compare the 

same positions for the two approaches, the results are projected to match the S model 
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positions. Again, five typical points are presented, two of them are in the upstream area, 

one is in the middle of the shock front and the remaining two in the downstream area. 

It is obvious that for both the distribution functions Y and Φ, the results are very 

close at M1=1.2. This similarity is expected because the solution is in the continuum 

regime where both approaches give a correct solution throughout the computational 

domain. However, for M1=2, the deviations are clear, even at x=9 where it is before 

from the shock wave. The distributions functions seem to be closer in the upstream 

area, while they are more far apart in the downstream region. The variations are of the 

same order of magnitude for the distribution function Υ, while for the distribution 

function Φ, they are far more significant. Furthermore, at M1=8, there is not even 

qualitatively agreement. Specifically, the NS profiles at the first two locations are 

completely underestimated, while in the other locations they may seem look but their 

magnitude differ significantly. Hence, it is partially explained why the variations exist 

between the macroscopic quantities of the two approaches. Finally, it is seen that the 

deviations are increased with increasing Mach number and after a certain Mach number 

the hydrodynamic approach is completely inadequate.  
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Figure 4.29: Comparison of normalized density, temperature, velocity and heat 

flux between the S model and the Navier-Stokes approach at M1=1.2. 
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Figure 4.30: Comparison of normalized density, temperature, velocity and heat 

flux between the S model and the Navier-Stokes approach at M1=2. 
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Figure 4.31: Comparison of normalized density, temperature, velocity and heat 

flux between the S model and the Navier-Stokes approach at M1=3. 
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Figure 4.32: Comparison of normalized density, temperature, velocity and heat 

flux between the S model and the Navier-Stokes approach at M1=8. 
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Figure 4.33: Distribution function Y computed by the S model and the NS approach at 

M1=1.2, 2 and 3 at several locations. 
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Figure 4.34: Distribution function Φ computed by the S model and the NS 

approach at M1=1.2, 2 and 3 at several locations. 
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Figure 4.35: Distribution functions Y and Φ computed by S model and NS 

approach at M1=8 at several locations. 
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Chapter 5  

Concluding remarks 
The scope of the present work is the investigation of the shock wave structure in a 

wide range of the Mach number. This is a problem that has been used as a test bed in 

order to validate the accuracy of the implemented kinetic models, namely the BGK, the 

ES and the S models, as well as of the developed nonlinear kinetic codes. Comparison 

with corresponding computational results obtained by other kinetic solvers such as the 

DSMC method and the direct solution of the Boltzmann equation, as well as with 

experimental results is performed. In addition to the detailed macroscopic distributions 

across the shock wave in terms of the Mach number other issues related to the shock 

thickness and the importance of the involved intermolecular potential model are also 

discussed. The problem has been also solved by a typical Navier-Stokes solution and 

then the range of validity of the NS approach is presented. 

Following a brief introduction and a literature review in Chapter 1, the 

mathematical formulation of the implemented models is presented in the Chapter 2. In 

Chapter 3, the numerical schemes for the kinetic and NS approaches are described. 

Extensive results are being presented for various Mach numbers in Chapter 4.  

In order to model the flow, we use kinetic models and the NS equations coupled 

to Rankine- Hugoniot boundary conditions. The kinetic solution is based on the discrete 

velocity method and the hydrodynamic is computed using the Runge-Kutta method. All 

macroscopic distributions of practical interest are computed (density, velocity, parallel, 

perpendicular and total temperatures, heat flux, pressure). Apart from them, the 

distribution functions for both approaches are computed. 

It has been found that the S model yields the most accurate results in all Mach 

numbers providing an excellent agreement with the Boltzmann equation, the DCMC 

method and measurements. Although the ES model has been built in order to catch the 

shock wave structure it turns out that there is good agreement only at small and 

moderate Mach numbers, while in high Mach numbers significant discrepancies are 

observed. The BGK model is inadequate even in small Mach numbers which is 

expected due to its deficiency to properly compute at the same time the transport 

coefficients of viscosity and thermal conductivity. Also, the CPU time in the BGK 

model is too long compared to the other ones. Hence, the S model, which requires 

moderate CPU time, is considered as the most appropriate model in order to compute 

shock structure for all the Mach numbers. 

Τhe reciprocal shock thickness is computed for all three kinetic models. It is 

compared with DCMC and experiment and only the S model provides an accurate 

profile. An interesting issue is that as the Mach number is increased the shock 
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thickness is rapidly decreased up to a characteristic Mach number and then is 

increased in a very slow pace. This minimum thickness of the shock front which is 

observed at about Mach number equal to 3 is analogous to the so-called Knudsen 

minimum and it has been also reported in previous theoretical and experimental 

works. Furthermore, the effect of the intermolecular potential is critical specifically as 

the Mach number is increased. Also, the computational time is presented in terms of 

the Mach number and it is found that its maximum values occur at about Mach numbers 

equal to 2 and 3. 

It has been also found that the hydrodynamic approach cannot correctly compute 

the shock front at large Mach numbers. The NS distribution function is presented in 

order to justify the deviations. It is shown that it matches the corresponding S model 

distribution function only at very small numbers. Actually the NS approach is valid 

only up to a Mach number of about 1.5 where the flow is considered still close to local 

equilibrium. Above that limit the local Knudsen number is increased above the 

characteristic value of 0.1 and the flow enters into the transition regime where the 

classical constitutive laws fail.  

The present work may be extended to tackle two-dimensional normal and oblique 

shock waves which are of more practical interest. To achieve that, in a computationally 

efficient manner, the code may be upgraded to run in GPUs. In parallel the development 

of an in-house DSMC solver will be more than useful for comparison purposes. 

Furthermore, the observed minimum at the shock wave thickness in terms of the Mach 

number may be investigated using the recently introduced DSMC decomposition 

approach, where the distribution function is split into two parts namely the ballistic and 

collision parts. Finally, it could be of major interest to use the present benchmark shock 

wave problem in order to investigate the potential of multiscale approaches developing 

a hybrid hydrodynamic-kinetic code. 
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Appendix A 
 

Derivation of reduced distribution functions 

 

The detailed derivation for both the NS distribution functions YNS and ΦNS are 

presented in this section. It is important to calculate every component of the stress 

tensor. The detailed calculations are given in Eqs. (A.1-A.14).  

 Distribution function Y 
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 Distribution function Φ 
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Appendix B 
 

Derivation of macroscopic distributions 

 

In section 2.5, the macroscopic quantities are presented for this problem. The 

detailed calculations of these quantities are given in Eqs. (B.1-B.5). 
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