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Evyoprotieg

Apyicd, Ba MBera va ekEPAC® Eva EIMKPIVEG ELYOPIOTO OTOV EMPAETOVIA OV,
Kabnynt Niko [TeAexdon, mov pe 0€xOnke otnv £peuvnTIKn TOV Opdoda Kot OAa 6o Epado
o Vv enifreyn tov. Olo avtd to yxpdvia TapakorovBel tnv dtotpPn amd moAH Kovtd Kot
pe KaBodnynoe e EMGTNUOVIKO TPOTO OO TNV TPAOTN UEPA GTO VL LEAETNO® TOV HavpHocTO
KOGHO TNG UNYOVIKNG TOV UKPOPLUGAAId®V. O TpOTOg oKEYNG Kot 1) d1opaTIKOTNTO TOV KOTA
TNV EMALGON TPOPANUATOV GTEKOVTOL Y10 LEVOL MG TOPAdELy o (NG,

[S1aitepa evyvopwv gipat o OA0VS TOLG KaBNYNTES TG 7THEAODG EEETAGTIKNG EMTPOTNG
Yo TV ovayveon g StrrpiPig, To 6O Kol TIC TOpUTNPNOES TOVG oL Ba avadeiEovv
Olapopeg TTLYEG TNG N Kot onueio Tov amortovy mepoutépm PeAET. Tavtdypova, Ba N0eia va
guyopotom Wutépmg tov Kadnynm A. INavvokdémovAo, yuo TG TOAD ONUAVTIIKEG TOV
TOPATNPNCEL TOVD o€ BEpato pnYovikng kot 10ntépws mpoPfinudtov emaens. Tovg
Kobnyntég B. Zundépo xor B. Kovtsd, yioo v evyevikn mopoy®pnon TEPOUOTIKOV
amoterleopdtov and AFM, kabBdg Kot TV HETAPOPE TNG TOADTIUNG EUTEPIOG TOVG TOVED GE
avtd. Emumdéov, Ba nbsha va evyopiotion tov Kadnynm X. Koapapdvo yio v didackaiio
TOV LOONUATOV TETEPACUEVOV GTOLYEIMV KOl EVOTADELNG TOV KATOUCKEVMV GTO LETOTTLUYLOKO
TPOYPOO GTIOVLODV, BETOoVTaG £T01 TIG fAcEL 08 aVTA TaL TTEDTAL.

To peyoddtepo péEPOG aLTNG TG STPIPNG ExEL PNULATOd0TNOEL HEC® TOVL EPELVNTIKOD
npoypaupotoc «KCONTAGEUSNUMSTADY», oto mAaicto tov Aptoteia I Idwutépwg Ha
Nnbeia va gvyaprotnom 1o Tunuo Mnyoavordywv Mnyovikdv tov I1.O. ywo v yoprynon
VTOTPOPiaG KATA TNV OEPKELD TV UETATTUYIOKOV LOL CTOVOMY KOl TNV XPNUOTOddTNOo™ Yo
GLUUETOYN G€ dVO GLUVEDPLO G SLOOKTOPIKT POLTHTPLOL.

Tavtdypova, EA® T Eva PEYAAO €LYOPIOT® OTA VEOAOITO UEAN TNG EPEVVNTIKNG
ouadag, v Ap. M. Bloyountpov, tov Ap. K. EvBvpiov kar tov vr. Ap. E. Mzévo yia v
dprotn ovvepyacio kot To 1daitepa guyapioto mePPaiiov ko’ OAn TN ddpkeln TNg
SatpPng. Idwntépmg va evyapiotiom v ko BAayountpov, Kabdg avapueso o ToAAGL QAL
ue swonyoye oto mepiPariov linux kol apketéc and T Tpocouolmoelg deEnybnoay eket,
UEIDOVOVTOG ONUOVTIKA TOV VTOAOYLoTIKO Ypovo. ‘Eva 1dwitepo evyoapiotd otovg Ap. K.
Torykhen kor Ap. A. ANUOTOLAO Y10l TO EVOLOPEPOV TTOV JELYVOLV TAVTA YLl TNV TOPEIRL TNG
STpPg, 0AAG KO Yo Tr) ONUOVTIKY GUUPOAN TOVG G EPELVNTIKA BEpaTa, TOL OmOTEAEL
TAEOV ovapOpd.

Ouv opidot eivar ocvvnbog exeivol ot avBpwmol, mov icwg va pnv yvopilovv e
Aemtopépeleg pe TL aoyoAeioar, oAAG E€pouvv va oe ompilovv oe kdBe TTLYN TNG
kaOnpepwvotroc. ‘Etotl, 6éhm evyopiotiow tovg Anuntpm, ‘Een, Zndpo, Baociin, ['dvwn,
Mopia, Koota, Koota, Adevn, Koota, Anuntpa, Mdakn, Zaviovra, Paidpa kot @évia mov
TO EVOLOPEPOV Kot 1 6THPIEN TOLG E1vaL 1O1OUTEPMC EIAIKPIVI KOl EUTPAKTOL.

Téhog, Ba NOBeha Vo EvYOPICTIC® TNV OIKOYEVELD LoV, oL pe otnpilel og kdBe emAoyn
LoV Kl 1010{TEPO GTNV TOPOVGO YPOVIKT) GLYKVPIN TOL EMEAEEN VOL GUVEYICM TIG GTTOVOES LLOV.
Edyopon xt eyd pe v ogpd pov va otddnka endélo e ovtd mov pov avorétnke. H dwatpin
QPIEPMVETOL LLE OLYATT] KOl GEPAGUO GTNV OKOYEVELD LLOV.

Akkpnvn A. Avtpa,
Bolog, DeBpovdprog 2017.
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Abstract

The static response of contrast agent microbubbles is investigated by means of
theoretical and numerical formulation. The shell coating is biocompatible and provides
mechanical strength, thus renders the microbubbles as excellent enhancers in medical imaging
and drug delivery vectors (in vivo). Characterization of shell parameters, namely stretching
and bending moduli, is of great importance for the above applications. Two major families of
coated microbubbles are normally employed, namely those coated by polymeric and
phospholipid shells. The former type of shells is characterized by larger elasticity modulus in
comparison with phospholipid shells. Lately, the atomic force microscope (AFM) has emerged
as a powerful tool for estimation of the above properties through force-deformation curves. In
this context, one of the major targets of the present doctoral dissertation is the modelling of the
static response of coated microbubbles as they are compressed by the AFM cantilever. In
addition, a methodology is proposed for the estimation of the elastic properties for both types
of shells.

Two theoretical and numerical models have been developed in order to describe the
contact between the cantilever and the shell. The cantilever is considered as a flat and rigid
surface, while the shell as an elastic membrane and the encapsulated gas is treated as
compressible. In the first model is a simple representation of the loading, which is assumed as
a point at the end of the contact line, while in the second the shell is loaded by the disjoining
pressure as a result of the thinning of the liquid phase between the shell and the cantilever.
The degree of thinning describes the resulting force between the two surfaces, attraction or
repulsion, depending on their relevant position. In any case, the normal and tangential force
balances along with the isothermal compression are solved via finite elements. The elastic
tensions are described by appropriate constitutive laws, the disjoining pressure by the
derivative of an adhesive potential and the deformations are considered as axisymmetric.
Benchmark calculations against analytical results verify the validity of modeling. The results
of each model are presented in force-deformation curves, where the possibility of buckling
near the contact is investigated. In the first model, the response is initially linear (Reissner
regime) and when buckling takes place (Pogorelov regime) the response in non-linear curved
downwards. The linear solution is still an option after the buckling point, but has higher
energy than the buckling solution. A third non-linear curved upwards regime is detected in
relative high values of deformation in the post-buckling solution, as a result of significant
increase of the internal pressure in comparison with shell rigidity. The above regimes are
recovered also in the intermolecular forces model. In both models, the dimensionless bending
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stiffness, ﬁb, which defines the relative importance of bending rigidity in comparison with
stretching, specify the position of the bifurcation point. Microbubbles coated with polymer
have usually a relative small dimensionless bending resistance IZb ~10"°, which explains the
buckling behavior of experimental AFM force-deformation curves, while in shell covered with
lipid the dimensionless bending resistance is higher I2b~10*3, thus buckling is not the

energetically favorable solution, because the resistance to bending is high. In addition, when
adhesion is strong, the local buckling is translated to higher values of force and deformation or
in extreme cases postponed, because the shell is in significant attraction with the cantilever,
thus tensile tensions are developed which prevent buckling. The internal pressure tends to
increase when surface tension is accounted for, while the opposite happens when the shell has
residual compressive tensions, which also tend to low the buckling point. The above aspects
are studied via parametric analysis.

In addition, upon appropriate modification of the equilibrium equations, a similar study
is also conducted for free microbubbles, which are not covered with elastic material and they
response is governed by the surface tension and the internal pressure. In this case, buckling
was not detected, as it was expected, and their response in force-deformation curve is almost
quadratic. This study is usufull for nano-bubbles, which usually are not covered.

Employing the analytical equations for the linear and non-linear regimes, Reissner and
Pogorelov, respectively, on the experimental force-deformation curves of microbubbles coated
with polymer the Young modulus and the shell thickness are calculated simultaneously. The
results are in very good agreement with the experimental estimates. In addition, the force —
deformation curves of microbubbles covered with lipid monolayer are almost linear and in
high values of deformation a regime dominated by the gas pressure is detected. Combination
of Reissner equation with a Lulevich et al and Shanahan analytical results can provide the area
dilatation and the bending moduli. Perfoming simulations with both models the experimental
response is recovered.

The second problem that the present thesis studies is the buckling of the above
microbubbles subject to a uniform and normal static load in order to construct the bifurcation
diagrams for both types of materials. The same equations are solved, but the loading is known
and it is applied across the generative curve. Benchmark calculations against similar numerical
calculations and recovering the theoretical buckling load verify the validity of modeling.

In this problem, as the pressure increases, the shell is compressed, but remains spherical,
which is considered as the basic solution. When the load reaches the buckling threshold, the
jacobian matrix has one more unstable eigenvalue, where disturbing the spherical shape with
the corresponding eigenvector, the buckling curve emerges, with shapes that are asymmetric
or symmetric with respect to the equator.

In polymers, when the first instability is dominated by an asymmetric eigenmode, the
solution evolves only subcritically. The second instability on the spherical solution is
dominated by a symmetric mode and evolves transcritically. The shapes corresponding to
supercritical symmetric branch are prolate, while the shapes of the subcritical symmetric
branch are oblate. On the contrary, when the first instability is dominated by symmetric mode
is still a transcritical bifurcation, but the second instability on the sphere, characterized by an
asymmetric mode; it was not possible to evolve. However, the subcritical symmetric branch
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very soon exhibits a new unstable eigenvalue, which lead to an asymmetric branch. In any
case, the subrcritical branches as evolve exhibit a limit point, which turns the solution to loads,
which are higher than the buckling threshold. In the regime after the limit point, each branch
has one less unstable eigenvalue in comparison with the bifurcation point and additionally
their total energy is less than the sphere. The volume is reduced significantly and the poles
tend to form a contact zone. In the microbubbles covered with phospholipid, the above trend is
similar, but when the first instability is dominated by symmetric shapes, the asymmetric
solution is not evolving from the sphere, but either from the symmetric branch.

In the context of the present thesis, parametric analysis was contacted in order to

understand how the dimensionless bending modulus, Izb, defines the shape of the first

instability. The first instability for a microbubble with a relative small IZb IS symmetric with

prolate and oblate shapes, but as the dimensionless bending stiffness decreases the first
instability is asymmetric, thus forming one dimple of indentation in order to relax the

compressive tensions. Decreasing further the IZb one dimple is not enough for the relaxation of

the tensions, thus a second dimple is formed. It should pointed out, that when both post
buckling solutions coexist in the regime of relative small volumes and before the contact zone,
the asymmetric is always the solution with the lower energy. In addition, in shell covered with
lipid, where the gas compression is important in comparison with the elasticity, the limit point
of the subcritical branch leads to sharp change of the required loading, without significant
reduction of the volume, while in polymers after the limit point the volume must be reduced
significantly in order to form a contact line.
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APIOMHTIKH & GEQPHTIKH MEAETH THX XTATIKHX AITOKPIZHX
MIKPOD®YXAAIAQN ME EAAYXTIKO KEAY®OX XE OMOIOMOP®A KAI
KATANEMHMENA ®OPTIA-EOAPMOI'H 2XTHN EKTIMHXH I[TAPAMETPQN TOY
KEAYDPOYZ

Akkpnvn A. Avtpa
Movemoto Oeccariog, Tunpo Mnyovordywv Mnyovikov, 2017

Emprénov: Ap. Nikog ITehexdaong, Kadnynmge Yroloyiotikng Pevotodvvapikng

Hepidnyn

2V Tapovoa S100KTOPIKN datpiPr] LEAETATOL BE®PNTIKA KOl DVITOAOYICTIKA 1) GTOTIKY|
andkplon PuooAidmwv TOToL contrast agent (oxiaypa@ikd péco). To elacTikd mepiPANnuo TOL
TIG KOAVTTTEL Eivort Blro-cupuPatd Kot TapE el UNyovIKN avToyY] Kob1oTdVTog TeC KATAAANAES Yo
EPAPUOYEG OTMG 1 OTOYELUEV dlavoun @apudikov kot ameikovion maboAoyik®v otdv (in-
Vivo). O yopaktnpiopdg TV 1010THTOV TOL KEADPOLS, TOL HETPOL EAOCTIKOTNTOSC KOl TOV
HETPOL KApWYNG, elvatl KEVIPIKNG onpaciog yio ) PEATIOT Asttovpyia Tovg. Avo Pacikol Tumot
KEAVPADV GUVOVTAOVTOL GE QVTEG TIG EPAPUOYES: MIKpOQULGOAIDES EMIKOAVUUEVES LE TOAVUEPES
Kol KPOQUOAAIdES pe povég oTiBdoeg AMmdiov. O mpdteg yopaxtnpilovior and vymidtepo
UETPO EAACTIKOTNTOG O OYE0T UE TIC 0e0TEPES. Ta TeEdevTaio ¥pdVia TO LIKPOGKOTIO OTOUIKNG
dovaung (AFM) éxer avaderyBei onupoaviikd epyodeio yioo TNV EKTIUNGN TOV TOPOTAVED
WO0THTOV HECH TOV KAUTLADV OUVOUNG-TOPAUOPP®ONS. X& aVT TNV Katehluvon, apyikog
OKOTOG OWTNG NG JTPPNS eivor M HOVTEAOTOINGCT TNG OTOTIKNG OTOKPIONG QLUCAAIO®V
EMKOAVUUEVOV UE EAAOTIKO TTepiPANUa KaT® amd Tov TpdPforo Tov AFM kot ) avdmrtoén pog
pefodoroyiag yio TV EKTIUNGCT TOV EALUCTIKOV WOI0TATOV KoL Y10, TOLS 600 TOTOVS KEALPGOV.

210 mAaicto TG daTpPng Exovv avamtuydet 600 Bewpnrikd Kot apOunTikd povtéia yio
TNV TEPLYPAPT TOL TPOPANUOTOS TG EMAPNG HETAED TPofOrov kot PuoaAidag. O mpodPoiog
Bewpeitar o¢ po enimedn Kol amapolOPPOTN ETLPAVELL, EVO 1] QLGOMO TEPLYPAPETOL MG LU0
eEMIOTIKY] HeUPpdivn Kot TO 0€PLO0 OTO ECMOTEPIKO TNG MG GLUTIESTO. To TPOTO HOVTEAO givat
po omAn Becdpnomn oty omoio. OAO TO QOPTIO EIVOL CLYKEVIPOUEVO GTO TEAOG TNG YPOUUNG
EMOPNG, EVA OTO OEVTEPO O UNYOVICUOG (QOPTIONG TOL KEADPOVLG TEPLYPAPETOL UECH TG
nieong amoocHvoeong (disjoining pressure) g amoTéAEGO. TNG TOTIKNG AELTUVONG TG VYPNS
Qaong HeTaEL mpoPorov kot pkpoeuooiidag. O Pabudc Aémtuvong Tov LYPOL PLAU
TEPLYPAPEL TNV OLVOUN UETOEL TOV 0V0 EMQPOVEIDV, OTMOOTIKY 1 EAKTIKY, aVAAOyo TNV
oxeTiK] Tovg Béomg. Xe kdbe mepimtwon emAVOVTOL HECEH TEMEPAUCUEVOV GTOEI®V TO
16000Y10 0pBOV KOl EPATTOUEVIK®Y duvapemV, KaBndg Kot 1 e&lcmon g 1000epLOKPAGIOKNG
ovumieong tov aepiov. Ot EAOCTIKEG TAGEIS TEPLYpApovTol pe T Ponbela KOTASTOTIKOV
vOumv, M mieon omoohvoeong UEC® €VOC OLVOLUKOD TPOGPLONG KOl YIVETOL TOPAOOYT
aovikng ovppetpiog. H aomotio g apBuntikng pebodoroyiag £xel ereyybel ocvykpivovrog
pe avaioyo oavoAvtikd amoterécpato. To amotehécpato KAOe povtélov mePLypAeovTal
Kuplwg LE TN HOPEN KAUTVADY SUVOUNG- TUPALOPPOOTG, OTIG OTOieg dlePEVVATAL O AVYIGUAC
TOV KEADPOVG GTNV TEPLOYN TNG EMAPNS. ZTO TPAOTO HOVTEAD EMAPNS 1| ATTOKPLOT| EIVOL OPYLKA
ypapkn (meproyn Reissner), eved 6tav cvuPaivel Avyiopdg (teproyny Pogorelov) n koumdin
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yivetarl pn YpOUUKN He To KoiAa mpog ta Katw. H ypappikn Aon cvveyilel va vdpyetl kot
UETA TO onueio Avylopov, aArd yopoktnpiletal and TePlocdTEPT EVEPYELN GE GYECN UE TNV
Adon Avyiopob. Mia Tpitn, pn YPOppK He To KOTAO TPOS T TAV®, TEPLOYN TAPATNPEITAL GE
OYETIKA LEYOAEG TAPALUOPPAOCELS TNG LETAAVYICUIKNG KOl GCUVOEETOL LLE TNV CNUAVTIKY avEnon
NG E0MTEPIKNG TEONG O GYECT UE TNV EANCTIKOTNTA TOL KEADPOVS, MG OTOTELECUA TNG
ONUOVTIKNG peimong tov dykov. Ot Topamdve TEPLOYESG AVAKTOVTOL KOl GTNV TEPITTMOT TOV

HOVTELOL NG Tieong oamoovvdeons. e Kabe mepinmtwon 1o adidotato pETPo kapynme, K,
ONAadn o AOYog NG ovtioToong o€ KARWTM o€ OYECT HE TNV OVTIOTOON O E€PEAKLGUO,
kabopiler ) Béon tov onueiov Avywopod. Ta moAvpepikd KeADEN £YOLV GYETIKE KPS
Izb (~ 10° ) KO Y10 00T OTIC aVTIoTOLYES TEWPANATIKES Kapmodeg AFM mapatnpeitonr Avyiouog,

eV o€ KEADON KaAvppéva pe Mmidlo 1o ad1doTaTo HETPO KAUYNG Elval GYETIKA HLEYOADTEPO ,
~107%, ko1 £to1 0 Avyloudg dev eivar Tpotiuntéa Ao, kabmc N avtictaon o Kauyn eivat
oyeTkd peydAn. Emmiéov, dtav n mpoceuon gival woyvpr|, 0 TOmKOG AYIGUOG LETOPEPETOL
0€ UEYOADTEPEG TIUEG OVVOUNG-TOPAUOPPMOONG 1| OE OKPOIEG TEPUTTAOCELS OEV TOPATNPEITAL,
OTL 10 KEAWQOG Ppioketal oe onuavtiky €AEn pe tov mpoPoro, av&dvoviag £Tol TIg
EPEAKVOTIKEG TAGEIS TOV TPOSTATELOLY TOV AVYIopd. H empaveiokn tdon teivel va avénoet
TNV EC0MTEPIKN TEON, EVO TOPAUEVOLGES OMTTIKES TAGELS TEIVOVV VO TNV HEIDGOLV KOl VOl
peTaPépovy 10 onueio Avylopol oe younAotepeg TES. Ta mopamdve HEAETOVTIOL EKTEVADG
UEC® TAPOUUETPIKNG LEAETG.

EmmAéov, pe xoatdAAnAn tpomomoinon tov e£lodoemv 16oppomiog, yiveTonr ovaioyn
HEAETN YL QLGOAIdEC TOL dev elval KOALUPEVES HE €ANOTIKO mepifAnuo, ot omoieg
yopaxtnpilovior ®¢ eAeV0EPES, KoL 1] CUUTEPIPOPE TOVG SEMETAL GO TNV ETLPAVELNKT TACN
KOl TO €0MTEPIKO a€Plo. e OVTH TNV TEPIMTOON, AVYIOHOS Oev cvpPaivel TOTE, OTMC
AVOUEVOVTOY, EVAD 1 OTOKPION OTIS OVTIGTOUYEG KOUTOAES SUVOUNG-TAPOUOPO®ONG ival
oxeddv TeETpay®VIKN. Mo Tétoln mpoodyylon eivor ypioun ywo TV TEPIMTOON VOVO-
QLCOAId®V, OTIG OTOoieg OV VTLAPYEL EAACTIKO TTEPIPANLLOL.

A&omoidvtag avaluTikég oxécels TG PPAOYPAQiog Yo T YPOUUIKY] KOL 1) YPOLLLLLLKN
neployn (Reissner-Pogorelov) tov melpapatik®v KOUmuAmdy Yo QUOOASES EMKAAVUUEVES UE
TOAVUEPES, VTTOAOYILOVTOL TOVTOYPOVA TO UETPO EANCTIKOTNTAG KO TO TAYOS TOL KEADQOVG LE
TOAD 1KOVOTIOMTIKY] GUUP®VIO UE TIG TEWPOUOTIKES TIHEC. EmmAov, ol avtioTolyeg KOpmuAES
SOVOUNC-TIAPOLOPPMONG Y10 PUGOAIES EMKAAVUUEVES Le MO0 deV eRPavilovy HETATTOON
amd TN YPOUUIKY OTN U1 YPOUWKN TEPOYN, OAAL eivor ypoppikéc. Ze opketd pHeydn
TAPOUOPPMOT| TEIVOVV VO GTPEYOLV T KOTAQ TTPOG TAV®. L& QTN TNV TEPIMTMOOT 1) EKTIUNON
TOV EAACTIKOV TOPOUETP®V YiveTor cuvovdlovtag T oyéorn tov Reissner pye ) oyéon tov
Lulevich et al. kou Shanahan. IIpaypotomoli®vTag TPOGOUOUDGELG Kot e TOL dVO oplOunTIKd.
HOVTEAQ, BE®POVTAG TIG TOPAUETPOVS TOV VITOAOYICTNKOV LLE TIG TPONYOVUEVES HEBOOOVG, M
TEPOALOTIKY] ATOKPIoN KOl TOV VO TUTMOV (PLGOAIO®V OVOKTATOL 1O10{TEPO IKOVOTOUTIKA,
avadEIKVOOVTOG TNV 0pHOTNTA TWV VTOAOYIGUOV.

To devtepo mpOPANUa mov peretder m mapovoa dwtpPn eivor o Avyioudg TV
TPONYOVUEVOV KEAVP®OV 0TV cLUmELovial Vo Vv emidpacn evog OpolOpop@ov mediov
mieong, KAOBETO MG MPOg TNV EMPAVEIL TOL KEADQOLG HE OKOTMO TNV KOTOOKELY] TOV
SWYPOUUATOV SAKAGO®ONG Yo, ToOVg 000 TOOVG KeALP®V. Emidovtol ot idieg eElodoelg,
OMWG ToPOTAvVe, oAAG 1 EOpTion elvarl Yoot Kot emPAALETOL G OAN TNV YyeEvVETEPO
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KaumOAn. H a&lomiotio tov anoteAesatov Yo ovto 10 TpoPAnua £xet ereyyBel cuykpivovtdg
TO UE OVTIOTOLYO OPIOUNTIKA OTOTEAEGLLATO KOl AVOKTMOVTOS TN BempnTiki T ToV KPicHov
@opTiov AVY1opoY.

g ot T0 TPOPANUA, KaBdS 1 Ttieon avEdvetal To kKEAVPOG CLUTIECETOL, OALY TO GYNLLO
TOV TOPOUEVEL COULPIKO, TO omoio Bewpeitan wg N ook Avor. Otav o optio yivel ico pe
T0 KPIGO QOPTio AvYIGHoD, 0 Tivakag TG okoPavig &gt pio mapoamdve aotadn ot
OmoL O10TAPACCOVTAG TN OCQOIPIKY AVCN HE TO AVTIGTOLXO 1010010VUGHO, TPOKLITEL O
UETOAVYIGIKOG KAAOOG 0 omoiog yopoktnpiletol amd aGOUUETPO 1) CUUUETPIKA MG TPOS TOV
1ONUEPIVO GYNLLATA.

Otav n Tpod 0otddelo Thvw 6ToV SPUPIKO KAAOO TWV TOAVUEPDY Kuplapyeital amd
ACVOUUETPN 1O10HOPET, O KAASOC Avylopol ovamtdcoetor vrokpiowo povo (subcritical
bifurcation). H devtepn actdbeio 6tov 6Qaipikd KAAGO KUPLOPYEITOL OO GUUUETPIKY Ao
KOl OVOTTUGGETOL TOGO TPOS TO TAV®, OGO KOl TPOG TO KAT® TOL (QOPTIOL AVYIGHOV
(transcritical bifurcation). Ta oyfuoto tov vrepkpicyov (supercritical) coppeTpucod KAASOL
glval TEVIOUEVA GTOVG TOAOVG KOl GUUTIECUEVO, GTOV tonePVO (prolate), evd ta Gyt Tov
vrokpioov (subcritical) cuppetpikod kKAadov eivon temhatvopéva (oblate). Avtibeta, dtav n
TPAOTN 0oTAOE KUPLOPYEITOL OO CLUUETPIKN WOIOUOPPT, OVTH OVOTTOCGETOL EOVE KOl OTIC
o000 KatevBHvoelg, aAAd 1 devTEPT aoTAbEln TG SPaipag oL YapoakTnpiletol omd acOUUETPN
Wopopen dev eivar dvvatd va eehybel. Qo1660, 0 VIWOKPIGYOC GULUUETPIKOS KAGOOG
ypnyopa mapovctdlel pio akdpo aotadn 10T, TOv 00NYEl GE OGVUUETPO VTOKPIGILO
Ayopo. Xe kbbe mepintwon, kabmg eEedicoovtal ol vokpicotl kKAddot, epeovilovy Kpictpo
onueio (limit point), mov Tovg 0dNyei 610 va e&glryfovv e VYNAOTEPEG TEGELS OTTO TO POPTIO
Avyopo?. Xeg aut TV TEpLoyn o apliuog TV aotafdv W0TILOVY eival KaTd Eva AlydTepog o€
oxéon pe 1o onueio StukAadmong kol £xovv YOUNAOTEPT EVEPYELD AO TN oQaipa. XTnV
TEPLOYN QTN EMTAEOV 0 OYKOG EXEL LE®OEL ONUAVTIKA Kot 01 dV0 TOAOL TOV KEADPOLS TEIVOLV
Vo Tpoywpnoovv ot dnuovpyio {dOvng emaens. Xto kKeAVEN Amdiov M ewdéva eivon
TopoOpol, He TN Spopd Tmg, 6tav N TPOTN aoTdOeln €ivol CUUUETPIKN, OEV TPOKVTTEL O
ACVUUETPOG KAAOOG 00TE ad TNV oQaipa, aAAE OVTE IO TNV GLUUETPIKN AVOT).

210 mAaictlo g datpiPng S1elnydn mapopeTpikn HEAETN Yo VoL YIVEL KATAVONTO TG TO

ad146TATO LETPO KAUYNC, 12,, , KaBopilel 10 oyfua g Tpd g actdelag. o pio pucaiida pe

oxetwcd pkpd k,, n mpat oaotdbela efvar coppeTpikn, kobmg Opmg pewdvetor to Ky, M
1600VVOLLOL TO TTAYO0G TOV KEADPOVG, 1| TPMTY| 1OIOHOPPT EIVOL ACVOUUETPY, OOTE oynuaTilovTag
plo. pévo meployn e €vtovn Tapoapdpe®oT Vo HEWWOOVV Ol TAGELS 6TO KEAVQOS, KaODS M

petoon tov Kk, 1codvvapei pe avEnon tov emPavelakod HETPOV eAACTIKOTNTAC. Meubvovtag
TEPAUTEP® TO UETPO TAYOS TOV KEADQPOLE, Oev elval apketn pio mEPLOYN AVYIGUO Yo Vo
LEIOOEL TIC TACELS Kot £TGL Piot OEVTEPT] TEPLOYN UE AVYIGUO oynpatiletal, odNydvTag o€
CLUUETPIKE oyfuato. Oo Tpénet UG va onuelmbel 6Tt 6Tav GLVVTAPYOVY 01 SVO OLOUOPPES
0€ OYETIKA LKPOLG OYKOLS Alyo mpty amd T dnpovpyio {dvNg EmTaens, 0 ACVUUETPOG KAADOG
elvar avtdg pe ™ younrotepn evépyeta. Emmiéov ota keAven ond Aridio, 6mov 1 aviictoon
NG GLUTIESNC TOL aepiov elval CNUOVTIKN 0 OY£0T UE TNV EAACTIKOTNTO, TO KPIGIUO onpeio
(limit point) tov vrokpicipumv KAGSwV 0dNYel oe ypryopn adENGT TS OTOUTOOUEVNS TTiEONC,
Yopig va ivor amopoitnto va petmbel onuaviikd o 0YKoc. Xto ToAvpUePT avTiBETOC, HETA TO
Kpio1o onueio 0 OYKOG HELDVETOL CNUOVTIKE HEYPL va, emtevyBel {dvn emapnc.
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Ta KvpldtEpO GLUTEPACHOTO TNG TTAPOVCAS OTPIPNg cvuvoyiloviol GTo TOPAUKATE

onueio:

IIpoBAinua emoenc:

To poviého twv Sopoplok®v duvape®V givol €vo KOVOTOUO €PYOAELD, TTOL
umopel va mePLypayeL TIG TEPAUOTIKEG KOUTOAEG SUVOUNG-TAPAUOPPMOOTG Kot
Y10 TOVG OVO TVTOVG KEAVPDV (ToAVpEPT KOl LOVES OTIRAdES AMmidiov).

Ot ehooTIKEG WOOTNTEG  KPOPLGOAMO®MV  EMIKOAVUUEVOV UHE TOAVUEPES
umopodv  vao  ekTiunfodv  amd TG TEWPAUATIKEG  KOUTOAEG  OLVOUNG-
TOPAUOPPMOOTG HECH TNG UETOMTOONG omd TV ypauukn mepoyny Reissner
(mpo-Avyiopukn) ot un ypoupky Pogorelov (petd-Avyiopikn).

AteEQyovTag TPOGOUOIDGELS Y1 TIG IMKPOQUOOADES EMKOAVUUEVES e MTTidLo
dev mapotnpnonke Ayiopog. H otatikn tovg amdkpion apyikd akolovbel tnv
Aoon Reissner, 6mov 1o Pacikd 10oldylo givar petold TV avtiotdoewv AOym
GLUTIEONC KO KAUWYNG. XTN GUVEXELWD, T GLUTEPIPOPA YIVETOL UN YPOUUIKNY
(AS), omov kvplapyel n avtiotaon g ovumieong tov aepiov pali pe v
SLOYK®OGON TOV KEADPOVS GTNV TTEPLOYT] TOL IGNUEPIVOD.

Ot eAaoTiKéEG 1010TNTEG, ONAOON TO EMPOAVEINKO HETPO EAACTIKOTNTOS KOl TO
HETPO KAUYNMG, Y10 TIC LIKPOPLGOMOEG EMKAAVUIEVES e MTO10 pmopohv va
ekTiunBovv amd v petdfoon and v meployn Reissner otnv meployf mov
Kuplapyet n cvumieon tov agpiov.

H mopapetpucn pedétn oeiyver 011 10 adidototo pétpo kapyng kabopilelt v
Béon tov onueiov Avyiopov. Qotdco, 0TaV 1 TPAGELGOT TOV KEAVPOLS GTOV
TPOPoro elvarl onpavtiky, omouteitor peyaAvtepn OOvaun yio va Avyicel to
KEALPOG N OE MEPWTTMGELG TOAD VYNANG TPOGPUONG, TO KEALPOG dev Avyilet Ko
TOPAUEVEL TPOGKOAANUEVO GTOV TPOPOAO.

Ol TPOGOUOIDGELS OELYVOLV TG M YPOUUIKT] CUUTEPLPOPA, TOL TOPATNPEITOL
VIOVOL KOl OTIC TEPOUOTIKEG KOUTOAEG, €lval  ovvOoedepévn  pe TNV
eraoTikOTNTO.  AVTIOETOG, OTIG €AedBepec QLGOAIdEG dev  mopatnpeiton
YPOUKY amoKplon. Emopévmg, ot tukpo@uoarides mov gival EMKOAVUUEVES e
povy otPada  Aumdiov (Definity) pmopodv  vo  XOpOKTNPLGTOOV  ®G
1E®O0EM0OTIKEG OTEPEES LEUPPAVES.
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ALy paupoto S1akAd®onc:

. 2ta dwarypappato dStokAddmong n tpdTn actdfeia kKobopileTor amd TNV GYETIKY|
ONUOCio TOV PETPOL KAUYNG G TPOS TO EMPAVEINKO HETPO EAACTIKOTNTOC,
ONAad”n Tov AdLAGTATOV HETPOV KAUYNG |2b.

. Mo ovykekpyéva, oe OYETIKA HEYOAEG TIUEC TOL Izb N mpoT ootdbein
YOPOKTNPILETON a0 GULUUETPIKA GYNMOTE, VO KAOMG TO Izb LEWDVETOL TOL
oynuato yivovtol ocOUUETPO KOl OE €EOPETIKA YOUNAEG TOL le, N PO
aoTAOEL0 £YEL TAAL CUUUETPIKA GYTLOTOL.

. H evollayn omd CUPUETPIKE GE OGVUUETPO KOl TAAL GE GUUUETPIKE €lvan
ATOTEAEG O, TNG O0LPOPOTOINONG TNG OVTIOTAOTNG GE KAUYT GE OYECM UE TNV
OVTIOTOON 0 EPEAKVGUO/GUUTIEST] KOl GE GLUVOLOGUO LE TOV GYNUATICUO OVO
N &voc AoPdV oTOovg TOAOVG 0OMYeEl O€ EAOYIOTOMOINGY TNG GULVOMKNG
EVEPYELNG.

. Ot acOUPETPOL KAAOOL OVOTTOCCOVTIOL LOVO VTOKPICIUO, EVA Ol GUUUETPIKOL
0G0 VTOKPIGIUA OGO KO VTEPKPIGIULAL.

. 2TIC LIKPOPUGOMOEG EMKOAVUIEVES LE TOAVUEPEG, OTOV 1M TPAOTN aoTABEL
elval GUUUETPIKT, 1 ACVUUETPT) TPOKVTTEL QIO TOV CUUUETPIKO KAAOO ¢ AHon
Ko Oyl amd TNV Geaipa.

. 2T JMKPOPUGAAIDES EMKOAVUUEVES UE TOAVUEPES, OTOV M TPOTN aoTAdEw
elval GUUUETPIKY, 1| AGOUUETPT] ADGN VIAPYEL TAV® GTNV GPOipa MG deVTEPN
actdBela, oAAd dOev avomtuocetal. EmumAéov, otnv CLUUETPIKN Adon dev
mopatnpeitor véo aotdbelo mov umopel vo 0dNYNCEL GE OGVUUETPN, OTMC
ovpPaivel oto TOAVUEPT).

. Kabodg o1 vmoxpioyotr kKAGS0L ovomTOGGOVIOL TPOG TIUEG YOUNAOTEPES TOL
eoptiov Avyiopov, eppavifovv kpiotpo onueio kot givar ypopuputkd svotadeic.
Metd 10 Kpiowo onueio avamtdooovtol oLEAVOVTOG TNV OTOLTOVUEVT
e€otepkn mieon kot TOAD GUVIOUO 1| GUVOAIKY] TOLG €VEPYEWD YiveTon
yopnAotepn omd v oeaipa. H Avorn moapaxolovbeitoar péypt oynpatiopod
Lovne emaeng, omAadn péxpt ot 0vVo mOAol va €pBovv moAD Kovtd. o tov
EVIOTIOUO ADGEMV LE TANPN ETOPT ATOLTEITOL VEOG LOOMUATIKOS POPLOAITUOG.

. Télog, ota moivpepn n Lovn emaeng eviomiletal o€ TOAD YOUUNAOVS GYKOVS Kot
avtiotoryo VYNAN vrepmiéon. Avtifeta, oto Mol PHETA TO Kpioo onpeio n
VIEPTHEST] QVEAVETAL GYETIKO OTOTOUM, OTOTPEMOVIOAG TN AVON Vo Thel o€
YOUNAOVS OYKOLG. AvTh &ivor pion ONUOVTIKY Sapopd GTOLG OVO TLITOVLG
KEADQ®OV Kol €ivol amoTEAECUO TNG ONUAVTIKNG OVTIGTOONG GE GLUTIEST] TOL
&yovv to Mmidw o oyéon pe ta moAvpepn. ‘Etol, ota mpdto amotpémeTon n
ONUOVTIKN Helmon Tov O0yKov, dote vo punv avénbel ko yiver akdpo mo
ONUOVTIKN 1] ECOTEPIKT TEST, TOV OV Bl 00MY0VGE GE 1G0pPOTTiaL.
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Chapter 1. Introduction

In the first chapter introductory ideas are discussed about the motivation, the
existing literature on the topic and the rest of the dissertation is briefly
outlined. The major area of application of microbubbles is the medical imaging
and drug/gene delivery systems. The appropriate modeling of their elastic
properties is a key in order to optimize their static and dynamic response.
Force-deformation curves of their static response have been mainly
investigated experimentally with the atomic force microscopy. Current
asymptotic models estimate the Young modulus from Reissner theory, while the
shell thickness is assumed as known. Available numerical studies on the
simulation of a microbubble are very limited and more applicable in polymeric
shells. Bifurcations diagrams are well known in the literature, but the inert gas
compressibility, and the effect of surface tension and constitutive law are not
accounted for. The present dissertation aims at contributing in the research on
microbubbles by investigating the above aspects.

1.1 Motivation

The last decades coated microbubbles have received significant attention in the field of
medical imaging and drug/gene delivery. Gramiak and Shah [1] were the first to use
microbubbles in order to enhance ultrasound images. Since then, scientists and manufactures
make a great effort in developing and optimizing their structure and properties. Initially, air
microbubbles without coating were introduced and therefore they had small life time in vivo
[2]. Nowadays, coated microbubbles, also known as contrast agents, have emerged as
powerful contrast enhancers in medical imaging via ultrasound [3, 4] and as drug/gene
delivery vectors [2, 5] with highly localized impact on selected tissue. Their viscoelastic
coating plays a central role in stabilizing them against dissolution while adding targeting
ligands along with an extra oil layer dissolving the therapeutic agent allows for efficient
targeting and drug release [2, 6] near specific tissue where therapeutic treatment is required.
Sonication provides the means to control the dynamic response of the microbubbles. Figure
1-1 illustrates schematically three possible ways of drug release into a blood capillary and in
Figure 1-2 clinical imaging with microbubbles of vital organs is compared against
convectional imaging. Moreover, in both applications with contrast-agent microbubbles
paramagnetic materials, such as contrast liquid media for MRI, or short wave length radiation
for X-ray, even the chemotherapeutic agents, are not required and therefore the side effects for
patients are less, since the dosage does not affect the entire body, is more frequent and has
better resolution [7], but at the moment the cost is relatively high, thus treatment with
microbubbles is not yet introduced in clinic. Furthermore, it is not only their small size that
makes microbubbles suitable for the visualization of very small blood capillaries, but also
their ability to oscillate nonlinearly in response to ultrasound waves near the walls of small
capillaries that mostly behave as linear scatterers. Thus, they have been successfully used for
treatment in the liver [8], kidney [9] and heart [10] among others.
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Figure 1-1: (a) Ultrasound contrast agents are freely circulating in small vessels along with drug
particles (blue). Once a sufficiently strong ultrasound pulse is applied to the area, the contrast agent
expands rupturing the endothelial lining. Drug is then able to extravasate. (b) Drug-laden ultrasound
contrast agents are freely circulating throughout the vasculature. A pulse of ultrasound is applied and
ruptures the contrast agent, thereby liberating the drug payload. Because ultrasound is only applied in
the region of interest, drug is preferentially delivered locally. (c) Drug-laden ultrasound contrast agents
baring surface ligands targeted to specific endothelial receptors are freely circulating. The ligand
preferentially binds the ultrasound contrast agent in the target region, increasing local agent
accumulation. An ultrasound pulse is then applied liberating the drug payload. Figure and legend
adopted from ref. [2].

Coated microbubbles have an initial diameter from 2 to 5 um and the shell coating is an
elastic biomaterial with thickness 5-50 nm, Figure 1-3. The core contains a gas phase , usually
nitrogen, CO, or perfluorochemicals [11], see also Table 1-1, which produces the local density
gradient that is vital for the ultrasound. To this end two major families of coated microbubbles
are normally employed, namely those coated by polymeric and phospholipid shells. The
former type shells are characterized by larger elasticity modulus hence they are identified as
«hard», whereas the latter are characterized by, relatively, smaller elasticity modulus and a
thinner shell hence they are identified as «soft» and more deformable shells. Phospholipid
shells are also more amenable to chemical treatment so that they can be attached to
neighboring tissue and consequently are better suited for drug delivery applications.
Moreover, phospholipid monolayers are self-assembly structures and their hydrophobic tail is
oriented to gas phase. Both numerical and experimental studies [12, 13] suggest that the
backscatter signal during an ultrasound measurement is strongly depended on the shell
properties (elasticity, thickness, material non linearity, viscosity, etc.).

Accurate estimation of their elastic properties is a key to design and predict their
response in biological capillaries or tissues. Thus, in this context the present thesis aims at
developing a numerical/theoretical model in order to calculate and characterize the elasticity
properties of the coating by employing the theory of shells in conjunction with the appropriate
numerical techniques.
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Figure 1-2: The comparison of side by side contrast enhanced ultrasound (CEUS) specific image
(color) versus standard ultra sound (US) B-mode image (grayscale) for (a) a liver arterial hemangioma
and (b) a liver metastasis. Both lesions are clearly visible in the contrast specific images but not the
standard B-mode images. In the contrast specific images, the haemangioma is shown to be surrounded
by a ring of contrast enhancement [arrow in (a)], while the metastasis is shown as a dark area [arrow in
(b)]. (c) CEUS image and (d) nonlinear Doppler CEUS image of a rabbit kidney vasculature.
Nonlinear Doppler shows additional information including the direction of flow (blue and red) as well
as microcirculation information (green). Figure and legend adopted from ref. [4].

Targeting ligand

Bubble shell
Drug in oil phase

Gas phase

Figure 1-3: Schematic representation of a microbubble constructed for drug delivery. Figure adopted
from ref .[14].
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Name Shell (stiffness) Gas (solubility) Size (um)
Albunex Albumin H Air H 4.3
Quantison™  Albumin H Air H NA
Optison™ Albumin H Octafluorpropane L 4.5
MP1950 Lipid L Decafluorobutane L 2.0
PESDA Albumin NA Decafluorobutane L 4.7
Definity Lipid/surfactant L Octafluorpropane L 1.1-33
Imagent Lipid/ surfactant L elegrnoegen/perfluoroh L 6.0
Sonovue Lipid L Sulfur hexafluoride L 2.0
BR14 Lipid L Perfluorobutane L 2.6
Levovist Lipid/Galactose L Air H 2.0-4.0
biSphere™ Polylactide/albumin ~ H Nitrogen H 3.0
Acusphere Polylactide NA Perfluoropropane L NA
Sonazoid Lipid/surfactant NA Perfluorobutane L 2.2
ST68-PFC Lipid/surfactant L Decafluorobutane L 1.8
Sonavist Cyanoacrylate H Air H NA

Table 1-1: Microbubble contrast agents Shell stiffness is noted as high (H) and low (L) and gas
solubility is noted as high (H), low (L) or not available (NA). Table adopted from ref. [11].

1.2 Atomic force microscopy experiments

Although the ultrasound environment is the area of application of contrast agent
microbubbles, an acoustical experiment cannot easily provide the elastic properties of the
shell, because a lot of parameters must be taken into account. In case of an acoustic
experiment/simulation the shell is treated dynamically [15-19] and apart from the elasticity,
the viscous stresses from the shell and/or the surrounding liquid must be also considered
providing an accurate but more complex picture in the attempt to characterize the material
coating where dynamic effects may also play a role. However, during of a static experiment
the number of the involved parameters is smaller and more easily controlled. Toward this
direction, the atomic force microscopy (AFM) has been successfully used for the visualization
of three dimensional shapes (topography and roughness) and it is also possible to perform
force measurements. The AFM was developed by researchers who tried to extend the scanning
tunneling microscope (STM). In 1986 Binnig and Quate demonstrated [20] for the first time
that AFM is a capable tool that could measure forces less than nN and until nowadays the
AFM has been developed performing accurate measurements of thin films [21], living cells
[22, 23] and artificial vessels [24-27], such as contrast agent microbubbles. More details on
the operation principles and the physics of a modern AFM can be found in [28].

In the present dissertation, the experimental force-deformation (to be referred to as f-d
henceforth for brevity) curves obtained with an AFM for microbubbles with polymer by
Glynos et al. [29] and lipid by Bucher Santos et al. [30] coating are employed, in order to
estimate their elastic
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Figure 1-4: Force-deformation curves for microbubbles covered with polymeric biomaterial obtained
by the AFM [29] (@) k.=0.67 N/m and (b) k.=1.14 N/m.

properties, namely Young and bending modulus. The choice of these two material coatings is
based on the fact that they are quite different from each other in terms of their elasticity
modulus and the results could collectively characterize the properties of a whole group of
microbubbles that are typically used in ultrasound medicine.

During the AFM experiments the microbubble is attached to a petri-disc, which is
located under and parallel to the cantilever. When the measurement starts the cantilever
compresses the microbubble and through the detector, a software records force and
deformation. It must be noted that the actual procedure is much more complicated and beyond
the scope of the present thesis, however, the reader could find more details about the
experiment operation and the sample preparation in the available literature. Moreover, the
measurements are performed by keeping the velocity of the cantilever at 6-7 um/s; therefore it
could be assumed that the shell is in quasi-static equilibrium. Also, a similar experimental
study [25] suggests that the f-d profiles are not affected by the cantilever velocity. In any case,
the shell radius is directly measured by the microscope.

As it is already mentioned the polymeric coatings result in stiff shells with elasticity
modulus on the order of GPa. This becomes mostly evident by the f-d curves of Glynos et al.
[29], which show that the required force is up to 400 nN in order to obtain a deformation of
almost 150 nm. Their work contains an extensive number of f-d curves using tipless
cantilevers with different stiffness (k;). Moreover, the shell thickness is estimated by a linear
relation provided by the manufacturer [31].

The f-d curves obtained by a cantilever with stiffness k.=0.61 N/m have three different
regimes; see Figure 1-4(a). An initial nonlinear regime, denoted with 1 occurs for very small
values of the applied force, on the order of 10 nN and less, where the Albumin outer layer
(thickness: ~10 nm) and intermolecular/surface adhesion forces between the shell and the
cantilever are conjectured to participate in the dominant force balance with elastic forces. As
the external load increases a linear regime appears, denoted with 2, followed by a nonlinear
regime, denoted by 3, that is curved downwards. The linear regime is the Reissner [32, 33]
regime where stretching and bending forces coming from the stiff polylactide shell balance
each other over a flattened contact area that characterizes the microbubble shape. This is the
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part of the f-d curve that is typically used in the literature in order to infer the shell elasticity
modulus once the shell thickness (h) and radius (R,) are known [24, 29]. The third regime
occurs as the external load further increases and it is known in the literature as Pogorelov [34]
regime. It appears as the compressive load on the flattened part of the shell exceeds a certain
value, in which case the shell bents forming a crater at the pole region while a dimple forms at
some distance from the pole where most of the bending energy is stored. The f-d curves
obtained by a cantilever with stiffness k.=1.14 N/m they have initially the same three regimes
as it is already described, but they have two additional regimes after the third, see also Figure
1-4(b). So, the fourth regime is an almost linear curve with zero slope, that is associated with
the post buckling stage and the final regime is described by a linear curve with positive slope.

On the other hand, the lipid coatings [30] are softer and for deformation up to 500 nm
the required force is only 12 nN, since their Young modulus is in the order of MPa. In this set
of measurements the employed cantilevers have lower stiffness k.=0.25 and 0.07 N/m and the
shell thickness is assumed to be 5 nm for all the interrogated microbubbles.

In contrast with the f-d curves obtained from polymeric shells, f-d curves from lipid
shells is quite different, Figure 1-5. In particular, the above regimes are not identified and
most part of the curve responds linearly, indicating that Pogorelov regime is bypassed by an
extended regime that is characterized by an almost flat contact region, e.g. buckling is not
taking place. It is also important to notice that the required force for the shell deformation is
not only quite small, but it is also on the order of intermolecular forces resulting by the
interaction of two bodies approaching each other. Moreover, between the cantilever and the
shell a thin film of water is formed, due to the hydrophilic nature of the lipid head, which is
compressed as the cantilever approaches the shell. The compression of the water film causes a
local pressure change in comparison with the bulk aqueous phase, known as disjoining
pressure [35, 36]. Thus, apart from stretching and bending tensions, the disjoining pressure
also contributes to the force equilibrium and stabilizes the shell, which remains attached to the
water-cantilever interface thus delaying or even bypassing buckling. This argument is verified
by calculations of the present thesis that conform with the absence of shell buckling. However,
the current experimental set-up for both type of materials does not allow for side view photos
in order to investigate experimentally the shell buckling. Moreover, Bucher Santos et al. [30]
confirm that Reissner linear equation does not provide a reliable estimate of the shell elastic
properties. They also consider the model proposed by Lulevich et al. [25] where bending
dominates very small deformations whereas stretching dominates at larger deformations. They
consider the latter model as more reliable that Reissner’s theory without, however, arriving at
any conclusive procedure for estimating shell elastic properties.
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Figure 1-5: Force-deformation curves for microbubbles covered with lipid biomaterial obtained by the
AFM [30].

In addition, the thin water film exists not only in lipid experiments, but also in the above
experiments for polymers. The only reason for not taking into account its effect is that the
resulting disjoining pressure is negligible compared with the elasticity modulus of polymers.
Finally, there is one more significant difference between polymers and lipids, which is
considered in the present thesis: the shell thickness. The former type of coating is a stiff
material and is therefore described by classic shell mechanics [37], i.e. the bending modulus is

a function of the area dilatation modulus(kb ~ ;(hz). On the other hand, the bending stiffness

and area dilatation modulus are treated as independent parameters for lipid monolayer and
bilayer shells, [38, 39].

1.3 Literature review

Doubly/singly curved with positive or negative curvature, the shells have always been in
the center of interest for engineers and scientists, because they usually are light constructions,
which guarantee stability and architectural design. Most of them are inspired by the nature,
like water drops, egg shells and bones. In the history of mechanics, the theory and the
governing equations have been initially developed mainly for artificial shells, like tanks,
domes and pipes, where Timoshenko [37], Landau [40] and Reissner [32, 33] had been
working and developing the field since the early ‘30s. Meanwhile, the advances in medicine
since the early 1970’s as they are described in session 1.1, demand appropriate design and
optimization, which is a highly interdisciplinary area, including chemistry, engineering,
material science, medicine etc. The present thesis investigates the elastic properties and the
static response in the context of classic shell mechanics.

In the literature the elastic properties of contrast agent microbubbles, namely Young and
bending modulus, have been mainly studied experimentally by the AFM and the resulting
force-deformation curves are fitted with available asymptotic equations. In the following,
relevant studies from the literature will be reviewed in order to describe the available models
and their applications/limitations. The experiments from Glynos et al. [27, 29] and Bucher
Santos et al. [30] will not be further discussed in the present session. Lulevich et al. [25]
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Figure 1-6: Force-deformation curves obtained by (a) Lulevich et al. [25] and (b) Elsner et al. [41]
with the AFM.

perform AFM measurements for polymeric microbubbles (poly-DL-lactic acid (PLA) and
monodisperse melamine formaldehyde (MF) particles) using a cantilever with a spherical tip,
and the f-d profiles they obtained are similar with the ones presented by Glynos et al. [29],
Figure 1-6(a). In the same paper, they have developed an asymptotic relation, based on classic
elasticity theory, where it is assumed that the bending term could be omitted in relatively high
values of deformation. The resulting Young modulus is about 1-100 MPa and by comparison
with an experiment on osmotically induced deformation of the same microbubbles, it was
found to be an order of magnitude lower [42]. Moreover, Elsner et al. [41] study the
deformation of polyelectrolyte multilayer capsules (polyallylamine and polystyrene-sulfonate,
PAH/PSS) and estimate the Young modulus based on Reissner theory, Figure 1-6(b). It is of
interest that in their work they examine the validity of Reissner theory for such experiments
via FE simulations (Abaqus), since the Reissner analytical solution is more suitable for point
loading whereas, on the other hand, the AFM cantilever is an extended plate. They prove that
Reissner theory is an accurate analytical solution for AFM experiments with tipless cantilever
as far as small deformations are considered and for microbubbles covered with materials that
have relatively high Young modulus, thus, they behave as the conventional shells. Moreover,
the effect of temperature in shell stiffness is investigated for phospholipid microbubbles [43]
and for air or liquid filled capsules [44] by employing the AFM and Reissner theory. They
found that increasing the temperature from 10 to 37 °C the shell stiffness decreases
significantly.

On the other hand, studies that simulate the compression of a microbubble under the
AFM are very limited and most of the available numerical results refer mainly on the general
problem of the compression of an elastic shell by a rigid and flat surface. Such calculations are
more suitable for microbubbles covered with a polymeric biomaterial, as their behavior is
closer to convectional shells. Hertz [45] was the first to formulate the contact between two
elastic spheres. In his work, Hertz estimates the contact pressure to be a quadratic function of
contact length, assuming frictionless contact. Updike and Kallins in a series of papers [46-48]
solve the problem of the compression of an elastic shell under a rigid and flat surface. Initially

Institutional Repository - Library & Information Centre - University of Thessaly
14/06/2024 17:55:28 EEST - 52.15.49.141



they perform stability analysis and they prove that for small deformations the shell and the
plate stay in contact, but with further increase of the external load buckling takes place. The
first buckling is axisymmetric and occurs when the contact angle is about to 8°, however in
higher values of deformation they observe non-symmetric buckling. Moreover, they estimate
the contact pressure to be an almost zero function along the contact area, except the end of
contact, where the pressure takes in infinite value. Therefore, they suggest that the pressure
load could be simulated by a point load at the end of contact. Furthermore, Johnson, Kendall
and Roberts (JKR) [49] extend Hertz theory accounting also for surface energy. They estimate
analytically the force required for separation of two elastic spheres, which was found to be
proportional to sphere radius and surface energy. They also conclude that the surface energy
for high elasticity modulus materials is negligible and vice versa for softer materials. Lately,
Shanahan [50] modify and extend the JKR theory in order to calculate the pull-off force
between an elastic shell and a rigid plate, assuming a linear material and isothermal
compression for the inert gas. Shanahan’s solution predicts a pull-off force 33% smaller
compared with JKR solution.

In addition, a significant amount of research has been carried out on the 3D deformation
of spherical elastic shells subject to a concentrated point load [51], or under a flat surface [52]
at static conditions or subject to an external Stokes flow [53]. Most of them report that initially
buckling is axisymmetric while for higher values of deformation 3d buckling wrinkles are
observed. Regarding this, the present thesis treats the shell as axisymmetric, since in the
experimental data the deformation is relatively small.

Moreover, another major group of publications that is in the center of interest of the
present thesis is the one of buckling of elastic shell subject to a uniform pressure. Timoshenko
[54] has calculated the critical buckling load for small deformations and linear material in
which the shell from a compressed sphere buckles into an axisymmetric or symmetric shapes.
Koga and Hoff [55] solve numerically the problem of a spherical shell under uniform pressure
with an initial geometric imperfection. The first buckling is characterized by an asymmetric
mode, while the second by a symmetric. The post buckling behavior of elastic tubes with
opposite sides in contact is investigated by Flaherty et al. [56], where they calculate the value
of the required pressure for contact, as function of the number of pods. More recently, Gao et
al. [42] investigate experimentally the osmotic buckling of polyelectrolyte capsules and they
observe buckling instability with asymmetric shape. The buckling behavior of elastic capsules
in shear flow has been studied by Walter et al. [57] for prolate or oblate shapes and by
Ramanujan and Pozrikidis [58] for spherical and non-spherical initial shapes. The dynamic
buckling and stability of contrast agent microbubbles are investigated numerically by Tsiglifis
and Pelekasis [13, 38] subject to acoustic disturbances. They prove that the elasticity
parameters and the constitutive law control the buckling by performing an extensive numerical
and parametric analysis. Vlachomitrou and Pelekasis [19] have developed a numerical method
for the dynamic behavior of a contrast agent microbubble when the viscous forces are
accounted for. Thus, the dynamic evolution is captured until static equilibrium. The static
shapes are obtained also in the post-buckling regime characterized by asymmetric or
symmetric modes. Efthymiou and Pelekasis [15] investigate the dynamic response of
encapsulated microbubbles near a rigid wall, assuming inviscid and incompressible flow. They
observe dynamic buckling and a variety of post-buckling symmetric or asymmetric shapes.
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Moreover, jet formation was not detected, since the shell elasticity and viscosity balance
external disturbances. Knoche and Kierfeld [59] have studied numerically the static buckling
of spherical soft shells under negative pressure or reduced capsule volume. They employ the
equations of equilibrium and by minimization of total energy they demonstrate a rich
bifurcation behavior. They examine two major categories of capsules regarding the ratio of
bending modulus with respect to the area dilatation modulus. In both types of capsules the first
bifurcation is dominated by an asymmetric mode, followed by a symmetric bifurcation. Their
calculations allow also for the contact of two opposite sides, thus in extremely small shell
volumes, asymmetric or symmetric shapes with an extensive contact area are evaluated.

The surface energy between two bodies in contact has been an area of research for a
long time, when Young [60] described the balance of energies between three phases: Solid,
liquid and gas, as function of the apparent contact angle, and later Young and Laplace [35, 36]
quantify the capillary pressure difference across two static liquids as function of the surface
tension. However, when the problem comes up to the scale of molecular dimensions, forces
rising by the electrostatic interaction of molecules must be also considered. In this case, the
Young-Laplace equation has an additional term referred to as disjoining pressure. The
disjoining pressure is expressed as the derivative of the potential energy, which describes the
interaction of two bodies that approach each other. The idea of disjoining pressure is widely
used when soft matter, like lipid shells, are considered: Kalliadasis and Chang [61] employ the
disjoining pressure in their formulation in order to estimate the contact angle of a gas-liquid
meniscus by the balance of capillary, viscous and intermolecular forces and they use a long
range attractive potential. They investigate the asymptotic behavior of the contact angle as
function of the capillary number and intermolecular forces. Moreover, Chamakos et al. [62]
perform simulations of a drop resting on a patterned surface by employing a short range
repulsive-long range attractive energy potential. Various wetting equilibrium states were
found and their stability was investigated. Accordingly, Blount et al. [63] investigate a vesicle,
that has only bending resistance, adhered to a substrate. In this fashion, they calculate static
shapes by employing the balance between disjoining pressure, bending resistance, surface
tension and pressure difference between the vesicle interior and the ambient phase. They also
provide an extensive asymptotic analysis in order to determine the main force balances across
the vesicle surface. They show that around the transition region, defined between the adhered
area and the outer shell, the bending resistance balances the disjoining pressure and in the
outer region bending resistance is equally important as the pressure difference. Lipid bilayers
adhered to a flat surface are also simulated by Cantat et al. [64] with a long range attractive-
short range repulsive potential. And finally, Leite et al. [65] in their review suggest when that
the AFM measurements can be modeled with a potential energy function.
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1.4 Novelty and scientific contribution of the dissertation

As it can be gleaned from the above review, in all of the available studies for the
estimation of the elasticity properties, the shell thickness is treated as known, while the Young
modulus is estimated most of the times based on Reissner theory for both lipids and polymers,
even though the main concertation of literature is on polymers. Thus, the present dissertation
aims at presenting a novel method to estimate simultaneously both Young and bending
modulus from the force-deformation curve. So, the proposed relations are an additional tool
especially for experimentalists that perform AFM measurements and wish to estimate the
above properties, without prior knowledge of the shell thickness, which is usually provided by
the manufacturer or is based on empirical observations.

Secondly, two numerical models that, not only recover the AFM experiments, but also
explain the mechanisms of deformation of microbubbles have been developed in the context
of present thesis. In particular, the former model based on classic shell mechanics verifies that
the behavior of polymeric shells is closer to convectional shells. The latter has been developed
for shells covered with lipid, where the effect of intermolecular forces is accounted for. A
modification of the second FE model verifies that lipid shells behave like elastic shells and not
like surfactants. Moreover, the inert gas is treated as ideal and its compression is investigated.
The effect of pre-stress is also accounted in both models justifying that some of the
microbubbles have experienced some gas leakage.

In addition, the microbubbles are investigated subject to a uniform pressure and
bifurcations diagrams of their static buckling and stability are demonstrated, when the gas
compressibility and surface tension are accounted for. Through a parametric analysis is
showed that for shells with relative high elasticity modulus the first buckling is dominated by
an asymmetric eigenmode, which followed by a second symmetric buckling. However, in
softer shells the first buckling is characterized by a symmetric shape. In both cases a limit
point was detected in the secondary branches, associated with a change in the number of
negative eigenvalues. Moreover, the gas compressibility and surface tension tend to increase
the effective stiffness of the shell and the value of critical buckling load, in comparison with
classic buckling, where stretching and bending are the only terms that balance the external
load.

The above models contribute in the relevant scientific research on the static deformation
of microbubbles.
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1.5 Thesis outline

The rest of the thesis is divided into six chapters from chapter 2 up to 7, where the
governing equations, along with results and conclusions are discussed. More specifically:

In chapter 2 all the governing equations that describe each problem are presented. The
first part of the chapter 2 contains some preliminary relations form differential geometry. In
the second part the elastic tensions, moments and the constitutive laws are reviewed. The
formulation of the microbubble under the AFM is in third part of the chapter 2 and it is
investigated separately for the different types of microbubbles. Therefore, a subparagraph
contains the equations for a polymeric microbubble and a following subparagraph contains the
formulation for a microbubble covered with lipid biomaterial. In the fourth part of the chapter
2, the microbubble is investigated subject to a uniform pressure field. Finally, the concept of a
pre-stressed elastic shell is studied and the residual stresses are calculated.

In chapter 3 the finite element methodology and the discretized equations are defined.
Initially, the basis functions are presented and they are followed by the weak formulation. In
the same part of the chapter 3 the Newton-Raphson method is reviewed, along with
continuation techniques. At the end of the chapter 3, a paragraph consecrates on benchmark
calculations and comparison with available results from the literature.

In chapter 4 numerical results employing the formulation developed for the contact
problem are presented. In particular, the chapter is divided into three paragraphs with
numerical results pertaining to the classic contact model, the intermolecular forces model and
the case of a free microbubble, respectively. In any case, an initial microbubble is
investigated, which serves as a reference and then parametric study is performed in order to
investigate the effect of different parameters on the shell equilibrium. The main results are
demonstrated in force-deformation curves and energy-deformation curves, along with the
shape of the microbubble in deformed configuration.

Chapter 5 contains the bifurcation diagrams (pressure-volume) for both microbubbles
covered with polymer or lipid. The total energy and eigenvalues of the post-buckling solutions
are investigated in order to characterize the stability of each branch. An extensive parametric
analysis is also carried out in order to highlight how the different parameters change these
diagrams.

In chapter 6 the analytical solutions developed by Reissner and Pogorelov for the linear
and non-linear regimes of the force-deformation curves, respectively, are demonstrated in
order to estimate the slopes of the relative regimes in experimental force-deformation curves
and estimate simultaneously the Young modulus and the shell thickness. In addition
asymptotic analysis is performed in order to understand better the numerical results especially
for the intermolecular forces model. Furthermore, a novel methodology for estimating the area
dilatation modulus and bending stiffness is proposed, by coupling the slope of the
experimental curve in the bending stiffness dominated Reissner regime with the cubic
dependence on deformation in the gas compressibility dominated regime for microbubbles
covered with phospholipid.

Finally, in chapter 7 the main findings and conclusions are discussed, while at the end of
the chapter some ideas are presented for future work.
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Chapter 2. Problem Formulation

The second chapter contains the governing equations defining the geometry of
the problem, the constitutive laws and equilibrium equations, in order to
formulate the response of a coated microbubble subject to a static load. The
shell surface is regarded as axisymmetric and it is parameterized by a
lagrangian variable. The elastic coating develops internal elastic tensions and
moments in order to balance the external forcing. Three constitutive laws are
examined, namely Hook, Mooney-Rivlin and Skalak, in order to investigate
different material response (linear, strain-softening and strain hardening). The
formulation of polymers and lipids under the AFM is investigated separately. A
classic contact model is adopted for the former case, a model with
intermolecular forces for the latter and simulations were performed in order to
conduct an extensive parametric study for both cases. Moreover, the
microbubble is also investigated subject to a uniform pressure field. Finally,
the effect of pre-stress is discussed in terms of residual strains and stresses.

2.1 Lagrangian Description

In the present thesis a microbubble is investigated subject to different types of static
loads and materials. Nevertheless, in any case the interface of the microbubble is considered
as a group of lagrangian particles, where every particle described by a relevant variable ¢,
which takes values in the interval [0, 1] corresponding to the first and final node of the
physical domain, respectively. Upon introducing the independent variable &, is it possible to
describe complex shapes of the interface by following these particles. Therefore, the spherical
coordinates for an axisymmetric surface can be written as function of &

r=r(&) and 6=0(¢&) for 0<¢&<1 (2-1)
Moreover, the normal and tangential vectors of any node are written as:
N=rog -rg, f =rg+r6g and T =rsinde, (2-2)

where, € ,€,,€, are the unit vectors in spherical coordinates and s denotes the arc-length along

the generator curve (meridional plane for ¢=0) and when it is used as subscript denotes
differentiation [66], see also Appendix A. It is also possible and more convenient to write the
unit vectors in terms of & After introducing the relation of arc-length s with &, eq. (2-2) reads

e et t=% and T =rsingg, (2-3)

ds s a0 \U2 . .
where s, :—:(ré +r 6’5) , see also Figure 2-1. In the same way, when & is used as
dg

subscript denotes differentiation. Moreover, in Figure 2-1, z and o, denote the axes of a
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relevant cylindrical coordinate system for ¢=0, with the same origin as the spherical one. It
must be noted that when the microbubble is investigated under the AFM, it is taken to be

symmetric with respect to the equator, i.e. 96[0,%:', Figure 2-1(a). However, in the case

where the microbubble is investigated under a uniform pressure, this symmetry is not
considered, i.e.0 €[0, 7], because asymmetric configurations with respect to the equator are

also possible, Figure 2-1(b). After introducing the unit vectors of the surface, the curvature
tensor can be defined as:

B=V.i (2-4)

with its components in the covariant (a],éz,ﬁ):(ts,fw,ﬁ) basisto be b; =a,-B-a;,i,j=12 .
— — 2 . .
V. is the surface gradient operator with: Vv, :Za'ﬁ, u,=s and u,=¢, and &are the

(-1) &, xn

————— 1,jJ=12 and i# j. The principal curvatures and
@& i

contravariant vectors: a =

directions are computed via diagonalization of B matrix:

2
_ r§0§+r(r§H§§_r§§H§)+%:.O-§Z§§_O-§§Z 1

1 s 3 3
S; S: S; I, (2-5)
C —k _ 6, rcotd z, 1
27 N T - -
S. rs; os, T,

The corresponding eigenvectors are the . and €,, therefore the principal directions are
the s and ¢. In addition, rs and r, denote the local radii of curvature along s and ¢. Then, the

mean curvature is k,, = (k, +k,)/2.

Figure 2-1: Lagrangian description of the interface for the (a) AFM case and (b) uniform pressure.

14

Institutional Repository - Library & Information Centre - University of Thessaly
14/06/2024 17:55:28 EEST - 52.15.49.141



2.2 Elastic Tensions, Moments and Constitutive Laws

The microbubble is covered by a biocompatible material, usually phospholipid or
polymer, in order to decelerate gas diffusion in water or blood. The encapsulation provides
also mechanical strength, thus the microbubble is possible to balance external forces by
developing elastic tensions and moments. In the present dissertation, the elastic tensions and
moments are described in the context of theory of thin elastic shells and continuum mechanics
[37]. In the elastic shell, in-plane and shear tensions along with bending moments are
developed as a result of deformation of the shell subject to an external load. In Figure 2-2 the
tensions and moments are illustrated if the curve assumed to undergo axisymmetric
deformations. As it can be gleaned, both tensions and moments are written in the curvilinear
[s, ¢, n] basis for simplicity, because the [s, ¢, n] coincides with principal directions [38, 67].
Therefore, the meridional (zss) and azimuthal (z,,) tensions are introduced, which correspond
to the in-plane stress resultant. The transverse shear stress q lies perpendicular on an s-¢ plane
along with the meridional (ms) and azimuthal (m,,) bending moments. The total tension

tensor is:

L:£+(jr7:(rss'fsfs +r¢¢f¢f¢)+qfsﬁ (2-6)
and contains both in plane and shear tensions. In the same manner, the bending moment tensor
is defined as:

m=mg{f +m, EF (2-7)

Most of the elastic materials respond linearly in the presence of an external load for
small values of deformations [38, 68]. However, with further increase of the load the force-
deformation relation might be non-linear, even if buckling or other phenomena do not occur.

Figure 2-2: Stresses and moments around an infinitesimal patch with dimensions (cde)x*ds

15

Institutional Repository - Library & Information Centre - University of Thessaly
14/06/2024 17:55:28 EEST - 52.15.49.141



In this case, their behavior is characterized as strain softening or strain hardening, depending
on the values of the effective elasticity modulus. The strain softening materials exhibit a
smaller elasticity modulus as the deformation increases, while the opposite happens in strain
hardening materials. These observations can be described mathematically using the
appropriate constitutive law. For the first group of materials the Hook’s law is more relevant,
while for the strain softening and strain hardening materials Mooney-Rivlin and Skalak
constitutive laws are used, respectively. The strain softening behavior was proposed by
Mooney [69] for rubber like materials for the description of the hyperelastic stress-strain
relation and later Rivlin [70] expressed the energy function in terms of the strain tensor
invariants. Moreover, the energy function for the strain hardening behavior was introduced by
Skalak et al. [71] in order to calculate the elasticity modulus of red blood cells.

In the following, the surface gradient displacement A is introduced, written in cartesian

coordinates [72], so that the mathematical form of the above constitutive laws will be
described:

A:(I—ﬁﬁ);—;-(i—NN) (2-8)

where X, X denote the position vector of a surface particle and N, fi are the normal to the
surface vectors, in the referential and deformed configurations, respectively. And then, the left
Cauchy-Green deformation tensor C is defined as:

g:

>

. éT = A2, (2-9)

which has two non-zero eigenvalues, A and A(j, associated with two orthogonal eigenvectors

corresponding to local principal axes of deformation in the tangential membrane plane. The
stretching ratios are given by the next relation:

T S (2-10)

s dSSF - SEF ! ® (Gd¢))SF - O_SF

where the superscript SF stands for the stress free state and o =rsiné@. Then the Green-
Lagrange deformation tensor e is defined as:

e=[c-(1-1)] (2-11)

And the tension tensor z:
gzi{@A-AT+ﬂJ2(L—ﬁﬁ)} (2-12)

In the above equations, I; and I, are the invariants of e strain tensor, measuring the local
change in length and area, and Js is the ratio between the current and reference local area:
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L =2tr(e)=A2+22-2 ; 1,=07-1=224 -1 o1

3, =44, =(A-A"+ NN}

and w is the strain energy function due to in plane tensions. The exact form of the strain
energy function depends on the elastic behavior of the material. When linear materials are
examined, the energy function w" of the Hook’s law reads as follows [73]:

W = (fjv)[(zj 1) +2v (22 -1)(A2 1) (22 —1)2} (2-14)

And then by substitution in eq. (2-12), the in plane tension z is:

G
e Q2 14v(A2-1 2-15
s i(,;(l—v)[ 2-1+v(2-1)] (2-15)
where, G, = > (1{ ) and corresponds to surface shear modulus [N/m] and y is the surface
14

dilatation modulus, y =Eh=3Gh=3G,, with E, G denoting the 3D Young’s modulus and

shear modulus, respectively, and h the shell thickness.
For Mooney-Rivlin materials (strain softening) [69, 70]:

W = w(l,,1,) = GgR {(1—b)(|1+2+ = J+b[ L2 +1ﬂ (2-16)

l,+1 l,+1

MR _ G N 1 r _
" _1:2, 2 N [1+b(22-1)] (2-17)

ST

with G, =% and b is dimensionless parameter, b e[O,l], defining the nonlinearity of the

Mooney-Rivlin law. The case b=0 corresponds to a neo-Hookean membrane and as b tends to
zero the membrane becomes softer. Moreover, the description of the strain softening behavior
with Mooney-Rivlin law allows for unlimited dilatation of the membrane, which is satisfied
by a progressive membrane thinning.

For Skalak materials (strain hardening) [71]:
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WSK=w(|1,|2)=%[|f+2|1—2|2+c:|§] (2-18)

s« G 2( 42 2 2
S =ﬁ{& (22-1)+C(44,) [(M/J) —1}} (2-19)
s
. 2(1+C) " i
with Gy, = and parameter C a positive number that controls the area dilatation.

2(1+2C)
Despite the fact that the above law was originally developed for red blood cells, which are
lipid bilayer structures with an almost incompressible response in which case C>>1, the
Skalak law is very general and therefore it is suitable for a strain hardening membrane whether
it is area compressible or not.

In addition, note that the z,, tension is obtained by interchange of subscripts in eq.
(2-15), (2-17) and (2-19).

Moreover, shear tensions are also acting on the shell along the thickness. The shear
tension is related with the bending moments by writing a moment balance on an infinitesimal
patch [67]:

G=V,-m-(1 ) (2-20)

Zarda et al. [39] suggested a linear constitutive law, similar to the membrane
constitutive equations, for the bending moments:

m, =
/1¢

(K,+vK,) qu,:%(K”va) (2-21)

S

SF SF - - - - - -
where K, =4k -k, K, =2k, —k = are the bending strains along the principal directions

s,p, respectively. Moreover, for a spherical stress-free shell: k" =k>" =1. k, denotes the

bending modulus and according to classic shell theory for a three dimensional elastic shell
with Young modulus E and thickness h [37]:

Eh®

T12(1-v7) (222

kb
Therefore assuming a linear constitutive law for the bending moments, the total bending
energy is a quadratic function of bending strains:

w, =%(Kf+2vKSK¢+ K?) (2-23)

In the final part of this subparagraph the equations of the elastic equilibrium will be

discussed for the general case of static elastic membrane that separates two fluids. Thus,
following Tsiglifis & Pelekasis [38] the force balance on the interface reads as:
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(Pin - Pout)l = kawari + AIE (2'24)

where, Pi, and Poy is the internal and the external pressure, | is the 2x2 identity matrix, y is

the surface tension, fi is the normal vector that points towards the surrounding fluid and AF
is the vector of stresses that arise due to elasticity which reads as [67]:

AF = AF i+ AFE =V, -

=

(2-25)

Then, substituting the previous analysis in (2-25):

AF, =k, +Kk, 7, —im

o 05 (2-26)

ot 1 0o
AF = | —= 4 — —— - +k
) [ 0s o 05 (TSS TW) sq}

and similarly for (2-20):

1 6c| 0(omg
q:__ff{(_)_mw}

2-27
o 0S oo ( )

Finally, it should be noted that the above analysis refers to the mid-surface of the shell.
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2.3 Formulation for a microbubble under the AFM

A microbubble under the compression of a rigid and tipless cantilever is investigated.
The microbubble is assumed to follow axisymmetric deformations and therefore only a
generator curve is studied. Different formulation is followed for microbubbles covered with a
polymeric shell and a lipid monolayer. The main reason of this choice is that the latter group
of microbubbles is softer, it is deformed by forces in the range of nN’s, and therefore the
intermolecular forces should be accounted for. On the contrary, microbubbles covered with a
polymeric shell are stiffer they are deformed in the range of 0-400 nN and consequently the
intermolecular forces are negligible. Therefore, a classic contact model is presented for the
case of polymeric microbubbles and a contact model including the intermolecular forces is
employed for microbubbles covered with a lipid monolayer.

2.3.1 The polymeric shell-classic contact model

Cantilever [INEGEG—_—
re=-~.. Pex  Cantilever

(a) Reference State (b) Deformed State

Figure 2-3: Schematic representation of a microbubble covered with polymer compressed by a
cantilever. (a) Reference state, (b) Deformed state with flat and buckling configuration.

A microbubble covered with a polymeric elastic shell is investigated under the
compression of the cantilever of the AFM, Figure 2-3, and symmetry is assumed with respect
to the axis that is perpendicular to the cantilever and with respect to the equatorial plane.
While the shell is compressed, elastic tensions are developed in order to balance the external
load (Pext), and at the same time the shell volume is reduced assuming isothermal compression
while the gas pressure (Pg) increases. Moreover, the shape of the shell remains flattened for
small values of deformation, but with further increase of the external load the shell buckles,
forming a dimple around the pole, as a result of high compressive tensions. For flattened
shapes, the cantilever is in contact with the microbubble with the corresponding contact length
to be Rsin(d;). However, after buckling, only a small region at the end of the dimple is in
contact with the cantilever.

In order to simulate the above problem, the force balance between elastic and external
forces is employed, coupled with an isothermal gas compression equation. The force balance
is written as follows:
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(P =P L= AF + 7, (V,-71)7 (2-28)
or in terms of components in normal (i) and tangential direction (T, ):

_ 10(oq SO
A:(Ps—Py) =k, +K,7,, ——%+ Vaw (Vs -n)
or. 16 N (2-29)
e Ty O _
ts . —[E-FEE(TSS — T(p(p) + ksq:l =0
The surface tension between the bubble and the water is denoted with the ygw. The
isothermal gas compression reads as:

RV{ =PV’ (2-30)

where Pg and V: are the gas pressure and the volume at the deformed configuration,
respectively. Pa and V; denote the same quantities but in the reference state, where it is
assumed that the initial internal pressure is equal to the ambient pressure. Superscript y
denotes the polytropic index, here y=1, for isothermal compression.

Moreover, an equation is required in order to capture the finite contact length. As a first
attempt the following kinematic condition is considered:

dz d(rcosd)
de d¢
After applying the eq. (2-31), a pressure distribution of the external load (Pey) is
calculated. However, this kinematic condition is quite strict and fails to capture the buckling
configuration. Moreover, the calculated load distribution has an almost zero value in the
intermediate elements and a non-zero value at the end of contact. Due to this abrupt change in
the applied load along the contact region, numerical solution with an increasing number of
elements is difficult introducing wiggles around the edge of the contact region. Therefore, it is
possible to apply the eq. (2-31) only at the last node of the contact area, eq. (2-32), and

consequently to reduce the pressure distribution into an unknown point pressure at the end of
contact. A similar formulation is followed by Updike & Kallins [46-48].

=0 for all of the contact elements (2-31)

d(rcoso)
dé

for the last node of the contact region. In this case the Lagrangian node on which the point
load, Pey, is applied is treated as known leaving the load itself as one of the unknowns,
Moreover, the normal force balance that corresponds to the last contact node is modified by
adding the point pressure Pey on the LHS.

-0, 0=6, (2-32)
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0 )
+P, —P, =k, +k,7,, —é% + Vow (Vs 1) (2-33)

P

ext

In this fashion both flat and buckled shapes can be captured and their relative stability can be
investigated in the context of AFM measurements.

The problem formulation is rendered dimensionless by introducing the characteristic
length scale, R,. Then the solution depends mainly on three dimensionless parameters, namely

le, P, and 7g,
r ’ kb 5 _ PARO -0 Y

f:R—O; kb:}(Rj; P, = 7 ]/BW:;; 7=1 (2-34)

x signifies the area dilatation modulus of the shell, which is introduced in order to eliminate
the shell thickness from the formulation. For polymeric shells that normally have thicker
coatings, bending resistance is related to the elastic modulus and the shell thickness, eq.

(2-22).
Hence,
e
2 2
- szZ(f ) 12I(Elh_R:2/ . 12(11—1/2)[%] (2-35)

and the ratio between the shell thickness and the microbubble radius emerges as an

A

independent dimensionless number. It should be stressed that the above three parameters, K,

I5A and 7, , denote the relative importance among the four resistances to shell deformation,

namely the stretching, bending stiffness of the shell as well as gas compressibility and surface
tension. Typical values of these parameters for the polymeric microbubbles investigated in the

present dissertation are: Izb ~107°, FA>Az10’4 and 7., *10°-10". In the following the
dimensionless  and its derivatives will be r for simplicity. Finally, an additional

dimensionless parameter can be defined, FA’ext =%, as a measure of the intensity of the
external disturbance.

In addition, the polymers are, as already mentioned, stiff materials, characterized by
high Young’s modulus (~GPa). Although it is not clear from the literature what the most
appropriate constitutive equation is, some polymers are treated as strain hardening and
therefore the Skalak law must be used. On the other hand the range of deformation in the
AFM experiments is quite small, in which case the effect of a non-linear constitutive law is
negligible. In the present formulation, Hook’s law is considered as the constitutive law,
although the choice of the constitutive equation is left to be subject of parametric study.
Moreover, the effect of pre-stress is also taken into account in order to capture gas leakage in
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the aqueous phase, see also paragraph 2.5. Boundary conditions of axisymmetry are applied at
the edges of the domain:

r§:3—2=0 at £=0 and ¢&=1 (2-36)
d?e
egzdgzzo at £=0 and ¢&=1 (2-37)
6=0 at &£=0
2-38
=—at ¢&=1 ( )

The unknowns of the above formulation are the position of the lagrangian particles (r,6),
the gas pressure (Pg) and the external applied point load (Pex). Finally, it is important to
define deformation in order to compare the numerical results with the experimental. During
the AFM measurements the deformation of the shell is not directly measured, but it is
associated with the position of the cantilever. Therefore, in the present investigation the
deformation is defined as the difference of the z-component of the position of the last contact
node from its origin position in the undeformed configuration, Figure 2-3, in which case the
situation with a buckled shell can also be accounted for. Multiplicity of solutions can be
captured in this manner. More specifically, setting the angle 6. in the undeformed shape on
which the point load is applied two different solution families can be captured pertaining to
the flat and buckled shape, the latter characterized by a lower value of the point load. The load
for which such a multiplicity arises is the buckling point from which a new solution family
emerges characterized by crater formation at the north pole of the shell. More details on this
process is provided in Section 3 dedicated to the numerical solution and in Section 4 where the
results of the simulations are discussed.
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2.3.2 Phospholipid shell-Intermolecular forces

Cantilever [INEEEE

Cantilever

8 r---.

(a) Reference State

Figure 2-4: Schematic representation of a microbubble covered with lipid compressed by a cantilever.
(a) Referential state, (b) Deformed state.

In the present paragraph, a microbubble covered with a lipid monolayer is investigated
under the AFM, Figure 2-4, with the same symmetry conditions as with polymeric shells. The
shell material is hydrophilic and soft in terms of elasticity (~MPa). As a result of its soft
nature, the range of applied forces from the AFM is in [0-10] nN, which is in the order of the
intermolecular forces. Moreover, due to the hydrophilic nature of the shell and cantilever, an
ultrathin water layer occupies the space between them that resists thinning as the external
pressure increases. This constitutes an additional resistance to the cantilever’s advancement
which is modelled as an additional pressure of the water near the contact area in comparison
with the bulk aqueous phase. This pressure difference is the sum of intermolecular forces that
act between the water film (with thickness o) and the shell and it is known as disjoining
pressure [35, 36]. This concept is adopted here for the description of the interaction between
the cantilever and the shell in the present formulation by introducing a long range attractive-
short range repulsive potential function. A typical form of the potential is:

w3 45T

where Jda denotes the distance where the potential takes the minimum negative value W,, see
also Figure 2-5. The energy due to intermolecular forces (IF) is:

W = [W (y)dA (2-40)

where dA is the infinitesimal deformed area of the shell with dA =(odg)ds =s.rsin@dedé .
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Figure 2-5: Potential (continuous line & left vertical axis) and disjoining pressure (dashed line & right
vertical axis) as a function of the distance y from the substrate, with 6,=50 nm and W,=10"* N/m.

As the two bodies are quite far from each other (y>>6,) the potential is essentially zero
and no interaction between the bodies is detected. While the cantilever approaches the shell, in
other words y decreases, the potential has a decreasing negative value (y~da). This is the
regime where the two bodies are in attraction, the disjoining pressure and the resulting force
are also negative. At y=da the potential has a minimum value, this the point where the
disjoining pressure and the force are zero and with further decrease of their distance (y<éa),
the two bodies are in repulsion, thus the disjoining pressure and the force change sign. The
total force is calculated by the integral of the disjoining pressure on the shell surface, with n
pointing towards the surrounding liquid:

F =] (2-41)
2 on

By minimizing the total energy the disjoining pressure and the potential are introduced
in the components of the force balance [63] that assume the form:

~ 0
A:(Ps—Py) =k +K, 7, + (7w +W)(VS -ﬁ)—iﬂ+aﬂ
v o 05 on
5 L3 (2-42)
Fo. TSS O- —
ts . —[E‘F;g(fss _TW‘/7)+ ksq:| =0
The dimensionless parameters in this problem are:
N k, . s PR .~ 14 ~ X
R b W.R A m VBw W, X m (2-43)

Measuring the relative stiffens of bending, stretching, gas compressibility and surface
tension with respect to interfacial energy W, of the two bodies interaction. Moreover, for the
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lipid monolayers the bending stiffness and the area dilatations modulus are assumed to be
independent parameters, since the shell thickness is a relative small parameter and cannot be
easily defined [39]. Typical values of the above dimensionless parameters for the experiments

A

examined here are: k, ~1, P, =1.5-10°, 7,, ~10% and 7 ~5-10%. In the rest of the problem

formulation the dimensionless F will be designated as r for simplicity. In addition, the
Mooney-Rivlin has been chosen as the constitutive law to relate the elastic tensions with
strains. Alternatively, the above equations of equilibrium can be derived in terms of energy:

FAz=U] -U; (2-44)

where F is the total force that moves the cantilever by Az and U is the total energy in the
final and initial stage. Five energies constitute the total energy:

UT = Wstr + Wb + Wc + Ws + WIF (2'45)

namely, energy due to stretching W, , bending W, , gas compression W, surface tension W,
and the energy due to intermolecular forces, where,

Wi, Hook law
W, = jwstrdA, withw,, =< wy, Mooney-Rivlin law (2-46)
A WS Skalak law
- k
W, = [w,dA= ?b(KZ +2vK K, +K?)dA (2-47)
A A

The above two energies refer to the energy due to elasticity and they are also described
in details in section 2.2.

v“vczv[PA+AP+ e j—VO[PMLMJ (2-48)
y-1 r-1

where, Py is the ambient pressure and V, and V denote the initial and the current volume,
respectively.

W, = [ 70 0A (2-49)
A

It is important to note that the energy due to intermolecular forces can be interpreted as a
deficit or excess energy in comparison with the case in the absence of the solid substrate.
Consequently, when adhesive or very mild repulsive forces prevail the energy due to
intermolecular forces is negative thus tending to stabilize the overall static configuration. This
aspect of the interaction between hydrophilic phospholipid shells and the cantilever is crucial
in the observed static arrangement when such shells are interrogated via AFM.

Next, the minimization of the energy due to intermolecular forces is demonstrated in
order to recover the terms of disjoining pressure and potential in the normal force balance:
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The energy due to intermolecular forces is: W, = q‘;f)WIFdA, therefore, its variation for a 2d

shell in cylindrical coordinates is:

oW = ¢ 6\5’\:* ST dA+ @W,F 5(;#/*)
A

ST (2-50)

and then, the first term of the above equation is calculated:

(2-51)

In addition, i=0§, 26, f =0 +28

s7o! S sYo s¥z?

in which case € -fi=c, and € -t =z.. Thus
=zt +o,, and therefore:
oW, _ Wy o OWe (Z F ﬁ) _ oW, f+ Wy

€ = n. (2-52)
or 0z 0z

Returning to the variation of the total energy due to intermolecular forces we have that:

P dA = (W, ds = (PW,. g*da (2-53)
A S S
ds\”* oF of of —— F
where g :metric, g = =—— , —=7, g=Jrr, ft= R
da da da oOa (F-1)
Consequently,
or .,
S(dA 1/2 1/2 2—or
Jhw, (Q 1w, 00 509 sy da = (W, 1 _a  a-
f o7 d st ) d 2(8? arj
da oa
:—zgﬁi Ty —— 5rda+—€W'Frf£ =
d da (r!.l—;!) (l—;l f:!)
B
=0 for a closed body
i o2 o, 1201
W, F-oT rryT 2(r.7)”
=~/ I da—/pW orda =
C'!S da (¢.r)" Cj} i PP
_o
oa
_edw, FLST ot
_—Egls ™ F’-r)“zd E?W,Fgﬁrda_
dWye - o Wi e 7
:—@Tts-&rda—&ﬁw gEjS —Ef . 5TdA- cj;ﬁw,F ~>-OTdA =
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— AW = oo = ST
- —#?ts - SFdA+ q’AjSW,Fcn - SFdA (2-54)

A

where ¢ denotes the mean curvature of a 2d surface. Therefore, (2-50) after introducing (2-51)
and (2-54) becomes:

SW,- :@S(a\é\g% ﬁj ”dA+<j‘:j5( 'Ft +cW,Fnj STdA =

oW, 24}5(%“%.;]” -OF dA

A

(2-55)

The case of an axisymmetric body is presented in Appendix B.

Furthermore, as in the case with a polymeric shell, the shell volume decreases as the
external force increases and consequently the internal pressure increases. In order to capture
the effect of pressure changes, an isothermal gas compression equation is written:

RV{ =PV (2-56)

Boundary conditions of axisymmetry are applied at the edges of the domain:

@=§%=o at £=0 and &=1 (2-57)
d’6
0§§=d§2=0 at £=0 and ¢=1 (2-58)
=0 at £=0
2-59
9:%-m £=1 (2-59)

In addition, the effect of pre-stress could also be considered, see paragraph 2.5. Solving
the system of the above equations it is possible to calculate the shape of the deformed shell,
the internal pressure and the required external force for various values of the elasticity
(bending - stretching) and the potential parameters. The comparison of the theoretical results
with available experimental data can be used to characterize the shell in terms of Young’s and
bending modulus. However, some researchers characterize the lipid monolayers as shells
without elasticity assuming that their behavior is dominated by surface tension only. In order
to examine this argument, the elasticity terms of normal and tangential force balance are
omitted. Then, the normal force balance reads as follows:

ﬁ(ﬁ,—&):@hwnNX€,ﬁ)+@M

— (2-60)

Eqg.(2-60) is known as the augmented Young-Laplace equation [62]. However, the
tangential force balance becomes a trivial equation, as the derivative of the potential with
respect to arc-length s is a negligible term. Therefore, in order to balance the number of
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unknowns and equation, instead of the tangential force balance the arc-length equation is
written:

(rd@) +(dr)* = (ds)’ (2-61)

where, df, dr and ds denote the infinitesimal lengths of &, r and s, respectively. Thus, the
nodes of the shell surface are equally distributed along the generator curve or alternatively the
thickness of the elements is constant. In addition, if the lagrangian variable & is introduced, the
arc-length is written in the following form:

rz[g—gj + (S—QJ = [S—EJ =29 +rl=s; (2-62)

However, for equally distributed elements: s=¢s = = ds_ S: = Sy r Where Smay is the
s

value of the arc-length at the end of the domain, where it takes its maximum value and it is not
priori known, which consequently increases the number of the unknown variables. In order to
handle the new unknown variable snax, the boundary condition (2-59) does not replace an arc-
length equation, but it is considered as an extra equation:

ezg-m £=1 (2-63)

The equation of isothermal gas compression remains the same, as well as the rest of the
boundary conditions. Solving again the equations of the modified formulation it is possible to
treat the microbubble as a shell free of elasticity.

29

Institutional Repository - Library & Information Centre - University of Thessaly
14/06/2024 17:55:28 EEST - 52.15.49.141



2.4 Formulation for a microbubble subject to a uniform pressure

(d)

Figure 2-6: Schematic representation of a microbubble subject to a uniform load (a) Reference state
(dashed line), (b) Deformed state-sphere (solid line), (c) Deformed state-asymmetric mode, (d)
Deformed state-symmetric mode.

The second problem that the present thesis investigates is the deformation of a
microbubble subject to a uniform overpressure field AP, see Figure 2-6 (a). Initially, the
microbubble’s shape is spherical characterized by a rest radius R,. Up to a critical value of the
external load AP, the shell is compressed into a spherical shape with smaller radius R, Figure
2-6 (b). However, with further increase of the external load and beyond its critical value the
spherosymmetric configuration remains a possible static arrangement, but a second solution
arises as a bifurcation, which is known as a buckling solution that corresponds to
axisymmetric shells that are asymmetric or symmetric with respect to the equator, Figure 2-6
(c), (d). The emerging solution family evolves subcritically towards larger volumes indicating
an unstable branch. However, in the presence of a small but large enough geometric
imperfection [54, 55], they become accessible in the presence of an external load of the same
magnitude with the one leading to the compressed sphere. It must be noted that in Figure 2-6
(c) and (d) the shell is plotted in [0, 2x] for visual reasons only. In order to capture the above
series of solutions, the normal and tangential force balance are employed, assuming
axisymmetry with respect to z axis:

ﬁ:(PG — Py _AP) =k +Kk,7,, _ia(;q) + 7Vew (ﬁs ’ ﬁ)
O
(2-64)

~t

- or 1 oo
==+ (7 - +kqg|=0
° [ 0s o 0s (TSS T“"”) Sq}

The constitutive law could be Mooney-Rivlin, Skalak or Hook. The encapsulated gas is
assumed to be ideal and undergoes isothermal compression:
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RV{ =PV’ (2-65)

Moreover, in order to avoid a net translation of the shell as a rigid body, the z
component of the mass center is imposed to be zero.

jr &,dv )
Zog = J' _[ cos’ sind(ro, cosf +r,sinf)d&E =0 (2-66)
\% 0

The o component of the mass center is identically zero due to axisymmetry. Analogous

~  k A
dimensionless parameters can be defined as in the previous problems: Kk, =—b2, P, :g,

XR; X
2 and y =1 for both type of materials, assuming that for lipid shells the bending
X

Vew =

stiffness and the area dilatation are independent parameters. Finally, boundary conditions of
axisymmetry are applied at the domain edges:

dr
r‘f:EZO at £=0 and &=1 (2-67)
d’e
egfzdgzzo at £=0 and ¢&=1 (2-68)
=0 at &£=0 269
O=r at &=1 (2-69)

Solving the above system of equations the r and 6 coordinates of all lagrangian markers
are calculated, along with the internal pressure Pg, for different values of the parameter AP.

As it is already mentioned, when the external load reaches a critical value it is possible
to find different solutions for the same AP, which correspond to buckling of the shell into
symmetric or asymmetric shapes. The new branch is characterized with one more negative
eigenvalue in comparison with the main solution (sphere) for the same value of the AP and
exists for smaller values of the critical load; therefore, this solution corresponds to a
subcritical bifurcation. The theoretical value of the critical buckling load, obtained from
continuous shell theory and performing linear stability analysis on the spherical configuration,

in the limit of small overpressure to external pressure ratio AP, , is provided in [54]:

cr?

AP, :Z—ELLJ (2-70)
3(1— V2) Ro

Furthermore, calculating the total energy of the post-buckling solution it is possible to
characterize the stability of the emerging branch in comparison with the main solution.
Finally, following Tsiglifis & Pelekasis [38] the shape of the solution is decomposed in
Legendre polynomials in order to calculate the dominant mode of the solution.
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2.5 The effect of pre-stress

As it was mentioned in the introduction, a gas phase is encapsulated in the shell core.
The microbubble is a self-assembling structure and the initial radius corresponds to a stress-
free state, where no residual strains are acting. However, after some time and before the
measurements with the AFM, some gas might escape through the protective coating and
eventually cause a reduction in the shell volume and consequently induce initial compressive
tensions. Therefore, in order to account for the effect of pre-stress in the present thesis, the
dimensionless quantity u is introduced in order to quantify the amount of pre-stress:

R =R°-u (2-71)

where R is the stress free shell radius and R is the radius at the beginning of the AFM
experiment, Figure 2-7. In the above equation when u<0, the stress-free radius is bigger than
the R® radius, which means that some gas has been released in the aqueous phase and the shell

is compressed and vice versa. Thus, at the beginning of the simulation the shell has residual
0

strains 4, = 4, = , resulting residual stressesz, 7

,»» Which are calculated by the egs.

R™ —u
(2-15), (2-17) and (2-18).

Moreover, it is assumed that the gas pressure in the stress-free state is equal to the
ambient pressure, but if the surface tension and some pre-stress are also taken into account,
then the initial gas pressure, Pg, from normal force balance, (2-24) - (2-26), and for initial
radius R® is [38, 74]:

Py =Py + 2y, +74 + T (2-72)

In addition, it must be noted that even when the shell is not no pre-stressed the initial gas
pressure will be different from the external pressure by a term 2y,,, , as it is described by the

Young-Laplace equation, due to surface tension. Another important point that arises from eq.
(2-72) is that the increase in gas pressure caused by surface tension may be cancelled by the
drop caused by compressive tensions (zss+74,<0) the amount of which strongly depends on the
shell area dilatation modulus.

SF Pa
Pre-stress state

Stress-free state

Figure 2-7: Schematic illustration of a pre-stress microbubble.
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Chapter 3. Numerical Analysis - Validation

The third chapter describes the numerical methodology that is employed in
order to solve the above problems. More specifically, the equations that
describe the problems of the present dissertation constitute a set of nonlinear
ordinary differential equations (ode’s), which are solved numerically via the
finite element method (fem), with b-cubic splines as basis functions. The
Newton-Rapson method is employed for the solution of the nonlinear algebraic
problem that arises performing simple or arc-length
Furthermore, benchmark calculations are conducted in order to investigate the
validity of the above formulation and numerical implementation.

3.1 Spline representation

continuation.

The modelling of the elasticity terms for thin shells with finite thickness requires the
mathematical description of the first derivative of shear tension; therefore the derived
equations contain high order derivatives. As a result, the basis function for the finite elements
must be polynomials of high order and therefore the b-cubic splines are used, which are

piecewise cubic curves and have the following form [75, 76]:

$— Szuz) iffe[fpz'éﬁia]
|| (E-a) (e £.) -3(¢-¢&.) itée[é,.é]
B(£) =) 430 (8- &) +3(6,-&) ~3(6 &), T Eeldnd]
if £e [§i+1v§i+z]
§|+2 5) .
0 otherwise

where ¢ denotes the element thickness (¢ =&, —¢,), which is the same for all elements, since

in the present dissertation the mesh is uniform across the domain. As shown in Figure 3-1(a) a
spline polynomial is a non-zero function on the inside of four continuous elements and

therefore the Kronecker delta identity is not satisfied, in particular it is:
1, if j=i

B,(&)=11/4, if j=i-1orj=i+1
0, ifj=i-2o0rj=i+2

(@) (b)

Figure 3-1: (a) Schematic representation of B; spline, (b) Spline representation into one element.
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Hence, the unknowns r and @ at the nodes are different from the spline coefficients and
they are described as follows:

r(&)=>aB;(¢) (3-3)

0(&)=>_b;B;(¢) (3-4)

j=0

where a; and bj are the unknown coefficients of the spline representation and N is the number
of nodes. The two coefficients that correspond to fictitious nodes outside the domain, i.e. a,,
an+1, Do and by, are calculated by the boundary conditions of each problem.

Also, b cubic splines maintain smoothness and continuity of higher order derivatives; in
particular they ensure continuity of the function as well as of the first and second derivative.
Therefore, upon integrating the terms of elasticity by parts twice the order of ode is reduced.
Further discussion on the last topic can be found in the next paragraph (3.2).

3.2 Weak form and Newton-Raphson method

The governing equations of the above problems are two non-linear ordinary differential
equations corresponding to the normal and tangential force balance. For their solution the
Galerkin finite element method is employed in order to transform the ode into a set of non-
linear algebraic equations [77, 78] that are solved for the r, & coordinates of shell location.
Initially the unknowns r, 8 and their derivatives in the above equations are substituted by egs
(3-3) and (3-4) and then the differential equations is multiplied with the trial function and
integrated over the shell surface. The new integral equation corresponds to the weak form of
the differential equation. Subsequently, integration by parts is performed twice in the normal
force balance, operating on the term that contains the shear tension derivative, in order to
reduce the fourth order derivative. In the same manner, the derivative of 7 tension in the
tangential force balance is eliminated. All the resulting integrals are calculated by performing
Gauss integration with four points over each element in the domain [-1,1], see also Figure
3-1(b). In this fashion numerical error is dominated by the interpolation of the unknown
functions instead of the gaussian integration [79]. In the following, the final equations in their
weak form are written for each problem:

The normal force balance:

1
R = J-HksrsS +k,7,, + 2K, (7gy +W )+ P(&)+ P, — P, +66_Vr\1/j Biasﬁ}dg
0

£=1 (3'5)
L olB .S.—B .S.. m B. m,B,
_J' ( & 62 g ¢s)+ pPi0¢ de+ u—qui =0
5 S S £=0

s
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The tangential force balance:

1
R, = J.|:TSSBL§O'+ Bo,7,, +om, (kS'{;Bi + ksBi,§)+ ksm(pBiO'de
0 (3'6)
~[(km,+7,)oB ] =0
The isothermal gas compression:
Rs = PGVy - PAV07 =0 (3-7)
The kinematic condition:
R,=z,=r.cos0-rf,sinfd=0 at &£=¢ (3-8)
The arc-length:
ds 2, 2.2\0° h 2, 272\0°
R, ZE =S __ :(ré +r ,9;) = H:Smax —(Q +r Hé) :|BiGS§d§ =0 (3-9)
0
The position of the center of mass:
1
R, =jr3coszesin9(r6§ c0s0+1,5in6)d& =0 (3-10)
0

where o =rsing; o. =T8N0 +rd.cosd and the square brackets contain the boundary terms

resulting by the integration by parts.
According to chapter 2, when the classic contact problem is investigated, the R;, Rz, R3

Pext' ézé:c

0, otherwise

and R, residuals are solved, with W,=0 and P(¢) ={ . The contact model that

accounts for the intermolecular forces, surface tension and elasticity is solved by the Ry, R,
and Rj3 residuals with P(£)=0. However, in the same contact model, if the elasticity terms are
omitted, then the Ry, Rs and R3 residuals are solved, setting y=0 and k,=0. The equation that
produces residual Rs is a statement regarding the distribution of Lagrangian markers on the
shell. In particular it enforces the Lagrangian markers to be placed so that they form elements
of the same length. Finally, for the bifurcation diagrams residuals Ry, R,, Rz and Rg are solved

with W,=0 and P(§)=AP, V& e[O,l]. It must be noted that the boundary terms vanish in

both edges of the domain (=0 and 1) for the problem with a homogeneous external load
whereas they only vanish at =0 in contact problems while remaining non-zero at the
equatorial plane, i.e. at £&=1, where symmetry conditions are imposed. In the latter case it is
assumed that an equal force is applied on the shell from both poles and this reflects in the
symmetry conditions at the equatorial plane. Consequently, the boundary terms are calculated
for the three final residuals of the normal and tangential force balance.
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Furthermore, the classic contact model contains a concentrated point force at the end of
contact length which will introduce a discontinuity in the distribution of shear tension, g. The
jump in shear tension is also supported by the b-cubic splines, because their third derivative is
not a continuous function at the domain nodes. As it is already mentioned the b-cubic splines
guarantee continuity up to the second derivative, therefore the in plane tensions and bending
moments are continuous functions, a behavior which conforms well with the physical
problem, where external moments or in-plane stresses are not acting on the shell. On the
contrary, in the problem where the interaction between the cantilever and the shell is simulated
in the presence of intermolecular forces, the external loading is a smooth function rather than a
point force and therefore the distribution of the shear tension will follow the distribution of
disjoining pressure.

In the rest of the present session the Newton-Raphson method along with continuation
techniques are discussed for the above systems of equations, which have the following form:

R(%)=0 (3-11)

where X denotes the unknown vector. Seeking for solutions of the eq. (3-11), the Newton-
Raphson [80] method is employed and then eq. (3-11) is written in the following form:

[1]-6%=-R (3-12)

[J] denotes the jacobian matrix and contains the derivatives of all equations with respect to

each unknown (J; =R, /ox;), 6% is the correction of the unknown vector X, that move

each function R; closer to zero. The new potential solution is updated by the:
XN = X0 1 5% (3-13)

and the whole process is iterated until convergence. Moreover, the jacobian matrix is
calculated analytically and consequently the rate of convergence is quadratic [80]. Next, the
jacobian for each problem is given in matrix form:
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Figure 3-2: Jacobian matrix of the classic contact problem.

The jacobian matrix for the classic contact problem is captured in Figure 3-2 and its
dimension is (2N +6)x (2N +6), where N is the number of nodes. Moreover, in the first

(2N +4)x(2N +4) part of the above matrix the jacobian entries of normal (R;) and

tangential (Ry) force balance are written with respect to radius (a;) & theta (b;) coefficients,

R;J' = % and so on. It is important to notice that this part of the matrix has non-zero entries

j
in a zone with bandwidth 15. Moreover, the last two rows contain the jacobian entries of the
isothermal equation (R3) and the kinematic condition (Rg4), with respect to radius and theta
coefficients. The last two columns contain the entries to the jacobian pertaining to the
variation of the normal force balance with respect to the internal (Pg) and external (Pext)
overpressure. Therefore, the full matrix is of an arrow form and can be separated into four

smaller matrices in order to avoid the storage of zeros out of the bandwidth. The four matrices
are the banded part(2N +4)x (2N +4), the bottom 2x (2N +4), the head (2x2) and the right

part(2N + 4)>< 2. A typical form of an arrow matrix is depicted in Figure 3-3.

Banded Right
(2N+4)x(2N+4) (2N+4)x2
[J]=
Bottom Head
2%(2N+4) 2%2

Figure 3-3: Schematic illustration of an arrow matrix
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Finally, the boundary conditions (BC) of the problem are applied in the first three and
the final three rows of the banded matrix. After storing the equations in the above form the
jacobian is reversed by a standard routine, written for arrow matrices. Then the unknown
vector is calculated via the Newton-Rapson as it is described above. Finally, for the classic

— T -
contact problem the unknown vector is: X:(ao,bo, ..... 25,0, ’aN+1’bN+11PG’Pext) with

dimension 2N+6.
The jacobian matrix that is produced from the problem that includes the adhesive
potentialis of similar form. The main difference is that the kinematic condition is not applied

and therefore the dimension of the jacobian is now (2N +5)x (2N +5) or alternatively the
last row and column of the previous matrix are eliminated. In this case the unknown vector is:

Xz(a b,...,a,b

.
U o TR - T « PO NP N PG) with dimension 2N+5.
However, in the case of the bifurcation diagrams the equation that fixes the center of

mass (Rg) replaces the tangential force balance in the N+2’th row. The jacobian entries of the

oR oR . . .
mass center {—6 and TGJ form a row-vector with non-zero entries in every column, Figure

oa i i

3-4. Therefore the jacobian is a full matrix and for its inversion the dgesv Lapack routine is

.
used. The unknown vector is: X:(ao,bo, ..... - VO P NN o N PG) with dimension 2N+5.

The stability of a certain branch is determined by the number of negative eigenvalues
corresponding to the converged solutions obtained for varying external overpressure. The
eigenvectors corresponding to the unstable eigenvalues are calculated so that an initial guess is
generated, which, for a suitable disturbance ¢ on the basic spherical configuration, will provide
a large enough geometric imperfection that will direct Newton’s iterations towards the
emerging subcritical branch [38].
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Figure 3-4: Jacobian matrix of the uniform pressure problem

X X (b) X ()
i -——- 1) P
=i+l X ! X AL
. Li+] : .l ‘f i
¢ XMoo X |------ |
Limit point
pa’- p{'+] [) )(), Z)”] ,I) )0| [)U p

Figure 3-5: (a) Simple continuation and (b) Arc-length continuation around limit points

In every problem, solutions are sought for different values of the control parameter.
Therefore, a previously converged solution can be used as initial guess for a new solution
corresponding to a new value of the parameter. This idea can be easily illustrated in the Figure
3-5(a). Simple continuation is performed when the solution is smooth and without limit points.
In this case the control parameter (p) changes independently by a step Ap:
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p*=p' +Ap, where Ap>0 or <0 (3-14)

Then, the corresponding solution is the X"** and an initial guess for the Newton-Raphson
Gi+lk=0 _

procedure is provided by the X %' solution vector.

However, if the solution has a limit point, Figure 3-5(b), a solution in the direction that
Ap predicts does not exist especially near the limit point and at the limit point the jacobian
matrix becomes singular and then the simulation breaks, therefore the simple continuation is
not the most appropriate technique to proceed the solution. In order to overcome this problem
arc-length continuation is considered as an alternative, which is a standard technique for
detection of instabilities in shells and drops [81, 82]. In this instance, one more equation is
added in the formulation and the control parameter is now part of the solution. The extra
equation is the arc-length written in the M-space of the solution:

0= (% =) +(p = p) -4z (3-15)

j=1

where A/ is a constant parameter to represent the arc-length of the solution branch in the M+1
dimension space formed by the unknown vector and the parameter p. In the same way with the

simple continuation, x‘j denotes the last converged solution for the parameter p'. In order to

estimate the value of the arc-length A4, as a first step simple continuation is performed before
the limit point for a relative small value of Ap starting from the solution vector x° and moving
to x', see Figure 3-5(c), thus it is possible to calculate the arc-length from the eq. (3-15).
Consequently, adding eq. (3-15) in the formulation the jacobian of each problem has one more

row and one more column. The augmented problem is now:

DRy o] [R, 3-16
o, oo/ s] -

where [J] is the jacobian matrix as it is defined in the above problems; RL is a column vector

of dimension M and denotes the derivative of each residual with respect to the parameter p;

@, a M row vector, is the derivative of equation @ with respect to all unknowns x;; @, is the

derivative of @ with respect to p, and op is the update of p. It should be noted that even if the
[J] becomes singular, the augmented matrix remains non-singular and therefore the simulation
continues around limit points.

After solving the system described by eq. (3-16) with the Newton-Rapson method, the
initial guess for the next solution is made by solving the following set of equations:

{ J RF‘;M@XJ. /az}{aRj /az} (3.17)

@, @, | opfoa oD/oA

note thatoR; /04 =0 and 0®|0A =-2A2 . Then the initial guess for the next solution is:

40

Institutional Repository - Library & Information Centre - University of Thessaly
14/06/2024 17:55:28 EEST - 52.15.49.141



i
. . X .
XI-+1 — XI_ + ]

e o (3-18)

and the corresponding parameter is also:

i+1 i ap !
=p' +—| 54 3-19
p p ) (3-19)

where for the first continuation with the arc-length (i=2), the initial guess of the derivatives

ox. [ op t .
—2| and — is the following:
oA oA
OX. 2 X.l—X.0 ap 2 p1_ pO
I p— L Vje [1, M] and —| = (3-20)
oA AL oA AL

Finally, in the closure of the present paragraph, the steps in terms of an algorithm for
each of the above problems are outlined.

Classic contact problem:

a) Initially, for a specific constitutive material law and geometry, the microbubble is
assumed to have a spherical shape and the initial internal pressure is calculated by eq.
(2-72).

b)  Then, an unknown external point pressure (Pex) is applied at the end of the first element,
i.e. the angle 6. pertaining to the Lagragian marker placed at the edge of the contact
region in the undeformed configuration, is fixed to 6. =n/(Number of Elements)/2.

c)  Solving the system of egs.(3-5) - (3-8) with Newton-Raphson method the unknown
position (r,0) of the lagrangian particles is calculated, along with the external (Pex:) and
internal pressure (Pg).

d)  After convergence is obtained, the new external point pressure is applied to the end of
the next element, i.e. the angle 6. is doubled, and the above calculation is repeated until
a new solution is obtained.

e) For every converged solution the required post processing is performed, in order to
calculate the corresponding eigenvalues, force, energy and deformed shape of the
solution.

Similarly, for the adhesive potential model:

a) At first, a spherical shape is assumed, with or without pre-stress for a specific
constitutive material law, geometry and again the initial internal pressure is estimated by
eq. (2-72).

b)  Then, the cantilever is positioned three or five bubble radius away from the shell.

c)  The system of egs. (3-5), (3-6) or (3-9) and (3-7) is solved by Newton-Raphson method
and the unknown shell position (r,0) and the internal pressure (Pg) are calculated.
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d)

e)

Then, the process is repeated by decreasing the distance between the shell and the
cantilever by conducting simple or arc-length continuation.

Finally, post processing is performed, in order to capture the corresponding force,
energy and deformed shape of the solution.

Finally, for the uniform pressure model:

a)

b)
c)

d)

For a spherical shape, with or without pre-stress, specific constitutive material law,
geometry, the initial internal pressure is estimated by eq. (2-72).

Then, a uniform static pressure is applied along the entire generator curve of the shell.
The unknown position (r,0) and the internal pressure (Pg) are calculated by solving the
system of egs. (3-5) - (3-7) and (3-10). Then a new solution is requested by increasing
the external overpressure with simple or arc-length continuation.

In every solution, the eigenvalues of the corresponding jacobian matrix are calculated in
order to seek buckling solutions around bifurcation points.

At the end, post processing is performed, in order to calculate the corresponding
bifurcation diagram, energy, the deformed shape and Legendre mode decomposition of
the solution.

In the Figure 3-6 a typical flow chart of the above steps is illustrated, when simple

continuation is considered. For the arc-length continuation, the loop of p-steps is replaced by a
do while loop: p< p,, where p, is the value of the parameter p, where the solution is

satisfactory evolved and the simulation can be terminated.
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Figure 3-6: Flow chart of the numerical procedure.
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3.3 Benchmark of formulation

3.3.1 Benchmark of the classic contact problem

In order to investigate the validity of the formulation developed in paragraph 2.3.1
simulations are performed with parameters that Updike & Kallins [47] used in their work, i.e.
E=10° Pa, Ro/n=100, ky=8-10"" N-m, v=0.3, ysw=0 N/m, y=0, Hook’s law, no pre-stress and
400 elements, where they solved the same problem for the contact region and assuming a
spherical unloaded shell in the reference state. In this direction, the classic contact problem is
solved with contact angle to be known and employing the kinematic condition described by
the eq. (2-31), a pressure distribution is calculated along the contact length, see Figure 3-7,
which is a zero function along the contact line and takes a non zero value at the end of contact
All of the solutions correspond to flat shapes in the contact line, as the kinematic condition
requires, and as it was previously discussed such a kinematic condition is not capable of
predicting the buckling solution. However, the resulting pressure profile indicates that the
unknown function can be replaced by an unknown point force at the end of the contact regime
and thus the kinematic condition can be eliminated only at the last node of contact, eq. (2-32).
Hence, performing again simulations with the above parameters a force-deformation curve is
calculated and it is compared with the one from [47], see Figure 3-8 (a). During simulation the
angle (0;) is the control parameter, i.e. a series of solutions is obtained by increasing the

contact angle by a step A6, .Figure 3-8(a) illustrates the dimensionless force required to obtain

the deformation of the shell d/h, where d denotes the z-component of deformation of the last
lagrange particle at the end of contact line and h the shell thickness. Updike and Kallins [47]
describe the solution of the contact problem as the intersection of two solution branches. The
first is the main branch, where the force-deformation is linear and the shell in contact region is
flat, and the secondary branch with non-linear response and buckling of the shell. This
response is recovered in the present thesis by employing the formulation developed in
previous session. More specifically, the linear and the non-linear response are depicted in
Figure 3-8(a) with white squares and triangles, respectively, while the solution of Updike and
Kallins follows the continuous black line. The results of the present analysis are in good
agreement with [47] for both branches, justifying that the present formulation is an appropriate

Figure 3-7: Pressure distribution when 6,=1.5°(solid line), 6,=3.5° (dash line) and 6.=4.5° (dot line)
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(a) (©

(b) (d)

Figure 3-8: (a) Force-deformation curve, comparison between the present analysis (white squares and
triangles) and Updike & Kallins (continuous black), (b) Total energy of deformed shell for flat and
buckling solutions, (c) & (d) Microbubble in deformed configuration, flat and buckling solutions, for
different values of the cantilever position. The axes are dimensionlized as it is described in paragraph
2.3.1

model to describe the contact between a spherical and elastic shell against a flat and rigid
surface. Typical mesh refinement calculations verify the above response. The corresponding
shapes of the shell in different deformed states are illustrated in Figure 3-8(c) and (d). The
shell in the flat solution is characterized by a zero curvature area around the contact region,
while the buckling solution shapes have a progressively larger dimple in the north pole region
with negative curvature and at the end of contact a small region is formed with high curvature,
where most of bending energy is concentrated.

The stability of the solution is investigated by performing further analysis and
calculating the eigenvalues of the jacobian matrix. The linear part of the force-deformation
curve has one negative eigenvalue, but after the buckling point the same curve has one more
negative eigenvalue. However, the buckling curve has the same number of negative
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eigenvalues with the pre-buckling curve, which means that the buckling point is also a
bifurcation point and corresponds to a supercritical bifurcation. Moreover, the linear curve
after buckling is an unstable solution, due to higher total energy (i.e. the sum of energies from
stretching, bending and gas compression) in comparison with the non-linear solution for the
same value of deformation, see also Figure 3-8(b).

Thus, during simulation the microbubble spontaneously follows the stable buckling
solution, while in order to obtain the flat solution after the buckling point special manipulation
of the contact elements is required. More specifically, for the buckling solution to be followed

a step A6, = 6.75°is employed while the flat solution is obtained by selecting a smaller value
for A6, =2.25°. Moreover, the change in the number of negative eigenvalues can also
provide the buckling point in terms of the corresponding values for the critical deformation

6
and force. In this fashion the calculated buckling point via FEM is E,% =(2.4,120),
h 27EhR,
while in [47] itis (2.5,130), and the corresponding contact angle from FEM is 6,=9° and from

[47] 6.=8°.
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3.3.2 Benchmark of the uniform pressure problem

The formulation of a microbubble subject to a uniform overpressure field (paragraph
2.4) is investigated for its validity by performing simulations with the same parameters that
Knoche & Kierfeld [59] use. In [59] a spherical axisymmetric vessel is subject to a negative
internal pressure assuming given volume or pressure. The former case corresponds to a shell
filled with incompressible fluid, while the latter is a shell that contains a gaseous phase, even
though the compressibility is neglected. Therefore, the most suitable case is the second and

more specifically a case which corresponds to relatively stiff shell with kb/;(RO2 =107, where

the internal pressure is not a dominant resistance, which means that the effect of
compressibility could be omitted or if it is incorporated in the modelling it will not
significantly affect the results. Following the above scenario, simulations are performed with:
E=2.64-10° Pa, R,=2-10°m, h=1.9-10" m, k,=2:10"** N-m, v=0.5, yaw=0 N/m, y=1.07, Hook’s
law and no pre-stress. Figure 3-9(a) illustrates the evolution of different solution branches in
the plane defined by the dimensionless external overpressure, AP/P.,, and the relative volume
change between the deformed and the initial state of the shell, V/V,; a uniform mesh of 200
and 400 elements was used for the discretization of the shell surface and agreement was
verified between the numerical solution (FEM) of the present study and the [59].

Initially, as the shell is compressed by a uniform overpressure AP, the relation between
loading and volume is a linear curve (black line), the shape of the shell is spherical with a
decreasing radius and the jacobian matrix has one negative eigenvalue. However, with further
increase of the absolute value of the external pressure the number of negative eigenvalues
rises to two. The corresponding eigenvector is used with a small imperfection in order to
calculate the initial guess for the secondary branch solution. The numerically obtained
diagram confirms that the asymmetric branch (red line) emerges first as the dominant
instability for AP = 3.2-10° Pa, that is, roughly, 0.92 of the theoretical value (AP.,), eq. (2-70).
This is in direct agreement with the critical value taken from a similar diagram in [59].
Furthermore, the secondary bifurcation leading to a symmetric solution family (dark green
line) was also recovered. Therefore, agreement between the two approaches is justified,
despite the different treatment of the internal pressure variation adopted herein, due to the
negligible resistance to compression of the microbubble indicated by the very small value of

the dimensionless pressure, P,R /y =4 1072,

Furthermore, the asymmetric branch is linearly unstable with two negative eigenvalues
whereas the symmetric branch that follows is characterized by three negative eigenvalues.
Both branches evolve subcritically and have more total energy than the spherical branch,
Figure 3-9(b). Therefore, they require imposition of a geometric disturbance of a certain
amplitude, in the form of the eigenvector provided by stability analysis as was explained
above, on the base spherical shape in order to perform parametric continuation along them.
The evolution of both branches was followed for a wide range of external overpressures, also
in agreement with the above study, and the minimum external overpressure for nonlinear
transition to an asymmetric shape to be possible, starting from the spherical configuration, was

recovered. In particular, the spherical branch for AP/P, =0.92 and V /VV, = 0.91 has one more
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Figure 3-9: (a) Bifurcation diagram-Comparison between the present analysis and literature, (b)
Bifurcation diagram in terms of total energy, (c) Evolution of spherical solution shapes, (d) Evolution
of asymmetric solution shapes and (e) Evolution of symmetric solution shapes. The almost spherical
shapes in (d) and (e) correspond in the bifurcation point and then a sequel of solutions is presented
dominated by the asymmetric and symmetric eigenmode, respectively, for reduced shell volume.

negative eigenvalue and the corresponding eigenvector is dominated by P3; Legendre
eigenmode, which with a small disturbance (¢~10) is imposed on the last spherical shape and
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through simple continuation the new solution branch is evolved. When the solution is on the
asymmetric branch further disturbance on the eigenvector is not required. On a same way the

symmetric branch is evolved from the spherical branch, but starting from AP/P, =1.05 and

V/V, =0.9, when the spherical solution has on more negative eigenvalue and disturbing the

corresponding eigenvector dominated by the P2 Legendre eignemode. The deformed shapes
associated with the above solutions are presented in Figure 3-9(c), (d) and (e) for reduced shell
volume. The spherical shell is dominated by the P, Legendre eigenmode, associated with
volume changes, while the asymmetric and symmetric shapes are dominated by the P3 and P,
modes, respectively.
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Chapter 4. Numerical results: Simulation of a microbubble under the AFM

In the fourth chapter of the present thesis the numerical models developed
previously are employed in numerical simulations that investigate the static
response of coated microbubble under the AFM. Subsection 4.1 contains
numerical results for the classic contact problem, while the results for the
model that accounts for the intermolecular forces are presented in session 4.2.
In both problems, a reference case is initially studied and then an extensive
parametric analysis is carried out in order to investigate the role of the
different parameters on the equilibrium. In the case of the classic contact
problem for microbubbles covered with polymeric material the two solution
families corresponding to flat and buckled shapes are recovered, confirming
that the buckling stage is energetically favorable. When microbubbles covered
with phospholipid monolayers are investigated with the intermolecular forces
model, buckling is not seen to take place and the shell around the contact area
remains flattened, when the dimensionless bending modulus is relatively high,

k, / (¥RZ) >1. The parametric study for both problems shows that the elasticity

moduli, namely stretching and bending, tend to increase the slope in f-d curve.
Similar behavior is observed when the surface tension of shell-water interface
is accounted on the equilibrium. A pre-stressed shell with compressive residual
stresses has lower slope than a shell with zero residual stresses and vice versa
when the residual stresses are tensile. Furthermore, the gas compressibility
acts as an extra stiffness on the shell, when the relative importance of the gas

pressure to area dilatation modulus is higher than one; PyR,/ y ~1. This fits

well with the lipid monolayers, while for the polymeric shells the effect of gas
compressibility is negligible in the regime of small deformations. Especially for
the intermolecular forces problem the adhesive energy per unit area can also
affect the f-d curve. Through the parametric analysis it is shown, that when the
interaction potential W, increases not only the slope of the f-d curve increases,

but also the amplitude of the maximum adhesive force;W,/ y ~1 .Thus two

cases are investigated pertaining to weak and strong adhesion. In addition, the
characteristic length 5 does not affect the slope of the f-d curve, but as da
decreases the response around the maximum adhesive force becomes sharper.
In the same context, three regions along the shell are defined; the contact, the
transition and outer regimes depending on the disjoining pressure profile. The
lengths of the above regimes are also part of the parametric analysis, where it
is shown that the length of transition regime is decreased as the length d4
decrease and the energy W, increase. Surface tension tends to decrease the
contact length, while the transition remains unaffected. Finally, on the
intermolecular forces problem, an additional case is investigated, where the
microbubble is assumed to be free of elasticity, and then it is the surface
tension and the gas compression that balance the disjoining pressure.
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4.1 The classic contact model

4.1.1 Study of single microbubble

Chapter 2 contains two formulations for the static response of a coated microbubble
under the AFM and, as it was explained there, the shells covered with polymeric material
behave like conventional shells. Thus for their description a classic contact formulation is
adopted, while a model with intermolecular forces is developed for shell covered with lipid
monolayers; see below for results. In addition, in paragraph 3.3.2 it was shown that the
distribution of the applied contact force may be treated as a line load that vanishes everywhere
on the shell except for the circular arc that joins the contact with the free area. Hence, due to
axisymmetry, it is possible to replace the load distribution with an unknown point load at the
end of the contact region. Thus, in the first subparagraph of the present chapter the
methodology developed for the classic contact problem, paragraph 2.3.1, is employed and
simulations with simple continuation are performed for the investigation of the static response
of a microbubble in terms of the f-d curve, post-buckling behavior, the energy distribution of
each solution branch and the tensions - moments along the shell. In order to facilitate
comparison between different types of shells we use the area dilatation, y, and bending
resistance, kp, throughout this study, with the understanding that for polymeric shells the
elasticity modulus, E, and shell thickness h are the more relevant physical shell parameters.
For the purposes of the present study, the parameters of Table 4-1 are considered, which are
similar with the ones that Glynos et al. [29] employ for the estimation of shell properties for
biSphere microbubbles via AFM. The relevant dimensionless numbers are:

2
b= kbz — 1 _ L :3><10‘5; F‘,A: PARO :3><10‘3; ?BW :%ﬂzo; }(=Eh,
2R 12(1-v*) (R, 7 P

Initially, the cantilever is imposed on top of the shell and for a known contact angle;
6. =1.8°, a solution is seeking and by performing simple continuation with A6, =1.8°a series
of solution is obtained, where the resultant force can be calculated for some deformation of the
shell. As it is already described the deformation in f-d curves is defined as the displacement of
the current cantilever position from its original. Thus, a f-d curve is obtained for the

parameters assumed here, Figure 4-1(a), and the two branches of solution are recovered. The
linear branch is characterized, as in benchmark calculations, by one negative eigenvalue and at

d =105nm,F =435nN and 6, =11° a bifurcation point appears that leads to the second
solution branch, which also has one negative eigenvalue, that is initially curved downwards,

Shell thickness: h=47nm Young’s modulus: E=1.7 GPa
Initial radius: R, =2.75um Poisson ratio: v=042
Constitutive law: Hook Pre-stress: U=0pum
Surface tension: Yew =0 N/m Polytropic index: 7 =1.07 400 elements
Table 4-1: Simulation parameters for the force-deformation curve of a microbubble covered with
polymer.
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while at relatively high deformation tends to curve upwards. The linear branch continues
further from the bifurcation point, but now has two negative eigenvalues, indicating that this
part of the solution is unstable. This is also in agreement with the total energy of the two
solutions, Figure 4-1(b), where it can be seen that the total energy content of the secondary

@ (b)

() (d)

e) ()

Figure 4-1: (a) Force-deformation curves, (b) Total energy-deformation curves of flat and buckling
solutions, (c) and (d) Shape of deformed microbubble for selected values of deformation
corresponding to flat and buckling solutions (The cylindrical coordinated system (o, z) is
dimensionalized with the initial radius R,.) and (e) and (f) Components of total energy for the pre- and

post-buckling stages. The axes and elasticity moduli are dimensionalized as it is described in paragraph
2.3.1.
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solution is smaller in comparison with that of the linear branch as this evolves beyond the
bifurcation point, hence the former is energetically favorable. The corresponding shape of the
microbubbles in the linear part of the f-d curve is flat whereas buckling has taken place in the
non-linear part, Figure 4-1(c) and (d). In addition, the total energy components are
demonstrated in Figure 4-1(e) and (f) for the flat and buckling solutions, where the energy due
to bending becomes higher than stretching after the buckling point, which is reasonable
because after the bifurcation point the area around contact is an almost mirror image of the
initial unstretched spherical cap. As a result the energy due to stretching increases with a
lower slope. In addition, the energy due to gas compression is initially negligible, however
beyond a certain level of deformation, d>500 nm, it starts to increase as it acts as an additional
stiffens on the equilibrium thus explaining the upwards curved f-d curve. Moreover, with
further post processing calculations the distribution of total energy components is plotted
against the distance from the axis of symmetry, o, for two configurations that correspond to
pre- and post-buckling stages, Figure 4-2(a) and (b), respectively. In the pre-buckling solution
most of the elastic energy is concentrated near the contact area for o <0.2, with the energy
due to bending being slightly higher than stretching. The distribution of bending energy is
significantly higher than stretching in the buckling solution and has a pick at the end of
contact, where a dimple is formed with small curvature. The shell outside the contact area
remains almost spherical, thus both elastic energies vanish.

Another interesting result that characterizes the solution and gives a more complete
picture of the shell deformation is the distribution of in plane and shear tensions along with
bending moments. In Figure 4-3(a) and (b) the tensions are depicted as function of the
distance from the axis of symmetry, o, for the pre- and post-buckling solutions. In both cases,
the in plane tensions 1 and t,, have negative values, which means that the shell is under
compression especially in the contact area, where most of the deformation is located.
Moreover, the shear tension q is almost zero along the shell, except at the points o =0.2 and
o =0.5, where the external point force is applied. This is in direct agreement with the classic
theory. In addition, the bending moments mg and my,, are equal and almost constant along the
contact area in the pre buckling stage, Figure 4-3(c). In both pre- and post-buckling the
discontinuity of the shear tension at the end of contact is reflected as gradient discontinuity in
the bending moments, as it is expected by the theory, see eq. (2-20). Finally, around the end of
the contact area, positive moments are concentrated, because a dimple is formed with high
curvature.
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Figure 4-2: Distribution of energies due to stretching and bending along the distance from the axis of
symmetry, o. (a) Pre-buckling stage with deformation d=100 nm and (b) Post-buckling stage with
deformation d=400 nm. The elasticity moduli and the surface tension are dimensionalized as it is
described in paragraph 2.3.1 and the horizontal axis with the initial radius R,

@ (b)

©) (d)

Figure 4-3: (a) and (b) Distribution of in plane and shear tensions in flat (d=100 nm) and buckling
solution (d=400 nm), respectively. (c) and (d) Distribution of bending moments in flat (d=100 nm) and
buckling solution (d=400 nm), respectively. The elasticity moduli are dimensionalized as it is
described in paragraph 2.3.1 and the horizontal axis with the initial radius R,.
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4.1.2 Parametric Study

In the following session a parametric study is carried out in order to investigate the
effect of different parameters that are involved in the shell equilibrium, namely stretching and
bending rigidity, constitutive law, pre-stress, surface tension and gas compressibility. The
rigidities that are associated with elasticity are the most extensively investigated parameters
through the years for such a classic problem, however, for the sake of completeness in the first
part of the present paragraph the effect of elasticity moduli is studied. In addition, the case
investigated in subsection 4.1.1 will be used as the reference case.

Effect of elasticity moduli (stretching-y & bending kj,)

Initially, a microbubble is investigated, which in comparison with the case studied in
subsection 4.1.1, see Table 4-1, has twice the stretching and bending modulus, E=3.4 GPa or

#=159.8 N/m and k, =3.6x10"**Nm. Thus the dimensionless bending modulus remains the

~ PR g
same: k, = K, =3x10° and the dimensionless ambient pressure P, =—2-2=15x10"

2

2R V4
decreases, i.e. the gas compressibility is less important than rigidity. In Figure 4-4(a) the f-d
curve of the above case is compared against the one from subsection 4.1.1 , to be referred to as
reference case henceforth for brevity. The f-d curve of the new microbubble has higher slope,
as it was expected since it is a shell with higher rigidity. This will be verified in Section 6
where the asymptotic analysis by Reissner, pertaining to the linear regime of the f-d curve,
will be presented for spherical shells compressed by a rigid plate. There it will be seen that the
slope of the linear part of the f-d curve is proportional to the elasticity modulus E.
Furthermore, the bifurcation point of the case shown in Figure 4-4(a) occurs at the same

deformation and contact angle, i.e. d =105nmand 6, =11°, but the required force is higher.

A

However, the two elastic shells have the same dimensionless bending modulus, k, , or

alternatively the same ratio thickness to radius, thus in dimensionless form the two curves
coincide, Figure 4-4(b), for the most part. On the other hand, the two buckling curves respond
differently in higher deformations because the third rigidity of the equilibrium, i.e. the gas
compressibility, starts to become important. In the reference case the dimensionless pressure is

ﬁA:3x10‘3. Consequently, the compression of the encapsulated gas is relatively more
significant, in comparison with the stretching rigidity, for the reference case than in the case

examined here with P, =1.5x107
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Figure 4-4: Comparison of f-d curves with different elasticity moduli and the same dimensionless
bending modulus, k, = 3x107° (a) Axes with dimensions and (b) Dimensionless axes.

In the next of a microbubble with higher dimensionless bending is investigated with the
same simulation parameters as in Table 4-1, but with h=94 nm. Consequently, the

dimensionless numbers are: Izb =10 and ISA:1.5><10‘3. As can be gleaned from Figure

4-5(a) depicting the f-d curve, for both flat and buckling solutions the required force is higher
than the reference case. In addition, the buckling branch of the

56

Institutional Repository - Library & Information Centre - University of Thessaly
14/06/2024 17:55:28 EEST - 52.15.49.141



(@)

(b)

Figure 4-5: Comparison of f-d curves with different elasticity moduli and dimensionless bending
modulus, k, (a) Axes with dimensions and (b) Dimensionless axes.

Izb =10"" case emerges from the flat solution at around d =220 nmand 6, =16°. Thus, the

dimensionless bending modulus controls the position of the bifurcation point and the onset of
buckling. In the present numerical study the bifurcation point is a clear and sharp change in f-d
curve and the detection of the bifurcation point in experimental-AFM data could be of great
importance in order to estimate the elastic properties (y, kp) of the elastic coating, based on the
deformation and force exerted at the onset of bifurcation.
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Effect of gas compressibility

In the next part of the present parametric analysis the effect of the gas compression is
specifically studied. In the reference case the gas is assumed to undergo isothermal variations
of its pressure, i.e. as the volume is reduced the gas pressure increases. This is a constraint
added to problem formulation in order to account for the compressible nature of the gas. For
conventional shells that are either very rigid or operate in the regime of small deformations,
such a constraint is not necessary. Thus the formulation follows in general what Updike &
Kalnins [46-48] suggest for the present analysis without the isothermal equations. To this end,
gas compressibility may be omitted by setting the polytropic index, y=0, which leaves the
internal pressure constant and the shell volume independent from pressure. Figure 4-6(a)
compares the resultant f-d curve for the buckling solution when y=0 with the compressible gas
case. As it is seen, after a level of deformation on the order of d=300 nm the required force is
higher, because the internal pressure starts to increase significantly and its impact on the
composite bubble rigidity reflects in the more rapid rise of the f-d curve, Figure 4-6(b).
However, the onset of the bifurcation point is not affected by the consideration of gas
compressibility since it occurs at a lower deformation. Even if the gas compression is
accounted for in the formulation, the response of the f-d curve remains unaffected by the gas
compression, bold line in Figure 4-6(a), especially at low deformations. This is attributed to

the low dimensionless gas pressure, f’A =1.5x10", which is a measure of the relative stiffness
of gas compression to elasticity stiffness. Next, a case with relative high dimensionless
pressure is examined, which has FA>A =1 and Izb =3x107. It should be stressed that these
parameters do not correspond to the properties of a shell covered with polymeric biomaterial,
but they are employed only for the purposes of comparison. When |3A =1, the required force

for buckling increases significantly, but the bifurcation point remains the same, Figure 4-7(a).
In addition, as the shell is deformed, the internal (or gas) pressure increases in both cases, but

its relative importance in comparison with the area dilatation modulus is greater when I5A =1.

(@) (b)

Figure 4-6: (a) Comparison of f-d curves for compressible and incompressible gas and (b) Gas
pressure as function of volume.
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Figure 4-7: Comparison of (a) f-d curves of two microbubbles with the same dimensionless bending
modulus k, =3x10" and different dimensionless pressure; the solid curves correspond to negligible

internal (or gas) pressure (I5A = 3><10’3) and the solid-dot line to a larger internal pressure (ISA :1), (b)

Zoom in the bifurcation regime.
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Effect of pre-stress

In the present part of the parametric analysis the effect of pre-stress is investigated,
assuming initially that the microbubble has lost some of the encapsulated gas. Thus, the shell
volume decreases, compressive initial stresses are developed on the shell and consequently the
starting point is not a stress-free state. In order to study the above scenario, a microbubble is
considered with the same parameters as in the reference case, but an amount of pre-stress is
assumed in the form of an initial radial displacement of u=-10"° um. In Figure 4-8(a) the f-d
curves for both pre- and post-buckling solutions of the pre-stressed shell are compared against
the reference case, where zero residual stresses are assumed, u=0. As it can be gleaned the
required force decreases significantly especially in buckling branch and the bifurcation point
is shifted to lower values of force and deformation (d=98 nm, F=360 nN and 6.=10°). In
addition, eq. (2-72) predicts the initial gas pressure when the shell is pre-stressed. Thus, in the
present case the internal pressure is less than the ambient since the surface tension is zero,
Figure 4-9(a). Hence, the combined rigidity of the shell is smaller and this reflects in the lower
slope of the equilibrium f-d curve. The results are exactly the opposite when the shell is
assumed pre-stressed, but with tensile stresses. The bifurcation point is shifted to higher values
of force and deformation (d=120 nm, F=560 nN and 6,=12°). Based on the same concept as
before the initial internal pressure is higher than the ambient and the combined rigidity of the
shell is larger than the reference state, hence the larger slope

(a) (b)

Figure 4-8: Comparison of f-d curves with pre-stress: (a) Compressive residual stresses, u= -10% um
and (b) Tensile residual stresses, u= +107 pm.
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(a) (b)

Figure 4-9: Comparison of gas pressure-volume curves with pre-stress: (a) Compressive residual
stresses, u=-10" um and (b) Tensile residual stresses, u= +10" um for buckling branches.
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Effect of surface tension

Next the effect of the surface tension on the f-d curve is investigated for the classic
contact problem when yaw=4x10° and 4x102 N/m. Figure 4-10(a) and (b) compare the
response in f-d curves for both cases. Surface tension is seen to increase the resistance to shell
compression by increasing the force required to achieve a certain deformation, especially at
large deformation levels. The bifurcation point remains the same as in the reference case when
vew=4x10° N/m, but is moved to slightly higher values of force and deformation when
vew=4x107 N/m (d=120 nm, F=545 nm and 6,=12°). As in the study of the pre-stress, the
initial gas pressure is estimated by eq. (2-72). Thus when the surface tension is considered the
initial gas pressure is higher than the ambient by a term of magnitude 2ygw. Hence, as the
volume decreases the gas pressure increases as well, but for each of the above cases it acquires
a different starting value, see also Figure 4-11. In particular, when ysw=4x10? N/m gas
compressibility is a significant resistance, and this explains the increased external load
required in order to achieve a certain deformation.

(@) (b)

Figure 4-10: Comparison of f-d curves for different values of surface tension (a) ysw=4x 10 N/m and
(b) yew=4x 10 N/m against the reference case with ygw=0 N/m.

@) (b)

Figure 4-11: Comparison of gas pressure-volume curves for different values of surface tension (a)
Yew=4x 10 N/m and (b) ysw=4x 10 N/m against the reference case with ysw=0 N/m for the buckling
branch.
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4.2 The intermolecular forces model
4.2.1 Study of a single microbubble

In the second part of the fourth chapter numerical results are demonstrated obtained with
the model that accounts for the intermolecular forces between the cantilever and the elastic
shell (see paragraph 2.3.2), which is mainly proposed for microbubbles covered with lipid
monolayer. In contrast with lipid bilayers that have relatively high area dilatation

modulus,y~0.1 N/m, in comparison with their bending stiffness, ky~10"° Nm kb/;(Ro2 ~107°,

and thus they are modeled as vessels with constant area [63], a microbubble covered with a
phospholipid monolayer has bending stiffness that more comparable with the area dilatation
modulus. Thus, a microbubble with the parameters of Table 4-2 is considered. The above
parameter values are taken from previous relevant studies [16, 29, 83], giving rise to the
following dimensionless numbers:

k‘b: kb2:2.7><10—3; ﬁA:mZS, ?BW:M:O' \/\70:%:2)(10_3; ZA:].
IR X X X
() I () ©
(a)_ y=0.033
z=15 - .

T F<0 2=1.05( {F0 ™ F<0
| ™ ! AN
i \‘\ | ‘\‘
i | \
! \ i !

Figure 4-12: Schematic representation of the relative position of microbubble and cantilever: (a) The
bodies are at relatively long distance-attraction (F<0), (b) Position of the maximum attraction, a small
area around the pole is at distance y=56,=0.033 (F=0), the rest of the shell is in attraction (F<0 or y>>
d4) and (c) Cantilever and microbubble are close, where the contact area is in repulsion (F>0 or y<d,)
and the rest of the shell remains in attraction (y>>6,).

Bending _ -16 Area dilatation _
modulus: K, =3-107 Nm modulus: 7=005N/m
Initial radius: R, =1.5um Poisson ratio: v=0.5
Constitutive law: ~ Mooney-Rivlin, (b=1)  Pre-stress: u=0um

. B Polytropic _
Surface tension:  7g, =0 N/m i dex y =1.07
Potential depth W, =1x107* N/m Potential length &, =50 nm 400 elements
Table 4-2: Simulation parameters for the force-deformation curve of a microbubble covered with lipid
monolayer.
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(d)

Figure 4-13: (a) Force-distance, (b) Distribution of the disjoining pressure along the distance from the
axis of symmetry, (c) Force-deformation curve and (d) Microbubble in deformed configuration for
selected values of deformation, (the axes z and ¢ are dimensionalized with the initial radius R,).

Initially, the cantilever is placed in the reference spherical state at a vertical distance of
z=1.5 from the shell equator, measured in terms of the initial radius Ro. Performing simple
continuation by decreasing the vertical distance z the cantilever is seen to approach the shell.

The resultant force is very small and negative for z>>1+6, /R, =1.05, Figure 4-12(a), while

the shape remains almost spherical because the whole shell and the cantilever are at a
relatively long distance. However, as the cantilever approaches the shell (z |) the force
remains negative, Figure 4-13(a), but its amplitude increases significantly in order to
counteract the attractive force between the shell and cantilever. At around z =1.05, the force
reaches a maximum negative value. This is the point where the dimensionless water film
thickness 6/Rg is about 0.033, in dimensional form 6=50 nm=gd,, which is the characteristic
length 6, where the disjoining pressure and the force are zero, first curve in Figure 4-12(b),
but the rest of the shell (the part not near pole) is still at relatively long distance from the
cantilever. In this part of the shell the disjoining pressure is negative and therefore the
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resultant force over the entire shell is still negative, i.e. attractive. The magnitude of this force
represents the required pull-off force in order to overcome the resistance against increasing the
water film thickness. For z <1.033, the water film decreases further, and the disjoining
pressure around the pole becomes positive signifying the repulsive force between the shell and
cantilever at very small distances, Figure 4-12(c). Therefore the total force turns to smaller
negative values and eventually acquires positive values corresponding to overall repulsion; see
also the distribution of the disjoining pressure along the distance from the axis of symmetry in
Figure 4-13(b). As can be gleaned from the latter figure, there is a distance z, where the
repulsive (positive) force is equal with the attractive (negative) force where the resulting total
force on the shell is zero. The last value of z is used as reference for the estimation of the shell

deformation, d. :[Z(F :O)—zi]Ro, and the construction of the f-d curve that can be

compared against experimental results. The progressively larger positive force required for
larger deformations to be exhibited corresponds to the larger and larger repulsive force that
needs to be overcome as the liquid film is thinning.

(@)

(b) (©

Figure 4-14: Distribution of the principal curvatures along the distance from the axis of symmetry (o)
(a) Mean curvature (kn), (b) curvature on s direction (k;) and (c) curvature on ¢ direction (K,).
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In the present case Z(F = O) =1.01. The f-d curve, Figure 4-13(c), is almost linear in the

initial part and tends to curve upwards in higher values of deformation, indicating that
buckling is not taking place, as it is expected from the analysis in paragraph 4.1. This becomes
evident by plotting the shape of the microbubble in deformed configuration for selected values
of deformation, Figure 4-13(d), where it can be seen that the shape around the contact area
remains flattened. Moreover, the first deformed shape has negative deformation, because it
corresponds to the point of the maximum adhesive force, i.e. it is the point where the shell
undergoes the maximum attraction by the cantilever. The disjoining pressure around the
contact area is not a constant function which means that the water film does not have a
constant height (y). This is a result of the elastic nature of the shell coating that allows for
small indentations of the shell near the pole. It is also of interest that the point where the
disjoining pressure becomes zero is moved to the right as the deformation increases. Upon
careful cross-examination of the deformed shape, the point where the disjoining pressure starts
to increase can define the end of the contact regime, see vertical lines in Figure 4-13 (b) and
(d). In between the previous point and the outer region it exhibits a maximum negative pick
and after taking negative values it crosses to positive values in the outer region. This area can
define a transition regime between the contact and outer regions of the shell, with the latter
region characterized by zero disjoining pressure. Following this concept, the length of the
transition regime is ¢~ 0.45. Furthermore, plotting the principal and the mean curvatures
along the deformed shell, Figure 4-14, it can be seen that there are small deviations from zero
in the part of the shell that is in contact with the cantilever, and consequently the contact area
is almost flattened. Moreover, at the end of the contact area, the curvature starts to increase
and reaches values around one, which means that the shell exhibit a deformation in the area
away from the contact as well. The interaction of the shell with the cantilever can also be seen
in terms of the relative energies, namely stretching, bending, gas compression, adhesive
potential and surface tension. The last energy is zero for the case investigated in this
paragraph. In Figure 4-15(a) the total energy (the sum of all of the above energies) is plotted
as a function of the deformation, while the relative importance of each of the energy
components is depicted in Figure 4-15(b). For large negative deformations, the cantilever is
away from the shell, thus all of the energy components vanish. As the cantilever approaches,
the first energy that starts to increase is the energy due to adhesive potential, reflecting
reduction of the film thickness that exists between the shell and the cantilever. When the
attraction becomes strong enough, the energy due to stretching and bending start to increase as
well. The energy due to bending is higher than stretching for deformation less than 200 nm
and vice versa for higher deformations. On the other hand the energy due to gas compression
is almost zero for deformation less than 300 nm, however for higher deformations the gas
compression energy starts to increase introducing an additional stiffness on the equilibrium.
Finally the energy of the adhesive potential is always negative, because the film even though
IS compressed, its height never becomes so small so that the potential becomes positive, see
also Figure 2-5. The last result indicates that the presence of the adhesive potential reduces the
total energy, thus leading to more stable configurations. Moreover, the above energies can be
illustrated for selected values of deformation along the distance from the axis of symmetry,
Figure 4-16. In the contact area the energy due to
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(@) (b)

Figure 4-15: (a) Total energy as function of the deformation, (b) Components of the total energy as
function of deformation. The dimensionalization of axes is based on paragraph 2.3.2.

bending is higher in comparison with the energy due to stretching for all of the selected
deformations, but in the rest of the shell the opposite happens. The energy due to adhesive
potential has a slight variation along the contact area, which is due to non-constant height of
the film, as it is was explained above, and has a local maximum indicating a compression of

the film (y <d,) and a local minimum at the end of the contact area (y=J,), where the

disjoining pressure becomes zero. In the rest of the shell the potential tends to zero as the
relative distance between the shell and the cantilever is quite large.

Finally, Figure 4-17 illustrates the distribution of the stresses and bending moments
along the shell as a function of the distance from the axis of symmetry. When the shell is at
the maximum attraction, tensions and moments are positive, because as it can be seen from
Figure 4-17(d), the shell is elongated. When the force becomes positive (repulsive), the shape
is compressed and the in plane stresses become progressively negative, with 1t being
compressive in the entire shell and t,, only in the contact area, Figure 4-17(a) and (b). In the
transition and the outer regimes t,, is positive, thus in ¢ direction of these two regimes the
shell is elongated and the point where 1, changes sign coincides with the end of the contact
region. In contrary with the previous model, paragraph 4.1, where the applied load is
concentrated at a point and therefore the shear tension is a non-zero function only at the
contact point, in this case the shear tension q, Figure 4-17(c), has a smooth distribution along
the shell, reflecting the distribution of the applied disjoining pressure. As it can be seen, most
of the shear tension is concentrated at the end of the contact region and its largest negative
value is shifted on the right as the deformation increases and so does the contact length. The
shear tension in the outer regime is very small and positive, indicating that, as it was described
earlier, the shell has some deformation in this regime. In a similar way, the bending moments
mss and m,, are constant and equal in the biggest part of the contact regime and before the end
of this regime they start to increase and become zero at the end of contact, Figure 4-17 (d) and
(e). In the transition regime, the bending moments are positive and increase, while in the outer
regime they are also positive, but decrease.
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(c) (d)
(e) (f)
)

Figure 4-16: Distribution of the energy per unit area due to stretching, banding, surface tension and
adhesive potential (right vertical axis) along the distance from the axis of symmetry (o) for selected
values of deformation (a) d=-60 nm, (b) d=100 nm, (c) d=200 nm, (d) d=300 nm, (e) d=400 nm, (f)
d=500 nm and (g) d=600 nm. The dimensionalization of axes is based on paragraph 2.3.2.
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(€)

Figure 4-17: Distribution of the (a) in plane stress 1, (b) in plane stress t,,, (C) bending moment mg,
(d) bending moment m,, and (e) shear stress g along the distance from the axis of symmetry (o) for
selected values of deformation. The dimensionalization of the axes is based on paragraph 2.3.2.
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4.2.2 Parametric Study

In this subparagraph parametric study is performed in order to investigate the effect of
different parameters of the shell coating in f-d curves, the deformed shapes and the contact,
transition and outer regimes. The microbubble that was investigated in paragraph 4.2.1, pure
elastic shell, is the reference and by changing one parameter a new case is studied in
comparison with the first one. In the next, the effect of elasticity moduli, constitutive law, pre-
stress, adhesive energy per unit area, surface tension and gas compression are investigated, in
order to draw a complete picture of their influence, since in the literature the available
experimental or numerical investigations for the estimation of the relevant properties of lipid
monolayers are very limited.

Effect of the elasticity moduli (stretching-y & bending kp)

In paragraph 4.2.1 it was assumed that the area dilatation modulus is y =0.05 N/m and

the bending modulus is k, =3x107° Nm. Thus the dimensionless bending modulus is

k, =2.7 x10~ and the relative importance of gas compression to area dilatation modulus is

P, =3. As it was shown in parametric analysis of the classic contact problem, when P, >1

the gas compression is an important rigidity and thus affects the f-d curve even in small values
of deformation. Therefore, in order to vanish its influence and consequently study the effect of
elasticity moduli only, parametric analysis is carried out in the space of the dimensionless

~

number K, with P, <1. Thus, the following cases are initially considered with:

k, =3.4x107™", 3.4x10™, 3.4x10™°Nm, =51 N/m, while the rest of the parameters are
the same as in Table 4-2. Hence, the corresponding dimensionless bending modulus is

k, =3x107,3x10 and 3x10° and the dimensionless pressure P, =3x107. In addition, it

should be stressed out that the above parameters, especially y, do not necessarily correspond to
microbubbles covered with phospholipid monolayer, but they are chosen for the purposes of
the present parametric study. In Figure 4-18(a) the corresponding f-d curves are compared in
dimensionless form, where the cases with the lower dimensionless bending stiffness exhibit a
non-linear response associated with buckling of the shell around the contact area, Figure

A

4-18(b) and (c). On the other hand, the response of the K =3x10" case is strongly linear;
indicating that buckling is not taking place, see also Figure 4-18(d), while the shape remains

A

mostly spherical away from the contact region. In addition, the case with K, =3x107
corresponds to a buckled shell which, around the dimple that is in contact with the cantilever,

has a gradually higher curvature in comparison with the one from the case with |2b =3x10"",

which is a result of the increase of the dimensionless bending modulus, see also Figure 4-19.
In the latter two cases the shape of the shell in the crater region resembles that of an inverted
sphere with the same radius as the original shell. Moreover, the disjoining pressure of the
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buckled cases is demonstrated in Figure 4-20, where it can be seen that when the shell is in the
buckling stage the disjoining

(@) (b)

©) (d)

Figure 4-18: (a) Comparison of f-d curves for different values of the dimensionless bending modulus
and negligible internal pressure, Shape of the microbubble in deformed configuration with (b)

k, =3x10°, (c) k, =3x10* and (d) k, =3x10°°.
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(b) (c)

Flgure 4-19: Mean curvature distribution along the distance from the axis of symmetry, o. (a)
k =3x107, (b) k =3x10" and (c) k =3x10"°. The axes are dimensionlized with the initial radius
Ro.
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Figure 4-20: Disjoining pressure distribution along the distance from the axis of symmetry, c. (a)
k, =3x107°, (b) k, =3x10™ and (c) k, =3x107°. The horizontal axis is made dimensionless with the
initial radius R,

(a) (b)
Wo/y=2x 10" W /y=2x10
3 OX X /3 OX X -
_ - W /y=2x10
W /x=2x10 6 JX /x
° )
ky =3x107 k, =3x10"

Figure 4-21: Comparison of f-d curves corresponding to classic contact model and the intermolecular
forces model with weak (W,=1x 10 N/m) and strong (W,=10" N/m) adhesion, for (a) K, =3x107°

and (b) K, =3x10*; P, =3x10°°.
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pressure vanishes in the crater region, because the height of the liquid film is relatively large,
and takes a non-zero value at the end of the dimple, which is practically in contact with the
cantilever. In the last area the film is compressed and then the disjoining pressure takes a finite

A

value. In case with k, =3x10™ the disjoining pressure is almost three times larger than the

values of the case le =3x10", which indicates that the liquid film is more compressed in the

latter case. It should also be stressed that the load distribution in the above cases conforms
with that of a line distribution at the end of the dimple, panels a,b, and contact region, panel c.
This justifies the approximation adopted by Updike and Kalnins [47-49], where they extended
Reissner’s solution for a uniform load distribution on a shallow thin shell, to solve the case
with a line load at a prescribed angle with respect to the axis of symmetry as a means to
simulate the case of a rigid flat plate compressing a spherical shell. The methodology
introduced in the present study for the simulation of such contact problems provides a more
realistic load distribution, for both hard and soft shells, that validates this approach. It will be
seen in the following sections, where a comparison is provided between the simulations
performed in the present study and the available AFM measurements of polymeric and lipid
shells, that this is a very useful approach for obtaining asymptotic approximations on the f-d
curves for both types of shells.

Furthermore, the cases with the lowest bending modulus have similar dimensionless

parameters with the case investigated in paragraph 4.1.1, le =3x10" FA’A =3x107, thus it is

interesting to compare the response of the two contact model in the same graph, see Figure
4-21. The weak adhesion case, W,=10" N/m, has almost the same response with the classic
contact model, but when the adhesion is strong, W,=10" N/m, the required force is higher and

A A

buckling is postponed, k, =3x107°, or even bypassed, k, =3x107. The latter is clearly a

result of the stabilization effected on the shell response by the adhesive action of the
cantilever. The simulation via intermolecular forces captures the stable response pattern
whether that involves buckling or just a prolonged Reissner type response and this constitutes
a powerful tool for simulating contact problems for a wide range of configurations.

Next, in order to cover the second case of this part of parametric analysis simulations are
also performed in the space of the dimensionless bending modulus, but for a microbubble
where the internal pressure is important. Thus the following parameters are considered:

k, =3x107", 3x107*°, 3x107™", 3x10¥Nm and »=0.05 N/m and therefore, the
dimensionless numbers are: k =2.7x107,2.7x107°,2.7x10 and 2.7x10° and P, =3.

A

Thus, the case with K, =2.7x10° corresponds to the pure elastic case investigated in

paragraph 4.2.1. In Figure 4-22(a) the resulting f-d curves of the above four cases are
compared, where the response of all curves is initially linear while exhibiting a non-linear
curved up-wards behavior at large deformations, indicating that even a shell with small
bending stiffness will remain almost flat when it is symmetrically compressed from above and
below, see also Figure 4-22(b)-(d). Hence, in contrast with similar shells which have the same
dimensionless bending modulus, here the compressibility of the gas acts as an extra rigidity
that postpones buckling. Moreover, as the shell is compressed, the area around the equator is

74

Institutional Repository - Library & Information Centre - University of Thessaly
14/06/2024 17:55:28 EEST - 52.15.49.141



expanded, as opposed to buckled shapes for which the shape remains almost spherical. In

A

addition, the shell with the highest elastic rigidity, k, = 2.7x107 has the highest slope in the
f-d curve being strongly linear for small deformations turning non-linear beyond relative
deformation d/R, =0.3. On the other hand, the magnitude of the required force for the same

deformation does not scale with the dimensionless bending stiffness. In fact non- linearity
starts at a lower

(a) (b)
P, =3
(©) (d)

Figure 4-22: Comparison of f-d curves for different values of the dimensionless bending modulus and
important internal gas pressure, Shape of the microbubble in deformed configuration with (b)

k, =2.7x107, (c) k, =2.7x10* and (d) k, =2.7x10°.
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deformation d/R, ~0.1, which means that there is another rigidity that becomes important

and hence the response is changed. The calculation of the total energy components for each of
the above cases, Figure 4-23, reveals that the value of deformation for which the energy due to
gas compression starts to become important is the same as the one for which the non-linear
response sets in the f-d curve. Additional calculations of the disjoining pressure distribution
along the distance of the shell surface show that in the stiffer shell the disjoining pressure
exhibits a strong peak at the edge of the contact region, Figure 4-24(a), in contrast with softer
shells with the same dimensionless pressure parameter P,. In fact, as k; decreases, the

distribution of the disjoining pressure has a plateau along the contact area, indicating that the
film in this area has a progressively decreasing and almost uniform height. Finally, in the

A

transition regime for the lower value of K, is ¢~ 0.25 and for the highest ¢ ~ 0.55, thus k;
increases, the transition also increases.

(@)

(b) (©)

Figure 4-23: Components of total energy for the cases with (a) le =2.7x107, (b) Izb =2.7x10"* and

(c) Izb =2.7x10"°. The moduli of the vertical axes are dimensionlized as it is described in 2.3.2.
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while the transition and outer regimes, oy and ooy, decrease. However, for the case of the

A

lowest bending modulus, K, =2.7 x107, the transition length is almost the same as that for the

case with Izb =2.7x10™", revealing that the dependence of k, and oy is non-linear.

(@)

(b) (©)

Figure 4-24: Disjoining pressure distribution for the cases with (a) |2b =2.7x107, (b) 12b =2.7x10™"
and (c) k, =2.7x10°°.
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Effect of the constitutive law (Hook and Mooney-Rivlin)

One of the main purposes of the present thesis is to characterize the constitutive
behavior of the elastic coating. Thus, two constitutive laws are compared here, in order to
understand their influence, when the intermolecular forces are also accounted for. In this
direction, the purely elastic case is investigated once again (Mooney-Rivlin, b=1), but by
assuming initially the linear constitutive law, Hook’s law, and then the strain softening
Mooney-Rivlin law with b=0 and 0.5. At this point, it is reminded that the parameter b defines
the non-linearity of Mooney-Rivlin law, which takes values in the interval [0, 1]. The case b=0
corresponds to a neo-Hookean membrane whereas as b tends to zero the membrane becomes
softer. The case of a strain-hardening material, i.e. Skalak’s constitutive law, is not examined
here, because in the relevant literature [13, 16, 67, 68] phospholipid monolayers are usually
considered as strain-softening materials. In this context, in Figure 4-25 the f-d curves of the
above cases are compared and it is seen that the influence of the constitutive law is negligible,

even though the relative deformation is quite high (5:500nm/1.5um:0.33 or 33%) in

which case it was expected by Barthes et al. [68] that the change of constitutive law will affect
the f-d curve. It should however be stressed that Barthes et al. [68] investigate, among other
aspects, the effect of constitutive law on uniaxial loading. In the present study strain softening
shells are mainly investigated whose effective elasticity modulus decreases when the area they
occupy is expanded. Consequently the resulting f-d curve has different slope in comparison
with linear materials. Furthermore, the shell shape is not uniformly deformed, in other words
the area around the contact regime is compressed while the area in the transition and outer
regimes is expanded. This becomes evident by calculating the stretching ratios As and A, for
selected values of deformation along with the second invariant of the strain tensor I, which is
a measure of the local area change as function of the distance from the axis of symmetry for
the pure elastic case. As it can be gleaned from Figure 4-26, the second invariant I, is negative
in the contact regime and it is positive in the rest of the shell. Thus, assuming a strain
softening material, the effective elasticity modulus increases in the contact area and decreases
in the rest of the shell leaving the average behavior almost the same like in the neo-Hookean
case. Nevertheless, the overall force required to achieve a certain deformation tends to
decrease as the degree of softness of the shell increases, i.e. as shell parameter b approaches
zero, since a larger part of the shell, namely the outer region of the shell, becomes increasingly
softer.
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Figure 4-25: Comparison of force-deformation curves for different constitutive laws.
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Figure 4-26: (a) Microbubble in deformed configuration, (b) Second invariant I, of the strain tensor,
(c) Stretching ratio As and (d) Stretching ratio A, for selected values of deformation as function of the
distance o from the axis of symmetry, assuming the neo-Hookean constitutive law.
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Effect of pre-stress (u)

As was mentioned above the microbubbles may lose some of their inner gas due to
diffusion through the elastic membrane towards the liquid phase. Gas leakage causes an initial
reduction of the shell volume and consequently residual compressive tensions develop on the
shell before any interaction with the cantilever takes place. In this subsection, the effect of pre-
stress is investigated by employing the formulation of paragraph 2.5, for gas leakage (u<0) or
gas absorption (u>0), which is unlikely to happen when AFM measurements are considered.
In the latter case, the residual stresses on the shell are tensile, because the volume of the pre-
stressed shell increases. It should be stressed that parameter u defines the change of the initial
radius in comparison with the stress-free state radius, see also paragraph 2.5. Hence, in Figure
4-27(a) the cases of gas leakage (u<0) and gas absorption (u>0) are compared in terms of f-d
curves with the pure elastic shell, where the residual stresses are assumed to be zero (or u=0).
As can be surmised by this figure, when the shell is assumed to have lost some gas the
resulting force is smaller. On the contrary when the shell gains some gas it is higher.
Moreover, the shape of the f-d curve of each case is the same, i.e. it is like a family of curves
where the effect of a lower and higher internal pressure is depicted. In other words, when the
shell is pre-stressed its initial internal pressure is estimated by eq. (2-72) for ysw=0. Thus,
when the u<O0, the initial internal pressure is less than the ambient and therefore the effect of
gas compression is less important on the normal force balance. The opposite happens when
u>0. Figure 4-27(b) shows how the internal gas pressure changes as the shell is compressed
(V]), where V and V; signify the current and the initial shell volume, respectively. The gas
pressure increases as the shell is compressed, V/Vi<1, for all three cases, but the starting
pressure is different. Hence, the required force is also different; see also the discussion in the
subsection below dedicated to the effect of gas compressibility. In particular, a compressive
prestress tends to reduce the force required for a certain deformation to take place since the
overall shell rigidity, including volume compressibility, is lower when gas leakage has taken
place; this is also clearly illustrated in the f-d curves shown in Figure 4-27(a). The disjoining
pressure distribution of the two pre-stressed shells has minor differences in comparison with
the pure elastic shell, thus the lengths of contact, transition and outer regimes remain the same.
In addition, the corresponding shape is more or less flat. However, for large enough
compressive residual stresses buckling does take place. In fact the existence of prestress tends
to accelerate buckling on an otherwise similar shell; see also the discussion below when
surface tension is accounted for.
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Figure 4-27: (a) Comparison of force-deformation curves for pre-stressed shells and (b) Pressure-
volume curves for pre-stressed shells.
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Effect of the adhesive energy per unit area (W,-6,)

Upon introducing the disjoining pressure in the formulation of the static response of a
coated microbubble two more parameters must be considered, namely the wetting parameter
W, and the characteristic length da. In Figure 2-5 the functions that describe the adhesive
energy and the disjoining pressure are plotted against the distance from the cantilever for

W, =1x10"* N/m and &, =50nm, and it is seen that the minimum value of the adhesive

energy is 10™ when distance y= 5. Moreover, this is also the point where the disjoining
pressure becomes zero. Consequently, it is important to explain how these two parameters
affect the f-d curve, especially when AFM measurements are considered. Thus, simulations
are performed for the purely elastic shell, i.e. no surface tension, while incorporating the
interaction potential between the shell and cantilever as a means to obtain the load

distribution. The cases with W, =1x107?,1x107°,1x10* and1x10° N/m are examined

setting 6, to 50nm .

Figure 4-28 demonstrates how the f-d curve changes for various values of the adhesive
per unit area energy W,. The lower values of W, are considered as cases of weak adhesion,
while the higher values correspond to strong adhesion between the shell and cantilever. This
becomes mostly evident in the respective f-d curves. In the case of weak adhesion, Figure
4-28(a), the f-d curve of a pure elastic microbubble (W,=1x10™* N/m) is compared against the
f-d curves of microbubbles with W,=10" and 10" N/m. The lowest value of W,=1x10" does
not significantly differ from the pure elastic curve, and the resulting adhesive force at maximal
attractionis almost zero, see also embedded diagram in Figure 4-32(a). On the other hand,
when Wo=1x10* or 1x10° N/m not only is the repulsive force higher for the same
deformation as in the pure elastic case, but also the magnitude of maximum attraction, ~ -1 nN
and ~ -5 nN, respectively. In Figure 4-28(b) the f-d curve pertaining to the case of strong
adhesion, Wy=1x10? N/m, is compared against the f-d curve obtained for weak adhesion
when Wy=1x10"* N/m. The trend is again the same, i.e. the increase of W, leads to a higher
adhesive force while a stronger repulsive force is required to achieve the same deformation. In
particular the maximum attractive force is on the order of -40 nN when W,=1x10% N/m. Both
effects are due to the stronger interaction between the shell and cantilever that generates
significantly larger forces for the same distance between the cantilever and shell center of
mass. It must also be noted that the initial position of the cantilever for weak adhesion is set to
z=1.5, as in paragraph 4.2.1. However, a dimensionless distance of z=1.5 is a position of
interaction between the shell and the cantilever in the case of strong adhesion, Wy=1x10
N/m, and consequently an initial position of z=3 for is used in the latter case. In addition, the
increase of W, leads to f-d curves, where the relative position of cantilever and shell is not a
monotonically decreasing function. Thus, the arc-length continuation is the most appropriate
way to proceed with the numerical solution. In the case of strong adhesion, continuation to
small cantilever-shell separations occurs through the onset of two limit points that generate a
hysteresis loop. It corresponds to the pull-off force required to equilibrate the strong adhesive
force exerted on the shell by the cantilever.
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Figure 4-28: Comparison of force-deformation curves for different values of the adhesive energy per
unit area (W,), (@) Weak adhesion and (b) Strong adhesion.

The shape of the microbubble when W,=1x 10 N/m, Figure 4-29(b), is almost the same
as in the case of a purely elastic shell, Figure 4-29(a), but the solution that corresponds to the
maximum attractive force has a more spherical shape. As W, increases the attraction is
stronger, hence the shape that corresponds to the onset of repulsion is gradually more
deformed in the pole area, i.e the thin line in Figure 4-29(b). During attraction and repulsion
the shape of microbubbles for W, in the interval between 10 and 10" N/m is characterized by
obtuse wetting angles. However, in the case of the strongest adhesion the wetting angle is
close to 90° as deformation increases, Figure 4-29(c). In addition, the values of deformation
that are listed in the above graphs, corresponding to each one of the deformed shapes shown,
refer to the equivalent f-d curve. As W, increases the calculated deformations, see paragraph
4.2.1, differ significantly in the sense that they are based on the location of the pole in the
reference configuration that registers a zero force. When the adhesion is strong a zero force
does not correspond to a spherical shape. On the contrary, the position of the pole is
significantly deformed; hence the resulting deformation differs from the actual pole
displacement. During the AFM experiments that are discussed in the next chapter the adhesion
is negligible. As a result, the measured deformation is very close to the pole displacement
from its position corresponding to the spherical configuration. Consequently the above
concept is a potential way that incorporates the interaction potential constitutes a promising
alternative for obtaining the load distribution and simulating the static response of shells
during contact experiments. In particular, identifying the maximal attraction during an AFM
experiment provides a reliable means to estimate the interaction potential between the shell
and cantilever. This can be combined with an optical measurement of the evolution of the
contact length and the slope of the force-deformation curve in order to provide estimates of the
area dilatation and bending stiffness. More details on this analysis are provided in the last
chapter of this Thesis.
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Figure 4-29: Microbubble in deformed configuration for selected values of deformation, (the axes z
and o are dimensionalized with the initial radius R,). (8) W,=1x 10" N/m, (b) W,=1x 10" N/m and (c)
W,=107 N/m.

The corresponding diagrams of the disjoining pressure distribution are shown in Figure
4-30. The disjoining pressure for the case with W,=1x10° N/m is the same as for the purely
elastic shell, but weaker in the transition regime. An indicative load distribution for the purely
elastic case is provided in the context of the approximation adopted in [48] that is very similar
with the one obtained in the above figure, see also Figure 3-7 from the previous section. As
W, increases the disjoining pressure reaches higher values, the contact length increases and
the size of the transition regime is gradually compressed. Especially in the strongest adhesion
case, the contact regime has zero disjoining pressure, which means that the height of the film
IS 04, and the disjoining pressure is non zero only in the very thin transition regime. The last
case recovers the formulation of the classic contact problem, where the applied load is a non-
zero point function at the end of contact. Thus, it can be assumed that the formulation of
paragraph 4.1 is a limit case of the present analysis. More details on this approach are
provided in the last section where a comparison with experiments is presented and the
derivation of asymptotic approximations is carried out.
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Figure 4-30: Distribution of the disjoining pressure along the distance from the axis of symmetry. (a)
W,=1x10°N/m, (b) W,=1x 10" N/m and (c) W,=1x 102 N/m.

The energy due to intermolecular forces depends also on the characteristic length 64,

where the energy is minimized or the disjoining pressure is zero. In the next, the effect of 54 in
f-d curve is investigated by performing simulations for the pure elastic shell

(5A =50nmand W, =10~ N/m), but for different values of d,, i.e. 0, =12.5, 25, 50, 75,

100 and 150 nmall of them with W, =1x10* N/m. As can be seen from Figure 4-31(a) the

resulting force does not significantly change in comparison with the pure elastic case.
However, the only important effect pertains to region around the maximum adhesion force,
Figure 4-31(b). As &4 increases, 75,100 and 150 nm, the response becomes smoother, while
for smaller values of da, 12.5and 25, the pick of adhesion force is sharper. The amplitude of
the distribution of the disjoining pressure is not affected by changing the &4 length. However,
the contact and transition lengths are compressed, but the outer regime is expanded as the
length 6 decreases and vice versa when da increases. a theoretical interpretation of the above
trends is offered in chapter 6 where a comparison against experiments and an asymptotic
analysis are presented.
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Figure 4-31: (a) Comparison of f-d curves for different values of 6,. (b) Focus on the maximum
adhesion area in f-d curve.
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Effect of the surface tension (ysw)

AFM experiments and clinical applications of microbubbles are performed in aqueous
environment, thus surface tension between the shell coating and water is a parameter that
requires investigation. The static response of coated microbubbles is mainly investigated in the
context of classic shell mechanics [24, 25], where the surface tension is not accounted for. On
the other hand, experiments that measure the surface tension of such coatings are very limited.
A recent study by Segers et al. [83] demonstrates the synthesis and development of
phospholipid monolayers, where they report that the surface tension of such coatings is very

small or even near zero, y,, ~1x10° N/m. For the purposes of the present thesis, two cases
are investigated with the same parameters as in 4.2.1, but for non-zero surface tension, i.e.
Yew =4x107° N/m and y,, =4x107 N/m:

In Figure 4-32(a) the f-d curves that correspond to the cases with surface tension are
demostrated against the pure elastic shell yg, =0N/m. Surface tension significantly

increases s the required force for the same deformation or, alternatively, surface tension adds
an extra resistance on the shell. Moreover, the surface tension is an isotropic property that acts
on the shell along with the in plane stresses 15 and t,,, Which depend on the direction. Thus,
surface tension could be interpreted as the isotropic part of the stress tensor. This argument
implies that surface energy consists of an isotropic part, namely surface tension, and the
purely elastic part that depends on the extent of local deformation. Equation (2-72) implies
that when the shell/liquid interface has surface tension, the initial gas pressure is higer than the

ambient by a term of 2y, , which makes the gas compression a more significant term on the

equilibrium; see also Figure 4-32(b) where the internal gas pressure (Pin=Pg) is plotted against
the ratio of the current volume V with the initial volume V.

As in the purely elastic case shown in Figure 4-13 buckling is not observed in these two cases
either, Figure 4-33(a) and (b), due to the stabilizing effect of surface tension. The disjoining
pressure reaches higher values as the surface tension increases, but its distribution remains the
same, i.e. repulsive in the contact regime, attractive in the transition regime and zero in the
outer part of the shell, Figure 4-33(c) and (d). The increase in the disjoining pressure values
indicates that the liquid film has been further compressed in the contact area. Identifying the
contact regime as the part of the shell with the constant repulsive disjoining pressure, the
transition regime with the repulsive and attractive disjoining pressure and the outer regime
with the zero disjoining pressure, the length of the transition can be estimated based on the
load distribution shown in Figure 4-33 (c) and (d). As can be gleaned, surface tension tends to
decrease the contact length, increase the transition and the outer lengths. In addition, as
surface tension increases the force required to sustain a certain deformation increases and as a
result an almost flat and repulsive disjoining pressure distribution develops in the contact
region. This is in contrast to the almost point load distribution obtained in the purely elastic
case leading to a linear force deformation curve, at least in the initial part of the f-d curve
before the resistance to volume compression dominates shell rigidity. It is due to the dominant
resistance to volume compression that is exhibited by the shell when surface tension increases,
as is the case in Figure 4-33 b and d, that the force deformation curve assumes an almost
quadratic form that in its entirety. This is a pattern that distinguishes shells with significant
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surface tension from purely elastic shells and will play a central role in the parameter

estimation of lipid shells.
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Figure 4-32: (a) Force-deformation curve and (b) Internal gas pressure as function of the volume ratio.
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Figure 4-33: (a) and (b) Microbubble in deformed configuration for selected values of deformation,
(c) and (d) Distribution of the disjoining pressure along the distance from the axis of symmetry. (a)

and () yew=4x 10 N/m and (b) and (d) ysw=4x 10" N/m, respectively.
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Effect of gas compressibility (Pg-y)

In paragraph 4.2.1 the encapsulated gas is assumed to undergo isothermal pressure
variations, therefore the internal-gas pressure increases as the shell volume decreases. Even
though it is not realistic to assume that the gas is incompressible, here the purely elastic case is
investigated again, but for zero polytropic index, y=0, i.e. the internal pressure remains
constant as the volume changes. In Figure 4-34(a) an f-d curve obtained for an incompressible
gas is compared with the case of a compressible one. The two curves respond the same way up
to deformation of 200 nm and then the response curve of the incompressible gas continues
almost linearly with the deformation, Figure 4-34(a), indicating that when the gas

compressibility is comparable to its elasticity P,R,/x =3, the former acts as an extra stiffness
and the required force is higher. A similar result was found in [84], where microbubbles were
investigated subject to a static point load. In Figure 4-34(b) the internal gas pressure (Pin=Pg)

is plotted against the ratio between the current volume V and the initial volume V;. As can be
seen the gas pressure for the compressible case starts to increase as the shell is compressed,

V /V; <1, while for the incompressible case the internal pressure remains constant,

@ (b)

© @

Figure 4-34: (a) Force-deformation curve of a pure elastic shell with compressible and incompressible
gas, (b) Internal gas pressure as function of the volume ratio, (c) Pure elastic microbubble with
incompressible gas in deformed configuration for selected values of deformation and (d) Components
of the total energy as function of deformation. The dimensionalization of axes is based on paragraph
2.3.2
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P

)+ = P. =101325 Pa. Moreover, in the latter case the reduction of the volume is much larger
in comparison with the case where gas compressibility is accounted for, for the same
deformation, while the corresponding shapes are again flat and don’t exhibit buckling, Figure
4-34(c). The energy due to gas compression vanishes when vy is set to zero, whereas the
energies due to bending and the adhesive potential are almost the same with the compressible
case. On the contrary the energy due to stretching is less, ~12, Figure 4-34(d), while for the
compressible case is ~17.5, Figure 4-15(b). This is a result of the non-linearity of the Mooney-
Rivlin law, where the extension of the area leads to the reduction of the stretching energy.
Finally, the distribution of tensions and moments is presented in Figure 4-35. The in plane
stresses 1ss and T, have been increased significantly in comparison with the compressible
case, as the diagram in Figure 4-35(a) shows. This can be explained by the normal force
balance, where the contribution of the gas pressure is eliminated, hence it is the stretching
terms that balance the same external load (disjoining pressure). The bending moments and the
shear tension reach approximately the same values as in the purely elastic shell. In addition,
when the gas is treated as incompressible the disjoining pressure in the contact regime for
large deformations is zero or even positive, indicating that the intermediate liquid film is not
compressed as in case of the compressible gas. Most of the disjoining pressure is located with
a maximum value at the end of the contact regime, which is the same concept as in the classic
contact problem, where the applied load is a point at the end of contact and the response is
strongly linear before buckling Figure 4-35(f).
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Figure 4-35: Distribution of the (a) in plane stress 1, (b) in plane stress t,,, (C) bending moment mg,
(d) bending moment my,, (e) shear stress ¢ and (f) disjoining pressure along the distance from the axis
of symmetry (o) for selected values of deformation. The dimensionalization of the axes is based on

paragraph 2.3.2.
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4.2.3 Study of a free microbubble

In this paragraph numerical results obtained with the formulation of the last part of the
session 2.3.2 are presented. More specifically, it is assumed that the shell has no elastic
rigidity and its static behavior is controlled only by surface tension and gas compressibility as
it interacts with the cantilever. The present case will be referred to in the following as the
«free» microbubble. Following the same concept as in paragraph 4.2.1, the cantilever is placed
at a dimensionless distance z=1.5 from the equator of the shell. Upon performing simulations
with the parameters of Table 4-3, a force-distance curve is obtained using simple continuation
in the distance z, Figure 4-36(a). The following dimensionless numbers characterize the shell:

PR _ag.5,, = 7o _1 and W, =2~ 25107,

VBw VBw VBw

The response of a free microbubble in terms of a f-d curve is similar with that of a
coated microbubble, Figure 4-36(b). Both curves exhibit the same maximum attractive force,
because the same adhesive energy per unit area was assumed (W,=1x 10 N/m). On the other
hand, the response is more linear and with higher slope in the case of a coated microbubble. In
addition, the deformation when the shell is under the maximum attraction is -107 nm in case
of the free microbubble, while in the purely elastic case is -60 nm. This difference originates

2

from the different value of z for which the total force becomes zero, z(F =0)=0.99 for the

free microbubble. Moreover, the disjoining pressure, Figure 4-36(c), is positive (repulsion)
around the contact area, negative in the transition regime and zero in the outer area, as in the
purely elastic case. It must be noted, that in the present case the distribution of the disjoining
pressure is almost uniform in the contact region, which indicates that the film height is almost
constant as well around the contact area. Moreover, the shape that corresponds to this solution
is again flat in the contact area, with no wrinkles, and buckling was not observed as it was
expected, Figure 4-36(d). This is also confirmed by the distribution of the mean and principal
curvatures, Figure 4-37, where it can be seen that along the contact regime the curvatures are
constant and zero. As the deformation increases the principal curvatures, ks and K,, reach
values higher and less than one in the outer regime (o >0.6), respectively, which indicates
that the shell in s direction is compressed and in ¢ is elongated thus confirming that the shell is
not spherical in the outer regime. The total energy increases in comparison with the total
energy of a pure elastic shell Figure 4-38(a), because the contribution of surface energy is
relatively large. Decomposing the total energy in its components it is clear that most of the
energy is due to surface tension. Moreover, the maximum value of the energy due to gas

compression in the present case is W, ~ 0.2, while in the pure elastic shell it isW_ ~ 2.5,

Initial radius: R, =1.5pum
Surface tension: 7, =4-10° N/m IiDnodIé/)t(r.oplc y=1.07
Potential depth W, =1x10™* N/m Potential length 5, =50 nm 400 elements

Table 4-3: Simulation parameters for the f-d curve of a free microbubble.
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because in the former case the corresponding final volume is V,; =0.98V, of the initial and in
the latter it is V, =0.96V,. On the other hand, the dimensionless energy of the adhesive

potential is W, ~ 2.5 for both cases, which means that the liquid film between the shell and

the cantilever is compressed by the same amount. In addition, the energies due to stretching
and bending are zero, because it is assumed that the shell has no elasticity rigidity, thus it
cannot store elastic energy. Finally, the energy due to surface tension is the integral of the
surface tension over the deformed area and tends to increase with the deformation, bold solid
line in Figure 4-38(b). Given the assumption of a constant surface tension across the shell, it is
convenient to conclude that the surface tension energy increases owing to the area

(@) (b)

() (d)

Figure 4-36: (a) Force-distance curve of a free microbubble (solid line) and a microbubble covered
with an elastic shell (dashed line, see also paragraph 4.2.1), (b) Force-deformation curve, (c)
Distribution of the disjoining pressure along the distance from the axis of symmetry for the free
microbubble and (d) Free microbubble in deformed configuration for selected values of deformation,
(the axes z and ¢ are dimensionalized with the initial radius R,)
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Figure 4-37: Distribution of the principal curvatures along the distance from the axis of symmetry (o)
for the free microbubble (a) Mean curvature (k,), (b) curvature on s direction (k) and (c) curvature on
¢ direction (k).

expansion. In contrast to the case of a drop where the increase in the inner pressure causes a
reduction on the surface, in the present case an increase in the inner pressure can be followed
by an increase of the surface, because the shell is not spherical, when it is deformed.
Moreover, the importance of surface tension is also revealed on the fact that when the
cantilever is at a long distance from the shell, i.e. the shell is not deformed, yet the energy due
to surface tension is not zero, but it has a value of 250 confirming in this way a stabilizing
role. In addition, the distribution of the total energy is depicted in Figure 4-38(c) for selected
values of deformation, where the adhesive potential is seen to be almost constant-repulsive
along the contact regime at the edge of which it with the transition region it reaches a
minimum value of -1 ( or -W, in dimensional form) before it drops to zero in the outer region.
The minimum value is shifted to the right as deformation increases, which is in accordance
with the evolution of the deformed shape and the length of the contact regime.
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Figure 4-38: Energy diagrams of a free microbubble, (a) Total energy as function of the deformation,
(b) Components of the total energy as function of deformation (surface tension right y axis). (c)
Distribution of potential function along the distance from the axis of symmetry for selected values of
deformation. The dimensionalization of axes is based on paragraph 2.3.2.
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Effect of surface tension (ysw)

One more case that is examined here, namely that of a free microbubble, but for higher
surface tension, i.e. g, =4x107 N/m. In Figure 4-39 the f-d curves for two free

microbubbles are compared corresponding to different surface tension, where the case with
higher surface tension has a significantly higher slope demonstrating the stabilizing role of

surface tension. The shape of the deformed microbubble when y,, =4x107 N/m is depicted
in Figure 4-40(a) and the distribution of the disjoining pressure in Figure 4-40(b), where in
comparison with the y,, =4x10° N/m case the disjoining pressure is repulsive and one

order of magnitude higher, which means that the film of liquid is considerably compressed
since the same parameters of the adhesive potential (W,, 6,) are assumed. This argument is
also supported by calculating the distribution of the adhesive potential along the shell, Figure
4-40(c). The values of the potential are constant and positive in contact regime, which means
that the height of the liquid film is constant and less than 8. In addition, the components of
total energy, namely gas compression, adhesive potential and surface tension, are depicted in
Figure 4-40(d). As before, the dominant contribution is by the surface tension (right y-axis),
but the energy due to gas compression also reaches higher values revealing that the internal
pressure is significantly larger following the initially larger internal pressure. Overall, when
the microbubble is treated as a surface tension interface the contact region offers the dominant
contribution to the force that is exerted to the shell by the cantilever, in contrast to the purely
elastic case for which the force arises from an almost linear load distribution at the junction
between the contact and transition regions. This also explains the difference in the response
pattern of the f-d curves being linear and quadratic for the elastic and surface tension
dominated cases, respectively.

Figure 4-39: Comparison of f-d curves for different values of the surface tension ygw.
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Figure 4-40: (a) Microbubble in deformed configuration for selected values of deformation, (the axes
z and o are dimensionalized with the initial radius R,), (b) Distribution of the disjoining pressure along
the distance from the axis of symmetry, (c) Distribution of the adhesive potential along the distance
from the axis of symmetry, (d) Components of the total energy as function of deformation. The
dimensionalization of axes is based on paragraph 2.3.2
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Effect of the adhesive energy per unit area (W,-6,)

In the following, the effect of adhesive energy is investigated, when the microbubble is
assumed to be free of elasticity. Thus, simulations are performed for higher values of

characteristic energy W,, i.e. W, =1x10~ and 3x10~° N/m all of them with &, =50 nm. In

Figure 4-41 the resulting force-distance curves are illustrated for different values of W,, where
the bold line corresponds to the reference case studied above. Increasing the adhesive energy,
the maximum adhesion force increases as in the elastic shell. The deformed shapes and the
distribution of the disjoining pressure are depicted in Figure 4-42 for each case. In contrast

with the case of W, =1x10"* N/m, for relatively large distances for which attractive forces

prevail the shapes in Figure 4-42 (a) and (c) are significantly deformed around the pole and, as
W, increases, the shape has a shaper transition from the contact to outer regime. The
disjoining pressure shown in Figure 4-42 (b) and (d) is positive in the contact regime for both
cases indicating repulsion. It should also be noted that even though the graphs correspond to
different values of W,, the disjoining pressure reaches almost the same positive value (~5000
Pa) in the contact region which means that the liquid film height (y) in the case of

W, =1x10"° N/m is lower than the case with the W, =3x10"° N/m. This argument can be

4

4w
verified by the leading term of the disjoining pressure when the film is small, which is y—"sA

. Thus, if W, increases, the film height should also increase (not linearly) in order to obtain the
same disjoining pressure. Moreover, the disjoining pressure in the transition regime for the

W, =3x10° N/m case reaches a negative pick which is about three times the pick in
W, =1x10"° N/m case, indicating that the liquid film in this regime hasn’t change, but it is

only the W, parameter that changes the amplitude of pressure. It should be noted however,
that the form of the f-d curve changes significantly as the interaction potential increases. In
particular two limit points appear as the region of repulsive forces is approached via simple
continuation. Consequently, implementation of arc length continuation is required in order to
properly follow the f-d curve from the regime of attraction to that of repulsion.

Figure 4-41: Comparison of force-distance curves for different values of W,
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(b) (d)

Figure 4-42: (a) Shape and (b) Distribution of the disjoining pressure for the case of W,=1x 103 N/m,
(c) Shape and (d) Distribution of the disjoining pressure for the case of W,=3x 107 N/m.

In addition, the chosen values of W, are less than the surface tension, which is
Yew =4x10° N/m in all cases studied above. However, calculations with equal or even

higher values than surface tension, i.e W, >4x10~° N/m fail to converge as it was expected,

W
since for such shells the following equation —=+1=c0s8,, holds [62, 63], where Oy is the
VBw

wetting angle and then for W, > 4x10~° N/m an unrealistic cosé,, is calculated.

As mentioned above, the adhesive energy per unit area depends also on the characteristic
length 0. In the next, the effect of da is investigated for the case of the free microbubble.
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Thus, numerical calculations for 6, =10, 50 and 100 nm with W,=1x 10" N/m are performed.

Figure 4-43(a) illustrates the corresponding f-d curves for the above cases and Figure 4-43(b)
focuses on the regime of the highest adhesive force. As in the pure elastic case, changing the
parameter d the f-d curves do not change significantly, but the response on the adhesive force
regime becomes sharper as 6 decreases. In addition, in Figure 4-44 the deformed shape and
the distribution of the disjoining pressure are depicted for the two new cases investigated here.
The disjoining pressure reaches higher values as 6 decreases in the transition regime, see also
Figure 4-44(c).

(@) (b)

Figure 4-43: (a) Comparison of f-d curves for different values of 6,. (b) Focus on the maximum
adhesion area in f-d curve.
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(b)

(d)

Figure 4-44: Shape and distribution of disjoining pressure with (a), (b) 6,=10 nm and (c), (d) 6,=100
nm.
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Chapter 5. Numerical results: Bifurcation diagrams

In this chapter simulations are performed employing the formulation of
paragraph 2.4 in order to investigate the static response of coated
microbubbles subject to a uniform-normal load. As the overpressure, e,

increases the relative volume V =V /V, decreases and the shape remains

spherical, which is a stable solution, until the overpressure reaches the
buckling threshold. At that point a bifurcation occurs that gives rise to the
buckling solution, which is characterized by symmetric or asymmetric shapes
with respect to the equator. Upon further increase of the external overpressure
additional bifurcations occur. The sequence is a strong function of the
parameters that determine the nature of the shell. An extensive parametric
analysis is carried out in order to investigate the effect of different parameters
on the bifurcation diagrams with emphasis placed on the dimensionless

bending modulus K, =kb/(;(Roz):[1/12/(1—\/2)}(h/R0)2 that monitors the
relative rigidity between the bending and stretching resistances of the shell, and
dimensionless pressure P, = P,R,/ y that controls the relative importance of

gas compressibility on the rigidity of the shell. The response of microbubbles
covered with polymeric shells is studied in the first part, while the case of the
softer coatings, lipids, is tackled in the second part of the chapter.
Microbubbles coated with shells of the former type are characterized by
smaller values of the above dimensionless parameters, primarily so for the
dimensionless pressure due to the increased stiffness of the shell. In both cases
the bifurcation diagram exhibits a local stability pattern in the vicinity of the
primary bifurcations and a global pattern pertaining to the minimum energy
among the possible stable configurations. The latter is expected to determine
the static configuration during a dynamic simulation when sufficiently strong
disturbances exist.

As the area dilatation modulus increases the nature of the primary bifurcation
varies depending on the degree of strain that can be tolerated by the shell. For

large Izb values the primary bifurcation evolves transcritically exhibiting oblate

and prolate shapes with the latter inheriting the stability of the original
spherosymmetric configuration. As the area dilatation increases the primary
bifurcation is asymmetric and is linearly unstable. The shell exhibits a dimple
in the region around the two poles where compressive strain is relaxed in favor

of bending. As l?b further decreases symmetric shapes emerge as the primary

bifurcation that again evolves transcritically. The supercritical part is linearly
stable for a short range of external loads and is characterized by nearly prolate
shapes. The subcritical part is also symmetric with shapes that exhibit one
dimple at each pole in order to alleviate the extra energy generated due to the
compressive stresses. This pattern holds for both types of shells. Furthermore,
as the subcritical branches, symmetric or asymmetric, evolve towards smaller
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external overpressures they form a limit point and turn towards larger
overpressures and larger volume compressions. The latter shapes tend to
generate contact in the region around the two poles. In fact, those stemming
from the primary bifurcation become linearly stable with minimum energy
among possible solutions for the same parameters and determine static
configuration in a dynamic response pattern. The post buckling shapes of
polymers are characterized by big Legendre modes (P10-P11), while those of
lipids by small ones (P,-P3). Furthermore, in the case of polymeric shells the
bifurcation diagram before the formation of the limit point is nearly flat
reflecting the negligible resistance to volume compression. As the latter
increases the slope of the branch becomes larger and negative. This behavior
may explain the tendency of polymeric shells to exhibit shapes with contact
when perturbed above or below the primary bifurcation point; as such shapes
constitute the absolute energy minimum. On the contrary lipid shells tend to
achieve a static configuration with a certain amount of volume compression
before full contact takes place and this reflects in their response during
acoustic disturbances where compression only behavior is detected.
Considering the polymeric shells as Skalak elastic membranes causes an
exchange in the order of appearance of post-buckling solution families, with the
primary bifurcation characterized by symmetric shapes. On the other hand,
when lipid coatings are treated with Hook’s law the symmetric solution family
that emerges at the primary bifurcation point evolves only subcritically
exhibiting prolate shapes. Gas compression does not affect the response of
polymer coatings for which, in contrast to the case with phospholipid shells,
when the inner gas is treated as incompressible the limit point in the subcritical
solution family disappears. Significantly compressed shapes appear in this case
for marginally larger external overpressures. Finally, the parametric analysis
for both types of coating shows that surface tension tends to increase the
critical buckling load, while the order of appearance of the symmetric and
asymmetric solution families remains unaffected.
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51 Bifurcation diagrams of polymeric microbubbles

51.1 Study of a single microbubble

Based on the methodology developed in paragraph 2.4, an extensive numerical
investigation was carried out of the static response of polymeric and phospholipid shells
subject to external uniform load. These two types of shells are distinguished by the fact that
the former are much stiffer in terms of both stretching and bending elasticities [13, 29, 30].
Furthermore, they are mostly characterized by Hooke’s law [13, 16], whereas phospholipid
shells are strain softening for relatively large deformations [85, 86]. In the present study, the
response of both types of shells subject to a uniform external overpressure is studied while
using elastic properties that are available from the literature. In the former case, Bisphere is
used as the contrast agent coated by a polymeric shell with dimensionless parameters that

govern the microbubble’s mechanical response that are k, ~10*—107° and P, ~107°. On the

other hand, microbubbles covered with phospholipid have smaller values for stretching and
bending stiffness, as it already described in the previous chapter, with dimensionless numbers

|2b ~107° and f’A ~10°. Thus, their static response subject to a uniform pressure is investigated

separately in the rest of the present chapter. Initially, the response of a microbubble covered
with polymer is investigated with indicative elastic constants presented in Table 5-1 and
correspond to a shell that was also investigated by Tsiglifis & Pelekasis [86] and Marmottant
et al. [16]. As described in the previous chapter, the fundamental properties for polymeric
coatings are the Young modulus and the shell thickness, where the bending resistance is an
elastic parameter which depends on the shell rigidity and thickness, see eq. (2-22). Hence,

k, =3.61x10™"° Nm and » =6.1N/m, or more appropriately G;=88 MPa and h=23.1 nm,

2
correspond to dimensionless parameters: Izb = ka = ! - n =5.9x10"° and
xR 12(1-v*)(R,
y PARO ) . .. - . .
P, = =1.66x10". In view of the negligible resistance to compression of polymeric
X

shells, in comparison with the area dilatation modulus, parameter |3A remains small throughout

this section and the effect of bending to stretching resistance ratio, ﬁb, is monitored by varying

the shell thickness h for fixed shell radius Ry and Poisson ratio v; see also Table 5-1 below.
Then a spherical and stress-free microbubble is considered with a uniform and known

overpressure AP applied along the shell surface, AP =—APf , where fi is the normal vector,
pointing outwards from the shell surface. Employing the formulation of paragraph 2.4 a
solution is sought regarding the deformed shape and the internal pressure. Starting from a
small value of AP the resulting shape is compressed, but remains spherical throughout its
surface. A sequel of solutions can be obtained by performing simple continuation by treating
AP as the operating parameter. Then, the solution can be represented in a relevant pressure-
volume diagram, Figure 5-1(a). As the overpressure increases, the volume is reduced and the
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Shell thickness h=23.1nm Shear modulus G, =88 MPa

Initial radius: R, =1.0 um Poisson ratio:  v=0.5
Constitutive law: Hook Pre-stress: U=0um
Surface tension: Yew =0 N/m rn(zjlg;[(r_()p'c y =1.07 400 elements

Table 5-1: Simulation parameters for the bifurcation diagram of a microbubble covered with polymer.

shape is progressively compressed with a smaller radius, Figure 5-2 (a). Calculating the
eigenvalues of the jacobian matrix by employing the dgeev Lapack routine, for the spherical
solutions it is found that they are characterized by one negative eigenvalue, which is
associated with the imposition of the bubble center of mass at the origin of the axes. It should
be stressed that this unstable eigenvalue of the spherosymmetric configuration reflects the
translational invariance of the system, it is always present in the eigenvalue spectrum of all the
solution families, and does not determine the stability of the calculated static configurations.
The critical external overpressure is almost identical with the prediction of linear theory,

AP, ~0.1878MPa or &' =1.853, while the critical load calculated by FEM is &) =1.878

. The dominant eigenmode is the 11" Legendre mode, P, as can be verified by performing
Fourier analysis [17, 38] of the numerically calculated dominant eigenvector at the bifurcation
point, Figure 5-1(b). The emerging solution branch evolves subcritically, it is identified by
two negative eigenvalues, and is characterized by shapes that exhibit a progressively more
pronounced dimple, Figure 5-2(b). Further increase of the external overpressure reveals
another bifurcating branch evolving from the main spherosymmetric solution family, that is
characterized by a third unstable eigenvalue and whose eigenvector is characterized by an
even Legendre mode, P1o; corresponding shapes are depicted in Figure 5-2 (b). This indicates
the onset of a symmetric solution branch that emerges transcritically with three and two
unstable eigenvalues below and beyond the bifurcation point, respectively, Figure 5-1(b). Both
asymmetric and subcritical symmetric branches exhibit a limit point, where each of them loses

a negative eigenvalue. The limit points are found in (g =0.309,V = 0.968) for the asymmetric

solution and in (5:0.350,\7 :0.941) for the subcritical symmetric. Subsequently, after the

limit point they have one and two negative eigenvalues, respectively, Figure 5-1(c). The
supercritical symmetric branch keeps the two negative eigenvalues for £ <1.904 and then a
limit point appears that leads to a multibranch solution, see Figure 5-1(c), and its shape is
characterized by multiple lobes, Figure 5-2(d). In addition, as the asymmetric solution is
evolved the north pole of the shell approaches the origin of the z-axis and when the pole
crosses the origin, the boundary condition & =0 is not anymore true. Rather, condition 6 =7
should be used in both poles. Thus, the choice of a spherical coordinate system complicates
the spline representation and the convergence is harder. Therefore for ¢ >1.14 the Lagrangian
markers are represented in a relevant cylindrical coordinate system (c,z) with boundary
conditions o=0 in both poles, which can be handled more easily by the FEM and hence it is
possible to reach an asymmetric configuration, where the two poles tend to coalesce, F shape
in Figure 5-2(b). In the symmetric solution, such a difficulty is not faced and thus the solution
is always represented in the original spherical coordinated system. Moreover, in both solutions
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the position of the mass center is always at the origin of the axes in order to avoid the rigid
body motion.

(@)

(b)

(©)

Figure 5-1: Bifurcation diagram for a microbubble with h=23.1 nm and G,=88 MPa, (a) External
overpressure as function of the volume, (b) Zoom in the bifurcation points and (c) Zoom in the area of

limit points (circle, square and triangle). (4=6.1 N/m, k,=3.61x10""Nm and k, =5.9x10°,
P, =1.66x107?).
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(@) (b) (©)

(d1) (d2) (d3) (d4)

Figure 5-2: Microbubble in deformed configuration: (a) Spherical, (b) Asymmetric, (c) Symmetric
and (d1-4) Multi-lobed solutions. The axes are dimensionalized with the initial radius R,. (h=23.1 nm,

Gs=88 MPa, =6.1 N/m, k, =3.61x10"*Nm and k, =5.9x107°, P, =1.66x107?).

Figure 5-3(a) illustrates the evolution of the total energy pertaining to each one of the
solution branches verifying the above assertion. In particular, both asymmetric and symmetric
solutions have higher energy than the spherical shape as they evolve subcritically from the
bifurcation point. However, after forming a limit point the number of unstable eigenvalues is
reduced by one. In particular, the asymmetric branch becomes linearly stable and has lower

energy than the spherical solution after (g =0.341V :0.8977), Figure 5-3(b) and similarly

the symmetric after (5 =0.389,V :0.879), Figure 5-3(c). The corresponding shapes in this
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part of the asymmetric solution branch exhibit progressively larger portions around the two
poles where contact starts developing. The symmetric solution family that evolves
supercritically eventually develops multiple lobes and its energy does not have a monotonic
behavior as the pressure changes. It exhibits regions in the parameter space with either higher
or lower total energy in comparison with the spherical solution, Figure 5-3 (d). In the regime
with the multi-lobed shapes it is unstable with higher energy content. In the immediate
supercritical regime it is linearly stable with shapes that are nearly prolate. Its energy content
is lower than that of the spherosymmetric family but is higher than the one pertaining to the
asymmetric solution family with contact, which constitutes an absolute minimum among the
different solutions in this parameter range both above and below the critical bifurcation point.
This pattern is corroborated by dynamic simulations of coated microbubbles [19] with the
finite element methodology that leads to a static configuration that is characterized by such
shapes both above and below the primary bifurcation point.

@) (b)

© (d)

Figure 5-3: (a) Bifurcation diagram in terms of total energy for a microbubble with h=23.1 nm and
Gs=88 MPa, (b), (c) and (d) Zoom-in the bifurcation area of symmetric/asymmetric and the multi-
lobed branches, respectively. The multilobed branch exhibits significant variation in the immediate
vicinity of the main spherical branch. In (b) and (c) the curves with energy higher than sphere evolve
from their bifurcation point and curves with lower energy evolve towards pole coalescence. (y=6.1

N/m, k, =3.61x10"°Nm and k, =5.9x10°, P, =1.66x107?).
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Figure 5-4 depicts the distribution of the in plane and shear tension, along with bending
moments as function of the Lagragian variable & for the spherical solution branch, where it is
reminded that £&=0 and 1 correspond to the north and south poles of the shell, respectively. In
the spherical shells, which have a progressively smaller radius than the initial stress-free shell,
only in plane compressive stresses are developed, as the spherical shell has no curvature
variations along its surface. On the other hand, the in plane 14 tensions are tensile in the
dimple of the asymmetric shapes, with a maximum compressive value at the end of the
dimple, Figure 5-5(a). In the rest of the shell the 1, are compressive. The value of the
maximum compressive tension follows the position of the dimple, as can be seen by
comparing with the deformed shape, Figure 5-2(b). In addition, the tensile tensions are almost
of the same magnitude with the compressive. The in plane t,, tensions are concentrated
around the dimple area, while in the rest of the shell vanish, Figure 5-5(b). Similar is the
behavior of the shear stress g, as it was expected, which follows the variations of the
curvature, Figure 5-5(c). The bending moments are negative and constant in the inner part of
the dimple, indicating mirror buckling (reversed sphere), positive around the dimple, where
the curvature is higher than the one, as in Figure 4-14, and in the rest of the shell vanish,
Figure 5-5(d) and (e). The tensions and moments for the symmetric solutions (Pyo) are the
same as in the asymmetric ones, while their distribution is symmetric with respect to the
equatorial plane, £=0.5, Figure 5-6. Similarly, the calculation of tensions and moments is
symmetric with respect to £=0.5 for the solutions with multiple lobes, but with more picks due
to the larger number of areas with high curvature and length variations, Figure 5-7.
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Figure 5-4: Distribution of the in plane tensions (a) 1 and (b) t,,, (c) shear tension q and bending
moments (d) mg and (e) m,, as function of the Lagrangian variable & for the spherical branch.
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Figure 5-5: Distribution of the in plane tensions (a) 1 and (b) t,,, (C) shear tension q and bending
moments (d) mg and (e) m,, as function of the Lagrangian variable & for the asymmetric branch.
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Figure 5-6: Distribution of the in plane tensions (a) 1, and (b) t,,, (C) shear tension q and bending
moments (d) ms; and (e) m,, as function of the Lagrangian variable & for the symmetric branch.
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Figure 5-7: Distribution of the in plane tensions (a) 1, and (b) t,,, (C) shear tension g and bending
moments (d) m and (e) m,, as function of the Lagrangian variable & for the multiple lobes branch.
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512 Parametric study

In the following session a parametric study is carried out in order to investigate the
effect of different parameters that are involved in the shell equilibrium, namely stretching and
bending rigidity, constitutive law, surface tension and gas compressibility. In addition, the
case investigated in subsection 5.1.1 will be used as the reference case.

Effect of elasticity moduli (stretching-y & bending k)

Next, parametric analysis is performed in order to investigate the effect of the
dimensionless bending modulus on the bifurcation diagram. Here the shell thickness is higher
in comparison with the case investigated above, which probably is not a realistic value for
polymeric coatings, which usually have thickness in the range of 10-50 nm [27, 29], however
for the purpose of the present study, the simulation parameters are the same as in Table 5-1,

but for h=115.5 nm. The corresponding dimensionless numbers are lzb=1.48><10‘3 and

f’A:3x10’3. It should be noted that changing the shell thickness both dimensionless
parameters change, however, as mentioned above, the response is mainly controlled by the
elasticity terms as long as I3A < 1. Therefore, the stiffness due to gas compression does not

affect the response and could be treated as the same with the case investigated in paragraph
5.1.1. As can be gleaned from Figure 5-8(a) in this case the bifurcation diagram is modified in
comparison with Figure 5-1(a) in the sense that the symmetric solution branch (P;) emerges
transcritically as the primary instability of the basic spherical configuration,

(5=47,\7 =O.8936) with two negative eigenvalues for the branch that evolves towards

overpressures that lie below the critical buckling threshold (dashed line) and one negative
eigenvalue for the branch that evolves towards larger overpressures (dot line), Figure 5-8(b).

The former branch soon exhibits a new bifurcation point (g =46,V = 0.8956) leading to an

asymmetric shape, Figure 5-8(c). As the same symmetric branch further evolves, in contrast
with the case investigated in 5.1.1, it maintains three negative eigenvalues and does not exhibit
any limit points. This effect is attributed to the lower value of the gas compression rigidity of
the present case that facilitates volume reduction without significant additional external
overpressure. A similar behavior was previously presented by Lytra & Pelekasis [87] on the
bifurcation diagrams with simulation parameters for a bisphere microbubble

(Izb:2.5><10"5&|3A:2x10_3), where the primary instability is dominated by the P4

Legendre eigenmode. The primary bifurcation generates a symmetric solution family that
evolves towards smaller overpressures and gives rise to a new bifurcation characterized by the
P13 mode. The symmetric branch that evolves towards higher external overpressures exhibits
only one negative eigenvalue, the one corresponding to pure translation, thus inheriting the
stability of the spherosymmetric branch. It exhibits shapes that are slightly prolate, before the
onset of a bifurcation point that destabilizes it eventually leading to a limit point that generates
a branch with three negative eigenvalues and shapes characterized by a protrusion around the
equator. The branch generated by the secondary bifurcation mentioned above was not pursued
further.
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Figure 5-8: Bifurcation diagram for a microbubble with h=115.5 nm and G,=88 MPa, (a) External
overpressure as function of the volume,(b) and (c) Zoom in the bifurcation points area. (y=31 N/m,

k, =4.52x10Nm and k, =1.48x10°, P, =3x107*). The edges of the shapes shown in panel (a) lie
on the axis of symmetry z as depicted for one of them.

Upon further increasing the overpressure(g:47.1,\7 :0.8933) a second bifurcation

point is detected on the spherosymmetric branch which is dominated by the Ps mode, Figure
5-8(b). It was not possible to follow this second bifurcation away from the main solution
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family to either higher or lower values with respect to the second critical load. However,
disturbing the symmetric solution with the corresponding eigenvector at the bifurcation point

detected at (g =46,V = 0.8956) , & branch is evolved subcritically that is characterized by two

negative eigenvalues and an asymmetric shape that is dominated by the Ps Legendre
eignemode (dashed-dot line). It should be noted that parametric continuation along the latter
asymmetric branch breaks before the two poles sufficiently approach each other, perhaps due
to the center of mass moving away from the actual shape. Simulations are underway in order
to remedy this situation that is expected to furnish the remaining asymmetric branch until pole
coalescence takes place.

Finally, Figure 5-9(a) illustrates the total energy of the above solutions, where the sphere
is the one with the lower energy than the subcritical symmetric and asymmetric solutions
Figure 5-9(b), while the symmetric branch with the prolate-like shapes has lower energy than
the sphere in the regime of one negative eigenvalue ¢ >43.5, while beyond this point the
spherosymmetric configuration becomes energetically favored again, Figure 5-9(c).

(b)

(@)

(©)

Figure 5-9: (a) Bifurcation diagram in terms of total energy for a microbubble with h=115.5 nm and
G:=88 MPa, (b) and (c) Zoom-in the bifurcation area of symmetric/asymmetric and the symmetric with

protrusion branches, respectively. (y=31 N/m, k, =4.52x10"*Nm and |Zb =1.48x1073, If’A =3x107).
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Next, a case with lower thickness than the previous is investigated with h=46.2 nm and
the rest of the simulation parameters are the same as in Table 5-1. Therefore the area dilatation

and bending modulus are x=12.2 N/m, k, =2.89x10"°Nm, respectively, while the
dimensionless numbers Izb =2.4x10" and F3A =8x10"°. The first bifurcation point is detected
for (5=7.48,\7:0.9554) with the corresponding eigenvector being dominated by the 7™

Legendre eigenmode (dashed dot Iline) and the second bifurcation point for
(£=7.49,V =0.9552) with Pg as the dominant eigenmode (dashed line). As before, the

symmetric branch evolves towards to higher and lower values of the second critical buckling
load. The subcritical branch has three negative eigenvalues, while the supercritical branch is

initially characterized by two eigenvalues, where after a limit point at (5 =756V = 0.9544),

a multibranch behavior (dotted line) is detected as above with three eigenvalues, see also the
bifurcation diagrams in Figure 5-10(a)-(b). Both asymmetric and symmetric solutions that

(@)

(b)

Figure 5-10: Bifurcation diagram for a microbubble with h=46.2 nm and G,=88 MPa, (a) External
overpressure as function of the volume and (b) Zoom in the bifurcation points area. (y=12.2 N/m,

k, =2.89x10*Nm and k, =2.4x10™*, P, =8x107%). The edges of the shapes shown in panel (a) lie
on the axis of symmetry z as depicted for one of them.
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(@) (b)

(©) (d)

Figure 5-11: (a) Bifurcation diagram in terms of total energy for a microbubble with h=46.2 nm and
Gs=88 MPa, (b), (c) and (d) Zoom-in the bifurcation area of asymmetric, symmetric and the multi-
lobed branches, respectively. The multilobed branch exhibits significant variation in the immediate
vicinity of the main spherical branch. In (b) and (c) the curves with energy higher than sphere evolve
from their bifurcation point and curves with lower energy evolve towards pole coalescence. (y=12.2

N/m, k, =2.89x10°Nm and k, =2.4x10™*, P, =8x107).

evolve subcritically become stable also in terms of their total energy, in comparison with the
sphere, after (£=1512V=0716) and (¢=171LV =0661), Figure 5-11(b), (c),
respectively. On the other hand, the supercritical symmetric solution has initially lower

energy, while after a limit point becomes unstable, Figure 5-11(d).
In Figure 5-12(a) the bifurcation diagram of a microbubble with lower shell thickness in

comparison with Table 5-1 is presented, i.e. h=10 nm (k, =1.1x10° & B, =3.9x107). In this
case, the primary instability is dominated by the P;; Legendre eigenmode and it is followed by

a second with P;g mode, Figure 5-12(b). The two solution branches evolve subcritically and
after a limit point they evolve towards higher values of the overpressure, Figure 5-12(b).

Decreasing further the shell thickness, h=5 nm (Izb:2.7><10‘6&|3A:8><10‘2), the first

bifurcation is captured for an even lower pressure, €=0.0924, as a result of the significantly
reduced bending resistance. It is dominated by the even P,; mode whereas the second
bifurcation point by the odd P,3 eigenmode.
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() (b)

Figure 5-12: Bifurcation diagram for a microbubble with h=10 nm and G,=88 MPa, (a) External
overpressure as function of the volume and (b) Zoom in the bifurcation points area. (y=2.64 N/m,

k, =2.93x10" Nm and k, =1.1x10°, P, =3.9x107?).

As can be gleaned from the above parametric study, the bifurcation point is strongly
depended on the dimensionless bending modulus. In particular, as the shell thickness increases

for fixed radius, i.e. |2b increases indicating a thicker shell with relatively large bending

resistance, buckling is translated towards higher values of the overpressure and it is in
excellent agreement with the theoretical prediction, Figure 5-8 and Figure 5-10. The primary
bifurcation is symmetric with the supercritical branch being almost prolate thus maintaining a
certain amount of compression in the post buckling regime. As the shell thickness decreases,
Figure 5-1, area dilatation consumes a significant amount of energy and thus rendering the
asymmetric shape as the favored configuration in the post buckling regime, especially in its
limiting state where contact is exhibited at the pole region. The indentation that forms at the
pole region relaxes the shell from the compressive stresses in favor of the energetically
favored bending stresses; see also Figure 5-4-Figure 5-7. Finally upon further reduction of the
shell thickness, Figure 5-12, a single indentation is not enough to bring the energy down to an
acceptable level for a static equilibrium to be achieved and a second indentation develops at
the opposite pole thus bringing about the onset of symmetrically buckled shapes. It should be
stressed however, that in most of the above cases the asymmetric shapes, whether they arise in
the form of a primary or a secondary bifurcation, eventually gain stability through the process
of pole coalescence and the emergence of shapes exhibiting contact.

~

Ky 1.48x10° 2.40x10™ 5.90x10° 1.11x10° 2.70x10°
St - -
1" Bifurcation 47 7.48 1.878 0.3585 0.0924
point, &
Eigenmode P4 P7 P11 P17 P24

Table 5-2: Evolution of the numerically evaluated bifurcation point pertaining to the asymmetric and
symmetric branches stemming from the spherical solution family, as the dimensionless bending
resistance decreases.
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Effect of surface tension and gas compression

(@)

(b) (©)

Figure 5-13: Bifurcation diagram for a microbubble with h=23.1 nm, G;=88 MPa and ygw=0.051 N/m,
(a) External overpressure as function of the volume, (b), (c) Zoom in the bifurcation and limit points

(=6.1 N/m, k, =3.61x10™Nm and k, =5.9x10°, P, =1.66x107?).
Adding surface tension, ysw=0.051 N/m, on the shell equilibrium and assuming the rest
of parameters to be the same as in Table 5-1 a bifurcation diagram is constructed, Figure

5-13(a)-(c). The response is the same with the case studied in paragraph 5.1.1, g, =0, but
the first instability is captured for a slightly higher value of the external overpressure
(5=2.9,\7=O.9656) dominated again by the Pi; Legendre eigenmode, while the second

instability is found in (5:2.960,\7:0.9649) characterized by the Py mode. Increasing

further the surface tension, ysw=0.07 N/m, the first bifurcation is found at
(5 =335V = 0.9606) and the second in (g =338V = 0.9603) dominated again by the same

modes as before. Clearly, in the above cases it is the internal pressure that increases as a result
of interfacial tension, thus increasing parameter P, =2y,,R,/R,/ z~0.1 and stabilizing the

shell by increasing its resistance to volume compression, and shifts the bifurcation point to
higher values in comparison with the theoretical critical buckling load. Finally, repeating both
calculations while ignoring pressure changes in the microbubble does not result in any
significant changes of the bifurcation diagram. In both cases the resistance to compression due

to gas compressibility is negligible, P, <1.
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Effect of constitutive law

(@)

(b) (©)

Figure 5-14: Bifurcation diagram for a microbubble with h=23.1 nm, G;=88 MPa and Skalak’s
constitutive law, (a) External overpressure as function of the volume, (b) and (c) Zoom in the

bifurcation points (x=6.1 N/m, k, =3.61x107"°Nm and k, =5.9x10°, P, =1.66x107?).

In Figure 5-14 the shell coating is assuming to follow the Skalak’s law while the rest of
the simulation parameters are the same as in Table 5-1. The bifurcation diagram is modified,
with respect to the one presented in Figure 5-1, in the fashion shown in Figure 5-9, where the
first instability is dominated by a symmetric mode. In the present case the first bifurcation

(5=1.6,\7 =O.9441) is also dominated by an even Legendre mode, the P1o eigenmode, and

evolves trancritically. In the subcritical branch a third eigenvalue appears from which the
asymmetric branch (P;1) evolves with two unstable eigenvalues. The effective elasticity
modulus of a Skalak shell is reduced when it is compressed, thus the effective dimensionless
bending stiffness increases, which leads to a slightly higher buckling load and a transcritical
symmetric primary bifurcation giving rise to prolate linearly stable in the immediate post-
buckling regime
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5.2 Bifurcation diagrams of lipid microbubbles

521 Study of a single microbubble

Next, the static response of microbubbles covered with a lipid monolayer are
investigated assuming the parameters of Table 5-3: indicative dimensionless numbers are

k =1.9x107 and P =3 corresponding to bending stiffness k,=3x10?* N-m and area

dilatation modulus ¥=0.12 N/m. The above parameters are characteristic of lipid monolayer
shells in that they reflect the increased importance of resistance to bending and volume

compression contrary to polymeric shells for which Izb,l5A <<1. As will be seen in the

following, the importance of gas compressibility is a central effect of the softness of such
shells since the bending to stretching resistance ratio is also small for polymeric shells. The

AP
bifurcation point is now detected at a lower normalized overpressure ?—8 1.65 and

A

: V g : o :
relative volume V=V=0-556, with the corresponding eigenvector dominated by the

1
symmetric P, Legendre eigenmode. It marks the onset of a transcritical bifurcation with oblate
and prolate solution families evolving to lower and higher overpressures, respectively,
stemming from the critical overpressure. Disturbing the spherical shape with the eigenvector
obtained at the critical buckling load the subcritical solution branch is followed which contains
oblate shapes, Figure 5-15(a) and Figure 5-16(b). This branch is unstable but exhibits a limit

point that, employing arc-length continuation, turns towards larger overpressures AP after

V =0.57, dashed line in Figure 5-15(a)-(b). The branch that evolves after the limit point is
linearly stable with shapes that contain a progressively more intense dimple at each one of the
two poles until eventually terminating with the two poles coalescing. More specifically, the
shape described with the dotted line in Figure 5-16(b) corresponds to the last point of the
oblate branch, where the simulation breaks, because as it is depicted in the shape, the relative
position of the two poles is very close, indicating the point where the two opposite sides will
form a contact line with further increase of the load, which the present formulation cannot
predict.

In this case solutions can also be obtained from the buckling point that evolve towards
higher values of the external load also dominated again the P, Legendre eigenmode, reflecting
the transcritical nature of the bifurcation. There are two fundamental differences between the
subcritical and supercritical branches. In the subcritical branch, the shape is compressed near

Bending modulus:  k, =3x107™ Nm g}:z?ation: 7=012 N/m

Initial radius: R, =3.6 um Poisson ratio:  v=0.5

Constitutive law: Mooney-Rivlin (b=0) Pre-stress: u=0pum

Surface tension: Yaw =0.051 N/m IiDnodlé/)t(r:opic y =107 400 elements

Table 5-3: Simulation parameters for the bifurcation diagram of a microbubble covered with lipid.
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(@)

(b) (c)

Figure 5-15: Bifurcation diagram for a microbubble with y=0.12 N/m, k, =3x10™Nm and Mooney-

Rivlin constitutive law. (a) External overpressure as function of the volume, (b) Zoom in the
bifurcation and limit point and (c) Difference in radius between the north pole and equator as a

function of the overpressure. (IZb =1.9x1072, FA’A =3).

the poles and expanded in the equator, oblate configuration, while the opposite happens with
the shapes exhibited by the supercritical branch which are prolate. Thus, the bifurcation
diagram could alternatively be described by the difference of the spherical radius in the pole
and the equator (Ar), see Figure 5-15(c). Hence, in the spherical solution Ar =0, in the oblate
Ar<0 and in the prolate Ar>0. Indicative deformed shapes of each solution branch are
depicted in Figure 5-16(b), (c). It should be noted that despite the fact that an asymmetric
bifurcation arises on the main spherosymmetric branch for a larger overpressure than the
above reported critical load, it was not possible to follow the corresponding solution family to
either larger or smaller overpressures and its calculation was not pursued further as the
stability was dominated by the symmetric solution families.

An important issue regarding the stability characteristics of the bifurcation diagram
pertains to the local and global aspects of it. The subcritical branch (oblate) has two negative
eigenvalues, while the spherical solution for the same overpressure, &, has one. Nevertheless,
after the limit point the oblate solution has also one negative eigenvalue thus becoming
linearly stable as well. On the other hand, the supercritical solution has one negative
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(@) (b) (©)

Figure 5-16: Microbubble in deformed configuration: (a) Spherical, (b) Oblate and (c) Prolate
solutions. The axes are dimensionalized with the initial radius R,. (k, =3x10™*Nm, »=0.12N/m,

and k, =1.9x102,P, =3).

eigenvalue whereas and for the same values of &, the spherical solution has two or even more
negative eigenvalues. In other words the prolate solution inherits the stability of the spherical
branch before the bifurcation point and is thus linearly stable. As was above pointed out, that
is the eigenvalue that reflects translational invariance of the system and does not affect the
stability of the system in any way.

Figure 5-17(a) depicts the total energy of each branch, where it is clear that for every
value of the external overpressure there is a global energy minimum despite the local linear
stability characteristics of the system. Before the primary buckling instability the spherical
configuration has the minimum energy among the different solution families, Figure 5-17(b).
Beyond the critical load the prolate family is linearly stable and its energy is lower than that of
the sphere, however, the oblate solution family that emerges after the limit point and turns to
larger overpressures has an even lower energy content, Figure 5-17(c), and is expected to
dynamically dominate static equilibrium.

More specifically, as we proceed along the subcritical oblate solution family after the

bifurcation point (3:1.65,\7:0.556), until the limit point (5:1.56,\7=0.563) and slightly

beyond it, the spherical configuration has lower energy in comparison with the oblate solution,
which is in accordance with the number of negative eigenvalues. Beyond a certain
overpressure the energy curves of the oblate and spherical solution family cross and the oblate
family is energetically favorable, Figure 5-17(c). This happens very near the primary
bifurcation point. In fact, beyond the primary bifurcation point the prolate family is linearly
stable to small disturbances as well. However, for large enough initial geometric deviations
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from the prolate shape the oblate static configuration will dominate since it is also linearly
stable but, in addition, carries the minimum energy content among all the three solutions that
were captured. In this context, Vlachomitrou & Pelekasis [19] performed dynamic simulations
of the same microbubble in an unbounded flow and when static arrangement obtained above

the primary bifurcation point, £=2.0 and \7:0.47, the shape is dominated by the oblate
symmetric mode P, indicating the global characteristics of the system at this parameter range.
Below the primary bifurcation point simulations always settle back to the spherical shape,
irrespective of the intensity of the initial disturbance, reflecting the linearly stable nature of the
spherical configuration in this parameter range.

@) (b)

Figure 5-17: (a) Bifurcation diagram in terms of total energy for a microbubble with k, = 3x10™Nm

and y=0.12 N/m , (b) and (c) Zoom-in the oblate branch. In (b) and (c) the curves with energy higher
than sphere evolve from the bifurcation point and curves with lower energy evolve towards pole
coalescence and (d) Zoom in higher values of overpressure (k, =1.9x107, I5A =3).
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522 Parametric Study

Effect of elasticity moduli (stretching-y & bending k)
In this section a parametric study is conducted in order to capture the evolution of the
bifurcation diagram pertaining to lipid monolayer shells, as the area dilatation modulus

increases or, equivalently, as the dimensionless bending resistance K, decreases. To this end, a
microbubble with higher stretching modulus is investigated, subject to a uniform overpressure,
with the same parameters as above, see Table 5-3, but with y=0.24 N/m. Hence, the

resulting dimensionless numbers are Izb =0.96x10" and FA’A =15, i.e. both bending and gas
compression are less important in comparison with stretching. The first bifurcation point is
detected when ¢=1.35 and V =0.66, it is dominated by the asymmetric P; Legendre
eigenmode, followed by a second bifurcation point that arises for £ =1.43 and V =0.65 and

()

(b) (c)

Figure 5-18: Bifurcation diagram for a microbubble with y=0.24 N/m, k, =3x107*Nm and Mooney-

Rivlin constitutive law. (a) External overpressure as function of the volume, (b) Zoom in the
bifurcation and limit point and (c) Difference in radius between the north pole and equator as a

function of the overpressure. (k, =0.96x1072, P, =1.5).
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that is dominated by the P, mode. In this case the symmetric solution arises in the form of a
subcritical bifurcation and does not evolve towards higher values of the buckling pressure

(8 >1.43) as in the previous case, see Figure 5-18 and Figure 5-19. In addition, the

asymmetric and symmetric solutions have two and three negative eigenvalues, respectively, in
contrast with the spherosymmetric solution that has only one and is linearly stable. As they
evolve towards smaller external loads both branches develop limit points and turn towards
larger overpressures while exhibiting significantly reduced volumes. The solution families that
evolve past the limit points have one less negative eigenvalue than the branch which they
stemmed from, i.e. the asymmetric has one and the symmetric two negative eigenvalues.
Consequently, the asymmetric branch becomes linearly stable. As can be gleaned from Figure
5-20(a) portraying the evolution of the total energy associated with each solution family, both
branches are energetically favorable over the spherosymmetric solution in this range of
external loads, Figure 5-20(b) and (c). Moreover, the curves of the two secondary branches
cross each other at £ ~1.26, but the asymmetric has always less energy than the symmetric in
the range of parameters &, see also Figure 5-20(d). In order to corroborate this pattern, it
should be pointed out that dynamic response of the same microbubble was studied numerically
by Vlachomitrou & Pelekasis [19] and it was seen that when static equilibrium is reached for
the first time the shape is symmetric. However the latter shape is also destabilized and at the
end of the simulation the asymmetric static configuration prevails, since it contains less energy
than the symmetric one for the same overpressure ¢. In addition, as in case examined in
subsection 5.1.1, for the asymmetric solution a cylindrical coordinated system is considered

(@) (b) (©)

Figure 5-19: Microbubble in deformed configuration: (a) Spherical, (b) Asymmetric and (c) Oblate
solutions. The axes are dimensionlized with the initial radius R,. (k; =3x10™Nm, y=0.24 N/m,

and k, =0.96x107 P, =1.5).
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(a) (b)

©) (d)

Figure 5-20: (a) Bifurcation diagram in terms of total energy for a microbubble with k; =3x10™Nm

and y=0.24 N/m, (b) and (c) Zoom-in the asymmetric and symmetric branch. In (b) and (c) the
curves with energy higher than sphere evolve from the bifurcation point and curves with lower energy
evolve towards pole coalescence and (d) Zoom in higher values of overpressure (

k, =0.96x1072 P, =15).

after £ >1.66 in order to accommodate shapes whose center of mass falls outside the volume
of microbubble, and hence it was possible to follow the asymmetric solution family until the
two poles almost coalesce, E shape in Figure 5-19(b). The symmetric solution family was also
captured until pole coalescence takes place. Symmetric shapes are not energetically favored
since they have a higher energy content than the asymmetric ones during pole coalescence as a
result of the fact that the latter shapes exhibit contact over a larger portion of the interface,
Figure 5-19(b) and (c).

As a final test the area dilatation modulus was further increased, i.e. y=0.96 N/m,

whice amounts to setting dimensionless parameters I2b:0.24><10’2 and |5A:0.38. The
bifurcation diagram is obtained following the same concept as above and is depicted in Figure
5-21(a). The first bifurcation point is detected for a larger critical load, £ =1.18 and V=082,
it is dominated by the P, eigenmode and evolves transcritically, Figure 5-21(b). The
subcritical branch after a limit point has one unstable eigenvalue thus becoming linearly

stable. It is characterized by the onset of an indentation around each pole region that grows
deeper as the external overpressure further increases and the volume of the microbubble
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decreases. It is a result of the large area dilatation modulus that generates large compressive
stresses as the load increases. In the two dimpled regions the compressive stresses are relaxed
in favor of bending that acts in such a way as to reduce the total energy of the shell.

The supercritical branch has also initially one negative eigenvalue, thus inheriting the
stability of the original spherical solution family in the form of slightly prolate shapes, but it
exhibits a limit point that leads to a solution that is characterized by multilobed shapes. The
number of the unstable eigenvalues increases and the solution family is destabilized. The
diagram of the total energy is shown in Figure 5-25(a) for each one of the solution families in
the bifurcation diagram. It verifies the linear stability of the spherical shape that is superseded
by the oblate and prolate shapes beyond the primary bifurcation point. In this range of external
loads oblate shapes dominate static response since they correspond to a global minimum of the
total shell energy among the possible solution branches, Figure 5-22(b) and (c).

Lipid shells also conform with the pattern exhibited by polymeric shells, namely that as
the area dilatation modulus increases the primary instability evolves from a symmetric one
characterized by oblate and prolate shapes to an asymmetric and back to a symmetric one with
one or two dimpled regions around the poles as a means to alleviate the compressive stresses
that develop with increasing external load, Table 5-4. Despite the local stability characteristics
of the diagram around the primary bifurcation global stability is determined by the minimum
energy content among the possible solution branches, with the spherical shape dominating the
region below the bifurcation point and the symmetric or asymmetric shapes dominating above
the bifurcation point. The latter shapes evolve from the primary bifurcation after the onset of a
limit point that leads to shapes exhibiting one or two gradually more intense dimples at the
two poles region until coalescence.

A major difference with polymeric shells lies in the fact that that the latter shapes, both
above and below the primary bifurcation, possess a global minimum in the energy, for
asymmetric shapes that almost exhibit contact between the two poles. Especially for loads that
lie below the primary bifurcation this is a result of the very small resistance to volume

(@) (b)

Figure 5-21: Bifurcation diagram for a microbubble with y=0.96 N/m, k, =3x10™*Nm and Mooney-
Rivlin constitutive law. (a) External overpressure as function of the volume, (b) Zoom in the
bifurcation and limit points (IZb =0.24x107?, ISA =0.38).
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compression, in comparison with stretching and bending resistance, that affords the
onset of shapes with very small volumes for marginally larger external loads.

@ (b)

(©)

Figure 5-22: (a) Bifurcation diagram in terms of total energy for a microbubble with K, = 3x10™*Nm

and y=0.96 N/m, (b) and (c) Zoom-in the asymmetric and symmetric branch. In (b) and (c) the
curves with energy higher than sphere evolve from the bifurcation point and curves with lower energy

evolve towards pole coalescence (IZb =0.24x107?, I3A =0.38).

K, 1.9x10? 0.96x 107 0.24x 107
st R ;
1" Bifurcation 1.65 1.35 1.18
point, g
Eigenmode P2 P3 P4

Table 5-4: Evolution of the numerically evaluated bifurcation point pertaining to the asymmetric and
symmetric branches stemming from the spherical solution family, as the dimensionless bending

resistance decreases.
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Effect of surface tension

Next, the effect of the surface tension is investigated on the bifurcation diagram. Thus
the case studied in paragraph 5.2.1, see Table 5-3, is recalled with y,, =0 N/m and the
corresponding bifurcation diagram is presented in Figure 5-23(a). As can be gleaned from the
latter graph, the bifurcation point is detected at a lower overpressure, & =0.65 in comparison
with the case where the surface tension is included (&=1.66), which is attributed to the

stabilizing role of the surface tension, that increases the effective resistance to volume
compression thus preventing buckling. More specifically, in the case with a finite surface
tension the initial internal gas pressure is higher, thus stabilizing the shell against buckling,
since in the case of a lipid shell gas compressibility is comparable with the rigidity due to

eIasticity(f’A:3); see also next paragraph for the effect of gas compressibility. The

bifurcating branch evolves towards lower and higher values of the critical buckling load,
dominated again by the symmetric Legendre eigenmode P, and characterized by oblate and
prolate shapes, respectively. Moreover, the number of the unstable eigenvalues is the same for
each branch as in the original case and the total energy is less, because the energy due to
surface tension is zero, however, the relative order remains the same, see also Figure 5-23(b).
Thus, it can be concluded that surface tension does not qualitatively affect the main attributes
of the bifurcation diagram, but only affects the actual location of the bifurcation point.

(@) (b)

Figure 5-23: Bifurcation diagram for a microbubble with y=0.12 N/m, K, =3x10™"*Nm, Mooney-
Rivlin constitutive law and g, =0. (a) External overpressure as function of the volume, (b) Total

energy diagram (k, =1.9x102, P, =3).
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Effect of gas compressibility

As was already pointed out in the present thesis, microbubbles covered with lipids are
characterized by a lower area dilatation modulus and thus the gas compressibility acts as an
extra stiffness which in the f-d curve of the AFM problem defines a third regime curved
upwards. Hence, it is of great importance to understand how gas compression affects the
bifurcation diagram. Thus, the original case of this paragraph, see Table 5-3, is recalculated

setting the polytropic index to zero, ¥ =0, i.e. it is assumed that the internal gas pressure does
not change as the volume decreases. The bifurcation diagram for this case is presented in

Figure 5-24(a), where the bifurcation point is at £=0.56 and the secondary branch is
dominated again the symmetric P, eigenmode, corresponding to a transcritical bifurcation that
consists of an oblate and a prolate solution family. However, the solution curve that
corresponds to the oblate configuration is characterized by an almost zero slope after the limit
point, while in the original case, where gas compression is considered as an additional
stiffness, the solution after the limit point has negative slope in the bifurcation diagram, see
also Figure 5-15(a). In addition, in the oblate branch a limit point is not detected and therefore
the whole branch has two unstable eigenvalues. Hence, for & <0.56 the sphere is the stable

solution and for & >0.56 the prolate configuration, see also the diagram of total energy for
each solution branch in Figure 5-24(b)-(d). The behavior observed here is also similar with the
secondary branch of microbubbles covered with a polymeric shell, where due to the large
value of the Young modulus (or equivalently the area dilatation modulus) the stiffness of gas
compression is negligible, which is depicted in the secondary branch of the bifurcation
diagram with an extended area of almost zero slope, see also Figure 5-8 and Figure 5-10. The
same behavior is found for a BR14 microbubble with similar dimensionless numbers

(le =4x10° & |3A = 2.27) by Lytra and Pelekasis [87], where the curves follow the same trend

when the gas pressure is omitted. In such cases it is expected that once contact is established
between the two poles the solution family will turn to higher overpressures required to achieve
even a marginal volume reduction, see also [59]. The latter solution family will probably arise
after a limit point is achieved that stabilizes the ensuing shapes with contact in the manner
observed in the context of bifurcation diagrams illustrated in Figure 5-1, Figure 5-8, Figure
5-10. Such shapes will prevail when the spherical shape is sufficiently disturbed below the
primary bifurcation point.
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© (d)

Figure 5-24: Bifurcation diagram for a microbubble with y=0.12 N/m, K, =3x10™*Nm, Mooney-
Rivlin constitutive law and y =0 (incompressible gas). (a) External overpressure as function of the
volume, (b) Total energy diagram, (c) and (d) Zoom in the energy of the oblate and prolate branches,
respectively. (k, =1.9x102,P, =3).
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Effect of constitutive law

Finally, the originally studied elastic shell is assumed to be governed by the linear
constitutive law Hook and simulations are again performed in order to construct the resulting

bifurcation diagram. The buckling point is detected when ¢=2.1 and V =045 and the
bifurcating branch is dominated by the symmetric P, Legendre eignemode that leads to prolate
shapes that are linearly unstable. The oblate solution family is not captured in this case. The
branch of prolate shapes evolves only subcritically until a limit point occurs, beyond which the
solution family turns towards higher values of the external load, Figure 5-25(a)-(b), and
significantly lower volumes. The energy of the prolate branch is higher than the energy of the
spherical solution in the subcritical part where the former has two negative eigenvalues and
similarly after the limit point until very near the primary bifurcation point, £~ 2.075. Beyond
this point the prolate solution becomes energetically favorable, Figure 5-25(c)-(d), and is
expected to dominate the static configuration in this parameter range. Clearly then the
constitutive bears a significant effect for such shells and needs to be carefully accounted for
when considering their dynamic response.

(@) (b)

(©) (d)

Figure 5-25: Bifurcation diagram for a microbubble with »=0.12 N/m, k, =3x107*Nm, and Hook’s

constitutive law. (a) External overpressure as function of the volume, (b) Zoom in the bifurcation and
limit point, (c) Total energy diagram and (d) Zoom in the energy near the limit point, the curve with
energy higher than sphere evolves from the bifurcation point, while the curve with lower energy

corresponds to progressively prolate shape. (IZb =1.9x1072, FA’A =3).
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Chapter 6. Asymptotic Analysis - Comparison against experiments

In this chapter numerical simulations using the classic contact model and the
methodology developed in the present Thesis are coupled with asymptotic
analysis and available AFM measurements in order to characterize a wide
range of coated microbubbles. The novel methodology proposed in the present
study is based upon introducing intermolecular forces in the liquid medium that
surrounds the microbubble as a means to mediate the force exerted by the
cantilever. The hydrophilic nature of the shell and cantilever justify this
approach as is verified by the analysis and the results of the simulations. The
accuracy of the calculated response provided by the contact model that
employs intermolecular forces suggests that introduction of the disjoining
pressure constitutes a reliable novel approach of general validity that can
describe the contact problem for a variety of materials.

In particular, the analytical expressions developed by Reissner [32, 33] and
Pogorelov [34] for the linear and non-linear regimes of a force-deformation
curve are employed in available experimental-AFM data by Glynos et al. [29]
for polymeric coatings. Combining the transition from the linear regime with
flat shapes to the non-linear regime with buckled shapes both Young’s modulus
and shell thickness are estimated independently [88-90]. The calculated values
are in excellent agreement with the experimental values of the Young’s modulus
and the shell thickness provided by the manufacturer [31]. Simulations are
performed with the estimated values and the results are compared with the
experimental curves employing both classic contact and intermolecular forces
models. The simulations recover the transition to the buckling stage, while a
third curved upwards regime in the experimental f-d is not recovered, possibly
due to non-elastic phenomena. Furthermore, accounting for a variable level of
prestress allows for recovering the reported multiplicity in experimentally
obtained f-d curves for almost the same elastic and geometric parameters of the
microbubble and the cantilever.

The experimental f-d curves of phospholipid coatings (Definity) obtained with
the AFM by Bucher Santos et al. [30] respond almost linearly suggesting that
buckling is not taking place. Thus, the Reissner to Pogorelov transition cannot
be employed for parameter estimation. However, at relatively high
deformations a regime curved upwards is detected which, as suggested by
simulations, is governed by gas compression. A novel methodology for
estimating the area dilatation modulus and bending stiffness is proposed, by
coupling the slope of the experimental curve in the bending stiffness dominated
Reissner regime with the cubic dependence on deformation in the gas
compressibility dominated regime (Shanahan, Lulevich). The above two
regimes correspond to the transition and contact region offering the major
contribution, respectively, to the force exerted by the cantilever on the shell.
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6.1 Microbubble covered with polymer

6.1.1 Asymptotic Analysis - Parameter Estimation

As it is already mentioned the microbubbles covered with polymeric biomaterial are
stiffer in comparison with the ones covered with a lipid monolayer in terms of elasticity
modulus (E). Thus, the former are closer to conventional shells and therefore the related
theory could be easily adapted. Initially, a point force, F, is assumed to be applied at the pole
of the microbubble, in order to investigate its asymptotic behavior. Even though this
assumption is not realistic when the AFM problem is considered, it is widely used for
parameter estimation [24, 29, 88] due to its simplicity, especially for small values of
deformation.

Thus, the pole of the microbubble is displaced by A when a point force is applied [40].
As far as the normalized deformation A/R, is small, the area around the pole is compressed
forming an almost flat and circular region with radius . Beyond this area, which has a small
deformation, the rest of the shell is assumed to remain spherical, Figure 6-1(a). Therefore, the

normal elastic tension will be proportional to deformation, 7 ~ EhA/R, and the corresponding

total stretching and bending energy will be Es~Eha2(A/Ro)2 and Eb~Eh3(A/a)2,
respectively. Then, the ratio between stretching and bending is:

=~ (6-1)

and when bending and stretching are equally important E, ~ E, or « ~/hR, . In addition, the

work done by the point force F is W = FA. Therefore, varying the total energy with respect to

A gives:
Eh’A
F~ = (6-2)

The above asymptotic approach is presented in [40] and was also obtained by Reissner is
his pioneering work [32, 33] where he solves the above problem analytically employing the
differential equations at equilibrium. Reissner proves that when a point force is acting on the
pole, the force-deformation relation is linear and has the following form:

2 8./ xk
F= 4 Eh A or E=N2% 4 (6-3)
3(1—1/2) Ro Ro
which is in accordance with eq (6-2).
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Figure 6-1: Schematic representation of a microbubble subject to a point force at the pole. (a) Pre-
buckling and (b) Post-buckling. Both configurations are exaggerated for visual reasons.

It is well known that increasing the point force F, the area around the pole will form a
crater which, for the purposes of the present study, is assumed to be a mirror image of its
original spherical shape, Figure 6-1(b). Most of the elastic energy is concentrated at the end of
the crater, which has radius o and thickness d. The crater radius is assumed to be smaller in

comparison with the shell radius R,, therefore the angle 6, <1, then « ~ R siné, = R 6. and
the crater depth is A ~2(R, — R c0s6,) ~ R,67. If { denotes the vertical displacement of the
points on the inside of the crater, then the energies per unit area due to stretching and bending
are E_~Eh¢?/R? and E, ~ Eh’¢?/d*, respectively. Moreover, ¢ ~6.d ~ad/R; and then
multiplying the energies with the dimple area (~ad) gives, E,~Eha’d®/R! and
E, ~ Eh°a*/dR’ . Again, when the two elastic energies are equally important, then E, ~ E,,

which results in d ~ ,/hR, . Substituting the value of dimple thickness (d) into energies and

varying with respect to A provides the following relation originally derived by Pogorelov [34]:
Fr——AY? (6-4)

The last result shows that when force becomes large enough for crater formation to take
place, then the force-deformation relation is a non-linear equation. Pogorelov [34] extended
Reissner’s work by accounting for the possibility of the local mirror buckling and his
analytical calculations gives a similar equation with (6-4):

0.5

2115
- _| 356E° (6-5)

(1-v2)'R?

Moreover, in order to investigate the above problem, but taking also into account the
fact that the microbubble during the AFM is compressed by a flat cantilever, rather than a
point force, the above asymptotic analysis is extended. Pauchard et al. [91] investigate a
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spherical shell compressed by a flat and rigid plate. In their work, two stages are determined,
stage | and Il that describe the pre-and post-buckling configurations, respectively. Following
this, the force-deformation relation for the stage | is assumed to have the form
Giannakopoulos et al. [90]:

F =aA + A (6-6)

and the coefficients a,f must be calculated. For very small values of deformation the above
equation must satisfy the Reissner relation (6-3), or alternatively the dominant term is the
linear and the coefficient a must be:

2
a= 4 Eh (6-7)

J3(1-v?) R

as Reissner predicts. Then, in order for parameter f to be dimensionally correct it must have
the following form:

ﬂ~ﬁ(V)E—h

0

(6-8)

where ,B(v) is a function of the poisson ratio to be determined. Comparing the proposed

function with numerical results obtained by Vaziri [52] and Shorter et al. [92], the following
form of the force deformation equation is proposed for the pre-buckling stage [90] or stage I:

2
F= 4 Eh A+O.06543%hA2 (6-9)

3(1—1/2) Ro

and for the post buckling stage or stage I1:

_ 3.807Eh*? ,

F I
(1_ V2 )3/4 R

(6-10)

0

It is clear that the quadratic term in eq. (6-9) is negligible in comparison with the linear,
thus the relation remains strongly linear.

Alternatively, and in the context of the classic contact analysis by Updike & Kalnins
[47], see also the presentation in sections 2.3.1 and 3.3.1, the transition from the Reissner to
the Pogorelov regime occurs in the form of a bifurcation point that marks the onset of dimpled
shapes as energetically favored shapes over the original shapes that are flat at the pole region.
Once the Poisson ratio is fixed the dimensionless force and deformation at the buckling point
(A/h, Pex/(xRo)) have a universal value that can be calculated numerically and can then be
employed in order to provide estimates of the area dilatation modulus x and the shell thickness
h, based on experimental measurements of the above transition point. The latter, however, is a
very sensitive measurement that is not always easy to obtain.
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(@) (b)

Figure 6-2: (a) Experimental force-deformation curve (blue line), along with fitting of Reissner (dark
green) and Pogorelov (red) equations and (b) Experimental force-deformation curve (blue line), along
with fitting of plane contact analysis (green).

The above analysis is of great importance as far as experimental results by the AFM are
concerned, because the combination of Reissner-Pogorelov analysis with the point force and
the proposed extension with the plane contact, or measurements of the force and deformation
pertaining to the above transition, can provide the elasticity modulus and the shell thickness
independently. Figure 6-2 illustrates a typical f-d curve [29] obtained via AFM, where three
distinctly different regimes can be observed. An initial nonlinear regime, denoted with 1,
occurs for very small values of the applied force - on the order of 10 nN and less - where the
Albumin outer layer (thickness: ~10 nm) and intermolecular/surface adhesion forces between
the shell and the cantilever are conjectured to participate in the dominant force balance with
elastic forces. As the external load increases a linear regime appears, denoted with 2, followed
by a nonlinear regime, denoted by 3, that is curved downwards. The linear regime is the
Reissner [32, 33] regime where stretching and bending forces coming from the stiff
polylactide shell balance each other over a flattened contact area that characterizes the
microbubble shape. This is the part of the f-d curve that is typically used in the literature in
order to infer the shell elasticity modulus once the shell thickness and radius are known [24,
29]. The third regime occurs as the external load further increases and it is known in the
literature as Pogorelov [34] regime; it appears as the compressive load on the flattened part of
the shell exceeds a certain value, in which case the shell bents forming a crater at the pole
region while a dimple forms at some distance from the pole where most of the bending energy
is stored. In the present thesis the possibility for using both Reissner and Pogorelov regimes is
investigated in order to estimate the shell elastic modulus and thickness and the resulting
parameters are compared against experimental values [88]. To this end, the asymptotic
relations from Reissner’s and Pogorelov’s theory are fitted in the experimental curve; see
Figure 6-2 (a), in order to obtain the slopes of the linear and nonlinear regimes, respectively:
%: 72 and ——-114.10" (6-11)

JA
with R?=0.99 for both fitted functions. Then, solving for E, h:
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E=6.1GPa and h=31nm (6-12)

Similar calculations are performed with the proposed analysis developed in [89, 90],
where the coefficients of stage | are calculated based on fitting in experimental data, Figure
6-2(b):

linear coefficient = 6.3 and quadratic coefficient = 4.9-10° (6-13)

with R?=0.99. Substitution in eq. (6-9) gives E=4.6 GPa and h=33 nm.

The above calculations of the elastic modulus (E) and the thickness (h) of the shell have
been repeated for all the available experimental measurements by Glynos et al. [29] and the
results are in Table 6-1. The experimental estimates of the shell elastic modulus have been
obtained using two different tipless cantilevers, with stiffness k.=0.61 N/m and 1.14 N/m.
Moreover, it should be stressed that they are based on Reissner’s theory, eq (6-3). while
adopting a linear empirical equation [31], h=1.5-10"R,, for the shell thickness that is provided
by the manufacturer.

As it becomes evident from Table 6-1, the calculated values for the elastic modulus and
shell thickness obtained by combining the Reissner and Pogorelov asymptotic relations or the
proposed extension, are in good agreement with the experimental estimates without requiring
prior knowledge of the shell thickness. These findings corroborate the assertion of the present
Thesis that the force-deformation curve is a sufficient measurement for the estimation of both
of the elastic properties for microbubbles covered with polymeric material.

Asymptotic
Estimation-Plane
contact-Stage |

Experimental Values Asymptotic
[29] Estimation-Point Load

Do [um]  E[GPa] h [nm] E [GPa] h [nm] E [GPa] h [nm]

ks=0.61
N/m
2.6 10-16 20 8.5 25 20 16
4.1 2.5-6 31 6.1 31 4.6 33
ke=1.14
N/m
3.1 6-10 23 3.4 35 10 19
4.0 2.5-6 30 4.7 30 4.7 28
4.9 1-3 37 4.5 31 49 28
55 1-3 41 1.7 47 2 40

Table 6-1: Estimation of the Young's modulus (E) and shell thickness (h). Comparison between the
experimental values and the asymptotic analysis.
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6.1.2 Comparison between simulations and experimental-AFM data

Based on the numerical analysis developed for the classic contact model and the model
that incorporates intermolecular forces, a series of simulations was carried out in order to
capture the experimental curves obtained with an AFM by Glynos et al. [29] for microbubbles
covered with polymeric biomaterial. Three different experimental curves are investigated here.
The elasticity properties, which are used in the simulations, are the one that are estimated in
paragraph 6.1.1 and the initial radius is measured with the AFM [29]. As already mentioned
above, the response of various size microbubbles during the AFM experiment is different,
even though they are encapsulated by the same material. Hence, in order to capture the
multiplicity of f-d curves, the microbubbles are assumed to be pre-stressed and the surface
tension is taken as the mean of the gas shell and bubble-water interface [17, 86], Table 6-2.

The dimensionless numbers are: k, =k, /7R?=23x10°, P, =P,R /7=1.43x10" and

Yow = Vew /% =3.6x107*. Thus, performing simulations with the classic contact model, a f-d

curve is calculated and it is directly compared with the one from the AFM experiment [29],
Figure 6-3 (a). It is found that the simulations recover the force - deformation curve with
satisfactory agreement, compared to experimental results. The onset of buckling takes place at
around the same value of deformation, which is d=60 nm, even though the bifurcation point in
the experimental curve is not clearly defined, and corresponds to a contact angle of 6.=10°.
The numerical analysis presented here is an idealized description of the contact between the
cantilever and the shell, and the bifurcation point causes a sharp change in f-d curve. On the
contrary, the experimental approach leads to a smooth transition into buckling stage. Thus the
bifurcation point cannot be easily defined from the f-d curve and additional optical
measurements are required to identify more precisely the onset of buckling during the
experiment. Furthermore, employing the intermolecular forces model, with the same
simulation parameters as before and assuming W,=10" N/m and §,=50 nm both experimental
and buckling curves of the classic contact model are recovered, indicating that the
intermolecular forces model developed here is a reliable and novel theoretical and numerical
tool, which can be used to simulate the contact problem of the AFM cantilever for both types
of contrast agent microbubbles. It should be stressed that the initial nonlinear regime in the f-d
curve cannot be fully captured due to lack of accurate data pertaining to the interaction
potential between the cantilever and polymeric shell. Furthermore, the flat curve after the
bifurcation point is not recovered, because for the elastic parameters considered here strongly
favor buckling at large deformations. Finally, the experimental measurements presented in
[29] register a multitude in the microbubble response for otherwise the same microbubble and
cantilever geometry and materials. The simulations carried out in the context of the present
Thesis attribute this behavior to the different level of shell pre-stress that is generated during
sample preparation as a result of gas escaping the shell. Indeed a wide range of force
deformation curves is accurately reproduced considering a certain amount of pre-stress in the
form of a negative radial displacement, u, at the initial spherical configuration.

The shape of the microbubble in deformed configuration is illustrated in Figure 6-3 (b)
and it can be seen that it corresponds to the linear part of the curve is flat around the contact
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Shell thickness: ~ h=230nm Young's E=47GPa

modulus:
Initial radius: R, =2.00 um Poisson ratio: v=0.42
Constitutive law:  Hook Pre-stress: u=-1.25-10" um
Surface tension:  ypw=0.051 N/m  Polytropic index: ¥ =1.07 400 elements

Table 6-2: Simulation parameters for a microbubble covered with polymer (Bisphere).

(@) (b)

Figure 6-3: (a) Force-deformation curve, comparison of numerical (classic contact and intermolecular
forces models) and experimental results, (b) Microbubble in deformed configuration.

area and buckling is taking place for larger values of deformation in the non-linear regime.
Moreover, stability analysis on the static configuration produced by the fem curve as is
presented in paragraphs 3.3.1 and 4.1 reveals exchange of stability between the pre- and post-
buckling stages. However, as it is described in benchmark calculations the linear part of the
pre-buckling stage could continue further on after the buckling point. In the same fashion, this
part of the solution is seen to be unstable. The total energy graph for the pre- and post-
buckling solutions recovers the fact that the total energy of the buckling branch is less in
comparison with the linear solution after buckling, Figure 6-4 (a), thus it is preferable in the
experiment. It must be noted that the total energy is the sum of the energies due to stretching,
bending, gas compression and surface tension. The relative importance of the total energy
components is depicted in Figure 6-4(b) for both pre- and post-buckling solutions. As can be
gleaned from the last graph the energy components that vary the most as the external force
increases are the energies due to elasticity, namely stretching and bending. They are equally
important since bending and stretching have to balance each other for this type of shells, an
equilibrium that also provides the slope of the f-d curve and the estimate of the elastic
properties. It should also be noted that the stretching energy at zero deformation has a non-
zero value, because the shell is treated as pre-stressed by imposing an initial negative radial
displacement. The deformed area varies very little in both the pre and post buckling parts
hence surface tension does not play a major role. Moreover, the energy due to the compression
of the gas is negligible because the reduction of the shell volume is very small.

Next, simulations are performed for another two available experimental f-d curves [29]
with the same type of coating while employing both contact models, Figure 6-5.R,=1.75 um,
h=22 nm, E=4.22 GPa and initial radial displacement u=-0.0005 um and and R,=2.45 um,
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h=31 nm, E=1.58 GPa and u=-0.0016 um; the rest of the simulation parameters are the same
as in Table 6-2. The experimental curve presented in Figure 6-5 (a) was obtained with a softer
cantilever, thus it was possible to capture the initial linear and the following non-linear
regimes, while in Figure 6-5 (b) a stiffer cantilever can measure over a wider range of
deformations. As illustrated by the above graph the response of the two numerical models is
almost identical and recover the Reissner and Pogorelov regimes, but overestimate the critical
buckling load. In addition, in the experiments with the stiffer cantilever a third regime is
detected curved upwards, which the present modelling is not able to capture, even though the
encapsulated gas is treated as compressible and it could define a regime dominated by the gas
compression, see also Figure 4-6(a). However, the regime where the gas compression is
relatively important is recovered by the simulations for higher values of deformation in
comparison with the experimental range. Loading and unloading experimental curves show
hysteresis indicating possible irreversible (plastic) deformation [29], which might explain the
discrepancy between experiments and simulations in the high deformation range. However,
the linear and non-linear regimes are governed by elastic behavior, they are in agreement with
the present numerical (elastic) model and additionally, the estimation of the Young’s modulus
and the shell thickness is also in agreement with the experimental values and the shell
thickness provided by the manufacturer.

@) (b)

Figure 6-4: (a) Total energy as function of deformation for the two solutions after the buckling point,
(b) Components of total energy for the pre- and post-buckling stages. The modulus of each energy is
dimensionalized with the area dilatation, see session 2.3.1, and the values of surface tension energy are
in the right y-axis.

@ (b)

Figure 6-5: F-d curves, comparison between numerical and experimental results (a) R,=1.75 um and
(b) R,=2.45 pm.
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6.2 Microbubble covered with phospholipid: Preliminary results

6.2.1 Asymptotic Analysis - Parameter Estimation

When lipid shells are interrogated with Atomic Force Microscopy [30] the force
deformation curves that are obtained, besides a very narrow initial nonlinear regime where
transition from attractive to repulsive intermolecular forces takes place between the shell and
cantilever, they exhibit a quite distinct linear regime followed by a curved upwards nonlinear
regime, Figure 6-6. This is in marked contrast with the response curves obtained from
polymeric shells, Figure 6-2 and Figure 6-5, that exhibit a curved down response curve at
large deformations that was attributed to the Pogorelov regime where shell buckling takes
place leading to crater formation and the nonlinear behavior predicted by Eg. (6-5).
Simulations of the static deformation of lipid shells that are compressed by a flat plate have
been performed, using the methodology that invokes intermolecular forces between the shell
and cantilever as a means to provide a smooth representation of the force exerted between the
above two hydrophilic materials. The latter methodology was presented in section 2.3.2 and
extensively used in section 4.2 in order to simulate the response of both polymeric and lipid
shells. It was thus shown that this is indeed a methodology of general validity that provides
reliable predictions of the static response of polymeric shells that provides a smooth transition
from the flat linear to the nonlinear post-buckling regime, Figure 6-3 and Figure 6-5. An
extensive parametric study was also presented in section 4.2 for a wide parameter range
pertaining to both polymeric and lipid shells with accurate and reliable results.

As part of this parametric study simulations were performed fixing the product between
bending and stretching resistance ky-y in an effort to reproduce the slope of the linear part of
the experimental curve based on the Reissner formula eq.(6-3), Figure 6-6(b). Next, upon

fixing parameter |=A>A =P,R, / x by setting the area dilatation modulus y a series of simulations

are conducted by varying k, so that the product 8,/ yk, /R, conforms with the slope of the

experimental F-A curve, see also Table 6-3. In this fashion a series of force deformation
curves were obtained, Figure 6-11(a), varying both |2b and I5Awhile maintaining a fixed value

of the product ykp. Out of the f-d curves that were produced the one with I5A =10 reproduced

the slope and range of the linear regime exhibited by the experimental curve, Figure 6-8,
except for the initial nonlinear part of the curve. Due to lack of data regarding the interaction
potential the value W;=10* N/m was chosen so that the f-d curve matches the maximum
attractive force registered in the experiments, upon performing an initial parametric study on
W and the characteristic distance 64. The optimal value for the interaction potential was thus
selected, 6-7(b), and was shown that the value of 5, does not significantly affect the f-d curve,
Figure 6-11(c). Figure 6-9(c)-(f) illustrate the evolution of the shape, the disjoining pressure,
the in plane stresses and transverse shear g of the symmetrically compressed microbubble as
the external force increases. Figure 6-9(a), (b) provides the actual shape as well as a blow-up
of the region that joins the flat contact area with the almost spherical far field region where the
interaction potential has no effect on the microbubble, illustrating the onset of a transition
region that smoothly evolves the curvature of the shell from the flat contact region to the outer
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region with mean curvature k,~O(1/Ro) and negligible disjoining pressure. Furthermore it is
clear that as the force increases so does the transverse shear g which develops within the latter

(@) (b)

Figure 6-6: Experimental force-deformation curves for microbubbles covered with lipid monolayer,
obtained via AFM by Bucher Santos et al. [30].

(a) (b)

(©)

Figure 6-7: Numerical force-deformation curves for microbubbles covered with lipid monolayer
obtained via FEM. During simulations 8,/ xk, / R, is constant, while (a) k, and I5A vary as explained

in Table 6-3, W,=1x10* N/m, 5,=50 nm, (b) I3A =10, 8,=50 nm and W, varies and (c) f’A =10,
W,=1x10* N/m and &, varies.
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Dimensionless Dimensionless

Area dilatation modulus Bending modulus bending modulus pressure
x [N/m] ko [NM] c 5

b A
0.010 2.336x107" 1.0x107* 15
0.015 1.558x107" 4.6x107 10
0.020 1.168x107%° 2.6x107? 7.6
0.030 7.690x107% 1.1x1072 5.0
0.050 4.673x107% 4.2x10°° 3.0

Table 6-3: Values for the area dilatation modulus and bending stiffness employed for simulation and
comparison against experimental data.

Figure 6-8: Comparison between numerical I5A =10, W,=1x10" N/m, 3,=12.5 nm and experimental
curve [30].

transition layer [63] and is responsible for the compressive in plane stresses that develop in the
contact and transition regions, mainly, of the shell. Blount et al. [63] studied free adhesion of
2-d vesicles on solid substrates via a long range attractive short range repulsive potential.
Vesicles are liquid filled shells that are characterized by finite bending resistance, fixed
volume and an infinite area dilatation modulus, i.e. fixed area. When the interaction potential

is of equal importance as the bending resistance, W,R* / k, = O(1), and the interaction length is

much smaller than the bubble radius, J, /R, <<1, they recover a similar structure of the freely

adhered vesicle as the one depicted in Figure 6-9and examine variations of the shape as the
strength of the interaction increases. Proceeding along the same lines we can identify a similar
structure of the static configuration of coated microbubbles subject to unidirectional
compression, Figure 6-10(b). Our case differs from the one examined in [63] in the following
ways: (a) the nature of the shell is different since in the present study it is characterized by a
finite area dilatation modulus y, (b) the geometry is axisymmetric rather than two dimensional
and (c) it is not a case of free adhesion because an external force F is exerted on the cantilever
and transferred to the shell via the intervening ultrathin liquid film. In the methodology
developed here, see also section 4, the
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Figure 6-9: (a) Shape in deformed configuration, (b). Blow up between the contact and outer regions,
Distribution of (b) disjoining pressure, (c) in plane 15 tension, (d) shear tension g and (e) in plane
tension t,,, for selected values of deformation.
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Figure 6-10: (a) Simple geometric explanation of deformation and contact angle, (b) Schematic
representation of the contact, transition and outer regimes along the shell surface, (c) Microbubble
compressed between two rigid plates.

force is implicitly fixed by setting the distance z, between the cantilever and the equatorial
plane of the microbubble.

In particular we identify a flat contact region whose length-scales in the ¢ and z
direction are L~R, and da respectively; similarly the arc length s along the contact region
scales like L as well. In this region the transverse shear g vanishes and the dominant force
balance in the normal direction is formed by the disjoining pressure exerted by the film on the
shell and the internal microbubble pressure that is adjusted in order to accommodate volume
compression. In the tangential direction in plane stresses develop in response to area
compression of the shell.

W
" on
f’ .aTss ~ 1 8(7( SS—TWJ)

i:P,—P,
(6-14a, b)

s T
oS o 05

The latter is mainly generated in the adjacent transition region where significant bending
takes place and are enforced on the contact region via the matching condition at their
interface. In the case of free adhesion the distance between the cantilever and the shell is 84 in
the contact region and the pressure in the microbubble is the same as that in the environment
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Pa. During free adhesion the force on the shell is attractive and is established in the transition
region. However, as the shell is compressed by the cantilever a repulsive disjoining pressure is
exerted on the shell that is compensated by the internal gas pressure. Consequently, the shell
thickness 6 between the shell and cantilever decreases to reflect this change in owW/on.

Therefore if Z=z/5, then for not wvery large pressure changes, i.e.
AP (=P, —P,)d, /W, <<1, the dimensionless film thickness is but slightly decreased,

7=13.~1-cand APS, /W, ~8z — 7. ~1—APS, / (8W,), (6-15)

In the adjacent transition layer the dominant balance is formed between the disjoining
pressure and the bending stresses that develop as a result of the change is curvature that takes
place in this region. The length-scale in the z direction remains ~6, whereas that in the radial
direction o adjusts its length scale, ¢, in order to conform with the above balance, i.e.

14 14
kb5—~W— 51’2(k/ ] — (IR, ~ (5 ) [—b] — (<<R, (6-16)
A Ry W, R?

Upon introducing §=(s—L)/¢ , with L the length scale of the contact length for which

it holds that L~R,, we obtain as the dominant balance in the transition layer:

5 aw
o5 an UL A VU

£ 5L -y ky (1/R; ) ko (5,1 2°) (6-17)
oS

:%4_&8_0_8_0% m, ~f )dzarﬁs
0sS o 05 05 o 08

In other words the transverse shear q that is generated in the transition layer due to the
development of the intermolecular forces results in the compressive in plane stresses that also
compress the contact region. Finally, the total force exerted on the shell within the contact and
transition zones is

F=F+F, z(PG - PA)yzL2 +q'27L (6-18)
where,
OW . ¢OW dS
= dS = —d —> A y km = kS 'I'k '1
a=[~ Iandw j v oAty ) (6-19)

In the above ks, k, and km denote the curvature along the arc length of the generating
curve of the shell, along the polar direction and the mean curvature of the shell, whereas Ay
signifies the turn of the normal at the edge of the contact region of the shell.

It is the relative importance between the above two contributions that determines the
behavior of the force deformation curve. It depends on the relative rigidity due to bending and
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volume compression. The shape of the shell in this region is provided by solving the above
two equations along with appropriate matching conditions with the contact and outer regions.
In particular, a shooting problem is solved with the following conditions:

~ . dz do d’c

§>-—0 -7, ?—>0, m, — m, %@ -1 dA2—>O (6-20)
§ S S )

A

§>o (G0

where m,, m., denote the bending moments at the where the contact and transition regions
join. The last condition is a result of the difference in order of magnitude for the transverse

shear between the transition and outer layers. In particular, based on eq. (6-17)
12 3/4
N 1) k . . . : :
g=q| =2 —bz in which case q — 0Oas it approaches the outer region where q=0(1).
R0 WORO
The actual value of the transverse shear in the limit as the outer region is approached will be
provided by the solution of the outer problem. On the other hand the bending moment ms

12
: - . . k .
remains of the same order within the transition and outer layer, m, =m, (W—Ez] , provided
0'%

k, ~W,RZ and consequently its value is calculated by solving the transition layer and used as

a matching condition on the outer problem. This condition is used in the same fashion that the
contact angle is used as a means to match the outer problem with the transition region for
conventional drops and bubbles. Alternatively, and preferably, the curvature can be calculated

within the transition region, Izs , it is also of the same order as the curvature of the shell in the

adjacent outer region, ks, and used as a matching condition.
In the outer problem lengths scale with the microbubble radius, the disjoining pressure is
negligible and a very similar version of the classic contact problem is recovered [46-48]:

- 19(oq) .
n'(PG_PA):ksTss+k(pT(p(p_; o + Vaw (Vs-n)
.. 0, 1loo
t—=+——(r -7, )+kq=0 -
T LA (6-21a,b,c)
m
q:%+&a_0_5_0_¢, PV =P, V/

0S o 05 05 o

coupled with symmetry conditions at the equatorial plane, z=z. with z. denoting the distance
between the cantilever and the microbubble’s center of mass , and matching conditions at the
contact point with the cantilever:

$=0:z=0, dz/ds=0, dr/ds=1, kszlzs (6-22)

The transverse shear g at the contact point is obtained as part of the solution of the above
outer problem. The distance z. is a more appropriate geometrical property imposed on the
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outer problem than the angle of contact ¢. since the latter is not as easy to measure in an
experiment. In classic solutions of the contact problem [46-48] angle o is used as a condition
along with the bending moment m,, calculated within the flat contact region. In view of the
above it can be seen that such solutions constitute an outer problem of the contact
configuration that are valid in cases for which the interaction potential is negligible. As a
result the bending moments are not modified within the transition layer, the latter is absorbed
in the outer region, and the flat region is in direct contact with the outer one.

Nevertheless, the solution of the outer problem as formulated here is also subject to the
Reissner solution[32, 33], as is the case with the standard formulation presented in [46-48],
provided a significant increase in the internal gas pressure does not take place. In such a
situation, as can also be seen by the numerical solution provided by the simulations in Figure
6-9, the disjoining pressure is negligible in the contact region and exhibits a peak within the
transition region and so does the transverse shear g. Then, provided the size of the transition
region is small and the shell remains relatively shallow, i.e. deformation A remains much
smaller than z. (Figure 6-10(a)), the transverse shear q is exerted at the point of contact, the
shell remains almost spherical and the Reissner solution is valid, thus corroborating the linear
part of the f-d curve registered in AFM measurements, Figure 6-6, and recovered by the
simulations, Figure 6-7.

However, the experiments as well as the simulations also capture a nonlinear curved
upwards response pattern in the f-d curve which does not conform with the Reissner solution
or the curved down post buckling regime. As indicated by the simulations and illustrated by
the distribution of the disjoining pressure shown in Figure 6-9, this regime is associated with
the onset of considerable rise in the gas pressure in the microbubble and a concomitant
reduction in the film thickness in order to accommodate the balance in the contact region.
When gas compressibility is of central importance in the response of coated bubbles to
external forcing, it is the balance between pressure drop across the interface and in plane
stresses that determine the f-d curve [25, 50]. Following the analysis presented by Shanahan
[50], with the difference that an initial pre-stress is not considered herein, in the analysis
presented below; we obtain for a symmetrically compressed microbubble. In view of the
symmetry of the configuration, we concentrate on one of the two parts of the shell which we
assume to be shallow, Figure 6-10 (c), and consequently to remain almost spherical. In the
absence of compression the shell is assumed to be spherical with pressure Py equal with the
external, Pa, and volume Vo=4nR,*/3.

Assuming that the contact length L~Rsin®, Figure 6-10(c), is larger than the size of the
transition layer, L >> ¢, and that the shell is shallow, A<<z, we obtain the following estimate
for the shell volume when it is inflated at the equator, R=R+6R, due to the external force and
at the same time it is flattened at the two poles. In the last two regions the shell volume is
decreased by an amount equal to the volume of two spherical sectors of radius R and angle 6,
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Next, treating the shell as neo-Hookean with negligible bending in the outer region and
an almost spherical shape we obtain the following force balance:

2
PG—PAzZ—Z R—2—1 zz—ZA[(1+194)2—1}~14—7‘94 (6-24)
RR; Ry (1+16") Ro

Upon combining the last two equations we recover the following relation for A and the
pressure drop across the shell:

a=t 1 p_p =3¢ G—ﬁj (6-25)

8
47;( _|_1
3R,PR,
In this fashion the force exerted on the shell at the contact region reads as:

Fc :(PG —PA)7Z'|_2 z(PG —PA)ﬂ'Rozsinz gﬂ) FC z3967Z'R§PO (%_/1) (6.25)

la (6-26)
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8 2, ° 2 TR
3R,P,
_ 3Ro R, 1 1 s = i
T -5 RN (6-27)
37PR?

which is the same as the formula developed in [25], when the Poisson ratio is set to 0.5, and
employed in [30], for estimating the elastic properties of phospholipid shells. Based on the
above analysis it is proposed that Reissner’s linear formula, that holds when the force on the
shell is balanced by bending stresses in the transition region, can be combined with the above
formula (6-26), that holds when the force on the shell is balanced by pressure drop across the
shell in the contact region, in order to provide reliable estimates of the shell area dilatation
modulus and bending stiffness.

In this context, an effort was made to recover the shell area dilatation and bending
moduli based on the above asymptotic results, .i.e. employing a combination of Eq’s (6-3) and
(6-26) in the way Eq. (6-3) was combined with Eq. (6-4) to obtain the respective properties of

polymeric shells. In particular, for the case with |5A =10 the slopes of the linear and non-linear
regimes of the numerical curve are calculated, Figure 6-11(a). Both fitting curves conform
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with the applied formulas with great reliability, R>=0.99. Then employing eq. ((6-27) the area
dilatation is estimated. The resulting value is y =1.49x107° N/m. Subsequently, the bending
modulus is estimated by substituting in Reissner’s eq. (6-3) the area dilatation modulus and
the linear slope. The resulting value is k, =1.269x10"°Nm. Repeating the previous

calculation for the F3A =3 numerical case, the resulting values of area dilatation and bending

moduli are y =3x107N/m and k, =5.99x10°Nm, respectively. As can be gleaned from

Table 6-3 the above estimates are in satisfactory agreement with the values employed during
simulation.

In addition, it should pointed out that Bucher Santos et al. [30] proposed the Lulevich et
al. [25] model for the estimation of Young modulus of such coatings, which as described here
is a cubic function of deformation. In the same study the Reissner model is not adopted,
because it predicts unrealistically small values of the Young modulus, for a value of the shell
thicknes, h=5 nm, provided by the industry. At this point, it is necessary to clarify that bending
modulus of lipid monolayers is an independent parameter and is not related with the thickness
or the elasticity modulus, as is also the case with red blood shells [71] which are coated with a
phospholipid bilayer. The appropriate parameters in order to describe the mechanics of lipid
monolayers are the bending modulus and the area dilatation modulus, which should be treated
independently. Thus, it can be seen that the Reissner model is also valid for the experimental
curves pertaining to phospholipid shells, but must be written in terms of the above elastic
properties. Then, upon assuming a typical value of the bending modulus k, ~3x107**Nm
while applying Reissner’s formula for the f-d slope that was obtained through AFM, the area
dilatation modulus is y ~0.08 N/m which is a reasonable value. In fact, in the study of Bucher
Santos et al. the estimated value of the Young modulus turns out to be E~15 MPa or y=0.075
N/m, Figure 4 in [30]. In addition, the simulations of the present thesis verify that the linear
response of the experimental curves is a typical Reissner regime, Figure 6-8. Performing
further calculations combined with experimental measurements obtained until higher
deformations are achieved, within the curved upwards regime of the f-d curve, will validate
the above methodology for estimating the elastic proeprties of lipid shells by combining the
bending dominated, i.e.Reissner, with the gas compressibility dominated regime.
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() (b)

Figure 6-11: Fitting in linear and non-linear regimes of the numerical force-deformation
curve for (a) P, =10 and (b) P, =3.
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Chapter 7. Concluding remarks and future directions

7.1 Concluding remarks

The present thesis investigates the static response of microbubbles subject to static
loads. Three major problems are studied:

. The contact problem
) The bifurcation diagrams
o The estimation of the elastic properties

In the first problem the microbubble is compressed by a rigid and flat surface in order to
simulate the case of the atomic force microscope (AFM), while in the second problem the
static buckling of a microbubble is studied, where the shell is subject to a uniform normal
load. In both problems, the normal and tangential force balances are solved, coupled with the
isothermal equation of the gas compression via FEM, assuming axisymmetry and employing
the b-cubic splines as basis function. The numerical models are validated against similar
analytical [46-48] and numerical [59] solutions with excellent agreement, while the results of
the contact problem are also compared against available experimental AFM data [29, 30]. In
addition, a methodology is proposed for the estimation of the shell properties by analyzing the
different regimes in force-deformation (f-d) curves. Hence, the conclusions of the present
thesis are demonstrated initially for the contact problem and the characterization of the shell
and then for the bifurcations diagrams, while at the end of the chapter some ideas are
discussed as means of future work.

7.1.1 The contact problem and characterization of the coating

In order to simulate a microbubble compressed by the cantilever of an AFM two
numerical models are proposed. The first is a simple model, inspired by the analytical work of
Updike & Kalnins [46], where the applied load is concentrated at the end of the contact
between the cantilever and the shell, paragraphs 2.3.1 and 4.1. The last assumption was
validated by the present thesis, where the calculation of the pressure distribution along the
contact line shows that the loading is a point non-zero function at the end of contact. It is
shown that as the shell is compressed the region near the cantilever (pole) is flat and the
solution is characterized by one negative eigenvalue; it arises as a result of the translational
invariance of the problem and is dominated by P1. After the buckling point, the shell buckles
in the pole due to high compressive tensions, forming a dimple. The flat solution is still an
option after the buckling point, but in comparison with the buckling solution it has higher
energy and one more unstable eigenvalue. Thus, buckling is the energetically favorable state.
It is not only the shape and the eigenvalues that distinguish the two solutions, but additionally
their representation in f-d curves. The response of a flat f-d curve is linear, known as Reissner
regime, while the buckling curve is non-linear curved downwards, known as Pogorelov
regime. In other words, the f-d curve is a bifurcation diagram, with the force representing the
integral quantity that changes for different values of deformation. In addition, non-
dimensionalization of the governing equations gives rise in two dimensionless numbers,
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IZb, F3A, which define the relative importance of bending and gas compression to the area
dilatation modulus, respectively. The parametric analysis shows that an increase in the values
of the dimensionless bending modulus |2b shifts the bifurcation point to higher values of force

and deformation, because the definition of Izb is equivalent to the ratio of shell thickness to

radius, especially for polymeric coatings. Thus, as le increases the shell becomes thicker,

therefore buckling is postponed. The second dimensionless number is a nominal measure of
the gas compressibility. As mentioned in the previous chapters the reduction of the shell

volume raises the gas pressure and I3A defines how important the pressure increase is as an
extra stiffness in the shell equilibrium. Shells with a relatively high area dilatation modulus are
characterized by If’A < 1. Therefore the effect of gas compression only manifests itself at high

values of deformation in the buckling solution, where a third non-linear curved upwards
regime is calculated. For these values of deformation the shell is significantly compressed and
the pressure has increased sufficiently so that it contributes as an additional stiffness.

Therefore the required force increases in comparison with a shell that has lower I3A or when

the gas is treated as incompressible. When F3A>1 and buckling takes place, gas

compressibility participates in the equilibrium for lower values of deformation, thus
modifying the «curved downwards» post-buckling response earlier. Assuming an initially pre-
stressed shell with residual compressive elastic tensions or accounting for the surface tension
of the shell-liquid interface, the internal pressure decreases or increases, respectively, resulting
in an equivalent change in the required force.

The second contact formulation, paragraph 2.3.2 and 4.2, is a model that takes into
account the thin liquid film between the cantilever and the shell, due to the hydrophilic nature
of lipid monolayers. In this model, as the cantilever approaches the microbubble the liquid
phase is thinning and the pressure locally increases in comparison with the liquid bulk. The
increase of pressure is known as disjoining pressure and represents the mechanism which
transfers the forces from the cantilever to microbubble. The interaction of the two bodies is
modelled with a sort-ranged potential, characterized by its minimum value (W,) and the height
of the film (3,) that minimizes the potential. Employing the formulation proposed here it is
possible to calculate the force and the resulting deformation (A), when the distance between
the cantilever and the center of mass of the microbubble is known, as will be the case in AFM
measurement. The force is attractive / repulsive when the liquid film is higher or lower than
the characteristic length o, respectively. In any case, the response of the f-d curves is initially
linear (~A) with flat shapes while for relatively small dimensionless bending stiffness,

le ~10*-10"°, the response becomes non-linear (~A%°) and buckling takes place in the area

around the pole. In addition, when the gas compressibility is important, F3A >1, a third regime
is detected in the post buckling regime that is curved upwards (~A%*3). However, for not large
area dilatation moduli, Izb ~107° 107, buckling is bypassed to a gas compression dominated
regime. In addition, W, represents the degree of adhesion between the cantilever and the
microbubble. Thus, the regime withW, / y ~1 describes the strong adhesion state, while when
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W, / y <1 the adhesion is weak. Simulations show that when the adhesion is strong, buckling

is postponed or bypassed, because strong tensile stresses are developed as the shell is strongly
adhered on the cantilever.

Thus, both contact models can recover the transition from Reisssner to Pogorelov and
then to pressure dominated regime or the transition from Reissner to pressure regime, when
buckling is bypassed. However, the intermolecular forces model is more realistic, because it
accounts for the existence of the liquid film and provides valuable information for the
adhesion and the required pull-off force. In addition, calculation of the disjoining pressure
profile along the shell surface confirms that most of the applied pressure is concentrated at the
end of the contact regime, recovering the formulation proposed by the classic contact problem,
where the applied load is a ring-line load at the end of the contact. Moreover, the shear tension
in both problems follows the variations of the applied load. Thus, in the classic contact the
shear tension has a discontinuity at the end of contact, while in the intermolecular forces
model the shear tension is a smooth function over an area rather a point. The latter area is
essentially a transition regime that connects the part of the shell that is in contact (contact
regime) with the outer shell that in small deformations is almost spherical (outer regime).
Updike and Kalnins [46-48] divide the shell into two areas, the contact and the outer, implying
that the transition regime shrinks to a point. Estimation of the transition regime length based
on the simulations performed in the context of the present thesis show that the transition
regime increases as bending stiffness and the characteristic length increase or when the
maximum value of the potential decreases.

It should also be pointed out, that in order to follow both flat and buckling curves of the
classic contact problem a specific contact angle must be selected as the continuation parameter
or alternatively the number of contact elements, which is a constraint, because for an angle
that is not an integer multiple of the contact angle it is not possible to seek for a solution. On
the other hand, when the contact problem is investigated with the adhesive potential, the
continuation parameter is the relative distance between the cantilever and the shell, where a
reasonable small step in distance can provide of the means for a parametric continuation of the
solution as the force increases.

The experimental f-d curves obtained with an AFM for polymeric coatings by Glynos et
al. [29] exhibit the above described transition from the linear-Reissner regime to non-linear
Pogorelov regime. Thus, fitting the analytical expressions developed by Reissner [32, 33] and
Pogorelov [34] is possible to calculate the slope of two regimes. Thus, both Young modulus
and shell thickness can be calculated simultaneously [88, 89] from a single measurement and
without prior knowledge of the thickness, which is usually provided by the manufacturer. In
addition, the extension of the Reissner work by Giannakopoulos et al. [90] can also provide
the above properties. In both ways, the calculated values are in excellent agreement with the
experimental estimates.

On the other hand, Bucher Santos et al. [30] perform AFM measurements for
phospholipid coatings. The f-d curves are linear indicating that buckling is not taking place,
while exhibiting a distinct tendency to curve upwards for large deformations. Employing
simulations with the intermolecular forces model for relatively big values of the dimensionless
bending modulus the response of the above experiments is recovered. In addition, the fem
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curve is initially linear and then is curved upwards. Thus, the Pogorelov regime is bypassed to
a gas compression dominated regime. Combination of numerical results and asymptotic
analysis provides analytical expressions to estimate the elastic properties by applying on the
numerical curves Reissner’s theory combined with an expression that was developed in the
present study that extends Shanahan’s [50] and Lulevich’s et al. [25] theory to account for gas
compressibility. In addition, the length of the transition regime is calculated via asymptotic
analysis as a function of the elasticity and adhesive properties.
Finally, the main conclusions are outlined below:

The intermolecular forces model is a novel tool that recovers the experimental
f-d curve for microbubbles covered with either polymeric or phospholipid
monolayer shells.

The elastic properties of microbubbles covered with thin polymeric shells can
be estimated from AFM [29] measurements by the transition from the flat
(Reissner) to the buckled (Pogorelov) branch.

Buckling for microbubbles covered with lipid monolayer [30] is not detected —
The static response initially follows the linear Reissner solution where bending
stiffness dominates and beyond a certain level of deformation resistance to
compression dominates rigidity and a nearly cubic (A% response pattern is
recovered.

The elastic properties, namely area dilatation and bending modulus, of
phospholipid shells can also be estimated from AFM measurements by the
transition from the bending stiffness (Reissner) regime to a gas compressibility
dominated regime.

The parametric analysis shows that the dimensionless bending modulus
controls the buckling point, but in case of strong adhesion buckling is
postponed to higher values of force and deformation or it is totally bypassed.
Based on the above analysis, it can be concluded that microbubbles covered
with lipid monolayer behave like viscoelastic solids.
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7.1.2 The uniform pressure problem and bifurcation diagrams

The second problem that is studied in the context of the present thesis is the buckling of
coated microbubbles subject to a uniform and normal static load. Bifurcation diagrams are
constructed for both types of materials and their response is investigated separately for
indicative parameters available from the literature [16, 19, 86].

In both polymers and phospholipids, when the dimensionless bending modulus, I?b, IS
relatively small the first instability on the spherical branch is dominated by a symmetric mode.
Decreasing ﬁb, which essentially is equivalent to an increase on the area dilatation modulus, y,

the first instability is dominated by an asymmetric mode. In this case the shell forms one
dimple in order to relax the compressive tensions, which now are higher, because y is higher.

Further decrease of I?b causes a new exchange with symmetric shapes dominating again in the

first instability, because in order to achieve static equilibrium two dimples are required to
relax the compressive tensions. This trend is detected in both materials via parametric study
for K, .

Furthermore, in both polymers and lipids, when the first bifurcation is dominated by an
asymmetric mode, the secondary branch evolves subcritically and after a limit point evolves
towards higher loads than the critical buckling load, where it tends to form a contact line in the
region around the two poles. The second bifurcation is dominated by a symmetric mode which
evolves transcritically. The subcritical branch evolves the same way as the asymmetric one
and is characterized by oblate shapes. As the supercritical branch evolves it is characterized by
prolate shapes. Both subcritical branches have more unstable eigenvalues in comparison with
the sphere and higher energy, before exhibiting a limit point. However, after the limit point
each of them loses one unstable eigenvalue in comparison with branch that emerges right after
the bifurcation point. In fact the primary bifurcating branch, after the limit point, is linearly
stable and additionally has lower energy as it evolves towards pole coalescence. The
supercritical symmetric branch initially inherits the stability of the sphere and it is linear
stable. In the case of polymeric shells, it exhibits a limit point very close to the bifurcation
poin, which leads to a non-monotonic response, characterized by multi-lobed shapes. The
same branch in lipids doesn’t exhibit the limit point, it keeps the stability as explained above
and it is characterized by progressively more prolate shapes.

In addition, for both materials, when the first instability on the spherical solution is
symmetric, the second instability for a higher load is asymmetric and it was not possible to
follow this branch to any direction. Only in the case of polymers, does the symmetric
subcritical branch soon exhibit a new unstable eigenvalue. Disturbing the symmetric solution
with the new eigenvector a new solution branch emerges with asymmetric shapes, which as
the branch evolves tend to form a contact zone. This is conjectured to be the result of a mode
coalescence event as the two bifurcation points coincide. In the parameter range beyond this
coalescence the bifurcation diagram changes. The asymmetric branch evolves over a small
interval of the external overpressure and is conjectured to terminate on the asymmetric branch
in the form of an additional bifurcation point that appears on the symmetric branch and is also
asymmetric in nature. In case of lipids the subcritical symmetric solution doesn’t have any
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additional unstable eigenvalue before the limit point, which could lead to an asymmetric
solution as in polymers.

Furthermore, the above local satiability characteristics near the first bifurcation point are
very important to understand the nature of the buckling, but there is a global stability behavior
determined by minimum total energy. Below the bifurcation point and before the limit point,
the energetically favorable configuration is a compressed sphere, but after the limit point the
solutions with the lower energy are buckled which tend to coalesce. The above picture is
corroborated when they are combined with numerical results from the dynamic buckling [19],
where for loads higher than the buckling point buckled shapes characterize the solution, while
below the bifurcation point spherical shapes are captured.

Moreover, as was repeatedly mentioned, microbubbles covered with lipids have lower
area dilatation modulus and as they are compressed the increase of the internal pressure is
comparable with the elasticity, which in the contact problem introduced a third regime in f-d
curve. Here, the significant contribution of gas compression to the shell equilibrium is
depicted with a rapid change in the slope of the bifurcation diagram after the limit point. In
polymers, where the internal gas doesn’t contribute in the equilibrium so much, the slope after
the limit point changes very slowly. The last finding agrees well with parametric analysis for
lipids, where as the area dilatation increases the importance of gas compression is less, hence
the slope after the limit point is less. In addition, surface tension prevents buckling,
whiletranslating the buckling point to higher values of load, but it doesn’t change the order of
appearance of the modes. On the other hand, changing the constitutive law of the elastic
tensions can change the mode of the first instability. Considering a different constitutive law,
strain softening or strain hardening, the effective area dilatation modulus increases or
decreases in compression, respectively. Thus, the effective dimensionless bending modulus
increases or decreases and the order of appearance of the first mode changes accordingly as
described for the dimensionless bending modulus. To sum up:

. For relatively big values of bending modulus the first bifurcation is dominated

by symmetric shapes, for intermediated values by asymmetric ones and for

relatively small values of IZb symmetric shapes characterize again the first

bifurcation.

. The asymmetric branches evolve only subcritically, while the symmetric ones
transcritically.

. In polymers, when the first bifurcation is symmetric, an asymmetric branch
emerges from the symmetric solution.

. As the subcritical branch of the primary bifurcation evolves towards lower

external loads, it exhibits a limit point and becomes linearly stable with lower
energy than the spherical branch and a contact area as the two poles merge

. The contact zone in polymers is obtained in very small values of the volume,
while in lipids in higher.
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7.2

Future directions

In the future the following aspects could be studied in order to improve the above results
or starting from them to explore new problems:
Contact problem:

Further calculations on the estimation of phospholipid elastic properties.
Asymptotic analysis on the transition regime and extraction appropriate
boundary conditions for trapped microbubbles.

Experiments for phospholipid microbubbles to verify the curved upwards
regime by focusing on higher deformations.

Simulation of a trapped microbubble with the disjoining pressure.

Considering the contact as a non-symmetric problem with respect to the
equator, which will probably refine deviations between numerical and
experimental results.

Capturing of the third curved upwards regime in experimental f-d curves of
polymeric coatings via FEM.

Further calculations and simulations for a free microbubble, which could
describe the behavior of nano-bubbles.

Modelling of 3d deformations in order to investigate the limits of the
axisymmetric hypothesis. However, it should be noted that in the AFM
experiments the deformations are relatively small, especially for polymeric
coatings, thus the axisymmetric analysis is sufficiently acceptable.

Bifurcation diagrams:

Further calculations in order to better understand the nature of the supercritical
symmetric branch as well as the secondary bifurcations it may entail.

Verify the effect of mode coalescence in the bifurcation diagram for specific
parameter values.

Formulate and simulate the contact zone in relatively small volumes.
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Appendix A: Derivation of unit vectors and curvatures
Spherical representation (r, 6, ¢) [66]

The covariant tangent vectors along the s and ¢ direction are defined as:

. OR O(re 6
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Therefore, the normal unit vector is:
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The contravariant vectors are given by the next formula:
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f ()—an wherei, j=1,2(orsand ¢) and i# j

The principal curvatures ks and k,, are:
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The infinitesimal arc length along the generative curve is: ds=/r’ +r’6’ and it is related
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with the lagrangian variable & via the chain rule: s, = e = r+r6;.
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Cylindrical representation (o, z, @) [66]

The covariant tangent vectors along the s and ¢ direction (spherical) are defined as:

. OR 0(o€ +126,) oo . 1. o
t = = :—e +—eZZGSea+ZSeZ

P 0s os °  0s
. =@=8(0'80+Zez)=0é
(4 a¢ 8(0 (4
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The contravariant vectors are given by the next formula:

—
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—
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t :Q—’m, wherei, j=1,2(orsand ¢) and i# j
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Which by substituting of the covariant vectors, become:

The infinitesimal arc length along the generative curve is: ds = /o’ +2z and it is related with

. : : : ds
the lagrangian variable & via the chain rule: s, = E = c7§ + z§ :

The above expressions for both spherical and cylindrical coordinates could also be obtained by
the first and second fundamental forms of the surface.
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Appendix B: Minimization of the energy due to intermolecular forces
for axisymmetric body

The energy due to intermolecular forces is: W, =<ﬁ>W,FdA, therefore, its variation for an
A

axisymmetric shell in cylindrical (o, z, ¢) coordinates is:

S(dA) o

(o7 oY

oW = FpVW,, - o7 dA+fpw,
A A

jznvw,F ool +22 5T d§+j27zw,F

The first term assumes the form:
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Employing the general rule of variation [93]

SF(x,y,X, y’)_ziéx %:5y ' SyF’ ( )'=:—§, where ¢ is an independent

parameter, that does not vary, the varlation of the metric becomes:
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1
59 =27, dé=
0

1
= [27| Wi \[o? +2 5a+w,Fa 505 +W,F0'
0

< W z,W
= [ 22| W, Jo? + 2260 - d (&}50 d [u}& dé+
0

do| Jol+22 dg| ol +17;

1
2zoo W 272'(72 W”:
1/O'§+Z 1/O'§+Z

=0 for a closed body
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1
89 =[2aW,\Jo? +2} sodé+
0

+IZ” _ 0;% : d:ij W, (0f +00,)(o? ”5)_2‘7525(‘74055 +2,2) solde (B-3)
0 | \/G§+Z§ 4 (554_25)
i 2, 52\ _
+,1[27T _ 0225 : d(\jNIF W, (0.2 +02,)( +ZZ:) : j::(%%: +2,2) 52 |de
0 O + Z§ § ((j§ + Zg)

The integrals in (B-3) represent the components of a vector in ¢ and z direction, which
1

1 1
has the following form J‘(Ag So+A 52)dé :J'(AU 6, +AE,) (008, +526,)dé :J'A-5Fd§.
0 0

0
Alternatively, it is possible to express A in the normal (n) and tangential (s) directions
A= Afi+Af, by taking the inner products A-fi, A-t,, and add the result to eq B-1 containing
the variation of the interaction potential Wi.
Consequently, the above integral formally reads as:

59=T(A1 i+ Af)-ords (B-4)

0

and in the following we proceed to obtain A, and Aq:
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2 2
A, =2aW Jo:+Z;0,+

2 2 2
oo. dW (0' + o0 )(0' +1 )—0'0' 0.0
s2m|| - £ = ey, A & )\Oe TL; é( O
2 2
| Joi+z '3 (a§+z§
I (az +o012 )(02+22)—0'Z (0'0' +2.7 )
5 oz, dW, 2 & )\Os T L; \OOg T Ly
|| q -W "
L o-§+Z§ é: (O‘§+Z
o _0-(05625+Z;Z§)d(\:j/\/IF N
ol+1; g

2 2 2
o.+oo, ||\oc:+1.)-00.|0.0
2 2 ( ¢ -’55)( ¢ 5) 5( § g
+27|Wie\Joi +2;0,-W,o, T
(o2+2)

2 2
0.2, +01 a+z)—az 0.0, +12.2
9 WlFZs( b 55)( T4 é( §9g T oty

3/2
2 2
(O‘éz +Z§)

2, 2\
:_zﬂad\;\/up 021 2% +22W, o.(0f+2) —o.(o

]

2 2 2
-z, (aézg +0'Zéé)(65 + z§)+az§ (GSEG&; +2,2,,

2
2 2
(O‘§+Z§)

2 2 2 2
£ +UU¢§)(U§ + Z§)+U‘7§ (‘76055 + Zfzéé‘>
-0
(Gz—i-Zz) o ((72+ZZ)—O' (0'2+0'c7 )—Z (0' Z.+02 )+0'(c70'
L) 0:\0 T L, :\0¢ g )T L\ Ol & O .
2
2 2
(a§+z§)
(B-5)

A, = —ZECI\(/:IV—S'F«/JE +12i0

In the same way, the projection in normal direction is:
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A =
Zﬂlw”zm(zs) 0o, dW—'F(—ZS)—W,F (0§+00§¢)(G:2+22§)_2‘70§( O +Zéz§§)( Zs)]

2 2 d 3/2
oi+z; do (a§+z§)

£
oz, dw (‘7525+GZ§§)(0§+Z§)_025 (05%5”5255)
wor| -2 W oy .

\/@ d& 7 (o-§2+z§)3/2
dw,. o(0.2,-2,0,)
dé \/0' +2;

2 2 2
( + 00, )(0 +2 )—0'0' 0.0,..+12.17
+27z[ W, 2,\Jo? + 2 + W, 2, o AN S 5( Pt éf)

312
2 2
(o2+122)

2
2 AW (O-§Z§+O-Z§§)(O-§+Z§) sz( §O-§+Z§Z§§)
- IFOs 302
(o+22)
=0

—_——

dWe O-( Ogl,—1 Jﬁ)df

£
dé \/0'5 +z2  ds

2 2, 52\
+2”3_§{W,Fzgm+w.ﬂg( o ra)lot ) i) }
(o2+122)

=2z

=2

2 2
dé (O'fzéJrO'Zfé)(o'é ”5)_025 0.0 ész)
IF d & 2 2 3/2
S ol+1 )

zzﬂwlpi_fgm_ [ (7{ ) (/ )}

312
G(G§+Z§)

YA 0..2.—0.L z o1, —0,Z
¢ &~e ETEE | _ s ss s&ss
_27zW|Fc71/0§+Z T =272W, — 7 |0 =
o-\/o +2¢  (of+122) o\ol +1; (o2 +22)
%/—/ \_ﬁ_—/
K, K,

A, =2mW,.o\lof +2; 2K, (B-6)

Thus, substituting (B-2), (B-5) and (B-6) into (B-1):

W, = ﬁ{aw_mf +‘9W—'Fﬁj-5r dA+ 9‘35[— We ¢ w2k ﬁ}-&? dA=
A

Y\ 0 on ds
SW,. = #(% + 2ka,Fj fi-SF dA (B-7)
A
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