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Abstract

Non-Linear Homogenization Theories

with Applications to TRIP Steels

Ioanna Papadioti

Supervisor: Professor Nikolaos Aravas

This work is concerned with the development of a general model for N−phase isotropic, in-

compressible, rate-independent elasto-plastic materials at finite strains. The model is based

on the nonlinear homogenization variational (or modified secant) method which makes use

of a linear comparison composite (LCC) material to estimate the effective flow stress of the

nonlinear composite material. The homogenization approach leads to an optimization prob-

lem which needs to be solved numerically for the general case of a N−phase composite. In

the special case of a two-phase composite an analytical result is obtained for the effective

flow stress of the elasto-plastic composite material. Next, the model is validated by periodic

three-dimensional unit cell calculations comprising a large number of spherical inclusions (of

various sizes and of two different types) distributed randomly in a matrix phase. We find

that the use of the lower Hashin-Shtrikman bound for the LCC gives the best predictions

by comparison with the unit cell calculations for both the macroscopic stress-strain response

as well as for the average strains in each of the phases. The formulation is subsequently

extended to include hardening of the different phases.
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Furthermore, a method for the numerical integration of the resulting constitutive equations in

the context of a displacement driven finite element formulation is developed. The constitutive

model is, then, implemented in a general-purpose finite element program. Interestingly, the

model is found to be in excellent agreement even in the case where each of the phases follows

a rather different hardening response.

The homogenization theory is also used to develop a constitutive model for the mechanical

behavior of multiphase TRIP steels. The calibration of the model is based on uniaxial ten-

sion tests on TRIP steels. The problems of plastic flow localization and necking in tension

are analyzed in detail. The constitutive model is used also for the calculation of “forming

limit diagrams” for sheets made of TRIP steels; it is found that the TRIP effect increases

the necking localization strains.

Keywords: Homogenization; Elasto-plasticity; Composite materials; Finite strains;

TRIP steels
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Chapter 1

Introduction

The main objective of homogenization is to predict the macroscopic behavior of composite

materials in terms of the behavior of their constituents and prescribed statistical information

about their microstructure. Homogenization methods are powerful tools for the simulation

of the mechanical behavior composites, at a reasonable computational cost. Linking the

mechanical response of composites to the underlying microstructure is relevant in a variety

of technological applications. One example is the design and the optimization of the forming

operations of multiphase metallic alloys.

The present thesis is concerned with the analytical and numerical estimation of the effective

as well as the phase average response of N−phase incompressible isotropic elasto-plastic

metallic composites. Special attention is given to particulate microstructures, i.e., composite

materials which can be considered to comprise a distinct matrix phase and an isotropic

distribution of spherical particles [76] (or in a more general setting an isotropic distribution

of phases [75]). In the present work, the particles are considered to be stiffer than the

matrix phase, which is the case in most metallic materials of interest, such as TRIP steels,

dual phase steels, aluminum alloys and others. Such materials, usually contain second-phase

particles (e.g., intermetallics, carbon particles) or just second and third phase variants (e.g.,

retained austenite, bainite, martensitic phases). In addition, these phases/particles tend to

reinforce the yield strength of the composite while they usually have different strength and

hardening behavior than the host matrix phase.

Historically, emphasis was originally placed on the determination of the elastic constants of

a polycrystal from those of a single crystal with first theoretical considerations by Voigt and

Reuss. Later, the focus was on the estimation of the effective or overall behavior of linear

elastic composite materials. The homogenization methods which were developed include

the variational principles of Hashin and Shtrikman [20], which are particularly well suited to

estimate the effective behavior of composites with particulate randommicrostructures. There

is also the self-consistent approximation, developed in several different physical contexts by

various authors (e.g., Hershey [22], Kröner [33], Willis [75]), which is known to be fairly

accurate for polycrystals and other materials with granular microstructures. For nonlinear

(e.g., plastic, viscoplastic, etc.) composites, rigorous methods have not been available until

fairly recently, even though efforts along these lines have been going on for some time,
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particularly in the context of ductile polycrystals (e.g., Hill [25], Hutchinson [27]). Making

use of a nonlinear extension of the Hashin-Shtrikman (HS) variational principles, due to

Willis [77], the first bounds of the HS type for nonlinear composites were derived by Talbot

and Willis [70].

Ponte Castañeda [48] proposed a more general variational approach making use of optimally

chosen “linear comparison composites”. This approach is not only capable of delivering

bounds of the HS type for nonlinear composites, but, in addition, can be used to gener-

ate bounds and estimates of other types, such as self-consistent estimates and three-point

bounds (Ponte Castañeda [49]). A different, but equivalent method for the special class of

power-law materials has been proposed by Suquet [66]. Talbot and Willis [71] provided a

simultaneous generalization of the variational principles of Talbot and Willis [70] and the

linear comparison composite method of Ponte Castañeda [48], which has the potential to

give improved estimates for certain special, non-standard situations.

More recently, Ponte Castañeda ([50],[53]) proposed a second approach that makes use of

an “anisotropic composite linear comparison material”. While this method does not yield

bounds, it appears to give more accurate results.

In the literature of nonlinear homogenization there exists a large number of studies for two-

phase composite materials. The reader is referred to Ponte Castañeda and Suquet [52], Ponte

Castañeda [53], Idiart et al. [30], and Idiart [29] for a review of the nonlinear homogenization

schemes such as the ones used in the present work and relevant estimates. Nonetheless,

very few studies exist in the context of three- or N−phase rate independent elasto-plastic

composites.

In view of this, the present work uses the nonlinear variational homogenization method

(Ponte Castañeda [48]) or equivalently the modified secant method (Suquet [67]), which

makes use of a linear comparison composite (LCC) material, to estimate the effective re-

sponse of a N−phase nonlinear composite material. Even though, this method exists for

several years most of the studies in the context of composite materials have been focused

on two-phase composites where the optimization process required by the method can be

done analytically (see for instance [13]). Nevertheless, as the number of phases increases to

three or more the optimization can only be done numerically. Perhaps, that is the reason

that in his original work, Ponte Castañeda [49] proposed general expressions (and bounds)

for N−phase composites, but its numerical/analytical resolution remained untractable until

today due to the complex optimization procedures required by the nonlinear homogenization

method.

It should be pointed out at this point that these homogenization theories treat separately

the elastic (which in the present case is trivial) and the plastic homogenization problem.

That of course has certain impact if cyclic loading is considered which is beyond the scope of

the present work and is not considered here. Nevertheless, recently, Lahellec and Suquet [34]

proposed an incremental variational formulation for materials with a hereditary behavior

described by two potentials: a free energy and a dissipation function. This method has

been introduced mainly to deal with the coupled elasto-plastic response of composites in an

attempt to resolve the cyclic response of these materials (see also recent work by Brassart
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1.1. Scope of the present work 21

et al. [8]). Note that these more advanced methods use the aforementioned or variants of

the LCC estimates. In this regard, the present study, albeit not using this coupled scheme,

reveals the nature of equations required to deal with a general N−phase composite material

and could be potentially useful in the future for such more complete incremental schemes,

which are based upon those simpler LCC homogenization theories.

1.1 Scope of the present work

The scope of the present work is to provide a semi-analytical model for N−phase isotropic,

incompressible rate-independent elasto-plastic materials. Simple analytical expressions are

given for the effective yield stress of a two-phase composite (see also [13]) while a simple semi-

analytical expression (requiring the solution of a constrained optimization problem for N−1

scalar quantities) is given for the N−phase composite. Additional analytical expressions are

also provided for the phase concentration tensors and average strains in each phase in terms

of the aforementioned optimized scalar quantities. In the context of two- and three-phase

materials the model is assessed by appropriate three-dimensional multi-particle two- and

three-phase periodic unit cell calculations considering both hardening and non-hardening

phases. The agreement is found to be good not only for the effective yield stress but also for

the phase average strains thus allowing for the extension of this model to include arbitrary

isotropic hardening of the phases.

A methodology for the numerical integration of the resulting elastic-plastic equations is

developed and the model is implemented into the ABAQUS general purpose finite element

code [23]. This code provides a general interface so that a particular constitutive model can

be introduced via a “user subroutine” named UMAT (User MATerial). The predictions of

the model agree well with the results of detailed unit cell finite element calculations of a

composite with hardening phases.

Then, the homogenization theory is used to develop a constitutive model for the mechanical

behavior of TRIP (TRansformation Induced Plasticity) steels. TRIP steels are basically

composite materials with evolving volume fractions of the constituent phases. Specifically,

we consider four-phase TRIP steels that consist of a ferritic matrix with dispersed bainite

and austenite, which transforms gradually into martensite as the material deforms plastically.

We consider the total strain to be the sum of elastic, plastic and transformation parts. The

elastic behavior of TRIP steels is described with standard isotropic linear hypoelasticity

of homogeneous solids, since the elastic properties of all constituent phases are basically

the same. The homogenization techniques for non-linear composites are used to determine

the effective properties and overall behavior of TRIP steels. The transformation part is

proportional to the rate of change of the volume fraction of martensite due to martensitic

transformation, which is described by the modified Olson-Cohen transformation kinetics

model proposed by Stringfellow et al. [64].

A method for the numerical integration of the resulting constitutive equations in the context

of a displacement driven finite element formulation is developed and the model is imple-

mented into the ABAQUS. The calibration of the model is based on uniaxial tension tests
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on TRIP steels. We also develop a method for the numerical integration of the constitu-

tive model under plane stress conditions. In these problems the out-of-plane component of

the deformation gradient is not defined kinematically and the general method needs to be

modified.

The problems of plastic flow localization and necking in tension are analyzed in detail. The

constitutive model is used also for the calculation of “forming limit diagrams” for sheets made

of TRIP steels. The predictions of the analysis are compared to experimental data from the

same TRIP steel which was used for the calibration. Calculations are also conducted for a

non-transforming steel for comparison purposes.

Standard notation is used throughout. Boldface symbols denote tensors the orders of which

are indicated by the context. All tensor components are written with respect to a fixed

Cartesian coordinate system with base vectors ei (i = 1, 2, 3), and the summation convention

is used for repeated Latin indices, unless otherwise indicated. The prefice det indicates the

determinant, a superscript T the transpose, a superposed dot the material time derivative,

and the subscripts s and a the symmetric and anti-symmetric parts of a second order tensor.

Let a, b be vectors, A, B second-order tensors, and C a fourth-order tensor; the following

products are used in the text (ab)ij = ai bj, A : B = Aij Bij, (A ·B)ij = Aik Bkj, (AB)ijkl =

Aij Bkl, (C : A)ij = Cijkl Akl, and (C : D)ijkl = Cijpq Dpqkl. The inverse C−1 of a fourth-

order tensor C that has the “minor” symmetries Cijkl = Cjikl = Cijlk is defined so that

C : C−1 = C−1 : C = I, where I is the symmetric fourth-order identity tensor with

Cartesian components Iijkl = (δik δjl + δil δjk)/2, δij being the Kronecker delta.

1.2 Thesis overview

The Thesis proceeds with Chapter 2, where we derive a semi-analytical model for N−phase

isotropic, incompressible rate-independent elasto-plastic materials. Specifically, we use the

methodology developed by Ponte Castañeda and co-workers ([48],[67]) which makes use of a

linear comparison composite (LCC) material, to estimate the effective flow stress of the non-

linear composite material. Additional semi-analytical expressions are also provided for the

phase concentration tensors and average strains in each phase in terms of the aforementioned

optimized scalar quantities. In the following, the homogenization techniques are applied to

two- and three-phase elastoplastic composites, as well as, four-phase TRIP steels.

In Chapter 3, we examine the validity of the homogenization model using periodic three-

dimensional unit cell calculations comprising a large number of spherical inclusions (of vari-

ous sizes and of two different types) distributed randomly in a matrix phase. We find that in

the context of two- and three-phase materials the use of the lower Hashin-Shtrikman bound

for the LCC gives the best predictions by comparison with the unit cell calculations for both

the macroscopic stress-strain response as well as for the average strains in each of the phases.

In the special case of a two-phase composite an analytical result is obtained for the effective

flow stress of the elasto-plastic composite material. Additional analytical expressions are

also provided for the phase concentration tensors and average strains in each phase in terms

of the aforementioned optimized scalar quantities. The agreement is found to be good not
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only for the effective yield stress but also for the phase average strains thus allowing for the

extension of this model to include arbitrary isotropic hardening of the phases.

In Chapter 4, we present an approximate method for the prediction of the incremental

elastoplastic behavior of macroscopically isotropic composites made of N isotropic, rate-

independent, elastic-plastic hardening phases. The elastic and plastic response of the

homogenized composite are treated independently, and combined later to obtain the full

elastic-plastic response. The elastic properties of all constituent phases are basically the

same. Thus, in order to describe the elastic behavior of the composite material we use

standard isotropic linear hypoelasticity of homogeneous solids. The plastic behavior of the

composite material is determined by using the homogenization technique described in Chap-

ter 2. The constitutive equations are developed for the case of finite geometry changes.

The constitutive model is once again validated using periodic three-dimensional unit cell

calculations.

In Chapter 5, we present a constitutive model for four-phase TRIP steels. The homogeniza-

tion techniques for non-linear composites, described in Chapter 2, are used to determine the

effective properties and overall behavior of TRIP steels. We develop a methodology for the

numerical integration of the resulting elastoplastic constitutive equations and the model is

implemented into the ABAQUS. Experimental data of uniaxial tension tests in TRIP steels

are used for the calibration of the model. Then, we use the constitutive model to study in

detail the problems of plastic flow localization and necking in tension. We also use the model

to calculate “forming limit diagrams” for sheets made of TRIP steels. Calculations are also

conducted for a non-transforming steel for comparison purposes.

Finally, Chapter 6 provides a brief summary of the contribution of this work together with

some prospects for future work.
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Chapter 2

Homogenization Theory

2.1 Introduction

The goal of this chapter is to derive a semi-analytical model for N−phase isotropic, in-

compressible rate-independent elasto-plastic materials. Specifically, we use the methodology

developed by Ponte Castañeda and co-workers ([48],[67]) which makes use of a linear com-

parison composite (LCC) material, to estimate the effective flow stress of the nonlinear

composite material. Additional semi-analytical expressions are also provided for the phase

concentration tensors and average strains in each phase in terms of the aforementioned op-

timized scalar quantities.

Even though, this method exists for several years most of the studies in the context of com-

posite materials have been focused on two-phase composites where the optimization process

required by the method can be done analytically (see for instance [13]). Nevertheless, as the

number of phases increases to three or more the optimization can only be done numerically.

2.2 Power-law creep and perfect plasticity

We consider an incompressible creeping solid characterized by a power-law stress potential

U of the form

U (σe) =
σ0 ε̇0
n+ 1

(
σe

σ0

)n+1

, (2.1)

where σ0 is a reference stress, ε̇0 a reference strain rate, n the creep exponent (1 ≤ n ≤ ∞),

σe =
√

3
2
s : s the von Mises equivalent stress, σ the stress tensor, p = σkk/3 the hydrostatic

stress, and s = σ − p δ the stress deviator, δ being the second-order identity tensor. The

corresponding deformation rate D is defined as

D =
∂U

∂σ
= ˙̄εN, ˙̄ε = ε̇0

(
σe

σ0

)n

, N =
∂σe

∂σ
=

3

2σe

s , (2.2)

where N is a second order tensor of constant magnitude (N : N = 3
2
) that defines the

direction of D and ˙̄ε =
√

2
3
D : D is the equivalent plastic strain rate that defines the
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magnitude of D. Note that Dkk = 0.

The special case in which the exponent takes the value of unity (n = 1) corresponds to a

linearly viscous solid:

UL(σe) =
σ2
e

6µ
, D =

∂UL

∂σ
=

s

2µ
, (2.3)

where µ = σ0/(3 ε̇0) is the viscosity.

The other limiting case n → ∞ corresponds to a perfectly plastic solid that obeys the von

Mises yield condition with flow stress σ0. In this case the stress function (2.1) becomes1

U∞(σe) =

{
0 when σe ≤ σ0 ,

∞ when σe > σ0 .
(2.4)

The threshold stress σ0 in (2.4) is the flow stress of the material, and the flow rule is written

in the form

D = ˙̄εN, N =
3

2σe

s , (with ˙̄ε = 0 if σe < σ0), (2.5)

where the equivalent plastic strain rate ˙̄ε is not defined locally by the constitutive equations

and becomes one of the primary unknowns in the rate boundary value problem.

2.3 Homogenization method for non-linear viscous solids

We consider a composite material made of N isotropic, incompressible viscoplastic phases.

The phases are distributed randomly and are characterized by viscoplastic stress potentials

U (r) of the form (2.1) with constants
(
σ
(r)
0 , ε̇0, n

(r)
)
and µ(r) in the linear case, i.e.,

U (r)
(
σ(r)
e

)
=

σ
(r)
0 ε̇0

n(r) + 1

(
σ
(r)
e

σ
(r)
0

)n(r)+1

, U
(r)
L (σ(r)

e ) =
σ
(r)
e

2

6µ(r)
, (2.6)

where σ
(r)
e is the von Mises equivalent stress in phase r. The volume fraction of each phase

is c(r)
(

N∑
r=1

c(r) = 1

)
.

The constitutive equation of the isotropic nonlinear composite is written in terms of the

effective viscoplastic stress potential Ũ(σ), so that

D =
∂Ũ

∂σ
, (2.7)

where σ andD are respectively the macroscopic stress and deformation rate in the composite.

An estimate for Ũ is obtained by using the variational methodology of Ponte Castañeda and

co-workers ([48], [51], [52]). This methodology has also been proposed independently for

1 Here we take into account that lim
n→∞

An+1

n+1 =

{
0 if A ≤ 1,

∞ if A > 1.
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power-law materials by [40] and interpreted as a secant homogenization method by [67].

The final form of the estimate reads

Ũ(σe) = sup
µ(r)≥0

[
UL

(
σe, µ̃(µ

(r))
)
−

N∑
r=1

c(r) v(r)
(
σ(r)
e , µ(r)

)]
, UL =

σ2
e

6 µ̃(µ(r))
, (2.8)

where σe is the macroscopic von Mises equivalent stress,

v(r)
(
σ(r)
e , µ(r)

)
= sup

σ
(r)
e ≥0

[
U

(r)
L

(
σ(r)
e , µ(r)

)
− U (r)

(
σ(r)
e

)]
, (2.9)

U
(r)
L =

σ
(r)
e

2

6µ(r)
, U (r) =

σ
(r)
0 ε̇0

n(r) + 1

(
σ
(r)
e

σ
(r)
0

)n(r)+1

. (2.10)

The effective stress potential Ũ(σ) is defined in (2.8) in terms of the quadratic effective stress

potential ŨL of a “linear comparison composite” (LCC) evaluated at the macroscopic stress

σe and the “corrector functions” v(r), which are defined in (2.9) as the optimal difference

between the quadratic potentials U
(r)
L and the actual potentials of the non-linear materials

U (r). The stress tensors σ
(r)
e in (2.9) are obtained by the “sup” operation in that equation

and hence v(r) are only functions of the individual viscosities of the linearized phases, µ(r).

It is worth noting at this point that the estimate (2.8) of Ũ may have the character of a

rigorous bound provided that the corresponding estimate ŨL has also the same character

of a bound as discussed in the following. Nonetheless the scope of the present work is to

insist mainly on a good estimate by comparison with numerical unit cell calculations and

not necessarily on rigorous bounds.

In this view, the quadratic potential ŨL of the LCC in (2.8b) uses the effective viscosity

µ̃ of the LCC that depends on the individual viscosities µ(r) and the corresponding volume

fractions c(r). One way to estimate µ̃ is to use the well-known Hashin-Shtrikman relationship

for particulate composites (e.g., see Willis [76])

µ̃
(
µ(r)
)
=

(
N∑
s=1

c(s) µ(s)

3µ0 + 2µ(s)

)(
N∑
r=1

c(r)

3µ0 + 2µ(r)

)−1

, (2.11)

where µ0 is a “reference viscosity” to be chosen appropriately. An upper bound for µ̃ is

produced by (2.11) when µ0 is chosen to be the maximum of all µ(r) and a lower bound is

produced when µ0 is the minimum of all µ(r) (Willis [76]). The “reference viscosity” can be

chosen in various ways:

i) Hashin-Shtrikman: µ0 = µ(r)

ii) Arithmetic average: µ0 =
N∑
r=1

c(r) µ(r)

iii) Harmonic average: 1
µ0

=
N∑
r=1

c(r)

µ(r)
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iv) Self-consistent scheme: µ0 =

N∑
s=1

c(s) µ(s)

3µ0+2µ(s)

N∑
r=1

c(r)

3µ0+2µ(r)

An important observation made by several authors is that the Hashin-Shtrikman bounds are

accurate estimates for composites with particulate microstructures, at least for two-phase

systems at moderate volume fraction (Bonnenfant et al. [7]); in particular, the upper bound

is a good estimate when the stiffest material is the matrix phase and contains inclusions of

the most compliant material, whereas the lower bound is a good estimate for the inverse

situation in which the most compliant material is the matrix phase containing inclusions of

the stiffest material.

When no phase plays clearly the role of a matrix, the effective properties of the composite

may be estimated by the “self-consistent” method of Hill [25]. In this case, the relevant

microstructure is granular in character, being composed of ellipsoidal particles of the different

phases with varying size so as to fill space. Equation (2.11) provides Hills self-consistent

estimate, if µ0 is identified with the effective modulus µ̃; in this case, (2.11) becomes a

polynomial equation of order 2N for µ̃ (Willis [76]).

2.3.1 Perfectly plastic phases

We consider the case of perfectly plastic phases (n(r) → ∞). The optimization in (2.8) and

(2.9) as n(r) → ∞ is carried out in three steps. In the first step, we consider the optimiza-

tion over σ
(r)
e in (2.9). All creep exponents are set equal in the second step, i.e., we set

n(1) = n(2) = · · · = n(N) ≡ n. In the final third step we consider the limit n → ∞. Details

of the calculations are given in the following.

Step 1: Calculation of σ
(r)
e in (2.9)

The “inner” optimization in (2.9) is carried out by setting equal to zero the derivatives

∂

∂σ
(r)
e

(
U

(r)
L − U (r)

)
= 0 ⇒

(
σ
(r)
e

3µ(r)
− ∂U (r)

∂σ
(r)
e

)
= 0

⇒

 σ
(r)
e

3µ(r)
− ε̇0

(
σ
(r)
e

σ
(r)
0

)n(r)
 = 0 (2.12)

which defines the optimal values of σ
(r)
e as

σ(r)
e =


(
σ
(r)
0

)n(r)

3µ(r) ε̇0


1

n(r)−1

≡ σ̂(r)
e . (2.13)

Institutional Repository - Library & Information Centre - University of Thessaly
09/06/2024 10:09:40 EEST - 3.137.213.185



2.3. Homogenization method for non-linear viscous solids 29

When the optimal values σ̂
(r)
e are substituted into (2.8), the expression for the estimate of

the effective stress potential becomes

Ũ(σe) = sup
µ(r)≥0


σ2
e

6 µ̃(µ(r))
− 1

2

N∑
r=1

n(r) − 1

n(r) + 1


(
σ
(r)
0

)n(r)

ε̇0


2

n(r)−1

c(r)

(3µ(r))
n(r)+1

n(r)−1

 , (2.14)

where µ̃(µ(r)) is defined in (2.11). Substitution of the expression (2.11) for µ̃ into (2.14) leads

to

Ũ(σe) = sup
y(r)≥0
y(1)=1

sup
µ(1)>0

[
F
(
y(r)
) σ2

e

6µ(1)
− I

(
µ(1), y(r)

)]
, (2.15)

where

F
(
y(r)
)
=

µ(1)

µ̃
=

N∑
r=1

c(r) y(r)

3 y(r)

y0
+2

N∑
s=1

c(s)

3 y(s)

y0
+2

≡
T1

(
y(i)
)

T2 (y(i))
, (2.16)

I
(
µ(1), y(r)

)
=

1

2

N∑
r=1

c(r)
n(r) − 1

n(r) + 1


(
σ
(r)
0

)n(r)

ε̇0


2

n(r)−1 (
y(r)

3µ(1)

)n(r)+1

n(r)−1

, (2.17)

y(r) =
µ(1)

µ(r)
(with y(1) = 1), and y0 =

µ(1)

µ0

. (2.18)

The value of the optimization parameter y0 depends on the choice of the “reference viscosity”:

i) Hashin-Shtrikman: µ0 = µ(1)

y0 = 1 ⇒ ∂y0
∂y(r)

= 0, (2.19)

ii) Arithmetic average: µ0 =
N∑
r=1

c(r) µ(r)

1

y0
=

µ0

µ(1)
=

N∑
r=1

c(r)
µ(r)

µ(1)
=

N∑
r=1

c(r)

y(r)
⇒ − 1

y20

∂y0
∂y(i)

= − c(i)

y(i)
2 ⇒ ∂y0

∂y(i)
= c(i)

(
y0
y(i)

)2

,

(2.20)

iii) Harmonic average: 1
µ0

=
N∑
r=1

c(r)

µ(r)

y0 =
µ(1)

µ0

=
N∑
r=1

c(r)
µ(1)

µ(r)
=

N∑
r=1

c(r) y(r) ⇒ ∂y0
∂y(i)

= y(i), (2.21)
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30 Chapter 2. Homogenization Theory

iv) Self-consistent scheme: µ0 =

N∑
s=1

c(s) µ(s)

3µ0+2µ(s)

N∑
r=1

c(r)

3µ0+2µ(r)

1

µ0

=

N∑
r=1

c(r)

3µ0+2µ(r)

N∑
s=1

c(s) µ(s)

3µ0+2µ(s)

⇒ µ(1)

µ0

=

N∑
r=1

c(r)

3
µ0

µ(1)
+2µ(r)

µ(1)

N∑
s=1

c(s) µ(s)

µ(1)

3
µ0

µ(1) + 2µ(s)

µ(1)

⇒ y0 =

N∑
r=1

c(r)
3
y0

+ 2

y(r)

N∑
s=1

c(s)

y(s)

3
y0

+ 2

y(s)

.

(2.22)

In order to define the optimal values µ(1) = µ̂(1)
(
c(r), σ

(r)
0 , n(r), σe

)
and y(r) = ŷ(r)

(
c(r), σ

(r)
0 , n(r), σe

)
we consider the optimization over µ(1) and y(r) in (2.15).

The optimal value of µ(1) in (2.15) is determined by calculating the partial derivative of

Ũ(σe) with respect to µ(1) and setting it equal to zero:

∂Ũ

∂µ(1)
= −1

6

[
F

(
σe

µ(1)

)2

+ 6
∂I

∂µ(1)

]
= 0, (2.23)

where

∂I

∂µ(1)
= −3

2

N∑
r=1

c(r)

σ
(r)
0

n(r)

ε̇0

 2

n(r)−1

y(r)
n(r)+1

n(r)−1

(3µ(1))
2n(r)

n(r)−1

, (2.24)

so that (2.23) becomes

F
(
y(r)
)
σ2
e −

N∑
r=1

c(r)

 σ
(r)
0

n(r)

3µ(1) ε̇0

 2

n(r)−1

y(r)
n(r)+1

n(r)−1 = 0,

which yields

µ(1) =
1

3

 1

F (y(r)) σ2
e

N∑
r=1

c(r)

σ
(r)
0

n(r)

ε̇0

 2

n(r)−1

y(r)
n(r)+1

n(r)−1


n(r)−1

2

≡ µ̂(1)
(
y(r)
)
> 0. (2.25)

For those y(r) > 0, i.e., y(r) ̸= 0, optimization of (2.15) with respect to y(r) yields:

∂Ũ

∂y(r)
=

∂F

∂y(r)
σ2
e

6µ(1)
− ∂I

∂y(r)
= 0, r = 2, 3, · · · , N. (2.26)

where

∂I

∂y(i)
=

1

2

c(i)

(3µ(1))
n(i)+1

n(i)−1

y(i) σ
(i)
0

n(i)

ε̇0

 2

n(i)−1

,

so that the optimality condition (2.26) becomes

∂F

∂y(i)
σ2
e

(
3µ(1)

) 2

n(i)−1 − c(i)

y(i) σ
(i)
0

n(i)

ε̇0

 2

n(i)−1

= 0, i = 2, 3, · · · , N. (2.27)
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2.3. Homogenization method for non-linear viscous solids 31

Equations (2.25) and (2.27) define the optimal values µ(1) and y(r).

The optimal values of µ(1) and y(r) depend on the values of the volume fractions c(r), the

material properties (σ
(r)
0 , n(r), ε̇0), and the macroscopic von Mises equivalent stress σe.

The composite dissipation function is defined from (2.15):

Ũ (σe) =
1

6

F
(
ŷ(r) (σe)

)
µ̂(1) (σe)

σ2
e − I

(
µ̂(1) (σe) , ŷ

(r) (σe)
)
, (2.28)

and the flow rule is

D =
∂Ũ

∂σ
=

∂Ũ

∂σe

∂σe

∂σ
≡ ˙̄εN, ˙̄ε =

∂Ũ

∂σe

, N =
∂σe

∂σ
=

3

2σe

s.

Using (2.28), we find that

˙̄ε =
∂Ũ

∂σe

= F︸︷︷︸
µ̂(1)

µ̃

σe

3 µ̂(1)
+

∂Ũ

∂µ̂(1)︸ ︷︷ ︸
0

∂µ̂(1)

∂σe

+
N∑
i=1

∂Ũ

∂ŷ(i)︸ ︷︷ ︸
0

∂ŷ(i)

∂σe

=
σe

3 µ̃
,

where the partial derivatives ∂Ũ
∂µ̂(1) and ∂Ũ

∂ŷ(i)
vanish due to the optimization conditions (2.23)

and (2.26).

The flow rule now takes the form

D = ˙̄εN =
σe

3 µ̃
N =

s

2 µ̃
, µ̃ = µ̃

(
µ̂(r)
)
, and µ̂(r) =

µ̂(1)
(
σe, c

(s), σ
(s)
0

)
ŷ(r)

(
σe, c(s), σ

(s)
0

) . (2.29)

Step 2: Equal creep exponents
(
n(1) = n(2) = · · · = n(N) ≡ n

)
When all “creep exponents” are set equal, i.e., n(1) = n(2) = · · · = n(N) ≡ n, equation (2.15)

becomes

Ũ = sup
y(r)≥0
y(1)=1

sup
µ(1)>0

[
σ2
e

6µ(1)
F
(
y(r)
)
− n− 1

2(n+ 1)

H
(
y(r)
)

(3µ(1))
n+1
n−1

]
, (2.30)

where now

F
(
y(r)
)
=

µ(1)

µ̃
=

N∑
r=1

c(r) y(r)

3 y(r)

y0
+2

N∑
s=1

c(s)

3 y(s)

y0
+2

≡ T1

T2

and H
(
y(r)
)
=

N∑
r=1

c(r)


(
σ
(r)
0

)n
ε̇0


2

n−1 (
y(r)
)n+1

n−1 .

The optimality conditions (2.25) and (2.27) of the previous step take now the form

µ(1) =
1

3

[
H
(
y(r)
)

F (y(r))

1

σ2
e

]n−1
2

≡ µ̂(1)
(
y(r)
)
> 0, (2.31)
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32 Chapter 2. Homogenization Theory

∂F

∂y(i)
σ2
e

(
3µ(1)

) 2

n(i)−1 − c(i)

y(i)σ
(i)
0

n(i)

ε̇0

 2

n(i)−1

= 0, i = 2, 3, · · · , N. (2.32)

Substituting the optimal value of µ(1) from (2.31) in (2.32) we get

∂F

∂y(i)
H

F
− c(i)

(
y(i)σ

(i)
0

n

ε̇0

) 2
n−1

= 0, i = 2, 3, · · · , N. (2.33)

and (2.30) becomes

Ũ(σe) =
σn+1
e

n+ 1

√√√√√ sup
y(r)≥0
y(1)=1

[F (y(r))]n+1

[H(y(r))]n−1
=

σn+1
e

n+ 1

 sup
y(r)≥0
y(1)=1

F
(
y(r)
)

H (y(r))
n−1
n+1


n+1
2

. (2.34)

It is interesting to note that the expression for the effective stress potential given in (2.34)

is of the power-law type defined in (2.1), i.e., when all phases have the same creep exponent

n, the effective behavior of the composite is also of the power-law type with creep exponent

n implying that Ũ is a homogeneous function of degree n + 1 in σ. Also, the optimal val-

ues of y(r) in (2.34) are now independent of the macroscopic von Mises equivalent stress σe.

Step 3: Perfectly plastic phases (n → ∞)

Using (2.34) and taking into account that

lim
n→∞

[a(n)]n+1

n+ 1
=

{
0 when a (∞) ≤ 1 ,

∞ when a (∞) > 1 ,
(2.35)

we find

lim
n→∞

Ũ(σe) =



0 when σe

√√√√ sup
y(r)≥0
y(1)=1

F(y(r))
H∞(y(r))

≤ 1 ,

∞ when σe

√√√√ sup
y(r)≥0
y(1)=1

F(y(r))
H∞(y(r))

> 1 ,

(2.36)

where

F
(
y(r)
)
=

µ(1)

µ̃
=

N∑
r=1

c(r) y(r)

3 y(r)

y0
+2

N∑
s=1

c(s)

3 y(s)

y0
+2

≡ T1

T2

, H∞
(
y(r)
)
≡ lim

n→∞
H
(
y(r)
)
=

N∑
r=1

c(r)
(
σ
(r)
0

)2
y(r).

(2.37)

The threshold of the function in (2.36) corresponds to the definition of the effective yield

function, i.e.,

σ2
e sup

y(r)≥0
y(1)=1

[
F
(
y(r)
)

H∞ (y(r))

]
= 1 ⇒
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2.3. Homogenization method for non-linear viscous solids 33

σ2
e =

1

sup
y(r)≥0
y(1)=1

[
F(y(r))

H∞(y(r))

] = inf
y(r)≥0
y(1)=1

[
H∞

(
y(r)
)

F (y(r))

]
= − sup

y(r)≥0
y(1)=1

[
−
H∞

(
y(r)
)

F (y(r))

]
≡ σ̃2

0.

Equation (2.36) can be written also as

lim
n→∞

Ũ(σe) =

{
0 when σe ≤ σ̃0 ,

∞ when σe > σ̃0 ,
(2.38)

with

σ̃0 =

√√√√ inf
y(r)≥0
y(1)=1

H∞ (y(r))

F (y(r))
, r = 2, ..., N (2.39)

where H∞
(
y(r)
)
and F

(
y(r)
)
are defined in (2.37), i.e.,

σ̃0(c
(r), σ

(r)
0 ) =

√√√√√√ inf
y(i)≥0
y(1)=1
i=2,...,N

(
N∑
r=1

c(r)σ
(r)
0

2
y(r)

)(
N∑
p=1

c(p)

3 y(p) + 2 y0

)(
N∑
s=1

c(s) y(s)

3 y(s) + 2 y0

)−1

.

(2.40)

Comparing the above equation (2.38) with (2.4), we conclude that, when all phases are per-

fectly plastic (n = ∞), the form of the estimated effective stress potential Ũ(σe) corresponds

to a perfectly plastic material that obeys the von Mises yield condition with a flow stress

σ̃0 defined in (2.40). This effective flow stress, in turn, is a function of the phase volume

fractions c(r) as well as of the phase flow stresses σ
(r)
0 .

Calculation of the estimated effective yield stress σ̃0 requires the solution of the constrained

optimization problem in (2.40) for the values of y(r), which define in turn the appropri-

ate values of the viscosities µ(r) (see (2.18)). In the special case of a two-phase compos-

ite the solution of the optimization problem in (2.40) can be found analytically as de-

scribed in section 3.2. The solution of more general cases presented in the following are

obtained by using the methodology of Kaufman et al. [32] and the CONMAX software

(http://www.netlib.org/opt/conmax.f) for the solution of the optimization problem in

(2.40). Instructions for CONMAX are given in Appendix I.

The optimal values y(r) in (2.40) depend on the values of the volume fractions c(r) and the

flow stresses σ
(r)
0 of the phases but are independent of the macroscopic stress state. Also,

depending on the parameters of the problem, the optimal values ŷ(r) = µ̂(1)/µ̂(r) may be one

of the extreme values 0 or ∞. The value ŷ(r) = 0 corresponds to a rigid comparison material

for phase r, whereas ŷ(r) = ∞ corresponds to an incompressible comparison material with

zero stiffness (i.e., to an “incompressible void” comparison material). It should be noted

that it is possible to have ŷ(r) = µ̂(1)/µ̂(r) = 0 (rigid comparison material) even for finite σ
(r)
0

(e.g., see deBotton and Ponte Castañeda [13] and section 3.2 below).

In CONMAX we need some derivatives. The calculations are discussed in Appendix IV.
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34 Chapter 2. Homogenization Theory

2.4 Strain-rate concentration in the phases

An approximation for the strain field in the non-linear composite may be obtained from

the strain field in the LCC evaluated at the optimal comparison moduli µ̂(r) defined by the

optimization problem in (2.8). In particular, the average deformation rate field in the phases

D(r) may be written in terms of the macroscopic deformation rate D in the form (Ponte

Castañeda and co-workers [51], [56], [31],[54]):

D(r) = A(r)
(
µ̂(i)(σe)

)
: D, r = 1, 2, · · · , N, (2.41)

where A(r) are the fourth-order strain concentration tensors of the LCC, evaluated at the

optimal values2, µ̂(r) of the comparison moduli, defined by the solution of the optimization

problem in (2.8). It is emphasized that the optimal values µ̂(r) depend in a nonlinear manner

upon the macroscopic von Mises equivalent σe, and consequently the strain concentration

tensors A(r) are in general nonlinear functions of the macroscopic stress tensor σ.

For isotropic composite materials with random microstructures having “ellipsoidal symme-

try”, A(r) is of the form (Ponte Castañeda [51])

A(r) = E(r) :

(
N∑
s=1

c(s) E(s)

)−1

, E(r) =
[
I + S0 : L−1

0 :
(
L(r) −L0

)]−1

, (2.42)

where I is the symmetric fourth order identity tensor with Cartesian components Iijkl =

(δik δjl + δil δjk)/2, S0 is the well known tensor of Eshelby [14] for the linear “reference

material” with elasticity tensor L0 introduced in (2.11), and

L0 = 2µ0 K+ 3κ0 J , L(r) = 2 µ̂(r)K+ 3κ(r)J , J =
1

3
δ δ, K = I −J . (2.43)

The quantities (µ0, κ0) and (µ̂(r), κ(r)) in (2.43) are the shear and bulk viscosities of the

LCC; the bulk viscosities κ0 and κ(r) are set to ∞ after the final expression for D(r) in (2.41)

is derived, in order to take into account the incompressible nature of the phases and the

composite.

For composites consisting of an isotropic matrix and a uniform distribution of spherical

inclusions, the Eshelby tensor has the form

S0 =
6 (κ0 + 2µ0)

5 (3κ0 + 4µ0)
K+

3κ0

3κ0 + 4µ0

J . (2.44)

Using (2.43) and (2.44) in (2.42b) and taking into account that J : J = J , K : K = K,

and J : K = 0, we conclude that

E(r) =
5µ0 (3κ0 + 4µ0)

µ0 (9κ0 + 8µ0) + 6 (κ0 + 2µ0) µ̂(r)
K+

3κ0 + 4µ0

3κ(r) + 4µ0

J . (2.45)

2Henceforth the superscript (̂.) serves to denote the optimal value of the relevant quantity obtained by

the corresponding optimization described in the previous section.
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2.4. Strain-rate concentration in the phases 35

We have that

N∑
s=1

c(s)E(s) =
N∑
s=1

c(s)
[

5µ0 (3κ0 + 4µ0)

µ0 (9κ0 + 8µ0) + 6 (κ0 + 2µ0)µ(s)
K+

3κ0 + 4µ0

3κ(s) + 4µ0

J
]

=

(
N∑
s=1

c(s)
3κ0 + 4µ0

3κ(s)
+ 4µ0

)
J +

[
N∑
s=1

5 c(s) µ0 (3κ0 + 4µ0)

µ0 (9κ0 + 8µ0) + 6 (κ0 + 2µ0)µ(s)

]
K.

(2.46)

Then(
N∑
s=1

c(s) E(s)

)−1

=

(
N∑
s=1

c(s)
3κ0 + 4µ0

3κ(s) + 4µ0

)−1

J+

[
N∑
s=1

5 c(s) µ0 (3κ0 + 4µ0)

µ0 (9κ0 + 8µ0) + 6 (κ0 + 2µ0)µ(s)

]−1

K

(2.47)

Next, using (2.42), after some lengthy but otherwise straightforward calculations we reach

the following expression for the strain concentration tensors:

A(r) =
1

3κ(r) + 4µ0

(
N∑
s=1

c(s)

3κ(s) + 4µ0

)−1

J +

+
1

µ0 (9κ0 + 8µ0) + 6 (κ0 + 2µ0) µ̂(r)

[
N∑
s=1

c(s)

µ0 (9κ0 + 8µ0) + 6 (κ0 + 2µ0) µ̂(s)

]−1

K.(2.48)

Finally, using (2.41), taking into account the incompressibility condition Dkk = 0 (or J :

D = 0), and considering the limit κ0 → ∞, we find

D(r) = lim
κ0→∞

(
A(r) : D

)
= α(r)D, α(r) =

1

3µ0 + 2 µ̂(r)

(
N∑
s=1

c(s)

3µ0 + 2 µ̂(s)

)−1

.

(2.49)

Equation (2.49) implies that

˙̄ε(r) =

√
2

3
D(r) : D(r) = α(r)

√
2

3
D : D = α(r) ˙̄ε or

dε̄(r)

dε̄
= α(r) , (2.50)

where ˙̄ε(r) and ˙̄ε are the average equivalent strain rates in the phases and the average macro-

scopic equivalent strain rate respectively.

Taking into account Equation (2.18), the strain concentration values α(r) defined in (2.49)

can be written in the form

α(r) =
ŷ(r)

3 ŷ(r) + 2 y0

(
N∑
s=1

c(s) ŷ(s)

3 ŷ(s) + 2 y0

)−1

, (2.51)

where ŷ(r) are the optimal values of y(r) resulting from the optimization in (2.40).

The variation of α(i) with respect to c(r) and σ
(r)
0 is discussed in Appendix IV.
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2.5 A summary of the constitutive equations used for

Dp

The results of the previous sections are used for the description of the plastic deformation

rate Dp of elastoplastic composites as follows.

Each of the phases is viscoplastic and obeys a constitutive equation of the form

Dp(r) = ˙̄ε(r) N, N =
3

2σe

s, r = 1, 2, ..., n (2.52)

where

˙̄ε(r) =
σe

3µ(r) (σe)
, µ(r) (σe) =

1

3

σ
(r)
0

ε̇0

(
σ
(r)
0

σe

)n(r)−1

. (2.53)

When the constituent phases are perfectly plastic the corresponding flow stress of the com-

posite material σ̃0 is determined from the solution of a constrained optimization problem:

σ̃0 =

√√√√√√ inf
y(i)≥0
y(1)=1
i=2,...,N

(
N∑
r=1

c(r)σ
(r)
0

2
y(r)

)(
N∑
p=1

c(p)

3 y(p) + 2 y0

)(
N∑
s=1

c(s) y(s)

3 y(s) + 2 y0

)−1

. (2.54)

where N is the number of phases, (c(i), σ
(i)
0 ) are the volume fraction and flow stress of phase

i, and y(i) are positive optimization parameters.
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Chapter 3

Perfect Plasticity

3.1 Introduction

The scope of the present chapter is to validate the homogenization model which was pre-

viously presented, using periodic three-dimensional unit cell calculations comprising a large

number of spherical inclusions (of various sizes and of two different types) distributed ran-

domly in a matrix phase. We find that in the context of two- and three-phase materials

the use of the lower Hashin-Shtrikman bound for the LCC gives the best predictions by

comparison with the unit cell calculations for both the macroscopic stress-strain response as

well as for the average strains in each of the phases.

In the special case of a two-phase composite an analytical result is obtained for the effective

flow stress of the elasto-plastic composite material. Additional analytical expressions are

also provided for the phase concentration tensors and average strains in each phase in terms

of the aforementioned optimized scalar quantities.The agreement is found to be good not

only for the effective yield stress but also for the phase average strains thus allowing for the

extension of this model to include arbitrary isotropic hardening of the phases.

3.2 The two-phase perfectly plastic composite — An

analytic estimate for the effective flow stress and

the strain concentration factors

We consider an isotropic two-phase composite (N = 2, c(1) + c(2) = 1). In that case it is

possible to obtain analytical expressions for the optimal value of ŷ(2) and then determine σ̃0.

The estimate for σ̃0 depends on the chosen value of the reference viscosity µ0 in (2.11).

Results for various choices of µ0 will be discussed briefly later in this section. First of all,

we present in some detail the formulation based on a Hashin-Strikman lower bound with

µ0 = µ(1) (y0 = 1); as it will be discussed in the following section 3.3, this particular choice of

µ0 shows the best agreement with detailed unit cell finite element calculations. For µ0 = µ(1),
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38 Chapter 3. Perfect Plasticity

the ratio H∞/F in (2.39) takes the value

H∞
(
y(2)
)

F (y(2))
= σ

(1)
0

2 (
c(1) + c(2) r2 y(2)

) 2 + 3 c(2) + 3 c(1) y(2)

2 c(1) + (3 + 2 c(2)) y(2)
, r =

σ
(2)
0

σ
(1)
0

> 1. (3.1)

The optimum value of y(2) to be used in (2.39) is calculated by using the condition

∂

∂y(2)

(
H∞

F

)
= 0 (3.2)

together with the constraint y(2) ≥ 0. After some lengthy, but straightforward, calculations

we find the resulting optimal value ŷ(2) to be

ŷ(2) =


−2 c(1)+ 5√

3

√
(3+2 c(2)) 1

r2
−2 c(2)

3+2 c(2)
if 1 ≤ r ≤ rcr

(
c(2) ≤ c

(2)
cr

)
,

0 if r ≥ rcr

(
c(2) ≥ c

(2)
cr

)
,

(3.3)

where

rcr =
5√

4 + 6 c(2)
and c(2)cr =

1

6

[(
5

r

)2

− 4

]
. (3.4)

According to (3.3), for a given particle concentration c(2), when the contrast ratio r =

σ
(2)
0 /σ

(1)
0 is larger than a value rcr, the comparison material for phase 2 (particles) is rigid

(ŷ(2) = 0).

The corresponding estimate for the effective flow stress resulting from (2.39) is

σ̃0

σ
(1)
0

=


5 c(2) r+c(1)

√
9+6 c(2)−6 c(2) r2

3+2 c(2)
if 1 ≤ r ≤ rcr

(
c(2) ≤ c

(2)
cr

)
,

1
2

√
4 + 6 c(2) if rcr ≤ r

(
c
(2)
cr ≤ c(2)

)
.

(3.5)

The result stated in (3.5) was first presented by Ponte Castañeda and deBotton [55], who

used a “dissipation function” formulation (as opposed to the “stress potential” approach used

here). For all volume fractions c(2), there is a value rcr of the contrast ratio r = σ
(2)
0 /σ

(1)
0

beyond which the predicted effective flow stress σ̃0 does not vary with r. For values of r

larger than rcr, the optimal value of y(2) = µ(1)/µ(2) vanishes or µ(2) = ∞, i.e., for r ≥ rcr the

comparison material 2 (particles) does not deform; therefore, further increase of σ
(2)
0 does

not change the effective flow stress σ̃0.

The estimate for the effective flow stress σ̃0 depends on the choice of the reference viscosity

µ0. Here we present results for various additional choices of µ0:

i) Hashin-Shtrikman (upper bound): µ0 = µ(2)

The optimal value ŷ(2) is found to be

ŷ(2) =
6 c(2) + 5

√
3 r2 (5 − 2 c(2))− 6 c(1)

25 r2 − 2 (5− 3 c(2))
(3.6)

and the corresponding estimate for the effective flow stress is

σ̃0

σ
(1)
0

=
5 c(1) + c(2)

√
3 r2 (5− 2 c(2))− 6 c(1)

5− 2 c(2)
(3.7)
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ii) Harmonic average: 1
µ0

=
N∑
r=1

c(r)

µ(r)

The optimal value ŷ(2) is found to be

ŷ(2) =


2 c(2)(2+c(2))−2(3−c(2))c(1) r2+5

√
9 r2−6 c(1) c(2)(r2−1)2

−2(3−c(2))c(2)+[9+2(9−c(2))c(2)]r2
if 1 ≤ r ≤ rcr,

0 if r ≥ rcr,
(3.8)

where

rcr =
1

2

√
50− 4 c(2) (7 + c(2))

c(1) (2 + c(2))
(3.9)

and the corresponding estimate for the effective flow stress is

σ̃0

σ
(1)
0

=


√

3− c(2)
(
(11−8 c(2)) c(2)+(2− c(2)(13−8 c(2))) r2− 10

3
c(1)

√
9 r2−6 c(1)c(2)(r2−1)2

)
3+8 c(1)c(2)

if 1 ≤ r ≤ rcr,√
1+0.5 c(2)

1− c(2)
if rcr ≤ r.

(3.10)

iii) Self-consistent scheme: µ0 =

N∑
s=1

c(s) µ(s)

3µ0+2µ(s)

N∑
r=1

c(r)

3µ0+2µ(r)

• if 0 ≤ c(2) ≤ 0.4

The optimal value ŷ(2) is found to be

ŷ(2) =


5(c(1)+r c(2))−2 r

[3+5(r−1)c(2)]r
if 1 ≤ r ≤ rcr

(
c
(2)
cr ≤ c(2) ≤ 0.4

)
,√

c(1)

1−2.5 c(2)
if r ≥ rcr

(
0 ≤ c(2) ≤ c

(2)
cr

)
,

(3.11)

where

rcr =
c(1)

0.4− c(2)
and c(2)cr =

0.4 r − 1

r − 1
. (3.12)

and the corresponding estimate for the effective flow stress is

σ̃0

σ
(1)
0

=


√
1 + r−1

3
[8 + 5 c(2) (r − 1)− 2 r] c(2) if 1 ≤ r ≤ rcr

(
c
(2)
cr ≤ c(2) ≤ 0.4

)
,√

c(1)

1−2.5 c(2)
if rcr ≤ r

(
0 ≤ c(2) ≤ c

(2)
cr

)
.

(3.13)

• if 0.4 ≤ c(2) ≤ 1

The optimal value ŷ(2) is found to be

ŷ(2) =
5
(
c(1) + r c(2)

)
− 2 r

[3 + 5 (r − 1) c(2)] r
. (3.14)

and the corresponding estimate for the effective flow stress is

σ̃0

σ
(1)
0

=

√
1 +

r − 1

3
[8 + 5 c(2) (r − 1)− 2 r] c(2). (3.15)

Institutional Repository - Library & Information Centre - University of Thessaly
09/06/2024 10:09:40 EEST - 3.137.213.185



40 Chapter 3. Perfect Plasticity

iv) Bishop - Hill bounds:

• upper bound
σ̃0

σ
(1)
0

= c(1) + c(2) r (3.16)

• lower bound
σ̃0

σ
(1)
0

= 1 (3.17)

Figure 3.1 shows the predicted σ̃0 for various choices of µ0 for a volume fraction c(2) = 0.30.

The curves marked H-S− and H-S+ correspond to µ0 = µ(1) and µ0 = µ(2) respectively

and “self consistent” corresponds to µ0 = µ̃. Note that the Hashin-Shtrikman lower bound

H-S− (µ0 = µ(1)) gives the lowest value for σ̃0, the Hashin-Shtrikman upper bound H-S−

(µ0 = µ(2)) gives the highest value for σ̃0 and the self-consistent estimate falls within the

Hashin-Shtrikman bounds. We emphasize that the Hashin-Shtrikman lower bound H-S−

(µ0 = µ(1)) shows the best agreement with detailed unit cell finite element calculations

presented in the following section. That is the reason why we choose to use the Hashin-

Shtrikman lower bound H-S− in our calculations.

The strain concentration values α(r) given in (2.51) can be written in the form

α(1) =
dε̄(1)

dε̄
=

1

(2 y0 + 3)D
, α(2) =

dε̄(2)

dε̄
=

ŷ(2)

(2 y0 + 3 ŷ(2))D
, (3.18)

where

D =
c(1)

2 y0 + 3
+

c(2) ŷ(2)

2 y0 + 3 ŷ(2)
(3.19)

and ŷ(2) is defined in (3.3),(3.6),(3.8),(3.11) or (3.14) according to the choice of the reference

viscosity µ0.

3.3 Unit cell finite element calculations

In this section we present the results of unit cell finite element calculations for a composite

material made up of a statistically isotropic random distribution of isotropic, linearly-elastic

perfectly-plastic spherical inclusions embedded in a continuous, isotropic, linearly-elastic

perfectly-plastic matrix. The Mises plasticity model is used in the finite element calcula-

tions. The elastic Young modulus for all phases is three orders of magnitude higher than

the highest yield stress involved; this minimizes the effects of elasticity and the results are

very close to those of rigid-perfectly-plastic materials.

We study numerically two- and three-phase composites. The matrix is labelled as phase 1

and the reinforcing particles are spherical and have higher flow stresses (σ
(i)
0 > σ

(1)
0 , i > 1).

The periodic unit cell is a cube with edge size L and is constructed using the method pre-

sented by Segurado and Llorca [63] (see also [15]) and extended to polydisperse inclusion
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Figure 3.1: Variation of effective normalized flow stress σ̃0/σ
(1)
0 with contrast ratio r =

σ
(2)
0 /σ

(1)
0 as predicted by various models for a volume fraction c(2) = 0.30.

distributions by Lopez-Pamies et al. [35]. The virtual microstructure contains a dispersion of

a sufficiently large number of non-overlapping spheres of uniform (monodisperse) or different

(polydisperse) size. The inclusions are randomly located within the cell and are generated

using the Random Sequential Adsorption Algorithm (RSA) [60]. In addition, the unit cell is

periodic, i.e., it can be repeated in all three directions to represent a 3-D periodic structure.

For the two-phase composite and for c(2) ≤ 0.20 monodisperse spheres are used; for higher

volume fractions polydisperse (variable size) distributions are used. In the present study,

the two-phase polydisperse approach of Lopez-Pamies et al. [35] is readily extended to ob-

tain virtual microstructures with three-phases or more. For instance, denoting the matrix

phase with 1 and the two inclusion phases with 2 and 3, the extension is straightforward

and requires the continuous alternation of spheres of phase 2 and spheres of phase 3 during

the RSA process. Of course this simple extension can be repeated as often as necessary to

obtain an N−phase virtual microstructure provided that the concentration of each of the

phases is known.

Monodisperse microstructures

The monodisperse microstructure is a periodic cubic unit cell of volume L3 = 1 containing

a random dispersion of 30 non-overlapping identical spheres. Evidently, the accuracy of the

solution and the computer time to solve the problem increases with the number of particles

in the unit cell ([35],[11]). The final particle arrangement has to be statistically isotropic

(all directions in the unit cell are equivalent) and, in addition, it should be suitable for finite
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42 Chapter 3. Perfect Plasticity

element discretization. Both conditions can be fulfilled using the Random Sequential Ad-

sorption (RSA) algorithm to generate the coordinates of the particle centers (Rintoul and

Torquato, [60]).

According to this method, the particle center positions are generated randomly and sequen-

tially. The sequential addition of particles is constrained so that the distance between the

particles with other particles and with the boundaries of the cubic unit cell take a minimum

value that guaranties adequate spatial discretization(see, e.g., Segurado and Llorca, [63];

Fritzen et al., [15]). In particular:

• The center-to-center distance between a new particle i in the sequential algorithm and

any previously accepted particle j = 1, 2, ..., i− 1 has to be greater than the minimum

value s1 = 2Rm(1 + d1), where the offset distance d1 is fixed here at d1 = 0.02. This

condition can be written in the compact form∥∥Xi −Xj − h
∥∥ ≥ s1. (3.20)

where Xi, Xj denote the location of the center of particles i, j and h is a vector with

entries 0, L or −L for each of its three Cartesian components with respect to the

principal axes of the cubic unit cell.

• The particles should be considerably distant from the boundaries of the unit cell as

imposed by the following inequalities∥∥X i
k −Rm

∥∥ ≥ s2 and
∥∥X i

k +Rm − L
∥∥ ≥ s2 (k = 1, 2, 3) , (3.21)

where s2 = d2 Rm with d2 being fixed here at d2 = 0.05.

In the above expressions

Rm = L

(
3 c

4 π N

)1/3

(3.22)

represents the radius of the particles, where N is the number of particles in the unit cell.

Figure 3.2 illustrates representative unit cells generated by the above algorithm for N = 30

with two different particle concentrations:(a) c(2) = 0.10, (b) c(2) = 0.20.

The RSA algorithm, in combination with Equations (3.20) and (3.21), was used to generate

the particle center coordinates up to a sphere volume fraction c(2) = 0.20. Above this volume

fraction, it was not possible to accommodate 30 particles in the unit cell fulfilling all the

conditions imposed by Equations (3.20) and (3.21). Unit cells with c(2) above the “jamming

limit” (the final state of the process whereby no particles can be added) can be generated

using particles with different sizes (polydisperse).

Polydisperse microstructures

The polydisperse microstructures are constructed using a similar constrained adsorption al-

gorithm. We concentrate on polydisperse microstructures with three different families of

particle sizes. Although there is not a specific rule for the creation of this kind of mi-

crostructures and there are many alternatives, in the present thesis we follow this procedure

[35]:
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(a) (b)

Figure 3.2: Representative unit cells of unit volume L3 = 1 containing N = 30 randomly

distributed spherical particles of monodisperse sizes with two different concentrations: (a)

c(2) = 0.10 and (b) c(2) = 0.20.

• Three different families of particles with radiiR
(I)
p and concentrations c(I) with (I = 1, 2, 3)

are utilized, such that:

{
R(1)

p , R(2)
p , R(3)

p

}
=

{
Rp,

7

9
Rp,

4

9
Rp

}
with Rp = L

(
3c(1)

4πNp

)1/3

, (3.23)

and {
c(1), c(2), c(3)

}
= {0.5c, 0.25c, 0.25c} with c(1) + c(2) + c(3) = c. (3.24)

where Np represents the number of particles with the largest radius R
(1)
p = Rp in the

unit cell and c the total volume fraction.

• The microstructures are generated sequentially by first adding the particles with the

largest radius R
(1)
p until the concentration reaches the value c(1) = 0.5c, next adding

the particles with radius R
(2)
p until c(1) + c(2) ≃ 0.75c, and finally adding the particles

with the smallest radius R
(3)
p until c(1) + c(2) + c(3) ≃ c.

At this point, it should be noted that through this construction process, the target concen-

tration c can only be achieved approximately (up to a small error that depends on the various

choices of the parameters). In addition, the centers of the particles should follow similar con-

straints to conditions (3.20) - (3.21) in order to guarantee adequate spatial discretization.

In particular:

• The center-to-center distance between a new particle i in the sequential algorithm and

any previously accepted particle j = 1, 2, ..., i− 1 has to be greater than the minimum

value s1. This condition can be written in a compact form as follows:∥∥Xi −Xj − h
∥∥ ≥ s1, s1 =

(
R(mi)

p +R(mj)
p

)
(1 + d1), (3.25)
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• The particles should be substantially distant from the boundaries of the unit cell as

imposed by the inequalities:∣∣X i
k −R(mi)

p

∣∣ ≥ s2,
∣∣X i

k +R(mi)
p − 1

∣∣ ≥ s2, s2 = d2R
(mi)
p , (k = 1, 2, 3),

(3.26)

for i, j = 1, 2, ..., N where N stands for the total number of particles in the unit cell.

The offset parameters are set at d1 = 0.02 and d2 = 0.05 as in the monodisperse case,

and the superscript mi = 1, 2, 3 represents the size of the sphere that should be added

at step i in the sequential construction process. Specifically, mi = 1 if c(mi) ≤ c(1),

mi = 2 if c(1) < c(mi) ≤ c(1) + c(2) and mi = 3 if c(1) + c(2) < c(mi).

Figure 3.3 shows sample unit cells generated by the above algorithm for N = 36 with two

different particle concentrations: (a) c(2) = 0.30, and (b) c(2) = 0.40.

(a) (b)

Figure 3.3: Representative unit cells of unit volume L3 = 1 containing N = 36 randomly

distributed spherical particles of three different sizes with two different concentrations: (a)

c(2) = 0.30 and (b) c(2) = 0.40.

In a similar way, we can create a three-phase cubic unit cell, consisted of a cubic matrix,

containing spherical inclusions of two different phases. In particular, we use a Random

Sequential Algorithm similar to the one previously described to create two different three-

phase unit cells, called from now on V 1 and V 2.

In details, we use a group of spheres with different radii , for each one of the inclusion phases.

Let c(1) stand for the volume fraction of the matrix phase, and c(2), c(3) the volume fractions

of the inclusion phases. Then we have a total ctot = c(2) + c(3) of inclusion phases, with

c(1) + ctot = 1. The whole procedure can be summarized in the following steps:

• We make use of three different families of particles with radii R
(I)
p and concentrations

c(I) with (I = 1, 2, 3) for each one of the inclusion phases. For our case, we can utilize:{
R(1)

px , R
(2)
px , R

(3)
px

}
= {1, 0.5, 0.1} (3.27)
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and {
cx

(1), cx
(2), cx

(3)
}
= {0.6cx, 0.2cx, 0.2cx} (3.28)

with x = 2, 3 denoting each of the two different inclusion phases.

• We add: (c2/ctot)×c
(1)
2 ×ctot of particles with radius R

(1)
p2 of phase 2, and particles with

radius R
(1)
p3 of phase 3 until the rest of c

(1)
2 × ctot is filled.

Then we do the same for the second group of spheres. We add (c2/ctot) × c
(2)
2 × ctot

of particles with radius R
(2)
p2 of phase 2 and particles with radius R

(2)
p3 of phase 3, until

the rest of c
(2)
2 × ctot is filled. The same goes for sphere group 3.

The only difference between V 1 and V 2, is that for the V 2 unit cell, we use more groups of

spheres, of the same radii, to construct the microstructure. That makes the V 2 microstruc-

ture a more complex, but also more random and realistic model of a three-phase steel.

In order to guarantee adequate spatial discretization, again the randomly generated coordi-

nates of the centers of the particles, are enforced to satisfy constraints similar to (3.25) and

(3.26). Figure 3.4 shows representative V 1 and V 2 unit cells, for volume fractions c(1) = 0.60,

c(2) = 0.25 and c(3) = 0.15.

(a) (b)

Figure 3.4: Three-Phase unit cells containing c(1) = 0.60, c(2) = 0.25 and c(3) = 0.15, where

(a) is for V 1 and (b) is for V 2.

At this point it should be noted, that the various parameters of the RSA can be modified in

order to produce various combinations of particle positions, resulting to a different geometry

each time. However, due to the randomness of the dispersion, the unit cells remain isotropic

[17].

Meshing

Finite element discretizations of the cubic unit cell were created from the particle center dis-

tributions using the mesh generator code NETGEN [62], which has the capability to create

periodic meshes as required. All calculations were carried out using the ABAQUS general
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purpose finite element code (Hibbitt [23]). Three dimensional 10-node quadratic tetrahedral

elements with a constant pressure interpolation were used (C3D10H in ABAQUS); all anal-

yses were carried out incrementally and accounted for geometry changes due to deformation

(finite strain solutions).

Figure 3.5 shows three finite element meshes of increasing refinement for a distribution of

monodisperse particles with concentration c(2) = 0.20. Mesh sensitivity studies reveal that

meshes with approximately 200,000 degrees of freedom ( Fig. 3.5(b)) produce accurate re-

sults [17]. Figure 3.6 shows the finite element meshes used for a two-phase composite with

volume fractions c(2) =0.10, 0.20, 0.30, and 0.40. The distributions are monodisperse for

c(2) =0.10 and 0.20, and polydisperse for c(2) =0.30 and 0.40. Figure 3.7 shows a typical

finite element mesh of a unit cell for a three-phase composite for a matrix with volume frac-

tion c(1) = 0.60 and two families of inclusions with c(2) = 0.25 and c(3) = 0.15.

(a) (b) (c)

Figure 3.5: Three representative meshes in the undeformed configuration for a distribution

of monodisperse particles with concentration c(2) = 0.20: (a) moderate mesh, (b) fine mesh,

and (c) very fine mesh. The finite element meshes have (39,417; 112,281; 699,481) nodes and

(15,703; 45,679; 293,054) elements respectively. The corresponding total numbers of degrees

of freedom, including pressures, are (86,845; 245,485; 1,512,335).

3.3.1 The effective yield stress

We determine numerically the effective yield stress by solving the problem of a unit cell

loaded in uniaxial tension. Periodicity conditions are imposed on the boundary of the unit

cell. A detailed discussion of the periodic boundary conditions on a unit cell can be found

in Suquet [65] or Michel et al. [41]. Here, the periodic boundary conditions on the unit cell

are imposed as follows (see Mbiakop et al. [38] and Appendix II for more details). Referring

to Fig. 3.8, if we fix vertex 1 in order to eliminate rigid body translations, then, in view of

the periodicity of the displacement field, we can write the displacements u at vertices 2, 4,

and 5 of the unit cell in the form

u
(2)
i = (Fi1 − δi1)L, u

(4)
i = (Fi2 − δi2)L, u

(5)
i = (Fi3 − δi3)L, (3.29)

Institutional Repository - Library & Information Centre - University of Thessaly
09/06/2024 10:09:40 EEST - 3.137.213.185



3.3. Unit cell finite element calculations 47

Figure 3.6: Finite element discretization of cubic unit cells for two-phase composites con-

taining a random distribution of 30 spherical particles for volume fractions of 10, 20, 30

and 40%. The finite element meshes have (200,869; 112,281; 165,371; 159,303) nodes and

(83,270; 45,679; 67,790; 65,543) elements respectively. The corresponding total numbers of

degrees of freedom, including pressures, are (436,067; 245,485; 360,533; 346,823).

where Fij are the components of the macroscopic deformation gradient F. The periodicity

of the problem requires also that the displacements of material points at the same position

on opposite faces of the cell should satisfy the conditions

uRIGHT − uLEFT = u(2), uTOP − uBOTTOM = u(4), uFRONT − uBACK = u(5), (3.30)

where the superscripts (LEFT, RIGHT), (BOTTOM, TOP), and (BACK, FRONT) denote

collectively all materials points located respectively on the faces of the cell at (X1 = 0, X1 =

L), (X2 = 0, X2 = L), and (X3 = 0, X3 = L). Equations (3.30) show that the periodic

constraints between all corresponding opposite boundary points can be written in terms of

the displacements of the three vertex points (u(2),u(4),u(5)), which are defined, in turn, in

(3.29) by the macroscopic deformation gradient F. In ABAQUS, for given F, we impose

boundary conditions on (u(2),u(4),u(5)) according to (3.29), and the periodicity constraints

(3.30) are enforced through a “user MPC” subroutine (or the “EQUATION” option).

For the problem of uniaxial tension in direction 1, the deformation gradient is of the form

F = λ e1 e1 + λt(e2 e2 + e3 e3), (3.31)
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Figure 3.7: Finite element discretization of a cubic unit cell for a three-phase composite

containing a random distribution of 30 polydisperse spherical particles with volume fractions

c(2) = 0.25 (yellow) and c(3) = 0.15 (blue). The finite element mesh has 303,953 nodes,

124,225 elements, and the total number of degrees of freedom, including pressures, is 663,409.

where (λ, λt) are the axial and transverse stretch ratios and ei the base vectors along the

coordinate axes shown in Fig. 3.8; the boundary conditions (3.29) become

u
(2)
1 = (λ− 1)L, u

(4)
2 = u

(5)
3 = (λt − 1)L, (3.32)

u
(2)
2 = u

(2)
3 = u

(4)
1 = u

(4)
3 = u

(5)
1 = u

(5)
2 = 0. (3.33)

In ABAQUS, we prescribe u
(2)
1 (i.e., λ) and set R

(4)
2 = R

(5)
3 = 0, where R

(N)
i denotes the i-th

component of the force at node N . The quantities R
(2)
1 and (u

(4)
2 , u

(5)
3 ), i.e., λt, are determined

by the finite element solution. The corresponding macroscopic stresses σij are determined

from the numerical calculation of the average stresses < σij > in the finite element solution:1

< σij >=
1

Vcell

∫
cell

σij(x) dV, (3.34)

where Vcell is the total volume of the deformed finite element mesh.

The conditions u
(4)
2 = u

(5)
3 and < σ22 >=< σ33 >=< σ12 >=< σ13 >=< σ23 >= 0 are used

to verify the correctness of the finite element solution.

The nodal displacement u
(2)
1 was increased gradually, the solution was developed incremen-

tally, and the average stress < σ11 > was determined by (3.34) at the end of every increment.

1 The alternative calculation < σ11 >= R
(2)
1 /Acell appears to be less convenient as it requires evaluation

of cross sectional area of the deformed cell Acell.
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Figure 3.8: Periodic unit cell.

As u
(2)
1 increases, the calculated average stress < σ11 > reaches a constant value, which de-

fines the effective flow stress of the composite σ̃0.

Figure 3.9 shows the variation of the calculated effective flow stress from the unit cell fi-

nite element calculations with the contrast ratio r = σ
(2)
0 /σ

(1)
0 for various volume fractions,

together with the predictions (3.5) of the homogenization model, based on the Hashin-

Shtrikman lower bound H-S− (µ0 = µ(1)).2 For that data shown in Fig. 3.9, the maximum

difference between the predictions (2.40) and the results of the unit cell finite element cal-

culations is ±3% (note that the vertical axis in Fig. 3.1 starts at the value of 1). It is

also interesting to mention that an increase of the flow stress σ
(2)
0 in the inclusions beyond

(approximately) two times the flow stress of the matrix (2σ
(1)
0 ) does not change the effective

flow stress of the composite for all volume fractions considered here. The finite element

calculations confirm the fact that, for σ
(2)
0 & 2σ

(1)
0 , the inclusions do not deform plastically

in the deforming unit cell and are in agreement with earlier numerical results of Suquet [68]

for c(2) = 30% and by Ponte Castañeda and Suquet [58] and Idiart et al. [30] for c(2) = 15%.

As we will see in the following, this result is due to the fact that the particles behave as

being rigid beyond further increase of σ
(2)
0 .

Figure 3.10 shows the variation of σ̃0/σ
(1)
0 of a three-phase composite for different values

of the volume fraction c(3) as determined from the unit cell finite element calculations and

the predictions (2.40) of the homogenization model. The material data are typical for a

TRIP 3 steel with a ferritic matrix (phase 1) containing retained austenite (phase 2), which

transforms gradually to martensite (phase 3) as the TRIP steel deforms plastically (e.g., see

Papatriantafillou et al. [47]).

In order to check the isotropy of the unit cell, we carried out calculations for uniaxial

2 Of all possible choices for µ0 shown in Fig. 3.1, the Hashin-Shtrikman lower bound H-S− (µ0 = µ(1))

gives the closest estimate to the predictions of the unit cell results.
3 TRIP is the acronym for TRansformation Induced Plasticity.
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Figure 3.9: Variation of normalized effective flow stress σ̃0/σ
(1)
0 with contrast ratio r =

σ
(2)
0 /σ

(1)
0 for different values of the volume fraction c(2). The full triangles are the results

of the unit cell finite element calculations and the solid lines are the predictions (3.5) of

the model based on the H-S− estimate (µ0 = µ(1)). The maximum difference between the

numerical results and the analytical estimates is 3%.

tension in directions 2 and 3. In all cases, the results were identical to those shown in Figs.

3.9 and 3.10.

3.3.2 The strain concentration tensors

The unit cell finite element calculations discussed above were used also to determine the

strain concentration factors defined in (2.49) as follows. At the end of every increment in

the finite element solution the average value of the Eulerian logarithmic strain tensor ε(r)

was determined in every phase of the composite, where the superscript (r) denotes “phase

r”. The macroscopic axial logarithmic strain was also determined as ε̄ = lnλ, where λ is

the axial stretch ratio used in (3.32) to drive the finite element calculations. Interestingly,

the components of < ε(r) > are found to be proportional to ε̄ in the context of the present

study; in particular, it is found that

< ε
(r)
ij >= Cij ε̄, (3.35)

which leads to the following estimate for the strain concentration α(r):

α(r) =
dε̄(r)

dε̄
=

√
2

3
Cij Cij. (3.36)

Figure 3.11 shows the variation of the strain concentration factors α(r) in a two-phase com-

posite with the contrast ratio r = σ
(2)
0 /σ

(1)
0 for various volume fractions as determined from

Institutional Repository - Library & Information Centre - University of Thessaly
09/06/2024 10:09:40 EEST - 3.137.213.185



3.3. Unit cell finite element calculations 51

0.00 0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40
1.0

1.1

1.2

1.3

1.4

1.5

3c

0
1
0

 

 

 Homogenization
 Unit cell

2 3
0 0
1 1
0 0

1.875, 5

1 2 1 30.60, 1c c c c

Figure 3.10: Variation of effective normalized flow stress σ̃0/σ
(1)
0 of a three-phase composite

with a matrix volume fraction c(1) = 0.60 for different values of the volume fraction c(3). The

homogenization estimates are based on H-S− and the contrast ratios are σ
(2)
0 /σ

(1)
0 = 1.875

and σ
(3)
0 /σ

(1)
0 = 5.

the unit cell finite element calculations (equation (3.35)) and the homogenization theory

(equations (3.18)—(3.19)).

An important observation in the context of this figure is that at a contrast ratio of r ≃ 2,

a sharp transition is observed where the particles start behaving as being rigid, i.e., the

average strain in the particle is almost zero. This is validated by both the model and the

numerical results. In terms of the homogenization procedure, this implies that the case of

infinite contrast, i.e., rigid particles, and finite contrast is very similar beyond a value of

r ≃ 2. A weak dependence of this sharp transition upon the volume fraction c is observed

in these figures.

Similar plots for a three-phase composite are shown in Fig. 3.12. The predictions of the

homogenization theory agree well with the results of the unit cell finite element calculations.

Figure 3.12 shows, in turn, the strain concentration factors in a three-phase material. The

comparison between the model and the finite element simulations is qualitatively good,

whereas the model tends to underestimate the straining of the middle phase, i.e., the one

with yield stress σ
(2)
0 /σ

(1)
0 = 1.875. Again, in the case of the third phase, when σ

(3)
0 /σ

(1)
0 = 5,

the particle behaves as rigid which is consistent with the observations of the previous figure.

Institutional Repository - Library & Information Centre - University of Thessaly
09/06/2024 10:09:40 EEST - 3.137.213.185



52 Chapter 3. Perfect Plasticity

1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5
-0.5

0.0

0.5

1.0

1.5

2.0

2 0.10c

2
0
1
0

id
d

 

 

 Homogenization matrix
 Homogenization particle

 Unit cell matrix
 Unit cell particle

1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5
-0.5

0.0

0.5

1.0

1.5

2.0

 Unit cell matrix
 Unit cell particle

 Homogenization matrix
 Homogenization particle

2 0.20c

2
0
1
0

id
d

 

 

1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5
-0.5

0.0

0.5

1.0

1.5

2.0

2 0.30c

2
0
1
0

id
d

 

 

 Homogenization matrix
 Homogenization particle

 Unit cell matrix
 Unit cell particle

1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5
-0.5

0.0

0.5

1.0

1.5

2.0

2 0.40c

2
0
1
0

id
d

 

 

 Homogenization matrix
 Homogenization particle

 Unit cell matrix
 Unit cell particle

Figure 3.11: Strain concentration factors α(i) = dε̄(i)/dε̄ as determined from unit cell finite

element calculations and homogenization theory (equations (3.18) and (3.19)) for a two-phase

composite.

3.3.3 Dependence of the effective flow stress on J3

Suquet and Ponte Castañeda ([69],[57]) studied the effective mechanical behavior of weakly

inhomogeneous composites and showed that, for the case of incompressible “power-law”

phases, the effective potential of the composite may depend, to second order, on the third

invariant of the applied strain.

We carry out detailed unit cell finite element calculations in order to check for a possible

dependence of the effective yield stress σ̃0 on the third invariant J3 of the stress deviator s

(J3 = dets, where ‘det’ denotes the determinant). We identify the coordinate axes shown in

Fig. 3.8 with the principal directions of the stress tensor and write the principal stresses in
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Figure 3.12: Strain concentration factors α(i) = dε̄(i)/dε̄ as determined from unit cell

finite element calculations and homogenization theory (equation (2.51)) for a three-phase

composite.

the form 
σ1

σ2

σ3

 = σe

XΣ


1

1

1

+
2

3


cos
(
θ + π

6

)
sin θ

− cos
(
θ − π

6

)

 , (3.37)

where XΣ = p/σe is the stress triaxiality and θ is the “Lode angle”, so that

J3 = dets = − 2

27
σ3
e sin 3θ. (3.38)

Angle θ takes values in the range −30◦ ≤ θ ≤ 30◦, where, to within a hydrostatic stress,

θ = −30◦ corresponds to uniaxial tension, θ = 0 to pure shear, and θ = 30◦ to uniaxial

compression.

It is stressed at this point that the composite materials considered in this work are plastically

incompressible and thus the applied stress triaxiality affects only the elastic part which is of

no interest here. Thus the only relevant invariant studied in this section, apart from the J2
invariant, is the third deviatoric invariant J3 defined above. The study of the effect of J3, in

turn, allows for a complete analysis of general triaxial loading states.

As a consequence of the applied periodic boundary conditions and the symmetry of the

problem, the macroscopic (average) deformation of the unit cell is entirely described by the

displacements of the “reference vertices” (2,4,5), as shown in Fig. 3.8, which can be written

in the form

u(2) = U1 e1, u(4) = U2 e2, u(5) = U3 e3. (3.39)
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In ABAQUS, the displacements (U1, U2, U3) are tied, through “user multipoint constraints”,

to the degrees of freedom of a fictitious node, which is properly displaced so that the desired

triaxiality XΣ and Lode angle θ are achieved. Details of the numerical formulation can be

found in Mbiakop et al. [39] (see also Barsoum and Faleskog [3] and Appendix III).

We carry out finite element calculations in which the unit cell is loaded with XΣ = 1/3 and

Lode angles in the range −30◦ ≤ θ ≤ 30◦. The finite element analysis is carried out incre-

mentally; at the end of each increment the average stress < σ > and the corresponding von

Mises equivalent stress σ̄e =
√

3
2
< s >:< s > are calculated. As the applied displacement

of the fictitious node increases, σ̄e takes a constant value, which defines the effective flow

stress σ̃0 of the periodic composite.

In order to verify that the desired values have been indeed achieved, the triaxiality and

Lode angle corresponding to the average stress < σ > are determined at the end of every

increment. Also, since the coordinate axes in the finite element solution are assumed to co-

incide with the principal stress directions, the conditions < σ12 >=< σ13 >=< σ23 >= 0 are

checked at the end of every increment to verify the accuracy of the finite element solution.

Figure 3.13 shows the variation of the effective flow stress σ̃0, as determined from unit cell

finite element calculations, with Lode angle θ for particle volume fractions c(2) =0.10, 0.20

and 0.40. Figure 3.13 shows that the effective flow stress of the composite is essentially

independent of the third stress invariant J3, which is in agreement with earlier results by

Ponte Castañeda and Suquet [58] and Idiart [29] in the case of rigid particles.
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Figure 3.13: Variation of effective normalized flow stress σ̃0/σ
(1)
0 with Lode angle θ for

XΣ = 1/3 and particle volume fractions of 10, 20 and 40%.
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Chapter 4

Hardening Phases

4.1 Introduction

In this chapter we present an approximate method for the prediction of the incremental

elastoplastic behavior of macroscopically isotropic composites made of N isotropic, rate-

independent, elastic-plastic hardening phases. Let the flow stresses σ
(i)
y of each phase

be known functions of the corresponding equivalent plastic strains ε̄(i) (i = 1, 2, . . . , N). At

every point of the homogenized composite the “internal variables” that characterize the local

state of the homogenized continuum are the local values of the equivalent plastic strains in

the phases q =
(
ε̄(1), ε̄(2), · · · , ε̄(N)

)
.

The elastic and plastic response of the homogenized composite are treated independently,

and combined later to obtain the full elastic-plastic response. The total deformation rate is

written as the sum of elastic and plastic parts:

D = De +Dp (4.1)

The elastic properties of all constituent phases are basically the same. Thus, in order to

describe the elastic behavior of the composite material we use standard isotropic linear

hypoelasticity of homogeneous solids. The plastic behavior of the composite material is

determined by using the homogenization technique described in Chapter 2. The constitutive

equations are developed for the case of finite geometry changes.

4.2 Constitutive formulation

As we previously mentioned, the total deformation rate is written as the sum of elastic and

plastic parts:

D = De +Dp (4.2)

In the following, the constitutive equations for the constituent parts of D are presented.
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4.2.1 The elastic part of the deformation rate De

The elastic properties of the phases are basically the same and the composite material can

be viewed as homogeneous in the elastic region. Isotropic linear hypoelasticity is assumed :

De = Me : σ
`

or σ
`
= Le : De, (4.3)

where σ
`
is the Jaumann derivative of the stress tensor σ, Me is the elastic compliance

tensor defined as

Me =
1

2µ
K+

1

3κ
J , Le = Me−1 = 2µK+ 3κJ , J =

1

3
δ δ, K = I −J ,

(4.4)

µ and κ denote the elastic shear and bulk moduli, δ and I the second- and symmetric fourth-

order identity tensors, with Cartesian components δij (the Kronecker delta) and Iijkl =

(δik δjl + δil δjk)/2.

4.2.2 The plastic part of the deformation rate Dp

The plastic part of the deformation rate Dp is determined in terms of the plastic properties

of the constituent phases by using the homogenization theory described in Chapter 2. The

corresponding constitutive equation can be written as

Dp = ˙̄εN =
s

2 µ̃
, N =

3

2 σe

s, σe =

√
3

2
s : s, ˙̄ε =

√
2

3
Dp : Dp =

σe

3 µ̃
, (4.5)

where µ̃ is determined from the homogenization theory.

The phases are viscoplastic and the flow rule for each one is written in the form

Dp(r) = ˙̄ε(r) N, N =
3

2σe

s, r = 1, 2, · · · , N (4.6)

where

˙̄ε(r) =
σe

3µ(r) (σe)
, µ(r) (σe) =

1

3

σ
(r)
0

ε̇0

(
σ
(r)
0

σe

)n(r)−1

. (4.7)

4.3 Numerical integration of constitutive equations

In this section, we present a method for the numerical integration of the resulting constitutive

equations in the context of a displacement driven finite element formulation. Let t be a

loading (time-like) parameter and consider an infinitesimal change from tn to tn+1 = tn+∆t,

where ∆t is “small”. We use the notation An and An+1 to denote the values of A at the

start tn and the end tn+1 of the increment and set ∆A = An+1 − An. We assume that the

effective flow stress is, to a first approximation, constant over the period (tn, tn+1) and can

be determined by the optimization problem in (2.40), in which the flow stresses of the phases

take values

σ
(i)
0 = (1− β) σ

(i)
0

∣∣∣
n
+ β σ

(i)
0

∣∣∣
n+1

, 0 ≤ β ≤ 1. (4.8)
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where

σ
(i)
0

∣∣∣
n
= σ(i)

y

(
ε̄(i)n

)
and σ

(i)
0

∣∣∣
n+1

= σ(i)
y

(
ε̄
(i)
n+1

)
= σ(i)

y

(
ε̄(i)n +∆ε̄(i)

)
. (4.9)

Put in other words, the composite is assumed to behave as “incrementally perfectly plastic”

with a flow stress σ̃0(qn+1), which is updated at every increment. The value of σ̃0(qn+1) is

calculated by the solution of the corresponding optimization problem (2.40) using the σ
(i)
0

values defined in (4.8). The solution of the optimization problem (2.40) defines also the

optimal values ŷ(r)(qn+1), which determine the corresponding strain concentration factors

α(i) in (2.51) for the increment. The actual calculation is implicit in general, except when

β = 0 is used in (4.8).

The Mises plasticity model is used, so over any time increment (tn, tn+1) the effective yield

condition of the composite is written in the form

Φ (σ,qn+1) = σe − σ̃0 (qn+1) = 0, (4.10)

where σ̃0 (qn+1) is determined from the solution of the optimization problem (2.40) with σ
(i)
0

defined in (4.8).

The evolution of the equivalent plastic strains in the phases are written in terms of the strain

concentration factors α(i) defined in (2.51) in terms of the optimal values ŷ(r) (qn+1), i.e.,

q̇i = ˙̄ε α(i)(qn+1), i = 1, 2, · · · , N. (4.11)

In a finite element environment, the solution is developed incrementally and the constitutive

equations are integrated numerically at the element Gauss integration points. In a displace-

ment based finite element formulation the solution is deformation driven. Let F denote the

deformation gradient tensor. At a given Gauss point, the solution (Fn,σn,qn) at time tn as

well as the deformation gradient Fn+1 at time tn+1 = tn +∆t are known and the problem is

to determine (σn+1,qn+1).

The time variation of the deformation gradient F during the time increment [tn, tn+1] can

be written as:

F(t) = ∆F(t) · Fn = R(t) ·U(t) · Fn, tn ≤ t ≤ tn+1, (4.12)

where R(t) and U(t) are the rotation and right stretch tensors associated with ∆F(t). The

corresponding deformation rate tensor D(t) and spin W(t) can be written as:

D(t) ≡
[
Ḟ(t) · F−1(t)

]
s
=
[
∆Ḟ(t) ·∆F−1(t)

]
s
, (4.13)

and

W(t) ≡
[
Ḟ(t) · F−1(t)

]
a
=
[
∆Ḟ(t) ·∆F−1(t)

]
a
, (4.14)

where the subscripts s and a denote the symmetric and anti-symmetric parts, respectively.

If it is assumed that the Lagrangian triad associated with ∆F(t) (i.e., the eigenvectors of

U(t)) remains fixed over the time interval (tn, tn+1), it can be shown readily that

D(t) = R(t) · Ė(t) ·RT (t), W(t) = Ṙ(t) ·RT (t), (4.15)
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and

σ
`
(t) = R(t) · ˙̂σ(t) ·RT (t) (4.16)

where a superscript T indicates the transpose of a second-order tensor, E(t) = lnU(t) is the

logarithmic strain relative to the configuration at the start of the increment, and

σ̂(t) = RT (t) · σ(t) ·R(t). (4.17)

It is noted that at the start of the increment (t = tn)

∆Fn = Rn = Un = δ, σ̂n = σn, and En = 0, (4.18)

whereas at the end of the increment (t = tn+1)

∆Fn+1 = Fn+1 · F−1
n = Rn+1 ·Un+1 = known, and En+1 = lnUn+1 = known. (4.19)

Then, the constitutive equations of the model can be written in the following form

D = De +Dp ⇒ Ė = Ėe + Ėp, (4.20)

σ
`
= Le : De ⇒ ˙̂σ = Le : Ėe, (4.21)

Dp = ˙̄ε N̂, ⇒ Ėp = ˙̄ε N̂, (4.22)

Dp(i) = α(i) Dp ⇒ q̇i = ˙̄ε α(i)(q), i = 1, 2, · · · , N, (4.23)

with Le = 2GK+ 3κJ , N̂ =
3

2σe

ŝ, σe =

√
3

2
ŝ : ŝ. (4.24)

It should be emphasized that equation (4.22) that defines the plastic deformation rate Ėp

and equation (4.23) require numerical integration, whereas the rest of the equations can be

integrated exactly:

∆E = ∆Ee +∆Ep, (4.25)

σ̂n+1 = σn +Le : ∆Ee = σn +Le : (∆E−∆Ep) = σ̂e −Le : ∆Ep, (4.26)

where σ̂e = σn +Le : ∆E is the (known) “elastic predictor”.

We use two different methodologies for the integration of the aforementioned constitutive

equations. In the first, we use the backward Euler method for the numerical integration of

(4.22), and the forward Euler method for (4.23); in the second, we use the backward Euler

method for the integration of both (4.22) and (4.23). In both cases, we use the backward

Euler method for the integration of the “plastic flow” equation since previous experience

(Aravas and Ponte Castañeda [2]) showed that it is imperative in order to be able to use

increments of reasonable size.
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4.3. Numerical integration of constitutive equations 59

4.3.1 Integration using a combination of the backward and the

forward Euler schemes

A backward Euler integration scheme is used for the numerical integration of the flow rule

(4.22):

∆Ep = ∆ε̄ N̂n+1. (4.27)

The elasticity equation (4.26) becomes

σ̂n+1 = σ̂e − 2G∆ε̄ N̂n+1. (4.28)

Considering the deviatoric part of last equation and using the definition (4.24) of N̂n+1 we

conclude that the stress deviator ŝn+1 is co-linear with the deviatoric part of the elastic

predictor ŝe

ŝn+1 = ŝe − 3G∆ε̄

σe
e

ŝn+1 or ŝn+1 =

(
1 +

3G∆ε̄

σe
e

)−1

ŝe, (4.29)

Therefore, we can determine the direction N̂n+1 of the plastic strain rate at tn+1 by using

the known elastic predictor as

N̂n+1 =
3

2 σe|n+1

ŝn+1 =
3

2σe
e

ŝe ≡ N̂e = known. (4.30)

where σe
e =

√
3
2
ŝe : ŝe is the von Mises equivalent stress of the elastic predictor. Projecting

(4.28) in the direction of the plastic strain rate N̂n+1

σ̂n+1 : N̂n+1 = σ̂e : N̂e − 2G∆ε̄ N̂n+1 : N̂n+1 (4.31)

and taking into account that σ̂ : N̂ = σe and N̂ : N̂ = 3
2
, we derive

σe|n+1 = σe
e − 3G∆ε̄. (4.32)

Thus, the yield condition (4.10) can be written at the end of the increment in the form

Φ (∆ε̄) ≡ σe
e − 3G∆ε̄− σ̃0 (qn +∆q) = 0. (4.33)

The evolution of the equivalent plastic strains in the phases (4.23) using the forward Euler

scheme are written also as

∆qi = ∆ε̄ α(i)(qn), i = 1, 2, · · · , N. (4.34)

The problem of integrating the elastoplastic equations for the homogenized composite reduces

to the solution of the set of N + 1 non-linear equations (4.33) and (4.34) for ∆ε̄ and ∆q =(
∆ε̄(1),∆ε̄(2), · · · ,∆ε̄(N)

)
. These equations are solved by using Newton’s method. In every

Newton iteration the values of ∆q are used to calculate the corresponding σ
(i)
0 from (4.8)

and then the optimization problem (2.40) is solved by using the CONMAX software [32] to

determine the optimal values ŷ(i); the values of the effective flow stress σ̃0 and the strain
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concentration factors α(i) are then determined and the iterations are continued until the set

tolerances are met. Details on the calculation of the Jacobian of the Newton loop are given

in Appendix IV.

It is emphasized that the calculations are much simpler for a two-phase composite; in that

case, one does not need to invoke CONMAX, since σ̃0 is defined analytically by (3.5).

Once ∆ε̄ and ∆q are calculated, equations (4.28) and (4.34) are used to determine the stress

σ̂n+1 and the state variables qn+1 and the true stresses are calculated as

σn+1 = Rn+1 · σ̂n+1 ·RT
n+1. (4.35)

Remark 1. In the special case where the value β = 0 is used in (4.8), the effective flow

stress of the composite σ̃0 and the strain concentration factors α(i) are determined using the

values of the flow stresses of the phases σ
(i)
0

∣∣∣
n
at the start of the increment, and equations

(4.33) and (4.34) can be solved analytically:

∆ε̄ =
σe
e − σ̃0 (qn)

3G
and ∆qi = ∆ε̄ α(i)(qn). (4.36)

4.3.2 Integration using the backward Euler method on all vari-

ables

We recall equation (4.32):

σe|n+1 = σe
e − 3G∆ε̄,

and use a backward Euler scheme for the numerical integration of (4.23):

∆qi = ∆ε̄ α(i)(qn +∆q) (4.37)

The yield condition now becomes

Φ (∆ε̄) ≡ σe
e − 3G∆ε̄− σ̄0 (qn +∆q) = 0. (4.38)

Equations (4.38) and (4.37) is now a system of non-linear equations that needs to be solved

for ∆ε̄ and ∆q. We chose ∆ε̄ as the primary unknown and treat (4.38) as the basic equation,

in which ∆q are defined by (4.37). Within each iteration for ∆ε̄, the system of equations

(4.37) is solved for ∆q by using another Newton loop. Details on the calculation of the

Jacobian of the Newton loop are given in Appendix IV.

The integration scheme described above is implemented into the ABAQUS general purpose

finite element program [23]. The finite element formulation is based on the weak form of the

momentum balance, the solution is carried out incrementally, and the discretized nonlinear

equations are solved using Newton’s method. In the calculations, the Jacobian of the global

Newton scheme is approximated by the tangent stiffness matrix. Such an approximation

Institutional Repository - Library & Information Centre - University of Thessaly
09/06/2024 10:09:40 EEST - 3.137.213.185
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of the Jacobian is first-order accurate as the size of the increment ∆t → 0; it should be

emphasized, however, that the aforementioned approximation influences only the rate of

convergence of the Newton loop and not the accuracy of the results.

At this point we should also note that both computational models, the one with the integra-

tion using the backward Euler method and the one with the integration using a combination

of the backward and the forward Euler method are equally accurate since their results are

identical. Thus, in the following we choose to use the computational model of the latter case

which is simpler.

4.4 The linearization moduli

When the finite element method is used for the solution to the problem, the “linearization

moduli” Cijkl are required :

Cijkl ≃ Rim|n+1 Rjn|n+1Rkp|n+1 Rlq|n+1 Ĉmnpq, where Ĉ =
∂σ̂n+1

∂En+1

. (4.39)

Generally, C depends not only on the constitutive model but also on the algorithm used for

the numerical integration of the constitutive equations. The equation that defines σ̂n+1 is

σ̂n+1 = σn +Le : ∆E− 2G∆ε̄ N̂e (4.40)

so that

dσ̂n+1 = Le : dEn+1 − 2G
(
dε̄ N̂e +∆ε̄p dN̂e

)
, (4.41)

where

dN̂e =
2G

σe
e

(
3

2
K− N̂e N̂e

)
: dEn+1.

The yield condition

σe|n+1 − σ̄0|n+1 = 0 (4.42)

is used for the determination of Ĉ as follows

0 =
∂σe|n+1

∂σ̂n+1︸ ︷︷ ︸
N̂n+1=N̂e

: dσn+1 −
N∑
k=1

∂σ̄0

∂ε̄(k)

∣∣∣∣
n+1

dε̄(k)

= N̂e :
[
Le : dEn+1 − 2G

(
dε̄ N̂e +∆ε̄ dN̂e

)]
−

N∑
k=1

∂σ̄0

∂σ
(k)
0

∣∣∣∣∣
n+1

h
(k)
n+1 α

(i)
n dε̄

= N̂e : Le︸ ︷︷ ︸
2G N̂e

: dEn+1 − 2G

dε̄ N̂e : N̂e︸ ︷︷ ︸
3/2

+∆ε̄ N̂e : dN̂e︸ ︷︷ ︸
0

−
N∑
k=1

(
∂σ̄0

∂σ
(k)
0

∣∣∣∣∣
n+1

h
(k)
n+1 α

(i)
n

)
︸ ︷︷ ︸

Hn+1

dε̄

= 2G N̂e : dEn+1 − (3G+Hn+1) dε̄, (4.43)
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Therefore dε̄ can be written as

dε̄ =
2G

3G+Hn+1

N̂e : dEn+1. (4.44)

Finally, we substitute dε̄ from (4.44) into (4.41) to derive

dσ̂n+1 = Le : dEn+1 − 2G

[
2G

3G+Hn+1

(
N̂e : dEn+1

)
N̂e+ ∆ε̄

2G

σe
e

(
3

2
K− N̂e N̂e

)
: dEn+1

]
=

{
Le − 4G

[
1

3 + Hn+1

G

N̂e N̂e +∆ε̄
G

σe
e

(
3

2
K− N̂e N̂e

)]}
: dEn+1

=

{
Le − 4G

(
1

3 + Hn+1

G

−∆ε̄
G

σe
e

)
N̂e N̂e − 6G∆ε̄

G

σe
e

K
}

: dEn+1. (4.45)

Therefore the linearization moduli are determined from

Ĉ = Le − 4G

(
1

3 + Hn+1

G

−∆ε̄
G

σe
e

)
N̂n+1 N̂n+1 − 6G∆ε̄

G

σe
e

K. (4.46)

Finally, (4.39) yields

C ≃ Le − 4G

(
1

3 + Hn+1

G

−∆ε̄
G

σe
e

)
Nn+1 Nn+1 − 6G∆ε̄

G

σe
e

K. (4.47)

4.5 The role of UMAT(User MATerial subroutine)

The constitutive model described above is implemented into the ABAQUS general purpose

finite element code [23]. This code provides a general interface so that a particular consti-

tutive model can be introduced via a “user subroutine” named UMAT (User MATerial).

UMAT subroutines can be used with any ABAQUS procedure that includes mechanical be-

havior and are called by ABAQUS at every integration point of all elements for which the

material definition includes a user-defined material behavior. The subroutine UMAT passes

in all the information at the start of the increment, i.e., Fn, σn, ε̄
(r)
n , as well as Fn+1 and the

user has to calculate the values of the corresponding quantities at the end of the increment,

i.e., σn+1, and ε̄
(r)
n+1. A UMAT subroutine must also provide the material Jacobian matrix

∂ (∆σ) /∂ (∆ε) corresponding to the mechanical constitutive model under consideration.

When developing a UMAT subroutine the user is also free to define solution-dependent state

variables (STATEV) and ABAQUS will store their values at the end of every increment,

making them available for future calculations on subsequent increments. Solution depen-

dent variables need to be updated to their values at the end of every increment.

The basic variables predefined in a general UMAT subroutine are summarized in Table 4.1.

In the context of the UMAT developed to model the composite material, new variables were

also introduced. The following table (Table 4.2) presents the state variables (STATEV)

defined for the specific model.
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4.6. Unit cell finite element calculations 63

Variable Definition

NDI Number of direct stress components

NSHR Number of shear stress components

NTENS Number of total stress components

NPROPS Number of material constants

NSTATEV Number of extra state variables to be used

NOEL Number of Element being processed

NPT Number of Integration point being processed

LAYER Layer number (for composite shells and solids)

KSPT Section point number within the current layer

KINC Increment number

KSTEP Step number

PROPS(NPROPS) Array containing the user specified material constants

STRESS(NTENS) Array containing the stress components

STATEV(NSTATEV) Array containing the user defined state variables

STRAN(NTENS) Array containing the total strains

DSTRAN(NTENS) Array containing the strain increments

DDSDDE(NTENS,NTENS) Material Jacobian ∂ (∆σ) /∂ (∆ε) to be defined

TIME(1) Step time at the beginning of the current increment

TIME(2) Total time at the beginning of the current increment

DTIME Time increment

PNEWDT Ratio DTIMEnew/DTIMEcurrent

DROT(3,3) Rotation increment matrix

DFGRD0(3,3) Deformation gradient at increment start

DFGRD1(3,3) Deformation gradient at the end of the increment

CMNAME User-Defined material name

Table 4.1: Interpretation of the predefined variables in a UMAT subroutine.

4.6 Unit cell finite element calculations

In this section we present the results of unit cell finite element calculations for a composite

material made up of a statistically isotropic random distribution of isotropic, linearly-elastic

hardening-plastic spherical inclusions embedded in a continuous, isotropic, linearly-elastic

hardening-plastic matrix. The Mises plasticity model is used in the calculations. All analyses

were carried out incrementally and accounted for geometry changes due to deformation (finite

strain solutions).

In all cases analyzed, the matrix material is identified as “phase 1” and the flow stress σ
(i)
y
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STATEV # Definition

1 Equivalent plastic strain of the composite material ε̄

2 Plasticity flag (0 → Elasticity, 1 → Plasticity)

3 - 6 Volume fractions of the constituent phases c(i)

7 - 10 Equivalent plastic strain of the constituent phases ε̄(i)

11 - 14 Optimization parameters y(i)

Table 4.2: The State variables defined in UMAT for the model for composite materials

of “phase i” is a function of the corresponding equivalent plastic strain ε̄:

σ(i)
y

(
ε̄(i)
)
= σ

(i)
0

(
1 +

ε̄(i)

ε0

) 1

η(i)

, ε0 = 0.005, (4.48)

where σ
(i)
0 = σ

(i)
y (0) is the yield stress of phase i, E is the elastic Young’s modulus, and

the hardening exponents η(i) take values in the region 1 ≤ η(i) ≤ ∞, with the limiting

case η(i) = ∞ corresponding to perfect plasticity. Note that this hardening exponents

are completely uncorrelated to the creep exponent n(i) used in the definitions of the stress

potentials in the previous sections. Figure 4.1 illustrates stress-strain curves for different

values of the hardening exponents η(i).
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Figure 4.1: Stress-strain curves for different values of the hardening exponents η(i).

The following values are used for Young’s modulus E and Poisson ratio ν:

E = 220GPa, ν = 0.3. (4.49)

In addition, one-element finite element calculations were carried out, in which the element is

subjected to the same deformation gradient as the unit cell and the corresponding uniform
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stress state in the element is calculated by using the algorithm described in section 4.3 for

the homogenized material.

4.6.1 Two-phase composites

We analyze first a two-phase composite with

σ
(2)
0

σ
(1)
0

= 1.5, η(1) = 5, η(2) = 3. (4.50)

The corresponding stress-strain curves of the phases in uniaxial tension are shown in Fig.

4.2.
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Figure 4.2: Uniaxial stress-strain curves of phases.

Figure 4.3 shows the deformed unit cell at λ = 1.15 for various inclusion volume fractions

c(2).

Figure 4.4 shows the results of the unit cell finite element calculations together with the

predictions of the homogenization model for the case of uniaxial tension in direction 1 and

for inclusion volume fractions c(2) =0.10, 0.20, 0.30, and 0.40. The quantity σ̃ in Fig.

4.4 is the average stress < σ11 > in the unit cell calculations and the uniform σ11 stress

component in the corresponding one-element homogenization calculation. The predictions

of the homogenization model agree well with the numerical results. It is also evident from

these figures that as we increase the volume fraction of the stiffer particle phase which also

has a higher hardening exponent, this leads to a reinforcement of the composite both at the

level of the yield strength as well as in its hardening response. It is also interesting to note

that even though we have added the hardening behavior of the phases heuristically to the
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Figure 4.3: Deformed configurations of unit cells in uniaxial tension (λ = 1.15) for various

values of the volume fraction c(2).

homogenization model for perfectly plastic phases (see equation (3.5)), the corresponding

analytical estimates are in excellent agreement with those obtained by the finite element

calculations (see also relevant discussion in [68]). This, in turn, suggests that such a simplified

approach is sufficient for this class of materials.

The unit cell finite element calculations discussed above were used also to determine the

strain concentration factors. Figure 4.5 shows the variation of the strain concentration

factors α(r) as determined from the unit cell finite element calculations (equation (3.35))

and the homogenization theory (equation (2.51)) in a two-phase composite for the case of

uniaxial tension in direction 1 and for inclusion volume fractions c(2) =0.10, 0.20, 0.30, and

0.40.

Calculations are also carried out for finite shear deformation. In this case, the deformation

gradient used in (3.29) is of the form

F = δ + γ e1 e2, (4.51)

where γ is the amount of shearing on the 1-2 plane. Figure 4.6 shows the deformed unit cell

at γ = 0.15 for various inclusion volume fractions c(2).

Figure 4.7 shows the results of the unit cell finite element calculations together with the

predictions of the homogenization model for the case of finite shear on the 1-2 plane and for

inclusion volume fractions c(2) =0.10, 0.20, 0.30, and 0.40. The quantity τ̃ in Fig. 4.7 is

τ̃ =

√
1

2
sij sij , (4.52)

where sij is identified with the average deviatoric stresses < sij > in the unit cell calculations

and with the uniform deviatoric stresses sij in the one-element homogenization calculations.

Again, the predictions of the homogenization model agree well with the numerical results.
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Figure 4.4: Stress-strain curves of the two-phase composite in uniaxial tension for different

values of the volume fraction c(2). The solid lines are the results of the unit cell finite element

calculations and the dash lines are the predictions (2.40) of the model based on the H-S−

estimate (µ0 = µ(1)).

Similar observations to those made in the context of Figure 4.4 could also be made in

Figure 4.7 regarding the effect of volume fraction and the hardening exponent of the phases

upon the effective response under shear loadings. Figure 4.8 shows the variation of the

strain concentration factors α(r) as determined from the unit cell finite element calculations

(equation (3.35)) and the homogenization theory (equation (2.51)) in a two-phase composite

for the case of simple shear and for inclusion volume fractions c(2) =0.10, 0.20, 0.30, and

0.40.

Finally calculations are also carried out for the case of compression. Figure 4.9 shows the

deformed unit cell at λ = 0.85 for various inclusion volume fractions c(2).

Figure 4.10 shows the results of the unit cell finite element calculations together with the

predictions of the homogenization model for the case of compression in direction 1 and for

inclusion volume fractions c(2) =0.10, 0.20, 0.30, and 0.40. The quantity σ̃ in Fig. 4.10

is the average stress | < σ11 > | in the unit cell calculations and the uniform |σ11| stress
component in the corresponding one-element homogenization calculation. Figure 4.11 shows
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Figure 4.5: Strain concentration factors α(i) = dε̄(i)/dε̄ as determined from unit cell finite

element calculations and homogenization theory (equation (2.51)) for a two-phase composite.

the variation of the strain concentration factors α(r) as determined from the unit cell finite

element calculations (equation (3.35)) and the homogenization theory (equation (2.51)) in a

two-phase composite for the case of compression and for inclusion volume fractions c(2) =0.10,

0.20, 0.30, and 0.40. The predictions of the homogenization model agree well with the

numerical results.

4.6.2 Three-phase composites

We consider next a three-phase composite with

σ
(2)
0

σ
(1)
0

= 1.875,
σ
(3)
0

σ
(1)
0

= 5, η(1) = 5, η(2) = 3, η(3) = 2.5. (4.53)

and composition c(1) = 0.60, c(2) = 0.25, and c(3) = 0.15. The problems of uniaxial tension,

finite shear deformation and compression are solved.

Figures 4.12 – 4.14 show the deformed unit cells for uniaxial tension at λ = 1.20, finite

shear γ = 0.20 and compression at λ = 0.80 and the corresponding stress-strain curves. The
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Figure 4.6: Deformed configurations of unit cells in simple shear (γ = 0.15) for various values

of the volume fraction c(2).

predictions of the homogenization model agree well with the results of the unit cell finite

element calculations.

In order to check the isotropy of the unit cell, we carried out calculations for uniaxial tension

in directions 2 and 3, for simple shear in plane 13 and 23 and for compression in directions 2

and 3. In all cases, the results were identical to those shown in Figs. 4.12, 4.13 and 4.14.

Figures 4.15 – 4.17 show the variation of the strain concentration factors α(r) as determined

from the unit cell finite element calculations (equation (3.35)) and the homogenization theory

(equation (2.51)) in a three-phase composite for the case of uniaxial tension, simple shear and

compression. The predictions of the homogenization model agree well with the results of the

unit cell finite element calculations. The model is capable of predicting sufficiently well both

the initial yield strength of the three-phase composite as well the hardening evolution as a

function of the applied strains in uniaxial tension, uniaxial compression and shear loadings.
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Figure 4.7: Shear stress-shear strain curves of the two-phase composite in simple shear for

different values of the volume fraction c(2). The solid lines are the results of the unit cell

finite element calculations and the dash lines are the predictions (2.40) of the model based

on the H-S− estimate (µ0 = µ(1)).
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Figure 4.8: Strain concentration factors α(i) = dε̄(i)/dε̄ as determined from unit cell finite

element calculations and homogenization theory (equation (2.51)) for a two-phase composite.

Figure 4.9: Deformed configurations of unit cells in compression (λ = 0.85) for various values

of the volume fraction c(2).
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Figure 4.10: Stress-strain curves of the two-phase composite in compression for different

values of the volume fraction c(2). The solid lines are the results of the unit cell finite

element calculations and the dash lines are the predictions (2.40) of the model based on the

H-S− estimate (µ0 = µ(1)).
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Figure 4.11: Strain concentration factors α(i) = dε̄(i)/dε̄ as determined from unit cell finite

element calculations and homogenization theory (equation (2.51)) for a two-phase composite.
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Figure 4.12: Deformed configuration of unit cell of the three-phase composite in uniaxial

tension (λ = 1.20) and stress-strain curves of the three-phase composite. The solid lines are

the results of the unit cell finite element calculations and the dash lines are the predictions

(2.40) of the model based on the H-S− estimate (µ0 = µ(1)).
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Figure 4.13: Deformed configuration of unit cell of the three-phase composite in simple shear

(γ = 0.20) and shear stress - shear strain curves of the three-phase composite. The solid

lines are the results of the unit cell finite element calculations and the dash lines are the

predictions (2.40) of the model based on the H-S− estimate (µ0 = µ(1)).
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Figure 4.14: Deformed configuration of unit cell of the three-phase composite in compression

(λ = 0.80) and stress-strain curves of the three-phase composite. The solid lines are the

results of the unit cell finite element calculations and the dash lines are the predictions

(2.40) of the model based on the H-S− estimate (µ0 = µ(1)).
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Figure 4.15: Strain concentration factors α(i) = dε̄(i)/dε̄ as determined from unit cell

finite element calculations and homogenization theory (equation (2.51)) for a three-phase

composite for the case of uniaxial tension.
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Figure 4.16: Strain concentration factors α(i) = dε̄(i)/dε̄ as determined from unit cell

finite element calculations and homogenization theory (equation (2.51)) for a three-phase

composite for the case of simple shear.
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Figure 4.17: Strain concentration factors α(i) = dε̄(i)/dε̄ as determined from unit cell

finite element calculations and homogenization theory (equation (2.51)) for a three-phase

composite for the case of compression.
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Chapter 5

Applications - TRIP Steels

5.1 Introduction

In this chapter, we develop a constitutive model for TRIP steels that consist of four indi-

vidual constituents: ferrite, bainite, retained austenite and martensite. The homogenization

techniques for non-linear composites, described in Chapter 2, are used to determine the effec-

tive properties and overall behavior of TRIP steels. We develop a method for the numerical

integration of the resulting constitutive equations in the context of a displacement driven

finite element formulation and the model is implemented into the ABAQUS. The calibration

of the model is based on uniaxial tension tests on TRIP steels. Then, we use the constitutive

model to study in detail the problems of plastic flow localization and necking in tension. We

also use the model to calculate “forming limit diagrams” for sheets made of TRIP steels.

Calculations are also conducted for a non-transforming steel for comparison purposes.

5.2 Constitutive modeling of TRIP steels

In this section, a constitutive model for TRIP steels is developed. As it was previously men-

tioned, we consider four-phase TRIP steels that consist of a ferritic matrix with dispersed

bainite and austenite, which transforms gradually into martensite as the material deforms

plastically. The following labels are used for the constituent phases: (1) for ferrite, (2) for

bainite, (3) or (a) for austenite and (4) or (m) for martensite. The constitutive equations

are developed for the case of finite geometry changes.

An important aspect of the martensitic transformation is the strain softening which occurs

due to the strain associated with the transformation process. This strain softening is ac-

counted for by introducing in the constitutive model an additional deformation rate that is

proportional to the rate of increase of the volume fraction of martensite. The total defor-

mation rate can be split into elastic, plastic and transformation parts:

D = De +Dp +DTRIP (5.1)
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Standard isotropic linear hypoelasticity of homogeneous solids is used in order to describe the

elastic behavior of the TRIP steels since the elastic properties of all phases are fundamentally

the same. The constitutive equation of the plastic part Dp is determined by using the

homogenization theory described in Chapter 2. The transformation part DTRIP has both

deviatoric and volumetric parts and is proportional to the rate of change of the volume

fraction of martensite due to martensitic transformation, which is described by the modified

Olson-Cohen transformation kinetics model proposed by Stringfellow et al. [64].

5.2.1 Constitutive formulation

The constitutive equation for De as mentioned in section 4.2.1 is written as

De = Me : σ
`

or σ
`
= Le : De, (5.2)

where σ
`
is the Jaumann derivative of the stress tensor σ, Me is the elastic compliance

tensor and Le is the elastic tensor.

The plastic part of the deformation rate Dp is determined in terms of the plastic properties

of the constituent phases by using the homogenization theory described in Chapter 2. The

corresponding constitutive equation, as mentioned in section 4.2.2 is of the form

Dp = ˙̄εN =
s

2 µ̃
, N =

3

2 σe

s, σe =

√
3

2
s : s, ˙̄ε =

√
2

3
Dp : Dp =

σe

3 µ̃
, (5.3)

where µ̃ is determined from the homogenization theory.

Finally, regarding the transformation part DTRIP Stringfellow et al. [64] proposed the fol-

lowing form:

DTRIP = Aḟ N+
1

3
ε̇pv δ with N =

3

2 σe

s, σe =

√
3

2
s : s, (5.4)

where σe is the von Mises equivalent stress, s is the deviatoric stress tensor, δ is the second-

order identity tensor, A(σe) = A0 + A1
σe

s∗a
is a dimensionless function and ε̇pv = ∆vḟ is the

transformation dilatation rate. Details of the formulation are given in Papatriantafillou [46].

Therefore, we conclude that the constitutive equation for DTRIP can be written as:

DTRIP =

[
A(σe)N+

1

3
∆v δ

]
ḟ (5.5)

5.2.1.1 Evolution of the volume fraction of the phases

Stringfellow et al. [64] extended the one-dimensional model of Olson and Cohen [45] for

the kinetics of martensitic transformation and developed a general model that considers in

addition to temperature and plastic strain the effects of stress triaxiality as well. The model

of Olson and Cohen [45] is based on the observation that strain-induced nucleation occurs

primarily at shear-band intersections. The evolution equation for the volume fraction of

martensite f derived by Stringfellow et al. [64] is of the form

ḟ = c(a)
(
Af ˙̄ε(a) +Bf ẊΣ

)
, (5.6)
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where c(a) is the volume fraction of austenite, ε̄(a) is the representative equivalent plastic

strain in the austenite, XΣ is the stress triaxiality defined as the ratio of the hydrostatic

stress p = σkk/3 to the von Mises equivalent stress σe, i.e., XΣ = p/σe and parameters Af

and Bf are defined as ([64])

Af = αβ0 r (1− fsb) (fsb)
r−1 P, (5.7)

Bf =
g2√
2π sg

β0 (fsb)
r exp

[
−1

2

(
g − ḡ

sg

)2
]
H(ẊΣ), (5.8)

where H is the Heaviside unit step function and fsb is the volume fraction of shear bands in

the austenite defined by ([45])

fsb = 1− exp
[
−α ε̄(a)

]
. (5.9)

In the previous expressions α is a constant that represents the rate of shear band formation

dfsb/dε̄
(a) in the austenite at low strains, P (g) is the probability that a shear band will serve

as a nucleation site for martensite

P (g) =
1√
2π sg

g∫
−∞

exp

[
−1

2

(
g′ − ḡ

sg

)2
]
dg′, (5.10)

where g is a normalized thermodynamic driving force defined as

g(Θ, XΣ) = g0 − g1 Θ+ g2XΣ, (5.11)

with (g0, g1, g2) positive dimensionless constants, Θ a normalized temperature related to

temperature T according to the equation

Θ(T ) =
T −Mσ

s,ut

Md,ut −Mσ
s,ut

, Mσ
s,ut ≤ T ≤ Md,ut, (5.12)

and (Mσ
s,ut,Md,ut) are the absolute (Mσ

s ,Md) temperatures for uniaxial tension.

In the following the evolution equations for c(1), c(2) and c(a) are presented. Starting with the

definition c(1) = V (1)/V , we derive ċ(1) = −c(1) V̇ /V . Finally, using that V̇ /V = ε̇pv ≃ ∆v ḟ ,

we find that

ċ(1) = −c(1)∆v ḟ . (5.13)

Likewise, we conclude that

ċ(2) = −c(2)∆v ḟ , (5.14)

and, since c(1) + c(2) + c(a) + f = 1, we find ċ(a) = −(ḟ + ċ(1) + ċ(2)) or

ċ(a) = −
[
1−

(
c(1) + c(2)

)
∆v

]
ḟ . (5.15)
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5.2.1.2 Summary of constitutive equations

The constitutive model developed in the previous sections consists of the following equations:

Constitutive Formulation: D = De +Dp +DTRIP (5.16)

Elastic behavior: σ
`
= Le : De (5.17)

Plastic Strain of the composite: Dp = ˙̄εN, ˙̄ε =
σe

3 µ̃
(5.18)

Transformation Deformation Rate: DTRIP =

[
AN+

1

3
∆v δ

]
ḟ (5.19)

where

N =
3

2σe

s, σe =

√
3

2
s : s (5.20)

and the evolution equations of the volume fractions are given by

Ferrite: ċ(1) = −c(1)∆v ḟ (5.21)

Bainite: ċ(2) = −c(2)∆v ḟ (5.22)

Retained Austenite: ċ(a) = −
(
ċ(1) + ċ(2) + ċ(m)

)
(5.23)

Martensite: ḟ = c(a)
(
Af ˙̄ε(a) +Bf ẊΣ

)
(5.24)

In the equations stated above, the quantities µ̃, A, Af and Bf have the following functional

dependencies:

µ̃ = µ̃
(
σe, c

(r)
)
, A = A(σe), Af = Af

(
˙̄ε(a), XΣ

)
, Bf = Bf

(
˙̄ε(a), XΣ, ẊΣ

)
(5.25)

5.2.2 Numerical integration of constitutive equations

In this section, we present a method for the numerical integration of the resulting constitutive

equations of TRIP steels in the context of a displacement driven finite element formulation.

At a Gauss point in the finite element mesh, the solution
(
Fn,σn, c

(r)
n

)
at time tn as well

as the deformation gradient Fn+1 at time tn+1 = tn + ∆t are known and the problem is to

determine σn+1, c
(r)
n+1.

The constitutive equations summarized in section 5.2.1.2 can be written in the following

form:

D = De +Din ⇒ Ė = Ėe + Ėin, (5.26)

σ
`
= Le : De ⇒ ˙̂σ = Le : Ėe, (5.27)

Din = ˙̄εN+

(
AN+

1

3
∆vδ

)
ḟ ⇒ Ėin =

(
˙̄ε+

A

∆v

ε̇pv

)
N+

1

3
ε̇pvδ, (5.28)

Dp(i) = α(i) Dp ⇒ ˙̄ε(i) = α(i) ˙̄ε (5.29)
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with N̂ =
3

2 σe

ŝ, ε̇pv = ∆vḟ , ˙̄ε =
σe

3µ (σe)
, α(i) = α(i)

(
ε̄(k)
)

(5.30)

The evolution equations of the volume fractions of the constituent phases are defined by the

following equations:

ḟ = c(a)
(
Af ˙̄ε(a) +Bf ẊΣ

)
(5.31)

ċ(a) = −
(
ċ(1) + ċ(2) + ċ(m)

)
(5.32)

ċ(1) = −c(1)∆vḟ (5.33)

ċ(2) = −c(2)∆vḟ (5.34)

As mentioned previously in section 5.2.1.1, Af and Bf depend on
(
ε̄(a), XΣ, Θ

)
.

At this point it should be noted that equation (5.28) that determines the inelastic defor-

mation rate Ėin and equation (5.31) that defines the evolution of the volume fraction of

martensite f , as well as equation (5.29) require numerical integration. The rest of the equa-

tions are integrated exactly:

∆E = ∆Ee +∆Ein ⇒ ∆Ee = ∆E−∆Ein, (5.35)

σ̂n+1 = σn +Le : ∆Ee = σn +Le :
(
∆E−∆Ein

)
= σ̂e −Le : ∆Ein, (5.36)

c
(1)
n+1 = c(1)n e−∆vf , (5.37)

c
(2)
n+1 = c(2)n e−∆vf , (5.38)

c
(a)
n+1 = 1−

(
fn+1 + c

(1)
n+1 + c

(2)
n+1

)
(5.39)

where σ̂e = σn +Le : ∆E is the (known)“elastic predictor”.

The remaining equations are

Ėin =

(
˙̄ε+

A

∆v

ε̇pv

)
N̂+

1

3
ε̇pvδ, N̂ =

3

2σe

ŝ, ε̇pv = ∆vḟ , ˙̄ε =
σe

3µ
(5.40)

˙̄ε(i) = α(i) ˙̄ε (5.41)

and

ḟ = c(a)
(
Af ˙̄ε(a) +Bf ẊΣ

)
(5.42)

We use two different methodologies for the integration of the aforementioned constitutive

equations. In the first, we use the backward Euler method for the numerical integration

of the “plastic flow” equation (5.40), and the forward Euler method for (5.41) and (5.42);

in the second, we use the backward Euler method for the integration of (5.40), (5.41) and

(5.42). In both cases, we use the backward Euler method for the integration of the “plastic

flow” equation since previous experience (Aravas and Ponte Castañeda [2]) showed that it

is imperative in order to be able to use increments of reasonable size.
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5.2.2.1 Integration using a combination of the backward and the forward Euler

schemes

A backward Euler integration scheme is used for the numerical integration of the plastic flow

rule (5.40):

∆Ein =

(
∆ε̄+

An+1

∆v

∆εpv

)
N̂n+1 +

1

3
∆εpv δ (5.43)

The elasticity equation (5.36) using equation (5.43) and setting Le = 2µK+3κJ becomes

σ̂n+1 = σ̂e − 2G

(
∆ε̄+

An+1

∆v

∆εpv

)
N̂n+1 −K∆εpv δ (5.44)

Considering the deviatoric part of last equation and using the definition of N̂n+1 we conclude

that the stress deviator ŝn+1 is co-linear with the deviatoric part of the elastic predictor ŝe

ŝn+1 = ŝe − 3G

σe|n+1

(
∆ε̄+

An+1

∆v

∆εpv

)
ŝn+1 or ŝn+1 =

ŝe

1 + 3G
σe|n+1

(
∆ε̄+ An+1

∆v
∆εpv

) (5.45)

Therefore, we can determine the direction N̂n+1 of the plastic strain rate at tn+1 by using

the known elastic predictor as follows

N̂n+1 =
3

2σe|n+1

ŝn+1 =
3

2

1√
3
2
ŝn+1 : ŝn+1

ŝn+1 =
3

2

1√
3
2
ŝe : ŝe

ŝe ≡ N̂e = known (5.46)

Projecting (5.45) in the direction of the plastic strain rate N̂n+1

ŝn+1 : N̂n+1 = ŝe : N̂n+1 −
3G

σe|n+1

(
∆ε̄+

An+1

∆v

∆εpv

)
ŝn+1 : N̂n+1 (5.47)

and taking into account that σ̂ : N̂ = σe, we derive

σe|n+1 =
σe
e − 3G

(
∆ε̄+ A0

∆v
∆εpv

)
1 + 3G

s∗a

A1

∆v
∆εpv

(5.48)

Therefore, the yield condition can be written at the end of the increment in the form

σe|n+1 − σ̃0(c
(i)
n+1, ε̄

(i)
n+1) = 0 ⇒

σe
e − 3G (∆ε̄+ A0

∆v
∆εpv)

1 + 3G
s∗a

A1

∆v
∆εpv

− σ̃0(c
(i)
n+1, ε̄

(i)
n+1) = 0

⇒ σe
e − 3G (∆ε̄+

A0

∆v

∆εpv)− (1 +
3G

s∗a

A1

∆v

∆εpv) σ̃0(c
(i)
n+1, ε̄

(i)
n+1) = 0 (5.49)

The evolution of the equivalent plastic strain in the phases (5.41) and of the volume fraction

of the martensite (5.42) using the forward Euler scheme are written also as

∆ε̄(i) = ∆ε̄ α(i)
n (5.50)

∆f = c(a)n

(
Af |n α(a)

n ∆ε̄+Bf |n ∆XΣ

)
(5.51)
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with An+1 = A0 + A1
σe|n+1

s∗a
(5.52)

∆εpv = ∆v ∆f (5.53)

∆XΣ = XΣ|n+1 −XΣ|n =

(
p

σe

)
n+1

−
(

p

σe

)
n

(5.54)

So we have the following 2 equations:

F1 ≡ σe
e − 3G

(
∆ε̄+

A0

∆v

∆εpv

)
−
(
1 +

3G

s∗a

A1

∆v

∆εpv

)
σ̃0

(
c
(i)
n+1, ε̄

(i)
n+1

)
= 0 (5.55)

F2 ≡ ∆εpv −∆v c
(3)
n

(
Af |n ∆ε̄(3) +Bf |n ∆XΣ

)
= 0 (5.56)

Equations (5.55) and (5.56) is now a system of non-linear equations that needs to be solved

for ∆ε̄ and ∆εpv. Newton’s method is used for the solution of the system. Details on the

calculation of the Jacobian of the Newton loop are given in Appendix IV.

5.2.2.2 Integration using the backward Euler method on all variables

We recall equation (5.43):

∆Ein =

(
∆ε̄+

An+1

∆v

∆εpv

)
N̂n+1 +

1

3
∆εpv δ

and use a backward Euler scheme for the numerical integration of (5.41) and (5.42):

∆ε̄(i) = ∆ε̄ α
(i)
n+1 (5.57)

∆f = c
(α)
n+1

(
Af |n+1∆ε̄(a) +Bf |n+1 ∆XΣ

)
(5.58)

So now we have the following 2 equations:

F1 ≡ σe
e − 3G

(
∆ε̄+

A0

∆v

∆εpv

)
−
(
1 +

3G

s∗a

A1

∆v

∆εpv

)
σ̃0

(
c
(i)
n+1, ε̄

(i)
n+1

)
= 0 (5.59)

F2 ≡ ∆εpv −∆v c
(3)
n+1

(
Af |n+1 ∆ε̄(3) +Bf |n+1 ∆XΣ

)
= 0 (5.60)

Equations (5.59) and (5.60) is now a system of non-linear equations that needs to be solved

for ∆ε̄ and ∆εpv. Newton’s method is used for the solution of the system. Details on the

calculation of the Jacobian of the Newton loop are given in Appendix IV.

At this point we should emphasize that both computational models, the one with the integra-

tion using the backward Euler method and the one with the integration using a combination

of the backward and the forward Euler method are equally accurate since their results are

identical. Thus, in the following we choose to use the computational model of the latter case

which is simpler.
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5.2.3 The linearization moduli

As we mentioned in section 4.4, when the finite element method is used for the solution to

the problem, the “linearization moduli” Cijkl are required

Cijkl ≃ Rim|n+1 Rjn|n+1Rkp|n+1 Rlq|n+1 Ĉmnpq, where Ĉ =
∂σ̂n+1

∂En+1

. (5.61)

Generally, C depends not only on the constitutive model but also on the algorithm used for

the numerical integration of the constitutive equations. The equation that defines σ̂n+1 is

σ̂n+1 = σn +Le: ∆Ee = σn +Le :
(
∆E−∆Ein

)
(5.62)

so that

dσ̂ = Le : dEe = Le : dE−Le : dEin (5.63)

= 2Gde+ κ dEkk δ − 2G

(
dε̄+

A

∆v

dεpv

)
N̂− κ dεpv δ ⇒

⇒ dσ̂ = 2G

[
de−

(
dε̄+

A

∆v

dεpv

)
N̂

]
+ κ (dEkk − dεpv) δ (5.64)

and

dŝ = 2G

[
de−

(
dε̄+

A

∆v

dεpv

)
N̂

]
, dp = κ (dEkk − dεpv) (5.65)

where for simplicity we drop the subscripts n+1. In order to determine dσ̂ we need to define

dε̄ and dεpv.

We begin with the calculation of dσe, dp and dXΣ in terms of dE, dε̄ and dεpv.

σ2
e =

3

2
ŝ : ŝ ⇒ 2σe dσe = 3 ŝ : dŝ ⇒ dσe =

3

2σe

ŝ︸ ︷︷ ︸
N̂

: dŝ = N̂ : dŝ ⇒

dσe = 2G N̂ :

[
de−

(
dε̄+

A

∆v

dεpv

)
N̂

]
= 2G N̂ : dE− 3G

(
dε̄+

A

∆v

dεpv

)
(5.66)

Also,

dp = κ δ : dE− κ dεpv (5.67)

Finally, using the definition XΣ = p/σe we derive

dXΣ =
dp

σe

− p

σ2
e

dσe =
dp−XΣ dσe

σe

⇒

dXΣ =
1

σe

{
κ δ : dE− κ dεpv −XΣ

[
2G N̂ : dE− 3G

(
dε̄+

A

∆v

dεpv

)]}
⇒

σe dXΣ = κ δ : dE− κ dεpv − 2GXΣ N̂ : dE+ 3GXΣ dε̄+ 3GXΣ
A

∆v

dεpv ⇒

⇒ 3GXΣ dε̄+

(
3GXΣ

A

∆v

− κ

)
dεpv − σe dXΣ =

(
2GXΣ N̂− κ δ

)
: dE (5.68)
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We continue with the calculation of dεpv in terms of dε̄ and dXΣ

dεpv = ∆v df = ∆v dc
(4) = ∆v c

(3)
(
Af dε̄

(3) +Bf dXΣ

)
= ∆v c

(3)
(
Af α

(3) dε̄+Bf dXΣ

)
⇒

dεpv = mdε̄+ q dXΣ H (dXΣ) ⇒ mdε̄− dεpv + q dXΣ H (dXΣ) = 0 (5.69)

where

m = ∆v c
(3) α(3)Af = m

(
c(3), ε̄(3), α(3), XΣ

)
(5.70)

q = ∆v c
(3)Bf = q

(
c(3), ε̄p(3), XΣ

)
(5.71)

The yield condition

Φ
(
s, ε̄(i), c(i)

)
= σe (s)− σ̃0

(
σ
(i)
0

(
ε̄(i)
)
, c(i)

)
= 0 (5.72)

is used for the determination of Ĉ as follows

dΦ = N̂ : ds−
4∑

i=1

(
∂σ̃0

∂ε̄(i)
dε̄(i) +

∂σ̃0

∂c(i)
dc(i)

)
=

= 2G N̂ :

[
de−

(
dε̄+

A

∆v

dεpv

)
N̂

]
−

4∑
i=1

(
∂σ̃0

∂σ
(i)
0

h(i)dε̄ α(i) +
∂σ̃0

∂c(i)
dεpv g

(i)

)
⇒

dΦ = 2G N̂ : dE− 3G

(
dε̄+

A

∆v

dεpv

)
− dε̄

4∑
i=1

(
∂σ̃0

∂σ
(i)
0

h(i) α(i)

)
︸ ︷︷ ︸

H

−dεpv

4∑
i=1

(
∂σ̃0

∂c(i)
g(i)
)

︸ ︷︷ ︸
Hv

= 0 ⇒

⇒ (3G+H) dε̄+

(
3G

A

∆v

+Hv

)
dεpv = 2G N̂ : dE (5.73)

So equations (5.68), (5.69) and (5.73) can be written as follows
3GXΣ 3GXΣ

A
∆v

− κ −σe

m −1 q H (dXΣ)

3G+H 3G A
∆v

+Hv 0




dε̄

dεpv

dXΣ

 =


(
2GXΣ N̂− κ δ

)
: dE

0

2G N̂ : dE



⇒


dε̄

dεpv

dXΣ

 =


(
a1 N̂+ a2 δ

)
: dE(

b1 N̂+ b2 δ
)
: dE(

c1 N̂+ c2 δ
)
: dE

 (5.74)

dε̄ =
(
a1 N̂+ a2 δ

)
: dE, dεpv =

(
b1 N̂+ b2 δ

)
: dE, dXΣ =

(
c1 N̂+ c2 δ

)
: dE

(5.75)
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with

a1 =
2

3D

[
1 + q

κ+XΣ Hv

σe

H (dXΣ)

]
, a2 = − q

D

κ

σe

(
A

∆v

+
Hv

3G

)
H (dXΣ) ,

b1 =
2

3D

[
m− q XΣ

H

σe

H (dXΣ)

]
, b2 =

q

D

κ

σe

(
1 +

H

3G

)
H (dXΣ) ,

c1 = − 2

3D

1

σe

[XΣH +m (κ+XΣ Hv)] , c2 =
1

D

κ

σe

[
1 +

H

3G
+m

(
A

∆v

+
Hv

3G

)]
H =

4∑
i=1

(
∂σ̃0

∂σ
(i)
0

h(i) α(i)

)
, Hv =

4∑
i=1

(
∂σ̃0

∂c(i)
g(i)
)
,

D = 1 +
H

3G
+m

(
A

∆v

+
Hv

3G

)
+

q

σe

[
κ

(
1 +

H

3G

)
+XΣ

(
Hv −

A

∆v

H

)]
H (dXΣ)

where

m = ∆v c
(3) α(3)Af , q = ∆v c

(3)Bf

Therefore dEin can be written in the following form

dEin =

(
dε̄+

A

∆v

dεpv

)
N̂+

1

3
dεpv δ = N̂

(
d1 N̂+ d2 δ

)
: dE+

1

3
δ
(
b1 N̂+ b2 δ

)
: dE ⇒

dEin =
(
d1 N̂ N̂+ d2 N̂ δ + e1 δ N̂+ e2 δ δ

)
: dE (5.76)

where

d1 = a1 +
A

∆v

b1, d2 = a2 +
A

∆v

b2, e1 =
1

3
b1, e2 =

1

3
b2

Finally, we substitute dEin from (5.76) into (5.64) to derive

dσ̂ = Le : dEe = Le : dE−Le : dEin = Le : dE− (2GK+ 3κJ ) :

[(
dε̄+

A

∆v

dεpv

)
N̂+

1

3
dεpv δ

]
= Le : dE− 2G

(
dε̄+

A

∆v

dεpv

)
N̂− κ dεpv δ

= Le : dE− 2G N̂

[(
a1 N̂+ a2 δ

)
: dE+

A

∆v

(
b1 N̂+ b2 δ

)
: dE

]
− κ δ

(
b1 N̂+ b2 δ

)
: dE

⇒ dσ̂ =
(
2GK+ 3κJ − f1N̂ N̂− f2 N̂ δ − g1 δ N̂− g2 δ δ

)
: dE (5.77)

where

f1 = 2G

(
a1 +

A

∆v

b1

)
, f2 = 2G

(
a2 +

A

∆v

b2

)
, g1 = κ b1, g2 = κ b2

Therefore the linearization moduli are determined from

Ĉ =
(
2GK+ 3κJ − f1N̂ N̂− f2 N̂ δ − g1 δ N̂− g2 δ δ

)
(5.78)

Finally, (5.61) yields

C ≃ (2GK+ 3κJ − f1NN− f2 N δ − g1 δN− g2 δ δ) (5.79)

with

f1 = 2G

(
a1 +

A

∆v

b1

)
, f2 = 2G

(
a2 +

A

∆v

b2

)
, g1 = κ b1, g2 = κ b2
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5.3. Computational model for plane stress 87

5.2.4 The role of UMAT(User MATerial subroutine)

As mentioned in the previous chapter, UMAT subroutines can be used with any ABAQUS

procedure that includes mechanical behavior and are called by ABAQUS at every integra-

tion point of all elements for which the material definition includes a user-defined material

behavior. The subroutine UMAT passes in all the information at the start of the increment,

i.e., Fn, σn, c
(r)
n , ε̄

(r)
n , as well as Fn+1 and the user has to calculate the values of the corre-

sponding quantities at the end of the increment, i.e., σn+1, c
(r)
n+1 and ε̄

(r)
n+1. The “linearization

moduli” are also calculated in UMAT.

5.3 Computational model for plane stress

In this section the behavior of TRIP steels under plane stress conditions is analyzed. In this

kind of problems, the out-of-plane strain components are not defined kinematically and the

method described in the previous sections needs to be modified. Lets consider a thin plane

disc of uniform thickness loaded in its plane. We consider that the X3 = 0 plane coincides

with the mean plane of the disc and the in-plane displacement field are of the form

u1 = u1 (X1, X2) and u2 = u2 (X1, X2) . (5.80)

In isotropic materials, the corresponding form of the deformation gradient and the stress

tensor are

[F ] =


F11 F12 0

F21 F22 0

0 0 F33

 and [σ] =


σ11 σ12 0

σ21 σ22 0

0 0 0

 , (5.81)

or in a more compact form

F = Fαβ eα eβ + F33 e3 e3 and σ = σαβ eα eβ, (5.82)

where Greek indices take values in the range (1, 2).

The expression for the deformation gradient [F ] and equations (5.80) are consistent given

that u3 is a function only ofX3, i.e. u3 = u3 (X3). Nonetheless, the out-of-plane displacement

and the corresponding thickness variation, in finite strain problems, are functions of (X1, X2),

when the in-plane displacement field is inhomogeneous. Thus, as the material deforms the

plane stress conditions may not apply. Hutchinson et al. [28], Tvergaard [73] and Needleman

and Tvergaard [44] studied under which conditions the plane stress assumption is valid. In

this section we consider that, as the disk deforms, the thickness variation is negligible,

so that the plane stress conditions apply and equations (5.80) and (5.81) hold to a good

approximation.

In plane stress problems, the method described in section 5.2.2 needs to be modified since

the out-of-plane component of the deformation gradient F33 is not defined kinematically.

Therefore we decide to write the deformation gradient associated with the current increment
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as follows

[∆Fn+1] =


∆F̄11 ∆F̄12 0

∆F̄21 ∆F̄22 0

0 0 ∆F3

 (5.83)

where ∆F̄αβ α, β = (1, 2) are the known in-plane components, and ∆F3 = λ3 is the unknown

out-of-plane component. Likewise, the right stretch tensor [Un+1] and the orthogonal tensor

[Rn+1] from the Polar Decomposition of F can be expressed as

[Un+1] =


Ū11 Ū12 0

Ū21 Ū22 0

0 0 λ3

 and [Rn+1] =


cos θ̄ − sin θ̄ 0

sin θ̄ cos θ̄ 0

0 0 1

 , (5.84)

and the logarithmic strain tensor [∆E] can be written as

[∆E] =


∆Ē11 ∆Ē12 0

∆Ē21 ∆Ē22 0

0 0 ∆E3

 (5.85)

where bared quantities are known and ∆E3 = lnλ3 is the unknown out-of-plane component

of [∆E]. As mentioned earlier, we note that the only difference with the method described in

section 5.2.2 is that the values of ∆F3 and therefore of ∆E3 are unknown when the process

of the numerical integration starts. The value of ∆E3 is determined from the condition

σ33|n+1 = σ̂33|n+1 = e3 · σ̂n+1 · e3 = 0 (5.86)

where σ̂n+1 = RT
n+1 · σn+1 ·Rn+1.

The logarithmic strain tensor can also be written as

∆E = ∆Ē+∆E3 a, with a = e3 e3 = a′ +
1

3
δ (5.87)

where ∆Ē is the known in-plane part of ∆E, and a′ is the deviatoric part of a:

a′ = a− 1

3
akk δ = −1

3
(e1 e1 + e2 e2 − 2 e3 e3) (5.88)

5.3.1 Numerical integration of constitutive equations under plane

stress conditions

Equations (5.35) - (5.42) are now written in the following form

∆E = ∆Ee +∆Ein ⇒ ∆Ee = ∆E−∆Ein, (5.89)

σ̂n+1 = σn +Le :
(
∆E−∆Ein

)
= σn +Le :

(
∆Ē+∆E3 a−∆Ein

)
=

= σ̄e −Le :
(
∆Ein −∆E3 a

)
(5.90)

∆Ein = (∆ε̄+ An+1 ∆f) N̂n+1 +
1

3
∆εpv δ, (5.91)
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with

N̂n+1 =
3

2σe|n+1

σ̂n+1, An+1 = A0 + A1

σe|n+1

s∗a
, ∆εpv = ∆v ∆f

∆ε̄(i) = α(i)
n ∆ε̄ (5.92)

∆f = c(3)n

(
Af |n α

(3)
n ∆ε̄+ Bf |n ∆XΣ

)
(5.93)

c
(1)
n+1 = c(1)n exp (−∆εpv) , (5.94)

c
(2)
n+1 = c(2)n exp (−∆εpv) , (5.95)

c
(4)
n+1 = c(4)n +

∆εpv
∆v

, (5.96)

c
(3)
n+1 = 1−

(
c
(1)
n+1 + c

(2)
n+1 + c

(4)
n+1

)
(5.97)

where bared quantities are known and σ̄e = σn + Le : ∆Ē is the“elastic predictor” that

corresponds to the known part of ∆E. At this point, it should be noted the the elastic

moduli Le used in the definition of σ̄e is the “full” elasticity tensor and not the plane stress

moduli used in traditional small strain finite element analysis.

First, we calculate the deviatoric and spherical parts of σ̂n+1:

ŝn+1 = s̄e − 2G
[(
∆Ein

)′ −∆E3 a
′
]

(5.98)

pn+1 =
1

3
σ̂n+1 : δ = p̄e − κ

(
∆Ein

kk −∆E3

)
(5.99)

Combining equations (5.91), (5.98) and (5.99) we derive

ŝn+1 = σ̄e − 2G [(∆ε̄+ An+1 ∆f)Nn+1 −∆E3 a
′] (5.100)

pn+1 = p̄e − κ (∆εpv −∆E3) (5.101)

Next, substituting N̂n+1 = 3
2σe|n+1

σ̂n+1 into (5.100) and solving for ŝn+1 we find that ŝn+1

and s̄e are not co - linear:

ŝn+1 =
s̄e + 2G∆E3 a

′

1 + 3G
σe|n+1

[
∆ε̄+

(
A0 + A1

σe|n+1

s∗a

)
∆εpv
∆v

] (5.102)

Finally, we calculate σe|n+1 from equation (5.102):(
σe|n+1

)2
=

3

2
ŝn+1 : ŝn+1 =

3

2

(s̄e + 2G∆E3 a
′) : (s̄e + 2G∆E3 a

′)[
1 + 3G

σe|n+1
(∆ε̄+ An+1 ∆f)

]2 (5.103)

Thus, substituting s̄e : s̄e = 2
3
σe
e, s̄

e : a′ = s̄e : a = s̄e33 and a′ : a′ = 2
3
into the last equation

we derive(
σe|n+1

)2
=

1[
1 + 3G

σe|n+1
(∆ε̄+ An+1 ∆f)

]2 (σ̄e
e
2 + 6G∆E3 s̄

e
33 + 4G2∆E2

3

)
(5.104)
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which can be solved for σe|n+1 :

σe|n+1 =
G

1 + 3G
s∗a

A1

∆v
∆εpv

[
F (∆E3)− 3

(
∆ε̄+

A0

∆v

∆εpv

)]
(5.105)

where

F (∆E3) =

√(
σ̄e
e

G

)2

+ 6
s̄e33
G

∆E3 + 4∆E2
3

In order to determine the value of ∆E3 we use the plane stress condition σ33|n+1 = s33|n+1+

pn+1 = 0 which, taking into account equations (5.102) and (5.101), yields

s̄e33 +
4
3
G∆E3

1 + 3G
σe|n+1

[
∆ε̄+

(
A0 + A1

σe|n+1

s∗a

)
∆εpv
∆v

] + pn+1 = 0 (5.106)

To recapitulate, now we choose ∆ε̄, ∆εpv and ∆E3 as the basic unknowns and we have the

following 3 equations (in contradiction with section 5.2.2 where we have 2 unknowns and 2

equations):

F1 = σe|n+1 − σ̃0

(
c
(i)
n+1, ε̄

(i)
n+1

)
= 0 (5.107)

F2 = ∆εpv −∆v c
(3)
n

(
Af |n α

(3)
n ∆ε̄+ Bf |n∆XΣ

)
= 0 (5.108)

F3 = s̄e33 +
4

3
G∆E3 +

{
1 + 3G

[
∆ε̄

σe|n+1

+

(
A0

σe|n+1

+
A1

s∗a

)
∆εpv
∆v

]}
pn+1 = 0 (5.109)

Newton’s method is used for the solution of the system. Details on the calculation of the

Jacobian of the Newton loop are given in Appendix IV.

As soon as, the values of ∆ε̄, ∆εpv and ∆E3 are determined, we use equations (5.105), (5.101),

(5.94), (5.95), (5.96) and (5.97) to define σe|n+1, pn+1, c
(1)
n+1, c

(2)
n+1, c

(a)
n+1 and c

(m)
n+1. Finally,

the integration process is completed with the calculation of σn+1

σn+1 = Rn+1 · σ̂n+1 ·RT
n+1. (5.110)

5.3.2 The linearization moduli under plane stress conditions

The linearization moduli which are required in the finite element method, were determined

in section 5.2.3 as

C = (2GK+ 3κJ − f1NN− f2N δ − g1 δN− g2 δ δ) (5.111)

with

f1 = 2G

(
a1 +

A

∆v

b1

)
, f2 = 2G

(
a2 +

A

∆v

b2

)
, g1 = κ b1, g2 = κ b2
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In plane strain problems, we can write the equation dσ = C : dE in matrix form
dσ11

dσ22

dσ33

dσ12

 =


C11 C12 C13 C14

C21 C22 C23 C24

C31 C32 C33 C34

C41 C42 C43 C44




dE11

dE22

dE33

2 dE12

 (5.112)

but in plane stress problems, the linearization moduli C̄ used in ABAQUS needs to be of

the form 
dσ11

dσ22

dσ12

 =


C̄11 C̄12 C̄13

C̄21 C̄22 C̄23

C̄31 C̄32 C̄33




dE11

dE22

2 dE12

 (5.113)

This form can be derived from equation (5.112) using the plane stress condition σ33 = 0.

The plane stress condition also suggests that dσ33 = 0 or

C31 dE11 + C32 dE22 + C33 dE33 + 2C34 dE12 = 0 (5.114)

which can be solved for dE33:

dE33 = − 1

C33

(C31 dE11 + C32 dE22 + 2C34 dE12) (5.115)

Thus, combining the last equation and equation (5.112) after some calculations we derive

C̄11 = C11 −
C13

C33

C31, C̄12 = C12 −
C13

C33

C32, C̄13 = C14 −
C13

C33

C34 (5.116)

C̄21 = C21 −
C23

C33

C31, C̄22 = C22 −
C23

C33

C32, C̄23 = C24 −
C23

C33

C34 (5.117)

C̄31 = C41 −
C43

C33

C31, C̄32 = C42 −
C43

C33

C32, C̄33 = C44 −
C43

C33

C34 (5.118)

For instance,

dσ11 = C11 dE11 + C12 dE22 + C13 dE33 + 2C14 dE12

= C11 dE11 + C12 dE22 −
C13

C33

(C31 dE11 + C32 dE22 + 2C34 dE12) + 2C14 dE12

=

(
C11 −

C13

C33

C31

)
dE11 +

(
C12 −

C13

C33

C32

)
dE22 +

(
C14 −

C13

C33

C34

)
2 dE12 (5.119)

which indicates (5.116).

5.4 Calibration of the model

The constitutive model for the TRIP steel, which was presented in the previous sections, is

now implemented into the ABAQUS through the subroutine UMAT in order to be calibrated.
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However, before proceeding with the calibration of the model we need to determine the

hardening behavior of the constituent phases. It should be emphasized that in addition

to the mechanical behavior of TRIP steels, the f − ε behavior is also highly influenced by

the hardening of the constituent phases. In order to model the hardening behavior we use

expressions of the following form

σ(r)
y = H(r)

(
ε̄(r)
)

(5.120)

where r denotes the number of the phase, σ
(r)
y the yield stress, ε̄(r) the equivalent plastic

strain and H(r) is the hardening expression. As mentioned earlier the labels used for the

constituent phases are (1) for ferrite, (2) for bainite, (3) or (a) for retained austenite and (4)

or (m) for martensite.

The hardening behavior of the phases is determined through a detailed bibliographic re-

search. To elaborate, the hardening behavior of the ferrite, the bainite and the martensite

were acquired from experimental data presented in Technical steel research [72]. In partic-

ular, for the ferritic phase we used the data of the annealed ferritic steel DOCOL 600, for

the martensitic phase we used the data of the partly martensitic steel DOCOL 1400 (volume

fraction of martensite 95%) and for the bainitic phase, the data from tensile tests performed

in a 0.5% C steel subjected to thermal treatment in the range of bainite formation (coiling

temperature of 950oC). The chemical composition of ferritic steel DOCOL 600 and marten-

sitic steel DOCOL 1400 are presented in Table 5.1.

The final step, following the intercritical annealing, in the production of TRIP steels, is

isothermal holding in the bainite transformation range. During the formation of bainitic

ferrite, carbon is rejected to the retained austenite. The carbon content of the retained

austenite is raised to values above 1wt% [6], which, apart from chemical stabilization, raises

its yield strength considerably. Values in the range of 500-550 MPa have been reported

([61],[78]). Thus the stress-strain curve of retained austenite lies above that of ferrite, which

because of its very low carbon content, exhibits a lower yield strength.

Therefore, the hardening behavior for each phase at 23oC is given by the following expressions

(where σ
(r)
y in MPa):

σ(1)
y = 260

(
1 +

ε̄

0.0042

) 1
4.25

(5.121)

σ(2)
y = 825

(
1 +

ε̄

0.0104

) 1
10.36

(5.122)

σ(a)
y = 550

(
1 +

ε̄

0.1

) 1
4.2

(5.123)

σ(m)
y = 1132

(
1 +

ε̄

0.0004

) 1
16.65

(5.124)

The hardening curves of the individual phases of the TRIP steel are acquired for the tem-

perature of 23oC due to the fact that the experimental data which will be used for the

comparison with the FEM model are obtained in this temperature. Figure 5.1 illustrates the

corresponding hardening curves.

Having determined the hardening behavior of the individual phases of the TRIP steel, we

now proceed with the calibration of the model. For the calibration are used experimental

data from interrupted tensile tests in a specific TRIP steel, the chemical composition of

which is given in Table 5.2. Details on the experiments are given in Papatriantafillou [46].

The experimental steel, consists of 50% ferrite, 38% bainite and 12% retained austenite and
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Figure 5.1: Hardening behavior of individual phases for the four-phase TRIP steel

STEEL C Mn Si Al P S N Cu V

DOCOL 600 0.148 0.746 0.196 0.045 0.052 0.003 - - -

DOCOL 1400 0.170 1.590 0.500 0.046 0.010 0.001 0.006 0.010 0.010

Table 5.1: Chemical compositions of steels DOCOL 1400 and DOCOL 600 (wt%).

C Mn Si Al P

0.20 1.40 0.50 0.75 0.04

Table 5.2: Chemical composition of experimental TRIP steel (wt%).

the austenite gradually transforms into martensite as the material deforms plastically. At

this point it should be noted that the tensile tests were interrupted at different stages of the

deformation in order to measure the amount of martensite. The constitutive model devel-

oped in the present thesis, takes into account only the plastic strain-induced transformation

mechanism, therefore at zero plastic strain the amount of martensite should be equal with

the initial volume fraction (which is zero in the present case). However, due to the stress-

assisted transformation mechanism the experimental data show an amount of martensite

when the plastic strain is zero. Thus, in our calculations we consider that the initial volume

fraction of the martensite does not equal zero. In particular, based on the experimental

data, we use the following initial volume fractions for the individual phases: c
(1)
0 = 0.50,

c
(2)
0 = 0.38, c

(m)
0 = 0.017 and c

(a)
0 = 0.12− c

(m)
0 = 0.103.

In order to calibrate the model, one-element finite element calculations for the problem of

uniaxial tension were carried out. The corresponding uniform stress state in the element
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94 Chapter 5. Applications - TRIP Steels

is calculated by using the algorithm presented in section 5.2.2. The uniaxial tension prob-

lem is solved in ABAQUS by using one four-node isoparametric axisymmetric finite element

(CAX4H in ABAQUS). The problem is solved incrementally and the end displacement is

increased gradually until a final elongation of 30% is reached.

In the calculations we use the values E = 220 GPa and ν = 0.3 for the elastic Young’s

modulus and Poisson’s ratio, the values Md,ut = 80◦C and Mσ
s,ut = 15◦C, T = 23◦C and

the relative volume change associated with the martensitic transformation is taken to be

∆v = 0.02.

The values of the parameters that enter the transformation kinetics model are chosen so that

the predictions of the model agree with the f − ε curves determined experimentally, where

ε is the axial nominal strain. These values are shown in Table 5.3.

r g0 g1 g2 ḡ sg A0 A1 s∗a (MPa) α β0

2 3400 4.7 493 3230 292 0.012 0.057 496 11.0 1.7

Table 5.3: Costants of the kinetic model used to fit the experimental data.

Figures 5.2, 5.3 and 5.4 display the predicted f − ε, c(a) − ε and σ − ε curves together with

the experimental data, where σ is the nominal stress. The model predictions fit the data

reasonably well.

0.00 0.05 0.10 0.15 0.20 0.25 0.30

0.02

0.04

0.06

0.08

0.10
 

 

V
O

L
U

M
E

 F
R

A
C

T
IO

N
 O

F 
M

A
R

T
E

N
SI

T
E

NOMINAL STRAIN

 FEM
 EXPERIMENT

Figure 5.2: Predicted f − ε curve together with the experimental data (red triangles).
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Figure 5.3: Predicted c(a) − ε curve together with the experimental data (red triangles).

0.00 0.05 0.10 0.15 0.20 0.25 0.30 0.35

200

400

600

800

 

 

N
O

M
IN

A
L

 S
T

R
E

SS
 [M

Pa
]

NOMINAL STRAIN

 FEM
 EXPERIMENT

Figure 5.4: Predicted σ− ε curve (blue line) together with the experimental data (red line).

5.5 Necking bifurcation

In this section, we use the constitutive model developed for the four-phase TRIP steel to

study the development of a neck in a tension specimen in which a geometric imperfection is

introduced. The calculations are carried out for both uniaxial and plane strain tension. In a

separate set of calculations the same problem is studied for a non-transforming TRIP steel

with the same initial values of the volume fractions of the four phases.
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5.5.1 Necking in uniaxial tension

First, we examine the problem in uniaxial tension. Lets consider a cylindrical specimen with

aspect ratio L0/R0 = 3, where 2L0 is its initial length and R0 its initial radius ( see Figure

5.5). The cylindrical system depicted in Figure 5.6 is introduced and each material particle in

the specimen is identified by its position vector X = (r, z) in the undeformed configuration.

We are interested in symmetric solutions and consider, only one quarter of the full cylinder,

as shown in Figure 5.6. The analyses are carried out by using the finite element method.

Figure 5.6 illustrates the finite element mesh used in the calculations ; it consists of 1350

four-node isoparametric axisymmetric elements (CAX4H in ABAQUS) in a 15×90 grid. As

mentioned earlier, in order to encourage necking, we introduce a geometric imperfection in

the undeformed configuration. In particular the initial radius of the specimen is assumed to

vary in the z direction according to the formula (see Figure 5.7):

R (z) = R0 − ξR0 cos
πz

2L0

(5.125)

where we use the value ξ = 0.005. In this case the neck develops gradually.

Figure 5.5: The cylindrical specimen analyzed.

We constrain all nodes along the midplane z = 0 to move only in the radial direction, and

all nodes along the pole (z−axis) to have zero radial displacement. Figure 5.6 displays a

schematic representation of the boundary conditions.

The deformation is driven by the uniform prescribed end displacement in the z-direction

on the shear free end z = L0; the lateral surface on r = R0 is kept traction free. The

initial values of the volume fractions of the constituent phases are: c(1) = 0.50, c(2) = 0.38,

c(a) = 0.103 and c(m) = 0.017. The curves σ
(r)
y , r = 1, 4 that define the variation of the flow

stress of the phases and the material data used in the calculations are those presented in

section 5.4.

First, a ‘perfect’ specimen is analyzed in order to obtain the uniform solution. The analysis

is conducted with one four-node isoparametric axisymmetric element (one-element test).

Figure 5.8 illustrates the calculated σ − ε curve for the transforming TRIP steel for the

necking problem together with the corresponding uniform solution.

Calculations are also conducted for a non-transforming TRIP steel with the same initial

values of the volume fractions of the four phases.
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Figure 5.6: The finite element model used for the analysis and a schematic representation

of the boundary conditions imposed.

Figure 5.7: Schematic representation of the geometric imperfection.

Figure 5.9 illustrates the σ−ε curves for both a transforming and a non-transforming steel.

The arrows on the curves hint the point of maximum load, which co-occurs with the end of

uniform elongation of the specimen. For the transforming (TRIP) steel we notice the end

of uniform elongation at a nominal strain of 22.7% and 746 MPa stress, while for the non-

transforming steel at 19.9% and 714 MPa. Figure 5.9 proves that the TRIP phenomenon in

addition to hardening the material, increases considerably the range of uniform elongation

as well.

Figure 5.10 depicts the evolution of the radius at the minimum cross section of the specimen

for the transforming and non-transforming materials and Figure 5.11 shows the deformed
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Figure 5.8: Stress-strain curves for the transforming TRIP steel predicted by a necking

analysis and the corresponding uniform solution.
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Figure 5.9: Stress-strain curves for a TRIP steel and a non-transforming steel. The arrows

indicate the position of the maximum load.

configurations. We should note that at a nominal strain of 40%, the minimum cross sec-

tion of the non-transforming material contracts 49.2%; whereas of the TRIP steel contracts

42.4%. Therefore, we conclude that the formation of martensite stabilizes the neck and

leads to its propagation down the length of the specimen. This result was also presented by
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Figure 5.10: Evolution of the radius at the minimum cross section of the specimen for a

TRIP steel and a non-transforming steel.

Papatriantafillou et al. [47], who used a rate dependent constitutive model for TRIP steels

(as opposed to the rate independent model used here).

Figures 5.12 and 5.13 illustrate contours of the hydrostatic stress p = σkk/3 and of the

(a) (b)

Figure 5.11: Deformed configurations for a nominal strain of 40%: (a) transforming , (b)

non-transforming steel.
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(a) (b)

Figure 5.12: Contours of hydrostatic stress p = σkk/3 for a nominal strain of 40%: (a)

transforming , (b) non-transforming steel.

triaxiality ratio XΣ = p/σe for the transforming and non-transforming materials at a nom-

inal strain of 40%. These two figures are similar to each other; both the hydrostatic stress

and the triaxiality ratio take higher values in the non-transforming steel. In particular,

XΣmax
∼= 0.818 for the transforming and XΣmax

∼= 0.913 for the non-transforming steel at a

nominal strain of 40%; the maximum XΣ value occurs at the center of the neck. On the other

hand, in the case of uniform elongation, the triaxility ratio remains constant everywhere:

XΣ = 1/3 = 0.333.

As mentioned above, the hydrostatic stress p at the center of the neck is higher in the non-

transforming specimen. This can be explained if we take into account that the reduction of

the minimum cross section is higher in the non-transforming steel resulting in a higher level

of hydrostatic stress (Bridgman [9]). The lower value of the triaxiality ratio XΣ = p/σe at

the center of the TRIP specimen can also be explained. This is due to the fact that p is lower

at the center of the TRIP specimen and simultaneously the transformation of austenite to

martensite leads to a higher σe.

Last but not least, Figures 5.16 and 5.15 display contours of the volume fraction of the indi-

vidual phases c(r) and the corresponding equivalent plastic strains ε̄(r) for the transforming

steel, at a nominal strain of 40%.

The formation of the neck, as we can see in Figure 5.15, is accompanied by a concentration

of strain and a raise in triaxiality (Figure 5.13) at the center of the neck. Thus, the increased

triaxiality at the neck leads to an enhanced driving force for transformation, which, in turn,

causes higher levels of volume fraction of martensite in that region (Figure 5.16).
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(a) (b)

Figure 5.13: Contours of triaxiality ratio XΣ = p/σe for a nominal strain of 40%: (a)

transforming , (b) non-transforming steel.
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Figure 5.14: Evolution of the triaxiality ratio at the center of the specimen for a TRIP steel

and a non-transforming steel.
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(a) (b) (c) (d)

Figure 5.15: Contours of equivalent plastic strain of the phases ε̄(r) for the transforming steel

at a nominal strain of 40%:(a) ferrite , (b) bainite , (c) austenite , (d) martensite.

(a) (b) (c) (d)

Figure 5.16: Contours of volume fraction of phases for the transforming steel at a nominal

strain of 40%: (a) ferrite , (b) bainite , (c) austenite , (d) martensite.

5.5.2 Necking in plane-strain tension

Next, we proceed with the necking of a bar under plane strain conditions. Lets consider a

rectangular block with aspect ratio L0/B0 = 3, where 2L0 is the length of the specimen and
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2B0 its width ( see Figure 5.17). We use the same finite element mesh, initial imperfection

and material properties as in the axisymmetric problem presented in the previous section.

The analysis is conducted by using four-node isoparametric plane strain elements (CPE4H

in ABAQUS). Once again, a separate set of calculations is conducted for a non-transforming

TRIP steel with same initial values of the volume fractions of the phases.

Figure 5.17: The rectangular specimen analyzed.

Figure 5.18 illustrates the σ − ε curves for a transforming and a non-transforming steel

under plane strain conditions. The two arrows on the curves, once again hint the point of

maximum load, which co-occurs with the end of uniform elongation of the specimen. For

the transforming (TRIP) steel we notice the end of uniform elongation at a nominal strain

of 23.4% and 894 MPa stress, while for the non-transforming steel at 21.0% and 852 MPa.

Thus, we reach the same conclusion as for the case of uniaxial tension: the TRIP phenomenon

in addition to hardening the material, increases considerably the range of uniform elongation

as well.

Figure 5.19 depicts the undeformed and deformed configurations at a nominal strain of 40%

for the cases of uniaxial and plane strain tension. The neck in uniaxial tension is much less

developed.

Figure 5.20 shows triaxiality contours after the neck develops in uniaxial and plane strain

tension. The contours of the triaxiality ratio XΣ = p/σe take higher values in the plane

strain case (Figure 5.20). At this point, it should be noted that in the case of uniaxial

tension XΣmax
∼= 0.818 and XΣmax

∼= 0.957 in the plane strain case at a nominal strain of

40%; the maximum XΣ value occurs at the center of the neck. The larger triaxiality value in

plane strain has as a result an enhanced driving force for transformation and thus a higher

volume fraction of martensite (Figure 5.21).

Figures 5.22 - 5.23 show contour plots of the hydrostatic stress p and the equivalent plastic

strain ε̄ =
∫ √

2
3
Dp : Dp dt for uniaxial and plane strain tension tests at a nominal strain of

40%. We observe a higher value of hydrostatic pressure in plane strain tension compared to

uniaxial tension. This is due to the fact that the deformation in the-out-of plane direction

is constrained, as opposed to the uniaxial tension case where there is no constraint.

To recapitulate, comparing the transforming and non-transforming steels we conclude that

the TRIP phenomenon leads to stabilization of necking, causes propagation of the neck down
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Figure 5.18: Stress-strain curves for a TRIP steel and a non-transforming steel in plane

strain tension.

(a) (b)

Figure 5.19: Deformed and undeformed configurations for a nominal strain of 40%: a)

uniaxial tension , b) plane strain tension.

the length of the specimen, and increases considerably the hardening and the range of uni-

form elongation of the steel.
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(a) (b)

Figure 5.20: Contours of triaxiality ratio XΣ for a nominal strain of 40%: a) uniaxial tension

, b) plane strain tension.

(a) (b)

Figure 5.21: Contours of volume fraction of martensite c(m) for a nominal strain of 40%: a)

uniaxial tension , b) plane strain tension.
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(a) (b)

Figure 5.22: Contours of hydrostatic stress p = σkk/3 for a nominal strain of 50%: a) uniaxial

tension , b) plane strain tension.

(a) (b)

Figure 5.23: Contours of equivalent plastic strain ε̄ =
∫ √

2
3
Dp : Dp dt for a nominal strain

of 40%: a) uniaxial tension , b) plane strain tension.
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5.6 Plastic flow localization

In this section, we use the constitutive model developed for the four-phase TRIP steel to

study whether a bifurcation within a localized band is possible as the material deforms ho-

mogeneously. Specifically, a problem is formulated for a rectangular block of a TRIP steel

which is constrained to plane deformations and is subjected to tension in one direction.

Comparisons are made with the corresponding problem in which martensitic transformation

is suppressed. A detailed study of this problem for incompressible materials has been given

by Rice [59]. This problem has also been examined by Hill and Hutchinson [26] and Needle-

man [42]. The material deforms homogeneously and at every stage of the deformation, we

examine whether a bifurcation within a localized band is possible ([26],[43],[59]).

5.6.1 Problem formulation

Let X1 − X2 be the plane of deformation and X1 the direction of stretching. Thus, the

deformation gradient and the stress tensor are of the form

F = λ1e1e1 + λ2e2e2 + e3e3 and σ = σ1e1e1 + σ3e3e3 (5.126)

where (e1, e2, e3) are unit base vectors. Plastic flow localization in a shear band is possible

when there exists a unit vector n on the X1 −X2 plane such (Needleman and Rice [43]):

det [B] = 0, Bij = nk Lep
kijl nl + Aij (5.127)

where

A = −1

2
[σ − σ · nn− (n · σ · n) δ + nn · σ] . (5.128)

If such an n exists, then the direction of the shear band is perpendicular to n (see Figure

5.24).

As discussed in section 5.3.2, the constitutive equations of the TRIP steel can be written

in the form:
∇
σ = Lep : D (5.129)

where the fourth-order tensor of elastoplastic moduli is given by the expression

Lep = Le − 2G

[(
a1 +

A

∆v

b1

)
NN+

(
a2 +

A

∆v

b2

)
N δ

]
− κ (b1 δN+ b2 δ δ) (5.130)

with

a1 =
2

3D

[
1 + q

κ+XΣHv

σe

H (dXΣ)

]
, a2 = − q

D

κ

σe

(
A

∆v

+
Hv

3G

)
H (dXΣ)

b1 =
2

3D

[
m− q XΣ

H

σe

H (dXΣ)

]
, b2 =

q

D

κ

σe

(
1 +

H

3G

)
H (dXΣ)

D = 1 +
H

3G
+m

(
A

∆v

+
Hv

3G

)
+

q

σe

[
κ

(
1 +

H

3G

)
+XΣ

(
Hv −

A

∆v

H

)]
H (dXΣ)
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Figure 5.24: Shear band in a rectangular block subjected to tension in one direction.

and

m = ∆v c
(3) α(3)Af , q = ∆v c

(3)Bf .

The tensor of the elastoplastic moduli has all major and minor symmetries and can be

written compactly as

[Lep] =



Lep
1111 Lep

1122 Lep
1133 0 0 0

Lep
1122 Lep

2222 Lep
2233 0 0 0

Lep
1133 Lep

2233 Lep
3333 0 0 0

0 0 0 Lep
1212 0 0

0 0 0 0 Lep
1313 0

0 0 0 0 0 Lep
2323


. (5.131)

Carrying out the calculations in (5.127) we conclude that the localization condition can be

written as

det [Bij] = 0 (5.132)

where

B11 = Lep
1111 n

2
1 +

(
Lep

1212 −
σ1

2

)
n2
2, B12 =

(
Lep

1122 + Lep
1212 +

σ1

2

)
n1n2,

B21 =
(
Lep

1122 + Lep
1212 −

σ1

2

)
n1n2, B22 = Lep

2222 n
2
2 +

(
Lep

1212 +
σ1

2

)
n2
1, (5.133)

B33 =
(
Lep

1313 +
σ1

2

)
n2
1 + Lep

2323 n
2
2 −

σ3

2
,

and B13 = B23 = B31 = B32 = 0. In view of the fact that the stress components σ1 and σ3

are of order σ0, which is several orders of magnitude smaller than the elastoplastic moduli

Lijkl, we conclude that the component B33 is always positive and so the localization condition

(5.132) can take the form

B11B22 −B21B12 = 0 (5.134)
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The calculation of the strain at which localization of the plastic flow is probable, is carried out

numerically. To elaborate, the homogeneous solution is determined numerically by increasing

the axial stretch ratio λ1 and determining the transverse stretch ratio λ2 by iteration from

the condition of zero transverse stress, e2 · σ · e2 = 0. In the process of iteration, for every

value of λ1 and λ2, the corresponding stress tensor σ is calculated by using the algorithm

described in section 5.2.2. As soon as the homogeneous solution has been determined, we

set n = cosΨ e1 + sinΨ e2 , where Ψ is the angle of inclination of the band relative to the

X1 axis, and we examine the localization condition (5.134) for values of Ψ that cover the

range 0o ≤ Ψ ≤ 90o. If a change of sign of the quantity B11B22 − B21B12 is detected, the

corresponding root that defines the localization angle Ψ is determined.

5.6.2 Results

The initial volume fractions of the four phases in the TRIP steel are assumed to be c(1) = 0.50,

c(2) = 0.38, c(a) = 0.103 and c(m) = 0.017. The curves σ
(r)
y , r = 1, 4 that define the variation

of the flow stress of the phases are those presented in section 5.4. For comparison purposes,

a separate set of calculations is carried out for a non-transforming steel with the same initial

values of the volume fractions of the four phases. The calculation were carried out for values

of the axial strain up to ε = lnλ1 = 2.

Figure 5.25 shows the σ−ε curves for both a transforming and a non-transforming material.

Figure 5.25 makes it clear that the TRIP effect hardens the material. At this point, it should

be noted that the parameter Bf that enters the evolution equation of f :

Bf =
g2√
2π sg

β0 (fsb)
r exp

[
−1

2

(
g − ḡ

sg

)2
]
H(ẊΣ), (5.135)

as mentioned in section 5.2.1.1 takes non-zero values only when ẊΣ ̸= 0. During the calcu-

lations it was observed that the stress triaxiality remained constant throughout the analysis

XΣ = 1/
√
3 = 0.5774 (see Fig.5.26). Thus, we were able to set the parameter Bf equal to

zero to avoid any possible artificial mistakes.

In addition, in section 5.2.2 it was mentioned that the inelastic part of the deformation rate

for TRIP steels is written as the sum of the plastic part and the transformation part

Din =

(
˙̄ε+

A

∆v

ε̇pv

)
︸ ︷︷ ︸

ε̇q

N+
1

3
ε̇pv︸︷︷︸

ε̇p

δ, (5.136)

resulting in both deviatoric and volumetric parts. In order to evaluate the contribution of

the volumetric part to the inelastic deformation rate, we calculated the norm of each part

and compared them. The norms Eq of the deviatoric part and Ep of the volumetric part are

calculated as follows

Ė2
q = (ε̇q N) : (ε̇q N) =

3

2
ε̇2q ⇒ Ėq =

√
3

2
ε̇q

⇒ Eq =

√
3

2

∫
dεq (5.137)
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Figure 5.25: Stress-strain curves for a TRIP steel and a non-transforming steel.
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Figure 5.26: Evolution of the triaxiality ratio XΣ for a TRIP steel and a non-transforming

steel in plane-strain tension.

and

Ė2
p = (ε̇p δ) : (ε̇p δ) = 3 ε̇2p ⇒ Ėp =

√
3 ε̇p

⇒ Ep =
√
3

∫
dεp (5.138)

Figure 5.27 illustrates the growth of Eq and Ep as the material deforms plastically. As it

can be seen the contribution of the volumetric part of the inelastic part compared to the

deviatoric part is insignificant.
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Figure 5.27: Evolution of the norm of the deviatoric part Eq and of the volumetric part Ep

of the inelastic deformation for a TRIP steel in plane-strain tension.

Last but not least, during the calculations once the homogeneous solution had been

determined, the localization condition detB = 0 was examined for the range 0o ≤ Ψ ≤ 90o.

For both the TRIP and the non transforming steel the determinant of [B] decreases with

ε, as it is depicted in Figure 5.28, but never equals zero in this range of strains. Therefore

localization is not predicted since the localization condition is never met for values of axial

strain up to ε = lnλ1 = 2, where the calculations are terminated.

5.7 Forming limit diagrams

In this section, the constitutive model developed for the four-phase TRIP steel is used to

calculate “forming limit diagrams” for sheets made of TRIP steels. Forming limit diagrams

show the maximum deformation to which a sheet metal can be subjected before the material

fails. In the present thesis, we concentrate on the formation of instabilities in a narrow

straight band in metal sheets deformed under plane stress conditions. The predictions of the

analytical model are compared to experimental data from the same TRIP steel which was

used for the calibration. For comparison purposes, a separate set of calculations is conducted

for a non-transforming TRIP steel with same initial values of the volume fractions of the

phases.
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Figure 5.28: Growth of the determinant of [B] for a TRIP steel and a non-transforming

steel.

5.7.1 Problem formulation

We consider a sheet made of TRIP steel that is deformed uniformly on its plane in a way that

the in-plane principal strain increments increase proportionally. We study the possibility of

the formation of an instability in the form of a narrow straight band, as that shown in Figure

5.29.

Figure 5.29: Narrow band in biaxially stretched sheet.

The constitutive equations of the TRIP steel, as it was presented in section 5.3.2, can be

written as:
∇
σ = Lep : D (5.139)
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where

Lep = Le − 2G

[(
a1 +

A

∆v

b1

)
NN+

(
a2 +

A

∆v

b2

)
N δ

]
− κ (b1 δN+ b2 δ δ) (5.140)

with

a1 =
2

3D

[
1 + q

κ+XΣHv

σe

H (dXΣ)

]
, a2 = − q

D

κ

σe

(
A

∆v

+
Hv

3G

)
H (dXΣ)

b1 =
2

3D

[
m− q XΣ

H

σe

H (dXΣ)

]
, b2 =

q

D

κ

σe

(
1 +

H

3G

)
H (dXΣ)

D = 1 +
H

3G
+m

(
A

∆v

+
Hv

3G

)
+

q

σe

[
κ

(
1 +

H

3G

)
+XΣ

(
Hv −

A

∆v

H

)]
H (dXΣ)

and

m = ∆v c
(3) α(3)Af , q = ∆v c

(3) Bf

In our calculations we decided to work with nominal quantities, because it simplifies the

formulation. First we consider the 1st Piola-Kirchhoff stress tensor t = J F−1 · σ where

J = det F. It can be proven very easily that

ṫ = R : ḞT (5.141)

where

Rijkl = J F−1
im F−1

kn (Lmjnl + Vmjnl) , (5.142)

Vijkl =
1

2
(σik δjl − δik σjl − σil δjk − δil σjk) + σij δkl (5.143)

Next, we assume a state of uniform plane stress inside and outside the band and examine the

possibility of the formation of a neck as shown in Figure 5.29. Let X1 −X2 be the plane of

the sheet, H the initial thickness of the sheet and the superscript b denote quantities within

the band whereas no superscript denotes quantities outside the band.

In view of the fact that the in-plane displacements are continuous, their spatial derivatives

parallel to the band remain uniform. Therefore the only discontinuities in the displacement

gradient are restricted kinematically to the following form (Hadamard [18], Hill [24], Rice

[59]) [
∂ua

∂Xβ

]
= Ga Nβ (5.144)

where X is the position vector of a material point in the undeformed configuration, N is the

unit vector normal to the band in the undeformed configuration, [ ] denotes the difference of

the field within the band and outside the band, and G is the jump in the normal derivative

of u, i.e., [∂u/∂N ] ≡ [(∂u/∂X) ·N] = G. In the following we present a methodology for the

determination of G. We should note that Greek indices take values in the range (1, 2).

Taking into account equation (5.144), we conclude that the in-plane components of the

deformation gradient inside the band can be written as

F b
αβ = Fαβ +Ga Nβ (5.145)
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whereas the in-plane components of the deformation gradient outside the band are of the

form

Fαα = λα and Fαβ = 0, α ̸= β (5.146)

The deformation gradients in a matrix form are

[F ] =


λ1 0 0

0 λ2 0

0 0 λ3

 and
[
F b
]
=


λ1 +G1N1 G1 N2 0

G2N1 λ2 +G2 N2 0

0 0 λb
3

 (5.147)

Next, we use the plane stress condition σ33 = 0 which also suggests that t33 = 0. Equation

(5.141) can be expressed analytically in the following form

ṫαβ = RαβklḞlk = RαβγδḞδγ +Rαβ33Ḟ33 (5.148)

So the plane stress condition ṫ33 = 0 can be written

ṫ33 = R33klḞlk = R33γδḞδγ +R3333Ḟ33 = 0 (5.149)

which can be solved for Ḟ33

Ḟ33 = −R33γδ

R3333

Ḟδγ (5.150)

Combining equations (5.148) and (5.150) we derive

ṫαβ = RαβγδḞδγ −Rαβ33
R33γδ

R3333

Ḟδγ =

(
Rαβγδ −Rαβ33

R33γδ

R3333

)
Ḟδγ (5.151)

Thus, we conclude that the in-plane constitutive relations needed for the analysis can be

written as:

ṫαβ = Cαβγδ Ḟγδ with Cαβγδ = Rαβγδ −Rαβ33
R33γδ

R3333

(5.152)

Similarly, the in-plane constitutive relations within the band are

ṫbαβ = Cb
αβγδ Ḟ

b
γδ = Cb

αβγδ

(
Ḟγδ +GγNδ

)
with Cb

αβγδ = Rb
αβγδ −Rb

αβ33

Rb
33γδ

Rb
3333

(5.153)

Now taking into account the equilibrium across the band we have that

Tα ≡ H Nβ tβα = HbNβ t
b
βα ≡ T b

α (5.154)

the rate form of which is

Ṫα ≡ H Nβ ṫβα = HbNβ ṫ
b
βα ≡ Ṫ b

α (5.155)

Combining equations (5.152), (5.153) and (5.155) we find

A · Ġ = B · ḃ (5.156)

where

Aαβ = Nγ C
b
γαδβ Nδ, Bαβ = Nγ

(
H

Hb
Cγαββ − Cb

γαββ

)
and ba = λα (5.157)
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Lets consider a perfect sheet (Hb = H). In this case the right hand side of (5.156) vanishes

since Cb = C ⇒ B = 0 and the deformation remains homogenous (Ġ = 0) until at some

point the condition for local necking bifurcation is met (det[A] = 0).

In our calculations we follow the approach of Marciniak and Kuzyski [37], known as the M-K

model, in which the sheet is assumed to contain a small initial inhomogeneity and necking

results from a gradual localization of the strains at the inhomogeneity. So, in our analyses

we consider a straight narrow band of reduced thickness Hb < H, as shown in Figure 5.29.

We assume a state of uniform plane stress inside and outside the band, and the analysis

consists in determining the uniform state of deformation inside the band that is consistent

kinematically and statically with the prescribed uniform state outside the band (Tvergaard

([73], [74]), Needleman and Tvergaard [44]). When there is an initial thickness imperfection,

the right hand side of (5.156) does not vanish and these equations can be solved for Ġ1 and

Ġ2. The localization condition is met when the ratio of some scalar measure of the amount of

incremental straining inside the band to the corresponding value outside the band becomes

unbounded.

The deformation gradient outside the band F is prescribed in such a way that the corre-

sponding principal logarithmic strains ε1 and ε2 outside the band increase proportionally,

i.e.

dE2/dE1 = E2/E1 = ρ = const. (5.158)

The last equation implies

λ2 = λρ
1 (5.159)

First, we determine the uniform solution outside the band by using the plane stress algorithm

presented in section 5.3. Then, we use equations (5.156) to find ∆G and subsequently Fb

and finally, we determine the uniform solution inside the band using the same plane stress

algorithm. The localization condition is met when d |G|/dλ1 = ∞ i.e. when det[A] = 0. At

this point, we should emphasize that in the case of rate dependent plasticity this condition

cannot be satisfied, so we assume that necking localization occurs when this ratio exceeds

a certain high value e.g. d |G|/dλ1 > 30, like in the previous work of Papatriantafillou

et al. [47] (as opposed to the rate independent plasticity used here, where the condition

d |G|/dλ1 = ∞ is satisfied). We also note that in order to improve the accuracy of the

calculations and be able to use increments of reasonable size, in (5.156) instead of the rate

of equilibrium equation (5.155), we use equilibrium itself

Tn+1 = Tb
n+1 (5.160)

where the subscript n + 1 denotes values at the end of the increment. Thus, if we set

Tn+1 ≃ Tn + Ṫn ∆t and Tb
n+1 ≃ Tb

n + Ṫb
n ∆t we derive

Aαβ|n ∆Gβ = Bαβ bα|n ∆t+
1

Hb

(
Tn −Tb

n

)
(5.161)

which is used instead of (5.156).
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5.7.2 Results

The initial volume fractions of the four phases in the TRIP steel are assumed to be c(1) = 0.50,

c(2) = 0.38, c(a) = 0.103 and c(m) = 0.017. The curves σ
(r)
y , r = 1, 4 that define the variation

of the flow stress of the phases and the material data used in the calculations are those

presented in section 5.4. As mentioned earlier, calculations are also carried out for a non-

transforming steel with the same initial values of the volume fractions of the four phases.

We set N = cosΨ e1 + sinΨ e2 , where Ψ is the angle of inclination of the band relative

to the X1 axis in the undeformed configuration, and for every value of ρ = dE2/dE1, we

carry out calculations to determine the minimum localization strain by scanning the range

0o ≤ Ψ ≤ 90o. We note that the critical value Ψcr for each ρ corresponds to the minimum

localization strain.

Figure 5.30 illustrates forming limit curves obtained for imposed proportional straining ρ

for two different values of the initial thickness imperfection, namely Hb/H = 0.999 and

Hb/H = 0.99 and for the case without imperfection i.e. Hb/H = 1. The three solid curves

correspond to the TRIP steel, whereas the dashed curves are for the non-transforming steel.

As we can see, the TRIP effect increases the necking localization strains. This result was

also presented by Papatriantafillou et al. [47], who used a rate dependent constitutive model

for TRIP steels (as opposed to the rate independent model used here). In details, for no

imperfection and ρ = 0 (plane strain), the critical strain εcr11 increases from 0.19228 for the

non-transforming steel to 0.21203 for the TRIP steel; the corresponding values of εcr11 for

Hb/H = 0.999 and ρ = 0 are 0.17369 for the non-transforming steel and 0.19395 for the

TRIP steel and for Hb/H = 0.99 and ρ = 0 are 0.13775 for the non-transforming steel and

0.15869 for the TRIP steel.

The model predictions are also compared to available experimental data. The experimental

data refer to the same TRIP steel which was used for the calibration of the model. Details

on the experiments are given in Papatriantafillou [46]. The model predictions fit the exper-

imental data reasonably well.

Figure 5.31 displays the necking development where the ratio of the maximum principal

logarithmic strain inside
(
εbI
)
and outside (ε1) the neck are plotted versus ε1 for the TRIP

steel for ρ = 0 and Figure 5.32 shows the growth of the determinant of the coefficient matrix

[A]. As it can be observed the determinant [A] vanishes at the critical strain εcr11.
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Figure 5.30: Forming limit curves for two different values of initial thickness inhomogeneities

Hb/H = 0.999 and Hb/H = 0.99. The solid lines correspond to the TRIP steel, whereas the

dashed lines are for a non-transforming steel. The dark triangles are experimental data.
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Figure 5.31: Growth of maximum principal logarithmic strain inside the band εbI for the

TRIP steel and ρ = 0.
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Figure 5.32: Growth of the determinant of the coefficient matrix [A] for the TRIP steel and

ρ = 0.

Institutional Repository - Library & Information Centre - University of Thessaly
09/06/2024 10:09:40 EEST - 3.137.213.185



119

Chapter 6

Closure

The present Thesis presents a simple semi-analytical model for the estimation of the effec-

tive as well as the phase average response of N−phase incompressible isotropic elasto-plastic

metallic materials. The model is based on the original variational method of Ponte Castañeda

[48], which is based on a linear comparison composite technique. The resulting expression for

the effective yield strength of the composite requires the solution of a constrained optimiza-

tion problem for N − 1 scalar variables and is much simpler and tractable than the original

expressions given in [49]. This is achieved by use of the methodology of Kaufman et al. [32].

In the special case of a two-phase composite, we provide a fully explicit expression which is

given via a piecewise function defined in equation (3.5). Due to its simplicity and numeri-

cal efficiency, the proposed N−phase model is numerically implemented in a user-material

subroutine which, in turn, allows for the simulation of three dimensional geometries.

In addition, the N−phase analytical model is compared with full field three dimensional

finite element simulations of two- and three-phase multi-particle periodic unit cells. The

proposed model is found to be in good agreement with the finite element results in most of

the cases considered here, even at large particle volume fractions (c(2) = 0.40) and different

hardening exponents. The agreement is good both for the effective average stress strain

response, as well as for the phase average strain fields. This last observation allowed to

extend the model in a heuristic manner to account for arbitrary isotropic hardening of the

phases, both in a small and finite strain formalism. The present combined analytical and

numerical study reveals several nontrivial features which are summarized in the following.

One of the main non-intuitive observations in the present work, which is in accord with

former literature, is that in the context of a two-phase composite when the strength of the

particles is almost twice that of the matrix the particles behave as being rigid for all volume

fractions considered here. In other words, we obtain a rather sharp transition when the yield

stress of the particle is about two times that of the matrix beyond which the strain in the

particle is negligible, thus leading to an almost rigid response of the particle in the sense of

straining for a large range of volume fractions. This result was shown for the effective yield

stress by Suquet [68] and Idiart [29] for given particle volume fraction, whereby it is further

shown here that this sharp transition is weakly sensitive to the particle volume fraction (at

least for volume fractions up to 40%). This, in turn, may have significant implications in
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the strengthening of the composite and possible debonding/failure of the particle/matrix

interface [5], since beyond that contrast ratio the particle stops deforming. This of course

leads to stress and strain concentrations in the matrix/particle interface.

A second observation, which has already been made in the context of a plastic matrix

with rigid particles by Suquet [68] and Idiart [29] is that the numerical estimates exhibit a

dependence on the third invariant (J3) of the stress tensor, i.e., on the Lode parameter or

Lode angle. Nonetheless, this dependence is extremely weak and thus the present model,

which does not take into account this dependence, is sufficiently accurate for the estimation

of the effective response as well as of the phase average strains (which depend apriori upon

the normal to the yield surface). This observation of course is valid for phases described by

a von Mises (J2) yield response and does not hold in the case of plastic solids that depend

directly on the third invariant J3 via Tresca, Hoshford or Drucker-Prager plasticity (see for

instance Barthélémy and Dormieux [4] and Barthélémy et al. [36]).

A third, and perhaps more important finding of this work at least from a more practical

point of view, is related to the extension of the model to arbitrary isotropic hardening of the

phases. In the present work, we carry out first the nonlinear homogenization for perfectly

plastic phases and then the hardening is added heuristically at the definition of the yield

stresses of each of the phases. This of course is an approximation and does not take into

account explicitly the coupling between the different hardening exponents of the different

phases. Nevertheless, the resulting estimates are in very good agreement with the full field

finite element results (which include this coupling) suggesting that this strategy is sufficient

for the materials considered in this study. This good agreement can be directly associated

with the fact that the model predicts accurately enough the phase average strains. This,

however, may not be true if one considers kinematic hardening of the phases but again in this

case a more advanced homogenization method needs to be used such as the one proposed

by Lahellec and Suquet [34].

Furthermore, in this study, we do not consider the extreme case of a three-phase composite

comprising stiff particles and voids. The reason is that the presence of a soft compressible

phase would introduce a dependence on an additional invariant, i.e, pressure (I1) and the

material would be plastically compressible (see for instance Garajeu and Suquet [16] and

He et al. [21]). A vast amount of studies has been carried out in the context of voided

materials and is very well known that the present method by default would lead to overly

stiff estimates unless corrected (see for instance recent work of Danas and Aravas [12] and

Cao et al. [10]).

Then, the homogenization theory was used to develop a constitutive model for TRIP steels.

Specifically, we consider four-phase TRIP steels that consist of a ferritic matrix with dis-

persed bainite and austenite, which transforms gradually into martensite as the material

deforms plastically. The total strain can be split into elastic, plastic and transformation

parts. Standard isotropic linear hypoelasticity of homogeneous solids is used in order to

describe the elastic behavior of the TRIP steels since the elastic properties of all phases are

fundamentally the same. The homogenization techniques for non-linear composites are used
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to determine the effective properties and overall behavior of TRIP steels. The transforma-

tion part is proportional to the rate of change of the volume fraction of martensite due to

martensitic transformation, which is described by the modified Olson-Cohen transformation

kinetics model proposed by Stringfellow et al. [64].

A method for the numerical integration of the resulting constitutive equations in the con-

text of a displacement driven finite element formulation was developed and the model was

implemented into the ABAQUS. We also developed a method for the numerical integration

of the constitutive model under plane stress conditions.

The problems of plastic flow localization and necking in tension are analyzed in detail. The

constitutive model was used also for the calculation of “forming limit diagrams” for sheets

made of TRIP steels. The predictions of the analysis were compared to experimental data

from the same TRIP steel which was used for the calibration. In all cases we reach the

conclusion that the TRIP phenomenon not only hardens the material, but also increases

considerably the range of uniform elongation.

6.1 Suggestions for future research

Several research directions may be proposed for future work. A problem of particular interest

would be to develop a constitutive model for the cyclic response of composite materials. In

this case, however, a more advanced homogenization method needs to be used such as the

one proposed by Lahellec and Suquet [34] or the one by Agoras, Avazmohammadi and Ponte

Castañeda [1].

Another interesting project would be to improve the constitutive model for TRIP steels.

To elaborate, in the present Thesis we focused on strain-induced transformation of retained

austenite to martensite. Nonetheless, experiments show that, in uniaxial tension, an amount

of martensite appears before yielding takes place due to the stress-assisted transformation.

Therefore, the kinetics of the evolution of martensite volume fraction could be described by

a model which takes also into account the stress-assisted transformation in addition to the

strain-induced, like the one proposed by Haidemenopoulos et al. [19]. At this point, we

should mention that whereas all traditional mechanical constitutive equations do not have

a ‘length scale’, this model introduces an intrinsic ‘material length’, which is the austenite

particle size. This is of great importance, since austenite particle size refinement has a strong

stabilizing influence by retarding the strain-induced transformation kinetics.

Finally, in order to further improve the simulation of the mechanical behavior of TRIP

steels, we could develop an experimental method in order to measure the hardening of the

constituent phases. The experimental data for the hardening curves of the constituent phases

presented in Chapter 5 derived from a detailed bibliographic search. Therefore, with this

method we would have more precise data.
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Appendix I

Instructions for CONMAX

We wish to find the minimum of f (x) under the constraints xi ≥ 0. CONMAX defines the

problem as follows:

Minimize W subjected to

f (x∗) ≤ W, IPT = 1, INCTYP = 1,

− x∗
i ≤ 0, IPT = 2, INCTYP = −1

where if INCTYP(I)=–1 the constraint is linear and if INCTYP(I)=–2 the constraint may

be nonlinear.

The smallest value W can take is the minimum value of f (x). In the figure shown below

the solution is Wmin and corresponds to x = x0.

E.g., we can use the function

f (x1, x2) = (x1 − 1)2 + (x2 − 2)2 ≥ 0,

Institutional Repository - Library & Information Centre - University of Thessaly
09/06/2024 10:09:40 EEST - 3.137.213.185



126 Appendix I. Instructions for CONMAX

which has a minimum at x0
1 = 1, x0

2 = 2 with Wmin = f (1, 2) = 0.

Homogenization minimization problem

Lets consider the homogenization minimization problem.

Given N , c(r), σ
(r)
0 (r = 1, 2, ..., N), we need to find

inf
y(r)≥0
y(1)=1

H∞
(
y(r)
)

F (y(r))
≡ inf

y(i)≥0

[
f
(
y(2), y(3), ..., y(N)

)]
≡ inf

x(i)≥0

[
f
(
x(1), x(2), ..., x(N−1)

)]
where

f =
H∞

F
, with x(i) = y(1+i) i = 1, ..., N − 1

H∞
(
y(r)
)
=

N∑
r=1

c(r)
(
σ
(r)
0

)2
y(r) = c(1)

(
σ
(1)
0

)2
+

N−1∑
s=1

c(1+s)
(
σ
(1+s)
0

)2
x(s),

T1 =
N∑
s=1

c(s)y(s)

3 y(s) + 2
, T2 =

N∑
s=1

c(s)

3 y(s) + 2
, 3T1 + 2T2 =

N∑
s=1

c(s) = 1,

T2 =
N∑
s=1

c(s)

3 y(s) + 2
=

c(1)

5
+

N∑
s=2

c(s)

3 y(s) + 2
=

c(1)

5
+

N−1∑
q=1

c(1+q)

3x(q) + 2
, T1 =

1− 2T2

3
,

F =
T1

T2

.

For the minimization problem we need to calculate ∂f/∂x(i):

∂f

∂x(i)
=

1

F

∂H∞

∂x(i)
− ∂H∞

F 2

∂F

∂x(i)
⇒ ∂f

∂x(i)
=

1

F

(
∂H∞

∂x(i)
− f

∂F

∂x(i)

)
where

H∞
(
y(r)
)
= c(1)

(
σ
(1)
0

)2
+

N−1∑
s=1

c(1+s)
(
σ
(1+s)
0

)2
x(s) ⇒ ∂H∞

∂x(i)
= c(1+i)

(
σ
(1+i)
0

)2
i = 1, 2, ..., N − 1

T2 =
c(1)

5
+

N−1∑
q=1

c(1+q)

3 x(q) + 2
⇒ ∂T2

∂x(i)
= − 3 c(1+i)

(3x(i) + 2)
2

T1 =
1− 2T2

3
⇒ ∂T1

∂x(i)
= −2

3

∂T2

∂x(i)

∂F

∂x(i)
=

1

T2

∂T1

∂x(i)
− T1

T 2
2

∂T2

∂x(i)
⇒ ∂F

∂x(i)
=

1

T2

(
∂T1

∂x(i)
− F

∂T2

∂x(i)

)
⇒

∂F

∂x(i)
= − 2

3T2

∂T2

∂x(i)
− T1

T 2
2

∂T2

∂x(i)
= − 1

T2

(
2

3
+

T1

T2

)
∂T2

∂x(i)
= −3T1 + 2T2

3T 2
2

∂T2

∂x(i)
=

= − 1

3T 2
2

∂T2

∂x(i)
= − 1

3T 2
2

[
− 3 c(1+i)

(3x(i) + 2)
2

]
=

c(1+i)

[T2 (3x(i) + 2)]
2 , i = 1, 2, ..., N − 1
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CONMAX

For N = 4, CONMAX defines the problem as follows:

Minimize W subjected to the constraints

f
(
x(1), x(2), x(3)

)
≤ W, IPT = 1, INCTYP(1) = 1,

− x(1) ≤ 0, IPT = 2, INCTYP(2) = −1,

− x(2) ≤ 0, IPT = 3, INCTYP(3) = −1,

− x(3) ≤ 0, IPT = 4, INCTYP(4) = −1.

In SUBROUTINE KOPT (FVALUE,SIG0,C,Y,N,NOEL,NPT)

IOPT=1

NPARM=3

NUMGR=4

ITLIM=1000

IFUN=1

IPTB=5, INDM=2

PTTBL(IPTB, INDM)

PTTBL(2, 1) = 4

PTTBL(2, 1) = c(1),

PTTBL(3, 1) = c(2),

PTTBL(4, 1) = c(3),

PTTBL(5, 1) = c(4),

(no extra options to be used)

(3 parameters x(i))

(1+3 constraints)

(max number of iterations)

(FUN(I) is not used)

(see next lines)

(number of phases)

PTTBL(2, 2) = σ
(1)
0 ,

PTTBL(3, 2) = σ
(2)
0 ,

PTTBL(4, 2) = σ
(3)
0 ,

PTTBL(5, 2) = σ
(4)
0 .

LIWRK=7*(NUMGR+NPARM)+3

LWRK=(2*NPARM+4*NUMGR+27)*NPARM+11*NUMGR+13

PARAM(1), PARAM(2), PARAM(3), PARAM(4) first guess

In SUBROUTINE KFNSET (NPARM,NUMGR,PTTBL,IPTB,INDM,X,IPT,

+INDFN,ICNTYP,CONFUN,NOEL,NPT)

Read data from PTTBL

IPT=constraint number (1,2,3,4)

For IPT=1

ICNTYP(IPT) = 1

CONFUN(IPT, 1) = f

if INDFN = 1

(define the constraint function)

(needs the derivatives as well)

CONFUN (IPT, 1 + i) = ∂f/∂x(i), i = 1, 2, 3

For IPT=2, 3, 4

ICNTYP(IPT) = −1
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CONFUN(IPT, 1) = −x(IPT−1)

if INDFN = 1

(define the constraint function)

(needs the derivatives as well)

CONFUN (IPT, 1 + i) = −1, i = 1, 2, 3
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Appendix II

Unit Cell Periodic Boundary

Conditions

The unit cell is a cube with edge size L , as shown below. We label the faces as follows:

Figure II.1: Periodic unit cell.

LEFT: x1 = 0, includes vertices (1, 5, 8, 4)

RIGHT: x1 = L, includes vertices (2, 6, 7, 3)

BOT: x2 = 0, includes vertices (1, 2, 6, 5)

TOP: x2 = L, includes vertices (4, 3, 7, 8)

BACK: x3 = 0, includes vertices (1, 2, 3, 4)

FRONT: x3 = L, includes vertices (5, 6, 7, 8)
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The definition of periodicity implies that the displacement field is periodic about an average

(macroscopic) deformation gradient F so that

u (X) = (F− δ) ·X+ u∗ (X) (II.1)

where X is the position vector of a material point in the undeformed configuration, δ is

the second-order identity tensor, and u∗ (X) is a periodic field with zero mean strain on the

unit cell (e.g., Suquet [1985] in “Homogenization Techniques for Composite Media”, CISM).

Then

u∗RIGHT = u∗LEFT , u∗TOP = u∗BOT , u∗FRONT = u∗BACK

and (II.2)∫
unit cell

(∇u∗ + u∗∇) dV = 0

This implies that u∗ takes the same value at all vertices of the cube.

We fix vertex 1 in order to eliminate rigid body translations, i.e., we set

u(1) = u (0) = 0 (II.3)

In view of the periodicity of u∗

u
(2)
i − u

(1)
i︸︷︷︸
0

= (Fi1 − δi1)L ⇒ u
(2)
i = (Fi1 − δi1)L = known, i = 1, 2, 3. (II.4)

Similarly, we find

u
(4)
i = (Fi2 − δi2)L = known, i = 1, 2, 3, (II.5)

u
(5)
i = (Fi3 − δi3)L = known, i = 1, 2, 3, (II.6)

Next we consider nodes at the same position on opposite faces. In view of the periodicity of

u∗, we have

uRIGHT
i − uLEFT

i = (Fi1 − δi1)L = u
(2)
i ⇒ uRIGHT − uLEFT − u(2) = 0 (II.7)

uTOP
i − uBOT

i = (Fi2 − δi2)L = u
(4)
i ⇒ uTOP − uBOT − u(4) = 0 (II.8)

uFRONT
i − uBACK

i = (Fi3 − δi3)L = u
(5)
i ⇒ uFRONT − uBACK − u(5) = 0 (II.9)

Equations (II.7)-(II.9) show that the periodic constraints between all corresponding (“op-

posite”) boundary points can be written in terms of the displacements of only three vertex

points, namely u(2), u(4), and u(5); the displacements are defined, in turn, by equations (II.4)-

(II.6) in terms of the average deformation gradient F. In ABAQUS, for given F, we impose

boundary conditions on
(
u(2),u(4),u(5)

)
according to (II.4)-(II.6), and conditions (II.7)-(II.9)

are imposed by writing a “user MPC” subroutine.
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Examples

i. F =
3∑

i=1

λi eiei (principal stretching)

u
(2)
1 = (λ1 − 1)L, u

(2)
2 = u

(2)
3 = 0,

u
(4)
2 = (λ2 − 1)L, u

(4)
1 = u

(4)
3 = 0,

u
(5)
3 = (λ3 − 1)L, u

(5)
1 = u

(5)
2 = 0.

ii. F = λ e1e1 + λt (e2 e2 + e3 e3) (uniaxial tension)

u
(2)
1 = (λ− 1)L, u

(2)
2 = u

(2)
3 = 0,

u
(4)
2 = (λt − 1)L, u

(4)
1 = u

(4)
3 = 0,

u
(5)
3 = (λt − 1)L, u

(5)
1 = u

(5)
2 = 0.

iii. F = δ + γ e1e2 (simple shear)

u
(2)
2 = γ L, u

(2)
1 = u

(2)
3 = 0,

u(4) = u(5) = 0.
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Appendix III

Triaxiality and Lode Angle Control

Unit-cell triaxiality control (Barsoum and Faleskog, IJSS 2007)

We consider the aforementioned unit cell and define the coordinate axes of the unit cell so

that they coincide with principal directions of the average (macroscopic) stress and the

average (macroscopic) deformation rate, i.e., σ =
3∑

i=1

σi eiei and D =
3∑

i=1

Di eiei . Then the

displacements of the “reference vertices” 2, 4, and 5, must be of the form

u(2) (t) = U1 (t) e1, u(4) (t) = U2 (t) e2, u(5) (t) = U3 (t) e3, (III.1)

The average stress tensor σ =
3∑

i=1

σi eiei and the average deformation rate D =
3∑

i=1

Di eiei

can be represented as vectors in the system ei: Σ = σi ei, ∆̇ = Di ei. Let

{Σ} =


σ1

σ2

σ3

 = c (t)

3XΣ

2


1

1

1

+


cos θD

− cos
(
θD + π

3

)
− cos

(
θD − π

3

)

 =

(III.2)

= c (t)

3XΣ

2


1

1

1

+


cos
(
θ + π

6

)
sin θ

− cos
(
θ − π

6

)

 ,

(
θD = θ +

π

6

)

where c (t) increases from zero, XΣ is the stress triaxiality, θD the Lode angle. We also write

{
∆̇
}
=


D1

D2

D3

 =


U̇1

L1+U1

U̇2

L2+U2

U̇3

L3+U3

 =


1

L1+U1

1
L2+U2

1
L3+U3




U̇1

U̇2

U̇3

 ≡ [Q]−1
{
U̇
}

(III.3)
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134 Appendix III. Triaxiality and Lode Angle Control

where Li is the original length of the sides of the unit-cell and

[Q] =


L1 + U1

L2 + U2

L3 + U3

 (III.4)

so that {
U̇
}
= [Q]

{
∆̇
}

(III.5)

The rate of work is

Ẇ = σ : D = Σ · ∆̇ = ⌊Σ⌋
{
∆̇
}

(III.6)

In ABAQUS we may let
{
∆̇
}

be the nodal d.o.f. of a fictitious node, prescribe the corre-

sponding generalized nodal loads {Σ} , impose the relationship
{
U̇
}

= [Q]
{
∆̇
}

through

a user MPC, and solve the finite element problem, i.e., determine the average strains in

the unit cell. The main disadvantage here is that we have load-control and this may be a

problem with perfect plasticity or softening.

In order to avoid this difficulty, we introduce another coordinate system with base vectors

ai = aik ek, which are chosen in such a way that the generalized nodal load Σ of the fictitious

node has only one non-zero component in the new system ai, i.e., we align say a1 with the

direction of vector σ. Let Pi be the new components. In the general case we have that

Σ = σi ei = Pi ai ⇒ σi = Pj aj · ei = Pj

(
aj
k ek

)
· ei = Pj a

j
k δki = aj

i Pj ⇒
σ1

σ2

σ3

 =


a11 a21 a31

a12 a22 a12

a13 a23 a33




P1

P2

P3

 =
[
{a1} {a2} {a3}

]
P1

P2

P3

 ≡ [C]


P1

P2

P3

 ⇒

{Σ} = [C] {P} , [C] =
[
{a1} {a2} {a3}

]
,

where [C] [C]T = [δ] and {ai} are the components of ai in the principal system ei.

Let
{
δ̇
}
be the components w.r.t. the new system of the conjugate generalized nodal d.o.f.{

∆̇
}
at the fictitious node, i.e., ∆̇ = Di ei = δ̇i ai. Then (as with stress){

∆̇
}
= [C]

{
δ̇
}

(III.7)

so that

Ẇ = σ : D = Σ · ∆̇ = ⌊σ⌋ {D} = ⌊P⌋
{
δ̇
}

(III.8)

Also, substituting (III.7) into equation (III.5), i.e., into
{
U̇
}
= [Q]

{
∆̇
}
, we find{

U̇
}
= [Q] [C]

{
δ̇
}

(III.9)

The choice of the orthonormal basis ai is made as follows:

ai =
ci
|ci|

(III.10)
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with

c1 = σ1 e1 + σ2 e2 + σ3 e3 = Σ, (III.11)

c2 = σ2 e1 − σ1 e2, (III.12)

c3 = c1 × c2 = σ1 σ3 e1 + σ2 σ3 e2 −
(
σ2
1 + σ2

2

)
e3. (III.13)

so that

Σ = σ1 e1 + σ2 e2 + σ3 e3 = P1 a1 P1 = |Σ| =
√

σ2
1 + σ2

2 + σ2
3 Ẇ = P1 δ̇1 (III.14)

Note: In the special case where σ1 = σ2 = 0, (III.12) and (III.13) ⇒ c2 = c3 = 0. Therefore,

in such a case, we set

c1 = e3, c2 = e1, c3 = e2 so that Σ = σ3 e3 = σ3 a1

In standard unit-cell calculations, we prescribe
{
U̇
}

in terms of the average deformation

gradient F of the unit-cell. Instead, here we tie
{
U̇
}

to
{
δ̇
}

according to the relationship{
U̇
}
= [Q] [C]

{
δ̇
}
through a user MPC (see notes below) and the loads are applied through

{P} and
{
δ̇
}
at the fictitious node. In particular, we choose the stress triaxiality XΣ and the

Lode angle θD, determine the principal stresses from (III.2), define ai from (III.10), and then

calculate [C]. At every increment we also calculate [Q] from (III.4) and impose the relation-

ship
{
U̇
}
= [Q] [C]

{
δ̇
}
through a user MPC. Finally, we specify δ̇1 and P2 = P3 = 0, solve

the finite element problem, and determine the average stresses and strains in the unit-cell.

Note: At the end of the calculation it is a good idea to check that the average values of all

shear components indeed vanish, i.e., σ12 = σ13 = σ23 = 0 and ε12 = ε13 = ε23 = 0.

ABAQUS MPC

f (Ui, δ1, δ2, δ3) = Ui −
Ui|n + Li ∗ TMP (δ1, δ2, δ3)

1− TMP (δ1, δ2, δ3)︸ ︷︷ ︸
AUX1

= Ui − AUX1 (δ1, δ2, δ3) = 0 (III.15)

where

TMP (δ1, δ2, δ3) = Ci1 (δ1 − δ1|n) + Ci2 (δ2 − δ2|n) + Ci3 (δ3 − δ3|n) (III.16)

so that
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136 Appendix III. Triaxiality and Lode Angle Control

∂f

∂δk
= − Li

1− TMP

∂TMP

∂δk︸ ︷︷ ︸
Cik

+
Ui|n + Li ∗ TMP

(1− TMP )2

(
−∂TMP

∂δk

)
︸ ︷︷ ︸

−Cik

= − 1

1− TMP

Li +
Ui|n + Li ∗ TMP

1− TMP︸ ︷︷ ︸
AUX1

Cik

= −Li + AUX1

1− TMP︸ ︷︷ ︸
AUX

Cik ≡ AUX ∗ Cik .

(III.17)

Then

A (1) =
∂f

∂Ui

= 1 (III.18)

A (2) =
∂f

∂δ1
= AUX ∗ Ci1 (III.19)

A (3) =
∂f

∂δ2
= AUX ∗ Ci2 (III.20)

A (4) =
∂f

∂δ3
= AUX ∗ Ci3 (III.21)

JDOFN (1) = i (III.22)

JDOFN (2) = 1 (III.23)

JDOFN (3) = 2 (III.24)

JDOFN (4) = 3 (III.25)

UE = AUX1 (III.26)

The Lode Parameter

σ1 =
2

3
σe cos

(π
6
+ θ
)
+ p =

2

3
σe cos θD + p (III.27)

σ2 =
2

3
σe sin θ + p = −2

3
σe cos

(
θD +

π

3

)
+ p (III.28)

σ3 = −2

3
σe cos

(π
6
− θ
)
+ p = −2

3
σe cos

(
θD − π

3

)
+ p (III.29)

where

σ1 ≥ σ2 ≥ σ3 and θ = θD − π

6
Moreover

J2 =
1

2
s : s =

1

3
σ2
e , J3 = dets =

2

27
σ3
e cos 3θD = − 2

27
σ3
e sin 3θ (III.30)

so that

cos 3θD = − sin 3 θ =
27

2
det

s

σe

=
3
√
3

2

J3

J
3/2
2

,
(
−π

2
≤ 3 θ ≤ π

2
and 0 ≤ 3 θD ≤ π

)
(III.31)
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Also define

µ =
2σ2 − σ1 − σ3

σ1 − σ3

=
3 s2

s1 − s3
=

√
3 tan

(
θD − π

6

)
=

√
3 tan θ (III.32)

L = tan
(
θD − π

6

)
= tan θ =

µ√
3

(
−π

6
≤ θ ≤ π

6
and 0 ≤ θD ≤ π

3

)
(III.33)

θ = −π

6

(
θD = 0, µ = −1, L = − 1√

3

)
σ1 > σ2 = σ3 (uniaxial tension),

(III.34)

θ = 0
(
θD =

π

6
, µ = 0, L = 0

)
σ1 > σ2 = 0 > σ3 = −σ1 (shear 1-3),

(III.35)

θ =
π

6

(
θD =

π

3
, µ = 1, L =

1√
3

)
σ1 = σ2 > σ3 (uniaxial compression).

(III.36)

− π

6
< θ <

π

6

(
0 < θD <

π

3
, −1 < µ < 1, − 1√

3
< L <

1√
3

)
σ1 > σ2 > σ3. (III.37)

Triaxiality and the Lode angle

XΣ =
p

σe

⇒ p = XΣ σe, (III.38)

σ1 = σe

[
2

3
cos
(π
6
+ θ
)
+XΣ

]
= σe

(
2

3
cos θD +XΣ

)
, (III.39)

σ2 = σe

(
2

3
sin θ +XΣ

)
= σe

[
−2

3
cos
(
θD +

π

3

)
+XΣ

]
, (III.40)

σ3 = σe

[
−2

3
cos
(π
6
− θ
)
+XΣ

]
= σe

[
−2

3
cos
(
θD − π

3

)
+XΣ

]
, (III.41)

σ1 ≥ σ2 ≥ σ3. (III.42)

The case of hydrostatic tension/compression corresponds to σ = σ δ , so that σe = 0, p = σ,

XΣ = ∞ and θ = undetermined.

Examples

XΣ =
1

3
, θD = 0◦ (µ = −1) :


σ1

σ2

σ3

 =


σe

0

0

 , (III.43)

XΣ = −1

3
, θD = 60◦ (µ = 1) :


σ1

σ2

σ3

 =


0

0

−σe

 , (III.44)
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XΣ = 1, θD = 0◦ (µ = −1) :


σ1

σ2

σ3

 = σe


5/3

2/3

2/3

 =


σe

0

0

+
2

3
σe


1

1

1

 ,

(III.45)

XΣ = 1, θD = 60◦ (µ = 1) :


σ1

σ2

σ3

 = σe


4/3

4/3

1/3

 =


0

0

−σe

+
4

3
σe


1

1

1

 ,

(III.46)

XΣ = −1, θD = 0◦ (µ = −1) :


σ1

σ2

σ3

 = σe


−1/3

−4/3

−4/3

 =


σe

0

0

+
4

3
σe


−1

−1

−1

 ,

(III.47)

XΣ = −1, θD = 60◦ (µ = 1) :


σ1

σ2

σ3

 = σe


−2/3

−2/3

−5/3

 =


0

0

−σe

+
2

3
σe


−1

−1

−1

 .

(III.48)

Institutional Repository - Library & Information Centre - University of Thessaly
09/06/2024 10:09:40 EEST - 3.137.213.185



139

Appendix IV

Details of Calculations

Stationarity conditions in (2.40) and the variation of σ̄0 with respect to c(i) and σ
(i)
0

The usual stationarity conditions of (2.40) (valid for y(r) > 0 , i.e., y(r) ̸= 0) are

∂

∂y(i)

(
σ2
∞
F

)
= 0 ⇒ ∂σ2

∞
∂y(i)

1

F
− σ2

∞
F 2

∂F

∂y(i)
= 0 ⇒

(
∂σ2

∞
∂y(i)

− σ2
∞
F

∂F

∂y(i)

)
1

F
= 0 (IV.1)

∂F

∂y(i)
σ2
∞
F︸︷︷︸
σ̄2
0

−∂σ2
∞

∂y(i)
= 0 or

∂F

∂y(i)
σ̄2
0 −

∂σ2
∞

∂y(i)
= 0 i = 2, 3, . . . , N. (IV.2)

We have that

F =
T1

T2

,
∂F

∂y(i)
=

(
1

T1

∂T1

∂y(i)
− 1

T2

∂T2

∂y(i)

)
F, i = 1, 2, . . . , N, (IV.3)

σ2
∞ =

N∑
r=1

c(r)
(
σ
(r)
0

)2
y(r),

∂σ2
∞

∂c(i)
=
(
σ
(i)
0

)2
y(i),

∂σ2
∞

∂σ
(i)
0

= 2 c(i) σ
(i)
0 y(i), (IV.4)

∂σ2
∞

∂y(i)
= c(i)

(
σ
(i)
0

)2
, i = 1, 2, . . . , N. (IV.5)

The stationarity conditions (IV.2) can be written in the form(
∂T1

∂y(i)
1

T2

− T1

T 2
2

∂T2

∂y(i)

)
σ2
∞

T1/T2

− c(i)
(
σ
(i)
0

)2
= 0 ⇒ (IV.6)

A(i)
(
y(s)
)
≡
(

1

T1

∂T1

∂y(i)
− 1

T2

∂T2

∂y(i)

)
σ2
∞ − c(i)

(
σ
(i)
0

)2
= 0, i = 2, 3, . . . , N, y(r) ̸= 0. (IV.7)

The solution of the constrained optimization problem is found by using some standard pack-

age and equations (IV.7) are valid provided that y(r) ̸= 0 (in fact > 0). Let the optimal

values be
(
y(2), y(3), . . . , y(N)

)
=
(
ŷ(2), ŷ(3), . . . , ŷ(N)

)
≥ 0, where ŷ(r) = ŷ(r)

(
c(s), σ

(s)
0

)
.
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Variation of σ̄0 w.r.t. c(i) and σ
(i)
0

σ̄2
0 =

σ2
∞

(
ŷ(s), c(s), σ

(s)
0

)
F (ŷ(s), c(s))

⇒

2 σ̄0
∂σ̄0

∂c(i)
=

(
∂σ2

∞
∂c(i)

+
N∑
j=2

∂σ2
∞

∂ŷ(j)
∂ŷ(j)

∂c(i)

)
1

F
− σ2

∞
F 2︸︷︷︸
σ̄2
0/F

(
∂F

∂c(i)
+

N∑
j=2

∂F

∂ŷ(j)
∂ŷ(j)

∂c(i)

)
=

=
1

F

[
∂σ2

∞
∂c(i)

− σ̄2
0

∂F

∂c(i)
+

N∑
j=2

(
∂σ2

∞
∂ŷ(j)

∂ŷ(j)

∂c(i)
− barσ2

0

∂F

∂ŷ(j)
∂ŷ(j)

∂c(i)

)]
=

=
1

F

∂σ2
∞

∂c(i)
− σ̄2

0

∂F

∂c(i)
+

N∑
j=2

(
∂σ2

∞
∂ŷ(j)

− σ̄2
0

∂F

∂ŷ(j)

)
︸ ︷︷ ︸

0, see(IV.2)

∂ŷ(j)

∂c(i)

 ⇒ (IV.8)

∂σ̄0

∂c(i)
=

1

2 σ̄0 F

(
∂σ2

∞
∂c(i)

− σ̄2
0

∂F

∂c(i)

)
, i = 1, 2, 3, . . . , N, (IV.9)

where we took into account the optimality condition (IV.2), namely ∂σ2
∞

∂ŷ(j)
− σ̄2

0
∂F
∂ŷ(j)

= 0.

Note

1) If a y(j) = 0 , so that (IV.2) and (IV.7) are not valid, the quantity ∂σ2
∞

∂ŷ(j)
− σ̄2

0
∂F
∂ŷ(j)

still

vanishes because ∂σ2
∞

∂ŷ(j)
= ∂F

∂ŷ(j)
= 0, i.e., equations (IV.9) are valid even for those i that cor-

respond to y(i) = 0 .

2) All volume fractions c(i) are treated as independent variables. The constraint
N∑
i=1

c(i) = 1

is taken care by the evolution equations of the volume fractions.

The quantities ∂σ2
∞/∂c(i) are defined by (IV.5). Similarly

∂σ̄0

∂σ
(i)
0

=
1

2 σ̄0 F

∂σ2
∞

∂σ
(i)
0

i = 1, 2, . . . , N, (IV.10)

where the quantities ∂σ2
∞/∂σ

(i)
0 are defined by (IV.5).

Variation of ŷ(i) with respect to c(i) and σ
(i)
0

The derivatives ∂ŷ(i)

∂σ
(j)
0

are needed for the calculation of ∂α(i)

∂σ
(j)
0

=
N∑
k=1

∂α(i)

∂y(k)
∂y(k)

∂σ
(j)
0

in equation (IV.21)

below. The stationarity conditions that define ŷ(r) = ŷ(r)
(
c(s), σ

(s)
0

)
are given by equations

(IV.7):

A(i) ≡
[

1

T1 (ŷ(r), c(r))

∂T1

∂y(i)
(
ŷ(r), c(r)

)
− 1

T2 (ŷ(r), c(r))

∂T2

∂y(i)
(
ŷ(r), c(r)

)]
σ2
∞

(
ŷ(r), c(r), σ

(r)
0

)
−

−c(i)
(
σ
(i)
0

)2
= 0, i = 2, 3, . . . , N, ŷ(i) ̸= 0. (IV.11)
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In that case

∂A(i)

∂c(r)
=

[
− 1

T 2
1

(
∂T1

∂c(r)
+

N∑
j=2

∂T1

∂ŷ(j)
∂ŷ(j)

∂c(r)

)
∂T1

∂ŷ(i)
+

1

T1

(
∂2T1

∂ŷ(i)∂c(r)
+

N∑
j=2

∂2T1

∂ŷ(i)∂ŷ(j)
∂ŷ(j)

∂c(r)

)
+

+
1

T 2
2

(
∂T2

∂c(r)
+

N∑
j=2

∂T2

∂ŷ(j)
∂ŷ(j)

∂c(r)

)
∂T2

∂ŷ(i)
− 1

T2

(
∂2T2

∂ŷ(i)∂c(r)
+

N∑
j=2

∂2T2

∂ŷ(j)∂ŷ(i)
∂ŷ(j)

∂c(r)

)]
σ2
∞ +

+

(
1

T1

∂T1

∂y(i)
− 1

T2

∂T2

∂y(i)

)
︸ ︷︷ ︸

c(i)
(
σ
(i)
0

)2
/σ2

∞

(
∂σ2

∞
∂c(r)

+
N∑
j=2

∂σ2
∞

∂ŷ(j)
∂ŷ(j)

∂c(r)

)
−
(
σ
(i)
0

)2
δir = 0,

i = 2, 3, . . . , N, r = 1, 2, 3, . . . , N, ŷ(i) ̸= 0, (IV.12)

or

N∑
j=2

[(
− ∂T1

∂ŷ(i)
∂T1

∂ŷ(j)
1

T 2
1

+
∂2

T1

∂ŷ(i) ∂ŷ(j)
1

T1

+
∂T2

∂ŷ(i)
∂T2

∂ŷ(j)
1

T 2
2

− ∂2T2

∂ŷ(i) ∂ŷ(j)
1

T2

)
σ2
∞+

+
∂σ2

∞
∂ŷ(j)

c(i)
(
σ
(i)
0

)2
σ2
∞

 ∂ŷ(j)

∂c(r)
=

=

(
∂T1

∂ŷ(i)
∂T1

∂c(r)
1

T 2
1

− ∂2T1

∂ŷ(i) ∂c(r)
1

T1

− ∂T2

∂ŷ(i)
∂T2

∂c(r)
1

T 2
2

+
∂2T2

∂ŷ(i) ∂c(r)
1

T2

)
σ2
∞ −

−∂σ2
∞

∂c(r)

c(i)
(
σ
(i)
0

)2
σ2
∞

+
(
σ
(i)
0

)2
δir,

i = 2, 3, . . . , N, r = 1, 2, 3, . . . , N, ŷ(i) ̸= 0. (IV.13)

The above system of equations defines ∂ŷ(j)

∂c(r)
for j = 2, 3, . . . , N , r = 1, 2, . . . , N and ŷ(i) ̸= 0.

Similarly

∂A(i)

∂σ
(r)
0

=

[
− 1

T 2
1

(
N∑
j=2

∂T1

∂ŷ(j)
∂ŷ(j)

∂σ
(r)
0

)
∂T1

∂ŷ(i)
+

1

T1

(
N∑
j=2

∂2T1

∂ŷ(j)∂ŷ(i)
∂ŷ(j)

∂σ
(r)
0

)
+

+
1

T 2
2

(
N∑
j=2

∂T2

∂ŷ(j)
∂ŷ(j)

∂σ
(r)
0

)
∂T2

∂ŷ(i)
− 1

T2

(
N∑
j=2

∂2T2

∂ŷ(j)∂ŷ(i)
∂ŷ(j)

∂σ
(r)
0

)]
σ2
∞ +

+

(
1

T1

∂T1

∂y(i)
− 1

T2

∂T2

∂y(i)

)
︸ ︷︷ ︸

c(i)
(
σ
(i)
0

)2
/σ2

∞

(
∂σ2

∞

∂σ
(r)
0

+
N∑
j=2

∂σ2
∞

∂ŷ(j)
∂ŷ(j)

∂σ
(r)
0

)
− 2 c(i) σ

(i)
0 δir = 0,

i = 2, 3, . . . , N, r = 1, 2, 3, . . . , N, ŷ(i) ̸= 0. (IV.14)
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or

N∑
j=2

[(
− ∂T1

∂ŷ(i)
∂T1

∂ŷ(j)
1

T 2
1

+
∂2T1

∂ŷ(i) ∂ŷ(j)
1

T1

+
∂T2

∂ŷ(i)
∂T2

∂ŷ(j)
1

T 2
2

− ∂2T2

∂ŷ(i) ∂ŷ(j)
1

T2

)
σ2
∞+

+
∂σ2

∞
∂y(j)

c(i)
(
σ
(i)
0

)2
σ2
∞

 ∂ŷ(j)

∂σ
(r)
0

= 2 c(i) σ
(i)
0 δir −

∂σ2
∞

∂σ
(r)
0

c(i)
(
σ
(i)
0

)2
σ2
∞

,

i = 2, 3, . . . , N, r = 1, 2, 3, . . . , N, ŷ(i) ̸= 0. (IV.15)

The above system of equations defines ∂ŷ(j)

∂σ
(r)
0

for j = 2, 3, . . . , N ,r = 1, 2, . . . , N and ŷ(i) ̸= 0.

If one of the optimal values ŷ(i) vanishes, the objective function has an unconstrained min-

imum for negative y(i). In such a case, in view of the continuity of the functions involved,

variation of c(r) and σ
(r)
0 changes the value of the unconstrained minimum, which still occurs

at some different but still negative y(i). Therefore the ŷ(i) for the constrained minimization

still vanishes, i.e., if ŷ(i) = 0, then ∂ŷ(i)

∂c(r)
= 0 and ∂ŷ(j)

∂σ
(r)
0

= 0.

Variation of α(i) with respect to c(r) and σ
(r)
0

We have that

D(i) = α(i)D, α(i)
(
c(s), y(s)

)
=

F (i)
(
y(i)
)

Π(c(s), y(s))
, (IV.16)

F (i)
(
y(i)
)
=

y(i)

3 y(i) + 2 y0
, Π

(
c(s), y(s)

)
=

N∑
s=1

c(s) F
(
y(s)
)
. (IV.17)

Also
˙̄ε(i) = α(i)

(
c(r), y(r)

)
˙̄ε, (IV.18)

where

˙̄ε(i) =

√
2

3
D(i) : D(i) (no sum on i) and ˙̄ε =

√
2

3
D : D .

Variation of a(i)
(
c(r), σ

(r)
0

)

α(i)
(
c(s), y(s)

)
=

y(i)

3 y(i) + 2 y0

(
N∑
s=1

c(s) y(s)

3 y(s) + 2 y0

)−1

=
F (i)

(
y(i), y0

)
Π(c(r), y(r), y0)

, y0 = y0
(
c(r), y(r)

)
,

(IV.19)

F (i)
(
y(s), y0

)
=

y(i)

3 y(i) + 2 y0
, Π

(
c(s), y(s), y0

)
=

N∑
s=1

c(s) y(s)

3 y(s) + 2 y0
=

N∑
s=1

c(s) F (s)
(
y(s), y0

)
.

(IV.20)
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Evaluation of ∂α(i)

∂σ
(j)
0

We have that

∂α(i)

∂σ
(j)
0

=
N∑
k=1

∂α(i)

∂y(k)
∂y(k)

∂σ
(j)
0

⇒

[
∂α(i)

∂σ
(j)
0

]
N×N

=

[
∂α(i)

∂y(k)

]
N×N

[
∂y(k)

∂σ
(j)
0

]
N×N

. (IV.21)

Therefore, we need ∂α(i)

∂y(j)
, which is determined as follows.

∂α(i)

∂y(j)
=

(
∂F (i)

∂y(j)
+

∂F (i)

∂y0

∂y0
∂y(j)

)
1

Π
− F (i)

Π2

(
∂Π

∂y(j)
+

∂Π

∂y0

∂y0
∂y(j)

)
⇒

∂α(i)

∂y(j)
=

1

Π

[
∂F (i)

∂y(j)
+

∂F (i)

∂y0

∂y0
∂y(j)

− α(i)

(
∂Π

∂y(j)
+

∂Π

∂y0

∂y0
∂y(j)

)]
, i, j = 1, 2, . . . , N.

(IV.22)

We need ∂F (i)

∂y(j)
, ∂F (i)

∂y0
, ∂Π

∂y(j)
, ∂Π

∂y0
.

Evaluation of ∂α(i)

∂c(j)

∂α(i)

∂c(j)
=

1

Π

∂F (i)

∂y0

∂y0
∂c(j)

− fracF (i)Π2

(
∂Π

∂c(j)
+

∂Π

∂y0

∂y0
∂c(j)

)
⇒

∂α(i)

∂c(j)
=

1

Π

[
∂F (i)

∂y0

∂y0
∂c(j)

− α(i)

(
∂Π

∂c(j)
+

∂Π

∂y0

∂y0
∂c(j)

)]
, i, j = 1, 2, . . . , N.(IV.23)

We need ∂F (i)

∂y0
, ∂Π

∂y0
, ∂Π

∂c(i)
.

We have that

∂F (i)

∂y(j)
=

δij
3 y(i) + 2 y0

− y(i)

(3 y(i) + 2 y0)
23 δij =

δij
3 y(i) + 2 y0

(
1− 3 y(i)

3 y(i) + 2 y0

)
⇒

∂F (i)

∂y(j)
=

2 y0 δij

(3 y(i) + 2 y0)
2 ,

∂F (i)

∂y0
= − 2 y(i)

(3 y(i) + 2 y0)
2 . (IV.24)

Also
∂Π

∂y(i)
= c(i)

∂F (i)

∂y(i)
,

∂Π

∂y0
=

N∑
i=1

c(i)
∂F (i)

∂y0
,

∂Π

∂c(i)
= F (i).

The value of ∂y0
∂y(j)

depends on the model used.

i) y0 = y(1) ⇒ ∂y0
∂y(i)

= δ1i and ∂y0
∂c(i)

= 0,

ii) y0 =
N∑
r=1

c(r) y(r) ⇒ ∂y0
∂y(i)

= c(i) and ∂y0
∂c(i)

= y(i).
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Calculation of the Jacobian of the Newton loop for equation (4.33)

Integration using a combination of the backward and the forward Euler schemes

Newton’s method is used for the solution of (4.33). The Jacobian of the Newton loop

is

∂Φ

∂ε̄
= −3G−

N∑
k=1

(
∂σ̄0

∂ε̄(k)
∂ε̄(k)

∂ε̄

)
n+1

= −3G−
N∑
k=1

(
∂σ̄0

∂ε̄(k)

)
n+1

α(i)
n . (IV.25)

Also

∂σ̄0

∂ε̄(k)
=

∂σ̄0

∂σ
(k)
0

∂σ
(k)
0

∂ε̄(k)
=

∂σ̄0

∂σ
(k)
0

h(k),

so that (IV.25) ⇒

∂Φ

∂ε̄
= −3G−

N∑
k=1

(
∂σ̄0

∂σ
(k)
0

)
n+1

h
(k)
n+1 α

(i)
n . (IV.26)

A first estimate for σ̄0|n+1 (∆ε̄) in the Newton iterations is determined as follows:

σ̄0|n+1 (∆ε̄) = σ̄0

(
ε̄
(k)
n+1 (∆ε̄)

)
≃ σ̄0|n +

N∑
k=1

(
∂σ̄0

∂ε̄(k)
∂ε̄(k)

∂ε̄

)
n

∆ε̄ =

= σ̄0|n +
N∑
k=1

(
∂σ̄0

∂σ
(k)
0

h(k) α(k)

)
n

∆ε̄ = σ̄0|n +Hn ∆ε̄, (IV.27)

so that (4.33) becomes

Φ (∆ε̄) ≃ σe
e − 3G∆ε̄− σ̄0|n −Hn ∆ε̄ = 0 ⇒ ∆ε̄ =

σe
e − σ̄0|n

3G+Hn

.

Integration using the backward Euler method on all variables

Solution of equations (4.37) for given ∆qi:

We write (4.37) in the form

Pi ≡ ∆qi −∆ε̄ α(i)(qn +∆q) = 0. (IV.28)

Newton’s method is used for the solution of (IV.28). The Jacobian for Newton loop is given

by the equation:

∂Pi

∂∆qj
= δij −∆ε̄

∂α(i)

∂σ
(j)
0

∣∣∣∣∣
n+1

h
(j)
n+1. (IV.29)
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Solution of yield condition (4.38) for given ∆ε̄p

The yield condition is written in the form

Φ (∆ε̄) ≡ σe
e − 3G∆ε̄− σ̄0|n+1 (∆ε̄) = 0. (IV.30)

and is solved by using Newton’s method. The Jacobian for Newton loop is given by the

equation:

∂Φ

∂∆ε̄
= −3G−

N∑
j=1

(
∂σ̄0

∂∆ε̄(j)
∂∆ε̄(j)

∂∆ε̄

)
n+1

, (IV.31)

where
∂σ̄0

∂∆ε̄(j)
=

∂σ̄0

∂ε̄(j)
=

∂σ̄0

∂σ
(j)
0

∂σ
(j)
0

∂ε̄(j)
=

∂σ̄0

∂σ
(j)
0

h(j),

so that (IV.31) becomes

∂Φ

∂∆ε̄
= −3G−

N∑
j=1

(
∂σ̄0

∂σ
(j)
0

h(j)∂∆ε̄(j)

∂∆ε̄

)
n+1

.

The derivatives ∂∆ε̄(j)

∂∆ε̄
are determined from (IV.28) as follows:

∂∆ε̄(i)

∂∆ε̄
− α

(i)
n+1 −∆ε̄

n∑
j=1

(
∂α(i)

∂∆ε̄(j)
∂∆ε̄(j)

∂∆ε̄

)
n+1

= 0 ⇒

∂∆ε̄(i)

∂∆ε̄
− α

(i)
n+1 −∆ε̄

n∑
j=1

(
∂α(i)

∂σ
(j)
0

h(j)∂∆ε̄(j)

∂∆ε̄

)
n+1

= 0 ⇒

n∑
j=1

[
δij −∆ε̄

(
∂α(i)

∂σ
(j)
0

h(j)

)
n+1

]
∂∆ε̄(j)

∂∆ε̄
= α

(i)
n+1. (IV.32)

The last equations provide a system of linear equations that is solved for ∂∆ε̄(i)

∂∆ε̄
.

Calculation of the Jacobian of the Newton loop for equations (5.55) and (5.56)

Integration using a combination of the backward and the forward Euler schemes

Newton’s method is used for the solution of equations (5.55) and (5.56). Within each itera-

tion in the Newton loop, for given ∆ε̄ and ∆εpv , we calculate the following:

c
(1)
n+1 = c(1)n exp (−∆εpv) ,

c
(2)
n+1 = c(2)n exp (−∆εpv) ,

c
(4)
n+1 = c(4)n +

∆εpv
∆v

,

c
(3)
n+1 = 1−

(
c
(1)
n+1 + c

(2)
n+1 + c

(4)
n+1

)
All the c

(i)
n+1 are determined completely in terms of ∆εpv , i.e., c

(i)
n+1 = c

(i)
n+1 (∆εpv) .
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Also

σe|n+1(∆ε̄,∆εpv) =
σe
e − 3G(∆ε̄+ A0

∆v
∆εpv)

1 + 3G
s∗a

A1

∆v
∆εpv

pn+1(∆εpv) = pe −K∆εpv

XΣ|n+1(∆ε̄,∆εpv) =
pn+1

σe|n+1

, ∆XΣ(∆ε̄,∆εpv) =
pn+1

σe|n+1

− pn
σe|n

Af = Af (ε̄
(3), XΣ) = αβ0 r (1− fsb) f

r−1
sb P,

Bf = Bf (ε̄
(3), XΣ,∆XΣ) =

g2√
2 π sg

β0 f
r
sb exp

[
−1

2

(
g − ḡ

sg

)2
]
H(∆Σ)

with

fsb
(
ε̄(3)
)
= 1− exp

(
−α ε̄(3)

)
,

P (Σ) =
1√
2 π sg

g(Σ)∫
−∞

exp

[
−1

2

(
g′ − ḡ

sg

)2
]
dg′,

g (Σ) = (g0 − g1 Θ) + g2Σ

The Jacobian of the Newton loop is calculated as follows:

J11 =
∂F1

∂∆ε̄
= −3G−

(
1 +

3G

s∗a
A1

∆εpv
∆v

) N∑
i=1

∂σ̃0

∂ε̄(i)
∂ε̄(i)

∂∆ε̄

= −3G−
(
1 +

3G

s∗a
A1

∆εpv
∆v

) N∑
i=1

∂σ̃0

∂σ
(i)
0

∂σ
(i)
0

∂ε̄(i)︸ ︷︷ ︸
h(i)

α(i)
n ⇒

J11 = −3G−
(
1 +

3G

s∗a

A1

∆v

∆εpv

) N∑
i=1

∂σ̃0

∂σ
(i)
0

h(i)α(i)
n

J12 =
∂F1

∂∆εpv
= −3G

(
A0

∆v

+
A1

∆v

σ̃0

s∗a

)
−
(
1 +

3G

s∗a

A1

∆v

∆εpv

) N∑
i=1

∂σ̃0

∂c(i)
∂c(i)

∂∆εpv

J21 =
∂F2

∂∆ε̄
= −∆v c

(3)
n

(
Af

∂∆ε̄(3)

∂∆ε̄
+Bf

∂∆XΣ

∂∆ε̄

)
⇒ J21 = −∆v c

(3)
n

(
Af α

(3)
n +Bf

∂XΣ

∂∆ε̄

)
J22 =

∂F2

∂∆εpv
= 1−∆v c

(3)
n Bf

∂XΣ

∂∆εpv

Integration using the backward Euler method on all variables

Newton’s method is used for the solution of equations (5.59) and (5.60). The Jacobian
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of the Newton loop is calculated as follows:

J11 =
∂F1

∂∆ε̄
= −3G−

(
1 +

3G

s∗a
A1

∆εpv
∆v

) N∑
i=1

∂σ̃0

∂ε̄(i)
∂ε̄(i)

∂∆ε̄

= −3G−
(
1 +

3G

s∗a
A1

∆εpv
∆v

) N∑
i=1

∂σ̃0

∂σ
(i)
0

∂σ
(i)
0

∂ε̄(i)︸ ︷︷ ︸
h(i)

∂ε̄(i)

∂∆ε̄

⇒ J11 = −3G−
(
1 +

3G

s∗a
A1

∆εpv
∆v

) N∑
i=1

∂σ̃0

∂σ
(i)
0

h(i)∂ε̄
(i)

∂∆ε̄

J12 =
∂F1

∂∆εpv
= −3G

A0

∆v

− 3G

s∗a

A1

∆v

σ̃0 −
(
1 +

3G

s∗a
A1

∆εpv
∆v

) N∑
i=1

(
∂σ̃0

∂c(i)
∂c(i)

∂∆εpv
+

∂σ̃0

∂ε̄(i)
∂ε̄(i)

∂∆εpv

)

⇒ J12 = −3G

(
A0

∆v

+
σ̃0

s∗a

A1

∆v

)
−
(
1 +

3G

s∗a
A1

∆εpv
∆v

) N∑
i=1

(
∂σ̃0

∂c(i)
∂c(i)

∂∆εpv
+

∂σ̃0

∂σ
(i)
0

h(i) ∂ε̄
(i)

∂∆εpv

)

J21 =
∂F2

∂∆ε̄
= −∆v c

(3)
n+1

(
∂Af

∂∆ε̄(3)
∂∆ε̄(3)

∂∆ε̄
∆ε̄(3) + Af

∂∆ε̄(3)

∂∆ε̄
+

∂Bf

∂∆ε̄(3)
∂∆ε̄(3)

∂∆ε̄
∆XΣ +Bf

∂∆XΣ

∂∆ε̄

)
⇒ J21 = −∆v c

(3)
n+1

[(
∂Af

∂∆ε̄(3)
∆ε̄(3) + Af +

∂Bf

∂∆ε̄(3)
∆XΣ

)
∂∆ε̄(3)

∂∆ε̄
+Bf

∂XΣ

∂∆ε̄

]
J22 =

∂F2

∂∆εpv
= 1−∆v c

(3)
n+1

[(
∂Af

∂∆ε̄(3)
∆ε̄(3) + Af +

∂Bf

∂∆ε̄(3)
∆XΣ

)
∂∆ε̄(3)

∂∆εpv
+Bf

∂XΣ

∂∆εpv

]
+

−∆v

∂c
(3)
n+1

∂∆εpv

(
Af |n+1 ∆ε̄(3) + Bf |n+1 ∆XΣ

)
.

Calculation of the Jacobian for the non-linear problem of plane stress

Newton’s method is used for the solution of equations (5.107),(5.108) and (5.109). The

Jacobian of the Newton loop is calculated as follows:

J11 =
∂F1

∂∆ε̄
=

∂σe|n+1

∂∆ε̄
−

N∑
i=1

∂σ̃0

∂ε̄(i)
∂ε̄(i)

∂∆ε̄
=

∂σe|n+1

∂∆ε̄
−

N∑
i=1

∂σ̃0

∂σ
(i)
0

∂σ
(i)
0

∂ε̄(i)︸ ︷︷ ︸
h(i)

α(i)
n ⇒

J11 =
∂σe|n+1

∂∆ε̄
−

N∑
i=1

∂σ̃0

∂σ
(i)
0

h(i)α(i)
n

J12 =
∂F1

∂∆εpv
=

∂σe|n+1

∂∆εpv
−

N∑
i=1

∂σ̃0

∂c(i)
∂c(i)

∂∆εpv

J13 =
∂F1

∂∆E3

=
∂σe|n+1

∂∆E3

J21 =
∂F2

∂∆ε̄
= −∆v c

(3)
n

(
Af |n α

(3)
n + Bf |n

∂XΣ

∂∆ε̄

)
J22 =

∂F2

∂∆εpv
= 1−∆v c

(3)
n Bf |n

∂XΣ

∂∆εpv
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J23 =
∂F2

∂∆E3

= −∆v c
(3)
n Bf |n

∂∆XΣ

∂∆E3

J31 =
∂F3

∂∆ε̄
= 3G

pn+1

σe|n+1︸ ︷︷ ︸
XΣ|n+1

+
∂F3

∂σe|n+1

∂σe|n+1

∂∆ε̄
+

∂F3

∂pn+1

∂pn+1

∂∆ε̄︸ ︷︷ ︸
0

⇒

J31 = 3GXΣ|n+1 +
∂F3

∂σe|n+1

∂σe|n+1

∂∆ε̄

J32 =
∂F3

∂∆εpv
= 3G

(
A0

σe|n+1

+
A1

s∗a

)
pn+1

∆v

+
∂F3

∂σe|n+1

∂σe|n+1

∂∆εpv
+

∂F3

∂pn+1

∂pn+1

∂∆εpv︸ ︷︷ ︸
−κ

J33 =
∂F3

∂∆E3

=
4

3
G+

∂F3

∂σe|n+1

∂σe|n+1

∂∆E3

+ κ
∂F3

∂pn+1

The derivatives needed for the calculation of the jacobian are:

∂c
(1)
n+1

∂∆εpv
= −c(1)n exp (−∆εpv) ⇒

∂c
(1)
n+1

∂∆εpv
= −c

(1)
n+1,

∂c
(2)
n+1

∂∆εpv
= −c

(2)
n+1,

∂c
(4)
n+1

∂∆εpv
=

1

∆v

(IV.33)

c
(1)
n+1 + c

(2)
n+1 + c

(3)
n+1 + c

(4)
n+1 = 1 ⇒

∂c
(3)
n+1

∂∆εpv
= −

(
∂c

(1)
n+1

∂∆εpv
+

∂c
(2)
n+1

∂∆εpv
+

∂c
(4)
n+1

∂∆εpv

)
⇒

⇒
∂c

(3)
n+1

∂∆εpv
= c

(1)
n+1 + c

(2)
n+1 −

1

∆v

(IV.34)

∂∆ε̄(i)

∂∆ε̄
= α(i)

n (IV.35)

∂∆XΣ

∂∆ε̄
= − pn+1(

σe|n+1

)2 ∂σe|n+1

∂∆ε̄
⇒ ∂∆XΣ

∂∆ε̄
= −XΣ|n+1

σe|n+1

∂σe|n+1

∂∆ε̄
(IV.36)

∂∆XΣ

∂∆εpv
=

1

σe|n+1

∂pn+1

∂∆εpv︸ ︷︷ ︸
−κ

− pn+1(
σe|n+1

)2 ∂σe|n+1

∂∆εpv
⇒ ∂∆XΣ

∂∆εpv
= − 1

σe|n+1

(
κ+XΣ|n+1

∂σe|n+1

∂∆εpv

)

(IV.37)

∂∆XΣ

∂∆E3

=
1

σe|n+1

∂pn+1

∂∆E3︸ ︷︷ ︸
κ

− pn+1(
σe|n+1

)2 ∂σe|n+1

∂∆E3

⇒ ∂∆XΣ

∂∆E3

=
1

σe|n+1

(
κ−XΣ|n+1

∂σe|n+1

∂∆E3

)

(IV.38)

∂pn+1

∂∆εpv
= −κ,

∂pn+1

∂∆E3

= κ (IV.39)
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∂σe|n+1

∂∆ε̄
=

−3G

1 + 3G
s∗a

A1

∆v
∆εpv

(IV.40)

∂σe|n+1

∂∆εpv
=

−3GA0

∆v

1 + 3G
s∗a

A1

∆v
∆εpv

−
G
[
F (∆E3)− 3

(
∆ε̄+ A0

∆v
∆εpv

)]
(
1 + 3G

s∗a

A1

∆v
∆εpv

)2 3G

s∗a

A1

∆v

=
−3GA0

∆v

1 + 3G
s∗a

A1

∆v
∆εpv

−
σe|n+1

1 + 3G
s∗a

A1

∆v
∆εpv

3G

s∗a

A1

∆v

⇒

⇒
∂σe|n+1

∂∆εpv
= − 3G

∆v +
3G
s∗a
A1 ∆εpv

(
A0 +

σe|n+1

s∗a
A1

)
(IV.41)

∂σe|n+1

∂∆E3

=
G

1 + 3G
s∗a

A1

∆v
∆εpv

dF

d∆E3

(IV.42)

dF

d∆E3

=
1

2

6
s̄e33
G

+ 8∆E3√(
σ̄e
e

G

)2
+ 6

s̄e33
G
∆E3 + 4∆E2

3

⇒ dF

d∆E3

=
1

F

(
3
s̄e33
G

+ 4∆E3

)
(IV.43)

∂F3

∂σe|n+1

= − 3G(
σe|n+1

)2 (∆ε̄+
A0

∆v

∆εpv

)
pn+1 ⇒ ∂F3

∂σe|n+1

= − 3G

σe|n+1

(
∆ε̄+

A0

∆v

∆εpv

)
XΣ|n+1

(IV.44)

∂F3

∂pn+1

= 1 + 3G

[
∆ε̄

σe|n+1

+

(
A0

σe|n+1

+
A1

s∗a

)
∆εpv
∆v

]
(IV.45)
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[48] P. Ponte Castañeda, ‘The effective mechanical properties of nonlinear isotropic compos-

ites’, J. Mech. Phys. Solids 39 (1991), 45–71.
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