
Πανεπιστήμιο Θεσσαλίας

Τμήμα Ηλεκτρολόγων Μηχανικών και Μηχανικών

Υπολογιστών

ΔιπλωματικήΕργασία

Τίτλος: "Ενοποίηση ασυρμάτων διεπαφών CC2500
με την πρωτότυπη πλατφόρμα ασυρμάτων

αισθητήρωντου NITOS"

Ονοματεπώνυμο:

ΔημήτριοςΖαφείρης

ΑΕΜ: 966

Επιβλέπων καθηγητής: Αθανάσιος Κοράκης

Συνεπιβλέπων καθηγητής: Σπυρίδων Λάλης

Βόλος, Σεπτέμβριος 2014

ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΙΑΣ

ΒΙΒΛΙΟΘΗΚΗ & ΚΕΝΤΡΟ ΠΛΗΡΟΦΟΡΗΣΗΣ

ΕΙΔΙΚΗ ΣΥΛΛΟΓΗ «ΓΚΡΙΖΑ ΒΙΒΛΙΟΓΡΑΦΙΑ»

Αριθ. Εισ.: ----'--1"--3_'8"--2...:.../_' _
Η μερ. Εισ.: --=--0:.-'--=-04"---=-20"--':..::5 _

Δωρεά: --=Σ-=.uΎ.LΎu:ρ:..::α:.Ιψ:..::έ.::.α _
Ταξιθετικός Κωδικός ΠΤ-ΗΜΜΥ

2014

ΖΑΦ

DEPARTMENT ΟΡ ELECTRICAL ΑΝΩ
COMPUTER ENGINEERING

Title: ''Integration of CC2500 wireless interfaces with
NITOS prototype wireless sensor platform"

ΑΕΜ: 966

Volos, September 2014

Thesis

Full name:
Dimitrios Zafeiris

University of Thessaly

Supervisor professor: Athanasios Korakis
Co-supervisor professor: Spyridwη Lalis

Ευχαριστίες

Η παρούσα Διπλωματική εργασία πραγματοποιήθηκε στο τμημα

Ηλεκτρολόγων Μηχανικών και MηχαVΙKών Υπολογιστών στο Βόλο.

Αρχικά, θα ήθελα να ευχαριστήσω τον επιβλέπων καθηγητή μου, και λέκτορα

του τμήματος Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών, κ.

Κοράκη Αθανάσιο, που μου έδωσε την ευκαιρία να ασχοληθώ με αυτό το

θέμα. Επίσης, θα ήθελα να ευχαριστήσω θερμά τον υποψήφιο Διδάκτορα,

Καζδαρίδη Ιωάwη, που σε όλη την διάρκεια της Διπλωματικής μου ήταν εκεί

και με καθοδηγούσε προς την σωστή κατεύθυνση, με χρήσιμες συμβουλές και

προτάσεις. Τέλος, ένα μεγάλο ευχαριστώ σε όλους όσους μου

συμπαραστάθηκαν όλο αυτό το διάστημα, και κυρίως την οικογένεια μου και

τους φίλους μου.

CONTENTS

Ευχαριστίες 3
Περίληψη 6
Abstract 7
Motivation 8
1. Introduction 10
1.1 General informatίon about CC2500 10
1.2. Packet HandJing 11
1.3. Packet Format 12
1.4. Data buffering 12
1. 5. GeneraJ Control and Statυs Pins 12
1.6. CrystaJ osciIJator 13
1.7. Pictυres of CC2 500 13
2. Arduino Board 15
2.1. GeneraJ 15
2.2. Arduino's Hardware 15
2.3. Arduino's Software 16
3. Connection 18
3.1. GeneraJ 18
3.2.SPI. 19
3.3. Two ways of connection 19
3.3.1. Connection using a breadboard 19
3.3.2. Connection through a shjeld 21
3.3.3. NΠOS CC2500 Shield 22
3.4. Compare the two ways 22
4. Code 23
4.1. GeneraJ 23
4.2. Code Example 23
4.3. Flowchart ofCC2500 procedures 25
4.3.1. For our first library 25
4.3.2. For ουι second library 26
4.4. Comments οη code 27
5. InitiaJization of CC2500 29
6. Addressing 31
7. Throughput Performance 32
7.1. GeneraJ 32
7.2. Examine Throughput Performance 32
7.3. Diagram ofThroughput Performance 33
7.4. Commends οη throughput 33
8. Range of CC2500 34
8.1. GeneraJ 34
8.2. Examine performance at ilifferent distances 34
8.2.1. First experiment without obstacles 34
8.2.2. Second Experiment with obstacles 35
8.2.3. OveraJI ilistance performance diagram 36
9. Featυres of CC2500 37
9.1. Wake-on Railio 37
9.2. Different ΤΧ power 38
9.3. LQI and RSSI. 39
9.3.1. GeneraJ for LQI and RSSI 39
9.3.2. How RSSI and LQI caJcuJated 40
9.3.2. RSSI Diagrams 41
9.3.2.1. GeneraJ 41
9.3.2.2. RSSI diagrams with different channels 41

9.3.2.3. RSSI diagrams with ilifferent ilistances 44
9.4. Clear Channel Assessment (CCA) 44
9.5. Burst Transmission 45
9.6. Frequency hopping 45
9.7. Data whitening 45
10. Frequency 46
11. CC Debugger 47
11.1. General 47
11.2. Features of SmartRF 49
11.2.1. Generate header files 49
11.2.2. See RSSI - time iliagrams for a communication 49
11.2.3. Compute packet error rate 50
11.2.4. Give Device Commands 50
11.3. SmartRF example 51
12. CC2500 with MSP430 53
12.1. General 53
12.2. MSP430 with SmartRF 54
13. Future work 56
13 .1. Cuπent Consumption 56
13.2. Wake-on Radio feature 56
13.3. TinyOS library 56
References 57

Περίληψη

Αυτή η διπλωματική εργασία παρουσιάζει τις δυνατότητες της ασύρματης

διεπαφής CC2500 της εταιρίας Texas Instrumeηts (ΤΙ), μέσω εκτενών

πειραμάτων. Το CC2500 της ΤΙ είναι ένας χαμηλής-ισχύοςRF πομποδέκτης

που λειτουργεί στο φάσμα συχνοτήτων 2.4GHz ISM. Σε αυτή την εργασία

ενσωματώσαμε το CC2500 με πλατφόρμες μικροεπεξεργαστών Arduiηo,

προκειμένου να αναπτυχθούν πρωτότυπα πειραματισμού. Αξιοποιώντας αυτά

τα πρωτότυπα, εκτελέσαμεκάποια πειράματακαι χαρακτηρίσαμετην απόδοση

του CC2500 κάτω από ποικίλες διαμορφώσεις, όπως διαφορετικά ΤΧ power
και διαφορετικά εύρη επικοινωνίας, όπως επίσης και με ποικίλα payload
μεγέθη για κάθε πακέτο. Επιπλέον, εξετάσαμε τις ειδικές λειτουργίες του

CC2500 όπως το wake-oη-radio και το clear chaηηel assessmeηt. Τέλος,

εκμεταλλευτήκαμε το λειτουργικό SmartRF που μας παρέχει πλήρη πρόσβαση

στους registers του CC2500, τους οποίους δεν μπορούμενα ρυθμίσουμε μέσω

μιας πλατφόρμας μικροεπεξεργαστή.

Abstract

This thesis presents the capabilities of Texas Instruments (ΤΙ) CC2500 wireless
interface, through extensive experiments. ΤΙ CC2500 is a low-power, RF
transceiver operating at 2.4GHz ISM band. In this work we interface CC2500
with Arduino micro-controller boards ίn order to develop experimentation
prototypes. Utilizing those prototypes we run experiments and we characterize
the performance of CC2500 under various configurations, such as different ΤΧ
power and different communication range as well as various packet payload
size. Moreover, we examine special features of CC2500 like the wake-on-radio
and clear channel assessment procedure. Finally, we exploit ΤΙ Smart-RF
studio which provides full access to CC2500 registers that cannot be
configured through a micro-controller board.

Motivation

The NITOS prototype wireless sensor mote has been designed by NITLAB. It
is comprised of open-source and configurable modules. NITOS mote features
the ATmega32u4 microcontroller running at 8ΜΗΖ and operating at 3.3V. The
aforementioned microcontroller is fully compatible with the Arduino platfoπn

that enables ease of software deνelopment and proνides compatibility with
seνeral commercial sensing modules. Moreoνer, the platform is equipped with
an Xbee radio interface that enables communication with the respectiνe

gateway. The Xbee module is a tiny deνice ideal for setting υρ mesh networks
and has a defined rate of 250 kbps. This module uses the ΙΕΕΕ 802.15.4 [1]
stack which is the basis for the Zigbee protocol. Apart from the Xbee [2]
module, NITOS mote can also feature a WiFi wireless interface ίn order to
communicate with WiFi gateways. The deνeloped mote cuπentΙΥ features
specific sensing modules, an air temperature and humidity sensor, a light
intensity sensor and a human presence sensor. Various types of sensing
modules and actuators can be further integrated exploiting existing Arduino
software that implements seνeral existing communications protocols. The
firmware can be easily uploaded through the on-board USB connection.

The ultimate goal of this thesis is to extend NITOS WSN prototype capabilities
by enabling the integration of new wireless interfaces. Το this end, this thesis
eνaluates the features of the Texas Instruments CC2500 wireless RF module,
towards proνiding knowledge about its specifications and functionalities.
Additionally, this work paνes the way for the integration between NITOS
nodes and CC2500 module.

The motiνation behind this work is to enhance NITOS node ίn terms of
manufacturing cost, actual size and networking capabilities. As already

mentioned, NITOS node is based οη XBee commercial interface for its
wireless communication, which is a plug-and-play solution οηΙΥ basic
configuration steps. However, XBee is not available at a good price ίη the
market so it is deemed expensive for large-scale deployments. Additionally,
XBee communicates with the microcontroller through a serial port (UART) ίn

application layer that doesn 't aJlow the configuration of complex MAC-Iayer
parameters. Ιη a few words XBee acts as a separate component οη the NITOS
node that doesn 't expose aJl of its functionalities to be controlled and utilized.
Moreover the firmware that Xbee runs it is closed-source, developed and
distributed by Digi, not allowing the parameterization and evaluation of some
features. Another drawback of XBee is the fact that draws high power
consumption ίη relation to the rest wireless interfaces existing ίη the market
applicable ίη wireless sensor platforms.
Considering all these drawbacks ίη this thesis we examine the potential of ΤΙ
CC2500 module which features some progressive features such as wake-on­
radio, etc. Additionally, CC2500 can be found ίη low-cost price ίη the market
for large-scale deployments and draws much less power consumption
compared to the XBee module. The other critical point for our decision is that
CC2500 runs open-source stacks for the network communications which
provides incentives for testing and experimentation.

1. Introduction

1.1 General informanon about CC2500

The CC2500 [3] is a low-cost 2.4 GHz transceiver designed for very low­
power wireless applications. The circuit is intended for the 2400-2483.5 ΜΗΖ
ISM [4] (Industrial, Scientific and Medical) and SRD [5] (Short Range Device)
frequency band and is developed by Texas Instruments [6].

CC2500 is used for:

• 2400-2483.5 ΜΗΖ ISM/SRD band systems
• Consumer electronics
• Wireless game controllers
• Wireless audio
• Wireless keyboard and mouse
• RF [7] enabled remote controls

CC2500 provides extensive hardware support for packet handling, data
buffering, burst transmissions [8], frequency hopping [9], clear channel
assessment [10], link quality indication [11], different tx powers, data
whitening [12] and wake-on-radiο [13].

The main operating parameters and the 64-byte transmit/receive FIFOs of
CC2500 can be controlled via an SPI [14] interface. Ιn a typical system, the
CC2500 will be used together with a microcontroller and a few additional
passive components.

Key features of CC2500:

• High sensitivity (-104 dBm at 2.4 kBaud, 1% packet error rate)
• Low current consumption (13.3 mA ίn RX, 250 kBaud, input well

above sensitivity limit)
• Programmable output power up to +1 dBm
• Excellent receiver selectivity and blocking performance
• Programmable data rate from 1.2 to 500 kBaud
• Frequency range: 2400 - 2483.5 ΜΗΖ
• οοκ, 2-FSK GFSK, and MSK supported

• Suitable for frequency hopping and multy-channel systems due to a fast
settling frequency synthesizer with 90 us settling time

• Automatic Frequency Compensation (AFC) can be used to align the
frequency synthesizer to the received centre frequency

• Integrated analog temperature sensor
• Efficient SPI interface: ΑΙΙ registers can be programmed with one

"burst" transfer
• Digital RSSI [15] output
• Programmable channel filter bandwidth
• Programmable Carrier Sense (CS) indicator
• Programmable Preamble Quality Indicator (PQI) for improved

protection against false sync word detection ίη random noise
• Support for automatic Clear Channel Assessment (CCA) before

transmitting (for listen-before-talk systems)
• Support for per-package Link Quality Indication (LQI)
• Optional automatic whitening and de-whitening of data
• 400 ηΑ SLEEP mode current consumption
• Fast startup time: 240 us from SLEEP to RX ΟΓ ΤΧ mode (measured οη

ΕΜ design)
• Wake-on-radio functionality for automatic low-power RX polling
• Separate 64-byte RX and ΤΧ data FIFOs (enables burst mode data

transmission)

1.2. Packet Handling

Transmit:

Ιη transmit mode, the packet handler can be configured to add the following
elements to the packet stored ίη the ΤΧ FIFO:

• Α programmable number of preamble bytes
• Α two byte synchronization (sync) word. Can be duplicated to give a 4­

byte sync word (recommended). It is not possible to οηlΥ insert
preamble ΟΓ οηlΥ insert a sync word.

• Α CRC checksum computed over the data field.

Ιη addition, the following can be implemented οη the data field and the
optional 2-byte CRC checksum:

• Whitening of the data with a ΡΝ9 sequence.
• Forward error correction by the use of interleaving and coding of the

data (convolutional coding).

Receίνe:

Ιη receive mode, the packet handling support will de-construct the data packet
by implementing the following (if enabled):

• Preamble detection
• Sync word detection
• CRC computation and CRC check

• One byte address check
• Packet length check (length byte checked against a programmable

maximum length)
• De-whitening
• De-interleaving and decoding

Optionally, two status bytes with RSSI value, Link Quality Indication, and
CRC status can be appended ίη the RX FIFo.

1.3. Packet Format

The format of the data packet can be configured and consists of the following
items:

• Preamble
• Synchronization word
• Length byte or constant programmable packet length
• Optional address byte
• Payload
• Optional 2 byte CRC

Oόpιmι!l~iί8Is~illfX.
~bιtM8f811Oiiι!!i1 Rx.

DιJnριIIICI!SιedUW ιI8Ia(ιιpaιt "tIΩ'i FEC
MdI'orwNlenlng)

,

1 J' Ι-Ή .ο

Preιιιιnιιιeblls
..

I,~· 'ι ' 0811 g(10111--1010) 11
ι-ι:'i ..10 'i' ~,)

(όjIIi6ιIII...·illήΩ---~)
(όρIiιιnιIιfEC~ ~ ιtjMit

<=-----OjIIionιICRC.16aιιcιMιn-- - -~ D~1III8IiI1αnulliι:aιιo:~

1.4. Data bufferίng

The CC2500 contains two 64 byte FIFOs, one for received data and one for
data to be transmitted. The SPI interface is used to read from the RX FIFO and
write to the ΤΧ FIFo.

1.5. General Control and Status Pίns

The CC2500 has two dedicated configurable pins (GDOO and GD02) and one
shared ρίη (GD01) that can output intemal status information useful for
control software. These pins can be used to generate ίηteΠUΡts οη the MCU.

Ιη the synchronous and asynchronous serial modes, the GDOO ρίη is used as a
serial ΤΧ data input ρίη while ίη transmit mode. The GDOO ρίη can also be
used for an on-chip analog temperature sensor. ΒΥ measuring the voltage οη

the GDOO ρίη with an external ADC, the temperature can be calculated.

Ιη ΤΧ, the GDOO ρίη is used for data input (ΤΧ data). Data output can be οη

GDOO, GDOl or GD02. This is set by the IOCFGO.GDOO_CFG,
IOCFGl.GDOl CFG and IOCFG2.GD02 CFG fields.- -

1.6. Crystal oscillator

The crystal oscillator generates the reference frequency for the synthesizer, as
well as clocks for the ADC and the digital part. The crystal oscillator (XOSC)
is either automatically controlled or always οη, if
MCSMO.XOSC_FORCE_ON is set. Ιη the automatic mode, the XOSC will be
turned off if the SXOFF or SPWD command strobes are issued; the state
machine then goes to XOFF or SLEEP respectively. This can οηlΥ be done
from the IDLE state. The XOSC will be tumed off when CSn is released (goes
high). The XOSC will be automatically turned οη again when CSn goes low.
The state machine will then go to the IDLE state. The MISO ρίη οη the SPI
interface must be pulled low before the SPI interface is ready to be used. If the
XOSC is forced οη, the crystal will always stay οη even ίη the SLEEP state.

1.7. Pictures of CC2500

.:..

s

..
~ ...:: ·Ι

002500 -_,.J~-9--I

CC2500 circuit

Front view of a CC2500 chip

Rear view of a CC2500 chip

2. Arduino Board

2.1. General

Arduino [16] is a single-board microcontroller designed to make the process of
using electronics ίη multidisciplinary projects more accessible. The hardware
consists of a simple open source hardware board designed around an 8-bit
Atmel ΑVR microcontroller, though a new model has been designed around a
32-bit Atmel ARM. The software consists of a standard prograrnming language
compiler and a boot loader that executes οη the microcontroller.

Arduino boards can be purchased pre-assembled ΟΓ do-it-yourself kits.
Hardware design information is available for those who would like to assemble
an Arduino by hand. There are sixteen official Arduinos that have been
commercially produced to date.

2.2. AI'duino's Hardware

Arduino is a single-board microcontroller, intended to make the application of
interactive objects ΟΓ environments more accessible. Current models feature a
USB interface, 6 analog input pins, as well as 14 digital Ι/Ο pins which allow
the user to attach various extension boards. Αη Arduino board consists of
an Atmel 8-bit ΑVR microcontroller with complementary components to
facilitate prograrnming and incorporation into other circuits.

Αη Arduino board consists of an Atmel 8-bit ΑVR microcontroller with
complementary components to facilitate prograrnming and incorporation into
other circuits. Απ important aspect of the Arduino is the standard way that
connectors are exposed, allowing the CPU board to be connected to a variety
of interchangeable add-on modules known as shields. Some shields
communicate with the Arduino board directly over various pins, but many
shields are individually addressable via an 12C serial bus, allowing many
shields to be stacked and used ίη parallel. Official Arduinos have used the
megaAVR series of chips, specifically the ATmega8, ATmegal68,
ATmega328, ATmega1280, and ATmega2560. Α handful of other processors
have been used by Arduino compatibles. Most boards include a 5 volt linear
regulator and a 16 ΜΗΖ crystal oscillator (or ceramic resonator ίη some
variants), although some designs such as the LilyPad Γυη at 8 ΜΗΖ and
dispense with the onboard voltage regulator due to specific form-factor
restrictions. Αη Arduino's microcontroller is also pre-prograrnmed with a boot
loader that simplifies uploading of programs to the on-chip flash memory,
compared with other devices that typically need an external prograrnmer.

At a conceptual level, when using the Arduino software stack, all boards are
prograrnmed over an RS-232 serial connection, but the way this is
implemented varies by hardware version. Serial Arduino boards contain a
simple inverter circuit to convert between RS-232-1evel and TTL-level signals.
Current Arduino boards are programmed via USB, implemented using USB-to­
serial adapter chips such as the FTDI FT232. Some variants, such as the

Arduino Μίηί aηd the unofficial Boarduino, use a detachable USB-to-serial
adapter board ΟΓ cable, Bluetooth ΟΓ other methods. (When used with
traditional microcontroller tools instead of the Arduino IDE, staηdard ΑVR
ISP programming is used.)

The Arduino board exposes most of the microcontroller's Ι/Ο pins for use by
other circuits. The Diecimila, Duemilaηove, aηd current υηο provide 14 digital
1/0 pins, six of which caη produce pulse-width modulated signals, aηd six
aηalog inputs. These pins are οη the top of the board, via female 0.1 inch
headers. Several plug-in application shields are also commercially available.

There are a great maηy Arduino-compatible aηd Arduino-derived boards.
Some are functionally equivalent to aη Arduino aηd may be used
interchaηgeably. Maηy are the basic Arduino with the addition of
commonplace output drivers, often for use ίη school-Ievel education to
simplify the construction of buggies aηd small robots. Others are electrically
equivalent but chaηge the form factor, sometimes permitting the continued use
of Shields, sometimes ηοΙ Some variaηts even use completely different
processors, with varying levels of compatibility.

Arduino Leonardo

2.3. AI'duino's SoftwaI'e

The Arduino integrated development environment (IDE) is a cross-platform
application written ίη Java, aηd is derived from the IDE for the Processing
programming laηguage aηd the Wiring projects. It is designed to introduce
programming to artists aηd other newcomers unfamiliar with software
development. It includes a code editor with features such as syntax
highlighting, brace matching, and automatic indentation, aηd is also capable of
compiling aηd uploading programs to the board with a single click. There is
typically ηο need to edit makefiles ΟΓ run programs οη a commaηd-line

interface.

Arduino programs are written ίη C ΟΓ C++. The Arduino IDE comes with a
software library called "Wiring" from the original Wiring project, which makes
many common input/output operations much easier. Users only need define
two functions to make a runnable cyclic executive program:

Blink example ίn Arduino IDE

ThlS eHampl.e code 18 ιπ the PUb1.1C domaln ../

!(set the LE~ οπ

,ι w31t for 3 second
!! set the LEC ott
ι; W31t tor 3 second

VOld setup () {
Ι! lnltlal.l:e the dlgltal. ριπ 35 θΠ output
1I Ριπ 13 has θΓ LEQ connected ΟΠ most ~rdUlno boards
pinMode(13. OUTPuT);

}

Bl.Hlf
Turns οπ θΠ LΕΟ οπ tor οπ! ~econd. then ott tor οπε ;econd. repe

VOld Ιοορ () {
digltalWflte(13. HIGH);
delay (1000);
dlgltalWflte(13. LOW);
de ΙθΥ (1000);

}

ο ι!\ ι-,Ί. BIlnk Ι Arduino 1.0

File EdIt Sretc~ T~~5 f ·e.p

oomaa a

setupO: a function run once at the start of a program that can initialize settings
lοορ(): a function called repeatedly until the board powers off

As the Arduino platform uses Atmel microcontrollers, Atmel's deνelopment

enνironment, ΑVR Studio ΟΓ the newer Atmel Studio, may also be used to
deνelop software for the Arduino.

The Arduino IDE uses the GNU toolchain and ΑVR Libc to compile programs,
and uses aνrdude to upload programs to the board.

3. Connectίon

3.1. General

Transmit and receive FIFOs, as well as the main operating parameters of the
C2500, can be controlled via an SPI interface.

CC2500 can be used together with a microcontroller and a few additional
passive components. So, we can connect the CC2500 with an Arduino board.

SPI connection can be done with Arduino's ICSP pins:

1•MISO Ii!J 2•+Vcc
3•SCK (U) 4•MOSI
5· Reset U 6·Gnd

ICSP

Notice that ίη Arduino Leonardo, SS is ίη digital ρίηΙ? Ρίη Dl? (SS) does not
have a corresponding ρίη οη the ICSP header, not anywhere οη the Arduino
Leonardo board. Ιη order to use it, we have to solder a wire to either the end of
the Rx LED or to the empty space attached to ίι

Ιη order to avoid that, we can just replace SS with some other variable (e.g.
CS) ίη our code. And then connect it with a corresponding ρίη οη the Arduino
board.

So, the CC2500 connections with Arduino are the followings:

CC2500 Arduino
3.3V 3.3V
Gnd Gnd
SDI MOSI (lCSP pins)
SDO MISO (lCSP pins)
SCK SCK (ICSP pins)
GDO Ρίη3 (defιned ίη code)
CS Ρίη1Ο (defιned ίη code) -~

~. ,.... ~

3.2. SPI

CC2500 is configured via a simple 4-wire SPI compatible interface (MOSI,
MISO, SCLK, CS) [17], where CC2500 is the slave. This interface is also
used to read and write buffered data. ΑΙΙ transfers οη the SPI interface are done
most significant bit first.

With an SPI connection there is always one master device (usually a
microcontroller) which controls the peripheral devices.

Typica1ly there are three lines common to a11 the devices:

• MISO (Master Ιn Slave Out) - The Slave line for sending data to the
master,

• MOSI (Master Out Slave Ιη) - The Master line for sending data to the
peripherals,

• SCK (Serial Clock) - The clock pulses which synchronize data
transmission generated by the master

and one line specific for every device:

• SS (Slave Select) - the ρίη οη each device that the master can use to
enable and disable specific devices. When a device's Slave Select ρίη is
low, it communicates with the master. When the SS ρίη is high, it
ignores the master.

The SS ρίη must be kept low during transfers οη the SPI bus. If SS goes high
during the transfer of a header byte or during read/write from/to a register, the
transfer will be cancelled. When SS is pulled low, the MCU must wait until
CC2500 MISO ρίη goes low before starting to transfer the header byte. This
indicates that the crysta1 is running. Unless the chip was ίη the SLEEP or
XOFF states, the MISO ρίη will always go low immediately after taking SS
low.

3.3. Two ways of connection

3.3.1. Connection using a breadboard

At first, we integrated CC2500 transceiver with the simple and common way,
using a breadboard. CC2500 can be connected with an Arduino, with some
wIres.

Photo of how a CC2500 can be connected with an Arduino Leonardo, using a
breadboard

Two CC2500 chips are connected with an Arduino Leonardo, ίn order to
achieve communication with each other. We deployed a set-up ίn which one
Arduino+CC2500 operates as transmitter and the other one as receiver.

Picture of how we connected two CC2500 chips, using breadboards

3.3.2. Connection through a shieId

CC2500 can be connected with an Arduino board, through a shield.

CC2500+Arduino connection through a shield.

Ιη order to communicate with two CC2500 chips, we have to get two same
shields (constructed analogue to our ρίη connections).

Two CC2500 chips are connected with an Arduino Leonardo, through two
same shields, ίη order to achieve communication with each other. We deployed
a set-up ίη which one Arduino+CC2500 operates as transmitter and the other
one as recelver.

3.3.3. NITOS CC2500 Shield

After all the wiring problems have been solved and as soon as we have a
correct way of how CC2500 connect with the Arduino board, using a
breadboard and some wires, we designed the shield.

This is the NITOS [18] CC2500 shield we've made, according to the correct
ρίn connections we've found. Ιn the fιgure you can see, how shield connect
CC2500 with the Arduino via SPI and some other additional pins, like GDOO,
and of course Voltage and Gnd.

3.4. Compare the two ways

SPI connection is really sensitive. So, ίn the first way, using a breadboard and
so many wires, we have big losses (wires may be tangled up, damaged or just
don 't contact well with the boards).

Ιn contrast, ίn the connection with the shieId, we don 't meet any serious losses
issues, so we can maximize the performance of the communication.

4.Code

4.1. General

As mention, we used Arduino IDE to run our code. We achieved.
communication between two CC2500 with the help of these two libraries:

• https:Ilgithub.comfyasiralijaved!Arduino-CC2500-Library [19]
• https:llgithub.com/ZohanlArduinoCC2500Demo [20]

The main idea is that the one Arduino+CC2500 operates as transmitter and the
other one as receiver. The two main functions are TxData_RFO and
RxData_RFO. Transmission is done by defining the packet length and writing
every byte we want to transmit separately. The data are stored ίη ΤΧ FIFO. Ιη

receive mode, the data recovered and stored ίη RX FIFO ίη RxData_RFO
procedure.

Other procedures we've used are init_CC2500, WriteReg, ReadReg,
SendStrobe and Read_Config_Regs. In section 4.3, we explain how each
procedure works.

4.2. Code Example

Οη the left side of the image, you see the code and the results of the serial
screen, for the Arduino+CC2500 that behave as transmitter. In this example,
we've chosen to send packets with 3 bytes payload. The first is the number of
bytes and the rest ones are the random ΗΕΧ numbers. More specifically, the
ΗΕΧ number ''OxOl'' and the ΗΕΧ number ''ΟχΟ9''. Also, there is acοuηιer

just to let us know how many packets have been sent.

ο

ι:::
,
PΔά'eτ:I.~

1

9

RS5I: lSS
LQ(: , ..

: t

•
RSSI: 142

ωτ: 3S

COUΩτc.r-:!47

rr..ΩaW!I..~ιzc. 1:5 <tVer

t1:olD:1:111i.33icc:ι ~ stut;

ΤΈι1~t:t;i.og,
Tr.ιl'UΩάει:ίι:ιq

1
Ir,,"D.Ω1i'Ί:τ:inq

•
cαQ.Ωc~r=5te

Irι.f1DI12~l.cn 15 O\1I!r
tr.rιsai:ι.si.oa to ~rt

tr~τ:cίaq,
rΊ:.ι.rι.9I1tτ::i.aq

1

1'rιιasιιi.ltcίl:lq

•

https://github.com/vasiraliiaved/Arduino-CC2500-Library
https://github.com/Zohan/ArduinoCC2500Demo

Οη the right side, you see how the receiver code works. As correct packets
received, number 3 has printed as well as the message "Packet Received". That
means that we've received a correct number with 3 bytes packet payload. Ifwe
have received a correct packet, the packet payload will also be printed, as you
see. Ιη our case, ΗΕΧ numbers ''ΟχΟ1'' and ''Οχ09''. Optionally, after packet
payload, LQI and RSSI values have been also printed, as they have been
f1ushed ίη RX FIFo. Finally, there's a counter too, just for our help.

Here's anotlIer example of our code, when transmitting packets with 51 bytes
payload. The first byte is for packet length and the next 50 bytes are the ΗΕΧ'
number 'ΌχΟΑ".

Οη receiver side, number 33(Οχ33 is 51 ίη decimal) has been printed, as well
as, 50 times the ΗΕΧ number ''ΟχΟΑ''.

=

Tran3mss~on Ιο start
Transmtcinq

33

TransΣU.ttinq

Α

Transmtt1nq

Α

TransΩi:&t1nq

Α

"TranSMit1;inq

Α

Transιιittinq

Α

Iransmtt1.D.g

Α

!ransrιittinq

Α

Transm t tia.q
Α

Transm.ttinq

Α

Traos:ιιlt tinq

Α

TransΣιit.tiD.q

Α

Transmttinq

Α

TrίUlsl'ιitti.D.q

Α

τran:m1τ;t1nq

Α

Tran:mi:tting

Α

Transmttio.g

Α

Trans.u.ttinq

Α

4.3. Flowchart of CC2500 procedures

4.3.1. For ουΓ first lίbrary

transmitter path

setup()

fkisn

"fFC

transmit1er.lno

Setup: initialize pins and begin SPI

Init CC2500: init registers of CC2500, according to our pre-defίned header
fίles.

Read Confίg Regs: Read νalues of the registers of CC2500 and make sure
that CC2500 is successfully configured.

Loop: Call the function TxRF to start transmission. Wait time for next
transmission, can be modified with ready function delay().

TxData RF: The procedure oftransmitting a packet.

SendStrobe: Send Deνice commands. E.g. send CC2500 ιη SLEEP state
(SPWD ΟΓ SWOR), ΟΓ ίη IDLE state (SIDLE).

WriteReg: Transfer SPI address and νalue. For register's νalues and data.

receiver path

setup()

receiver.ino

Read_Confi9_Re
gsO

Setup: initialize pins and begin SPI

Init CC2500: init registers of CC2500, according to ουτ pre-defined header
files.

Read Config Regs: Read values of the registers of CC2500 and make sure
that CC2500 is successfully configured.

Loop: Call the function RxRF to receive a packet.

RxData RF: The procedure of receiving a packet.

SendStrobe: Send Device commands. E.g. send CC2500 ιn SLEEP state
(SPWD οτ SWOR), οτ ίn IDLE state (SIDLE).

ReadReg: Read SPI address and value. Ροτ register's values and data.

4.3.2. For our second Iίbrary

Flowchart for code CC2500UnoDemo.ino

Setup: initialize pins and begin SPI

Init CC2500: init registers of CC2500, according to ουτ pre-defined header
files.

Read Config Regs: Read values of the registers of CC2500 and make sure
that CC2500 is successfully configured.

CC2500UnoDemo.ino

cι:_

Loop: Call sendPacket to transmit a packet or call listenForPacket to receive
data

sendPacket: The procedure of transmitting a packet.

listenForPacket: The procedure of receiving a packet.

SendStrobe: Send Device commands. E.g. send CC2500 ιη SLEEP state.
(SPWD or SWOR), or ίη IDLE state(SIDLE).

WriteReg: Transfer SPI address and value. For register's values and data.

ReadReg: Read SPI address and value. For register's values and data.

4.4. Comments ση code

• Sending RES Strobe ίη the setup function of both, transmitter and
receiver, makes sure that the two CC2500 chips is programmed with the
same registers, so they will communicate for sure.

• Before transmitting a packet and after exiting a transmission, it would
be better to send SIDLE strobes. This action will move the chip to IDLE
state. Fewer packets will be sent, as code become more complex, but it
would help us receive packets faster.

Here's an example diagram without sending IDLE strobe:

Diagram Signal Strength - Time

.­
.'

RSSlOflht:71

R.S5t Ν.Α..

RSSJ:H.A..

Here's an example diagram with sending IDLE strobe:

Diagram Signal Strength - Time

This happens because we «force" the C2500 to exit active state and go ίn IDLE
state immediately. That will also reduce our current consumption.

It would be useful to find the «perfect" delay time for a transmission. Of
course, we don't wiss big delay, but a smaller delay isn't always better.

Here's an example diagram with 5 ms delay:

]

RSStHA

RSStH.A.

RSSΙOffset 11

Ι-ΟCΚ...;'S'JΆf\.ΙS

Here's an example diagram of a 1Ο ms delay:

SIa")(SI<>o

RSStNA

RSSΙ:NA

RSSΙOffSβt~11

LΌQ\..SOOΙΙS

- ~'....

Ιn conclusion, after many experiments, we concluded that the perfect delay is
1Ο ms, before and after any transmission.

5. Initialization of CC2500

The configuration of CC2500 is done by programming 8-byte registers. After
chip reset, all registers haνe default νalues. The optimum register setting might
differ from the default νalue. After a reset all registers that shall be different
from the default νalue therefore needs to be programmed through the SPI
interface.

The optimum configuration data based οη selected system parameters are mοsΙ·

easily found by using the SmartRF Studio software. We'll show this software'
later.

There are 47 normal 8-bit configuration registers. Many of these registers are
for test purposes οηlΥ, and need not be written for normal operation of
CC2500.

There are also 12 status registers. These registers, which are read-only, contain
information about the status of CC2500 (like LQI and RSSI).

Also, there are 13 command strobe registers. Accessing these registers will
initiate the change of an internal state or mode.

Strobes Table

AddrHs Sb'0b8 DescrIρIkm

Naιιa

0χ3Ο SRES Resetchlp.

ΟΧ31 SFSn«>N EnabIe and αι . frequency synιtκιsIzeΓ(if .ICSMO . FS_AυT~1). If iRΑΧ ~ CCA):
GoID a wait Slate !lΛiMΓβonIy Φιι S)'Π1heslz8r1srumlng (f« qιEkΑΧΙ τχtumaroυnd).

ΟΧ32 δΧΟΡΙ: Τυmoff crystal osdIator.

0χ33 SCAι CaIIbra18 frequency syntheslzerand ιι.n It οlΙ SCAL can ,be strobed from ,IDI.E mode wiIhιύ
settlng manual calbralion rnode (MCSΚo.FS_AUTOC:Al.~)

01134 SRX EnabIe RX. PerfaιmαιΙ1bΓcwt1ontnι Ιαιmingfιoιn lDl.E and IItC$MO. F:UI;UTOCAL=1.

ΟΧ35 δΊΧ Ιη IDI..E staIe: EnabI8 ΤΧ. Pβrfoιm calJbraιion IirsII .MC$MO. F5_Aυ~1.
If Ιη ΑΧ state and CCA 1$ enabIικI: 0nIy go ID τχ channel is cIear.

0Χ36 SIDLE ExIt RX Ι τχ, tum off frequency synlheslzer and uitWake.()n-Radlo mode if appIkable.

0& SWOR Slart aWιmaticRX ΡOling sequenι:e (Wake-on-Radlo) as descιibedΙη S8ι:Iion19.5 if
tJORCTRl.. RC_ PD!!!().

ΟΧ39 SPWD Ent... powerdovm mode WιenCSn goes hlgh.

Οχ3Α SFRX fuh ιιιιι RX FIFO buller:. Only Issue $FRX iR ΙDLΕ ΟΓRXFI.FO_OVERFL!OW states.

Dx3B SFΊX fUh ΙΜ τχFffO bu 8Γ. Ο,.., Issue $FTX In lOl.E οι TXFIFO_U DERfLO'N stιt•.

0X3C SWORRSΤ Reset reallime cfock to EνeηΙ1 valιιe.

ΟΧ3Ό δΝΟΡ Νοopera1ion. May be useιfΙΟ geιaι:cessID h dιIρ statusbyte.

',.'.'4

Registers Table

θ1

Τι

71

ΊΟ

71

72

79

iIID

iIID
ιο

ιο

iIID
iIID

&5

66
68

61

Νι:ι

Νι:ι

Ιιι

SIJEEP'''

...., .~Oiiιίφi!ιi:'ιSiiiIίiIn~

• ~rMίOι'i

RC cιιHiIιιιb' ..

~~

~ίeSII

V:iιiiJιιilίiSi!s'-'
\I':ιiιiiιιIιιϊ

~~tiiIfdIiDn
-~.

~aιίbdlίDιι
RC CίIidIιiIIάr· .

F'itid.·iΠID: ίD'ι&gυoilim
~~ιesizσ' .'

ΜιιίιίRailι:ίQdιDISI1ίϊIeMiιtiIiίnϊIlιtιtιήIίΊgυ.....

ΜϊιίιίRadifι·~Sϊirιfe • mnligυriiϊίilή

MϊιilιlbiιιlόC'ιiίdιd SIiIIi! - ~ ." - ιtDι'iIίgut:iiίiάι'ι>

MCSM2

MCSM1I

MC:S...

FSICAU

"SClιL.1

"SCAιΩ

RCCUU.1I

RCCmUI

FOCCFG

BSCFG

λGCmtL2

FRE:Q2 ~CDϊ6dwt8d"fίVι~·
FRE:Q1I . - .. - - .:ιd,. JίιiιIiIιi,fJ)te

S"tHC1J S,OO........".

S"tHCD S,OO...............bJIe

IOOJ'GO COOOI~pb~,

FIF01HR ΑΧFIFO...TXF:IFO

IDIΠIlιoυ~.1IengIfi

PΚfcmι1i ~

PtσCJRl.lO P.iίιiJIet:.

ΛDDA: ~:iiiIιhss

CHιV\II!iIROίaι'iι1ι!IIDJd'ίΊιer

-... • ··~·iXιnIniII

FREΦ ι:tιι*tι1 weιrd....byIi!

1IIJMCFG4i 'Mιi'ιdιim ίit8'iliguia1iΊin

IIIOUCFG3
IIDUCFG2 • Ii'άiII

0:ι:21

Ox:1F

0.16

0.17

Cbiιθ

'D.ιι.lIB

1Ιιι1Ε

,IW)C

-..'.~ .

6. Addressing

CC2500 supports address fιltering. It' s a way of packet filtering. Setting the
value ofthe register PKTCTRL1.ADR_CHΚ to any other value, except from
Ο, enables the packet address filter.

Ιη detail:

• 00: Νο address check.

• 01: Address check, compare destination address byte ίη the packet with
the value of ADDR register.

• 10: Check broadcast address ΟχΟΟ.

• 11: Check both, ΟχΟΟ and OxFF broadcast addresses.

If the received address matches a valid address, the packet is received and
written into the RX FIFo. If the address match fails, the packet is discarded
and receive mode restarted.

If the received address matches a valid address when using infinite packet
length mode and address fιltering is enabled, OxFF will be written into the RX
FIFO foIιowed by the address byte and then the payload data.

Note1: Ifthe value ofthe register PKTCTRL1.ADR_CHΚ is 00, then there is
ηο address check. Packet filtration can be done with maximum length filtering
ΟΓ CRC fιltering.

Note2: Optional broadcast addresses are Ο (ΟχΟΟ) and 255 (OxFF).

7. Throughput Performance

7.1. General

As soon as, we achieved to communicate with two CC2500 chips, we had to
test the performance of our communication.

As mention, CC2500 has two 64 bytes FIFOs, and data payload is stored there,
for every packet we have sent ΟΓ received. That means that we are able to send
packets with different packet payload. Specifically, our range extends from 1
to 64 bytes. For that reason, we have to examine throughput ίn any case, so we
are able to estimate when CC2500 transceivers maximize their performance.

7.2. Examine Throughput Performance

We examined throughput [21] performance ίn different cases. Ιn detail:

• 2 bytes payload: 144 from 150 packets delivered correctly ίn a minute.
Throughput = 7.2 bytes per second.

• 10 bytes payload: 116 from 130 packets delivered correctly ίn a minute.
Throughput=21.2 bytes per second.

• 20 bytes payload: 78 from 112 packets delivered correctly ίn a minute.
Throughput=27.3 bytes per second.

• 30 bytes payload: 64 from 11 Ο packets delivered correctly ίn a minute.
Throughput: 33 bytes per second.

• 40 bytes payload: 56 from 104 packets delivered correctly ίn a minute.
Throughput=38.2 bytes per second.

• 50 bytes payload: 46 from 100 packets delivered correctly ίn a minute.
Throughput=39.1 bytes per second.

• 60 bytes payload: 38 from 88 packets delivered correctly ίn a minute.
Throughput=38.6 bytes per second.

• 64 bytes payload: 32 from 88 packets delivered correctly ίn a minute.
Throughput=34.1 bytes per second.

7.3. Diagram ofThroughput Performance

Packets with payload over 64 bytes don 't delivered at all (CC2500 has two 64
bytes FIFOs for packet payload).

Ι Ο Throughputl

~ ι=. ιC

ι::::::. c
- - Ι-- - f-

,c=,
~ - - - Ι-- - f-

- - - - Ι-- - f-

ιr=ι - - --:- - '-- - ι....,

2 1Ο 20 30 40 50 60 64
pay oad (ιΠ bytes)

40
30
20
10
Ο

Optional address byte is being stored ίη ΤΧ FIFO when address filtering is
enabled. So, ίη order to maximize the beneficial bytes of our transmission,
weΊΙ just have to disable address check. This would release one byte to the ΤΧ
FIFo. But, not having address check is not always a required situation for our
transceivers.8. Range of CC250

Vertically: Throughput ίη bytes per second
Horizontal: packet payload ίη bytes

As we see, max throughput can be achieved when transmitting packets 50
bytes long. That's why, even if we transmit packets with bigger payload, we
have bigger losses of packets when payload increases. So, throughput starts to
decrease from the level of 50 bytes payload and above.

7.4. Commends οη throughput

LQI and RSSI values are automatically added as two extra bytes appended
after the payload (whenPKTCTRL1.APPEND_STATUS=I). This register has
default value 1, so one thought would be to make the value of
PKTCTRL1. APPEND_STΑTUS =0, ίη order not to carry these two metrics as
two extra bytes after the payload. But, all the experiments we've made ίη this
case, didn 't even give us different results, compared with the above diagram.
So, making PKTCTRL1.APPEND_STATUS=0 won't improve throughput
performance.

Ιη order to have more safe results about throughput performance, we made a
diagram. lt shows how throughput has been influenced, as we increased the
payload of the packet.

8. Range of CC2500

8.1. General

CC2500 is a transceiver designed for wireless applications. So, it is reasonable
the performance of a communication between two CC2500, to affect when
transmitting ΟΓ receiving from different distances.

We have to examine how CC2500 behaves ίn different distances, ίn order to
achieve better communication ίn specific conditions.

8.2. Examine performance at different distances

We made two different experiments to figure out how CC2500 behaves ίn

different distances.

First, we examine how CC2500 behaves when the communication is done ίn

the same room. The one CC2500 was straight ahead from the other, without
physical obstacles.

Then, we tried to communicate from different rooms, with walls and other
physical obstacles to affect the communication.

8.2.1. First experiment without obstacles

For our first experiment, (same room without obstacles) we'νe noted the
following results:

• Νο distance: 136 of 140 packets delivered correctly (0.97).

• 1m: 122 of 140 packets delivered correctly (0.87).

• 2m: 114 of 140 packets delivered correctly (0.81).

• 3m: 102 of 140 packets delivered correctly (0.72).

• 5m: 88 of 140 packets delivered correctly (0.63).

• 7m: 86 of 140 packets delivered correctly (0.61).

• 7.5m and above: nothing happened.

As we clearly see, as distance increases, fewer packets delivered correctly from
the receiver.

That's what we want to show, as also to find the limit of 110w far two CC2500
can communicate with each other.

• 7m: About 10 packets of 140 delivered correctly (0.07).

• 2m: 86 of 140 packets delivered correctly (0.61).

• 3m: 80 of 140 packets delivered correctly (0.57).

IOR5io!

7m5m3m

distance (ίπ meters)

1mΝα dίsΙance

...v .'

~f- ,-
vl- f--

ι-

vf-
'."

Ι--- Ι--- - r--,--.
vf- f-- Ι--- Γ--

Ι- r-- ---- Γ--

f- f--- ι--

1/1- Γ--

....- t-- r--
~ '--- '--;;:

Ό
c:
Q)
cn

1cn- 0,9
~
u 018
ro 0,7Ω..

........ 0,6
Ό 0,5Q)

.;::: 0,4
Q) 0,3u
Q) 0,2....
cn 0,1
α/ Ο.::ιt:.
u
ro
Ω..

Vertically: Packet delivery ratio (packets received correctly / packets send)
Horizontal: Distance ίη meters

• 5m: 72 of 140 packets delivered correctly (0.51).

Ιη detail, at 7 meters distance, we had a pretty good packet delivery ratio
(0.61), depending οη the distance we'νe been. But, when we put the chip a
little longer (about 7.5 meters ΟΓ even less), packets didn't delivered at all. 80,
ίη conclusion, the limit for a successive transmission of a packet is about 7.1­
7.5 meters.

Also, as noticed from the experiment above, when two CC2500 is almost
beside to each other, the packet delivery ratio is quite high (0.96) .80, it's the
perfect condition to transmit and receive data as it's complete reasonable for a
wireless communication.

Here's the diagram of the first experiment:

As noticed, the packet delivery ratio is lower now, than it was ίη the first case
without obstacles. That' s something normal and something that we want to
show and for that reason, we'νe made this test.

Wireless communication is affected by obstacles, ΟΓ even the conditions that
are prevailing ίη a room, so the results we'νe found are normal.

8.2.2. Second Experiment with obstacles

In the second experiment we'νe made, we tried to make two CC2500
communicate from different rooms, with walls and other objects between them.
We've had the following results:

Vertically: Packet delivery ratio (packets received correctly / packets send)
Horizontal: Distance ίη meters

Vertically: Packet delivery ratio (packets received correctly / packets send)
Horizontal: Distance ίη meters

Ι Ratiol

Ι Ratiol

7m

7m5m3m

Distance (ίπ meters)

2m

ιο8

_1'8
.-

Ό

- -
:" .-

[. -
,: -- - f-- - f-- -

c:: ',:
:,..

- - '" f-- - f-- - - -:: ,:.

Ι'' -
f·v.

f-- - f-- -
;c· f:

f-- - f-- - - -
;~

.,. .. .

- f-- - r-- - - --',,:
u-ι...- -

Νο

distance

1
0,9
0,8
0,7
0,6
0,5
0,4
0,3
0,2
0,1
Ο

Ό
Q)...
Q)

.2: 0,7
ω
Ό 0,6
(J)-Q) 0,5~
(.)

ro 0,4a.
-....
Ό 0,3
Q)

>
'φ 0,2
(.)
Q)

0,1...
(J)- οQ)
~

2m 3m 5m(.)

ro
a. distance (ίπ meters)

Ό

ι:::
Q)
(J)

(J)

~
(.)

~

Here's the diagram ofthe second experiment:

Here's the overall diagram that resulted for both tests:

The limit of a successive transmission here is about 7 meters, even though the
packet radio ίη this case is extremely low (0.07) and it is not worth enough
communicating from this distance.

Ό
Q)

.2:
Q)
(.)

~
(J)-Q)
~
(.)

ro
Ω.

8.2.3. Overall distance performance diagram

9. Features of CC2500

9.1. Wake-on Radio

The Wake οη Radio (WOR) functionality enables CC2500 Ιο periodically
wake up from SLEEP and listen for incoming packets without MCU
interaction. CC2500 can be set ίη SLEEP mode and then notify and go again ίη

a regular state.

It is important because current consumption ίη SLEEP mode is οηlΥ 400nA. 1η

order Ιο go ίη SLEEP mode, CC2500 has Ιο be ίη IDLE state first. 1DLE state
is a state that CC2500 doesn't transmit ΟΓ receiνe. CC2500 is just waiting.
Current consumption ίη IDLE state is 1.5mA. 1ι is possible Ιο go ίη 1DLE state
by just sending the S1DLE command strobe.

Then, when SPWD ΟΓ WOR command strobes are issued, the chip goes ίη

SLEEP mode automatically. Of course, it is necessary the SS ρίη is lΠGH.

Finally, when SS goes LOW again, the chip enters ίη 1DLE state again. After
that, CC2500 is ready to go ίη ΤΧ ΟΓ RX state. Ιη addition, CC2500 can exit
WOR mode if we send an IDLE command strobe.

AIso, there is something crucial about the Wake οη Radio. The RC oscillator
must be enabled before the WOR strobe can be used, as it is the clock source
for the WOR timer. The on-chip timer will set CC2500 ίηΙο the IDLE state and
then the RX state. After a programmable time ίη RX, the chip goes back to the
SLEEP state, unless a packet is receiνed.

RC oscillator: The frequency of the low-power RC oscillator used for the
WOR functionality νaries with temperature and supply νoltage. Ιη order to
keep the frequency as accurate as possible, the RC oscillator will be calibrated
wheneνer possible, which is when the XOSC is running and the chip is not ίη

the SLEEP state.

As mentioned before, CC2500 has different current consumption, depending
οη which state it is.

Here's a flowchart of current consumption of all states of CC2500:

9
δ.6tnλ

).

owest ΡOW"" mocIe. Moιt
Ιegί!< r νθ " β,.. rel8iίned.

Τγρ. cutfenl co umploof\
400ηΑ. Of 900Ωλ"e-n
Wβlιe-<Wt-nIdiQIWOR) ΊS

el\βbled.

Ιη FIFO-basecl n>odes.
'on ΊS lurned 011 βΛιΙ

thIs !lιate enI..red ΙL lIIe RX
FIFOo.,erlbw". ΤΥΡ.

c t consumρtιotι'
.5rnλ.

F "nι:y 9γη θSΊZ 19 ed 0tI. CB/\ ορυ ΙΥ be
braled. βΛιIll\etι s.et1le9 Ι1) "'''~ re-quency.

Itionβl 9:t81e. ΥΡ. cu« Ι consumplioιl'7.4 λ.

\
OLE

U,.e-d rOf bfalιn9 fte-quecw:y
9ynllle-9ΊZN υρl ηl (ι>nte-,Ing

,eceiνθ οι IΝΙη9Μϊl mode can
the.. be <Ιοηθ qulck Ι-

ΝΙη9ίΙΙοηβl Slale. ΥΡ. CtJ(tenl
consumplίΩn,7.4 mA.

Frequ ~ synthe9ιZerts on.
,e-ady 10 " It 9mll1lng.
ransml9sίOn 918ft" •

qu lγ rle, (e<:ehllng II\e
S χ r.oΜιηβη" 91(obe.ΤΥΡ.

w(t eιwι9umpliOn. 7.4ΜΑ.

γρ. currenI consumpτιon.
11. ιηΑ at-12d8mou υι.

15. Α βΙ -&Ι: ou' Ι.

21. Α βι Od ου l

Ιη FΙFΩ-t>β_d modes.
ttan9mission ί! Iu,ned oιr

θΑ" thls. 91:8 Ie ent..,ed' the
χ F IFΟ beCΩt'I\es e ΡιΥ In

the mϊ<ldle ΟΙ β θΙ. ΥΡ.

ω t COtI:sumplk>n. 1.5mA.

9.2. Different ΤΧ power

Except from that, CC2500 has the ability to traπsmit data with different tx
power every time.

It is a simple procedure, as to select power control settings, we just have to
change value of PATABLE [22] register.

More specific, the Οχ3Ε address is used to access the PATABLE, which is
used for selecting ΡΑ power control settings. The ΡATABLE is aπ 8-byte
table, but not all entries into this table are used. The entries to use are selected
by the 3-bit value FRENDO.PA_POWER.

Table with ΤΧ power, respective ΡΑΤABLE values and cuaent consumption.

ΤΧ power (dBM) PATABLE value Current Consumption(mA)

-55 ΟχΟΟ 8.5
-30 Οχ50 9.9
-28 Οχ44 9.7
-26 OxCO 10.2
-24 Οχ84 10.1
-22 Οχ81 10
-20 Οχ46 10.1
-16 Οχ55 10.8
-10 Οχ97 12.2
-8 Οχ6Ε 14.1
-4 ΟχΑ9 16.2
-2 ΟχΒΒ 17.7
Ο OxFE 21.2
1 OxFF 21.5

9.3. LQI and RSSI

9.3.1. General for LQI and RSSI

LQI and RSSI are often used as measures for the wireless link quality. ,

LQI estimates how easily a received packet can be demodulated. It reflected
the bit eaor rate of the connection.

RSSI estimates the signal level ίη the chosen channel. This metric provides a
measure of the signal strength at the receiver.

The RSSI value is measured ίη dBm and expresses the signal power. The
values typically range from -45dBm to -100dBm. The lower value is
determined by the receiver input threshold, and the upper by the airborne
signal strength.

The LQI value reflects the link quality seen from the receiver side. The LQI
value correlates with the Packet Reception Rate (PRR) and is therefore a very
important figure ίη mesh routing protocols. The value combines the RSSI value
with a coaelation of the expected and received data, thus being able to reflect a
bad link quality ίη a noisy environment that results ίη a high RSSI value. There
is ηο exact formula for how to calculate the LQI value and the estimation
method is implementation specific. The LQI value ranges between Ο and 255,
where the highest value represents the maximum quality frames.

We can easily access these metrics:

• ΒΥ reading the RX FIFD. LQI and RSSI are automatically added to the
last and first byte appended after the data payload. If
PKTCTRLl.APPEND_STATUS is enabled, two status bytes will be
appended to the payload of the packet. The status bytes contaίn RSSI
and LQI νalues, as well as the CRC ΟΚ flag. So, when receiνing i
couect packet, if we read the whole RX FIFO, weΊΙ see the νalues of
LQI and RSSI, after the packet payload.

• ΒΥ reading the νalues ofLQI and RSSI registers (read-only registers).

Οχ33 (OxF3}:LQI- Demodulator Estimate for ~nkQuality

BIt FI8klNaιM RIW DesαfρIIon

7 CRC_OΚ R 'Πιe lasιCRC GQΠ'IρaιlsonmatιfM!d.'CIBared ..ιιοο

ooΙeιiΙVnmaιtln!l RX mcde.~νaIId if
ΡΚΤCΤRlΟ.CC240ΙU,Ν=1.

6:0 LQI_EST(6:6) R 'Πιe υnk ,QuaIitv IndIcaΊOΓ βsιtnaιes how,easily a Π!C81ved slgnal
can MdemoιUal8d. caιeιιlaιeιι OV8r the 64 symbols~
Ihes~WOΓd.

Οχ34 (ΟχF.ι): RSSI- Received SignaI Sb'!engιhΙndίe:atίoπ

ΓBιtlr-FWd--......-'-----1... r-Ίι-Dιικι ipdoιι_"'_DII _

8 RSSI ι..-,__~ReceIνedslgnal SV!IIng1b indicator

9.3.2. How RSSI and LQI calcuIated

In Transmit mode:

The modulator will first send the programmed number of preamble bytes. If
data is aνaίlable ίη the ΤΧ FIFO, the modulator will send the two-byte
(optionally 4-byte) sync word and then the payload ίη the ΤΧ FIFD. If CRC is
enabled, the checksum is calculated oνer all the data pulled from the ΤΧ FIFO
and the result is sent as two extra bytes following the payload data. These two
extra bytes contaίn the νalues of RSSI and LQI.

Ιη Receiνe mode:

If automatic CRC check is enabled, the packet handler computes CRC and
matches it with the appended CRC checksum. At the end of the payload, the
packet handler will optionally write two extra packet status bytes that contaίn

CRC status, LQI and RSSI νalue.

-..-ο-Α

9.3.2. RSSI Diagrams

9.3.2.1. General

It's useful to see how RSSI value changes as time goes by ίη a communication.
For this purpose, we've made some diagrams for RSSI, depending οη time.

We've made these measurements with SmartRF, a software also designed by
Texas Instruments. We connected with a CC Debugger a CC2500 chip, and
opened the SmartRF program. Then, we started to transmit from another
Arduino+CC2500. From SmartRF, we went οη Continuous RX mode, so the
CC2500, which was connected there, started to receive. We changed the
registers of both connections ίη order the combination worked right. (We'll
talk about CC Debugger and SmartRF, ίη more detail, later.)

The setup we made is ίη the photo below:

9.3.2.2. RSSI diagrams with different channels

Ιη the first diagram, we chose channel Ο (frequency = 2432.999908 ΜΗΖ) and
we kept the two set-ups ίη the same distance:

RSSt Οχ38

RSSt-43dBm

RSSI Olfset: 11

ΙOCκ..,.SΤATIJ$

RSSI: Oxb3·

RSSt .109dBm

RSSI Olfs~t 71

ΙOCK5TIJIJS

RSSI signal remains stable for every packet that the CC2500 receives.

In the second diagram, we changed the channel from the one connection to 1
(frequency = 2433.199859 ΜΗΖ):

RSSI signal is obviously lower. That make sense due to the frequency we'νe

changed.

Then, we increased the channel number of the one connection, consecutively.
The other connection has a stable channel number equal to zero (frequency =
2432.999908 ΜΗΖ).

The diagrams we'νe recorded are below.

For channel= 2 (frequency = 2433.399810 ΜΗΖ):

For channel = 3 (frequency = 2433.599761 ΜΗΖ):

For channel = 4 (frequency = 2433.799712 ΜΗΖ):

RSSΙOXba

RSSt·106dθlJl

RSSIOIIset 71

ΙOCIU;ΤΑΤUS

RSSt O>ιdf

RSst-87dBm

RSSI Ollset 71

ι.OCΚ_SΤA.ΤUS

From channel 5 and above, RSSI signal starts to reduce significantly.

9.3.2.3. RSSI diagrams with different distances

RSSI is a strength signa1 va1ue, and as a result, it's 10gica1 to depend from the
distance that we try to communicate.

So, we 've created a diagram to see how RSSI affected, when the transmitter,
changes positions continuously. The diagram is shown below:

We've started the test, holding the one node ίη about 1 meter away from the
other. And periodically, we started to get closer. At about lOs the two CC2500
was a1most attached to each other. That's why, we notice how strong the signal
is. Then, as seconds gone by, we started periodica11y to get the nodes away
from each other. About 2 meters away at 20th second.

9.4. CIear Channel Assessment (CCA)

The Clear Channel Assessment CCA) is used to indicate if the cuπeηt channel
is free or busy. The cuπeηt CCA state is viewable οη any of the GDO pins by
setting IOCFGx.GDOx_CFG=Ox09.

There are four modes that CCA can be programmed. MCSMl.CCA_MODE
selects the mode to use when determining CCA. We οηlΥ entered ΤΧ mode if
the clear channel requirements are fulfilled. The chip will otherwise remain ίη

RX. The four CCA requirements that can be programmed:

• Always (CCA disabled, always goes ίη ΤΧ).

• If RSSI is below a threshold.
..... ;.

• Unless currently not receiving a packet.

RSStOXd2

RS5t·94dBi

RSSlOff$e!:

• Both the above (RSSI below threshoId and not currently recelvιng a
packet).

With the MCSMl register, we can choose which mode we 'd Iike for our
communication, by changing the value of MCSMl.CCA_MODE to ΟχΟΟ,

OxOl, ΟχlΟ and Oxll, respectively for each mode.

9.5. Burst Transmission

The high maximum data rate of CC2500 opens up for burst transmissions. Α
Iow average data rate link (e.g. 10 kBaud), can be realized using a higher over­
the-air data rate. Buffering the data and transmitting ίη bursts at high data rate
(e.g. 500 kBaud) will reduce the time ίη active mode, and hence also reduce
the average current consumption signifιcantly. Ιη addition, reducing the time ίη

active mode will reduce the likeIihood of collisions with other systems.

9.6. Frequency hopping

The 2.400 - 2.4835 GHz band is shared by many systems both ίη industrial,
office and home environments. It is therefore recommended to use frequency
hopping spread spectrum (FHSS) ΟΓ a multi-channel protocol because the
frequency diversity makes the system more robust with respect to interference
from other systems operating ίη the sarne frequency band. CC2500 is highIy
suited for FHSS ΟΓ multichannel systems due to its agiIe frequency synthesizer
and effective communication interface.

9.7. Data whitening

Real world data often contain Iong sequences of zeros and ones. Performance
can then be improved by whitening the data before transmitting, and de­
whitening the data ίη the receiver. With CC2500, this can be done
automatically by setting PKTCTRLO.WHITE_DATA=l. ΑΙΙ data, except the
preambIe and the sync word, are then XOR-ed with a 9-bit pseudo-random
(ΡΝ9) sequence before being transmitted. At the receiver, the data are XOR-ed
with the sarne pseudo random sequence. This way, the whitening is reversed,
and the original data appear ίη the receiver. Data whitening can οηΙΥ be used
when PKTCTRLO.CC2400 ΕΝ=Ο.

10. Frequency

As mention, CC2500 frequency range is from 2400 to 2483.5 ΜΗΖ. That
means that we'll probably meet some "noise" from other WΊreless deνices,

which uses the same frequency band.

So, we made an experiment ίη order to proνe that. We set ουΓ router, at home,
ίη channel 11, according to this wifi channel diagram [23]:

1 2 3 4 5 6 7 8 9 10 11 12 13
2.412 2.417 2.422 2.427 2.432 2.437 2.442 2.447 2.452 2.457 2.462 2.467 2472

r?ί/5ι······(fffi;O
22 MH~

14 Channel
2.484 Center Frequerr

J... (GHl)
-.,:."

Ιη this way, ουΓ router works οη 2462 ΜΗΖ, which is a frequency into CC2500
frequency range. More specifically, CC2500 has frequency equal to 2462
ΜΗΖ, when its channel is 145.

Then, we tried to communicate with two CC2500 transceiνers. ΒΥ selecting
channel Ο to channel 131 (2459.1 ΜΗΖ), we noticed that throughput has
common νalues as usual. So, there's nothing special to mention so far, because
we're far from the channel that the router worked.

Then, at channel 132 (2459.4 ΜΗΖ), communication started to haνe big losses.
Specifically, οηlΥ 40 packets of 140, deliνered right ίη a minute.

From channel 133 and aboνe, nothing deliνered correctly to the receiνer.

That's explains what we'νe said ίη the beginning of our experiment. CC2500
may meet some serious issues if the communication is been doing oνer other
wireless deνices. Ιη a case like this, frequency hopping ΟΓ a multi-channel
protocol may be really important.

11. CC Debugger

11.1. General

The CC Debugger [24] is a small programmer aηd debugger for the ΤΙ Low
Power RF System-on-Chips, like CC2500.

CC2500 can be directly connected and programmed, with a CC Debugger. CC
Debugger supports SPI connection, so it's really easy to connect it with a
CC2500 transceiver.

G Ο • • Τarget Voltage Sense, -
DC (DeblIg C1ock) • • 00 (Debug Data)

3 .1

CSn (SPI Chip Select) • • SCLK (SPI Clock
5 6

RESETn • • MOSI (SPI Data Oυt
7 ο

3.3V rom debugger) • ~ MISO (SPI Data In)
9

CC Debugger pins

If everything ίn the connection with CC2500 goes well, a green light will light
up.

Otherwise, a red 1ight will show us, that something lS wrong with ουΓ

connection.

CC Debugger uses SmartRF [25] software, which gives us a 10t of
opportunities to have a better 100k at CC2500 performance. SmartRF can
operate with 1 GHZ and 2.4 GHz chips (like CC2500).

_____ Τ

• Ι 111 Ι

ΙίΒΙ οι oonπected deνίce.: FίId deνice: Φ

~ CC Oebugg:er (use, devioalJ=833S, Fϊπnwa.e ΓβνiSίon,=0043). - CC2500 - OC-Panel Lost.

..., Τβ:ιas Instnunents

Ιn the picture, is showed that a CC2500 chip is connected, via a CC Debugger

11.2. Features ofSmartRF

SmartRF gives the potential, to a user, to have a better and more integrated
view of CC2500 transceivers.

11.2.1. Generate header fιles

Ιη SmartRF there are ready tables of registers and other buttons that help us,
state, what conditions we want for our communication. Ιη that way, it is really .
easy for us to find the preferred registers values and then generate header files.

ΙΒ ΙMYll'ιfe

Af_
8ιsefnoqιι<oι:y (hιιIιd_ ChιMeIιp8Gίιq Cιnier~

j1ill_Ii:1IItz ~ 1199]5"11 ΙΙΙΙ! (ιm-Ιιιtz

XIιJ~ O.r. AXllιrBW

2ti.ODOUOtt • UHz 11._1 It8ιιI<I J11Jl115OOG IΙΙΙ, 0--υoιlιι__
DmιIitι> JXρoweι

§:::::ΞJ !:J3._IIJt, E3c11ιn [j\\1lleoίlg

When change a parameter οη the left board, registers values will be
automatically affected to the right board, depending οη what weΎe changed.
Then, by clicking "Register export" you can create your header files and
automatically saved ίη your computer.

Dιita r4te: ί.4 JcBaud. Qev.: 38 kIb. !tod.: ~-:FSΚ. Ω1Ωf: ί03 kIIz, Opt.iιdud for currΘt ccMwιption

DatiJ. r4ce: 10 kBaud, Dev.: 38 kB%. Mod.: 2-!S«' D Π: 23(kI!%. (]ptWsed. Ισl: SlU1Sitivity .. ,ΙOCfG2

Da!:a ratl!: 10 kβaud, Dev.. ,38 kIh. KI2d.: ί-!'SΚ. ax 8".: 232 kIb. Optllιiud. Ια~ curι:~t CCIl5Uφtiα:ι .. IXfG1

Dati1 r4te: (51) kBaud, Maι:ι.: ΚSK. U Β'ΊΙ. 510 k8%. Optwstιd far :!etlsi~lvity

D.ata rl.tιr:: 250 kIIaud, NIJd.: ΚSΙ:. ~!!'I: 540 JιRz:, OptW&8d Ισι: e:ur.rent αm~t.icα ~ lDCfGI
Diιl.ι. r4te: Μσ kSaw!. Kαd.: HSI, U 811: 81;: lIb., Clptiιιi.ud Ιοι: 3et1.1itiVity .. FfσJ'Im

.:w~ ίίίίίίίίίίίίίίίίίίίίί ίίiίίίίίίίίίίίίίίίίίίίίίίίίίΙΙΙI;I.'SVHCI

• • SVHCO

• PICIWι
• Pιm:TRl1
• JllfC!IU
• AOOR

• CIiAJIIR
• ,FSCI1II.t

• FSCI1II.O

• FIGZ

_____________________________..I~•• fllEQI

11.2.2. See RSSI - tiιne diagraιns for a communicatίon

When analysing what RSSI is before, weΎe seen different diagrams of RSSI,
depending οη time. This is extremely easy, using SmartRF. Υου just have to
set one node (Arduino+CC2500) as transmitter, and the CC2500 which is
connected to SmartRF, as receiver (Continuous RX). Το start Continiuous RX
at SmartRF, you οηlΥ need to push the button "start".

These diagrams may be really useful to evaluate the strength of the signal,
depending οη the frequency, the distance etc.

11.2.3. Compute packet eποr rate

Ready processes "packet ΤΧ" and "Packet RX" are useful, too.

"Packet ΤΧ" giνes user the opportunity to select packet payload he wants, and
then transmit ίι

Pι!ιιckrt datιι sixe: 0 f.lI Addseq. nuιιtιe:r

PθcIM"COiJflt ~ CJ ί'ι"".e

(!ι Random 113 Od890. 1cdb ae32 209ιι 50 ee 40 7338 fd12493216ge1d49dc<8d4f14 α

Oτexι

Ο Ηοχ

5<"_""
freque.cy;

~iJtρower:.

Το monίtorthe
ίt ;s: necι!Sury t
Remr:mber to ι.

Whιn ~PackEt.­

rnoνingfrotnοι

ΟαβαΙ

Υou can choose exactly what you want to transmit

"Packet RX" eνaluates packet error rate, by calculating how many packets
receiνed ΟΚ and how many receiνed ΝΟΤ ΟΚ.

RX

Average RSSI:

ReoeMed οΙι: ()

Received not oJι: Ο

Paoket βΓΓΟΤ rate: ­

θΙΙ βΠΟΓ rate:

start

11.2.4. Give Deνice Commands

SendStrobe commands can be used to giνe deνice commands to CC2500. We
can go ίn SLEEP state (SPWD), illLE state (SIDLE), wake up from sleep and
many others. ΑΙΙ by just clicking a button ίn SmartRF software.

SCAL

SD.f

SfRX _

SHOP

SRX

SWOR

SFTX

ResotCC2S00
-- 'Ζ ~.-

ΡιιΤχ

S1X

RSS1:HA

RSS1:HA

RSSIOllset71

ΙOCK_SτAΊUS

11.3. SmartRF example

We'νe mentioned before that CC2500 has the ability to go ίη SLEEP mode.
Let's see how we could do that using SmartRF with a simple example.

1. First, go ίη RX state, while one other CC2500+Arduino is transmitting.

..... '"""'....~""-"""""-- _'cc'""_' __"....,....

RSSI:.(bc'3ι

RSSt-<2....

RSSIO~71

ιocκ._sτι.: us

-

~ I'IΠCTII

~ ADDR
~ OW<IIR

~ FSCΠII.'
~ FSCΠILO

~ fII<Q2

... FAEQ1

~
~ .-ι'G

~ -...>
~ ,ιιoιιcR

~ ιιoι.ιcro

~ IIOIICfG

~ DEWν/

~ ι.ιcsιa

~ ιιcsι.ι,

~ ιιcsιιo

~ fQCICRl

~ I!SCFG

2. Then, send SPWD command and the chip goes ίη sleep mode.

r SRES ιι SFSΙXON ιι

Ι SCAL SRX

f SOI.E Η SWOR Η

[SFRX 1Τ SFTX 11

Ι SNOP 1

Ι R...etCC2S00

SXOFF 1

SIX

SPM> J

SWORRSΤ J

Ι

...-." '. ,

Pl<tRx

CC~

ConIRXConI1X

ιniιiallz:e reg5ter scttings.:

Last executed coη:wnan<l: SPWD

3. Notice that nothing happened, even ifwe tried to go ίn RX state. CC2500 is
ίn SLEEP mode.

R.SStHA

RSSl:KA

ilSSΙOllaιtl1

lOd<..sr~ΊU$

swι ιι 9ορcc_

~ PΚre1IIL

~ AOOR
~ CIIAIIHR
~ fSCl1l!..

~ fSCl1!Ul

~ fREQ2

~ fREOt

~ fREt10

~ WM:fG
~ -.'0
~ -.'(1
~' IIIJIIUG

~. lιιJUσα

~ Df1MTM
~ υΟ!;Μ2

~ υι:sυ.

~ ιιcsιιo

~ FOC01I

~ BSCfO

(~

4. Send SIDLE command to go ίn IDLE state.

• ιoκrι:πι.

•
• .--
• fSC11OL'
• ,scmιo

• fREQ2

• ΠΙΕΟ1

~ • FREOΩ

SXOff
RSStΚA. • lIIIIOCfGo

• lIIJIICfG:
S1X RSStNA

~ IOIIIICFG:

SPWD
RSSι01'Ja8t:7t • .,,,.:""

ια/:.κ...s:~"tus • lIDIo!CFGO
S\VORRST • """"'"• ucsιa

~ υcsu,

• lICStIO

~ ,ιχ:σ<:

• 8SΣO

"'..
CC.,.......

J! 5'5"",,,)(5ΑΒ

~===ΞSCAlΞ====~;t:::.===:Ξ5AXΞ======:)~===ΞΞ===:::::::
Γ SI>LE t ."_ Ι'
:=====.~S!'AX====::::J""I::SFJX=- -.JI""{ ~=:..-__...)

5*,Ρ J

I~========:::::.':::::=========::!

5. Go ίn RX state again. Since we've left SLEEP mode, CC2500 can return to
RX state.

PΚΠ:t1IL

ΑΟΟΑ

OtANNA

fSCl1l..

'SCTRUI
","<12

Rε01

""""
ιuocfB

""""'"
""""'"
""""""""'""Ο
ΟΟΜΠΙ

u=
"'CSIιII

MCSIIO

FOCι:ro

8SCfG

cc_

12. CC2500 with MSP430

12.1. General

CC2500 can also be connected with MSP430 [26] platforms. Specifically,
weΎe connected CC2500 with MSP430 Ρ5529 [27] and became acquainted
with this board.

Configuration is done using the SPI interface. We connected CC2500 to
MSP430, using a breadboard, like ίn the picture below.

MSP430 Ρ5529 board is a two-side board, as it contains pins ίn both sides.

12.2. MSP430 with SmartRF

Here's the connection with CC2500 from the bortom side:

+f q h i Ι

..• •·1... Ι'·••• .. ·S, •• !.......··.. ~. .'!..
... :" 1t -. .. • ...

'" .. !iI' .. • ι ...·
+ - •••••

.": ~ ':. d t

We used Energia [28] software to communicate with two CC2500 chips
Energia is an open-source electronics pro1otyping platform, with the goal to
bring the Wiring and Arduino framework 10 the Texas Instrumeηts MSP430
based LaunchPad.

We coηηected a CC2500 chip with CC Debugger and opened SmartRF
program. We put this ηode iηto Continuous RX mode. In parallel, we put
another node (MSP430+CC2500) ίη transmissioηmode.
Here's the diagram that emerged:

[1'11:8 ",.ca_ 2SιI k8.ud.

D4ι.r.a ~.c.. : .."Ο 1>8.ιo>id,

D.. t:_ "'_"Α SoO U_ιod.

"'-..
θ."Ir~

12.(!2.9999CAI. &ιιH~

-,(Jtt-bφιrtItY

!2ιδοοωοο .. Ι ι,R1ι

~ι-fffrιrnι.ι

lΞΕ:3

Mάd . w!ii:. aχ mr~ s,o .k!Lι, Opι..-.-.~ω 1'= .--...t ..w:ιC,.

HΩιi. MSJf. ΑΧ Β1Ι'- 54!! JιB.:ι. Dpι:~-"eΙΙ I'Q:I: Ι:UlI,rerιt o:~r.~cm

Nι:ιd.~ NSΚ. :ιur διίιι, <112 UΙ~. Ομ<;.u:u:ιad &.- ..noι~Li.it:l'

cc_ 11

..
2f

OC

ΟΙ

'".,.,.
"""..... ..
1'OC".. "..... ..
CIWOIR '..
P.iCI1I.' ..
'SCJR.O ..
""'" 50
...." ...' ".1c....... ..
-... ..-.. ..
&*!lo8CfG1 22.•",,- ,......... ..
'ιιι:>IQ ΟΙ

.1<"., '""""'" ..
FOCCro ,.
8SCRJ 6C

._.-J •

~fts.n

Aιdιiιι",::R!C

As we see, signal strength is quite strong, as ίn the connection with Arduino.

In the time slots that signal appear to be attenuated, it's just because we've
plugged out the usb cable ofMSP430 (to show that the experiment is valid).

13. Future work

As mentioned ίη the begging of this thesis, ουΓ main goa! was to integrate
CC2500 with NITOS prototype wireless sensor platform and configure this
wireless interface to discover what benefits we will have by using this, instead
ofXBee.

After a lot of experiments, different configurations and observations, we were
able to clearly understand these benefits of CC2500 and also to plan some
future work about ουΓ research.

13.1. Current Consumption

We've seen that we can easily access PATABLE register, ίη order to transmit
with different ΤΧ power. Also, we've seen the amount of current consumption
ίη different states, like IDLE state and SLEEP state. So, ίη the future, we could
measure the actual current consumption Ι different cases and configurations, ίη

order to design a CC2500's consumption pattern.

13.2. Wake-on Radio feature

CC2500 supports wake-on radio feature. Ιη this thesis, we've seen how
CC2500 can use this feature. Ιη the future, we could exploit this CC2500's
feature and implement a mechanism for this purpose. We can show how
efficient this mechanism would be, by measuring the power consumption
expenditure.

13.3. TinyOS lίbrary

TinyOS [29] is a free and open source software component-based operating
system and platform targeting wireless sensor networks (WSNs). Ιη the future,
we could examine TinyOS library, and what this library, based οη MSP430
platform, supports.

References

[1] 802.15.4 stack wiki page: http en.\vlkιpedla orgι\vikl ΕΕΕ 802.15.4­
[2] Xbee wiki page: http enwIkιpedIaorg/wlklXBee
[3] CC2500 Datasheet: http"wwwtlcom/li1 dssymltnk,cc2500pdf
[4] ISM baπd wiki page: http://en.wIkιpedIa.org/wikI/ISM band
[5] SRD baπd wiki page: http en wIkιpedJa org wiklShort Range De\"lces
[6] Texas Instruments home page: httΡ·ΙΙνv\.V\.v tl com
[7] RF module wiki page: http en\\.·IkιpedJaorg v"lki/RF module
[8] Burst traπsmissionwiki page:
http.//enwlkιpedIaorg/v,,·lkI Burst transmIssιon

[9] Frequency hopping wiki page: http://en.wlkιpedIaorg/wIkl/Freguency­

hopping spread spectrum
[10] Clear chaπnel assessment paper:
https ww\\..cse.sc.edu:files reu 2007papers/EngstromPaperpdf
[11] LQI aπd RSSI paper:
https.//pure ltu. se/portal/ftles/44057485/ReportAmeasurementStudyOfPredlctl
ngThroughputFromLQlandRSSI pdf
[12] Data whitening datasheet: http://www tl com/lit/an s\-vra322. swra32') pdf
[13] Wake οη Radio datasheet:
http' \-Vw\vtl.com Ilt aπ sνντal ')6b/swra Ι ')6b pdf
[14] SPI interface datasheet: http://www tlcom/lit/an!swra112b/swra112b.pdf
[15] RSSI datasheet: http /www.tlcom/llt/an/swral14d.s\-vraI14dpdf
[16] Arduino home page: httpardulnocc!
[17] SPI wiki page:
http enwIkιpedIaorg v"l"'l Serιal Perιpheral Interface Bus
[18] NITLab home page: httpnιtlabtnfuth.gr ITlab/
[19] Our first library: https//gιthubcomIyaslralIIa\-edArdulno-CC2500­

lIbrary
[20] Our second library: https gIthub.comIZohaπ!ArduinoCC2500Demo

[21] Throughput wiki page: http en.\vikιpedia org/wiklιThroughput

[22] PATABLE access datasheet:
http /wwwtI.com lι1 aπ sv"Tall Ob swrall Ob.pdf
[23] WLAN channels wiki page:
http./!enwikιpedIa org/v"lkt/Llst of WLAN channels
[24] CC Debugger user's guide:
http wv,,'\\tl.com Ilt ug S\-\TU 197h/s\-vru 197hpdf
[25] SmartRF home page: http'/\\.W\.\.tIcomItool smartrftm-studlO
[26] MSP430 wiki page: http !enwikιpedIa org!wlkllTI MSP430
[27] MSP430 F5529 user's guide:
http / www.tl.comllt ug slau533b slau533bpdf
[28] Energia home page: http energιanu

[29] TinyOS wiki page: http://en\\''ikιpedla.orgIv,,lkl!TlnyOS

http://wA/fw.ti.com/lit/ds/svmlink/cc2500.pdf
http://en.wikipedia.org/wiki/ISM_band
http://en.wikipedia
http://www.ti.com
http://en.wikipedia.org/wiki/RF
http://en.wikipedia.org/wiki/Burst_transmission
http://en.wikipedia.org/wiki/Frequency-
https://www.cse.sc.edu/files/reu/2007papers/EngstromPaper.pdf
https://pure.ltu.se/portal/files/44057485/RepoitAmeasurementStudvOfPredicti
http://www.ti.com/lit/an/swra322/swra322
http://www.ti.com/lit/an/swral26b/swral26b.pdf
http://www.ti.com/lit/an/swral
http://www.ti.com/lit/an/swral
http://en.wikipedia.org/wiki/Serial
http://nitlab.inf.uth.gr/NITlab/
https://github.com/vasiraliiaved/Arduino-CC2500-
https://github.com/Zohan/ArduinoCC2500Demo
http://en.wikipedia.org/wiki/Throughput
http://www.ti.com/lit/an/swral
http://en.wikipedia.org/wiki/List
http://www.ti.com/tool/smartrftm-studio
http://www.ti.com/lit/ug/slau533b/slau533b.pdf

ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΜΙΑΣ

ΒΙΒΛΙΟΘΗΚΗ

1111111111111111111111111111111111
004000124468

