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Preface 
 

Due to the rapid growth of the manufacturing industries during the last centuries, a lot of 

managerial problems have been developed. Among them, the problem of inventory 

management is one of the most significant areas which requires efficient solutions. 

Recognizing that there is no approach or technique that is applicable to all firms, we present 

various inventory models and describe what techniques should be suitable. Knowing that the 

goal of managers is the development of inventory models to obtain solutions for real world 

problems, it is also a fact that the literature for inventory models also presents interesting 

theoretically mathematical problems. 

Thus, in this thesis, we explore the conditions under which the continuous review 

inventory model has its optimal solution and we try to examine many different variations of 

this inventory model in order to study their theoretically mathematical properties which may 

be helpful in practice at some future time. Specially, assuming fixed lead-time and different 

lead-time demand distributions, in the first chapters, under known demand parameters, our 

concern is to study only theoretically this inventory model in order to determine the minimum 

of the total cost function for either an approximate or an exact expression of the expected on-

hand inventory level at any point in time. Extending the analysis, in the next chapters, for the 

case in which demand estimation is required, we develop confidence intervals for the 

minimum of the total cost and we present a theoretical work which may be helpful in practice, 

as this work gives the ability to managers to know with certainty under a specific nominal 

confidence level the range of the minimum total cost. 

The entire text has been divided into six chapters. All the chapters have been written in a 

lucid and illustrative manner. Chapter 1 discusses classification of various types of inventory 

models and includes the analytical structure and the objectives of the thesis. The other five 

chapters deal to different variations of the continuous review (Q,R) inventory model. More 

specific, in Chapter 2, assuming known demand parameters, backorders, fixed lead-time and 

an exact expression for the expected on-hand inventory level at any point in time, the 

objective is to investigate the minimization process of the total cost function for J-shaped or 

unimodal lead-time demand distributions. In Chapter 3, the same inventory model as in 

chapter 2 is studied but with an approximate expression for the expected on-hand inventory 

level at any point in time. Unmet demand is, again, fully backlogged and orders arrive after a 

lead-time. The objective is to find an inventory replenishment policy so as to achieve target 
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order quantities and reorder points with minimum total cost. Chapter 4 addresses the issue of 

calculating optimal inventory policies when unknown independent demand parameters are 

estimated from a sample of generated demand observations. Using the total cost function of 

chapter 3, firstly we develop estimator for the minimum total cost and secondly we derive its 

confidence interval whose performance is evaluated through Monte-Carlo simulations. 

Chapter 5 is related to the investigation of the continuous review inventory model when 

correlated demand exists. In fact, assuming the same total cost function as in chapter 3, we 

develop a procedure to determine the target inventory measures when the issue of both 

correlated demand and unknown demand parameters is addressed. Using the maximum 

likelihood estimators for the stationary mean, the stationary variance and the theoretical 

autocorrelation coefficient at lag one, we develop estimators for the optimal order quantity, 

optimal reorder point and minimum total cost. Further, we study under which conditions the 

independent demand model can be a good approximation to handle the autocorrelated 

demand. Finally, in Chapter 6 conclusions and suggestions for further research are presented. 
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List of symbols 

tD  : Demand size occurred during time unit t. 

t  : Expected value of tD . 
2
t  : Variance of tD . 

X  : Total demand in the lead-time, 
L

t
t 1

X D


 . 

L  : Expected demand in the lead-time. 
2
L  : Variance of the lead-time demand. 

D  : Expected demand in the reference period. 

 f x  : Probability density function of x. 

 F x  : Cumulative distribution function of x. 

Q  : Order quantity. 
R  : Reorder point. 
C  : Total cost function. 
L  : Lead-time. 
A  : Fixed ordering cost. 
h  : Holding cost per unit of product per reference period. 
s  : Shortage cost per unit of product backordered. 
s  : Shortage cost per unit of product backordered per reference period. 

os  : Profit per unit. 
c  : Purchasing cost. 
B  : Cost per stockout occasion. 
T  : Review period. 
J  : Cost of making a review. 
I  : Expected on-hand inventory level at any point in time. 
Y  : Inventory position. 

 R L  : Lead-time crashing cost. 

WQ  : Wilson economic order quantity. 

 S R  : Expected size of backorders per inventory cycle. 

tmS  : Expected size of backorders using s . 

z  : Safety factor,  L Lz R   . 

 z  : Probability density function of the standard Normal evaluated at z. 

 z  : Cumulative density function of the standard Normal evaluated at z. 

xz  : 
The xth percentile of the standard Normal, or alternatively, the inverse 
cumulative distribution function of the standard Normal evaluated at x. 

P  : Fixed cycle service level,  
L

t P
t 1

P Pr D R z


 
    

 
 . 

 B P  : Safety stock,   L P LB P R z    . 
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Chapter 1 

Introduction 

 

1.1 Business context 

The inventory policy constitutes an important part to all enterprises in any sector of the 

economy. The determination of the optimal reorder point, inventory level as well as optimal 

order quantity are a direct interest of organizations in order to take right decisions for 

maximizing (minimizing) the profit (cost). Today, as the inventory control can give a 

significant competitive advantage, the control of the flow of goods from suppliers to final 

customers is fully organized by top managers.  

There are many reasons why organizations should carry inventories of goods. The most 

important reason is the customer service because, as it is well known, without inventories 

customers need to wait until their order quantities are received. In fact, however, the 

customers do not want to wait for long periods of time and they are usually satisfied when 

organizations have available goods on time when demands for them occur. Therefore, the 

mismatch between demand and supply is the main reason of maintaining inventories of goods. 

Nonetheless, there are other reasons for holding inventories which according to Waters (2008) 

are: 

(a) to act as a buffer between different production operations, 

(b) to allow for demands that are larger than expected or come at unexpected times, 

(c) to allow for deliveries that are delayed or too small, 

(d) to take advantage of price discounts on large orders, 

(e) to buy items when the price is low and expected to rise, 

(f) to buy items that are going out of production or are difficult to find, 

(g) to make full loads and reduce transport costs, 

(h) to give cover for emergencies. 

Furthermore, many times, organizations need to maintain either finished or semi-finished 

goods where for the last it holds that there is a time-lag before a semi-finished product can be 

used from one stage of production to the next stage of production. Hence, as many different 

independently demand items are held in inventory, especially in manufacturing, it is very 
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difficult for the company to make different inventory control for each item of them.  For this 

problem, a solution has been given by Vilfredo Pareto by developing the ABC classification 

system which divides inventory into three categories based on the fact that a relatively small 

number of products consists the greatest part of the total dollar value of inventory. Specially, 

class A includes a small number of products which holds in inventory but they have big dollar 

value, namely this class represents 20 percent of total inventory units with about 80 percent of 

total inventory dollar value. Class B represents approximately 30 percent of total inventory 

units but only about 15 percent of total inventory dollar value. Finally, class C accounts for 50 

percent of all inventory units but represents only 5 percent of total dollar value (e.g. Silver et 

al., 1998). 

Summarizing, inventory management must be designed to meet the requirements of the 

market and to provide information to the other departments of the company (marketing, 

finance, etc) about customer’s behavior. For this reason, the inventory control of any physical 

good requires some crucial decisions to be taken by managers. According to Mansfield 

(1996), the decision making process both for enterprises and for non-profit organizations can 

be separated into five main stages which are: 

Stage 1: Establishing objective targets 

When companies take a decision must specify the objectives. In particular, if they do not 

know what is trying to implement then there is no reasonable way to get the right decision. 

Stage 2: Defining the problem 

One of the most difficult parts of the decision making is the definition of the problem. 

Often, top managers face a situation which is unsatisfactory. 

Stage 3: Identification of feasible solutions 

After the time where the problem has been identified, the company must find possible 

solutions.  

Stage 4: Choosing the best feasible solution 

When companies identify all the feasible alternative solutions, then they should evaluate 

each of them and determine the best, based on their objectives. 

Stage 5: Implementation of the decision 

When a specific solution has been selected, then it must be implemented in order to be 

effective. This phase of the decision-making process is very important because the best 

decisions have no value without implementation. 
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Figure 1.1 Basic decision process. 

 

1.2 Inventory systems 

Every decision which is made by managers in order to control inventories is associated 

with two crucial questions which are: 

(a) how much quantity should be ordered for replenishment, and 

(b) when the inventory should be replaced. 

In real life, there are many types of inventory problems which require answers for these two 

fundamental questions. For those problems, many studies have been conducted in the 

inventory literature which show how a mathematical model can be used for controlling 

inventory systems. However, in a recent paper, Silver (2008) mentioned that there is a gap 

between theory and practice and therefore it is impossible the mathematical model to 

represent the real world problems. So, for this reason many assumptions must be made in 

order the real world inventory problem to be approached with accuracy. 

Based on the widely cited book of Hadley and Whitin (1963), we can find many inventory 

systems which differ according to the number of items they carry, the review interval, the 
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nature of demand parameters, the echelon structure of inventory system and the costs 

associated with the system. A classification of inventory systems is given in Figure 1.2 and 

will be explained analytically below. Similar classifications can be found in Bijvank (2009). 

Among them, in this thesis we develop mathematical models only for the continuous review 

(Q,R) inventory system. For these models we derive procedures in order to compute the 

optimal pair order quantity (Q) - reorder point (R) and to find the minimum cost. More details 

about the scope of this thesis are discussed in section 1.3. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1.2 Classification of inventory systems. 

When in an inventory system an item may be stocked in more than one stocking point then 

this leads to a multiechelon inventory system. Specifically, a type of multiechelon inventory 

system is given in Figure 1.3 for which there are three levels. For this system we consider that 

customers’ demand can occur only at level 1 where retailers exist and sell the item. These 

retailers receive their stocks from warehouses at level 2 where the warehouses have their 

stocks from the factory warehouse at level 3. On the other hand when there is a single 

stocking point for example only at level 1 (a retail store, for example) then the system is 
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called as single echelon. For more details about echelon inventory systems see Hadley and 

Whitin (1963). 

 

 

 

 

 

 

  

 

 

 

 

Level 3              Level 2               Level 1 Customer 

 

 

Figure 1.3 Echelon structure of inventory system. 

According to the nature of demand pattern for an item which is carried by an inventory 

system, we can find in the literature two different inventory models. When the demand 

parameters are known (may be constant), and give us the opportunity to forecast the future 

demand periods with accuracy, then the inventory system is called as deterministic. For the 

deterministic models, it is possible to determine for all future times precisely what the state of 

the system will be when the state is known at a given time and the quantity to be ordered and 

the reorder point are specified. For this category the most popular inventory system is that one 

of Harris’s 1913 Economic Order Quantity model. On the other hand, if randomness is 

introduced into the demand pattern making impossible its future predictions with certainty, 
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then it becomes necessary to use stochastic systems where demands are described 

probabilistically. Therefore, one cannot know the state of the system at each point in time 

unless each transaction (demand or placement of order) is recorded and reported as it occurs. 

In this category, for which demand is assumed as random variable we can find inventory 

systems for which products either have a limited purchasing period (single period systems) or 

they can be sold at any point in time (multi period systems). For single period inventory 

systems we can find products for example Christmas tree or newspaper and the essential 

characteristic of this category is the required determination only of the order quantity for a 

single time period. The most popular inventory model of this category is the newsboy (or 

newsvendor) problem. On the other hand, in multi period inventory systems except the order 

size, the reorder point also should be determined. Such systems are characterized by the 

review interval. The most common inventory models in business and industry are reviewed 

either continuously (continuous review) or at regular period intervals of specified length 

(period review). Finally, in the inventory literature we can find different replenishment 

policies according to the costs associated with the system. The most important costs among 

others are: (a) the ordering cost which incurred each time an order is placed, (b) the holding 

cost for maintaining inventory and (c) the shortage cost for unsatisfied demands when the 

system is out of stock. 

 

1.2.1 Economic Order Quantity Model 

Even though inventory control is a natural situation that everyone undertakes either at 

home or at work, the study of inventory problems almost started at the beginnings of the 20th 

century. The earliest study has been conducted by Ford Whitman Harris (1913), who 

presented the familiar economic order quantity (EOQ) model in a paper published in Factory, 

The Magazine of Management. This model, according to the work of Erlenkotter (1990), was 

unnoticed for many years before its rediscovery in 1988 (Erlenkotter, 1989). The annual total 

cost function of Harris’s EOQ model, which is illustrated graphically in Figure 1.4, is based 

on the following assumptions: 

 Deterministic demand (demand is known with certainty and constant over time) 

 Fixed lead-time 

 There is no shortage in inventory 
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Figure 1.4 Economic order quantity model. 
 

The economic order quantity is the order size that minimizes the sum of purchasing costs, 

holding costs and ordering costs. Specifically, if the order quantity is Q then for the annual 

demand, D, which is assumed to be known and constant the number of cycles per year must 

be 
D

Q
. Therefore, since the purchasing cost per order is c Q  and the number of cycles per 

year is 
D

Q
 then the average annual purchasing cost is c D : 

D
Annual purchasing cost c Q c D

Q
     . 

Further, the average annual ordering cost is computed by multiplying the fixed cost per order, 

A, with the number of cycles per year, 
D

Q
: 

D
Annual ordering cost A

Q
  . 

Finally, since the inventory holding cost per unit depends on the length of time where the unit 

remains in inventory, then the average annual inventory holding cost must be h times the 

average inventory which is determined by dividing the maximum inventory Q and the 

minimum inventory 0, by two: 

Q 0 Q
Annual holding cost h h

2 2


    . 
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Consequently, the total average annual cost is the sum only of the ordering and holding costs 

because the decision variable which is the order quantity is not included in the purchasing 

cost. Then the cost function is written as: 

 
  A D h Q

C Q
Q 2

 
  . (1.1) 

Taking the first order condition with respect to Q, dC dQ 0 , we get the optimal order 

quantity which is given by (1.3) 

 
2

dC A D h

dQ Q 2


   , (1.2) 

or 

 
W

A D
EOQ Q Q 2

h
 

   . (1.3) 

The total minimum cost is determined by substituting the value of the optimal order size, Q , 

into the total cost equation (1.1): 

 
  A D h Q

C Q
Q 2






 
  . (1.4) 

It will be noted that (1.3) gives the Q which yields the unique minimum of the cost function 

(1.1) since dC dQ 0  and 2 2d C dQ 0  for all Q 0 : 

 

2

2 3

d C A D
2 0

dQ Q


  . (1.5) 

In the case where the company orders the optimal quantity (1.3) then the holding cost equals 

to the ordering cost (see Figure 1.5). More specific, 

 

Q h A D A D h
Holding cost = h 2

2 2 h 2

   
   (1.6) 

A D A D A D h
Ordering cost = 

Q 2A D
2

h



   
 


. (1.7) 
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Figure 1.5 Optimal order quantity and minimum total cost. 
 
Concluding, the EOQ model is often referred to the literature as the Wilson formula since 

R.H. Wilson extended and studied in depth Harris’s EOQ model. The first full length book 

which examines inventory problems was that of Raymond (1931). At the present time, there 

are many books which deal in any detail with stochastic inventory models such as the most 

cited Hadley and Whitin (1963) and Silver, Pyke and Peterson (1998).  

An example 

We consider a store with an item which wants to determine the optimal order quantity and the 

minimum total cost by using the EOQ model, which is illustrated graphically in Figure 1.5, 

given the following parameters: 

D (average annual demand) = 500 units per year, 

A (ordering cost) = $20, 

h (holding cost per unit per year) = $0.5. 

The optimal order quantity is  

A D 20 500
Q 2 2 200

h 0.5
  
  

 
units. 
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The length of a cycle and the number of orders per year are respectively 

length of a cycle = 
Q 200

0.4
D 500



   or 
Q

365 365 0.4 146
D



  
 
days, 

number of orders per year = 
D 500

2.5
Q 200  

 
orders per year. 

The minimum total average annual cost is  

  A D h Q 20 500 0.5 200
C Q 50 50 $100

Q 2 200 2






   
       . 

 

1.2.2 Types of inventory systems 

Although many inventory systems are met in the literature, in this chapter we describe the 

four most common ones, that is, two for the continuous review inventory model and two for 

the periodic. Before we begin the discussion of these systems, it is important to note the 

different definitions of the inventory level (see Figure 1.6). 

 

On-hand inventory level: This is the amount of physical inventory which is immediately 

available to satisfy customer’s demand.  

 
Net inventory level: This is the on-hand inventory minus backorders. 

 
Inventory on order: This is the item which is ordered but it is not delivered yet because of 

the lead-time. 

 
Inventory position: This is the sum of the inventory on-hand plus the inventory on order 

minus backorders. 
 

 

Figure 1.6 Inventory level. 
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1.2.2.1 Continuous review inventory model 

The continuous review inventory model has been studied extensively in the area of 

inventory control. For this type of review policy, when the inventory position (on-hand plus 

on order minus backorders) drops to or falls below the reorder point R then an order of size Q 

is placed and is delivered after a fixed or variable period of time (lead-time) has elapsed. For 

this category, Silver et al. (1998) state that there are two inventory systems according to the 

order size. If the order quantity Q is fixed then the system is called as (R,Q) model. On the 

other hand, when a variable order quantity exists then the order size is such that the inventory 

level is increased to an order-up-to level S. This model is called as (R,S) model. Figure 1.7 

and Figure 1.8 illustrate the (R,Q) and (R,S) inventory policies, respectively. 

 

Figure 1.7 Continuous review (Q,R) inventory model. 
 

 

Figure 1.8 Continuous review (R,S) inventory model. 
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The book by Hadley and Whitin (1963) is a standard reference on mathematical inventory 

models. They proposed for the continuous review (Q,R) inventory model under fixed lead-

time and backorders an expected annual total cost function which is constituted of a sum of 

three expected annual cost expressions, the first representing an ordering cost, the second an 

inventory carrying cost and the third a backordering cost. This average annual total cost 

function as mentioned by the authors is convex in the variables Q and R and therefore any 

solution obtained by setting the partial derivatives of the objective function equal to zero will 

determine a unique and global minimum cost. Specifically, the authors developed an iterative 

procedure and they said that this function is strictly convex when lead-time demand is 

normally distributed. These results are unproven and the reader is directed to solve a series of 

exercises. The first exercise asks the reader to show that the average number of backorders 

incurred per year is convex. Unfortunately, this function while convex in Q and convex in R, 

is not in general convex in both Q and R. It was pointed out by Veinott (1964) that this 

nonconvexity can lead to a failure of the optimization technique. Brooks and Lu (1969) 

addressed the same problem and showed, for normally distributed lead-time demand, that the 

average number of backorders incurred per year is convex when the reorder point is greater 

than the mean of the lead-time demand. Minh (1975) investigated the solutions of the 

continuous review model (Q,R) and showed that the total cost function is not convex and if a 

solution exists its partial derivatives equated to zero have exactly two solutions. His proof is 

given by explicitly expressing the ordering cost in terms of R and taking second partial 

derivatives. So, the author succeeded in classifying one of the solutions as a relative minimum 

and the other as a saddle point. Especially, he showed that when the reorder point is lower 

than the mean of the lead-time demand then feasible minimum solutions can be obtained. 

Further, more recently, Lau et al. (2002a) examined the degeneracy problem in the order 

quantity-reorder point system when backordering is allowed and the excessive stockouts are 

presented as a cost per unit short, a cost per stockout occasion and a target fill rate. The 

authors have shown the reasons why and when the cost function breaks down. Chung et al. 

(2009) determined the optimal reorder point R and the optimal reorder quantity Q for the 

(Q,R) inventory system with a specified cost per stockout occasion by assuming that the lead-

time demand is normally distributed. They showed that the total relevant cost function is not 

convex in general and proposed an alternative method to locate the optimal solution of the 

total relevant cost function because the convergence of the solution procedure described in 

Silver et al. (1998) is not necessarily true. In 1988, Das observed that the global minimum of 

the Hadley and Whitin model can be identified by means of the first order conditions and the 
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shape of the lead-time demand distribution. In particular, for this model when lead-time 

demand distribution is either unimodal or J-shaped, the author found that the local minimum 

is also the global minimum. 

Many studies in the literature, developed approximate but simpler alternatives to the 

Hadley and Whitin’s (1963) iterative procedure for determining the reorder point and the 

order quantity when lead-time demand is normally distributed. Parker (1964) first introduced 

an Exponential approximation of the probability density function of the lead-time demand in 

the face of uncertain demand and indicated that this method gives approximately a 5%-7% 

reduction in the total costs when compared with the use of the Wilson economic order 

quantity. Related studies have been done by Presutti and Trepp (1970), Schroeder (1974) and 

Byrkett (1981). Further, Das (1976a) developed an iterative technique for the (Q,R) model 

and showed that the solution can be obtained algebraically by using an explicit formula. 

Finally, in the literature, an amount of research has been conducted for the (R,S) policy. 

Scarf (1959a) has shown the optimality of this model for a class of discrete review dynamic 

nonstationary inventory models under the assumption that the one period expected costs are 

convex. Veinott (1966) extended Scarf’s results and replaced his assumption by the principle 

that the negatives of these expected costs are unimodal. Archibald and Silver (1978) studied 

the (R,S) model with a discrete compound Poisson demand process and developed a formulae 

to calculate the cost for any pair (R,S). Concluding, several algorithms and approximations 

have been developed to determine the optimal values of the policy parameters. Such 

algorithms, are presented in Zheng and Federgruen (1990) and Federgruen and Zipkin (1984). 

 

1.2.2.2 Periodic review inventory model 

For this type of review policy, there are two models according to the existence or not of the 

reorder point R. If R does not exist then the basic idea is that every T units of time, we check 

the inventory position and we order enough to raise it to an order- up-to level S. This system 

is called as (T,S) model. On the other hand, when R 0  then every T units of time we check 

the inventory position and if it is at or below the reorder point R, we order enough to raise it 

to S. However, if the inventory level is above R, nothing is done until the next review. This 

system is called as (T,R,S) model. Figure 1.9 and Figure 1.10 illustrate the (T,S) and (T,R,S) 

inventory policies, respectively. 

Institutional Repository - Library & Information Centre - University of Thessaly
02/06/2024 00:17:34 EEST - 18.219.251.217



23 
 

 

Figure 1.9 Periodic review (T,S) inventory model. 
 

 

Figure 1.10 Periodic review (T,R,S) inventory model. 
 

In real life conditions, the most widely used periodic review inventory system is the (T,S) 

model. For this model, one of the first studies has been conducted by Bellman et al. (1955). 

The authors examined the lost-sales case with non-zero lead-times. Under the restriction that 

the lead-time equals one review period (L=T), they minimized the total average ordering and 

shortage costs. Karlin and Scarf (1958) extended Bellman et al.’s (1955) model to the case 

where the holding cost is included and they provided a process in order to find the optimal 

policy. Morton (1969) extended Karlin and Scarf’s (1958) model and by assuming linear and 

proportional ordering, holding and shortage costs he derived bounds on the optimal order 
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sizes. Recently, his results are strengthened by Zipkin (2008). Other studies, under the 

assumption that the lead-time is an integral multiple of the review period length (L=nT) have 

been conducted by e.g., Morton (1971), Janakiraman et al. (2007) and Johansen and 

Thorstenson (2008). 

Hadley and Whitin (1963) examined the (T,S) inventory model and developed approximate 

average annual total cost functions for the backorders and lost-sales cases. Under general 

assumptions, and by assuming that the expected net inventory just prior to the arrival of the 

next order is LR DT   while the expected net inventory immediately after the arrival of a 

procurement is LR  , the authors developed the following cost functions for stochastic 

demands which are given by: 

Backorders case:     L

A J DT
C S,T h R s E S,T

T 2

        
 

 (1.8) 

Lost-sales case:         L

J DT
C S,T h R T E S,T s E S,T

T 2
         
 

 (1.9) 

where,      
S

1
E S,T x S h x,T dx

T



 
 
is the average number of backorders incurred per year 

(for more details about h(x,T) see chapter 5 of the Hadley and Whitin’s book) and J is the cost 

of making a review. 

On the other hand, it will be recalled above that if at a review time T the inventory position 

is less than or equal to R, then an order quantity is placed which is sufficient to bring the 

inventory position up to S. For the (T,R,S) inventory model under constant or variable lead-

time, Nahmias (1979) extended the model of Morton (1971) to include a fixed cost of placing 

an order. With constant lead-time, Hill and Johansen (2006) proposed an iteration algorithm 

in order to find the optimal order quantity under the assumption that no more than one order 

may be outstanding. Without the assumption for the number of outstanding orders, Bijvank et 

al. (2010) developed mathematical models for replenishment policies with fixed order sizes. 

Tijms and Groenevelt (1984) examined a service model for the periodic review (T,R,S) 

inventory system. Under the assumption that any excess demand is backordered, they set the 

optimal value of the reorder point R based on renewal theory. Bijvank and Vis (2012) 

developed a service model for a periodic review inventory system with lost-sales and 

compared the optimal replenishment policy to the (T,R,S) policy. Under numerical 

investigation they found that the (T,R,S) policy is not optimal but it results in an average cost 

increase only of 1.1%. Further, they proposed efficient approximation procedure in order to 
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find the optimal values of the control parameters for the (T,R,S) system. Finally, they 

extended the numerical results of Tijms and Groenevelt’s (1984) study to the lost-sales case 

and they found that Tijms and Groenevelt’s procedure results in a cost increase of 1.3% 

compared to the best (T,R,S) policy. 

 

1.2.3 Backorders and Lost-Sales inventory models 

When the system is out of stock then there are two extreme cases to deal with the excess 

demand. First, if customers wait for a new delivery to replenish the inventory then this is 

referred as a backordering model (see Figure 1.11). On the contrary, when customers will 

either buy different product or visit another store or do not buy any product at all then this 

model is called as lost-sales (see Figure 1.12). 

 

Figure 1.11 Continuous review (Q,R) inventory model with backorders. 

 

Figure 1.12 Continuous review (Q,R) inventory model with lost-sales. 
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Backorders or lost-sales 

In the inventory literature, many authors studied the continuous review inventory model 

with either backorders or lost-sales. The earliest work for the (Q,R) inventory model has been 

conducted by Hadley and Whitin (1963) where the authors examined not only the backorder 

case but also the lost-sales case when the demand follows either Poisson or Normal 

distribution and the lead-time is constant. Under the restriction that only one order can be 

outstanding at a given time and the reorder point needs to be always positive the approximate 

cost functions for the backorder and lost-sales cases are respectively: 

   A D D
C Q, R h I s S R

Q Q


       (1.10) 

   A D D
C Q,R h I h s S R

Q Q

  
       

 
 (1.11) 

where, A  is the fixed ordering cost, I  the expected on-hand inventory level at any point in 

time, h  the holding cost per unit per year, s  the shortage cost per unit backordered, D  the 

annual expected demand, and  S R  the expected number of backorders 

     
R

S R x R x dx
 

  
 

 f . 

Since L  is the mean of the lead-time demand, Hadley and Whitin proposed for the 

calculation of the expected on-hand inventory level at any point in time an approximate 

method which is based on the average of the inventory level at the beginning of the cycle, 

LQ R  , and at the end of the cycle, LR  : 

 
HW L

Q
I R

2
   . (1.12) 

But, according to Lau and Lau (2002) the Hadley and Whitin’s approximate cost function is 

accurate only when the stockout probability is sufficiently small. However, for the backorders 

case and when the service level is not so high many studies have been conducted in order to 

find alternative approximate methods for the expected on-hand inventory level at any point in 

time. Among others are: 

  LV L

Q 1
I R S R  

2 2
    (Love, 1979), (1.13) 

  W L L

Q 1
I R S R  

2 2Q
       (Wagner, 1975), (1.14) 

Institutional Repository - Library & Information Centre - University of Thessaly
02/06/2024 00:17:34 EEST - 18.219.251.217



27 
 

  2

LAU L L

Q 1
I R R

2 2Q
      (Lau and Lau, 2002), (1.15) 

    2

YN

Q 1
I S R S R  

2 2Q
   (Yano, 1985). (1.16) 

Concluding, it is important to note that, except the approximate methods in the literature, one 

can find an exact I-expression (see Zheng, 1992 and Platt et al., 1997) which is given by: 

 
   

Q R Y

ex

R 0

1
I Y x x dx dY

Q

  
  

 
  f  (1.17) 

where Y is the inventory position and is a random variable which represents the lead-time 

demand with probability density function  xf  and cumulative distribution function  xF . 

The previous models discussed so far assume fixed lead-time. However, for the 

continuous review (Q,R) inventory model under backorders, but with variable lead-time, 

many studies have been also conducted. Among others, Ben-Daya and Rauf (1994) examined 

the determination of the order quantity under variable lead-time. Specially, using Hadley and 

Whitin’s approximate method for the expected on-hand inventory level at any point in time 

and extending the classical model of Liao and Shyu (1991), they determine the average 

annual total cost function and they found the optimal order size. More specific, the cost 

function is given by: 

   L

A D Q D
C Q, R h R R L

Q 2 Q

         
 

 (1.18) 

where, assuming that the lead-time, L, has n components and the ith has a minimum duration 

ai and maximum duration bi and a crashing cost per unit time ci then the lead-time crashing 

cost is      
i 1

i i 1 j j j
j 1

R L c L L c b a





    . 

Taking the first order conditions the optimal order size is 

 
 AD D

Q 2 2 R L
h h

   . (1.19) 

Further, the authors proposed a new method in which the total crashing cost is related to the 

lead-time by a function which is given by: 

 
  LR L e   (1.20) 

where, α and β are the minimum and maximum values of the lead-time respectively. 

 

 

X
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Then the new optimal order size is 

 

LAD D
Q 2 2 e

h h
    . (1.21) 

Comparing the two methods with the same parameter values they found that their method 

gives lower value to the total crashing cost. 

Additionally, for the continuous review (Q,R) inventory model with lost-sales, Hadley and 

Whitin (1963) derived also an expression for the average annual total cost function under the 

assumption that there is only one order can be outstanding at a given time. For this method, 

by considering stochastic lead-times and using fixed (Q,R- model) or variable (R,S - model) 

order size, many studies have been conducted. Among others are those of Ravichandran 

(1984), Buchanan and Love (1985), Bechmann and Srinivasan (1987) and Johansen and 

Thorstenson (1993). Particularly, under Poisson demand process, these authors investigated 

the Hadley and Whitin’s method for Phase type, Erlang and Exponential lead-time 

distributions, respectively. Archibald (1981) derived and solved an exact model for the (R,S) 

policy, assuming compound Poisson demand. For the case in which the demand is assumed to 

follow stochastic distributions, a large amount of studies have been conducted in the 

literature. Beyer (1994) derived the exact cost under the assumption that accumulated demand 

following a Wiener process. Kalpakam and Arivarignan (1988, 1989) examined the case in 

which the demand is generated from a renewal process and lead-time is assumed to be 

Exponential distributed. Mohebbi and Posner (1998) investigated the minimization of the total 

cost when the demand and the lead-time follow the compound Poisson and Erlang 

distributions, respectively. Finally, Rosling (1998) developed a general model in which any 

lead-time distribution can be used and demand is assumed to be continuous or Poisson 

distributed. 

 

Mixture of backorders and lost-sales  

Except the above inventory systems in which excess demand is either lost or backordered, 

there are also inventory models in which during the stockout period a fraction b of the excess 

demand is backordered and the remaining fraction 1-b is lost forever. Montgomery et al. 

(1973) are the first who analyzed inventory systems with mixture of backorders and lost-sales 

under fixed lead-time and proposed average annual total cost functions with stochastic or 

deterministic demand for the continuous review (Q,R) or periodic review (T,S) inventory 

models. For instance, for the (Q,R) inventory model under stochastic demand, by assuming 

that the expected net inventory at the beginning of the cycle is given by 
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   LQ R 1 b S R     (1.22) 

while the expected net inventory at the end of the cycle is given by 

 
   LR 1 b S R    (1.23) 

the authors found that the expected on-hand inventory level at any point in time is: 

 
   L

Q
R 1 b S R

2
    . (1.24) 

Using (1.24) and assuming that the annual shortage cost and the annual lost profit are  

 D
s S R

Q  
and    o

D
s 1 b S R

Q
  ( os  is the profit per unit), respectively, they developed the 

average annual total cost function for the partial backordering model 

           L o

AD Q D D
C Q, R h R 1 b S R s S R s 1 b S R

Q 2 Q Q
          
 

. (1.25) 

Taking the first partial derivatives with respect to Q and R and equating to zero they get 

 
     os DAD sD

Q 2 2 S R 2 1 b S R
h h h

     , (1.26) 

 
     o

hQ
1 R

sD s D 1 b hQ 1 b
 

   
F . (1.27) 

On the other hand, continuous review (Q,R) models in which demand is stochastic but the 

lead-time is considered as a decision variable are also developed by many authors, e.g., Moon 

and Choi (1998), Hariga and Ben-Daya (1999) and Ouyang and Chang (2001). Using 

Montgomery et al’s (1973) average on-hand inventory level and extending Ben-Daya and 

Rauf’s (1994) model, Ouyang et al. (1996) defined the average annual total cost function and 

the optimal order quantity under variable lead-time with stochastic demand as: 

             L o

AD Q D D D
C Q,R h R 1 b S R R L s S R s 1 b S R

Q 2 Q Q Q
           
 

 (1.28) 

 
       os DAD sD D

Q 2 2 S R 2 1 b S R 2 R L
h h h h

      . (1.29) 

The authors examined the effects of b on the minimum average annual total cost and optimal 

order quantity and they found that b 0 b 1Q Q 
   and    b 0 b 1

C Q,R C Q,R
 
 . 

For the periodic review (T,S) inventory model, as mentioned before, Montgomery et al. 

(1973) proposed also an annual total cost function under stochastic demand. Using this review 

interval and assuming that the expected net inventory at the beginning of the cycle is given by 

 
   LR 1 b S R    (1.30) 

Institutional Repository - Library & Information Centre - University of Thessaly
02/06/2024 00:17:34 EEST - 18.219.251.217



30 
 

while the expected net inventory at the end of the cycle is given by 

 
   LR DT 1 b S R     (1.31) 

the authors found that the expected on-hand inventory level at any point in time is: 

 
   L

DT
R 1 b S R

2
    . (1.32) 

Then the average annual total cost function can be written as  

           L o

L DT D D
C Q, R h R 1 b S R s S R s 1 b S R

T 2 T T
          
 

. (1.33) 

Related studies for the periodic review (T,S) inventory model have been also developed by 

e.g., Ouyang and Chuang (1999), Chuang et al. (2004) and Ouyang et al. (2007). Finally, for 

the continuous or periodic review inventory models but with deterministic demand, except 

Montgomery et al.’s (1973) paper, other studies have been conducted by e.g., Rosenberg 

(1979), Park (1983) and Pentico and Drake (2009). Specially, Pentico and Drake (2009) have 

found that at the extremes b=0 and b=1 the presented model reduces to the usual backorders 

and lost-sales cases, respectively.  

 

1.2.4 Single period system 

In this category we can find inventory systems for which products have a limited 

purchasing period. Specially, the essential characteristic of these models is the required 

determination only of the order quantity for a single time period. The most popular inventory 

model of this category is the newsboy (newsvendor) problem (how many newspapers a boy 

should buy on a given day?) where in a given day the boy has only one opportunity to place 

an order. Thus the inventory decision aims at determining a single order quantity that 

maximizes the expected profit in a single period probabilistic demand framework. 

In the inventory literature many alternative forms of newsvendor models exist. The 

classical version refers to the purchasing inventory problem where newsvendors decide for 

products whose life cycle of demand lasts a single relatively short period and their decisions 

are followed by a stochastic sales outcome. In such cases, for the newsboy model it is 

necessary to predict the order quantity in the beginning of each inventory cycle. So, if the 

actual demand is greater than the order quantity, products cannot be sold in the next time 

period, as any excess inventory is disposed of by buyback arrangements. On the contrary, 

there is an opportunity cost of lost profit (Chen and Chen, 2009), where at the end of the 

inventory cycle an excess demand is observed.  
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During the last decades, a number of studies have been developed in order to explore the 

issue of the optimal order quantity for cases of uncertainty in demand. In the literature, 

alternative forms of newsboy models have been published, with the paper of Khouja (1999) to 

provide an extensive search of these works till 1999. Since then, many studies have explored 

the newsboy inventory problem. Among them are: Schweitzer and Cachon (2000), Casimir 

(2002), Dutta et al. (2005), Salazar-Ibarra (2005), Matsuyama (2006), Benzion et al. (2008), 

Wang and Webster (2009), Chen and Chen (2010), Huang et al. (2011), Lee and Hsu (2011), 

and Jiang et al. (2011). However, the most important condition for the application of these 

models in real life is that parameters of demand distributions should be known. But, 

unfortunately, many times this condition does not hold and in order to apply newsvendor 

models in inventory management to determine the level of customer service we need to 

estimate the demand parameters. 

There is a limited research on studying the effects of demand estimation on optimal 

inventory policies (Conrad 1976; Nahmias, 1994; Agrawal and Smith, 1996; Hill, 1997; Bell, 

2000). None of these works addressed the problem of how sampling variability of estimated 

values of demand parameters influences the estimated optimal ordering policy. Kevork (2010) 

by assuming that demand follows the Normal distribution, for the classical newsvendor 

model, developed appropriate estimators to explore the variability of estimates for the optimal 

order quantity and the maximum expected profit. The statistical properties of the two 

estimators are explored for both small and large samples, analytically and through Monte-

Carlo simulations. The results have shown that when high shortage costs occur there is a weak 

point of applying this model to real life situations due to the significant reductions in 

precision and stability of confidence intervals for the true maximum expected profit. Su and 

Pearn (2011), in order to compare two newsboy-type products, developed a statistical 

hypothesis testing methodology. They selected the product which has a higher probability of 

achieving a target profit under the optimal ordering policy. The authors, in order to attain the 

designated type I and II errors, provided tables with critical values of the test and the sample 

sizes. Finally, Olivares et al. (2008) presented an estimation framework to disentangle 

whether specific factors affect the observed order quantity either through the distribution of 

demand or through the overage/underage cost ratio. 
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1.2.5 Lead-time demand distribution 

A variety of distributions for the lead-time demand have been tested for their usefulness in 

inventory theory. These include the Normal (see Hadley and Whitin, 1963, Peterson and 

Silver, 1979 and Lau et al., 2002b), the Gamma (see Burgin, 1975, Murphy, 1975, Das, 1976b 

and Schneider, 1978), the Lognormal (see Crouch and Oglesby, 1978, Tadikamalla, 1979, 

Silver, 1980 and Das, 1983a), the Weibull (see Tadikamalla, 1978 and Lau and Lau, 1993), 

the Logistic (see Vanbeek, 1978 and Fortuin, 1980), the Tukey’s lamba (see Silver, 1977) and 

the Poisson (see Gross and Ince, 1975 and Archibald and Silver, 1978) distributions. Further, 

systems of distributions have also been used to approximate the lead-time demand such as 

Pearson system (1895) and Johnson system (1949). Ramberg and Schmeiser (1974) and 

Schmeiser and Deutsch (1977) have developed versatile systems of four parameter 

distributions that are defined in terms of the inverse cumulative distribution function (see 

Kottas and Lau, 1979). But the use of these systems is limited because of the computational 

complexity in the determination of the reorder point and the order quantity. 

 

1.3 Thesis objective 

From the aforementioned analysis, it is verified that the continuous review (Q,R) inventory 

model with backorders and fixed lead-time has been studied extensively in the area of 

inventory literature. However, most of the papers that appear in this area focus on the 

development of theoretically mathematical models for cost functions with either exact or 

approximate expressions for the expected on-hand inventory level at any point in time. To the 

extent of our knowledge, little though has been written on examining (a) the convexity and 

the existence of a unique minimum of these cost functions and (b) at what extent the values of 

the cost parameters affect the optimal solution. Furthermore, recognizing that most of the 

research on continuous review inventory systems focus on the description of decision rules 

which are either understood or accepted by management, for a model which is realistic for 

practical purposes, in this thesis we develop new approaches and solution techniques in order 

to apply inventory theory in real world inventory control systems. 

Further, a problem that has received very limited attention in the relevant literature is that 

one of obtaining optimal solutions for this (Q,R) inventory model when the estimation of 

unknown demand parameters is required. It is common practice in the inventory literature to 

assume that parameters of the demand distribution are known. But, in real life conditions, 

neither the process of generating demand data nor the values of demand parameters are 
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known. Therefore, pointing out that the estimation process of this thesis is classified in the 

area of the Frequentist approach, for the first time we develop appropriate estimators for the 

optimal order quantity and optimal reorder point which enable us to produce estimates for the 

minimum cost of the reference period. Particularly, assuming that demand is fully observed in 

each period, we adopt this approach because we consider the situation in which the decision 

maker knows the class of the random demand distribution but does not know the actual values 

of some or all the stationary parameters of such a distribution. 

Finally, for the (Q,R) inventory system, we observe also in the inventory literature that a 

limited amount of research has been conducted in the area of determining the target inventory 

measures when the demand is generated by an autocorrelated process. Despite the existence 

of some works in this area, we can see that they focus mainly on the investigation of the effect 

of the autocorrelation parameter on the reorder point and safety stock when the demand 

parameters and the autocorrelation coefficient are known. Extending these studies, in this 

thesis we go further the analysis in order to investigate the effect of a serially correlated 

demand on the behavior of the order quantity, reorder point and minimum cost when 

estimators for the demand parameters and the autocorrelation coefficient are used. 

Given the above discussion, these special problems seem to have been underestimated or 

ignored in the past by both practitioners and academicians. Consequently, as many important 

practical problems for the continuous review (Q,R) inventory system still remain unsolved 

today due to the complexity of the mathematical models, the aim of this thesis is to study the 

continuous review (Q,R) inventory model with backorders, fixed lead-time and non-negative 

reorder point and bring solutions for the following issues which are not addressed in the 

literature satisfactorily: 

 

1. To examine the convexity problem and to identify the unique minimum for a cost 

function with exact or approximate expressions for the expected on-hand inventory 

level at any point in time, 

2. To develop algorithms in order the optimal solution to be attained, 

3. To derive optimal policies for unimodal and J-shaped lead-time demand 

distributions, 

4. To investigate how the values of the cost parameters affect the optimal solution, 

5. To develop estimators for target inventory measures, 

6. To derive asymptotic confidence interval for a cost function, 
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7. To test the validity of the theoretical results on a set of generated data through 

Monte-Carlo simulation, 

8. To identify optimal solutions for correlated demand. 

 

The conclusions of our research are discussed in chapter 6 of this thesis. 

 

1.4 Structure of the thesis 

For the continuous review  inventory model, the order quantity, Q, and the reorder 

point, R, are determined by minimizing a cost function resulting from the sum of the annual 

expected costs of ordering, inventory carrying and shortage. For evaluating the annual 

expected inventory carrying cost, we consider either approximate or exact expressions for the 

expected on-hand inventory level at any point in time, while for the calculation of the annual 

expected shortage cost the cost per unit backordered is used. Therefore, this thesis is 

structured as follows: 

In chapter 2, we investigate the minimization process of the exact cost function (exact 

expression for the expected on-hand inventory level at any point in time) with known demand 

parameters. Provided that the lead-time demand has J-shaped or unimodal distributions 

satisfying specific assumptions we derive the general condition when the minimum cost is 

attained at a positive reorder point or at a reorder point equal to zero. Based on this condition 

we obtain the range of the cost parameters values in order the optimal reorder point to be 

equal to zero and we develop a general algorithm. Some numerical experimentation using 

parameter values from the relevant literature indicates that with large demand variability 

measured by the standard deviation of the lead-time demand the optimal inventory policies 

lead to excessively large orders and zero reorder points. 

In chapter 3, we investigate the minimization process of the Hadley & Whitin’s cost 

function (approximate expression for the expected on-hand inventory level at any point in 

time) with known demand parameters. Assuming that the lead-time demand has unimodal 

distributions satisfying specific assumptions, we derive the necessary conditions for three 

mutually exclusive events which should be examined at the process of determining the 

minimum of the approximate cost function. Next, these three cases are integrated to a general 

algorithm, and its application is illustrated when the lead-time demand has the Normal and the 

Log-Normal distribution. Through a numerical experimentation, we investigate the 

managerial implications of changing the values of cost parameters on the optimal sizes of Q 

 R,Q
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and R, as well as, on the minimum cost. Further, we obtain the range of the cost parameters 

values in order the optimal reorder point to be equal to zero. Finally, we give the results from 

a comparative study for the target inventory measures taken after minimizing the Hadley & 

Whitin and the exact cost functions in order to investigate the validity of the Hadley & 

Whitin’s approximate expression. 

In chapter 4, considering normally distributed lead-time demand and by assuming that the 

values of demand parameters are unknown we address for the first time the issue of the 

Hadley & Whitin’s cost function estimation. Making the assumption that the cycle service 

level is constant and using maximum likelihood estimators for the parameters of the Normal 

distribution we develop estimators for the optimal order quantity, optimal reorder point and 

minimum cost of the reference period. Based on the asymptotic distribution of the estimators, 

confidence interval for the minimum cost is derived whose validity is tested through Monte-

Carlo simulations in different sample sizes. 

In chapter 5, for the Hadley & Whitin’s cost function we develop a procedure to determine 

the target inventory measures when the issue of both correlated demand and unknown 

demand parameters is addressed. Particularly, for the first time, we develop appropriate 

estimators for the optimal order quantity, optimal reorder point and minimum total cost as 

functions of the maximum likelihood estimators of the stationary mean, the stationary 

variance and the theoretical autocorrelation coefficient at lag one of an AR(1) demand 

process. Furthermore, through Monte-Carlo simulations in different sample sizes we study 

under which conditions the independent demand model can be a good approximation to 

handle the autocorrelated demand. 

Finally, in chapter 6, the conclusions, recommendations and possible extensions of the 

thesis are discussed. 

Each appendix appears at the end of each chapter. 
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Chapter 2 

The (Q,R) inventory system with an exact cost function 

 

2.1 Introduction 

As mentioned before in section 1.2.2.1 the continuous review (Q,R) inventory model has 

been studied extensively in the area of inventory control. According to Silver et al. (1998) the 

validity of this review policy relies on the assumption that any undershoot of the reorder point 

is negligible compared to the magnitude of the total lead-time demand. Further, provided that 

there is never more than one order outstanding at any point in time, which this in turn means 

that the lead-time demand never exceeds the order quantity, it has been noted earlier that the 

values of the decision variables (Q,R) are determined by minimizing the annual total cost 

function (the sum of the annual expected ordering, holding and shortage costs). Given, 

however, that different ways to compute the holding and shortage costs have been suggested 

in the relevant literature, this type of continuous review policy can be differentiated according 

to the form of the annual total cost objective function. 

In the current chapter we investigate the annual cost function in which the annual expected 

holding cost is computed using an exact expression for the expected on-hand inventory at any 

point in time. Further, assuming that “best customer communication policies” have been 

developed, which do not allow dissatisfaction to be expressed by customers who, not finding 

the product, should wait till its delivery, the shortage cost per inventory cycle is derived 

multiplying the shortage cost per unit backordered by the expected size of backorders. 

Particularly, for this exact annual cost function, we study its convexity when the lead-time 

demand is a non-negative continuous random variable which has a unimodal distribution 

satisfying specific assumptions or J-shaped distribution with decreasing probability density 

function.  

Under these two types of distributions, for the first time we state when the unique 

minimum cost is determined through mathematical optimization. Further, provided that the 

reorder point is non-negative, we explain why, when the degeneracy problem occurs, the 

unique minimum of the exact annual cost function is attained at zero reorder point. 

Particularly, taking the first order conditions from this minimization with respect to Q and R 
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and following an analogous approach to that of Das (1988) and Chung et al. (2009), we 

rewrite the cost function in terms only of R. Transferring in that way the analysis from the 

three dimensional to two dimensional space, we derive a general condition which identifies 

the following three cases: (a) the cost function is convex and has a unique minimum 

determined through mathematical optimization, (b) the cost function is not convex but it has a 

unique minimum determined through mathematical optimization, and (c) the cost function is 

increasing at an increasing rate in the entire domain of R in which case the minimum cost 

occurs at the smallest value of R, that is, at 0R  . The relevance of the general condition in 

determining whether or not the minimum cost will be obtained through mathematical 

optimization lies in the fact that this condition does not depend on the form of the lead-time 

demand distribution as it is expressed in terms of the annual expected demand, the variance of 

the lead-time demand and the three cost parameters, A , h  and s . 

The three cases stated above, which should be examined for determining the minimum of 

the exact annual cost function, are incorporated into a “general algorithm” which constitutes a 

further contribution of the current work. Although today the finding of the minimum of the 

exact annual cost function can be performed through the use of spreadsheets software, the 

implementation of this general algorithm may have numerous benefits. At first, a key-element 

of the algorithm is the aforementioned general condition, which, when it does not hold, the 

use of spreadsheets software is not recommended. As we shall show in a next section, this 

happens because the minimization process of the exact annual cost function, with for instance 

the Excel Solver under various lead-time unimodal demand distributions (e.g., Log-Normal, 

Gamma, etc.), breaks down and solution does not exist. The general algorithm can be also 

implemented in cases of lead-time demand distributions for which explicit expressions to 

determine the optimal Q  and R values can be derived in which case the use of any 

spreadsheet software is not necessary. We shall illustrate that such a case is met when lead-

time demands are described by the exponential distribution. Lastly, we feel that the algorithm 

is also useful in the domain of specialists who can incorporate it into OR/MS software 

packages using various programming languages. 

Based on the aforementioned discussion and remarks the rest of the chapter is organized as 

follows. Section 2.2 contains a literature review for the exact annual cost functions. In Section 

2.3 we write the cost function as function only of R and derive analytic forms for the linear 

and quadratic loss functions when lead-time demand distribution is Gamma, Log-Normal and 

Weibull. These analytic forms are obtained from the Nth truncated moment expressions given 
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by Jawitz (2004). In Section 2.4, under unimodal and J-shaped lead-time demand distributions 

satisfying certain assumptions we obtain the general condition to have a unique minimum 

after solving the first order conditions from the minimization of the cost function. In the same 

section, from that condition we obtain the range of the cost parameters values in order the 

optimal reorder point to be equal to zero. In Section 2.5, we present a general algorithm for 

the minimization process of the cost function and applying this algorithm to a set of parameter 

values used in the inventory literature we investigate the managerial implications of 

increasing lead-time demand variability on the optimal target inventory measures. Finally, the 

last section concludes chapter 2 summarizing the most important findings. 

 

2.2 Relevant literature review 

For the calculation of the annual expected holding cost, Hadley & Whitin (1963) were the 

first who derived an exact expression for the expected on-hand inventory at any point in time. 

Their analysis was based on the assumptions that the lead-time demand has the Poisson 

distribution and each order delivery brings the on-hand inventory level above the non-

negative reorder point. Extending the original Poisson results of Hadley & Whitin, among 

others Zheng (1992), Platt et al. (1997), and Agrawal & Seshadri (2000) gave the following 

exact expression 

 

   
Q R Y

ex

R 0

1
I Y x x dx dY

Q

  
  

 
  f  (2.1) 

for the expected on-hand inventory at any point in time when the lead-time demand is a 

random variable, ,X  with probability density function  xf  and cumulative distribution 

function  xF . The derivation of (2.1) was made under the conditions that the lead-time 

demand never exceeds Q and the lead-time is constant. These conditions ensure that the 

inventory position Y is uniformly distributed between R and RQ  (see Serfozo & Stidham, 

1978; Browne & Zipkin, 1991; Zipkin, 1986b for more discussion). In the meantime, 

however, due to the complexity of (2.1), approximations for exI  have been suggested (see 

Holt et al., 1960; Hadley & Whitin, 1963; Wagner, 1975; Love, 1979; Yano, 1985; Lau & 

Lau, 2002).  

The second factor which differentiates the form of the annual cost function is the way of 

computing the expected shortage cost. Three shortage cost models are available in the 
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literature (e.g., Silver et al., 1998; Lau et al., 2002a; Lau & Lau, 2008), where each one of 

them has its own way to evaluate the expected size of backorders incurred per year. In 

specific terms, the first model assumes that only a fixed cost per stockout occasion is known, 

in which case the annual expected size of backorders is given by the product of the expected 

number of cycles per year and the stockout probability. On the contrary, the second model 

considers a shortage cost per unit backordered and the resulting expected size of backorders is 

     



R

dxxRxRS f . 

Finally, the third model, taking into account the time factor in evaluating the shortage cost, 

uses the shortage cost per unit backordered per year. In this case the expression which gives 

the annual expected size of backorders becomes 

   
Q R

tm

R Y

1
S x Y x dx dY

Q

  
  

 
  f . 

Combining the exact expression (2.1) with each one of the above models evaluating the 

annual expected shortage cost, the following three alternative exact annual cost functions are 

produced according to the terminology established by Lau et al. (2002a): 

   ex ex

A D D
C Q,R h I B 1 R

Q Q


       F , (2.2a) 

   ex ex

A D D
C Q, R h I s S R

Q Q


      , (2.2b) 

 ex ex tm

A D
C Q,R h I s S

Q

      . (2.2c) 

where, A  is the fixed ordering cost, B  the cost per stockout occasion, h  the holding cost per 

unit per year, s  the shortage cost per unit backordered (namely, a “direct cost” related to 

labor and special delivery costs incurred from the handling of backorders), tmsss   the 

shortage cost per unit per year with tms  to be an “indirect” cost element associated to the time 

a customer has to wait to receive his order creating in that way dissatisfaction to him (loss of 

goodwill), and D  the annual expected demand. 

Assuming that “best customer communication policies” have been developed which do not 

allow dissatisfaction to be expressed by customers who, not finding the product, should wait 

till its delivery, namely 0tms , (e.g., Kevork, 2010), in this chapter we investigate the exact 

annual cost function which is given in (2.2b). In the past decades, before Lau et al. (2002b) 

offered simple computational expressions for exI  for various continuous lead-time demand 

Institutional Repository - Library & Information Centre - University of Thessaly
02/06/2024 00:17:34 EEST - 18.219.251.217



40 
 

distributions, it was extremely rare the use of (2.2b). This happened because there were 

considerable difficulties for implementing the exact expression for the expected on-hand 

inventory at any point in time due to its original complicated expression involving a double 

integral (Lau & Lau, 2002). Today although the minimization of the exact annual cost 

function can be easily performed using various spreadsheets software, two issues are raised 

concerning the optimization process itself. The first issue is related to the choice of initial Q  

and R  values before starting the minimization process. To the extent of our knowledge, until 

today there has been no attempt to study the convexity of (2.2b), namely, to investigate 

whether different pairs of initial values  R,Q  result in a global minimum or in different local 

minima. The second issue refers to the so called “degeneracy problem” representing a 

situation in which the minimization process of the exact annual cost function through some 

spreadsheet software breaks down and does not give a solution. This happens because at some 

stage of the iterative procedure the cycle service level (representing the probability for not 

observing stock-outs during the lead-time) takes on negative values. Again, to the extent of 

our knowledge, reasons for this degeneracy occurred at minimizing the exact annual cost 

function when the reorder point is non-negative have not been given yet. 

In the inventory literature, there has been little research on studying the convexity of the 

cost functions (2.2a) and (2.2b), focused mainly on problems encountered during the 

minimization process. Specifically, for Normally distributed lead-time demands and through 

the use of numerical examples, Lau et al. (2002b) found that, solving iteratively the first-order 

conditions from the minimization of (2.2b) with respect to Q and R and using relatively low 

values for s , at some stages the iterative procedure led to negative cycle service levels. This 

had as a result the procedure to break down and nonsensical solutions to be obtained. To 

resolve the so called “degeneracy problem”, the authors derived an altered form of (2.2b) to 

include also the case of negative reordered points and presented the minimization of the new 

cost function through the Excel’s Solver under specific parameter values. Although some 

explanations have been given by several authors (e.g., Lau & Lau, 2002; Lau et al., 2002a), in 

the current work we overcome the “degeneracy problem” considering that R takes on only 

non-negative values. 

On the other side, the convexity of the exact cost function (2.2c) has been studied 

extensively in the inventory literature. Zheng (1992) proved the convexity of (2.2c) based on 

the results of Zipkin (1986a) who showed that the expected size of backorders is a jointly 

convex function of Q and R. Under discrete demand, Federgruen & Zheng (1992) developed a 

Institutional Repository - Library & Information Centre - University of Thessaly
02/06/2024 00:17:34 EEST - 18.219.251.217



41 
 

surprisingly simple and efficient algorithm to reach the minimum cost. But according not only 

to these authors but also to Platt et al. (1997), the algorithm is valid provided that

 ex tmh I s S   
 
is a unimodal function. The same algorithm was used by Zhao et al. (2012) 

to find the minimum cost in a single-item system with limited resource for goods in on-hand 

inventory and outstanding orders. For Poisson distributed lead-time demand, Guan & Zhao 

(2011) proved the convexity of (2.2c) for any given Q and R, noting, however, the 

computational difficulties in determining the minimum cost. 

 

2.3 The cost function in the two dimensional space 

Let X be a continuous non-negative random variable representing the demand in the lead-

time with mean L  and variance 2
L . Lau et al. (2002b) converted the double integration of 

(2.1) into a single integration and for the case of R 0  they resulted in the following 

simplified expression 

   
ex L

R Q RQ
I R

2 2Q

  
     

where      2

z

z x z x dx


   f  and z stands for either Q  or Q R . Further with R 0  the 

authors stated that the assumption “there is more than one order outstanding at any point in 

time” implies  Q R 0   . So, the exact expression for the expected on-hand inventory at 

any point in time takes the form 

 
ex L

RQ
I R

2 2Q


    , (2.3) 

where             R1RdxxxR2dxxxdxxRxR 2

RR

2

R

2 Ffff  


, (2.4) 

and  RF  is the cumulative distribution function of X evaluated at R. Replacing (2.3) in 

(2.2b) and taking  exC Q, R Q 0    and  exC Q, R R 0   , the solution of first-order 

conditions for the minimization of the exact annual cost function gives 

     RRSD
h

s
2D

h

A
2RQ  , (2.5a) 

and 
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      
Ds

RSRQh
1R




F , (2.5b) 

where           R1RdxxxdxxRxRS
RR

Fff  


. (2.6) 

Solving iteratively (2.5a) and (2.5b) until convergence is achieved (e.g., Hadley & Whitin, 

1963; Silver et al., 1998; Nahmias, 1976; Lau et al., 2002b), the optimal pair of values 

 ** R,Q  is obtained. Regarding the order quantity, we distinguish between the notation Q (or 

*Q ) meaning a given number and the notation  RQ  which illustrates a function of R derived 

after solving the first-order conditions for a minimum of the cost function (2.2b). 

Substituting  RQ  for Q first in (2.3) and then in (2.2b), and performing some algebraic 

manipulation in the resulting expression of the cost function, (2.2b) is transformed to a 

function only of R, and is written as 

    LC R h Q R R     . (2.7) 

The stated assumption in the introductory section that “there is never more than one order 

outstanding at any point in time” is true only if at each delivery the lead-time demand never 

exceeds the order quantity (Lau et al., 2002b ). This also means that   LQ R   , which in turn 

leads to a positive  RC  for any 0R  . 

To compute  Q R  and  RC  we need analytic expressions for the general functions 

 R and  RS  which are given in (2.4) and (2.6) respectively. To the extent of our 

knowledge such analytic expressions are not directly available in the literature. Assuming that 

X has some specific probability distribution (e.g., Gamma, Log-Normal etc), these analytic 

expressions are obtained having available the solutions of integrals  



R1 dxxxm f

 
and 

 



R

2
2 dxxxm f . For instance, these solutions can be obtained directly from the formulae 

reported in table 1 of Jawitz (2004), and in particular, for the probability distributions which 

are considered in the current work, setting u  and R  to these formulae we take the 

following results: 

Gamma  βα, :       



 R,NNm

N

N , (2.8a) 

Log-Normal  θλ, :     Nr1em 2NN
N

22

,    Rlnr , (2.8b) 
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Weibull  βα, :















































R

,
N

1
N

1m N
N , (2.8c) 

where    and   R,  are the complete and the lower incomplete Gamma function 

respectively. To obtain from the initial formulae reported by Jawitz the final forms of Nm  in 

(2.8) we proceeded as follows: 

(a)  for the Weibull distribution first we expanded the summation and then we set 0c  ,  

(b)  for the Log-Normal, we used the transformation      5.05.0x2xerf  , where 

 x  is the cumulative distribution function of the standard Normal evaluated at x,  and 

(c)  for both Gamma and Weibull distributions we used the limiting result    


x,lim
x

.  

The corresponding integrals for the Exponential and Rayleigh distributions can be obtained 

setting 1  in the integral (2.8a) and 2  in the integral (2.8c). Furthermore, for the 

Rayleigh distribution we used the identity    xerfx,5.0  , while for the Gamma and 

Weibull distributions, to evaluate the lower incomplete gamma function we used the recursive 

equation       x1exx,11x,   and the identity   xe1x,1  . Following the 

aforementioned discussion, the analytic forms of  RS  and  R
 
are given in Table 2.1. In 

the Appendix at the end of Chapter 2 we offer the analytical derivations of these forms in 

Proof 2.1. 

From (2.4) and (2.6), it is deduced that when 0R   we have   LS R 
 

and 

  2 2
L LR   , while if R  then  RS  and  R  tend to zero. These limits are also 

justified as follows. Since  RS  expresses the expected shortage (or backorders size) per 

inventory cycle,  R
 
equals to the sum of the squared expected shortage plus the variance 

of the shortage. So, when R  the lead-time becomes infinity, the shortage goes to zero 

and its mean and variance tend also to zero. On the contrary, the fact that 0R   implies that 

shortage tends to be identical with the lead-time demand verifying in that way the 

aforementioned limits of  RS  and  R . 
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Table 2.1 Analytic forms of the functions  R
 
and  RS  defined respectively in (2.4) and 

(2.6). 

Gamma  βα, :      R1eRRf  ,       R,RF , L   , 2 2
L    

      1 LR
m x x dx 1 R R R


         f F f , and 

        2 2 2
2 L L LR

m x x dx 1 R R R R


              f F f  

        LS R R 1 R R R        F f  and          2 2
L L LR R  1 R R R R              F f  

Exponential  β :    ReRf  ,    Re1RF  , L   , 2 2
L    

   LR
1 Lm R e     and    LR2

2 L Lm 2 R R e       

   LR
LS R e    and   LR2

LR 2 e     

Log-Normal  θλ, :        2Rln1 2

e2RR 
f ,    rR F  , 

2 2
L e  ,  

 22 2
L L e 1    ,    Rlnr  

   1 Lm 1 r     and     2 2
2 L Lm 1 r 2        

      LS R r R r         and          2 2 2
L L LR 2 r 2R r R r                 

Weibull  βα, :     R1eRRf ,     Re1RF , 

 1
L 1      ,     22 1 2

L 2 2 1           
     R1

1 Lm 1 , R Re
            and     R2 2 1 2 2

2 L Lm 2 2 , R R e
               

 
    1

LS R 1 , R
       and       

2
2 2
L L

2
R 2R S R 2 , R


          


 

Rayleigh  β :    2R2 Re2R f ,    2Re1R F , L 2    ,  2 2
L 4 4      

     2R
1 Lm 2 1 R 2 Re       and    2R2 2 2

2 L Lm R e       

     LS R 2 1 R 2     and         2
R2 2

L L LR e 4R 1 R 2          

 

2.4 Minimization process of the cost function 

From (2.7) and using the derivatives     R1dRRdS F  and    RS2dRRd  , 

we obtain    RVhRC   and       3RQRghRC  , where 

   dQ R
V R 1

dR
   , (2.9) 

           2
2

RQ
dR

RdQ
R1RD

h

s
Rg

















 Ff , (2.10) 

and  

      
 RQ

RShRF1Ds

dR

RdQ 
 . (2.11) 
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From the forms of  RC  and  RC   we deduce that (a) the range of function  Rg  

determines whether  RC  is convex or not, and (b) provided that   0RC  , namely  RC  is 

convex, the range of function  RV  determines whether or not there exists a single value 

0R *   for which   0RC *  . 

The range of  Rg  and  RV  is determined by investigating how the first derivatives 

      3RQRgRV   and       2RQRuRg   respond to changes of R, that is, when R 

increases from zero to infinity, given that 

     






  RRD

h

s
Ru ff . (2.12) 

(Proof 2.2: See in the Appendix at the end of the chapter) 

 

This investigation is carried out in the remaining of this section when the lead-time demand 

distribution belongs to one of the following two types of skewed distributions: (a) J-shaped 

with   0R f , and (b) unimodal satisfying the following two assumptions: 

Assumption 1:     0RlimRlim
R0R




ff . 

Assumption 2: Given that the mode of distribution occurs at mR , there is only one 

value mo RR   for which   0Ru o  , with   0Ru   for oRR  , and   0Ru  for 

oRR  . 

(Proof 2.3: See in the Appendix at the end of the chapter) 

 

Regarding the five distributions of Table 2.1, in the Appendix we show that assumption 2 is 

true for the unimodal Gamma  βα,  and Weibull  βα, , with 1 , and for the Log-Normal 

 θλ,  as the latter one is unimodal for any λ and θ. 

At this point it is important to mention that we have chosen Gamma, Weibull and Log-

Normal because, under these distributions we can handle large demand variability when R is 

always positive. According to Gallego et al. (2007) when the demand coefficient of variation 

(CV) is large, it is preferable to describe the demand by non-negative skewed distributions 

instead of the Normal. This is one reason why the Normal distribution has not been included 

in our analysis as this distribution offers tractable results and good approximations for target 

inventory measures only when the demand has relatively low coefficient of variation, 

preferably below 0.3 (e.g., Lau, 1997; Syntetos & Boylan, 2008; Janssen et al., 2009; Kevork, 
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2010). The second reason is that, according to Lau & Lau (2002), under Normally distributed 

lead-time demand with low CV the Hadley & Whitin approximation behaves well even when 

cycle service levels are not large. 

Given the above analysis, the next Lemmas 2.1 and 2.2 investigate the range of functions 

 Rg  and  RV  for J-shaped and unimodal distributions respectively. 

 

Lemma 2.1: When X has a J-shaped distribution with   0R f  then: 

(a)  Rg  is positive for any 0R  and  

(b) when it holds  

   2 2 2
Ls h D 2A h D 0    (2.13) 

there is a unique 0R *   for which   0RV *  . 

Proof 2.4: See in the Appendix at the end of the chapter. 
 
From part (a) of Lemma 2.1, we conclude that when the lead-time demand is J-shaped 

distributed with   0R f  then the cost function is always convex since  

       0RQRghRC 3  . Further, from part (b) of Lemma 2.1 we observe that condition 

(2.13) ensures a positive *R  for which     0RVhRC **  . The value of *R  is obtained 

after solving either the equation   dQ R dR 1 0   or the system of the first order 

conditions (2.5a) and (2.5b). Both ways lead to the same equation which is  

      *** RQRSR1D
h

s
 F . (2.14) 

 

Lemma 2.2: If X has a unimodal distribution satisfying assumptions 1, 2 and condition 

(2.13), then it holds:  

(a)  Rg  intersects the horizontal axis at a unique positive value 1R  so that   0Rg   for

10 R R   and   0Rg   for 1RR  ,  

(b)  V R
 
intersects the horizontal axis at *

1R R  for which  *V R 0 ,   0RV   for

*RR   and   0RV   for *RR  . 

Proof 2.5: See in the Appendix at the end of the chapter. 
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From Lemma 2.2 it is deduced that although  RC  is not convex as 

      3
C R h g R Q R 0       

for 10 R R  , it will have a unique minimum at 0R *   

since  *C R 0   and  C R 0  . The value of *R  is obtained by solving again equation 

(2.14).  

From the two Lemmas it is also realized that, for both types of distributions, when

   2 2 2
Ls h D 2A h D 0  

 
then for R 0  the function  Rg  is always positive while

 RV  is always negative. This means that when R increases on the interval  0,
 
then  RC

increases at an increasing rate, as     0RVhRC   and        0RQRghRC 3  . 

Hence,  RC  is convex but an extreme value does not exist under a strict mathematical 

framework. In this case, however, we shall consider as minimum the lowest point of the 

 RC  curve which is located at R 0  . Then the minimum cost is given by  

     2 2
L L L L L

R 0

A s
C 0 h lim Q R h 2 D 2 D

h h





 
         

 
.  (2.15) 

Finally, when    2 2 2
Ls h D 2A h D 0    it holds  g R 0

 
and  V R 0

 
meaning 

that for J-shaped distributions  
R 0
lim g R


  ,  
R 0
lim V R 0


  and for unimodal distributions

    0RVlimRglim
0R0R




. Therefore for both types of distributions  RC  is flat at 0R   and 

starts to increase at an increasing rate for R 0 . In this case the lowest point of the  RC  

curve occurs at R 0   and the minimum cost is given again by (2.15). 

The results of the above analysis, concerning the convexity of  RC  and the existence of a 

unique minimum are summarized in Table 2.2. Further, Figures 2.1-2.3 illustrate graphically 

g(R), V(R) and C(R) when the expression    2 2 2
Ls h D 2A h D 

 
 is positive, negative or 

zero. 
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Table 2.2 Summarized results for the convexity of  RC  and the existence of a unique 
minimum under two types of lead-time demand distribution. 

   2 2 2
Ls h D 2A h D 0    

 J-shaped:  RC  is strictly convex and has a unique minimum at R 0  . 

unimodal:  RC  is not convex and has a unique minimum at R 0  . 

   2 2 2
Ls h D 2A h D 0    

J-shaped, 

unimodal: 

 RC  is increasing at an increasing rate for any R 0 . The minimum cost 

occurs at R 0  . 

   2 2 2
Ls h D 2A h D 0    

J-shaped:  RC  is strictly convex and has a unique minimum at R 0  . 

unimodal:  RC  is flat at 0R   and starts to increase at an increasing rate for any R 0 . 

The minimum cost occurs at R 0  . 

 

 

(a) J-shaped  

 

(b) unimodal 

 

Figure 2.1 Graphs of g(R), V(R) and C(R) functions when    2 2 2
Ls h D 2A h D 0   . 
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(a) J-shaped  

 

(b) unimodal 

 

Figure 2.2 Graphs of g(R), V(R) and C(R) functions when    2 2 2
Ls h D 2A h D 0   . 

 
(a) J-shaped  

 

 
(b) unimodal 

 

Figure 2.3 Graphs of g(R), V(R) and C(R) functions when    2 2 2
Ls h D 2A h D 0   . 
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Closing this section, we note that the usefulness of condition (2.13) is twofold. First, 

solving the inequality with respect to one of the cost parameters keeping the other two fixed 

we obtain threshold values which determine the range values of the cost parameters in order 

the unique minimum to be attained for R 0   or R 0  . Second, these threshold values are 

independent of the form of the lead-time demand distribution and to compute them we need to 

know only the mean and the variance of the lead-time demand. In Table 2.3 we give the range 

values of s, A and h in order the minimum cost to occur at a positive R value. When this 

happens the threshold value is the minimum for s and the maximum for A and h.  

 
Table 2.3 Interval values of the cost parameters for a minimum cost at a positive reorder 
point. 

  Cost   

shortage   ordering   holding  

2
2
L2

A h
2 h s

D D
    

 

 2 2
2
L

s D
h

h0 A
2D

 
 

 

 2 2 2 2 2
L

2
L

AD A D s D
0 h

   
 



Proof 2.6: See in the Appendix at the end of the chapter. 

 

2.5 An algorithm for the solution approach 

The solution steps for finding the minimum of the cost function  RC  defined in (2.7) 

when the lead-time demand has a J-shaped distribution with   0R f  or a unimodal 

distribution satisfying assumptions 1 and 2 described in section 2.3, are summarized into the 

following general algorithm: 

Step 1: Give values to the parameters: s, A, h, D, L  and 2
L . 

 

Step 2: If    2 2 2
Ls h D 2 A h D 0    then go to Step 3, otherwise go to Step 6.  

 
Step 3: Find analytic forms for the functions  RF ,  Rf ,  S R  and  R  (for the 

distributions Gamma, Weibull, and Log-Normal such analytic forms are offered in 
Table 1) and go to step 4. 

 
Step 4: Find the optimum reorder point, R , by solving the equation 

   
   

s D 1 F R h S R
1 0

A s
2 D 2 D S R R

h h

 

 

      
  

,                                                              (2.16a) 

             and go to Step 5. 
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Step 5: Compute the optimal order quantity and the minimum total cost respectively from 

           
   A s

Q 2 D 2 D S R R
h h

        ,                                                               (2.16b) 

              ex LC Q , R h Q R      ,                                                                            (2.16c) 

           and go to Step 7. 
 
Step 6: Set R 0   and compute the optimal order quantity and the minimum total cost from 

           2 2
L L L

A s
Q 2 D 2 D

h h
        ,                                                                     (2.16d) 

              ex LC Q ,0 h Q   .                                                                                       (2.16e) 

 
Step 7: End of algorithm. 
 

 

Numerical example 

To illustrate the application of the algorithm, we have chosen the Exponential distribution, 

and the following cost parameter values which are suggested by Zhao et al. (2012): 60A  , 

6.0h  , s 3 , and 10000D  , under which condition (2.13) is true. Setting also 

L L 200       the analytic forms of  Rf ,  RF ,  S R ,  R  for the exponential 

distribution are from Table 2.1:   *0.005RR ef ,   *R005.0e1R F ,   *R005.04 e1002.0RS  , 

  *4 0.005RR 8 10 e   . Then substituting into (2.16a) we take the quadratic equation 

2252004y 2008y 200 0    where  *R005.0expy  . From the two roots of the equation 

we keep the positive one y 0.0324 , and solving with respect to *R  we obtain the optimal 

reorder point *R 685.70 . Substituting *R 685.70 ,  *S R 6.49 , and  *R 2594.88   

into (2.16b) we take the optimal order quantity *Q 1628.29 . Finally, from (2.16c) the 

minimum cost is  * *
exC Q , R 1268.39 (see graph (a) of Figure 2.4). 

If on the other hand we used the same parameter values as above with the exception that 

instead of A 60 , we set A 75000 , we would find that condition (2.13) is negative. In this 

case from Step 2 of the algorithm we have to go to Step 6 and to set R 0  . Finally, from 

(2.16d) and (2.16e) we compute respectively Q 50200.40   and  exC Q ,0 30000.24   (see 

graph (b) of Figure 2.4). 

 

Institutional Repository - Library & Information Centre - University of Thessaly
02/06/2024 00:17:34 EEST - 18.219.251.217



52 
 

(a) 60A  , 6.0h  , 10000D  , L L 200     and s 3  

 

 
(b) A 75000 , 6.0h  , 10000D  , L L 200     and s 3  

 

Figure 2.4 Graph of the cost function Cex(Q,R) under Exponential lead-time demand. 
 

If instead of the Exponential distribution we used as lead-time demand distribution one of 

the Gamma, Log-Normal or Weibull then the equation (2.16a) of step 4 could not be solved 

analytically. In this case an iterative procedure should be used such as the Newton-Raphson 

method which first should have been coded to some programming language (e.g., FORTRAN 

or C). Furthermore, an alternative approach to obtain the optimal pair (Q ,R ) when 

condition (2.13) holds is by using the Excel’s Solver. For instance, in Figure 2.5 we give an 

example for minimizing the cost function when the lead-time demand has the Gamma 

distribution with parameters α=25 and β=12. In this Figure, column A contains the symbols, 

column B the values and column C the Excel’s expressions. Setting as initial values 

A
Q 2 D

h
  and LR    respectively in cells B11 and B12, a few mouse-clicks with the 
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Excel’s Solver minimizing cell B18 by changing the cells B11 and B12 produce the optimal 

values: 

Q 1558.262   (cell B11), R 421.291   (cell B12) and 

 exC Q ,R 1007.732  
 
(cell B18). 

Similar Excel spreadsheets as that one of Figure 2.5 can be developed for the remaining 

distributions of Table 2.1. 
 

  A  B  C 

1  μL  300 

2  σL  60 

3 

4  D  10000 

5  A  70 

6  s  3 

7  h  0.6 

8  α  25  =B1*B1/B2/B2 

9  β  12  =B2*B2/B1 

10 

11  Q  1558.262 

12  R  421.291 

13 

14  f(R)  0.000935  =GAMMADIST(B12;B8;B9;FALSE) 

15  F(R)  0.968854  =GAMMADIST(B12;B8;B9;TRUE) 

16  S(R)  0.947924  =(B1‐B12)*(1‐B15)+B12*B9*B14 

17  Θ(R)  53.86033  =((B1‐B12)^2+B2^2)*(1‐B15)+B12*B9*B14*(B1‐B12+B9) 

18  Cex(Q,R)  1007.732  =B5*B4/B11+B7*(B11/2+(B12‐B1)+0.5*B17/B11)+B6*B4/B11*B16

Figure 2.5 Excel spreadsheet for the exact cost function. 

Using for the holding cost, h and shortage cost per unit backordered, s the values which are 

suggested by Zhao et al. (2012), namely h=[0.1-3] and s=[5h-15h], and assigning to D and L  

the values 3000 and 300 respectively, we give in Tables 2.4-2.7 the optimal target inventory 

measures under different combinations of sizes for the coefficient of variation (CV) and the 

ordering cost, A. Especially for A, we selected both larger and smaller sizes than its threshold 

value which determines the range where the optimal reorder point is positive or zero. From 

Tables 2.4-2.7 we observe that, given the CV size, as A raises then the order quantity and the 

minimum cost increase, while the reorder point and the cycle service level decline. 

Furthermore, increasing the size of CV, keeping all the other parameter values fixed, results 

in (a) larger order quantities and minimum costs, and (b) smaller reorder points and cycle 
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service levels. Therefore, optimal inventory policies with large lead-time demand variability 

expressed by the size of CV lead to excessively large orders, zero reorder points and higher 

minimum costs. 

 

 

Table 2.4 Optimal target inventory measures for Rayleigh distributed lead-time demand when 
s=3, h=0.6, D=3000 and μL=300. 

    Exact 

CV  A  CSL  * *Q ,R   * *
exC Q ,R  

0.52 

Case 1 

30  0.96 (638.53,601.97) 564.30 
200  0.90 (1513.04,513.41) 1035.87 
900  0.79 (3111.81,425.52) 1942.40 
8000  0.40 (9101.44,241.74) 5425.91 
14500  0.19 (12232.68,157.52) 7254.12 
18000  0.10 (13631.33,112.20) 8066.11 

Case 2 
23000  0 (15463.32,0) 9097.99 
25000  0 (16097.03,0) 9478.22 
27000  0 (16706.72,0) 9844.03 

 

 

 

Table 2.5 Optimal target inventory measures for Exponential distributed lead-time demand 
when s=3, h=0.6, D=3000 and μL=300. 

    Exact 

CV  A  CSL  * *Q ,R   * *
exC Q ,R  

1 

Case 1 

30  0.94 (924.50,841.91) 879.84 
200  0.89 (1745.68,651.21) 1258.14 
900  0.78 (3314.96,458.82) 2084.27 
8000  0.40 (9249.30,150.99) 5460.18 
14500  0.19 (12345.33,64.37) 7265.82 
18000  0.10 (13719.76,32.70) 8071.48 

Case 2 
23000  0 (15465.45,0) 9099.27 
25000  0 (16099.07,0) 9479.44 
27000  0 (16708.68,0) 9845.21 
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Table 2.6 Optimal target inventory measures for Log-Normal distributed lead-time demand 
when s=3, h=0.6, D=3000 and μL=300. 

    Exact 

CV  A  CSL  * *Q ,R   * *
exC Q ,R  

0.2 

Case 1 

30  0.96 (584.64,417.16) 421.08 
200  0.90 (1453.30,380.62) 920.36 
900 0.80 (3042.72,346.97) 1853.82
8000  0.40 (9001.61,280.09) 5389.02 
14500  0.20 (12112.07,248.36) 7236.26 
18000  0.10 (13497.65,229.50) 8056.29 

Case 2 
23000  0 (15462.65,0) 9097.59 
25000  0 (16096.38,0) 9477.83 
27000  0 (16706.09,0) 9843.66 

0.52 

Case 1 

30  0.95 (716.43,603.01) 611.66 
200  0.90 (1565.44,493.63) 1055.44 
900  0.79 (3145.00,396.45) 1944.86 
8000  0.40 (9095.93,235.03) 5418.57 
14500  0.20 (12207.38,174.80) 7249.30 
18000 0.10 (13594.83,143.87) 8063.22

Case 2 
23000  0 (15463.32,0) 9097.99 
25000  0 (16097.03,0) 9478.22 
27000 0 (16706.72,0) 9844.03

1 

Case 1 

30  0.93 (1067.31,727.73) 897.03 
200  0.88 (1812.21,568.86) 1248.64 
900 0.78 (3330.16,406.34) 2061.90
8000  0.40 (9207.95,170.51) 5447.08 
14500  0.19 (12297.39,103.30) 7260.42 
18000  0.10 (13674.12,74.22) 8069.01 

Case 2 
23000  0 (15465.45,0) 9099.27 
25000  0 (16099.07,0) 9479.44 
27000  0 (16708.68,0) 9845.21 

2 

Case 1 

30  0.89 (1772.97,625.59) 1259.13 
200  0.85 (2306.35,507.94) 1508.57 
900  0.77 (3648.90,336.36) 2211.16 
8000  0.39 (9333.57,94.97) 5477.13 
14500  0.19 (12377.44,44.49) 7273.15 
18000 0.10 (13735.36,26.89) 8077.35

Case 2 
23000  0 (15474.17,0) 9104.50 
25000  0 (16107.45,0) 9484.47 
27000  0 (16716.76,0) 9850.05 
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Table 2.7 Optimal target inventory measures for Gamma distributed lead-time demand when 
s=3, h=0.6, D=3000 and μL=300. 

    Exact 

CV  A  CSL  * *Q ,R   * *
exC Q ,R  

0.2 

Case 1 

30  0.96 (579.68,414.08) 416.25 
200  0.90 (1449.32,380.46) 917.87 
900 0.80 (3039.64,348.48) 1852.87
8000  0.40 (9000.88,281.51) 5389.43 
14500  0.20 (12113.12,247.99) 7236.67 
18000  0.10 (13500.14,227.52) 8056.59 

Case 2 
23000  0 (15462.65,0) 9097.59 
25000  0 (16096.38,0) 9477.83 
27000  0 (16706.09,0) 9843.66 

0.52 

Case 1 

30  0.96 (670.58,607.97) 587.12 
200  0.90 (1536.71,507.08) 1046.28 
900  0.79 (3128.34,412.73) 1944.65 
8000  0.40 (9100.15,237.56) 5422.62 
14500  0.19 (12221.04,165.40) 7251.87 
18000 0.10 (13613.92,127.36) 8064.77

Case 2 
23000  0 (15463.32,0) 9097.99 
25000  0 (16097.03,0) 9478.22 
27000 0 (16706.72,0) 9844.03

1 

Case 1 

30  0.94 (924.50,841.91) 879.84 
200  0.89 (1745.68,651.21) 1258.14 
900 0.78 (3314.96,458.82) 2084.27
8000  0.40 (9249.30,150.99) 5460.18 
14500  0.19 (12345.33,64.37) 7265.82 
18000  0.10 (13719.76,32.70) 8071.48 

Case 2 
23000  0 (15465.45,0) 9099.27 
25000  0 (16099.07,0) 9479.44 
27000  0 (16708.68,0) 9845.21 

2 

Case 1 

30  0.88 (1844.35,789.38) 1400.24 
200  0.85 (2431.34,598.40) 1637.85 
900  0.76 (3815.50,328.19) 2306.22 
8000  0.39 (9436.49,18.98) 5493.28 
14500  0.19 (12426.65,1.09) 7276.64 
18000 0.10 (13763.99,0.09) 8078.45

Case 2 
23000  0 (15474.17,0) 9104.50 
25000  0 (16107.45,0) 9484.47 
27000  0 (16716.76,0) 9850.05 
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2.6 Summary 

In this chapter, for the continuous review (Q,R) inventory model with backorders and fixed 

lead-time we examined the minimization process of the exact annual cost function. This 

function is the sum of the annual expected ordering, holding and shortage costs. For the 

calculation of the expected annual holding cost we used the exact expression for the expected 

on-hand inventory at any point in time. Further, the shortage cost per unit backordered and the 

resulting size of backorders were used for the determination of the annual expected shortage 

cost. The investigation of the minimization process was carried out under J-shaped and 

unimodal distributions satisfying specific assumptions.  

Expressing the cost function in terms only of the reorder point we derived a general 

condition to identify when the minimum of the cost function (a) is obtained through 

mathematical optimization and b) occurs when the reorder point takes on the value zero. The 

usefulness of this analysis relies on the fact that interval values of the cost parameters are 

obtained from the general condition in order the minimum cost to occur at zero reorder point. 

Further, the limits of these intervals are independent of the form of the lead-time demand 

distribution and to compute them we need, apart from the cost parameter values, the annual 

expected demand and the variance of the lead-time demand.  

Finally, based on this general condition we offer an algorithm for finding the minimum of 

the cost function. After some numerical experimentation applying parameter values taken 

from the inventory literature to this algorithm, we observed that as the ordering cost increases 

we move from a situation where the unique minimum cost is attained at a positive reorder 

point to a situation where the minimum cost occurs at zero reorder point. Furthermore, as CV 

raises with fixed cost parameter values we result in larger optimal order quantities and larger 

minimum costs while the reorder points and cycle service levels decline. From the managerial 

aspects of inventory this means that as lead-time demand variability grows the optimal 

policies lead to excessively large orders, zero reorder points and higher minimum costs. 

 

 

Institutional Repository - Library & Information Centre - University of Thessaly
02/06/2024 00:17:34 EEST - 18.219.251.217



58 
 

Appendix 

 

Proof 2.1: 

(A) Gamma(α,β) distribution 

 Probability density function:    1 RR R e      f  

 Cumulative distribution function:      R ,R     F  

 Mean L    and variance 2 2
L   . 

From Jawitz (2004) the Nth absolute truncated moment expression of a distribution  xf  

with lower and upper bounds l and u is defined as: 

 
u

N
Nm x x dx 



f  

where for the Gamma distribution the incomplete moment is 

 

 N

u
m , ,

     
                   


.  

 

1) For N=1 and setting u   and R  the first moment will be 

   1

R

R
m x x dx 1, 1,

      
                    
 f  

 
   

R
1,

1
 
        

   
, 

where  t

0

1, t e dt 1


  
         

 .  

Further, using the recursive equation  

      1 x, x 1 1, x x e           (A.1) 

we take 

   
   

R

1

R

1 R R
m x x dx , e

 


      
                      
 f  
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 
     

R

L

1 R
R R e

R


      

      
    

F  

   L R R R     F f  

   L 1 R R R       F f , 

where 
R

R R R
1, , e



     

                    
. (A.2) 

Hence the expected size of backorders in each inventory cycle is 

       1

R

S R x x dx R 1 R m R 1 R


             f F F

     L            1 R R R R 1 R              F f F  

     L            R 1 R R R        F f . 

 

2) For N=2 and setting u   and R  the second moment will be 

   
2

2
2

R

R
m x x dx 2, 2,

      
                    
 f  

 
   

2 2

R
2,

2
 
        

   
, 

where  1 t

0

2, t e dt 2


  
         

 .  

Further, using (A.1) and (A.2) we take 

 2
2

R

m x x dx


  f  

 
       

1R R2
2 2 R R R

1 , e 1 e
 

 
 

         
                                

 

 

   
       

 

R
2

2 2
L

1 1 R 1 e R
1 R

R


             

       
   

F  

 

R
2 1R R e R

R


        

 
 
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           2 2 2 2
L1 1 R R 1 R R R                 F f f  

 

        2 2 2 2
L L1 1 R R R R R               F f f  

 

         2 2 2 2 2
L L L1 R 1 R R R R R R R                        F F f f f  

 

       
2 2

2 2 2L L
L L2

L

1 R 1 R R R R R
 

                     
F F f f  2R R  f  

 

       2 2
L L L1 R R R R             F f , 

 

where    
1R R

R R R R
2, 1 , e 1 e

 
 
        

                              
. 

 

Therefore,  

           2 2 2

R R R

R x R x dx x x dx 2R x x dx R 1 R
  

           f f f F  

 2
2 1m 2 R m R 1 R        F  

            2 2
L L L L1 R R R R 2R 1 R R R                     F f F f  

 2R 1 R    F  

       2 2
L L LR 1 R R R R               F f . 

 

(B) Exponential (β) distribution 

 Probability density function:  
R

1
R e





f  

 Cumulative distribution function:  
R

R 1 e

 F  

 Mean L   and variance 2 2
L   . 
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From Jawitz (2004) the incomplete moment for the Exponential distribution is 

 

 
u

N
N

0

u c c
m x x dx c 1, 1,


 



        
                       





f .  

 

1) For N=1 and setting u   , R  and c 0  the first moment will be 

1
1

1
0

1 0 R 0
m 0 1, 1, 



        
                       
  

0 1 01 0 R 0
0 0 1, 0 1,

0
         

                   
 

1 1 11 0 R 0
0 1 1, 1 1,

1
         

                    
 

   
0 1 0 1 1 11! R 1! R
0 1, 1, 0 2, 2,

1 0 !0! 1 1 !1!
            

                                   
 

0 R R
0 0 2, 2, 2, 2,

           
                                 

 

  R
2 2,

  
        

, 

where  2 1 t

0

2, t e dt 2


  
     

 .  

Further, using (A.1) we take 

   
R R R

1

R

R
m x x dx 1 1 e e R e

   
  

                    
 f , 

where  
2 1 R R R

R R R R
2, 2 1 2 1, e 1 e e


  
         

                         
. 

 

Hence the expected size of backorders in each inventory cycle is 

       1

R

S R x x dx R 1 R m R 1 R


             f F F  

   
R

R e R 1 R

        F  
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 
R R R

R e R 1 1 e e
  
  

 
        

  
. 

 

2) For N=2 and setting u  , R  and c 0  the second moment will be 

 2
2

R

m x x dx


  f  

2
2

2
0

2 0 R 0
m 0 1, 1, 



        
                       
  

0 2 02 0 R 0
0 0 1, 0 1,

0
         

                   
 

1 2 12 0 R 0
0 1 1, 1 1,

1
         

                   
 

2 2 22 0 R 0
0 2 1, 2 1,

2
         

                    
 

 
0 22! R
0 1, 1,

2 0 !0!

    
              

 

 
1 12! R
0 2, 2,

2 1 !1!

    
              

 

 
2 02! R
0 3, 3,

2 2 !2!

    
               

 

2 0 R
0 0 0 3, 3,

    
               

 

 

 2 2R R
3, 3, 3 3,

        
                           

, 

where  3 1 t

0

3, t e dt 3


  
     

 .  

Further, using (A.1) we take 

    
R

2 2 2
2 2

R

1
m x x dx 2 2 2 R R e

 


                 
 f  
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 
R

2e 2 R R

        , 

where  
3 1 2R R

R R R R R
3, 3 1 3 1, e 2 2, e


 
          

                                
 

2R R R
R R

2 1 e e e
  
  

    
               

 

2R R
R R

2 1 e e
 
 

    
              

 

  
R

2
2

1
2 2 R R e


     


. 

Therefore,  

           2 2 2

R R R

R x R x dx x x dx 2R x x dx R 1 R
  

           f f f F  

 2
2 1m 2 R m R 1 R        F  

     
R R

2 2e 2 R R 2R R e R 1 R
 
                F  

R R R R R R
2 2 2 22 R e 2 e R e 2 R e 2 R e R e

     
                         

R
22 e


   . 

 

(C) Log-Normal (λ, θ) distribution 

 Probability density function:  
2

Rln

2

1

e
2R

1
R















f  

 Cumulative distribution function:    rR F  

 Mean 
2 2

L e   and variance  22 2
L L e 1     

where    Rlnr . 

From Jawitz (2004) the incomplete moment for the Log-Normal distribution is 

 
u

N
Nm x x dx 



f  

   2 2

N

ln u ln1
m exp N erf erf

2 2 2 2 2 2

           
          

        


.  
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1)  For N=1 and setting u    and R  the first moment will be 

 1

R

m x x dx


  f  

   
2

ln ln R

1
exp erf erf

2 2 2 2

         
                                         

. 

Further, using the transformation  

     x 0.5x x x
x 0.5 0.5 erf erf erf 2 x 1

0.52 2 2

                    
     

,  (A.3) 

and setting respectively 
 ln

x
 

 


 and 
 ln R

x


 


 we take 

 
 

 
ln

A erf erf erf 2 1 1
2 2 2

                        
        

 

and 

 
 

 
ln R

ln R
B erf 2 1

2

 
                

 

. 

 

Therefore, 

 1

R

m x x dx


  f  

 2 ln R1
exp 1 2 1

2 2

    
                

 

 2 ln R
exp 1

2

    
             

, 

and the expected size of backorders in each inventory cycle is 

     
R

S R x x dx R 1 R


      f F
 

 1m R 1 R     F
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   
2 ln R

exp 1 R 1 R
2

    
                  

F
 

   
2

2
ln R

e R 1 R


    
            

F . 

Setting     Rlnr , the function  S R
 
for the Log-Normal lead-time demand takes 

the form 

     r
LS R r e r          

where      rr ln R ln R r R e        . 

 

2)  For N=2 and setting u    and R  the second moment will be 

 2
2

R

m x x dx


  f  

 
   

2

ln ln R
2 2

1
exp 2 2 erf erf

2 2 2

         
                                      

. 

Further, using (A.3) and setting respectively 
 ln

x 2
 

  


 and 
 ln R

x 2


  


 we 

take 

 
 

 
ln

2 2
A erf erf erf 2 1 1

2 2 2

                         
        

 

and 

 
 

 
ln R

2 ln R
B erf 2 2 1

2

 
                 

 

. 

Therefore, 

     2 2
2

R

ln R
m x x dx exp 2 2 1 2

   
            
 f . 
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Hence,  

           2 2 2

R R R

R x R x dx x x dx 2R x x dx R 1 R
  

           f f f F  

 2
2 1m 2 R m R 1 R        F  

     2
2 ln R ln R

exp 2 2 1 2 2 R exp 1
2

         
                               

 

 2 ln R
R 1

   
      

. 

Setting     Rlnr , the function  R for the Log-Normal lead-time demand takes 

the form 

         2 2 2
L L LR 2 r 2 R r R r                   

where        2 2 2 2 2 2 2
L L Lexp 2 2 exp 2 exp exp            . 

 

(D) Weibull (α, β) distribution 

 Probability density function:  
R

1R R e


 

     f  

 Cumulative distribution function:  
R

R 1 e


 

   F  

 Mean 1
L

1       
 and variance 

2

2 1 2
L

2 1 1
2
                         

. 

From Jawitz (2004) the incomplete moment for the Weibull distribution is 

 
u

N
Nm x x dx 



f  

 N
0

u c c
m c c 1 , 1 ,

c c

 
 



                                            
 

.  

 

1) For N=1 and setting u  , R  and c 0  the first moment will be 

 1

R

m x x dx


  f  
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 
1

1

0

1 0 R 0
0 0 1 , 1 ,

0 0

 
 



                                              
  

0 1 01 0 0 R
0 1 , 1 ,

0

 

                                        

 

1 1 11 1 1 R
0 1 , 1 ,

1

 

                                         

 

 
0 1 01! R
0 1, 1,

1 0 !0!

 

                               

 

 
1 1 11! 1 1 R
0 1 , 1 ,

1 1 !1!

 

                                    

 

0 1 1 R
0 0 1 , 1 ,

                                    
 

1 1 R
1 1 ,

                        
 

R
1 1 1 1 R R

, e

  
  

                        
 

R

1
L

1 R
, Re

  
   

  
          

, 

where 
1 1

1 , 1
                 

 and from (A.1) it holds  

1
1 1 R

1 R 1 1 R R
1 , 1 1 1 1, e

        
                                                  

 

R
1 1 R R

, e

  
  

  
          

. 

Hence the expected size of backorders in each inventory cycle is 

       1

R

S R x x dx R 1 R m R 1 R


             f F F  
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R R

1
L

1 R
, Re Re

     
         

  
            

 

1
L

1 R
,




  
          

. 

 

2) For N=2 and setting u  , R  and c 0  the second moment will be 

 2
2

R

m x x dx


  f  

 
2

2

0

2 0 R 0
0 0 1 , 1 ,

0 0

 
 



                                              
  

0 2 02 0 0 R
0 1 , 1 ,

0

 

                                        

 

1 2 12 1 1 R
0 1 , 1 ,

1

 

                                        

 

1 2 22 2 2 R
0 1 , 1 ,

2

 

                                         

 

 
0 2 02! R
0 1, 1,

2 0 !0!

 

                               

 

 
1 2 12! 1 1 R
0 1 , 1 ,

2 1 !1!

 

                                   

 

 
2 2 22! 2 2 R
0 1 , 1 ,

2 2 !2!

 

                                    

 

2 0 2 2 R
0 0 0 1 , 1 ,

                                     
 

2 2 2 R
1 , 1 ,

                                    
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2 22 2 R
1 1 ,

                      
 

2 22 2 2 R
1 ,

                      
 

2 R

2 1 22 2 2 R R
2 , e

  
   

                                   
 

R

2 2 2 1 2
L L

2 R
2 , R e

  
   

  
              

, 

where (a) 
2 2

1 , 1
                 

, 

(b) 

2
1 1 R

2 R 2 2 R R
1 , 1 1 1 1, e

        
                                                  

 

2 R
2 2 R R

, e

  
  

    
              

, and  

(c) 

2

1 2
2

2 2 1 1 2
L L

1

1 2
2



 

                                    
 

2 2

2 2 1 2 2 2 1 21 2 1 2
2 2                                                     

. 

 

Therefore,  

           2 2 2

R R R

R x R x dx x x dx 2R x x dx R 1 R
  

           f f f F  

 2
2 1m 2 R m R 1 R        F  

R

2 2 2 1 2
L L

2 R
2 , R e

  
   

  
              

 

R R

1 2
L

1 R
2 R , Re R e

     
         

                     
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 2 2 2 1
L L

2 R
2 , 2 R S R




  
                

. 

 

(E) Rayleigh (α) distribution 

 Probability density function:  
2

R

2R 2 R e
 

      f  

 Cumulative distribution function:  
2

R

R 1 e
 

   F  

 Mean L 2


    and variance 2 2

L

4 
  


. 

From Jawitz (2004) the incomplete moment for the Weibull distribution is 

 
u

N
Nm x x dx 



f  

 N
0

u c c
m c c 1 , 1 ,

c c

 
 



                                    
 

.  

1) For N=1 and setting u   , R , c 0  and 2   the first moment will be 

 1

R

m x x dx


  f  

 
2 21

1

0

1 0 R 0
0 0 1 , 1 ,

2 0 2 0
 



                                            
  

2 2

0 1 01 0 0 R
0 1 , 1 ,

0 2 2

                                      

 

2 2

1 1 11 1 1 R
0 1 , 1 ,

1 2 2

                                       

 

 

2 2

0 1 01! R
0 1, 1,

1 0 !0!

                               

 

 

2 2

1 1 11! 1 1 R
0 1 , 1 ,

1 1 !1! 2 2

                                  
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2 2

0 1 1 R
0 0 1 , 1 ,

2 2

                                 
 

2
3 3 R

, ,
2 2

                     
 

2
2 R

1 1 R R
, e

2 2 2

 
  

                        
 

2
R

R 2 1

21 R
e

12 2
2

 
  

  
                

  

 

2 2
R R

R 2 R R 2
e 1 Re

2 2

   
        

                                         
, 

where 

(a) 
3 3

,
2 2 2

          
    , 

(b) from (A.1) it holds 

2
1

1 12 2 2 R23 R 1 1 R R
, 1 1 1 1, e

2 2 2

   
  

                                              
 

2
2 R

1 1 R R
, e

2 2

 
  

    
            

, 

(c)  1
, x erf x

2
    
 

 and  

(d) from (A.3) it holds 
2

R 2 1

21 R R R 2
, erf erf

12 2
2

 
                                

. 

Hence, the expected size of backorders in each inventory cycle is 

       1

R

S R x x dx R 1 R m R 1 R


             f F F  
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2 2
R R

R 2
1 Re Re

   
        

               
 

L

R 2
2 1

           
. 

 

2) For N=2 and setting u   , R , c 0  and 2   the second moment will be 

 2
2

R

m x x dx


  f  

 
2 22

2

0

2 0 R 0
0 0 1 , 1 ,

2 0 2 0
 



                                             
  

2 2

0 2 02 0 0 R
0 1 , 1 ,

0 2 2

                                      

 

2 2

1 2 12 1 1 R
0 1 , 1 ,

1 2 2

                                      

 

2 2

1 2 22 2 2 R
0 1 , 1 ,

2 2 2

                                       

 

 

2 2

0 2 02! R
0 1, 1,

2 0 !0!

                               

 

 

2 2

1 2 12! 1 1 R
0 1 , 1 ,

2 1 !1! 2 2

                                 

 

 

2 2

2 2 22! 2 2 R
0 1 , 1 ,

2 2 !2! 2 2

                                  

 

2 2

2 0 2 2 R
0 0 0 1 , 1 ,

2 2

                                  
 

 
2

2 R
2, 2,

                 
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 
2

2 R
2 2,

                
 

2 2
2R R

2 R
1 1 e e

   
        

             
 

2 2
R R

2 2e R e
   

            

 
2 2

R R

2 2 2
L L e R e

   
             , 

where (a)    2, 2    , 

(b) using (A.3) it holds  
22 12 2 2 R

R R R
2, 2 1 2 1, e

  
  

          
                               

 

2 2
2R R

R
1 e e

   
         

     
and 

(c) 
 22 2 2 2

2 2 2
L L

4 4

4 4 4 4 4

      
          . 

 

Therefore,  

           2 2 2

R R R

R x R x dx x x dx 2R x x dx R 1 R
  

           f f f F  

 2
2 1m 2 R m R 1 R        F  

 
2 2 2 2

R R R R

2 2 2 2
L L

R 2
e R e 2R 1 Re R e

       
                    

                        
 

 
2

R

2 2
L L L

R 2
e 4R 1

 
  

              
.  
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Proof 2.2: 

      L

A s
C R h 2 D 2 D S R R R ,

h h

 
       

 
  

whose first derivative is  

        L

dC R d A s
C R h 2 D 2 D S R R R

dR dR h h

  
              

 

   dQ R dQ R
h h h 1

dR dR

 
    

 
. 

But we have, 

     
1

2dQ R d A s
2 D 2 D S R R

dR dR h h
       

 

     11 s d d
Q R 2 D S R R

2 h dR dR
        

 

      1 s
2 D 1 R 2S R

2Q R h
          

F  

   
 

s
D 1 R S R

h
Q R

    
 

F
. 

Thus,  

     dC R dQ R
C R h 1

dR dR

 
     

 
 

 

   
 

s
D 1 R S R

hh 1
Q R

      
    

 
 

F
 

 hV R ,    

where 

 
   
 

s
D 1 R S R

hV R 1
Q R

    
 

F
. 
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The second derivative of  C R  is  

     
2

2

d C R
C R hV R

dR
     

where 

       
 

s
D 1 R S RdV R d hV R 1

dR dR Q R

      
     

 
 

F
 

           
1

1dQ Rs d s
D 1 R S R Q R D 1 R S R

h dR dR h


                       

F F  

     
 

       
1

1dQ R dQ Rs s
D 1 R S R Q R D R 1 R

h dQ R dR h


                        

F f F  

   

 

   
 

   
 2

s s s
D 1 R S R D 1 R S R D R 1 R

h h h
Q R Q RQ R

                    
     

 
 

F F f F
 

   

 

   
 

2

3

s sD 1 R S R D R 1 R
h h

Q RQ R

               
F f F

 

 
         

2
2

3

1 s s
Q R D R 1 R D 1 R S R

h hQ R

                            
f F F  

 
 3

g R

Q R
  ,  

where 

           
2

2 s s
g R Q R D R 1 R D 1 R S R

h h
                      

f F F  

          2
2 dQ Rs

D R 1 R Q R Q R
h dR

                      
f F  

       
2

2dQ Rs
D R 1 R Q R

h dR

              
   

f F   

and  

      
 RQ

RShRF1Ds

dR

RdQ 
 .  
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To determine the sign of  g R , we take its derivative 

   dg R
g R

dR
  

 

         
2

2d s s
Q R D R 1 R D 1 R S R

dR h h

                           
f F F  

     
 

 
2

d Q R dQ Rs
D R 1 R

h dQ R dR

           
f F  

         
2

2 d s d s
Q R D R 1 R D 1 R S R

dR h dR h
                      

f F F
 

     
   
 

s
D 1 R S Rs h2Q R D R 1 R

h Q R

                   
 

F
f F  

             2 d Rs s s
Q R D R 2 D 1 R S R D R 1 R

h dR h h

                           

f
f F f F

       s s
2 D R 1 R D 1 R S R

h h
                     

f F F  

       s s
2 D R 1 R D 1 R S R

h h
                    

f F F  

     2 d Rs
Q R D R

h dR

 
   

 

f
f  

         2dg R d Rs
g R Q R D R

dR h dR

 
    

 

f
f .   

 

Proof 2.3: 

Validity of Assumption 2 

Using the formulae of Table 2.1, we prove below that Assumption 2 is true for the unimodal 

distributions Gamma  ,  , Weibull  ,   for 1  and Log-Normal  ,  for any values of 

λ and θ.  
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Gamma  βα, : Substituting    
 

R
1d R d R e

R
dR dR


  

 
      
  

f
f  

 
     

R R
2 1 1R e 1 R e 1 1

R
R

    

 

 
      

             
 

f  

into (2.12) we take  

   





















 1
1

R

1
D

h

s
RfRu . (A.4) 

Setting oR R  in (A.4),  

where 

o

s 1 1
D 1 0

h R

  
     

 

  o

s s 1
D 1 R D 1

h h

 
      

 

 
o

s
D 1

hR
s

D
h

  
 


 

 o m m

s D h
R R R

s D h


 

 
 

with  1R m  , we take  ou R 0 .  

Further, it holds 

(a)  u R 0
 
for oRR   and  

(b)  u R 0
 
for oRR  . 

 

Log-Normal  θλ, : With  

 
2 2

1 ln R 1 ln R

2 2

2

1 1 ln R 1
R e e

RR 2 R 2

                  
    

f  

     f R f R f Rln R 1 ln R
1

R R R

             
, 

we obtain 
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   



















 R
Rln

1
h

sD

R

Rf
Ru

2
.  (A.5) 

In (A.5) the function inside the brackets is strictly increasing on the interval  0,  with 

range   , ,  

2R 0

sD sD ln R
lim R

h h

      
 

2R

sD sD ln R
lim R

h h

       
. 

Hence, there is a single oR 0  for which  ou R 0 . Solving the equation 

0R
Rln

1
h

sD
o2

o 










  with respect to oR , we take 

o
o2

ln RsD
1 R 0

h

        

2 2
o o

sD sD sD
ln R R 0

h h h
         

2 2
o o

sD sD sD
ln R R

h h h
        

2
2

o
h

R
sD

oR e


 
   

2

2 o
h

R
sD

oR e e


   

sD

h
R

mo

2

o

eRR



  

with 
2

eR m
  and 

2

o

h
R 0

sD


 . Hence 

2

o
h

R
sDe 1



  from which it follows that mo RR  . 

Further, it is easily deduced that 
2

sD ln R
1 R

h

    
 is negative (positive) and  u R  is 

positive (negative) for oRR   ( oRR  ). 

 

Weibull  βα, : In this case we have  

   
R

1d d
R R R e

dR dR


 

    
 
     
 
 

f f  
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 
1R R

2 1 R
1 R e R e

     
             

          

     
1

1 R
R R

R

   
     

f f  

 
1

1 R
R

R

            
f  

and 

   










































1
R

R

1
D

h

s
RRu

1

f  . (A.6) 

In (A.6), for R 0 , the function within the brackets is strictly decreasing with range 

  , , 

1

R

s 1 s R
lim D D 1

h R h





              
 

1

R 0

s 1 s R
lim D D 1

h R h





              
. 

 Therefore, there exists a single oR 0  for which  ou R 0 . Given that 














1

m

1
R ,   

solving the equation 01
R

R

1
D

h

s
1

o

o





























 with respect to mR  we take 

1

o

o

Rs 1 s
D D 1 0

h R h


   

        

1

o

1 1 h
R 0

R s D
  


 

    
   

 

1h R1 1
1 0

R s D


  




 
    

  
 

1

1

R
h R

1
s D




 

 

 


 



  
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1

o 1
1

1

R

h R
1

s D



 
 

      
 
    

 

m
o 1

1

R
R

h R
1

s D

 
 

 
 
    

 

  














11
o

om Ds

Rh
1RR  

from where it is easily concluded that mo RR  . Further it holds that 

(a)  Ru  is positive for  oRR   and  

(b)  Ru  is negative for oRR  .   

 

Proof 2.4: 

Proof of Lemma 2.1 

(a) Given that       3RQRghRC   and       2RQRuRg  , where  RQ ,  Rg  and 

 Ru  are defined in (2.5a), (2.10) and (2.12) respectively, we find from (2.12) that for any 

0R   it holds   0Ru   and   0Rg  . Using also the limits 

  


Rlim
0R

f ,   0Rlim
R




f   (A.7) 

  L
R 0
lim S R


  ,   2 2
L L

R 0
lim R

    , (A.8) 

    0RlimRSlim
RR




, (A.9) 

we take   


Rglim
0R

 and   0Rglim
R




, 

           
2

2

R 0 R 0

s s
lim g R lim Q R D R 1 R D 1 R S R

h h 

                            
f F F  

           
2

R 0 R 0 R 0

s
lim 2 A h D 2 s h D S R R lim D R lim 1 R

h  

                   
f F  

   
2

R 0 R 0

s
D lim 1 R limS R

h  

         
F  
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   
2

2 2
L L L L

s s
2 A h D 2 s h D D 1 D

h h
                      

 

2

L

s
D

h
        

 

           
2

2

R R

s s
lim g R lim Q R D R 1 R D 1 R S R

h h 

                            
f F F  

           
2

R R R

s
lim 2 A h D 2 s h D S R R lim D R lim 1 R

h  

                   
f F  

   
2

R R

s
D lim 1 R lim S R

h  

         
F  

2s A
D 0 0 2 D 0 0

h h
      
 

. 

It is evident, therefore, that when R increases from zero to  ,  Rg  is strictly decreasing 

with range  0, . This means that for any 0R   the function  Rg  is positive and hence 

  0RC  . This completes the proof of part (a) of Lemma 2.1. 

 

(b) In part (a) of Lemma 2.1 we found that   0Rg   for any R 0 . This leads to 

      3
V R g R Q R 0      . Using also the limits given in (A.7), (A.8) and (A.9), we take 

   
 

L

R 0
R 0

s h D
lim V R 1

limQ R



 

 

and   1RVlim
R




,  

 
   
 

L

R 0 R 0
2 2

L L L

s s
D 1 R S R D

h hlim V R lim 1 1
Q R A s

2 D 2 D
h h

 

       
     

      

F
 

 
   
 R R

s
D 1 R S R 0hlim V R lim 1 1 1

Q R A
2 D

h

 

      
       

 
 

F
 

where 

      2 2
L L L

R 0
limQ R 2 A h D 2 s h D


     .  (A.10) 
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Then, setting   0RVlim
0R




, we take the equation 

L

2 2
L L L

s
D

h 1 0
A s

2 D 2 D
h h


  

   
 

2
2 2

L L L L

s A s
D 2 D 2 D

h h h
           

 

2
2
L

s A
D 2 D

h h
       

 

   2 2 2
Ls h D 2A h D 0    

with roots 

2 2
2
L2 2

1,2 2

2

A A s
2 4 4

h h hD
s

2
h

  
 

 

2
2
L2

2

2

A s A
2 2

h h s
s

2
h

  
 

 

2
2
L2

2

2

s A A
2

h s s

s
2

h

 
    

    

2
2

1,2 L2

h A A
D

s s s

     
  

 . 

From the two roots it is easily deduced that the first one with the plus sign is positive, 

2
2

1 L2

h A A
D 0

s s s

      
  

 and the second one with the minus sign is negative, 

2
2

2 L2

h A A
D 0

s s s

       
  

.  We conclude, therefore, that  RVlim
0R

 is positive when 

      2 2
LD h s A s A s    or equivalently when the condition (2.13) is true. In this 
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case,  RV  is strictly decreasing with positive limit when 0R   and negative limit when 

R .  Hence, there exists a single 0R *   for which   0RV *  .   

 

Proof 2.5: 

Proof of Lemma 2.2 

(a) Using Assumption 1 and the limits in (A.8), (A.9) and (A.10) we find 

      
2 2

LR 0 R 0
lim g R lim Q R s D h
 

     
 
and   0Rglim

R



,  

           
2

2

R 0 R 0

s s
lim g R lim Q R D R 1 R D 1 R S R

h h 

                            
f F F  

           
2

R 0 R 0 R 0

s
lim 2 A h D 2 s h D S R R lim D R lim 1 R

h  

                   
f F  

   
2

R 0 R 0

s
D lim 1 R limS R

h  

         
F  

   
2

2 2
L L L L

s s
2 A h D 2 s h D D 0 1 D

h h
                      

 

   
2

2 2
L L L L

s
2 A h D 2 s h D D

h
            

 

           
2

2

R R

s s
lim g R lim Q R D R 1 R D 1 R S R

h h 

                            
f F F  

           
2

R R R

s
lim 2 A h D 2 s h D S R R lim D R lim 1 R

h  

                   
f F  

   
2

R R

s
D lim 1 R lim S R

h  

         
F  

2s A
D 0 0 2 D 0 0

h h
      
 

. 

Further, from Assumption 2, we deduce that the first derivative       2RQRuRg   is 

(a) zero for R R ,  

(b) positive for R R  and  

(c) negative for R R .  
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Thus,  Rg  has a positive maximum at oR , and it is strictly increasing on  o0,R  and strictly 

decreasing on  oR , . Thus, to prove part (a) of Lemma 2.2, we need to show that 

 
R 0
lim g R 0


  in which case there will exist a single o1 RR   for which it holds   0Rg 1  , 

  0Rg   for 1RR   and   0Rg   for 1RR  .  But the inequality  
R 0
lim g R 0


  is true since 

from condition (2.13) and (A.10) it holds    L
R 0

s D h lim Q R


    .  

 

(b) In part (a) of Lemma 2.2 we found that   0Rglim
0R




,   0Rg 1  ,   0Rg   for 1RR   and 

  0Rg   for 1RR  . From these results it follows that       3

1 1 1V R g R Q R 0       

while 

(a)  V R 0 
 
for 1R R  and 

(b)  V R 0 
 
for 1R R .  

Additionally, using Assumption 1, the limits in (A.8), (A.9) and (A.10), and the inequality 

   L
R 0

s D h lim Q R


     which holds when condition (2.13) is true, we obtain 

   
 

L

R 0
R 0

s D h
lim V R 1 0

lim Q R


 
  

 

and   1RVlim
R




,  

 
   
 

L

R 0 R 0
2 2

L L L

s s
D 1 R S R D

h hlim V R lim 1 1
Q R A s

2 D 2 D
h h

 

       
     

      

F
 

 
   
 R R

s
D 1 R S R 0hlim V R lim 1 1 1

Q R A
2 D

h

 

      
       

 
 

F
.  

These findings indicate that the function V(R) attains its positive maximum at 1R R , while 

it is strictly increasing for 10 R R   (with positive limit when R 0 ) and strictly 

decreasing for 1R R   . Hence there is a single 1R R   for which  V R 0   with 

 V R 0  for 0 R R   and  V R 0
 
for R R    .   
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Proof 2.6: 

When it holds    
R 0 R 0
limg R 0 lim V R 0
 

    then the minimum of the cost function is 

obtained after solving the first order conditions. So, solving the inequality (2.13), 

   2 2 2
Ls h D 2A h D 0   , with respect to one of the cost parameters keeping the other 

two fixed we obtain the range values of s, A and h in order the minimum cost to occur at a 

positive R value: 

 

(A) threshold value for the shortage cost 

 
   
 R 0 R 0

s
D 1 R S R

hlim V R 0 lim 1 0
Q R 

      
     

 
 

F

 

L

2 2
L L L

s
D

h 1 0
A s

2 D 2 D
h h


  

   
 

2 2
L L L L

s A s
D 2 D 2 D

h h h
      

 

2
2 2

L L L L

s A s
D 2 D 2 D

h h h
             

2
2 2

L2

s A
D 2 D 0

h h
     

2 2 2 2
Ls D 2 A D h h        

2
2 2

L2

A h
s 2 h

D D
     

2
2
L2

A h
s 2 h

D D
   . 

 

Thus, the interval value for the shortage cost is 

 

2
2
L2

A h
2 h s

D D
     . 
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(B) threshold value for the ordering cost 

 
   
 R 0 R 0

s
D 1 R S R

hlim V R 0 lim 1 0
Q R 
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     

 
 

F

 

L

2 2
L L L

s
D

h 1 0
A s

2 D 2 D
h h


  

   
 

2 2
L L L L

s A s
D 2 D 2 D

h h h
      

 

2
2 2

L L L L

s A s
D 2 D 2 D

h h h
             

2
2 2

L2

s A
D 2 D

h h
    

2
2 2

L2

s A
D 2 D 0

h h
     

2
2 2

L

s
D 2 A D h 0

h
       

2
2 2

L

1 s
A D h

2D h

 
  

 
. 

Thus, the interval value for the ordering cost is 

2 2
2
L

s D
h

h0 A
2D

 
  . 

 

(C) threshold value for the holding cost 

 
   
 R 0 R 0

s
D 1 R S R

hlim V R 0 lim 1 0
Q R 

      
     

 
 
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L

2 2
L L L

s
D

h 1 0
A s

2 D 2 D
h h


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2
2 2

L L L L

s A s
D 2 D 2 D

h h h
             

2
2 2

L2

s A
D 2 D

h h
    

2
2 2 2 2 2

L2

s A
D h 2 D h h 0

h h
        

2 2 2 2
Ls D 2 A D h h 0         

2 2 2 2
Lh 2 A D h s D 0       . 

Solving the quadratic equation and using the quadratic formula 
2b b 4ac

x
2a

  
  

the two roots are: 

   2 2 2 2
L

1,2 2
L

2AD 2AD 4 s D
h

2

    
 


 

2 2 2
2 2 L

2 2

2
L

s D
2AD 4A D 1

A D

2

 
   

  


 

2 2 2
L

2 2

2
L

s D
AD AD 1

A D


  



. 

From the two roots it is easily deduced that the first one with the plus sign is positive, and the 

second one with the minus sign is negative. Hence, we take  

2 2 2
L

2 2

1 2
L

s D
AD AD 1

A Dh


  




. 

Thus, the interval value for the holding cost is 

2 2 2 2 2
L

2
L

AD A D s D
0 h

   
 


.   
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Chapter 3 

The (Q,R) inventory system with an approximate 

treatment for the cost function 

 

3.1 Introduction 

Due to the complexity of the exact cost function, approximations for the expected on-hand 

inventory level at any point in time have been suggested in the inventory literature, as 

mentioned before in chapter 2. Among them, the most common approximation is the Hadley 

& Whitin’s (H-W) expression. Therefore, in the current chapter, we consider the Hadley & 

Whitin’s (1963) cost function (hereafter “HWCF”). Rewriting the bivariate HWCF as a 

univariate function of R, we show that its convexity depends upon the sign of the first 

derivative of the lead-time demand probability density function. Then, representing the lead-

time demand by the class of unimodal distributions for which the probability density function 

vanishes at 0R   and when R , for the first time we derive the conditions which 

identify the following three cases: (a) the HWCF has a unique minimum at the optimal 

solution which is obtained through the H-W iterative procedure, (b) the minimum of HWCF 

is taken after comparing the cost at 0R   with the “local” minimum cost computed from the 

Q and R values which are obtained from the H-W iterative procedure, and (c) the transformed 

HWCF in the two-dimensional space is either an increasing or non-decreasing function of R 

in which case the unique minimum cost occurs at 0R  . Next, these three cases are 

integrated to a general algorithm, and its application is illustrated when the lead-time demand 

has the Normal and the Log-Normal distribution (e.g. Viswanathan et al., 2008; Walsh et al., 

2008). 

The added value of the general algorithm in the relevant inventory literature is illustrated 

by comparing the minimum of HWCF taken after following the algorithm with the 

corresponding minimum of the exact cost function. The latter one is obtained when the 

expression  stock safety2Q   in HWCF is replaced by the exact expression for the expected 

on-hand inventory at any point in time. Contrary to what is believed that HWCF should be 

used only when the resulting cycle service level from the optimal R is sufficiently large, the 
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results from the comparative study indicate that acceptable approximations using the HWCF 

can be taken even in the case where 0R  . Especially, for the Log-Normal distribution with 

relatively high coefficient of variation, we illustrate that accurate approximations can be 

observed even at large sizes of the fixed ordering cost where zero cycle service levels occur. 

Based on the aforementioned discussion and remarks the rest of the chapter is organized as 

follows. Section 3.2, contains a literature review for the HWCF. In Section 3.3, we provide 

the necessary theoretical background in order to address the value and contribution of the 

current study. In Section 3.4, we present the general algorithm, while its application for 

Normal and Log-Normal lead-time demands is described in Section 3.5. In Section 3.6, 

through a numerical experimentation, we investigate the managerial implications of changing 

the values of cost parameters on the optimal sizes of Q and R, as well as, on the minimum 

cost. In Section 3.7, we obtain the range of the cost parameters values in order the optimal 

reorder point to be equal to zero. Section 3.8 gives and discusses the results from the 

comparative study for the target inventory measures taken after minimizing the H-W and the 

exact cost functions. Finally, Section 3.9 concludes the chapter summarizing the most 

important findings. 

 

3.2 Relevant literature review 

Continuous review inventory systems have been studied extensively in inventory literature 

and many works have been published optimizing their operation (e.g. Silver et al., 1998; Dohi 

et al., 1999; Betts & Johnston, 2005; Cobb et al., 2013). A number of these works have 

focused on a special class of continuous review  R,Q  models with fixed lead-time and 

backorders where the aim is the determination of the order quantity, Q, and the reorder point, 

R, through the minimization of a cost function proposed by Hadley & Whitin (1963). This 

cost function results from the sum of the annual expected costs of ordering, inventory 

carrying and shortage. For evaluating the annual expected inventory carrying cost, the 

authors, by assuming that the expected size of backorders per inventory cycle is negligible, 

approximated the expected on-hand inventory at any point in time with the expression 

 stock safety2Q  , while for the calculation of the annual expected shortage cost they used 

the cost per unit backordered. Setting the partial derivatives of HWCF with respect to Q and 

R equal to zero, the authors developed an iterative procedure to determine an optimal solution 

in terms of Q and R values which ensure minimum cost, claiming also that any time the cost 

per unit backordered is relatively high this solution will be unique.  
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In the years since Hadley & Whitin presented their seminal work, a number of authors has 

questioned the convexity of HWCF. Recognizing that the convexity depends upon the 

mathematical behavior of the related function concerning the expected backorders, Veinott 

(1964) stated that the latter function in Q and R jointly is convex only under restrictive 

conditions such as when the probability density of lead-time demand distribution is non-

increasing given that demand is positive. A few years later, Brooks & Lu (1969) proved that 

the expected backorders function, although convex in Q given R and convex in R given Q, is 

not in general convex in both Q and R. Especially, for Normal lead-time demand, the authors 

showed that convexity exists only when the cycle service level is above 0.50. So, the research 

had already started to shift on developing general conditions which ensure the existence of a 

unique minimum for HWCF.  

When the lead-time demand is Normally distributed, Minh (1975) gave the condition of a 

unique optimal solution which can be obtained solving iteratively the two equations derived 

from the first-order conditions for minimizing HWCF. Unfortunately, however, it can be 

verified numerically that even when this condition holds, there are cases where the application 

of the H-W iterative scheme for solving the two equations breaks down and no solution is 

available. At the same time, such a condition was also given by Gross & Ince (1975) when the 

lead-time demand is Poisson. The authors illustrated numerically that when this condition is 

violated there are two alternative situations. In the first, HWCF has a local minimum and a 

local maximum, and the application of H-W iterative procedure always converges to the local 

minimum. In the second situation, they found that the application of H-W iterative scheme 

breaks down and proposed a zero reorder point as optimal, without giving any further 

justification. Besides, the lack of a proper mathematical framework in their analysis did not 

allow the authors to derive the corresponding condition(s) for distinguishing the two 

aforementioned situations.  

Many years later, Das (1988) was the first who rewrote the bivariate HWCF as a univariate 

function of R. Then deriving the necessary conditions for the existence of an optimal solution 

in terms of R only, the author suggested an approach for determining the optimal R, stating 

also the importance of probability density function of the lead-time demand in the process of 

finding the minimum of HWCF. Especially, the author gave the condition when no solution 

exists at the process of solving the equations resulted from the first-order conditions for 

minimizing either the bivariate or the univariate cost functions, emphasizing the fact that this 

situation occurs when the fixed ordering cost is relatively high. Finally, the author stated that 

when an optimal solution exists, the local minimum is also the global minimum for the case 
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of unimodal or J-shaped lead-time demand distributions. However, in his analysis, Das 

allowed R to take any value on the real numbers line, and today it is known (e.g. Lau et al., 

2002b) that when R takes on negative values a new modified expression should be applied for 

the expected backorders function. Unfortunately, Das used HWCF without taking into 

account this correction. 

Apart from the aforementioned works, the convexity problem of the HWCF has been also 

investigated under different shortage cost models for calculating the annual expected shortage 

cost. Particularly, using a fixed cost per stock-out occasion or a fractional charge per unit 

short per unit time, works which have investigated the convexity of the cost function are those 

ones of Das (1983b), Silver et al. (1998), Lau et al. (2002a) and Chung et al. (2009). 

However, at this point it is worthwhile to mention that the examination of the convexity 

problem in all the aforementioned papers takes place under the assumption that the 

parameters of lead-time demand distribution are known. For cases of unknown demand 

parameters, there are works which have suggested methods to estimate these parameters 

aiming mainly to study the behavior of cycle service level (e.g. Syntetos & Boylan, 2008). 

 

3.3 Theoretical Background 

For the continuous review (Q,R) inventory system with fixed order quantity-reorder point 

and the demand to be backordered when the system is out of stock, we provide below the 

required assumptions held when stating the H-W cost function 

   HW L

A D Q s D
C Q, R h R S R

Q 2 Q

       
 

, (3.1) 

where, X is a continuous non-negative random variable representing the demand in the lead-

time with mean L  and variance 2
L , and 

      



R

R1RdxxxRS Ff . (3.2) 

Assumptions 

(a) Lead-time demand distribution has the same mean and the same standard deviation at 

any inventory cycle. 

(b)  The reorder point is nonnegative  0R   and kept constant at any inventory cycle. 

(c)  Lead-time is fixed and remains the same at any inventory cycle. 
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(d)  When the order quantity is received, the inventory level is always raised above the 

reorder point1. 
 

As Hadley & Whitin (1963, pp. 166) stated, the condition 0R   is of crucial importance for 

deriving (3.2). In the opposite case where R  takes values on   , , Lau et al. (2002b) 

showed that (3.1) holds only when  RS  is replaced by the expression    RQSRS  .  

Taking now the first-order conditions 

 HW
2 2

C A D h s D
S R 0

Q Q 2 Q

  
     

  
and  HWC s D

h 1 R 0
R Q

 
     

F  

which minimize (3.1), the optimal *Q , *R  are determined by solving the pair of equations 

 



  RS

s

A
D

h

s
2Q  (3.3) 












 

Ds

Qh
1R 1F  (3.4) 

where  x1F   is the inverse cumulative distribution function evaluated at x. 

To obtain the optimal  ** R,Q  pair, Hadley & Whitin (1963, pp. 170) introduced a 

numerical iterative procedure which starts by substituting Q  in (3.4) with the Wilson 

Economic Order Quantity, hDA2QW  , taking in that way the first value of R , say 

 1R . Then  1R  is used in (3.3) to take the second value of Q , say  2Q , which in turn is used 

in (3.4) to take the second value  2R . This procedure is repeated until the differences in Q 

and R values between two successive iterations satisfy some pre-specified accuracy. The 

issue, however, is if the resulting optimal values constitute a global or a local minimum, and 

in the second case if this local minimum is unique or not. Το prove the existence of a single 

solution, Hadley & Whitin gave a graph of equations (3.3) and (3.4) in the Q-R Cartesian 

Coordinate system, and this graph is reproduced in Figure 3.1. The staircase line with the 

arrows illustrates that starting with WQ , the iterative procedure converges to the intersection 

of the two curves which represents the optimal solution. The authors, however, claimed that 

such a graph does not always hold. 

 

                                                 
1This assumption implies that at each inventory cycle the lead-time demand never exceeds the order quantity, ensuring that     
there is never more than one order outstanding at any point in time. 
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Apart from the case of Figure 3.1, Gross & Ince (1975) concluded under Poisson demand 

and performing an extensive numerical experimentation that two more cases can be met [see 

Figures (3.2) and (3.3)] when the following condition does not hold 

 

L

s D s A
2 D

h h s

    
 

. (3.5) 

 

In the case of Figure (3.2) the authors stated that point A constitutes a local minimum and 

point B a local maximum, thus the optimal  ** R,Q  pair is obtained by comparing the cost at 

point A with the cost at 0R *  . For the case of Figure 3.3, they suggested without any further 

explanation that the minimum cost is obtained setting 0R *  . 

 

 

 

 

Figure 3.1 Graphical representation of the Hadley-Whitin iterative procedure. 
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Figure 3.2 The Hadley-Whitin iterative procedure with a local minimum and a local 

maximum. 

 
 
 
 
 

 

 

Figure 3.3 Graphical representation of the “Degeneracy Problem”. 
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The following remarks to the discussion above establish the contribution of the current 

research. Specifically, our first remark concerns the type of curve of equation (3.3) in Figure 

3.1. The shape of the curve holds only if  

    0R
Q

R1

h

Ds

Qh

Ds

dR

Qd
2

2

2





















 



 f
F

. 

Proof 3.1: See in the Appendix at the end of chapter 3. 

 

In the opposite case we would observe an S-type of curve for (3.3). In such an event, the two 

curves might have such locations that three points of intersection would occur instead of one. 

Our second remark refers to the distinction between Figures (3.2) and (3.3). To the extent of 

our knowledge no valid condition exists which distinguishes the two cases. The reason is that 

Gross & Ince (1975) resulted in the two figures after conducting numerical experimentation 

and not following some formal mathematical approach which would establish such a 

condition. Furthermore, under Normal lead-time demand, Minh (1975) tried to give a 

condition for the case of Figure 3.3, but as we shall demonstrate in section 3.4, Figure 3.3 can 

be met even if Minh’s condition is violated. Also, without specifying the type of lead-time 

demand distribution, Das (1988) offered a general condition for distinguishing the case of 

Figure 3.3 from the cases of Figures 3.1 and 3.2. However, with Normal or Log-Normal lead-

time demand, it can be verified numerically that again Figure 3.3 can be met even if Das’ 

general condition does not hold. The reason is that, although in his analysis the author 

allowed R to take any value on   , , unfortunately he used (3.1) without having 

replaced  RS  by    RQSRS  . 

Our last remark refers to the degeneracy problem, as this was named by Lau & Lau (2002). 

This problem appears when at some iteration in the implementation of H-W iterative 

procedure the cycle service level expressed by  RF  becomes negative. If this happens the 

iterative procedure breaks down. This problem is perfectly illustrated through Figure 3.3. 

Following the staircase line with the arrows, in the third iteration the resulting value  3Q  is 

greater than the quantity  Dhs . This means that in (3.4) the expression within parentheses is 

negative and this in turn leads to a negative  RF . This anomaly places particular stress on 

the need to have the required condition for distinguishing the case of Figure 3.3 from the 

cases of Figures 3.1 and 3.2. If such a condition was available and the model parameters 

values satisfied this condition then the application of H-W iterative procedure would not be 
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allowed. But at the same time, for the case of Figure 3.3 we need a formal justification why 

0R *   is generally an optimal solution as Gross & Ince (1975) suggested for the case of 

Poisson demand. 

Taking into account the remarks above, in the current work we follow a completely 

different approach for determining the minimum of (3.1). Instead of starting with Figures 3.1, 

3.2, 3.3, which describe the two equations obtained from the first-order conditions minimizing 

(3.1), our analysis is based on graphs in the two-dimensional space of a univariate cost 

function of the reorder point, R. Such a univariate function is obtained when the order 

quantity, Q , in (3.1) is replaced by the expression on the right-hand side of (3.3). The new 

graphs form the basis of an algebraic approach which mathematically establishes conditions 

for the cases of Figures 3.1, 3.2, 3.3 that should be examined at the process of finding the 

minimum of the H-W cost function. In the analysis which follows in the next section we show 

that the monotony of this univariate cost function depends on the sign of the first derivative 

dR)R(df . This implies that general procedures for minimizing (3.1) can be developed for 

those families of distributions for the lead-time demand for which the shape of )R(f  displays 

the same monotony. 

Between different types of lead-time demand distribution, in the current work we have 

chosen the class of unimodal distributions for which the probability density function vanishes 

when 0R   and R . The Normal distribution as well as distributions heavily skewed to 

the right (like the Log-Normal, Gamma, Weibull etc) are included in this class, and the 

justification for this choice is given in Section 3.4. For this class of distributions, in the next 

section we show that when condition (3.5) holds, the H-W cost function defined in (3.1), 

although non-convex, has a single minimum. Additionally, we give the mathematical 

conditions for distinguishing the cases of Figures 3.2 and 3.3. Particularly, for the case of 

Figure 3.2, we prove that the local maximum of the univariate cost function is attained at a 

positive value of R which is located to the left of the corresponding R value for which the 

local minimum appears. This implies that the cost at the lowest permissible value of the 

reorder point, namely at 0R  , appears as a second local minimum, and so the minimum of 

(3.1) is obtained by comparing the two local minima. On the other hand, for the case of Figure 

3.3 we show that the univariate cost function is either strictly increasing or non-decreasing for 

any R 0  justifying algebraically that the minimum cost is obtained directly setting 0R  .   
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3.4 Optimal solutions for unimodal lead-time demand distribution 

The second-order derivatives of the H-W cost function (HWCF) defined in (3.1) with 

respect to Q and R are 

 
2

HW
2 3

C 2 s D A
S R 0

Q Q s

         
,  

2
HW
2

C s D
R 0

R Q

 
  


f ,  

2
HW

2

C s D
1 R

Q R Q

 
    

F . 

Thus, the Hessian determinant is written in the form    2 2 4
1H s D Q R g , where 

        2

1

A
R 2 S R R 1 R .

s
        

g f F  (3.6) 

It is concluded, therefore, that the sign of  1 Rg , and by extension the sign of the Hessian 

determinant, is formed independently of the size of the order quantity, Q. This implies that the 

monotony of (3.1) could be examined in a clear and comprehensible manner (compared to 

Figures 3.1, 3.2, 3.3) if (3.1) was transformed to a univariate function of the reorder point R. 

This is succeeded by replacing Q in (3.1) with the right-hand side of (3.3), taking in that way 

the transformed univariate cost function 
 

   1 LC R h Q R   , (3.7) 

 
where Q is given in (3.3). 

Proof 3.2: See in the Appendix at the end of the chapter. 

To examine the convexity of (3.7), we consider its first and second derivatives which are 

given in the next two Lemmas: 
 

Lemma 3.1:    1
1 1

dC
C R h V R

dR
     , where 

   1
1

s
V R DQ 1 R 1

h
    F . (3.8) 

Proof 3.3: See in the Appendix at the end of the chapter. 

 

Lemma 3.2:    
2

1
1 1

d C
C R h V R

dR
     , where 

   
2

3
1 1

s
V R D Q R

h
     

 
g  , (3.9) 

and  1 Rg
 
is defined in (3.6). 

Proof 3.4: See in the Appendix at the end of the chapter. 
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Additionally, the first derivative of  1 Rg  is 

     
1

d RA
R 2 S R

s dR
    
 

f
g ,  (3.10) 

as             R1R2R1
dR

d

dR

RdS
R2 2 FfFf  . 

From Lemmas 3.1 and 3.2, it is evident that the mathematical properties of  1 Rg  

determine whether (3.7) is convex or not. Particularly, the range of  1 Rg  determines not 

only the sign of  1V R  and by extension the sign of  RC1  but also through  1V R  the 

monotony of  1V R  which shows how many times  RC1  changes sign. But from (3.10) it is 

also realized that the monotony of  1 Rg , as well as its range, depend upon the sign of 

 1 Rg  which, in turn, is determined by the mathematical behavior of the first derivative of 

the lead-time demand probability density function   dRRdf . So, to obtain general results for 

the convexity of (3.7), between different types of lead-time demand distribution, we have 

chosen the class of unimodal distributions for which the probability density function vanishes 

at 0R   and when R , and thus   dRRdf  changes sign only once. For this class of 

unimodal distributions, Lemmas 3.3 and 3.4 give the range of  1 Rg  and  1V R  

respectively. 

 

Lemma 3.3:  1 Rg  has range the interval  0 , 1  and a unique maximum attained at 

mRR  , where mR  is the mode of the lead-time demand distribution. 

 
Proof 3.5: See in the Appendix at the end of the chapter. 

 

From Lemma 3.3 it is deduced that there is only one value, say oR , for which  1 oR 0g  

and  1 R 0g  for any R  less than oR . This, in turn, implies that for some interval of R 

values both the Hessian determinant,    2 2 4
1H s D Q R g , and the second derivative, 

 RC1 , take on negative values. This proves that when the lead-time demand has the specific 

class of unimodal distributions the cost functions  HWC Q,R  defined in (3.1) or  RC1  

defined in (3.7) are not convex. 
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Lemma 3.4:  1V R  has range the interval   1V 0  , 1  and a unique maximum attained at 

oRR  , where 

 1

L

s
D

hV 0 1
A s

2 D 2 D
h h

 
 

. (3.11) 

and oR  satisfies the equation  1 oR 0g . 

 
Proof 3.6: See in the Appendix at the end of the chapter. 

 

From the results of the four lemmas stated above, we conclude that to determine the 

minimum of the transformed univariate function,  RC1 , and by extension the optimal values 

*Q  and *R  minimizing the bivariate function,  HWC Q,R , three cases should be examined. 

The condition in order each case to hold, as well as, the values of R  where the minimum of 

 RC1  is attained are given in Proposition 3.1.  

 

Proposition 3.1: Three cases should be examined to determine the minimum of the cost 

function  1C R  defined in (3.7): 

(a) If  1V 0 0  then  1C R
 
has a unique minimum at a value 1R  satisfying the equation 

 1 1V R 0  with o 10 R R    , 

(b) If  1V 0 0  and  1 oV R 0  then the minimum of  1C R  is the smallest between  0C1
 

and  31 RC , where 3R  is the largest of the two roots 2R , 3R  of the equation  1V R 0  

with 2 o 30 R R R      , 

(c) If  1V 0 0  and  1 oV R 0
 
then  1C R

 
has its unique minimum at R 0 . 

 
 
Proof 3.7: See in the Appendix at the end of the chapter. 

 

The three cases of Proposition 3.1 are illustrated respectively in Figures 3.4, 3.5, and 3.6. 

The correspondence between these three figures and the set of Figures 3.1, 3.2, 3.3 of section 

3.2 is easily verified. Specifically, 1R  in Figure 3.4 is *R  of Figure 3.1, minR  and maxR  in 

Figure 3.2 are respectively 2R  and 3R  of Figure 3.5, and Figure 3.6 illustrates clearly, 
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compared to Figure 3.3, why the minimum cost is attained at the smallest permissible value of 

the reorder point which is 0R  . Besides, some algebraic manipulations transform condition 

 1V 0 0  into (3.5).  

Now, using the conditions stated in Proposition 3.1, the following general algorithm for the 

class of unimodal lead-time demand distributions under consideration has been developed to 

obtain the minimum of the H-W cost function  HWC Q,R : 

 
Step 1:  Specify values for parameters A , h , s , D , Lμ , and 2

Lσ . 

 
Step 2: Find  1V 0  from (3.11). If  1V 0 0  then go to Step 3, otherwise go to Step 

4.  
 
Step 3:  Find 1R  from (3.8) solving the equation  1 1V R 0 , set 1R R   and go to  

Step 7. 
 
Step 4:  Find oR  from (3.6) solving the equation  1 og R 0  and compute  1 oV R . 

 
Step 5: If  1 oV R 0  then find the two roots 2R , 3R  of equation  1V R 0  with  

3o2 RRR   and go to Step 6, otherwise go to Step 8. 

 
Step 6: If    1 3 1C R C 0

 
then set 3R R   and go to Step 7, otherwise, go to Step 8. 

 

Step 7: Compute  S R  from (3.2), the optimal order quantity 

 A s
Q 2 D 2 D S R

h h
      and the minimum total cost 

     HW 1 LC Q , R C R h Q R        , and go to Step 9. 

 
Step 8: Set the optimal reorder point R 0  , and compute the optimal order quantity 

L

A s
Q 2 D 2 D

h h
     and the minimum total cost 

   HW LC Q ,0 h Q   . 

 
Step 9:  End of algorithm. 
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Figure 3.4 Graphs of  1V R  and  1C R   

when  1V 0 0 .  

Figure 3.5A Graphs of  1V R ,  1C R
 
when 

 1V 0 0  and  1 oV R 0  with 

    1 1 3C 0 C R .  

  

  

Figure 3.5B Graphs of  1V R ,  1C R
 
when 

 1V 0 0  and  1 oV R 0  with 

    1 1 3C 0 C R . 

Figure 3.6 Graphs of  1V R  and  1C R  when 

 1V 0 0  and  1 oV R 0 . 

  

Institutional Repository - Library & Information Centre - University of Thessaly
02/06/2024 00:17:34 EEST - 18.219.251.217



102 
 

3.5 Applications of the algorithm 

In the current section, we illustrate the application of the general algorithm through some 

numerical examples when the lead-time demand is Normal or Log-Normal. Firstly, the choice 

of the two distributions has been made as the area under their probability density functions 

can be calculated through the standard Normal distribution and thus the key-functions of the 

general algorithm,  RS ,  1 Rg ,  1V R , and  RC1  can be expressed in terms of the 

standardized Normal random variable. Further, in the field of inventory control of finished 

goods, the Normal distribution adequately models the demand for fast-moving items (e.g. 

Burgin, 1975), provided that its coefficient of variation (CV) is relatively low, preferably 

equal or below 0.3 (e.g. Lau, 1997; Janssen et al., 2009; Kevork, 2010; Su & Pearn, 2011). 

Further, Log-Normal lead-time demand is positive for any size of CV and especially when 

CV is getting larger the demand distribution becomes heavily skewed to the right representing 

in that way moderate-moving items. 

 

3.5.1 Normal lead-time demand 

For Normal lead-time demand X  with mean L  and variance 2
L , define the standardized 

Normal variable  L Lz R   . Then, for the key-functions of the general algorithm, the 

following specifications hold: 
 

       NM LS R S z z z z          (e.g. Lau et al., 2002b), (3.12) 

          2

1 NM NM

zA
R z 2 S z z

s

           
g g , 

and  

       

 
1 NM

NM

s h D z
V R V z 1

A s
2 D 2 D S z

h h

 
  

 
, 

where  z  and  z  are respectively the probability density and the cumulative distribution 

function of the standard Normal evaluated at z . 

What follows are two examples of how the general algorithm is applied when Case 1 or 

Case 3 are met. 
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Case 1 

Step 1: A 70 , 6.0h  , s 3 , 300D  , L 100  , and L 20  . 

Step 2: From (3.11) we compute  1V 0 1.465985 0  . 

Step 3: Solving the equation   0zV 1NM   we take 1z 0.9010 ,  

and *
1 L 1 LR R z 118.0191      . 

Step 7:  *S R 2.0051 , *Q 275.7088 , and    * * *
HW 1C Q , R C R 176.2367  . 

Case 3 

Keeping the same values for h , s , D , Lμ , 2
Lσ  as in Step 1 of case 1 and increasing the fixed 

ordering cost from 70A   to A 2200 , we take: 

Step 2:  1V 0 0.05132 0   . 

Step 4: Solving the equation   0zoNM g  we take oz 2.6283  ,  

and  NM oV z 0.027315 0   . 

Step 8: 0R *  , *Q 1581.1388 , and    * * *
HW 1C Q ,R C R 888.6833  . 

Minh (1975) stated that if it holds  0
Ds

h





 then Case 3 is not met. This is not verified in 

our example as Case 3 appears while, unfortunately, this condition is true. 

 

3.5.2 Log-Normal lead-time demand 

When X  has the Log-Normal distribution it holds (e.g. Tadikamalla, 1979; Gallego et al., 

2007)  2,N~Xln   with 0 , 
2 2

L e   and  2 22 2
L e e 1    . Thus the parameters 

  and   are determined respectively from  2CV1ln   and 2
Lln 2    , where 

L LCV     is the coefficient of variation. The algorithm key functions specifications are 

 
       r

LN LS R S r r e r           (e.g. Silver, 1980), (3.13) 

          2

1 LN LN r

rA
R r 2 S r r

s e 

            
g g , 

and 

Institutional Repository - Library & Information Centre - University of Thessaly
02/06/2024 00:17:34 EEST - 18.219.251.217



104 
 

       

 
1 LN

LN

s h D r
V R V r 1

A s
2 D 2 D S r

h h

 
  

 
, 

where     Rlnr  stands for the standardized Normal variable. 

The following example illustrates the application of the general algorithm when the lead-

time demand is Log-Normal and Case 2 of the Proposition appears. 

 

Step 1: A 1951 , 6.0h  , s 3 , 300D  , L 100  , and L 20  . 

Step 2:  1V 0 0.0002221 0   . 

Step 4: Solving the equation   0roLN g  we take or 2.7962  , and  

 LN oV r 0.036891 0  . 

Step 5: The two roots of the equation   0rVLN   are 2r 28.7014   and 3r 1.6672  ,  

thus using ln1.04 0.19804    and 4.58556   we take 

2 2R r 0.3334      and 3 3R r 70.4835     . 

Step 6: Since    1 3 1C R 839.3290 C 0 840.2000    we set 3
* RR  . 

Step 7:  *S R 29.7738 , *Q 1428.3982 , and    * * *
HW 1C Q , R C R 839.3290  . 

 

On the contrary, if instead of A 1951  we set A 2107  and we followed the same steps as 

above, in steps 4 and 5 we would find or 2.8238  ,  LN oV r 0.000106 0  , 2R 54.8498 , 

3R 57.1749  and finally  1C 0 870.8706  which would be smaller than  

 1 3C R 871.4016 . In this case, instead of proceeding to step 7, we would go to step 8 and 

the optimal target inventory measures would be   

0R *  , *Q 1551.4509 , and    * *
HW 1C Q ,R C 0 870.8706  . 

For Case 3 Das (1988) derived the condition  
h4

Ds
R m


f . Using the parameter values of 

the above example, we find that the mode of Log-Normal is 
2

mR e 94.2866  . We see, 

therefore, that Das’ condition is true but unfortunately with the specific parameter values we 

are in Case 2 and not in Case 3. The reason why Das’ condition does not hold has been 

explained in Sections 3.1 and 3.2. 
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3.6 Relating the optimal solutions to cost parameter values 

For Log-Normal lead-time demand, we give in Tables 3.1 and 3.2 the optimal values Q  

and R   of the order quantity and the reorder point respectively, together with the cycle 

service level associated with R   and the minimum of the H-W cost function. For case 1, Q  

and R   are obtained from solving the first-order conditions. For case 2, Q  ensures the 

smallest between the cost at R 0  and the cost associated with the sizes of Q and R which 

are obtained after solving the first-order conditions. Finally, for case 3, the optimal order 

quantity and the minimum cost are computed for 0R *  . The same information as above is 

given in Tables 3.3 and 3.4, with the exception that the lead-time demand is Normal for 

which, cases 1, 2 and 3 have the same meaning as in the Log-Normal. In each Table, the 

computation of the target inventory measures was performed at different values of the cost 

parameters A, h and s, when each time we changed one of them and kept the other two fixed. 

The choice of the values for A, h, and s was made following the numerical examples given in 

the work of Zhao et al. (2012). 

For both forms of the lead-time demand distribution, we observe in Tables 3.1-3.4 that 

when the value of s reduces or the value of A increases, we move gradually from case 1 to 

case 3. Further, case 1 is met even when the cycle service levels are below 0.50. On the other 

hand, if the values of the cost parameter lead to case 2, then cost attained at 0R *   is 

eventually the global minimum when s takes on the relative lower values and A the relatively 

higher values. Besides, if case 2 occurs when we change A, we end up in small up to 

negligible differences between the cost at R 0  and the cost associated with the values of Q 

and R obtained from the first order conditions. 

Tables 3.1-3.4 also demonstrate the implications of changes of the cost parameters on the 

optimal values Q  and R  . When s declines, to attain the minimum cost from the solution of 

the first order conditions, the optimal inventory policy aims to larger order quantities and 

smaller reorder points. In this way, the size of backorders increases and this is justified from 

the reduction of the unit shortage cost.  Increasing Q  and reducing R   is also the optimal 

inventory policy when the fixed ordering cost rises. In this way the firm manages to reduce 

the number of orders in the year. Finally, as the holding cost increases, it is less costly for the 

firm to keep small amounts of inventories. In this case the optimal policy imposes the 

reduction of Q and the increase of R  . 
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Table 3.1 Optimal solutions for different values of ordering cost when the demand 
distribution is Log-Normal; Q

 is the optimal order quantity; R 
 is the optimal reorder point; 

 HWC Q , R   is the minimum cost associated with solving the first order conditions;  C 0  is 

the minimum cost at R 0 ; h=0.6, D=300 and μL=100. 
  s=5h=3 s=15h=9 

CV A Case 
Cycle 

Service 
Level 

 Q ,R    HWC Q ,R    C 0  Case 
Cycle 

Service 
Level 

 Q ,R    HWC Q ,R    C 0  

0.2 

30 

Case 1 

0.88 (186.93,123.19) 126.08 - 

Case 1 

0.96 (185.58,138.30) 134.33 - 
70 0.81 (278.90,117.03) 177.56 - 0.94 (277.20,133.07) 186.16 - 
300 0.62 (564.06,104.39) 341.07 - 0.88 (561.11,123.18) 350.57 - 
800 0.39 (913.88,92.82) 544.02 - 0.80 (908.68,115.69) 554.62 - 
1100 0.29 (1070.20,87.70) 634.74 - 0.76 (1063.44,113.05) 645.89 - 
1400 0.20 (1206.93,82.73) 713.79 - 0.73 (1198.17,110.96) 725.48 - 
1700 0.11 (1330.75,77.14) 784.73 - 0.71 (1319.09,109.22) 796.98 - 
1951 

Case 2 

0.05 (1428.40,70.48) 839.33 840.20 0.69 (1412.26,107.94) 852.12 - 
1955 0.05 (1429.94,70.34) 840.17 841.00 0.69 (1413.69,107.92) 852.97 - 
1960 0.05 (1431.88,70.15) 841.22 842.00 0.69 (1415.48,107.90) 854.03 - 
1970 0.04 (1435.75,69.77) 843.31 843.99 0.68 (1419.06,107.85) 856.15 - 
2107 0 (1551.45,0) 870.87 870.87 0.67 (1467.16,107.22) 884.63 -
2200 Case 3 0 (1581.14,0) - 888.68 0.67 (1498.93,106.80) 903.44 - 

0.5 

30 

Case 1 

0.85 (223.92,146.15) 162.04 - 

Case 1 

0.95 (225.80,194.37) 192.10 - 
70 0.79 (313.24,131.17) 206.64 - 0.93 (314.40,179.68) 236.45 - 
300 0.60 (595.47,101.19) 357.99 - 0.87 (594.63,151.55) 387.71 - 
800 0.37 (944.59,76.49) 552.65 - 0.79 (940.44,131.13) 582.94 - 
1100 0.27 (1101.15,66.57) 640.63 - 0.76 (1094.71,124.25) 671.38 - 
1400 0.17 (1238.51,57.45) 717.57 - 0.73 (1229.12,118.94) 748.83 - 
1700 0.09 (1363.66,47.60) 786.76 - 0.70 (1349.79,114.59) 818.63 - 
1951 

Case 2 

0.02 (1465.13,34.92) 840.03 840.20 0.68 (1442.80,111.46) 872.56 - 
1955 0.02 (1466.84,34.58) 840.85 841.00 0.68 (1444.23,111.42) 873.39 -
1960 0.02 (1469.00,34.12) 841.87 842.00 0.68 (1446.02,111.36) 874.43 - 
1970 0.02 (1473.39,33.12) 843.91 843.99 0.68 (1449.59,111.24) 876.50 - 
2107 

Case 3 
0 (1551.45,0) - 870.87 0.67 (1497.61,109.70) 904.39 - 

2200 0 (1581.14,0) - 888.68 0.66 (1529.34,108.70) 922.82 - 

1 

30 

Case 1 

0.79 (307.79,140.32) 208.87 - 

Case 1 

0.92 (342.99,232.75) 285.44 - 
70 0.74 (383.76,122.11) 243.52 - 0.91 (414.95,213.50) 317.07 - 
300 0.57 (646.38,81.74) 376.87 - 0.85 (671.09,168.11) 443.52 - 
800 0.34 (983.76,50.63) 560.63 - 0.78 (1003.83,133.34) 622.30 - 
1100 0.24 (1136.35,39.53) 645.53 - 0.74 (1154.25,121.90) 705.69 - 
1400 0.15 (1270.37,30.16) 720.32 - 0.71 (1285.83,113.26) 779.45 - 
1700 0.07 (1392.29,20.93) 787.93 - 0.69 (1404.27,106.33) 846.36 - 
1951 

Case 2 
0.01 (1491.83,8.49) 840.19 840.20 0.67 (1495.73,101.43) 898.29 - 

1955 0.00 (1493.82,7.84) 841.00 841.00 0.67 (1497.13,101.36) 899.10 - 
1960 0 (1503.33,0) 842.00 842.00 0.67 (1498.89,101.27) 900.10 - 
1970 

Case 3 
0 (1506.65,0) - 843.99 0.67 (1502.41,101.09) 902.10 - 

2107 0 (1551.45,0) - 870.87 0.66 (1549.68,98.70) 929.03 - 
2200 0 (1581.14,0) - 888.68 0.65 (1580.92,97.17) 946.85 - 

 
 
 
 
 

Institutional Repository - Library & Information Centre - University of Thessaly
02/06/2024 00:17:34 EEST - 18.219.251.217



107 
 

Table 3.2 Optimal solutions for different values of ordering cost when the demand 
distribution is Log-Normal; Q

 is the optimal order quantity; R 
 is the optimal reorder point; 

 HWC Q , R   is the minimum cost associated with solving the first order conditions;  C 0  is 

the minimum cost at R 0 ; h=0.1, D=300 and μL=100. 
  s=5h=0.5 s=15h=1.5 

CV A Case 
Cycle 

Service 
Level 

 Q ,R    HWC Q ,R    C 0  Case 
Cycle 

Service 
Level 

 Q ,R    HWC Q ,R    C 0  

0.2 

30 
Case 1 

0.71 (439.69,109.22) 44.89 - 

Case 1 

0.90 (437.32,126.80) 46.41 - 
70 0.56 (665.21,100.86) 66.61 - 0.85 (661.72,120.70) 68.24 - 
300 0.09 (1370.04,74.88) 134.49 - 0.70 (1356.98,108.69) 136.57 - 
800 

Case 3 

0 (2258.32,0) - 215.83 0.51 (2208.48,98.51) 220.70 - 
1100 0 (2626.79,0) - 252.68 0.42 (2587.82,94.45) 258.23 - 
1400 0 (2949.58,0) - 284.96 0.35 (2918.26,90.93) 290.92 - 
1700 0 (3240.37,0) - 314.04 0.29 (3215.02,87.65) 320.27 - 
1951 0 (3464.97,0) - 336.50 0.23 (3443.86,84.97) 342.88 - 
1955 0 (3468.43,0) - 336.84 0.23 (3447.39,84.93) 343.23 - 
1960 0 (3472.75,0) - 337.28 0.23 (3451.79,84.87) 343.67 - 
1970 0 (3481.38,0) - 338.14 0.23 (3460.58,84.76) 344.53 - 
2107 0 (3597.50,0) - 349.75 0.20 (3578.84,83.28) 356.21 -
2200 0 (3674.23,0) - 357.42 0.19 (3656.98,82.25) 363.92 - 

0.5 

30 
Case 1 

0.69 (471.92,112.36) 48.43 - 

Case 1 

0.90 (471.97,161.75) 53.37 - 
70 0.54 (696.22,93.33) 68.95 - 0.85 (694.58,144.67) 73.93 - 
300 0.06 (1403.80,43.60) 134.74 - 0.69 (1387.61,113.30) 140.09 - 
800 

Case 3 

0 (2258.32,0) - 215.83 0.50 (2238.25,89.72) 222.80 - 
1100 0 (2626.79,0) - 252.68 0.42 (2617.51,81.14) 259.87 - 
1400 0 (2949.58,0) - 284.96 0.34 (2948.00,74.07) 292.21 - 
1700 0 (3240.37,0) - 314.04 0.28 (3244.92,67.81) 321.27 - 
1951 0 (3464.97,0) - 336.50 0.23 (3473.98,62.90) 343.69 - 
1955 0 (3468.43,0) - 336.84 0.23 (3477.51,62.82) 344.03 -
1960 0 (3472.75,0) - 337.28 0.23 (3481.91,62.72) 344.46 - 
1970 0 (3481.38,0) - 338.14 0.22 (3490.71,62.53) 345.32 - 
2107 0 (3597.50,0) - 349.75 0.20 (3609.12,59.90) 356.90 - 
2200 0 (3674.23,0) - 357.42 0.18 (3687.39,58.10) 364.55 - 

1 

30 
Case 1 

0.65 (529.26,96.84) 52.61 - 

Case 1 

0.88 (556.16,185.31) 64.15 - 
70 0.50 (743.07,71.40) 71.45 - 0.83 (766.32,156.34) 82.27 - 
300 0.05 (1431.27,17.36) 134.86 - 0.68 (1441.45,104.30) 144.57 - 
800 

Case 3 

0 (2258.32,0) - 215.83 0.49 (2281.25,69.69) 225.09 - 
1100 0 (2626.79,0) - 252.68 0.41 (2656.98,58.45) 261.54 - 
1400 0 (2949.58,0) - 284.96 0.34 (2984.69,49.79) 293.45 - 
1700 0 (3240.37,0) - 314.04 0.27 (3279.24,42.59) 322.18 - 
1951 0 (3464.97,0) - 336.50 0.22 (3506.51,37.26) 344.38 - 
1955 0 (3468.43,0) - 336.84 0.22 (3510.01,37.18) 344.72 - 
1960 0 (3472.75,0) - 337.28 0.22 (3514.38,37.08) 345.15 - 
1970 0 (3481.38,0) - 338.14 0.22 (3523.11,36.87) 346.00 - 
2107 0 (3597.50,0) - 349.75 0.19 (3640.58,34.15) 357.47 - 
2200 0 (3674.23,0) - 357.42 0.17 (3718.21,32.34) 365.06 - 
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Table 3.3 Optimal solutions for different values of ordering cost when the demand 
distribution is Normal; Q

 is the optimal order quantity; R 
 is the optimal reorder point; 

 HWC Q , R   is the minimum cost associated with solving the first order conditions;  C 0  is 

the minimum cost at R 0 ; h=0.6, D=300 and μL=100. 
  s=5h=3 s=15h=9 

CV A Case 
Cycle 

Service 
Level 

 Q ,R    HWC Q ,R    C 0  Case 
Cycle 

Service 
Level 

 Q ,R    HWC Q ,R    C 0  

0.1 

30 

Case 1 

0.88 (178.18,111.81) 114.00 - 

Case 1 

0.96 (177.28,117.58) 116.91 - 
70 0.82 (270.06,109.15) 167.52 - 0.94 (268.91,115.57) 170.69 - 
200 0.70 (453.62,105.17) 275.28 - 0.90 (451.98,112.79) 278.86 - 
500 0.52 (714.92,100.59) 429.30 - 0.84 (712.37,110.01) 433.43 - 
1000 0.33 (1009.90,95.51) 603.24 - 0.78 (1005.78,107.60) 608.03 - 
1500 0.18 (1237.28,90.66) 736.76 - 0.73 (1230.91,106.02) 742.16 - 
1800 0.10 (1356.67,86.93) 806.16 - 0.70 (1348.00,105.26) 811.95 - 
1960 

Case 2 

0.06 (1417.25,84.03) 840.77 842.00 0.69 (1406.46,104.89) 846.81 - 
1980 0.05 (1424.76,83.57) 844.99 845.98 0.69 (1413.59,104.84) 851.06 - 
1990 0.05 (1428.51,83.32) 847.10 847.96 0.69 (1417.15,104.82) 853.18 - 
2000 0.05 (1432.26,83.06) 849.19 849.95 0.68 (1420.69,104.80) 855.29 - 
2100 0 (1549.19,0) 869.52 869.52 0.68 (1455.68,104.58) 876.15 -
2200 Case 3 0 (1581.14,0) - 888.68 0.67 (1489.84,104.37) 896.52 - 

0.2 

30 

Case 1 

0.88 (183.37,123.28) 123.99 - 

Case 1 

0.96 (181.48,134.94) 129.85 - 
70 0.82 (275.71,118.02) 176.24 - 0.94 (273.35,130.97) 182.59 - 
200 0.69 (460.19,110.10) 282.17 - 0.90 (456.81,125.46) 289.36 - 
500 0.52 (722.91,100.91) 434.29 - 0.84 (717.70,119.93) 442.58 - 
1000 0.32 (1020.07,90.64) 606.43 - 0.78 (1011.61,115.12) 616.04 - 
1500 0.17 (1250.36,80.63) 738.60 - 0.73 (1237.12,111.96) 749.45 - 
1800 0.08 (1372.86,72.52) 807.23 - 0.70 (1354.41,110.43) 818.90 - 
1960 

Case 2 

0.04 (1436.89,65.46) 841.41 842.00 0.69 (1412.96,109.69) 853.59 - 
1980 0.04 (1445.12,64.16) 845.57 845.98 0.68 (1420.11,109.60) 857.83 -
1990 0.03 (1449.29,63.45) 847.65 847.96 0.68 (1423.67,109.56) 859.94 - 
2000 0.03 (1453.52,62.67) 849.71 849.95 0.68 (1427.23,109.51) 862.04 - 
2100 

Case 3 
0 (1549.19,0) - 869.52 0.68 (1426.27,109.08) 882.81 - 

2200 0 (1581.14,0) - 888.68 0.67 (1496.49,108.66) 903.09 - 

0.3 

30 

Case 1 

0.87 (188.76,134.39) 133.89 - 

Case 1 

0.96 (185.80,152.08) 142.73 - 
70 0.81 (281.54,126.59) 184.88 - 0.94 (277.88,146.21) 194.45 - 
200 0.69 (466.92,114.77) 289.01 - 0.90 (461.72,138.01) 299.83 - 
500 0.51 (731.10,100.95) 439.23 - 0.84 (723.09,129.75) 451.70 - 
1000 0.31 (1030.55,85.38) 609.55 - 0.77 (1017.50,122.55) 624.03 - 
1500 0.16 (1264.09,69.83) 740.35 - 0.72 (1243.38,117.82) 756.72 - 
1800 0.07 (1390.62,56.37) 808.19 - 0.70 (1360.87,115.52) 825.84 - 
1960 

Case 2 
0.03 (1461.64,41.49) 841.88 842.00 0.68 (1419.52,114.41) 860.36 - 

1980 0.02 (1472.74,37.21) 845.97 845.98 0.68 (1426.69,114.28) 864.58 - 
1990 0 (1513.28,0) 847.97 847.96 0.68 (1430.25,114.21) 866.68 - 
2000 

Case 3 
0 (1516.58,0) - 849.95 0.68 (1433.81,114.15) 868.77 - 

2100 0 (1549.20,0) - 869.52 0.67 (1468.91,113.49) 889.44 - 
2200 0 (1581.14,0) - 888.68 0.67 (1503.19,112.86) 909.63 - 
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Table 3.4 Optimal solutions for different values of ordering cost when the demand 
distribution is Normal; Q

 is the optimal order quantity; R 
 is the optimal reorder point; 

 HWC Q , R   is the minimum cost associated with solving the first order conditions;  C 0  is 

the minimum cost at R 0 ; h=0.1, D=300 and μL=100. 
  s=5h=0.5 s=15h=1.5 

CV A Case 
Cycle 

Service 
Level 

 Q ,R    HWC Q ,R    C 0  Case 
Cycle 

Service 
Level 

 Q ,R    HWC Q ,R    C 0  

0.1 

30 
Case 1 

0.71 (430.56,105.62) 43.62 - 

Case 1 

0.90 (428.98,113.09) 44.21 - 
70 0.56 (655.55,101.59) 65.71 - 0.85 (653.23,110.57) 66.38 - 
200 0.26 (1106.27,93.64) 109.99 - 0.76 (1101.39,106.91) 110.83 - 
500 

Case 3 

0 (1816.59,0) - 171.66 0.61 (1739.08,102.89) 174.20 - 
1000 0 (2509.98,0) - 241.00 0.45 (2457.92,98.84) 245.68 - 
1500 0 (3049.59,0) - 294.96 0.33 (3009.81,95.63) 300.54 - 
1800 0 (3331.67,0) - 323.17 0.27 (3297.05,93.79) 329.08 - 
1960 0 (3472.75,0) - 337.28 0.24 (3440.54,92.79) 343.33 - 
1980 0 (3489.99,0) - 339.00 0.23 (3458.06,92.66) 345.07 - 
1990 0 (3498.57,0) - 339.86 0.23 (3466.79,92.60) 345.94 - 
2000 0 (3507.14,0) - 340.71 0.23 (3475.49,92.53) 346.80 - 
2100 0 (3591.66,0) - 349.17 0.21 (3561.41,91.89) 355.33 -
2200 0 (3674.23,0) - 357.42 0.19 (3645.33,91.22) 363.65 - 

0.2 

30 
Case 1 

0.71 (437.01,110.99) 44.80 - 

Case 1 

0.90 (433.77,126.05) 45.98 - 
70 0.56 (663.19,102.91) 66.61 - 0.85 (658.45,121.05) 67.95 - 
200 0.26 (1117.46,86.82) 110.43 - 0.75 (1107.38,113.74) 112.11 - 
500 

Case 3 

0 (1816.59,0) - 171.66 0.61 (1746.17,105.69) 175.19 - 
1000 0 (2509.98,0) - 241.00 0.45 (2466.42,97.58) 246.40 - 
1500 0 (3049.59,0) - 294.96 0.33 (3019.70,91.14) 301.08 - 
1800 0 (3331.67,0) - 323.17 0.26 (3307.88,87.43) 329.53 - 
1960 0 (3472.75,0) - 337.28 0.23 (3451.92,85.41) 343.73 - 
1980 0 (3489.99,0) - 339.00 0.23 (3469.51,85.16) 345.47 -
1990 0 (3498.57,0) - 339.86 0.23 (3478.28,85.03) 346.33 - 
2000 0 (3507.14,0) - 340.71 0.23 (3487.02,84.90) 347.19 - 
2100 0 (3591.66,0) - 349.17 0.21 (3573.31,83.59) 355.69 - 
2200 0 (3674.23,0) - 357.42 0.19 (3657.64,82.23) 363.99 - 

0.3 

30 
Case 1 

0.70 (443.63,116.10) 45.97 - 

Case 1 

0.90 (438.63,138.88) 47.75 - 
70 0.55 (671.02,103.97) 67.50 - 0.85 (663.73,131.42) 69.52 - 
200 0.25 (1129.03,79.51) 110.85 - 0.75 (1113.43,120.48) 113.39 - 
500 

Case 3 

0 (1816.59,0) - 171.66 0.61 (1753.30,108.41) 176.17 - 
1000 0 (2509.98,0) - 241.00 0.45 (2474.98,96.23) 247.12 - 
1500 0 (3049.59,0) - 294.96 0.33 (3029.69,86.53) 301.62 - 
1800 0 (3331.67,0) - 323.17 0.26 (3318.82,80.93) 329.98 - 
1960 0 (3472.75,0) - 337.28 0.23 (3463.43,77.87) 344.13 - 
1980 0 (3489.99,0) - 339.00 0.23 (3481.10,77.48) 345.86 - 
1990 0 (3498.57,0) - 339.86 0.22 (3489.90,77.28) 346.72 - 
2000 0 (3507.14,0) - 340.71 0.22 (3498.68,77.09) 347.58 - 
2100 0 (3591.66,0) - 349.17 0.20 (3585.37,75.10) 356.05 - 
2200 0 (3674.23,0) - 357.42 0.18 (3670.13,73.04) 364.32 - 
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Before closing the section 3.6, using Log-Normal and Normal distributed lead-time 

demands we present the 3D graphs for the three cases where it is observed that when the 

ordering cost increases then the unique minimum is attained for lower values of the reorder 

point and greater values of the order quantity. 

 

 

(a)  A 14 , 6.0h  , D 300 ,  

L 100  , L 20   and s 3  
 

 

(b)  A 1951 , 6.0h  , D 300 ,  

L 100  , L 20   and s 3  
 

 

  
  

(c)  A 2107 , 6.0h  , D 300 ,  

L 100  , L 20   and s 3  
 

 

(d)  A 2200 , 6.0h  , D 300 ,  

L 100  , L 20   and s 3  
 

 

 
Figure 3.7 Graph of the cost function CHW(Q,R) under Log-Normal lead-time demand. 
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(a)  A 70 , 6.0h  , D 300 ,  

L 100  , L 30   and s 3  
 

 

(b)  A 1960 , 6.0h  , D 300 ,  

L 100  , L 30   and s 3  
 

 

  
  

(c)  A 1990 , 6.0h  , D 300 ,  

L 100  , L 30   and s 3  
 

 

(d)  A 2200 , 6.0h  , D 300 ,  

L 100  , L 30   and s 3  
 

 

 
 

Figure 3.8 Graph of the cost function CHW(Q,R) under Normal lead-time demand. 
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3.7 Degeneracy problem and cost parameter values 

According to Lau & Lau (2002), the degeneracy problem happens when the minimization 

procedure of the cost function breaks-down and the unique minimum occurs at zero reorder 

point. Thus, in this section, for each distribution, we examine the range values of the three 

cost elements in order the unique minimum to be attained for R 0   or R 0  . In particular, 

in Table 3.5, we give the range values of s, A and h and we observe that these threshold 

values are not independent of the form of the lead-time demand distribution as in order to 

compute S(R) and Φ(R) the ro and zo values need to be determined.  

 

Table 3.5 Interval values of the cost parameters for a minimum cost at a positive reorder 
point. 

Log-Normal 

   
2

o

LN o

sD r
0 A s S r

2h

        
  

 

     

 

2 2

LN o LN o o

2

o

A
S r S r 2 D r

h h s
D r

 
               

    
  

 

 
 

22 2
o

LN o

s D r
0 h

2 A D 2 s D S r

    
     

 

Normal 

   
2

o
NM o

sD z
0 A s S z

2h

        
  

 

     

 

2 2

NM o NM o o

2

o

A
S z S z 2 D z

h h s
D z

 
               

    
  

 

 
 

22 2
o

NM o

s D z
0 h

2 A D 2 s D S z

    
     

 

Proof 3.10: See in the Appendix at the end of the chapter. 
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3.8 Managerial Implications 

The Hadley-Whitin (H-W) expression  HW LI Q 2 R      constitutes an important 

factor at the process of constructing the cost function defined in (3.1). This expression is used 

as an approximation of the exact expected on-hand inventory at any point in time which is 

given in (2.3) as 

 
ex HW

R
I I

2Q


  . 

It is further well known that this approximation is accurate only when the minimization of 

(3.1) leads to optimal R values which give sufficiently large probabilities (cycle service level, 

CSL) for not observing stock-out during the lead-time. In an effort of investigating how large 

these probabilities should be, Lau & Lau (2002) suggested for Normal lead-time demand the 

use of HWI  only when the minimization of (3.1) results in optimal R values leading to CSLs 

greater than 0.6. Additionally to that, from the numerical examples discussed by the authors it 

seems that Cases 2 and 3 of the general algorithm are met at very low CSLs. If that is in fact 

the situation then the value of the algorithm is reduced significantly as Cases 2 and 3 are met 

at CSLs where finally the H-W approximation is not valid and should not be used. 

Contrary to what is generally accepted about the validity of the H-W approximation, in the 

current section we are promoting the value of the general algorithm by illustrating for Normal 

and Log-Normal lead-time demands that (a) the determinants of the validity of the H-W 

approximation are the lead-time demand coefficient of variation (CV) and the fixed ordering 

cost, A, and (b) there are combinations of CV and A sizes for which acceptable 

approximations occur even when CSLs are zero. The last two remarks are verified by 

comparing the results for the optimal target inventory measures reported in Table 3.6 for the 

case of Normal and Table 3.7 for the Log-Normal. These results were obtained for different 

combinations of CV and A sizes, given the values for the rest of the (Q,R) inventory model 

parameters, h, s, D, L , by minimizing first the H-W approximate cost function given in (3.1) 

and then the corresponding exact cost function given in (2.2b)  

   RS
Q

Ds
Ih

Q

DA
R,QC exex





 . (3.14) 

For the minimization of  exC Q,R , specifications of S(R) and Θ(R) are required according 

to the shape of the lead-time demand distribution. For Normal and Log-Normal lead-time 

demands,  RS  is obtained from (3.12) and (3.13) respectively. Regarding the specifications 
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of  R , for the Normal distribution, we use the formula (26) of Lau et al. (2002b) while for 

the Log-Normal case, the computational expression of  R  is obtained using Table 2.1 of 

chapter 2. Finally, regarding the minimization process of  exC Q,R , for both distributions we 

used the algorithm suggested in chapter 2. Particularly, when the condition 

    2 2 2
Ls h D 2A h D 0    (3.15) 

holds, the application of any iterative procedure for solving the equations obtained from the 

first-order conditions minimizing (3.14) leads to a unique optimal pair  *
ex

*
ex R,Q  and a 

unique minimum exact cost  * *
ex ex exC Q , R . On the other hand, if (3.15) is not true then the 

minimum exact cost occurs at 0R *
ex   and    * 2 2

ex L L LQ 2 A h D 2 s h D     . 

With respect to the choice of values for the parameters h  and s , this was made according 

to the suggestions of Zhao et al. (2012). Particularly, the authors recommended that values for 

h  should be chosen from the interval  3.0 , 1.0  , and then given h , the parameter s  will take 

on values on the interval  hh 15 , 5 . On the other hand, no restrictions were imposed for the 

values of A . Further, for the Normal distribution, CV was restricted to sizes less than or equal 

to 0.3 for reasons which were explained in the previous section. Contrary to that, for the Log-

Normal distribution, the CV sizes were set at levels both less and greater than 0.3. 

Having determined for each combination of parameters values the minima of (3.1) and 

(3.14) next we computed the percentage cost penalty (Gross & Ince, 1975; Lau & Lau, 2002) 

defined as  

   
 

* * * *
ex ex ex ex

* *
ex ex ex

C Q , R C Q ,R
PCP 100

C Q ,R


  , 

which is presented in the last column of Tables 3.6 and 3.7. As it was expected, PCP takes on 

lower values for sufficiently small stock-out probabilities. Something, however, which is not 

expected, is the trend of the PCP values for CV 0.5  when Case 3 is met. Particularly, as A 

increases and at the same time CSL decreases (as a result of raising A), we find out that PCP 

initially is getting larger until Case 3 is met,  but, being at Case 3, PCP values will start to 

follow a decreasing trend if A continues to rise. This means that very small PCP indicating 

accurate approximations can be observed not only when CSL is very high but also when CSL 

is very low, or even when CSL is zero. According to the size of the coefficient of variation, 

we find out that PCP takes on increasingly higher sizes when CV gets larger providing that 

the values of the remaining parameters are kept fixed. 
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Table 3.6 Comparison of the exact  * *
ex ex exC Q , R  and Hadley-Whitin  HWC Q , R   cost 

functions under Normal lead-time demand with s=3, h=0.6, D=300 and μL=100. 
   Hadley & Whitin  Exact   

CV  A 
Cycle 

Service 
Level 

 Q ,R    HWC Q ,R    
Cycle 

Service 
Level 

 ex exQ ,R    ex ex exC Q ,R    exC Q ,R   PCP 

0.1 

Case 1 

20 0.90 (146.21,112.96) 95.50  0.90 (146.20,112.98) 95.51 95.51 0.00% 
70 0.82 (270.06,109.15) 167.52  0.82 (270.05,109.18) 167.53 167.53 0.00% 

200 0.70 (453.62,105.17) 275.28  0.70 (453.61,105.21) 275.29 275.29 0.00% 
500 0.52 (714.92,100.59) 429.30  0.53 (714.89,100.65) 429.32 429.32 0.00% 
1000 0.33 (1009.90,95.51) 603.24  0.33 (1099.82,95.63) 603.27 603.27 0.00% 
1500 0.18 (1237.28,90.66) 736.76  0.18 (1237.08,90.92) 736.80 736.80 0.00% 
1800 0.10 (1356.67,86.93) 806.16  0.10 (1356.26,87.44) 806.22 806.22 0.00% 

Case 2 

1960 0.06 (1417.25,84.03) 840.77  0.07 (1416.47,84.93) 840.84 840.85 0.00% 
1980 0.05 (1424.76,83.57) 844.99  0.06 (1423.89,84.55) 845.07 845.07 0.00% 
1990 0.05 (1428.51,83.32) 847.10 0.06 (1427.60,84.36) 847.17 847.18 0.00%
2000 0.05 (1432.26,83.06) 849.19  0.06 (1431.30,84.15) 849.27 849.27 0.00% 
2100 0 (1549.19,0) 869.52  0.03 (1468.26,81.68) 869.96 869.97 0.00% 

Case 3 2200 0 (1581.14,0) 888.68  0.01 (1506.48,77.09) 890.14 890.60 0.05% 

0.2 

Case 1 

20 0.90 (151.22,125.54) 106.06  0.90 (151.20,125.61) 106.09 106.09 0.00% 
70 0.82 (275.71,118.02) 176.24  0.82 (275.67,118.12) 176.28 176.28 0.00% 

200 0.69 (460.19,110.10) 282.17  0.70 (460.13,110.25) 282.23 282.23 0.00% 
500 0.52 (722.91,100.91) 434.29  0.52 (722.79,101.16) 434.37 434.37 0.00% 
1000 0.32 (1020.07,90.64) 606.43  0.33 (1019.76,91.14) 606.54 606.55 0.00% 
1500 0.17 (1250.36,80.63) 738.60  0.18 (1249.56,81.73) 738.77 738.78 0.00% 
1800 0.08 (1372.86,72.52) 807.23  0.10 (1371.02,74.76) 807.47 807.48 0.00% 

Case 2 

1960 0.04 (1436.89,65.46) 841.41  0.07 (1433.10,69.74) 841.71 841.74 0.00% 
1980 0.04 (1445.12,64.16) 845.57  0.06 (1440.82,68.98) 845.88 845.92 0.00% 
1990 0.03 (1449.29,63.45) 847.65  0.06 (1444.68,68.59) 847.96 848.00 0.00% 
2000 0.03 (1453.52,62.67) 849.71  0.06 (1448.54,68.18) 850.04 850.08 0.01% 

Case 3 
2100 0 (1549.19,0) 869.52  0.03 (1487.56,63.23) 870.47 871.53 0.12% 
2200 0 (1581.14,0) 888.68  0.01 (1529.93,54.02) 890.37 890.66 0.03% 

0.3 

Case 1 

20 0.90 (156.47,137.72) 116.52  0.90 (156.42,137.89) 116.59 116.59 0.00% 
70 0.81 (281.54,126.59) 184.88  0.81 (281.46,126.83) 184.97 184.97 0.00% 

200 0.69 (466.92,114.77) 289.01  0.69 (466.78,115.11) 289.14 289.14 0.00% 
500 0.51 (731.10,100.95) 439.23  0.52 (730.81,101.53) 439.40 439.40 0.00% 
1000 0.31 (1030.55,85.38) 609.55  0.33 (1029.83,86.53) 609.81 609.82 0.00% 
1500 0.16 (1264.09,69.83) 740.35  0.18 (1262.17,72.41) 740.75 740.77 0.00% 
1800 0.07 (1390.62,56.37) 808.19  0.10 (1385.94,61.96) 808.74 808.79 0.01% 

Case 2 
1960 0.03 (1461.64,41.49) 841.88  0.06 (1449.90,54.42) 842.59 842.77 0.02% 
1980 0.02 (1472.74,37.21) 845.97  0.06 (1457.92,53.28) 846.72 846.96 0.03% 
1990 0 (1513.28,0) 847.97  0.06 (1461.93,52.69) 848.78 849.07 0.04% 

Case 3 
2000 0 (1516.58,0) 849.95  0.06 (1465.96,52.08) 850.83 852.10 0.15% 
2100 0 (1549.20,0) 869.52  0.03 (1507.06,44.63) 871.01 871.63 0.07% 
2200 0 (1581.14,0) 888.69 0.01 (1553.64,30.74) 890.63 890.75 0.01%
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Table 3.7 Comparison of the exact  * *
ex ex exC Q , R  and Hadley-Whitin  HWC Q , R   cost 

functions under Log-Normal lead-time demand with s=3, h=0.6, D=300 and μL=100. 
   Hadley & Whitin  Exact   

CV  A 
Cycle 

Service 
Level 

 Q ,R    HWC Q ,R    
Cycle 

Service 
Level 

 ex exQ ,R    ex ex exC Q ,R    exC Q ,R   PCP 

0.2 

Case 1 

14 0.91 (131.74,128.22) 95.98  0.91 (131.72,128.34) 96.04 96.04 0.00% 
70 0.81 (278.90,117.03) 177.56  0.82 (278.87,117.18) 177.63 177.63 0.00% 
300 0.62 (564.06,104.39) 341.07  0.63 (563.99,104.61) 341.16 341.16 0.00% 
800 0.39 (913.88,92.82) 544.02  0.40 (913.71,93.19) 544.14 544.14 0.00% 
1100 0.29 (1070.20,87.70) 634.74  0.30 (1069.93,88.21) 634.88 634.89 0.00% 
1400 0.20 (1206.93,82.73) 713.79  0.21 (1206.47,83.46) 713.96 713.96 0.00% 
1700 0.11 (1330.75,77.14) 784.73  0.13 (1329.88,78.34) 784.93 784.94 0.00% 

Case 2 

1951 0.05 (1428.40,70.48) 839.33  0.07 (1426.38,72.92) 839.58 839.60 0.00% 
1955 0.05 (1429.94,70.34) 840.17  0.07 (1427.88,72.82) 840.42 840.44 0.00% 
1960 0.05 (1431.88,70.15) 841.22  0.07 (1429.76,72.69) 841.47 841.49 0.00% 
1970 0.04 (1435.75,69.77) 843.31  0.06 (1433.53,72.42) 843.57 843.58 0.00% 
2107 0 (1551.45,0) 870.87  0.03 (1485.03,67.86) 871.73 871.85 0.01% 

Case 3 2200 0 (1581.14,0) 888.68  0.01 (1521.61,62.22) 890.30 890.66 0.04% 

0.5 

Case 1 

14 0.89 (171.86,157.85) 137.83  0.89 (171.98,159.13) 138.67 138.68 0.01% 
70 0.79 (313.24,131.17) 206.64  0.80 (313.28,132.49) 207.46 207.47 0.01% 
300 0.60 (595.47,101.19) 357.99  0.61 (595.36,102.67) 358.82 358.83 0.00% 
800 0.37 (944.59,76.49) 552.65 0.39 (944.14,78.41) 553.53 553.55 0.00%
1100 0.27 (1101.15,66.57) 640.63  0.29 (1100.39,68.90) 641.57 641.59 0.00% 
1400 0.17 (1238.51,57.45) 717.57  0.20 (1237.19,60.44) 718.58 718.61 0.00% 
1700 0.09 (1363.66,47.60) 786.76  0.13 (1361.10,52.00) 787.86 787.91 0.01% 

Case 2 

1951 0.02 (1465.13,34.92) 840.03  0.07 (1458.30,43.84) 841.28 841.41 0.02% 
1955 0.02 (1466.84,34.58) 840.85  0.06 (1459.82,43.69) 842.10 842.24 0.02% 
1960 0.02 (1469.00,34.12) 841.87  0.06 (1461.72,43.50) 843.13 843.27 0.02% 
1970 0.02 (1473.39,33.12) 843.91  0.06 (1465.52,43.12) 845.18 845.33 0.02% 

Case 3 
2107 0 (1551.45,0) 870.87  0.03 (1517.68,36.89) 872.74 873.29 0.06% 
2200 0 (1581.14,0) 888.68  0.01 (1554.97,29.88) 890.90 891.06 0.02% 

1 

Case 1 

14 0.82 (268.31,152.06) 192.22  0.83 (273.82,156.41) 198.13 198.29 0.08% 
70 0.74 (383.76,122.11) 243.52  0.76 (387.92,126.57) 248.69 248.81 0.05% 
300 0.57 (646.38,81.74) 376.87  0.59 (649.35,85.85) 381.12 381.20 0.02% 
800 0.34 (983.76,50.63) 560.63 0.38 (985.87,54.63) 564.30 564.38 0.01%
1100 0.24 (1136.35,39.53) 645.53  0.28 (1138.03,43.72) 649.05 649.12 0.01% 
1400 0.15 (1270.37,30.16) 720.32  0.20 (1271.44,34.81) 723.75 723.83 0.01% 
1700 0.07 (1392.29,20.93) 787.93  0.12 (1392.14,26.74) 791.33 791.43 0.01% 

Case 2 
1951 0.01 (1491.83,8.49) 840.19  0.06 (1486.33,19.76) 843.65 843.89 0.03% 
1955 0.00 (1493.82,7.84) 841.00  0.06 (1487.79,19.64) 844.46 844.71 0.03% 
1960 0 (1503.33,0) 842.00  0.06 (1489.62,19.49) 845.47 845.75 0.03% 

Case 3 
1970 0 (1506.65,0) 843.99  0.06 (1493.28,19.18) 847.48 847.97 0.06% 
2107 0 (1551.45,0) 870.87  0.03 (1543.12,14.47) 874.55 874.74 0.02% 
2200 0 (1581.14,0) 888.68  0.01 (1577.73,9.67) 892.43 892.48 0.00% 
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Particularly, examining Tables 3.6 and 3.7, we see that for all the combinations of 

parameter values, the absolute value of PCP is considerably lower than 1%, even in cases 

where CSLs are zero, indicating in that way very accurate approximations when using the H-

W expression in the cost function. The same holds for the Log-Normal distribution provided 

that CV is less than or equal to 1. At this point it is important to mention that absolute values 

of PCP lower than 1% are observed for all the combinations of A, h and s which are 

suggested by Zhao et al. (2012). This demonstrates the usefulness, but also the added value of 

the proposed general algorithm in the relevant inventory literature when the lead-time demand 

is described by the unimodal distributions under consideration. It is proper to say here that the 

threshold value of 1% ensuring acceptable approximations when using the H-W approximate 

expression was established by Gross & Ince (1975). 

Except the percentage cost penalty (PCP) an alternative way to test the validity of the H-W 

expression is to compute the percentage approximation error (PAE) defined as  

   
 

* * * *
HW ex ex ex

* *
ex ex ex

C Q ,R C Q ,R
PAE 100

C Q , R


  , 

which is presented in Table 3.8 using the parameter values of Tables 3.6 and 3.7. We observe 

that PAE takes on increasingly higher sizes when CV gets larger and the values of the 

remaining parameters are kept fixed. However, the most important finding is that PAE 

initially is getting smaller as A increases and at the same time, as a result of raising A, CSL 

decreases. Of course, PAE starts to increase again from some CSL which can be either very 

low or zero. This means that very small PAE indicating accurate approximations can be 

observed even when large stock-out probabilities exist. Therefore, from the results of PCP 

and PAE we summarize that the Hadley & Whitin’s approximate expression is accurate even 

for sufficiently small cycle service levels. 
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Table 3.8 The values of the percentage approximation error (PAE) under Log-Normal and 

Normal lead-time demands with s=3, h=0.6, D=300 and μL=100. 

Normal  Log-Normal 
CV Case A PAE  CV Case A PAE 

0.1 

Case 1 

20 -0.01%  

0.2 

Case 1 

14 -0.06% 
70 -0.01%  70 -0.04% 
200 0.00%  300 -0.03% 
500 0.00%  800 -0.02% 

1000 0.00%  1100 -0.02% 
1500 -0.01%  1400 -0.02% 
1800 -0.01%  1700 -0.03% 

Case 2 

1960 -0.01%

Case 2 

1951 -0.03% 
1980 -0.01%  1955 -0.03% 
1990 -0.01%  1960 -0.03% 
2000 -0.01%  1970 -0.03% 
2100 -0.05%  2107 -0.10% 

Case 3 2200 -0.16%  Case 3 2200 -0.18% 

0.2 

Case 1 

20 -0.03%  

0.5 

Case 1 

14 -0.61% 
70 -0.02%  70 -0.39% 
200 -0.02%  300 -0.23% 
500 -0.02%  800 -0.16% 

1000 -0.02%  1100 -0.15% 
1500 -0.02%  1400 -0.14% 
1800 -0.03%  1700 -0.14% 

Case 2 

1960 -0.04%  

Case 2 

1951 -0.15% 
1980 -0.04%  1955 -0.15% 
1990 -0.04%  1960 -0.15% 
2000 -0.04%  1970 -0.15% 

Case 3 
2100 -0.11%  

Case 3 
2107 -0.21% 

2200 -0.19%  2200 -0.25% 

0.3 

Case 1 

20 -0.06%  

1 

Case 1 

14 -2.98% 
70 -0.05%  70 -2.08% 
200 -0.04%  300 -1.12% 
500 -0.04%  800 -0.65% 

1000 -0.04%  1100 -0.54% 
1500 -0.05%  1400 -0.47% 
1800 -0.07%  1700 -0.43% 

Case 2 
1960 -0.08%  

Case 2 
1951 -0.41% 

1980 -0.09%  1955 -0.41% 
1990 -0.10%  1960 -0.41% 

Case 3 
2000 -0.10%  

Case 3 
1970 -0.41% 

2100 -0.17% 2107 -0.42% 
2200 -0.22%  2200 -0.42% 

 

 
Closing this section, we note that if we set A at lower values than those of Tables 3.6, 3.7 

and 3.8 then we would take optimal Q smaller than the optimal R, something which would 

violate the assumption that at each inventory cycle the order quantity should exceed the lead-

time demand. Finally, by increasing CV, we observe that values of A being very close to the 

limits of Cases 1 and 2 or 2 and 3, are moving to the next Case with the lower CSLs. 
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3.9 Summary 

In the current chapter we considered the continuous review  R,Q  inventory model with 

backorders and fixed lead-time, when (a) the Hadley-Whitin (H-W) expression 

 stocksafety  2Q   is used to evaluate the expected annual inventory carrying cost, and (b) 

the cost per unit backordered is used to calculate the annual expected shortage cost. For this 

model we showed that, given a non-negative reorder point the convexity of the H-W cost 

function depends on the monotony of the first derivative of the lead-time probability density 

function. Next, selecting the class of unimodal lead-time demand distributions for which the 

probability density function vanishes at 0R   and when R , we derive general 

conditions for determining the optimal solution in terms of Q and R values ensuring the 

minimum of H-W cost function. These general conditions distinguish the following three 

mutually exclusive events: 

Case 1: There is a unique optimal solution which is obtained after solving the equations 

resulted from the first-order conditions minimizing the H-W cost function. 

Case 2: The minimum of the H-W cost function is attained after comparing the cost at 

0R   with the “local” minimum cost at the optimal solution obtained in case 1. 

Case 3: The minimum of the H-W cost function occurs at 0R  . 

The three cases with the corresponding conditions were integrated to a general algorithm 

for which its added value in the relevant literature is illustrated through some new 

comparative results when the lead-time demand is described by the Normal or Log-Normal 

distribution. In particular, these comparative results refer to the target inventory measures 

which are taken minimizing first the H-W cost function and then the corresponding exact cost 

function. The latter one is obtained by replacing in the cost function the H-W expression 

 stocksafety  2Q   with the exact expression of the expected on-hand inventory at any point 

in time. Contrary to what is believed about the validity of the H-W expression, we show that 

valid approximations using this expression occur even when the cycle service level (CSL) is 

zero, provided that the coefficient of variation is low, preferably below 1. 
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Appendix 

 

Proof 3.1: 

Taking the first derivative of (3.3) we obtain  

    
1 2

dQ 1 A s s
2 D 2 D S R 2 D 1 R

dR 2 h h h


           

F  

 1 s
D 1 R

Q h
    F . 

Then, 

    
2

1 1
2

d Q d s s d
Q D 1 R D Q 1 R

dR dR h h dR
                

F F  

   
1

1s dQ dQ d
D 1 R Q 1 R

h dQ dR dR


 

            
 

F F  

        2 1 1s s
D 1 R 1 Q Q D 1 R Q R

h h
                       

F F f  

   2

3

s 1 s 1
D D 1 R R

h Q h Q

 
       

 
F f  

   
2

1 Rs D s D
R

h Q h Q

            

F
f .  

 

Proof 3.2: 

           1 L

Q RA D s D
C R S R h h R

Q R Q R 2

 
       

       L

Q Rh A s
2 D 2 D S R h h R

2 Q R h h 2
           

 

 
 

   
2

L

h Q R Q R
h h R

2 Q R 2

      


 

     L

Q R Q R
h h h R

2 2
    , 

and finally 

    1 LC R h Q R R   .   
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Proof 3.3: 

Proof of Lemma 3.1 

Taking the first derivative of (3.7), we obtain  






  1

dR

dQ
hRC1 . But  

    R1
dR

RdS
F  (e.g. Hadley & Whitin, 1963, pp. 167),  

and    1dQ s
DQ 1 R

dR h
    F .

 
Thus  

           1

1 1

dQ R dQ R s
C R h h h 1 h D Q R 1 R 1 h V R

R R h

                         
F .   

 

Proof 3.4: 

Proof of Lemma 3.2 

From Lemma 3.1, we take  

   1 1C R h V R    ,   

where      
1

1
1

s dQ dQ d
V R D 1 R Q 1 R

h dQ dR dR


 

           
 

F F . 

By using, also, from Proof 3.1,  1dQ s
DQ 1 R

dR h
    F  , 

                2 1 1
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But          2

1

A
R 2 S R R 1 R

s
        

g f F  and hence 
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D Q R R
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        
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Proof 3.5: 

Proof of Lemma 3.3 

Consider the case of unimodal distributions with the mode at mRR   and  Rf  vanishing at 

the extreme values of R, namely,   00 f  and   0Rlim
R




f . For mRR   it holds  

  0dRRd f  and thus  1 R 0 g , while for mRR  we take   0dRRd f  and  1 R 0 g . 

When 0R  , the backorders size equals to the lead-time demand and thus it holds   LS 0   . 

On the contrary, when R  then the backorders size tends to zero and hence   0RSlim
R




. 

So, at the extreme values of R we take 

         2 2

1 L

A A
0 2 S 0 0 1 0 2 0 1 0 1

s s
                     

g f F , 

         2 2

1R R R

A A
lim R 2 lim S R lim R 1 2 0 1 1 0

s s  

              
g f F . 

Summarizing, therefore, for mRR0   the function  1 Rg  is strictly increasing taking 

values on the interval  1 m1 ,  R g , and for  RR m  the function  1 Rg  is strictly 

decreasing with values on   1 mR  , 0g . Hence the continuous function  1 Rg  has its unique 

maximum at the mode of the lead-time demand distribution mR .   

 

Proof 3.6: 

Proof of Lemma 3.4 

At the extreme values of R we have 

 o L

A s A s
Q 2 D 2 D S 0 2 D 2 D

h h h h
      , 

and 
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  W
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QD
h

A
2RSlimD

h

s
2D

h

A
2Qlim 


,  

where WQ  is the known Wilson economic order quantity. Further 

   1
1 o

L

s
Ds hV 0 DQ 1 0 1 1

h A s
2 D 2 D

h h

      
 

F , 

and 

     
1

1
R R

W

s
Ds hlim V R D lim Q 1 1 1 1 1 1

h Q



 
             F . 

Using also (3.10) and the result of Lemma 3.3 we conclude the following: 

(i) For oRR0   it holds  1 R 0g  which in turn gives  1V R 0   leading to a strictly 

increasing  1V R  with range   1 oV 0  , R , 

(ii) For  RR o , we have  1 R 0g  and hence  1V R 0   leading to a strictly 

decreasing  1V R  with range  1 , R o  , 

(iii)  1 oR 0g  and  1 oV R 0  .  

Hence, the continuous function  1V R  has its unique maximum at oRR  .   

 

Proof 3.7: 

Proof of Proposition 3.1 

CASE 1:  1V 0 0  

If  1V 0 0  then  1 oV R
 
is always positive and the graph of  1V R  will intersect the 

horizontal R-axis, apart from the extreme value zero, at a single point 1R  with 

 1o RR0 . For 1RR   it holds  1V R 0  while for 1RR   we shall have 

 1V R 0 . As it holds    1 1C R h V R    , we deduce that when R increases up to 1R  the 

cost function  RC1  is strictly decreasing taking values on the interval     111 RC,0C . If R 

continues to increase taking values greater than 1R  then  RC1  becomes strictly increasing 

with values on the interval   ,RC 11 .  Thus,  RC1  
has a unique local minimum attained 

at 1RR  . 
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CASE 2:  1V 0 0  and  1 oV R 0  

In this case the graph of  1V R  crosses the R-axis at two points, say 2R  and 3R . As the 

maximum of  1V R  is attained at oR , it also holds that  3o2 RRR0 . For any R 

smaller than 2R  or greater than 3R ,  1V R  is negative, while for 32 RRR  ,  1V R  is 

positive. Again from    1 1C R h V R     it follows that  RC1  (i)
 
is strictly increasing on the 

interval  20,R , (ii) becomes strictly decreasing on  2 3R ,R  and (iii) is again strictly 

increasing on  3R , . Therefore,  RC1  
has a local maximum at 2RR   and a local 

minimum at 3RR  . But as the extreme value 0R   is located left of 3R , the cost at 0R  , 

which is given by 

 1 L L

A s
C 0 h 2 D 2 D

h h

      
  

, 

appears to be a second local minimum.  Hence, a comparison between the two local minima 

 0C1  and  31 RC   should be carried out and the actual minimum cost will be smallest of the 

two. 

 

CASE 3:  1V 0 0  and  1 oV R 0  

If  1 oV R 0  then  RC1  
is strictly increasing function of R on the interval  ,0 . 

Additionally when  1 oV R 0 , the function  RC1  becomes non-decreasing. But in both 

occasions, as unique local minimum we should consider the value of the cost function  RC1  

at the smallest permissible R, namely, at 0R  .   

 

Proof 3.8: 

(1) Log-Normal 

Based on the three cases the degeneracy problem happens when  LN oV r 0 . So, solving the 

inequality with respect to one of the cost parameters keeping the other two fixed we obtain: 
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(A) threshold value for the shortage cost 
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 in order to have positive value for the shortage 

cost we take 
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(B) threshold value for the ordering cost 
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(C) threshold value for the holding cost 
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(2) Normal 

Based on the three cases the degeneracy problem happens when  NM oV z 0 . So, solving the 

inequality with respect to one of the cost parameters keeping the other two fixed we obtain: 

 

(A) threshold value for the shortage cost 
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 in order to have positive value for the 

shortage cost we take 
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(B) threshold value for the ordering cost 
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(C) threshold value for the holding cost 

 
 

 

o

NM o

NM o

s
D z

hV z 0 1 0
A s

2 D 2 D S z
h h

 
    

 
 

Institutional Repository - Library & Information Centre - University of Thessaly
02/06/2024 00:17:34 EEST - 18.219.251.217



128 
 

 

   
2

22
o NM o2

s A s
D z 2 D 2 D S z

h h h
         

 

   
2

22
o NM o

s
D z 2 A D 2 s D S z 0

h
              

 

 
 

22 2
o

NM o

s D z
h

2 A D 2 s D S z

   
     

.   

 

 

 

  

Institutional Repository - Library & Information Centre - University of Thessaly
02/06/2024 00:17:34 EEST - 18.219.251.217



129 
 

 

Chapter 4 

Estimation in (Q,R) inventory systems with uncorrelated 

demand 

 

4.1 Introduction 

In inventory management the knowledge of demand distribution is necessary in order to 

formulate optimal inventory policies. However, in real life conditions neither the process of 

generating demand data nor the values of demand parameters are known. To resolve this 

problem, a number of studies have been conducted, which are available in the relevant 

literature offering alternative estimation processes. However, a choice between them depends 

upon the type and length of historical data concerning the demand per period. 

The first classification of these estimation processes reflects the situation in which either 

demand is fully observed or demand occurring when the stock level drops to zero is lost and 

thus it cannot be observed. Specifically, for the latter case, it is extremely difficult to measure 

that part of demand which is not met, especially when sales are conducted in an impersonal 

environment. In such cases, when the available sample constitutes of sales data, 

underestimation of the real demand exists at periods in the sample where stockouts are 

occurred. Under such circumstances, demand should be modelled through censored or 

truncated distributions in order the estimation process to take into account the unobserved lost 

part of demand. References on this area include the works of Nahmias (1994), Lau & Lau 

(1996), Ernst & Kamrad (2006), and Halkos & Kevork (2011). 

On the other hand, when historical demand data are available, it would not make any 

difference in the analysis if stockouts do or do not occur in the periods included in the sample. 

Under such circumstances, Rossi et al. (2014) classify the estimation procedures in 

accordance with the knowledge of the form of demand distribution. When the form of 

demand distribution is known but its parameters must be estimated from historical data, 

parametric estimation processes are appropriate. For this case, Berk et al. (2007) recognize 

two general stochastic approaches for which random variables follow known distributions 

with unknown parameters: the Bayesian and the Frequentist. By using either collateral data or 
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subjective judgment, the Bayesian approach, selects a prior distribution for the demand 

distribution parameters and then using this prior distribution, the posterior distribution is 

derived. After that, the posterior distribution is continuously updated as the sample is enriched 

with new data for demand. Finally, the optimum value of the objective function is estimated 

by using the posterior distribution. Early works in this area constitute the papers of Scarf 

(1959b), Iglehart (1964) and Azoury (1985). When following this approach, since the 

unknown parameters must be expressed as a prior distribution of the demand, if available 

supporting information does not exist, Hill (1999) suggested the use of  uninformative priors, 

which, unfortunately, introduce a strong bias, especially under limited available data, at the 

stage of performing Bayesian updating. On the contrary, for the Frequentist approach, point 

estimate for the unknown parameters of the known parametric demand distribution are 

obtained using historical data (see e.g. Kevork, 2010; Halkos & Kevork, 2013; Rossi et al., 

2014). Specially, Halkos & Kevork (2013) distinguish for the newsvendor problem the 

following three estimation policies: the direct estimation policy (DEP), the unbiased 

percentile estimation policy (UPEP) and the Hayes (1969) estimation policy (HEP). 

For the case in which the class of demand distribution cannot be identified, there are two 

alternatives estimation processes for determining optimal inventory policies. The first 

alternative is to follow a nonparametric approach that includes the sampling-based policy or 

the use of order statistics and bootstrapping techniques. In the sampling-based policy, demand 

is modeled by the empirical distribution function of historical demand data. The second 

alternative is followed when partial information about the demand distribution (mean, 

variance, symmetry, unimodality, etc.) is available. In this case, using the so-called 

distribution free procedure, the optimal inventory policy is determined by maximizing 

(minimizing) the worst case expected profit (cost) considering all distributions with the same 

values of the available moments. For the two alternatives of this category of estimation 

processes, the relevant literature review can be found in Liyanage & Shanthikumar (2005), 

Janssen et al. (2009), and Akcay et al. (2011).  
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Figure 4.1 Estimation processes. 

 

Under the above consideration, the research of this thesis is classified in the area of the 

Frequentist approach. More specific, between the alternative estimation processes we consider 

the direct estimation policy which relates to the replacement of the parameters of demand 

distribution with their estimates in the theoretical formulas which determine the three target 

inventory measures. By considering fixed lead-time and normally distributed lead-time 

demand, as well as, assuming that demand distribution parameters are unknown, in the current 

chapter we address for the first time the issue of estimating the Hadley & Whitin’s (1963) cost 

function. In particular, in Section 4.2 we give the necessary theoretical background and 

present the model assumptions required for the analysis which follows. In Section 4.3, by 

considering Maximum Likelihood estimators (ML) for the demand parameters we explain 

how the estimation policy constitutes the basis for constructing estimation formulae for the 

optimal reorder point and the optimal order quantity, which lead to developing asymptotic 

confidence intervals for the minimum of the Hadley & Whitin’s cost function. In Section 4.4, 

we test the validity of the asymptotic confidence intervals through Monte-Carlo simulations. 

Finally, the last section concludes chapter 4 summarizing the most important findings. 

 

Class of demand distribution 

Partial 
information 

Frequentist Bayesian 

Parametric 

Known Unknown 

Nonparametric 
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4.2 Model assumptions and terminology 

For the continuous review (Q,R) inventory model with stochastic demand, fixed lead-time, 

and backorders, the majority of studies start with a certain form of the lead-time demand 

without making any specification about the length of the lead-time. Specifically, they are 

based on the assumption that the lead-time demand follows a probability distribution (discrete 

or continuous) with known demand parameters and consider that the procedure for 

determining the expression for the total cost of the inventory model is usually carried out for 

one year. Also, due to the use of discrete time when in fact this inventory model should be 

operated under continuous time, for ensuring the validity of results, it is also assumed that any 

undershoot of the reorder point is negligible compared to the magnitude of the total lead-time 

demand (e.g. Silver et al., 1998). 

Contrary to the above procedure, in the current chapter the analysis starts by defining a 

standard discrete time unit, t, (e.g. day, month, etc), and then both the lead-time and the 

reference period where the total cost is defined will be considered as multiples of this 

standard time unit. In particular, we assume that the lead-time consists of L standard time 

units while the reference period of β time units. For the size of undershoot of the reorder point 

we follow the Silver et al.’s (1998) assumption.  

The second assumption of our analysis is related to the process of determining the demand. 

We assume that demand is formed independently between the standard time units while for 

each time unit it follows the Normal distribution with the same mean, t , and the same 

variance, 2
t . As a result, the expected value and the variance of the demand in both the lead-

time and the reference period will be multiples of t  and 2
t  respectively. 

The last assumption deals with the cycle service level, namely the probability the lead-time 

demand not to exceed the reorder point. In most of the studies in continuous review models, 

this probability is considered as a decision variable and is determined by the optimal values of 

Q and R which are obtained by solving the first order conditions of the minimization process 

of the total cost function in the reference period. Opposite to this practice, in the current 

chapter we consider that this probability is constant and is initially defined by the 

Management. The reason for this assumption is two-fold. The first is coming from practice as 

inventory managers do not like the cycle service level to be determined by a mathematical 

algorithm but, on the contrary, they wish to control the value of this parameter in accordance 

with their individual preferences. The second reason is technical. The simultaneous 

consideration of both estimators for Q and R, where each one is a function of the other, makes 
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very difficult the task to study the asymptotic distribution of the estimator for the minimum 

total cost in the reference period, when both Q and R are treated as random variables. 

Assuming, therefore, the cycle service level as constant, the expression for reorder point is 

given by (e.g. Urban, 2000) 

 

reorder 
point 

= 
expected value of the 

lead-time demand 
+

safety 
stock 

 

which allows, asymptotically at least, the study of the statistical properties of the minimum 

cost estimator.  

Let X be a continuous non-negative random variable representing the demand in the lead-

time with mean L tL    and variance 2 2
L tL   , where t  and 2

t  are the mean and 

variance respectively of the demand size tD  occurred during lead-time t. Given now the 

aforementioned assumptions, the total cost function in the reference period with Normal 

distributed lead-time demand,  
L

2
t L L

t 1

X D ~ N  , 


   , (see chapter 3 for more details) is 

given by 

   HW P L

D Q D
C Q,R A h z s S R

Q 2 Q
        
 

, (4.1) 

where tD    and    L PS R z   , with      P P P Pz z z z       and P to be the 

fixed cycle service level defined as    L
P

L

R
P Pr X R Pr Z Pr Z z

 
       

.   

Differentiating with respect to Q  and equating the first derivative to zero we take the optimal 

order quantity minimizing the total cost 

 

 A s
Q 2 D 2 D S R

h h
        . (4.2) 

  

Then, substituting Q  for Q  in (4.1), the minimum total cost in the reference period is equal 

to  

     HW P L P

A s
C z h 2 D 2 D z h B P

h h
            , (4.3) 

where   L P LB P R z    . 
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4.3 Estimation policy for the minimum cost 

Suppose that the demand size, tD , is available for a sample of n consecutive time units 

 n,...,2,1t  . Considering Maximum Likelihood estimators (ML) for the expected demand 

per unit time, 
n

t tt 1
ˆ D n


   and for the variance,  n 22

t t tt 1
ˆ ˆD n


    and taking the 

cycle service level we explain below how the estimation policy for the optimal reorder point 

and the optimal order quantity leads us to develop asymptotic confidence intervals for the 

minimum cost of the reference period.  

 

Direct replacement of ML estimators (DEP) 

The direct estimation policy (e.g. Janssen et al., 2009; Kevork, 2010) relates to the use of 

the estimators t̂  and t̂  instead of the corresponding population parameters on the sizes that 

determine the three target inventory measures, namely the optimal reorder point, the optimal 

order quantity and the minimum cost. Thus, with the direct replacement of ML estimators, t̂  

and 2
t̂ , in the theoretical formulas which give the expected lead-time demand, L , the 

standard deviation of the lead-time demand, L , the expected demand in the reference period, 

D , and the expected size of backorders in each inventory cycle,  RS , we take respectively 

the estimators for the optimal reorder point 

 

LPL ˆzˆR̂  , (4.4) 

 

the optimal order quantity 

 

 A sˆ ˆˆ ˆQ 2 D 2 D S R
h h

         , (4.5) 

 

and the minimum cost of the reference period 

 

  *
HW t t P L

ˆ ˆˆ ˆ ˆC , h Q z        f , (4.6) 

 

where L tˆ ˆL   , L tˆ ˆL   , t
ˆ ˆD   ,    L P

ˆ ˆS R z   , as for the last equation it holds 
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  LLP ˆˆR̂z  . Then, in Proposition 4.1 which follows we develop through the 

application of the bivariate Delta method the asymptotic distribution of the estimator HWĈ . 

 
 

Proposition 4.1: If n21 D,...,D,D  are i.i.d. random variables with  2
t t tD ~ N ,  , 

n,...,2,1t  , then the statistic  HW HW
ˆn C C   is asymptotically Normal with mean zero and 

variance 

   
2 2

P
t L P* *

A s S R s D z1
h z

Q 2 Q

                          
         

Μ Σ Μ  

 

where  
t t t t

t t t t

ˆ ˆt t
ˆ ˆ

ˆ ˆ   
   

 
   

  
  

Μ
f f

 and 
2
t

2
t

0

0 2

 
   

Σ . 

 

Proof 4.1: See in the Appendix at the end of chapter 4. 

 

It is easily deduced from Proposition 4.1 that, for n  sufficiently large, the   %1001   

confidence interval for the minimum cost when the inventory system operates for a reference 

period consisting of   time units will be given from 

 

HW 1 2 HW HW 1 2
ˆ ˆC z C C z

n n
  

 

    
   

Μ Σ Μ Μ Σ Μ
. (4.7) 

 

4.4 Validity of asymptotic confidence intervals in finite samples 

To study in finite samples the performance of confidence intervals for HWC  given in (4.7), 

10.000 replications of maximum size 500 observations were generated from the Normal 

distribution  2N 300,60 . The required sequences of random numbers were generated using 

the method of Box and Muller (Law, 2007). More details about the random number generator 

and its validity can be found in Kevork (1990).  

Firstly, using each replication, estimates for the demand parameters t  and 2
t  were taken 

at different sample sizes. Then, for each sample size n, corresponding estimates for the 
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optimal order quantity, optimal reorder point and minimum cost were computed for different 

values of the parameters which are given in Table 4.1, using (4.4)-(4.6) for DEP. Finally, for 

different combinations of sample size n, and cost parameters a set of 10.000 different 

confidence intervals for the minimum cost, HWC , were computed using the asymptotic form 

(4.7). 

Recall from Chapter 3 that by using the cost parameters A , h  and s  which are suggested 

by Zhao et al. (2012) the Hadley & Whitin’s cost function approximates accurately the exact 

cost function even for sufficiently large stockout probabilities. Given this valuable finding, in 

the current Chapter we extent our analysis by examining the validity of the Hadley & 

Whitin’s cost function under the same cost parameters values “when unknown demand 

parameters exist”. 

 

Table 4.1 Parameter combinations. 
The fixed cycle service level P % 99.9, 99, 95, 90, 80, 60, 40, 20, 10 and 5 

The reference period β 200, 1000 and 9000 

The holding cost per unit per time h 0.6 

The shortage cost per unit backordered s 3, 6 and 9 

The ordering cost A 70, 100 and 500 

The lead-time L 2, 5 and 10 

The demand tD  Normal distribution with μt=300 and σt=60 

 

Having available 10.000 different confidence intervals for each combination of sample 

size, s, A, h and L, we compute two types of coverage (COVs) which are  the percentages of 

the 10.000 confidence intervals containing either the true minimum value of the Hadley & 

Whitin’s cost function, namely HWC  or the true minimum value of the exact cost function, 

namely  

     ex

A s
C h 2 D 2 D S R R h B P

h h
            , (4.8) 

where        2
L P LR z R S R         (see Lau et al., 2002b). 

(Proof 4.2: See in the Appendix at the end of the chapter) 

In Tables 4.2, 4.3 and 4.4, taking the cost parameters h 0.6  and s 9 , we give for the direct 

estimation policy the values for COVs at 95% nominal confidence level under different 

values of β, P, L, A and n. We observe that for all the combinations of parameter values 
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acceptable COVs greater than 90% always exist. According to the cycle service level we find 

out that when stockout probabilities increase then COVs are getting marginally smaller. For 

example, with L 2 , 9000   and sample size equal to 25 observations, COVs for H-W are 

93% for P=0.999 and 92% for P=0.80. However, the most important finding is that similar 

results exist for the two coverages. In particular, this means that the estimated confidence 

interval of the Hadley-Whitin’s cost function includes the true minimum value of the exact 

cost function, confirming the previous results of chapter 3 where we found out that small 

deviations exist between the two cost functions. 

 

Table 4.2 Coverage of 95% asymptotic confidence intervals in finite samples for the direct 
estimation policy, given that 70A  , 6.0h  , s 9 , L 2  and  2

t 60,300N~D . 

  Hadley & Whitin Exact 
 CSL n=25 n=50 n=100 n=300 n=500 n=25 n=50 n=100 n=300 n=500 

β=200 

0.999 93% 94% 94% 95% 95% 93% 94% 94% 95% 95% 
0.99 93% 94% 94% 95% 95% 93% 94% 94% 95% 95% 
0.95 93% 94% 94% 95% 95% 93% 94% 94% 95% 95% 
0.9 92% 93% 94% 94% 95% 92% 93% 94% 94% 95% 
0.8 92% 93% 94% 95% 95% 92% 93% 94% 95% 95% 
0.6 92% 93% 94% 95% 95% 92% 93% 94% 95% 95% 
0.4 92% 93% 94% 95% 95% 92% 93% 94% 95% 95% 
0.2 92% 93% 94% 95% 95% 92% 93% 94% 95% 95%
0.1 92% 93% 94% 95% 95% 92% 93% 94% 95% 95% 
0.05 92% 93% 94% 95% 95% 92% 93% 94% 95% 95% 

β=1000 

0.999 93% 94% 95% 95% 95% 93% 94% 95% 95% 95% 
0.99 93% 94% 94% 95% 95% 93% 94% 94% 95% 95% 
0.95 93% 94% 94% 95% 95% 93% 94% 94% 95% 95% 
0.9 92% 93% 94% 94% 95% 92% 93% 94% 94% 95% 
0.8 92% 93% 94% 95% 95% 92% 93% 94% 95% 95% 
0.6 92% 93% 94% 95% 95% 92% 93% 94% 95% 95%
0.4 92% 93% 94% 95% 95% 92% 93% 94% 95% 95% 
0.2 92% 93% 94% 95% 95% 92% 93% 94% 95% 95% 
0.1 92% 93% 94% 95% 95% 92% 93% 94% 95% 95% 
0.05 92% 93% 94% 95% 95% 92% 93% 94% 95% 95% 

β=9000 

0.999 93% 94% 94% 95% 95% 93% 94% 94% 95% 95% 
0.99 93% 94% 95% 95% 95% 93% 94% 95% 95% 95% 
0.95 93% 94% 94% 95% 95% 93% 94% 94% 95% 95%
0.9 92% 93% 94% 94% 95% 92% 93% 94% 94% 95% 
0.8 92% 93% 94% 95% 95% 92% 93% 94% 95% 95% 
0.6 92% 93% 94% 95% 95% 92% 93% 94% 95% 95% 
0.4 92% 93% 94% 95% 95% 92% 93% 94% 95% 95% 
0.2 92% 93% 94% 95% 95% 92% 93% 94% 95% 95% 
0.1 92% 93% 94% 95% 95% 92% 93% 94% 95% 95% 
0.05 92% 93% 94% 95% 95% 92% 93% 94% 95% 95% 
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Table 4.3 Coverage of 95% asymptotic confidence intervals in finite samples for the direct 
estimation policy, given that 70A  , 6.0h  , s 9 , L 5  and  2

t 60,300N~D . 

  Hadley & Whitin Exact 
 CSL n=25 n=50 n=100 n=300 n=500 n=25 n=50 n=100 n=300 n=500 

β=200 

0.999 93% 94% 94% 95% 95% 93% 94% 94% 95% 95% 
0.99 93% 94% 94% 95% 95% 93% 94% 94% 95% 95% 
0.95 92% 93% 94% 94% 95% 92% 93% 94% 94% 95% 
0.9 92% 93% 94% 94% 95% 92% 93% 94% 94% 95%
0.8 92% 93% 94% 95% 95% 92% 93% 94% 95% 95% 
0.6 92% 93% 94% 95% 95% 92% 93% 94% 95% 95% 
0.4 92% 93% 94% 95% 95% 92% 93% 94% 95% 95% 
0.2 92% 93% 94% 95% 95% 92% 93% 94% 95% 95% 
0.1 92% 93% 94% 95% 95% 92% 93% 94% 95% 95% 
0.05 92% 93% 94% 95% 95% 92% 93% 94% 95% 95% 

β=1000 

0.999 93% 94% 94% 95% 95% 93% 94% 94% 95% 95%
0.99 93% 94% 94% 95% 95% 93% 94% 94% 95% 95% 
0.95 92% 94% 94% 95% 95% 92% 94% 94% 95% 95% 
0.9 92% 93% 94% 95% 95% 92% 93% 94% 95% 95% 
0.8 92% 93% 94% 95% 95% 92% 93% 94% 95% 95% 
0.6 92% 93% 94% 95% 95% 92% 93% 94% 95% 95% 
0.4 92% 93% 94% 95% 95% 92% 93% 94% 95% 95% 
0.2 92% 93% 94% 95% 95% 92% 93% 94% 95% 95% 
0.1 92% 93% 94% 95% 95% 92% 93% 94% 95% 95% 
0.05 92% 93% 94% 95% 95% 92% 93% 94% 95% 95% 

β=9000 

0.999 93% 94% 95% 95% 95% 93% 94% 95% 95% 95% 
0.99 93% 94% 94% 95% 95% 93% 94% 94% 95% 95% 
0.95 93% 94% 94% 95% 95% 93% 94% 94% 95% 95% 
0.9 92% 93% 94% 94% 95% 92% 93% 94% 94% 95% 
0.8 92% 93% 94% 95% 95% 92% 93% 94% 95% 95% 
0.6 92% 93% 94% 95% 95% 92% 93% 94% 95% 95% 
0.4 92% 93% 94% 95% 95% 92% 93% 94% 95% 95% 
0.2 92% 93% 94% 95% 95% 92% 93% 94% 95% 95% 
0.1 92% 93% 94% 95% 95% 92% 93% 94% 95% 95% 
0.05 92% 93% 94% 95% 95% 92% 93% 94% 95% 95% 
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Table 4.4 Coverage of 95% asymptotic confidence intervals in finite samples for the direct 
estimation policy, given that 70A  , 6.0h  , s 9 , L 10  and  2

t 60,300N~D . 

  Hadley & Whitin Exact 
 CSL n=25 n=50 n=100 n=300 n=500 n=25 n=50 n=100 n=300 n=500 

β=200 

0.999 93% 94% 94% 95% 95% 93% 94% 94% 95% 95% 
0.99 93% 94% 94% 95% 95% 93% 94% 94% 95% 95% 
0.95 92% 93% 94% 95% 95% 92% 93% 94% 95% 95% 
0.9 92% 93% 94% 95% 95% 92% 93% 94% 95% 95%
0.8 92% 93% 94% 95% 95% 92% 93% 94% 95% 95% 
0.6 92% 93% 94% 95% 95% 92% 93% 94% 95% 95% 
0.4 92% 93% 94% 95% 95% 92% 93% 94% 95% 95% 
0.2 92% 93% 94% 95% 95% 92% 93% 94% 95% 95% 
0.1 92% 93% 94% 95% 95% 92% 93% 94% 95% 95% 
0.05 92% 93% 94% 95% 95% 92% 93% 94% 95% 95% 

β=1000 

0.999 93% 94% 94% 95% 95% 93% 94% 94% 95% 95%
0.99 93% 94% 94% 95% 95% 93% 94% 94% 95% 95% 
0.95 92% 93% 94% 94% 95% 92% 93% 94% 94% 95% 
0.9 92% 93% 94% 95% 95% 92% 93% 94% 95% 95% 
0.8 92% 93% 94% 95% 95% 92% 93% 94% 95% 95% 
0.6 92% 93% 94% 95% 95% 92% 93% 94% 95% 95% 
0.4 92% 93% 94% 95% 95% 92% 93% 94% 95% 95% 
0.2 92% 93% 94% 95% 95% 92% 93% 94% 95% 95% 
0.1 92% 93% 94% 95% 95% 92% 93% 94% 95% 95% 
0.05 92% 93% 94% 95% 95% 92% 93% 94% 95% 95% 

β=9000 

0.999 93% 94% 95% 95% 95% 93% 94% 95% 95% 95% 
0.99 93% 94% 94% 95% 95% 93% 94% 94% 95% 95% 
0.95 92% 93% 94% 94% 95% 92% 93% 94% 94% 95% 
0.9 92% 93% 94% 94% 95% 92% 93% 94% 94% 95% 
0.8 92% 93% 94% 95% 95% 92% 93% 94% 95% 95% 
0.6 92% 93% 94% 95% 95% 92% 93% 94% 95% 95% 
0.4 92% 93% 94% 95% 95% 92% 93% 94% 95% 95% 
0.2 92% 93% 94% 95% 95% 92% 93% 94% 95% 95% 
0.1 92% 93% 94% 95% 95% 92% 93% 94% 95% 95% 
0.05 92% 93% 94% 95% 95% 92% 93% 94% 95% 95% 

 

At this point it is important to note that for the sake of brevity we display the results only 

for s 9  since from the experimentation we find out that acceptable COVs greater than 90% 

always exist for all the combinations of parameter values. In particular, regarding the cost 

parameters A and s, we observe that when the ordering cost increase then the coverages are 

getting marginally larger, while, on the contrary, COVs marginally decrease for larger values 

of the shortage cost. Concerning the value of L we observe that when lead-time increases then 

coverages are getting marginally smaller. While, regarding the reference period, β, it is 

observed that for small sample sizes COVs marginally decrease with larger values of β. 

Since from the results of Tables 4.2, 4.3 and 4.4 we observe that for all the combinations of 

parameter values acceptable coverages always exist, in the remaining of this section we 

examine the expected half length (EHL)  

1 2z
n

  Μ Σ Μ
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of the estimated confidence intervals in order to give some crucial managerial 

recommendations. Specifically, using the parameter values of Table 4.1 we find from Tables 

4.5-4.8 that EHLs increase for larger stockout probabilities. For example, with L 2 , 

1000  , A 500 , s 9  and sample size equal to 100 observations, EHL is 261.91 for 

P=0.999 and 662.05 for P=0.40. According to the sample size n we observe that EHLs are 

getting smaller when n increases. Further, concerning the value of L we observe that when 

lead-time decreases then the expected half lengths are getting smaller. For instance, having 

the parameter values n 50 , 200  , 70A  , s 9 , P 0.999  and lead-time equal to 2 the 

expected half length is 68.79, while on the contrary EHL is 92.72 for L 10 . Regarding the 

value of β it is observed that EHLs decrease when the reference period is getting smaller. For 

example, with 70A  , s 9 , n 500 , P 0.9  and L 2  the expected half length is 257.16 

for 9000  , while reducing the value of β from 9000   to 200   EHL is 41.06. Finally, 

regarding the cost parameters A and s, we observe that when the ordering cost is getting 

larger then EHLs either increase or decrease according to the parameter values. For example, 

with n 25 , s 9 , 1000  , L 5  and P 0.95 , EHL is 330.38 for A 70  and 537.04 for 

A 500 . If P is decreasing further and reaching the size of 0.8 then EHL is 847.84 for 

A 70  and 729.46 for A 500 . On the other hand, EHLs are clearly getting larger when the 

shortage cost increases. For instance, with n 50 , 200  , L 10 , A 70  and P 0.9 , 

EHL is 122.58 for s 3  and 218.45 for s 9 . 

Under the above consideration, we suggest to practice that in order to take a decision 

regarding the choice of parameter values of the continuous review model, as a first priority, it 

is required to examine the expected half lengths of the estimated confidence intervals only 

when acceptable coverages are attained for all the combinations of parameter values. 

Therefore, we recommend that confidence intervals for the minimum cost with higher 

precision, namely smaller EHLs, are achieved when: 

a) the sample size, n, increases,  

b) large cycle service levels, P, are set, 

c) the lead-time, L, is getting smaller, 

d) the reference period, β, decreases, 

e) the shortage cost, s, is getting smaller, 

f) the ordering cost, A, decreases but in accordance with the values of the other parameters  

     as there are cases for which EHLs increase, mainly when the stockout probabilities are  

     getting larger. 
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Table 4.5 Precision of 95% asymptotic confidence intervals in finite samples for the direct 
estimation policy, given that 6.0h  , n 25  and  2

t 60,300N~D . 

Expected half length 
  s=3 s=9 
  A=70 A=500 A=70 A=500 
β CSL L=2 L=5 L=10 L=2 L=5 L=10 L=2 L=5 L=10 L=2 L=5 L=10 

200 

0.999 95.39 108.73 127.89 231.94 237.68 246.96 95.73 109.43 129.03 232.01 237.83 247.22 
0.99 92.89 102.81 117.37 230.61 234.28 240.22 96.83 110.68 130.09 231.41 235.90 243.02
0.95 99.08 114.12 134.38 231.30 235.08 240.86 126.83 162.83 204.59 236.48 245.47 258.62 
0.9 113.21 139.17 170.65 233.63 239.38 247.82 178.48 240.39 304.55 247.32 266.70 293.26 
0.8 153.10 201.86 253.75 240.97 253.57 271.11 288.83 388.47 483.65 282.86 332.53 393.06 
0.4 372.31 491.06 600.51 321.27 395.89 479.54 714.99 919.23 1105.76 578.03 771.01 958.03 
0.2 519.80 673.66 813.27 416.36 541.42 669.37 971.73 1235.99 1477.01 823.19 1092.12 1342.35 
0.05 709.48 906.15 1083.52 573.23 759.51 937.89 1299.28 1640.95 1952.48 1157.74 1513.46 1837.94 

1000 

0.999 195.64 202.64 213.77 511.66 514.33 518.73 196.13 203.65 215.52 511.78 514.54 519.09 
0.99 196.07 202.75 213.06 511.49 513.52 516.77 202.23 215.31 234.40 512.81 516.03 520.94 
0.95 210.49 230.90 258.80 514.22 518.26 524.09 265.86 330.38 405.32 523.86 537.04 555.73 
0.9 241.25 287.41 343.58 519.44 528.03 540.14 381.80 507.70 637.15 546.95 582.38 630.58 
0.8 331.78 432.64 539.44 535.68 559.63 592.54 633.10 847.84 1051.63 625.65 729.46 855.88 
0.4 836.45 1104.39 1351.81 720.95 890.16 1079.93 1602.83 2061.92 2481.71 1296.14 1730.09 2150.98
0.2 1175.65 1527.64 1848.78 941.66 1229.36 1524.53 2186.43 2785.28 3333.18 1853.53 2462.87 3031.37 
0.05 1612.80 2068.07 2482.15 1305.25 1737.46 2153.90 2931.91 3711.42 4425.50 2614.62 3425.59 4168.64 

9000 

0.999 574.31 577.03 581.45 1530.28 1531.25 1532.83 575.21 578.74 584.32 1530.54 1531.70 1533.53 
0.99 578.57 584.68 593.63 1531.43 1533.01 1535.25 592.13 611.42 638.90 1534.65 1538.65 1544.08 
0.95 617.55 661.06 720.07 1539.67 1547.38 1557.62 771.09 939.73 1135.35 1565.42 1596.14 1638.35 
0.9 706.24 826.48 972.72 1554.62 1575.05 1602.79 1117.96 1475.59 1841.38 1632.00 1726.67 1854.48 
0.8 978.62 1268.04 1573.60 1602.42 1667.96 1757.26 1878.77 2509.98 3106.74 1866.17 2166.10 2531.12
0.4 2515.73 3323.42 4070.06 2167.05 2678.47 3252.21 4815.06 6196.21 7459.96 3894.30 5200.08 6467.15 
0.2 3548.56 4617.43 5595.34 2842.33 3718.50 4618.72 6581.27 8390.70 10048.91 5581.38 7422.33 9142.38 
0.05 4881.09 6272.06 7542.62 3953.94 5276.03 6553.87 8838.82 11202.51 13373.09 7885.71 10343.80 12601.33 

 
Table 4.6 Precision of 95% asymptotic confidence intervals in finite samples for the direct 
estimation policy, given that 6.0h  , n 50  and  2

t 60,300N~D . 

Expected half length 
  s=3 s=9 
  A=70 A=500 A=70 A=500 
β CSL L=2 L=5 L=10 L=2 L=5 L=10 L=2 L=5 L=10 L=2 L=5 L=10 

200 

0.999 68.54 78.13 91.90 166.66 170.79 177.46 68.79 78.63 92.72 166.71 170.90 177.64 
0.99 66.75 73.88 84.34 165.71 168.35 172.61 69.58 79.54 93.48 166.29 169.51 174.63 
0.95 71.20 82.01 96.56 166.21 168.92 173.08 91.14 116.97 146.92 169.94 176.40 185.86 
0.9 81.36 99.99 122.58 167.88 172.02 178.09 128.17 172.52 218.45 177.74 191.66 210.75 
0.8 109.97 144.92 182.08 173.17 182.23 194.84 207.13 278.35 346.34 203.28 238.93 282.35 
0.4 266.72 351.50 429.59 230.84 284.35 344.27 511.30 657.02 790.11 414.79 552.80 686.42 
0.2 371.98 481.74 581.32 299.01 388.55 480.07 694.45 883.00 1054.98 590.07 782.14 960.72 
0.05 507.28 647.54 774.04 411.31 544.48 671.87 928.15 1171.94 1394.24 828.97 1082.80 1314.26 

1000 

0.999 140.58 145.61 153.61 367.66 369.57 372.74 140.93 146.34 154.87 367.74 369.73 373.00 
0.99 140.89 145.69 153.11 367.53 369.00 371.33 145.33 154.73 168.44 368.49 370.81 374.34 
0.95 151.27 165.94 185.97 369.51 372.42 376.61 191.04 237.33 291.07 376.46 385.94 399.38 
0.9 173.37 206.50 246.80 373.27 379.46 388.17 274.17 364.34 456.97 393.07 418.54 453.17 
0.8 238.32 310.59 387.04 384.97 402.19 425.84 453.99 607.46 753.00 449.63 524.14 614.82 
0.4 599.24 790.52 967.09 518.03 639.36 775.31 1146.22 1473.78 1773.32 930.09 1240.44 1541.17 
0.2 841.36 1092.50 1321.60 676.26 882.27 1093.42 1562.59 1989.91 2380.91 1328.65 1763.86 2169.65 
0.05 1153.24 1478.03 1773.44 936.57 1245.62 1543.10 2094.53 2650.83 3160.47 1872.19 2450.94 2981.08 

9000 

0.999 412.68 414.63 417.81 1099.60 1100.29 1101.43 413.32 415.86 419.87 1099.78 1100.62 1101.93 
0.99 415.75 420.15 426.59 1100.43 1101.57 1103.18 425.52 439.39 459.14 1102.75 1105.64 1109.55 
0.95 443.81 475.08 517.47 1106.37 1111.93 1119.31 554.10 675.08 815.31 1124.94 1147.05 1177.41 
0.9 507.54 593.85 698.73 1117.15 1131.87 1151.83 802.80 1058.89 1320.58 1172.86 1240.92 1332.74
0.8 702.94 910.30 1129.02 1151.58 1198.72 1262.90 1347.23 1798.29 2224.42 1341.14 1556.42 1818.22 
0.4 1802.30 2378.94 2911.77 1557.10 1923.82 2334.85 3443.38 4428.85 5330.61 2794.50 3728.37 4633.72 
0.2 2539.60 3302.29 4000.01 2041.23 2668.65 3312.66 4703.58 5994.77 7178.19 4000.87 5315.82 6543.64 
0.05 3490.40 4482.83 5389.40 2837.14 3782.56 4695.50 6314.56 8001.53 9550.82 5646.63 7400.99 9011.78 
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Table 4.7 Precision of 95% asymptotic confidence intervals in finite samples for the direct 
estimation policy, given that 6.0h  , n 100  and  2

t 60,300N~D . 

Expected half length 
  s=3 s=9 
  A=70 A=500 A=70 A=500 
β CSL L=2 L=5 L=10 L=2 L=5 L=10 L=2 L=5 L=10 L=2 L=5 L=10 

200 

0.999 48.82 55.64 65.45 118.70 121.64 126.39 48.99 56.00 66.04 118.73 121.71 126.52 
0.99 47.54 52.62 60.07 118.02 119.90 122.93 49.56 56.65 66.58 118.43 120.73 124.37
0.95 50.71 58.41 68.77 118.38 120.31 123.27 64.91 83.30 104.62 121.03 125.64 132.37 
0.9 57.94 71.21 87.29 119.57 122.52 126.84 91.26 122.81 155.47 126.59 136.51 150.10 
0.8 78.31 103.17 129.60 123.34 129.79 138.77 147.39 198.01 246.31 144.78 170.16 201.06 
0.4 189.72 249.93 305.38 164.41 202.48 245.10 363.40 466.86 561.36 295.25 393.35 488.28 
0.2 264.46 342.39 413.08 212.91 276.59 341.64 493.43 627.30 749.41 419.83 556.26 683.07 
0.05 360.51 460.09 549.88 292.76 387.40 477.89 659.35 832.46 990.30 589.51 769.74 934.06 

1000 

0.999 100.12 103.70 109.40 261.85 263.21 265.46 100.37 104.22 110.30 261.91 263.32 265.65 
0.99 100.35 103.76 109.05 261.76 262.80 264.46 103.50 110.20 119.97 262.44 264.09 266.61 
0.95 107.74 118.19 132.45 263.16 265.24 268.23 136.06 169.01 207.25 268.12 274.87 284.45 
0.9 123.48 147.07 175.75 265.85 270.26 276.46 195.22 259.35 325.21 279.96 298.10 322.76 
0.8 169.71 221.12 275.49 274.18 286.45 303.30 323.07 432.11 535.49 320.24 373.29 437.82 
0.4 426.25 562.10 687.47 368.94 455.28 551.98 814.66 1047.24 1259.92 662.05 882.65 1096.31
0.2 598.19 776.50 939.16 481.53 628.04 778.14 1110.29 1413.70 1691.34 945.32 1254.48 1542.65 
0.05 819.62 1050.21 1259.94 666.64 886.29 1097.63 1487.98 1883.00 2244.91 1331.41 1742.37 2118.77 

9000 

0.999 293.91 295.30 297.57 783.13 783.63 784.44 294.37 296.18 299.04 783.27 783.86 784.80 
0.99 296.10 299.23 303.82 783.72 784.54 785.68 303.06 312.95 327.02 785.38 787.44 790.23 
0.95 316.10 338.37 368.56 787.97 791.93 797.19 394.64 480.75 580.52 801.20 816.96 838.60 
0.9 361.49 422.93 497.58 795.65 806.14 820.37 571.61 753.74 939.78 835.35 883.84 949.23 
0.8 500.57 648.08 803.60 820.19 853.78 899.49 958.69 1279.17 1581.85 955.21 1108.48 1294.79
0.4 1282.00 1691.54 2069.89 1108.95 1369.92 1662.30 2447.35 3147.06 3787.36 1989.17 2652.96 3296.20 
0.2 1805.62 2347.16 2842.54 1453.45 1899.68 2357.50 3342.12 4258.94 5099.28 2846.58 3780.69 4652.64 
0.05 2480.72 3185.34 3829.03 2019.47 2691.43 3340.03 4486.01 5683.94 6784.15 4015.64 5261.42 6405.13 

 

Table 4.8 Precision of 95% asymptotic confidence intervals in finite samples for the direct 
estimation policy, given that 6.0h  , n 500  and  2

t 60,300N~D . 

Expected half length 
  s=3 s=9 
  A=70 A=500 A=70 A=500 
β CSL L=2 L=5 L=10 L=2 L=5 L=10 L=2 L=5 L=10 L=2 L=5 L=10 

200 

0.999 21.96 25.04 29.45 53.41 54.73 56.87 22.05 25.20 29.71 53.42 54.77 56.93 
0.99 21.39 23.68 27.03 53.10 53.95 55.31 22.30 25.49 29.96 53.29 54.32 55.96 
0.95 22.82 26.28 30.95 53.26 54.13 55.47 29.21 37.48 47.07 54.46 56.53 59.56 
0.9 26.07 32.04 39.28 53.80 55.13 57.07 41.06 55.24 69.91 56.96 61.43 67.54 
0.8 35.23 46.41 58.29 55.50 58.40 62.44 66.28 89.01 110.69 65.15 76.57 90.47 
0.4 85.28 112.30 137.19 73.98 91.10 110.26 163.23 209.66 252.07 132.79 176.86 219.48 
0.2 118.82 153.79 185.51 95.79 124.40 153.63 221.58 281.66 336.47 188.75 250.00 306.92 
0.05 161.92 206.61 246.90 131.67 174.18 214.80 296.05 373.74 444.58 264.92 345.81 419.55 

1000 

0.999 45.05 46.66 49.23 117.82 118.43 199.44 45.16 46.89 49.63 117.84 118.48 119.53 
0.99 45.15 46.69 49.07 117.78 118.28 118.99 46.57 49.59 53.98 118.09 118.83 119.96 
0.95 48.48 53.18 59.60 118.41 119.35 120.69 61.22 76.05 93.24 120.64 123.68 128.00 
0.9 55.57 66.18 79.08 119.62 121.61 124.40 87.82 116.65 146.24 125.98 134.14 145.24 
0.8 76.36 99.47 123.90 123.38 128.90 136.48 145.27 194.23 240.65 144.10 167.97 196.99 
0.4 191.59 252.57 308.84 166.01 204.84 248.31 365.93 470.31 565.76 297.77 396.86 492.80 
0.2 268.77 348.79 421.79 216.64 282.48 349.91 498.60 634.78 759.39 425.00 563.80 693.15 
0.05 368.14 471.62 565.75 299.82 398.48 493.37 668.12 845.41 1007.85 598.33 782.78 951.70 

9000 

0.999 132.24 132.87 133.89 352.37 352.59 352.96 132.45 133.27 134.55 352.43 352.70 353.12 
0.99 133.23 134.64 136.71 352.64 353.00 353.52 136.37 140.82 147.15 353.38 354.31 355.56 
0.95 142.24 152.26 165.85 354.55 356.33 358.70 177.58 216.31 261.17 360.51 367.61 377.35 
0.9 162.67 190.31 223.88 358.01 362.74 369.14 257.16 339.01 422.59 375.89 397.72 427.14 
0.8 225.22 291.53 361.41 369.06 384.18 404.76 431.07 574.98 710.86 429.83 498.78 582.57 
0.4 576.24 760.08 929.89 499.00 616.34 747.77 1099.30 1413.33 1700.70 894.66 1192.83 1481.67 
0.2 811.28 1054.33 1276.65 653.90 854.44 1060.12 1500.87 1912.36 2289.53 1279.78 1699.17 2090.56 
0.05 1114.26 1430.50 1719.39 908.26 1210.10 1501.33 2014.27 2551.96 3045.80 1804.63 2363.79 2877.09 
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4.5 Summary 

In this chapter, considering fixed lead-time, normally distributed lead-time demand and by 

assuming that the values of demand parameters are unknown we address for the first time the 

issue of the Hadley & Whitin’s (1963) cost function estimation. To study asymptotically the 

statistical properties of the estimator for the minimum cost of the reference period we make 

an estimation policy with the assumption that the cycle service level is determined a-priori 

and is treated as a fixed quantity. Using maximum likelihood estimators for the parameters of 

the Normal distribution we develop, for the first time, estimators for the optimal order 

quantity, optimal reorder point and minimum cost of the reference period. Based on the 

asymptotic distribution of the estimators, confidence intervals for the minimum cost are 

derived whose validity is tested through Monte-Carlo simulations for different sample sizes. 

To evaluate the performance of the confidence intervals, we consider the coverage, that is, the 

actual probability the interval to include the true minimum value of the Hadley & Whitin’s 

cost function. Experimenting with different values of the cycle service level, we find out that 

acceptable COVs greater than 90% are always attained for all the combinations of parameter 

values. 

Subsequently, we extend the analysis to examine also the expected half length of the 

estimated confidence intervals in order to give some crucial managerial recommendations 

regarding to the parameter values of the continuous review model. We suggest to practice that 

better precision, namely smaller EHLs, are achieved when either the sample size and the cycle 

service level increase or the lead-time, the reference period and the shortage cost are getting 

smaller. 

Finally, we investigate how accurately the Hadley-Whitin’s cost function approximates the 

exact cost function. Using again simulation analysis we develop, this time, the percentage of 

the 10.000 confidence intervals containing the true minimum value of the exact cost function. 

We find out that there are similar values for the two types of coverage which are greater than 

90% for all the combinations of parameters values and this result strengthens the 

approximation accuracy of the Hadley-Whitin’s cost function. Further, these results confirm 

the previous finding of chapter 3 where we observe that accurate approximations (lower than 

1%) exist when the demand parameters are known. 
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Appendix 

 

Proof 4.1: 

For the ML estimators it holds t tˆp lim    and t tˆp lim   . It follows therefore that 

     P t
ˆ ˆp limS R z L p lim S R      , 

 
1 2

* *
t t

A sˆ ˆˆ ˆp lim Q 2 p lim 2 p lim p limS R Q
h h

             
 

, 

and finally   *
HW P t HW

ˆ ˆ ˆp limC h p limQ z L p lim C         , 

so HWĈ  is a consistent estimator for HWC . 

It is also known (e.g. Knight 2000, page 258) that the vector  t t t tˆ ˆn
     converges 

in distribution to the bivariate Normal  Σ0,N2 . Hence from the application of the bivariate 

Delta method we conclude that the statistic 

      t t t t HW HW
ˆˆ ˆn , , n C C       f f  

converges in distribution to the Normal   ΜΣΜ ,0N . Further, given that 
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we obtain 

   
t t t t t t
t t t t t t

*

*
ˆ ˆ ˆt t t
ˆ ˆ ˆ

ˆˆ B P A s S RQ
h

ˆ ˆ ˆ Q     
     

 
           

     
 

f
, 

and 

   
t t t t t t
t t t t t t

*
P

P*
ˆ ˆ ˆt t t
ˆ ˆ ˆ

ˆˆ B P s D zQ
h L h z

ˆ ˆ ˆ Q     
     

 
                 

 

f
. 

Substituting into the vector M  and performing the operation ΜΣΜ   completes the 

proof.  

 

Proof 4.2: 

For the exact cost function we know from chapter 2 that  

     RRSD
h

s
2D

h

A
2RQ  . 

Thus,  

           
 ex L

Q R RA D s D
C S R h h R h

Q R Q R 2 2Q R

 
        

         L

Q Rh A s
2 D 2 D S R R h h R

2 Q R h h 2
            

 

 
 

   
2

L

h Q R Q R
h h R

2 Q R 2

      


 

     L

Q R Q R
h h h R

2 2
    , 

and finally 

  ex LC h Q R R   .   
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Chapter 5 

Estimation in (Q,R) inventory systems with correlated 

demand 

 

5.1 Introduction 

In the previous chapters we dealt with the determination of optimal inventory policies for 

the continuous review (Q,R) inventory model under the assumption that the demand sizes are 

independent. The purpose of this chapter is to investigate the effects of using correlated 

demand on the target inventory measures for the Hadley & Whitin’s cost function, by 

assuming that the demand process follows the stationary autoregressive, AR(1), model.  

Specially, considering that the parameters of the autocorrelated demand are unknown, we 

develop for the first time estimators for the optimal order quantity, optimal reorder point and 

minimum cost. Further, extending the analysis of Chapter 4 regarding to the estimated 

confidence intervals for the minimum of the Hadley & Whitin’s cost function, in this Chapter, 

through Monte-Carlo simulations for different sample sizes, we examine under which 

conditions the asymptotic confidence interval of the independent demand model (see chapter 

4) includes the true minimum cost when in fact the demand follows the AR(1) model. 

Based on the aforementioned discussion and remarks the rest of the chapter is organized as 

follows. Section 5.2 contains a literature review for autocorrelated demand models. In Section 

5.3 assuming that the demand process follows the stationary autoregressive, AR(1), model we 

present the lead-time demand parameters. In Section 5.4, using maximum likelihood 

estimators for the parameters of the Normal distribution we develop estimators for the optimal 

order quantity, optimal reorder point and minimum cost of the reference period. In Section 

5.5, we study under which conditions the independent demand model can be a good 

approximation to handle the autocorrelated demand. Finally, the last section concludes 

chapter 5 summarizing the most important findings. 
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5.2 Relevant literature review 

Μost operations research textbooks in inventory theory note that in order to determine the 

optimal pair (Q,R) and the minimum value of the cost function it is necessary to investigate 

the demand during the lead-time. Further, most inventory models assume that the demand 

sizes are independent and normally distributed with some mean t  and some variance 2
t . In 

many practical problems in real world, however, these assumptions can sometimes be 

violated.  

In the situations in which the demand rate on an item is independent of the inventory level 

but normality for the lead-time demand does not exist many studies have been developed in 

inventory literature, as it has been noted earlier in section 1.2.5. On the contrary, when the 

assumption of independence is violated then in such situations the demand sizes follow a 

serially correlated process. This means that the demand size in period t can be expressed as a 

function of the demand sizes in previous periods. Many studies have been conducted in 

inventory theory to investigate the effect of serially correlated demand processes on the 

optimal inventory policies. Ray (1980) investigated the effects of the first order 

autoregressive demand process on the first two moments of the lead-time demand for three 

different distributions of lead-time. He found that, under normally distributed lead-time 

demand, the stock is underestimated for negative serial correlation but will be overestimated 

when positive correlation occurs. The same author in 1981 extended his previous work (Ray, 

1980) and by maintaining the first four moments of the normally distributed lead-time 

demand, investigated the effects of the first order autoregressive and moving average demand 

processes on the reorder point for Geometric, Uniform and truncated Poisson lead-times. Ray 

(1982) considering ARIMA forecasting models, investigated the effect of the autocorrelation 

parameter on the reorder point for either fixed or random lead-time. Especially, he compared 

the variance of the lead-time demand in the two cases of unconditional (method of moments) 

and forecast demands for both AR(1) and MA(1) models. He found that for either fixed or 

random lead-time the effect of positive correlation is to increase the reorder point while on the 

other hand negative correlation reduces it. Between the method of moments and method of 

forecasts the differences are comparatively small except when the autocorrelation parameter 

approaches unity.  

If, on the other hand, the demand rate of an item is dependent on the inventory level but 

non-normally distributed lead-time demand exists then a number of studies have been 

conducted. Lau & Wang (1987) developed a formula for estimating the first four moments of 
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lead-time demand when the inventory item’s demand follows a probability distribution with 

any combination of skewness and kurtosis. Considering that the demand sizes can be modeled 

either by a first order autoregressive or a first order moving average process, they found that 

if autocorrelation or non-normality of demand is not properly considered then significant 

errors in inventory decisions may result. Further, Fotopoulos et al. (1988), assuming that the 

early works have computational difficulties, developed a simple approach for computing the 

approximate safety stock and reorder points by using an upper bound rather than an exact 

solution when the demand sizes follow AR(1) and MA(1) processes. Considering that the 

mean and the variance of demand sizes changed whenever the value of the autocorrelation 

parameter changed, they found through numerical investigation that the effect of the 

autocorrelation is very important for determining the safety stock. Marmorstein & Zinn 

(1993) based on the work of Fotopoulos et al. (1988) but assuming that the mean and the 

variance of demand sizes held constant, investigated the effect of autocorrelation demand on 

the safety stock determination. Finally, An et al. (1989) derived the exact first four moments 

of lead-time demand for AR(1) and MA(1) demand processes. They estimated reorder points 

of an inventory system based on the Pearson system and a Normal approximation. 

Other studies have also investigated the effect of correlated demand on specific inventory 

models. Among others, Veinott (1965) firstly have shown the optimality of myopic policies 

for independent stochastically demand processes. Then, under the condition for which it holds 

that in each period the orders lead to specific inventory levels, he extended the analysis to the 

case of dependent demand over time. Johnson & Thompson (1975) based on the work of 

Veinott (1965) investigated the optimality of myopic replenishment rules for periodic 

inventory systems for both stationary and nonstationary processes with nonnegative demand. 

Urban (2000) examined and compared for a continuous review (Q,R) inventory model with 

fixed lead-time three different approaches (traditional, method of moments, method of 

forecasts) of determining accurate reorder points for first order autoregressive and moving 

average demand processes. Through simulation analysis with normally distributed error terms 

he found that existing approaches of managing serially correlated demand can result in 

excessive inventories and shortages for high levels of autocorrelation. Further, the same 

author in 2005 investigated, for a periodic review model with some common functional forms 

for the demand rate, the effect of AR(1) and MA(1) demand processes on the safety stock 

required in the system. Urban found that the effect of lead-time on safety stock is greatly 

amplified as the level of autocorrelation increases and to a lesser extent as the effect of the 

demand dependency on inventory increases. Strijbosch et al. (2000), assuming the (Q,R) 
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continuous review inventory system with intermittent demand, compared the simple system 

with Normal demand distribution to an advanced system with compound Bernoulli 

distribution. Through Monte-Carlo simulations they found that the advanced system, using 

the Croston’s (1972) method, gives desired service level under circumstances while the 

simple system is not consistent. But, at this point it is important to note that Syntetos & 

Boylan (2001, 2005) have shown that Croston’s method is biased. Erkip et al. (1990) based on 

the work of Eppen & Schrage (1981) considered a multilevel inventory/warehousing system 

and developed optimal stock policies which are computed as explicit functions of the 

correlation coefficient. In particular, they found correlations between successive monthly 

demands of about 0.7. Syntetos & Boylan (2008), in a more recent paper, studied the 

interactions between forecasting and stock control for a periodic review system and through 

empirical data from the RAF they found that there is a scope to improve the performance of 

parametric stock control systems. Finally, the last years, many studies have been conducted 

by several researchers for the impacts of forecasting methods on the bullwhip effect in supply 

chain models. Among others, are:  Graves (1999), Lee et al. (2000), Chen et al. (2000a,b), 

Luong (2007), Duc et al. (2008), Ali et al. (2012) and Babai et al. (2013). 

Under the above consideration, we find out that for the continuous review (Q,R) inventory 

model most of the research has focused on specifying optimal inventory policies with the 

assumption that parameters of the demand distribution are known. However, the extent of 

applicability of such models to managerial aspects of inventories depends on the estimation of 

demand parameters. To the extent of our knowledge, research is very limited concerning 

topics on developing estimators for the target inventory measures of the Hadley & Whitin’s 

cost function and determining optimal inventory policies when the demand in successive 

periods is autocorrelated and at the same time the parameters of demand distribution are 

unknown. For this reason we address for the first time in this thesis the issues for estimating 

target inventory measures when both correlated demand occurs and parameters of demand 

distribution are unknown. 

Except the continuous review (Q,R) inventory model, we find out that for the classical 

newsvendor model there is also a limited research on determining the order quantity for 

autocorrelated demand and unknown parameters of demand distribution. Many studies have 

been developed to solve the problem of not knowing the parameters of demand distribution. 

Among them are: Ritchken & Sankar (1984), Liyanage & Shanthikumar (2005), Kevork 

(2010), Akcay et al. (2011) and Halkos & Kevork (2012). But, these works assume that 

demand in successive periods is formed independently. However, Akcay et al. (2012) 
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addressed in the classical newsvendor model the issues of both the correlated demand and the 

demand parameters estimation. Specially, by using a simulation-based sampling algorithm, 

they quantified the expected cost due to parameter uncertainty when the demand process is an 

autoregressive-to-anything time series, and the marginal demand distribution is represented 

by the Johnson translation system with unknown parameters. 

 

5.3 Modeling demand as correlated 

To estimate the demand distribution parameters, according to Ray (1982) and Urban 

(2000) there are two methods: (a) the method of moments and (b) the method of forecasts. 

The method of moments, by using the relevant moments of the lead-time demand, gives a 

fixed reorder point in each inventory cycle and provides an expected demand during lead-time 

which is constant and it is independent of the most recently observed demand. Further, this 

approach obtains an effective estimate of the distribution parameters during a long run lead-

time. On the contrary, in the method of forecasts a variable reorder point is provided using 

appropriate forecasts and the demand parameters are updated every period, conditional on the 

most recent observed demand. Finally, this forecasting approach gives the chance to study the 

short term effect of the autocorrelation on the distribution parameters. In this chapter, in order 

to have a fixed reorder point in each inventory cycle we use the relevant moments of the lead-

time demand (method of moments). 

Assume that the demand process follows the first order autoregressive model which is 

given by: 

t t 1 tD D        (5.1) 

where the error terms, t s , are uncorrelated and Normal variables with mean zero,  tE 0  , 

and constant variance,   2
tVar    . This process is stationary when 1   with mean 

 t 1    , variance  2 2 2
t 1     and covariance   s 2

t t s tCov X ,X     . Considering, 

also, that the lead-time demand   2
L L ARX~ N  ,    is given by equation (5.2) 

L

t 1 2 L
t 1

X D D D D


       (5.2) 

then, the mean and the variance of the lead-time demand, based on Ray (1982), are given by 

equations (5.3) and (5.4) respectively,: 
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   
L

L t t t
t 1

E X E D L E D L


        
 
  (5.3) 

     

2 L 1
2
L AR 2 2 2

2 2
Var X L

1 11


    

        
. (5.4) 

 

5.4 Hadley & Whitin’s cost function with correlated demand 

We start our analysis using the Hadley & Whitin’s cost function which was given in 

previous chapters but considering, now, that demand follows an AR(1) model. Replacing in 

(4.1)  the formulas of L  and  
2
L AR  which are given in (5.3) and (5.4) we take 

 
 

   
 

AR AR AR L AR L
HW AR AR L AR L AR

AR ARL AR L AR

Q R RD D
C Q ,R A h s

Q 2 Q

               
         

. (5.5) 

Assuming also a fixed cycle service level (see chapter 4 for more details), defined as 

 
 

 AR L
AR P

L AR

R
P Pr X R Pr Z Pr Z z

 
      
  

,  with Pz  to be the pth percentile of the 

standard Normal, we take the reorder point as  AR L P L ARR z     . 

Taking, now, the partial derivatives of  AR
HW AR ARC Q ,R  with respect to QAR and RAR, we 

obtain the first order conditions 

 

 
   

AR
HW AR AR

PL AR2 2
AR AR AR

C Q ,R A D h s D
z

Q Q 2 Q

  
     


, (5.6) 

 

   
AR
HW AR AR

P
AR AR

C Q ,R s D
h 1 z

R Q

 
    

F , (5.7) 

from which we take 

 
 

 
1 2

2 L 1

AR P2 2 2

A s 2 2
Q 2 D 2 D L z

h h 1 11


 

    
           

, (5.8) 

   AR
AR P

h Q
z 1

s D
 

 


F .   (5.9) 

 

Further, substituting ARQ
 for ARQ , the minimum total cost is equal to 

   
AR
HW P AR P L ARC z h Q h z

      . (5.10) 
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In Figures 5.1-5.5, assuming the parameter values of Table 4.1 (see chapter 4), we present 

the minimum value of the Hadley & Whitin’s cost function for a range of autoregressive 

parameter values,  0.8,  0.5,  0.2,  0.2,  0.5,  0.8     . Specially, we find out that for 

bigger values of φ the minimum cost AR
HWC



 is getting larger. Concerning the value of L we 

observe from Figure 5.1 that when lead-times decrease then the optimal pairs  AR ARQ ,R 

 

lead to smaller minimum costs. Further, regarding the value of the cycle service level it is 

observed that AR
HWC



 decreases when the cycle service level is getting larger (see Figure 5.2). 

Finally, according to the reference period β we find from Figure 5.3 that AR
HWC



 increases for 

larger values of β. Besides, regarding the cost parameters A and s, we observe from Figures 

5.4 and 5.5 that when the ordering and shortage costs increase then AR
HWC



  is getting larger. At 

this point it is important to mention that the minimum value of the Hadley & Whitin’s cost 

function has been computed for all the combinations of parameter values. But, for the sake of 

brevity, indicative results are presented in Figures 5.1-5.5 in order to observe the trend of 

AR
HWC



. Similar results exist using different parameter values. 

 

 

 

Figure 5.1 Minimum cost of AR
HWC  with A 70 , h 0.6 , s 9 , 200   and P 0.999 . 
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Figure 5.2 Minimum cost of AR
HWC  with A 70 , h 0.6 , s 9 , 200   and L 2 . 

 

 

Figure 5.3 Minimum cost of AR
HWC  with A 70 , h 0.6 , s 9 , L 10  and P 0.9 . 
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Figure 5.4 Minimum cost of AR
HWC  with L 2 , h 0.6 , s 9 , 200   and P 0.95 . 

 

 

 

Figure 5.5 Minimum cost of AR
HWC  with A 70 , h 0.6 , L 2 , 200   and P 0.95 . 
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Estimating the Hadley & Whitin’s cost function 

Suppose, now, that 1 2 nD ,D ,...,D  is a sequence of random variables representing demand 

on time t  t 1,2,..., n .  

Further, let 
t

2

ˆ

ˆ ˆ

ˆ 

 
   
  

ψ  be the maximum likelihood estimators of 
t

2


 
   
  

ψ  and assume, also, 

that the conditional Log Likelihood function is given by 

 

 
n

22
t t t 1 t2

t 2

n 1 n 1 1
ˆˆ ˆ ˆln L ln 2 ln D D

ˆ2 2 2 


 
           . (5.11) 

 

Then, based on Harvey (1981) the maximization of the likelihood function of an AR(1) model 

becomes equivalent to minimizing the sum of squares function 

 

 
n n

22
t t t 1

t 2 t 2

D D 
 

       . (5.12) 

 

Writing the classical linear regression model as  

 

  D X   , (5.13) 

 

where 

2

3

n

D

D

D

 
 
 
 
 
 


D , 

1

2

n 1

D1

D1

1 D 

 
 
 
 
 
 

 
X and 

2

3

n

 
  
 
 
 


 , the OLS estimator is then  

 

   
ˆ

ˆ
ˆ

     
 

-1
β Χ Χ Χ Υ , (5.14) 
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with  

1n

t 1
t 2

n n
2

t 1 t 1
t 2 t 2

n 1 D

D D






 
 

 
 

  
 
 
 



 
-1

ΧΧ and  

n

t
t 2

n

t t 1
t 2

D

D D






 
 
  
 
 
 




Χ Y . 

 

Therefore the estimators of the AR(1) model are computed as  

 

 
n n n n

2
t 1 t t 1 t t 1

t 2 t 2 t 2 t 2

1ˆ D D D D D
det   

   

      
   Χ Χ

, (5.15) 

 

   
n n n

t 1 t t t 1
t 2 t 2 t 2

1
ˆ D D n 1 D D

det  
  

        
  Χ Χ , (5.16) 

 

 
 

n 2

t t 1
2 t 2

ˆ ˆD D
ˆ

n 1 2






  
 

 


, (5.17) 

 

t

ˆ
ˆ

ˆ1


 

  
and (5.18) 

 

2
2
t 2

ˆ
ˆ

ˆ1
 


. (5.19) 

 

Since in practice t , 2
  and   are unknown quantities, replacing the ML estimators into 

(5.8), in the place of t , 2
  and  , the resulting estimator for the optimal order quantity 

takes the form 

 
 

1 2
2 L 1

AR P2 2 2

ˆ ˆˆA s 2 2ˆ ˆ ˆQ 2 D 2 D L z
ˆ ˆh h 1 1ˆ1


 

    
           

, (5.20) 

 

where t
ˆ ˆD     and  AR L P L AR

ˆ ˆ ˆR z     . 
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Therefore, the estimator for the minimum total cost is given by 

   
AR 2
HW t AR P L AR

ˆ ˆˆˆ ˆ ˆC , , h Q h z
 

        f .  (5.21) 

 

5.5 The independence approximation 

In this section, we investigate under which conditions an independent demand model 

 0 
 
can be used when lead-time demand is generated by an AR(1) process. In particular, 

the analysis of the previous sections showed that the optimal target inventory measures 
 

should be determined through the use of the AR(1) process, namely ARQ , ARR   and 

 AR
HW AR ARC Q ,R

   , when the actual demand data generated by autocorrelated structure. On the 

contrary, using an independent demand model and assuming as optimal the following target 

inventory measures INDQ , INDR   and  IND
HW IND INDC Q ,R

    which are developed after substituting 

0   into the formulas of ARQ , ARR   and  AR
HW AR ARC Q ,R

   , then significant errors exist in 

computing the size of the order quantity, reorder point and minimum cost. To perform the 

study, we introduce a statistical measure which is related to the approximation error in 

computing the minimum total cost,  AR IND IND
HW HW HWRAE C C C

  

  . 

The values of RAE are presented in Tables 5.1-5.4 for different combinations of A, s , L 

and β. Considering again the same parameters values with those which are used in chapter 4, 

we find out that when φ is approaching -1 or 1 the absolute values of RAE increase indicating 

reduction in the accuracy of approximation. For example, with L 2 , s 9 , 200  , A 70  

and P 0.999 , RAE is 0.71% for 0.2    while for 0.8    is 3.69%. On the contrary, the 

absolute values of RAE are getting smaller when the stockout probabilities decrease. For 

example, with L 2 , s 9 , 9000  , A 500  and 0.8  , RAE is 9.64% for P=0.2 while 

is 0.14% for P=0.999. Concerning the value of L we observe that when lead-time increases 

then the absolute values of the relative approximation error are getting larger. For instance, 

having the parameter values s 3 , A 70 , 200  , 0.5  , P 0.95  and lead-time equal to 

2 the relative approximation error is 1.54%, while on the contrary RAE is 8.43% for L 10 . 

Regarding the value of β it is observed that when the reference period is getting larger, |RAEs| 

either increase or decrease according to the parameter values. For example, with 0.2   , 

70  , s 9 , L 2  and P 0.9 , RAE is 2.02% for 200   and 1.84% for 9000  . If P is 

Institutional Repository - Library & Information Centre - University of Thessaly
02/06/2024 00:17:34 EEST - 18.219.251.217



158 
 

decreasing further and reaching the size of 0.4 then RAE is 4.60% for 200   and 4.62 for 

9000  . Finally, regarding the cost parameters A and s, we observe that when the ordering 

cost is getting larger then |RAEs| decrease. For example, with 0.8  , s 9 , 200  , L 10  

and P 0.9 , RAE is 35.21% for A 70  while is 11.60% for A 500 . On the other hand, the 

absolute values of RAE are getting larger when the shortage cost increases. For instance, with 

0.5   , 70  , 200  , L 2  and P 0.6 , RAE is 7.84% for s 3  while for s 9  is 

11.82%. 

The above findings imply that the choice of the independent demand model when 

autocorrelated demand exists is incorrect. And this happens because the decision cannot be 

taken independently of the value of the autocorrelation coefficient and without taking into 

account the size of Α, s, L and β. Consequently, we recommend to practice that better 

approximation, namely smaller |RAE|, is achieved when: 

a) the autocorrelation, φ, approaches zero, 

b) large cycle service levels, P, exist, 

c) the lead-time, L, is getting smaller, 

d) the shortage cost, s, is getting smaller, 

     e) the ordering cost, A, increases. 

For the reference period, β, |RAE| either decreases or increases according to the parameter 

values. 
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Table 5.1 Relative Approximation Error in computing the minimum total cost, RAE 100% , 

with h 0.6 , s 9  and A 70 . 

L=2 

 P 0.8  0.5  0.2  0.2  0.5  0.8  

β=200 

0.999 -3.69% -1.96% -0.71% 0.64% 1.50% 2.28% 
0.99 -3.66% -1.94% -0.70% 0.63% 1.49% 2.26% 
0.95 -6.90% -3.62% -1.30% 1.16% 2.73% 4.13% 
0.9 -10.95% -5.68% -2.02% 1.80% 4.19% 6.32% 
0.8 -17.04% -8.66% -3.04% 2.68% 6.20% 9.30% 
0.6 -23.82% -11.82% -4.10% 3.56% 8.21% 12.25% 
0.4 -27.30% -13.38% -4.60% 3.99% 9.15% 13.62% 
0.2 -29.45% -14.31% -4.91% 4.23% 9.70% 14.42% 
0.1 -30.33% -14.69% -5.03% 4.33% 9.92% 14.73% 

0.05 -30.80% -14.88% -5.09% 4.38% 10.03% 14.89% 
 P 0.8  0.5  0.2  0.2  0.5  0.8  

β=9000 

0.999 -0.65% -0.35% -0.12% 0.11% 0.27% 0.40% 
0.99 -1.41% -0.74% -0.27% 0.24% 0.57% 0.86%
0.95 -5.52% -2.89% -1.03% 0.93% 2.17% 3.28% 
0.9 -10.06% -5.20% -1.84% 1.64% 3.82% 5.76% 
0.8 -16.62% -8.43% -2.96% 2.60% 6.02% 9.03% 
0.6 -23.74% -11.78% -4.08% 3.55% 8.18% 12.19% 
0.4 -27.35% -13.41% -4.62% 4.00% 9.18% 13.66% 
0.2 -29.57% -14.38% -4.93% 4.26% 9.76% 14.51%
0.1 -30.48% -14.78% -5.06% 4.36% 10.00% 14.85% 

0.05 -30.97% -14.99% -5.13% 4.42% 10.12% 15.03% 
L=10 

 P 0.8  0.5  0.2  0.2  0.5  0.8  

β=200 

0.999 -8.36% -5.32% -2.30% 2.75% 8.45% 18.35% 
0.99 -8.27% -5.26% -2.27% 2.71% 8.31% 18.00% 
0.95 -13.98% -8.75% -3.73% 4.36% 13.12% 27.54% 
0.9 -19.64% -12.10% -5.08% 5.82% 17.20% 35.21% 
0.8 -26.15% -15.76% -6.52% 7.31% 21.22% 42.46% 
0.6 -31.56% -18.66% -7.61% 8.40% 24.09% 47.46%
0.4 -33.82% -19.82% -8.04% 8.81% 25.15% 49.25% 
0.2 -35.05% -20.44% -8.26% 9.03% 25.68% 50.12% 
0.1 -35.52% -20.67% -8.35% 9.10% 25.87% 50.41% 

0.05 -35.76% -20.79% -8.39% 9.14% 25.95% 50.53% 
 P 0.8  0.5  0.2  0.2  0.5  0.8  

β=9000 

0.999 -1.58% -1.00% -0.43% 0.52% 1.59% 3.46% 
0.99 -3.31% -2.10% -0.90% 1.07% 3.29% 7.08% 
0.95 -11.31% -7.05% -2.99% 3.47% 10.37% 21.51% 
0.9 -18.11% -11.11% -4.65% 5.29% 15.55% 31.55% 
0.8 -25.50% -15.34% -6.33% 7.07% 20.47% 40.76% 
0.6 -31.45% -18.58% -7.58% 8.36% 23.94% 47.13% 
0.4 -33.89% -19.87% -8.06% 8.85% 25.25% 49.49% 
0.2 -35.24% -20.57% -8.33% 9.11% 25.94% 50.73% 
0.1 -35.76% -20.84% -8.43% 9.21% 26.20% 51.20% 

0.05 -36.04% -20.98% -8.48% 9.26% 26.34% 51.44% 
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Table 5.2 Relative Approximation Error in computing the minimum total cost, RAE 100% , 

with h 0.6 , s 9  and A 500 . 

L=2 

 P 0.8  0.5  0.2  0.2  0.5  0.8  

β=200 

0.999 -1.42% -0.75% -0.27% 0.25% 0.58% 0.88% 
0.99 -1.21% -0.64% -0.23% 0.21% 0.49% 0.75% 
0.95 -1.60% -0.84% -0.30% 0.27% 0.65% 0.98% 
0.9 -2.44% -1.29% -0.46% 0.42% 0.98% 1.49% 
0.8 -4.45% -2.33% -0.84% 0.75% 1.76% 2.67% 
0.6 -8.85% -4.59% -1.63% 1.45% 3.39% 5.11% 
0.4 -13.30% -6.81% -2.40% 2.12% 4.92% 7.39% 
0.2 -17.84% -9.00% -3.15% 2.76% 6.38% 9.55% 
0.1 -20.43% -10.23% -3.56% 3.11% 7.17% 10.71% 

0.05 -22.09% -11.00% -3.81% 3.32% 7.66% 11.42% 
 P 0.8  0.5  0.2  0.2  0.5  0.8  

β=9000 

0.999 -0.23% -0.12% -0.04% 0.04% 0.09% 0.14% 
0.99 -0.30% -0.16% -0.06% 0.05% 0.12% 0.19%
0.95 -0.97% -0.51% -0.18% 0.17% 0.39% 0.60% 
0.9 -1.96% -1.04% -0.37% 0.34% 0.79% 1.20% 
0.8 -4.16% -2.18% -0.78% 0.70% 1.64% 2.49% 
0.6 -8.78% -4.55% -1.62% 1.44% 3.36% 5.06% 
0.4 -13.35% -6.84% -2.41% 2.13% 4.94% 7.43% 
0.2 -17.98% -9.08% -3.17% 2.79% 6.44% 9.64%
0.1 -20.62% -10.33% -3.59% 3.14% 7.25% 10.83% 

0.05 -22.30% -11.11% -3.86% 3.36% 7.75% 11.57% 
L=10 

 P 0.8  0.5  0.2  0.2  0.5  0.8  

β=200 

0.999 -3.38% -2.15% -0.93% 1.11% 3.42% 7.42% 
0.99 -2.88% -1.83% -0.79% 0.95% 2.91% 6.32% 
0.95 -3.75% -2.38% -1.03% 1.22% 3.75% 8.10% 
0.9 -5.55% -3.51% -1.51% 1.78% 5.44% 11.60% 
0.8 -9.44% -5.91% -2.52% 2.94% 8.84% 18.48% 
0.6 -16.42% -10.10% -4.24% 4.84% 14.27% 29.04%
0.4 -21.95% -13.30% -5.52% 6.21% 18.06% 36.16% 
0.2 -26.50% -15.85% -6.51% 7.24% 20.87% 41.33% 
0.1 -28.72% -17.06% -6.98% 7.72% 22.15% 43.64% 

0.05 -30.02% -17.76% -7.24% 7.99% 22.87% 44.93% 
 P 0.8  0.5  0.2  0.2    

β=9000 

0.999 -0.55% -0.35% -0.15% 0.18% 0.56% 1.21% 
0.99 -0.74% -0.47% -0.20% 0.24% 0.75% 1.62% 
0.95 -2.30% -1.46% -0.63% 0.75% 2.28% 4.91% 
0.9 -4.50% -2.84% -1.22% 1.44% 4.37% 9.28% 
0.8 -8.85% -5.54% -2.36% 2.74% 8.23% 17.16% 
0.6 -16.29% -10.02% -4.20% 4.80% 14.14% 28.74% 
0.4 -22.04% -13.37% -5.55% 6.24% 18.17% 36.40% 
0.2 -26.72% -16.00% -6.58% 7.33% 21.14% 41.94% 
0.1 -29.00% -17.25% -7.06% 7.83% 22.50% 44.43% 

0.05 -30.34% -17.97% -7.34% 8.11% 23.26% 45.83% 

 

 

0.5 0.8
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Table 5.3 Relative Approximation Error in computing the minimum total cost, , 

with ,  and . 

L=2 

 P       

β=200 

0.999 -3.64% -1.93% -0.70% 0.63% 1.48% 2.25% 
0.99 -3.07% -1.63% -0.59% 0.53% 1.25% 1.90%
0.95 -3.82% -2.02% -0.73% 0.66% 1.54% 2.34% 
0.9 -5.48% -2.88% -1.03% 0.93% 2.18% 3.31% 
0.8 -9.07% -4.72% -1.68% 1.50% 3.50% 5.28% 
0.6 -15.39% -7.84% -2.76% 2.43% 5.63% 8.45% 
0.4 -20.25% -10.15% -3.53% 3.09% 7.13% 10.65% 
0.2 -24.16% -11.94% -4.13% 3.58% 8.24% 12.28%
0.1 -26.03% -12.78% -4.40% 3.81% 8.75% 13.02% 

0.05 -27.11% -13.25% -4.55% 3.94% 9.03% 13.43% 
 P       

β=9000 

0.999 -0.60% -0.32% -0.11% 0.10% 0.24% 0.37% 
0.99 -0.76% -0.40% -0.15% 0.13% 0.31% 0.47% 
0.95 -2.26% -1.19% -0.43% 0.39% 0.91% 1.37% 
0.9 -4.35% -2.28% -0.82% 0.73% 1.72% 2.60% 
0.8 -8.44% -4.38% -1.56% 1.39% 3.24% 4.89% 
0.6 -15.25% -7.77% -2.73% 2.40% 5.57% 8.36% 
0.4 -20.35% -10.21% -3.55% 3.11% 7.17% 10.72% 
0.2 -24.40% -12.07% -4.18% 3.63% 8.35% 12.45% 
0.1 -26.33% -12.95% -4.46% 3.87% 8.89% 13.23% 

0.05 -27.45% -13.44% -4.63% 4.00% 9.19% 13.68% 
L=10 

 P       

β=200 

0.999 -8.26% -5.25% -2.27% 2.71% 8.35% 18.13% 
0.99 -7.05% -4.48% -1.94% 2.31% 7.12% 15.45% 
0.95 -8.52% -5.39% -2.32% 2.76% 8.43% 18.09% 
0.9 -11.52% -7.24% -3.09% 3.63% 10.96% 23.10% 
0.8 -16.99% -10.50% -4.43% 5.08% 15.07% 30.94% 
0.6 -24.32% -14.68% -6.08% 6.82% 19.79% 39.55% 
0.4 -28.64% -17.04% -6.98% 7.73% 22.20% 43.82% 
0.2 -31.52% -18.56% -7.54% 8.29% 23.66% 46.33% 
0.1 -32.74% -19.18% -7.77% 8.51% 24.23% 47.29% 

0.05 -33.40% -19.52% -7.90% 8.62% 24.51% 47.76% 
 P       

β=9000 

0.999 -1.45% -0.92% -0.40% 0.48% 1.46% 3.18% 
0.99 -1.84% -1.17% -0.50% 0.60% 1.85% 4.01% 
0.95 -5.14% -3.24% -1.39% 1.64% 5.00% 10.64% 
0.9 -9.23% -5.78% -2.46% 2.87% 8.61% 17.98%
0.8 -15.85% -9.77% -4.11% 4.70% 13.86% 28.27% 
0.6 -24.10% -14.54% -6.01% 6.74% 19.54% 38.99% 
0.4 -28.79% -17.14% -7.02% 7.78% 22.39% 44.25% 
0.2 -31.88% -18.80% -7.66% 8.43% 24.12% 47.40% 
0.1 -33.19% -19.49% -7.92% 8.69% 24.82% 48.67% 

0.05 -33.91% -19.87% -8.06% 8.83% 25.20% 49.35% 

 

RAE 100%

h 0.6 A 70 s 3

0.8 0.5 0.2 0.2 0.5 0.8

0.8 0.5 0.2 0.2 0.5 0.8

0.8 0.5 0.2 0.2 0.5 0.8

0.8 0.5 0.2 0.2 0.5 0.8
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Table 5.4 Relative Approximation Error in computing the minimum total cost, , 

with ,  and . 

L=2 

 P       

β=200 

0.999 -1.42% -0.75% -0.27% 0.24% 0.58% 0.88% 
0.99 -1.12% -0.59% -0.21% 0.19% 0.45% 0.69%
0.95 -1.04% -0.55% -0.20% 0.18% 0.42% 0.64% 
0.9 -1.23% -0.65% -0.24% 0.21% 0.50% 0.76% 
0.8 -1.87% -0.99% -0.36% 0.32% 0.75% 1.14% 
0.6 -3.67% -1.93% -0.69% 0.62% 1.46% 2.21% 
0.4 -6.04% -3.15% -1.12% 1.01% 2.35% 3.55% 
0.2 -9.21% -4.76% -1.69% 1.50% 3.50% 5.26%
0.1 -11.49% -5.90% -2.08% 1.84% 4.28% 6.44% 

0.05 -13.18% -6.73% -2.37% 2.09% 4.85% 7.28% 
 P       

β=9000 

0.999 -0.22% -0.12% -0.04% 0.04% 0.09% 0.14% 
0.99 -0.21% -0.11% -0.04% 0.04% 0.09% 0.13% 
0.95 -0.40% -0.21% -0.08% 0.07% 0.16% 0.25% 
0.9 -0.74% -0.39% -0.14% 0.13% 0.30% 0.46% 
0.8 -1.55% -0.82% -0.29% 0.27% 0.63% 0.95% 
0.6 -3.58% -1.88% -0.67% 0.61% 1.42% 2.15% 
0.4 -6.12% -3.19% -1.14% 1.02% 2.38% 3.60% 
0.2 -9.44% -4.88% -1.73% 1.54% 3.59% 5.41% 
0.1 -11.80% -6.07% -2.14% 1.90% 4.41% 6.64% 

0.05 -13.55% -6.93% -2.44% 2.16% 5.00% 7.51% 
L=10 

 P       

β=200 

0.999 -3.37% -2.14% -0.93% 1.10% 3.40% 7.39% 
0.99 -2.67% -1.70% -0.73% 0.88% 2.70% 5.86% 
0.95 -2.50% -1.59% -0.69% 0.82% 2.52% 5.47% 
0.9 -2.93% -1.86% -0.80% 0.96% 2.94% 6.35% 
0.8 -4.32% -2.74% -1.18% 1.39% 4.25% 9.10% 
0.6 -7.94% -4.98% -2.12% 2.48% 7.47% 15.64% 
0.4 -12.08% -7.49% -3.17% 3.65% 10.84% 22.28% 
0.2 -16.78% -10.28% -4.30% 4.88% 14.32% 28.94% 
0.1 -19.68% -11.96% -4.97% 5.60% 16.31% 32.65% 

0.05 -21.62% -13.07% -5.41% 6.06% 17.57% 34.98% 
 P       

β=9000 

0.999 -0.53% -0.34% -0.15% 0.18% 0.54% 1.17% 
0.99 -0.51% -0.33% -0.14% 0.17% 0.52% 1.12% 
0.95 -0.98% -0.62% -0.27% 0.32% 0.99% 2.14% 
0.9 -1.77% -1.12% -0.48% 0.58% 1.76% 3.80%
0.8 -3.61% -2.28% -0.98% 1.16% 3.53% 7.52% 
0.6 -7.75% -4.86% -2.07% 2.42% 7.27% 15.22% 
0.4 -12.24% -7.59% -3.21% 3.70% 11.00% 22.63% 
0.2 -17.19% -10.54% -4.42% 5.03% 14.76% 29.92% 
0.1 -20.21% -12.31% -5.12% 5.79% 16.89% 33.97% 

0.05 -22.23% -13.46% -5.58% 6.28% 18.25% 36.52% 

 

RAE 100%

h 0.6 A 500 s 3

0.8 0.5 0.2 0.2 0.5 0.8

0.8 0.5 0.2 0.2 0.5 0.8

0.8 0.5 0.2 0.2 0.5 0.8

0.8 0.5 0.2 0.2 0.5 0.8
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The above results justify why it is hard for us to recommend the independent demand 

model in order to handle the autocorrelated demand. For this reason, we have introduced the 

Relative Approximation Error in computing the minimum total cost and we believe that the 

values of RAE give to any researcher the option to evaluate the approximation errors in 

computing the target inventory measures. So, we leave him/her to decide regarding to the 

parameter values for which he/she thinks that the independent demand model constitutes a 

good approximation for the autocorrelated demand.  

But, at this point, it is important to note that the above analysis is conducted for the case in 

which the demand parameters are known. In the remaining of this section, we investigate 

under which conditions the independent demand model can be a good approximation to 

handle the autocorrelated demand assuming, however, that unknown demand parameters 

exist. In particular, through simulation analysis which is conducted for the same parameter 

values of chapter 4 (see Table 4.1) we compute the coverage which is the percentage of the 

10.000 confidence intervals of the independent demand model which are given in (4.7) 

containing the true quantity AR
HWC



 of an AR(1) demand process. This true quantity is given in 

(5.10).  

Specially, using the random number generator (see chapter 4 for more details) we 

generated 10.000 replications of maximum size 1000 observations. To achieve stationarity in 

each replication of the AR(1) model, tD  was generated from the stationary distribution 

 2N 300,60 . Then, for each replication and for different sample sizes we estimated the 

parameters  ,  , 2
 , t  and 2

t  using (5.15)-(5.19) respectively. Replacing the ML 

estimators of  , 2
  and t  in (5.10), corresponding estimates for the minimum cost of the 

autocorrelated demand model were computed for different combinations of parameter values. 

Finally, replacing t̂  and 2
t̂  in the asymptotic form (4.7) a set of 10.000 different confidence 

intervals for the minimum cost of the independent demand model were computed. To evaluate 

the performance of the estimated confidence intervals we developed the coverage (COV) at 

95% nominal confidence level which is the actual probability the interval of the independent 

demand model to include the true minimum cost AR
HWC



 when in fact AR(1) autocorrelated 

demand occurs.  

The values of COVs are presented in Tables 5.5-5.8 for different combinations of A, s , L, 

n, φ and β. We find out that when φ is approaching -1 or 1 the coverages are getting smaller 
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indicating reduction in the accuracy of the independent model. For example, with , 

, , ,  and , COV is 84% for  while for 

 is 36% (see Table 5.7). On the contrary, COVs increase when the stockout 

probabilities are getting larger. For example, with , , , ,  

and , COV is 20% for P=0.999 while is 5% for P=0.9 (see Table 5.8). However, even 

when small P exists there are cases for which COVs increase. For example, with , 

, ,  ,  and , COV is 78% for  while for 

 is 94% (see Table 5.5). Concerning the value of L we observe that when lead-time 

increases then the coverages are getting smaller. For instance, having the parameter values 

, , , , ,  and lead-time equal to 2 the coverage 

is 96%, while on the contrary COV is 79% for (see Table 5.5). Regarding the cost 

parameters A and s, we observe that when the ordering cost is getting larger then COVs 

increase. For example, with , , , ,  and , COV 

is 1% for  while is 93% for  (see Table 5.6). On the other hand, the coverages 

are getting smaller when the shortage cost increases. For instance, with , , 

, ,  and , COV is 78% for  while for  is 67% (see 

Tables 5.5 and 5.6). Finally, regarding the value of β it is observed that when the reference 

period is getting larger, COVs either increase or decrease according to the parameter values. 

For example, with , , , ,  and , COV is 59% for 

 and 69% for  (see Table 5.7). If P is decreasing further and reaching large 

stockout probabilities then coverages are getting marginally lower for larger values of β. For 

example, with , COV is 22.58% for while is 22.54% for . For the 

sake of brevity, we don’t display these results since the differences are quite small. 

Hence, from the results of Tables 5.5-5.8, we summarize that according to the sample size 

n for negative autocorrelation acceptable COVs, namely greater than 90%, are achieved 

when: 

i) for A=70, s=3 and L=2, the value for φ is either -0.2 or -0.5 (for  except in the   

case of β=200 and P=0.9) 

ii) for A=70, s=3 and L=2, the value for φ is -0.8, P=0.999 and β=1000  

iii) for A=70, s=3 and L=10, the value for φ is -0.2 except in the case of β=200 and P=0.9 

iv) for A=500 and s=3, there is at least one acceptable COV for each combination of P, β,             

φ and L except in the case of , L=10, β=200, and P=0.999 

L 2

1000  A 70 s 3 n 500 P 0.999 0.2 

0.8 

L 10 200  A 500 s 9 n 100

0.5 

L 10

200  A 500 s 3 n 25 0.8   P 0.999

P 0.9

s 3 A 70 200  0.2   P 0.999 n 50

L 10

0.8   200  L 2 n 100 s 9 P 0.999

A 70 A 500

0.2   1000 

L 10 A 70 n 50 P 0.9 s 3 s 9

0.5  s 3 70  L 2 n 100 P 0.999

200  1000 

P 0.2 200  1000 

0.5  

0.8  
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v) for A=70, s=9 and L=2, the value for φ is either -0.2 or -0.5 (for  except in the   

case of P=0.9) 

vi) for A=70, s=9 and L=2, the value for φ is -0.8, P=0.999 and β=1000  

vii) for A=70, s=9 and L=10, the value for φ is -0.2 and P=0.999 

viii) for A=500 and s=9, there is at least one acceptable COV for each combination of P, β,  

φ and L except in the cases of L=10 and a) , P=0.999 and β=200, b) P=0.9 and φ  

is either -0.8 or -0.5. 

On the other hand, for positive autocorrelation acceptable COVs, namely greater than 85%, 

are achieved when: 

i) for A=70, s=3 and L=2, the value for φ is 0.2 

ii) for A=500, s=3 and L=2, the value for φ is 0.2  

iii) for A=500, s=3 and L=10, the value for φ is 0.2 except in the case of P=0.999 and  

β=200 

iv) for A=70, s=9 and L=2, the value for φ is 0.2 and P=0.999 

v) for A=500, s=9 and L=2, the value for φ is 0.2  

vi) for A=500, s=9 and L=10, the value for φ is 0.2, P=0.999 and β=1000. 

Under the above analysis, we recommend to practice that better coverages are generally 

achieved when: 

a) for positive autocorrelation, φ approaches low autocorrelation levels, 

b) for negative autocorrelation, φ approaches low or moderate autocorrelation levels, 

c) large cycle service levels, P, exist, 

d) the lead-time, L, is getting smaller, 

e) the shortage cost, s, is getting smaller, 

     f) the ordering cost, A, increases. 

For the reference period, β, COV either decreases or increases according to the parameter 

values. These results strengthen the previous findings of Tables 5.1-5.4, confirming the claim 

which mentions that the choice of the independent demand model when in fact AR(1) 

autocorrelated demand occurs cannot be taken independently of the parameter values A, s, L, 

n, φ and β.  

 

  

0.5  

0.8  
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Table 5.5 Coverages of the 95% estimated confidence intervals when 0  and s=3. 

  L=2 L=10 

A=70  n φ=-0.8 φ=-0.5 φ=-0.2 φ=-0.8 φ=-0.5 φ=-0.2 

P=0.999 

β=200 

25 68% 95% 97% 8% 44% 90% 
50 20% 85% 96% 0% 12% 79% 

100 1% 56% 94% 0% 1% 59% 
500 0% 0% 71% 0% 0% 1% 
1000 0% 0% 43% 0% 0% 0% 

β=1000 

25 100% 99% 97% 54% 88% 95% 
50 98% 99% 97% 10% 63% 93% 

100 75% 96% 97% 0% 22% 86% 
500 0% 45% 93% 0% 0% 31% 
1000 0% 7% 87% 0% 0% 5% 

P=0.9 

β=200 

25 33% 87% 96% 4% 34% 88% 
50 5% 63% 95% 0% 7% 75% 

100 0% 26% 91% 0% 0% 51% 
500 0% 0% 50% 0% 0% 0% 
1000 0% 0% 19% 0% 0% 0% 

β=1000 

25 46% 92% 96% 6% 40% 90% 
50 8% 74% 95% 0% 10% 78% 

100 0% 38% 92% 0% 0% 56% 
500 0% 0% 60% 0% 0% 1% 
1000 0% 0% 28% 0% 0% 0% 

A=500  n φ=-0.8 φ=-0.5 φ=-0.2 φ=-0.8 φ=-0.5 φ=-0.2 

P=0.999 

β=200 

25 100% 99% 97% 78% 94% 96% 
50 100% 99% 98% 24% 78% 94% 

100 94% 98% 98% 1% 41% 90% 
500 0% 67% 95% 0% 0% 47% 

1000 0% 23% 91% 0% 0% 14% 

β=1000 

25 100% 100% 97% 100% 99% 97% 
50 100% 100% 98% 99% 98% 97% 

100 100% 100% 98% 87% 95% 97% 
500 93% 98% 97% 0% 32% 89% 
1000 40% 93% 97% 0% 2% 77% 

P=0.9 

β=200 

25 100% 99% 97% 94% 96% 96% 
50 100% 99% 98% 47% 88% 95% 

100 98% 99% 98% 4% 60% 92% 
500 2% 80% 96% 0% 0% 60% 

1000 0% 43% 93% 0% 0% 28% 

β=1000 

25 100% 100% 97% 99% 98% 97% 
50 100% 100% 98% 90% 96% 96% 

100 100% 99% 98% 33% 84% 95% 
500 41% 93% 97% 0% 4% 78% 
1000 1% 77% 96% 0% 0% 56% 
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Table 5.6 Coverages of the 95% estimated confidence intervals when 0  and s=9. 

  L=2 L=10 

A=70  n φ=-0.8 φ=-0.5 φ=-0.2 φ=-0.8 φ=-0.5 φ=-0.2 

P=0.999 

β=200 

25 67% 95% 97% 8% 43% 90% 
50 20% 84% 96% 0% 11% 79% 

100 1% 55% 94% 0% 0% 58% 
500 0% 0% 70% 0% 0% 1% 
1000 0% 0% 42% 0% 0% 0% 

β=1000 

25 100% 99% 97% 50% 87% 95% 
50 98% 99% 97% 8% 60% 92% 

100 70% 96% 97% 0% 20% 85% 
500 0% 41% 93% 0% 0% 29% 
1000 0% 5% 86% 0% 0% 4% 

P=0.9 

β=200 

25 10% 61% 94% 2% 22% 83% 
50 1% 29% 90% 0% 3% 66% 

100 0% 5% 80% 0% 0% 39% 
500 0% 0% 20% 0% 0% 0% 
1000 0% 0% 2% 0% 0% 0% 

β=1000 

25 11% 63% 94% 2% 23% 84% 
50 1% 30% 90% 0% 3% 67% 

100 0% 5% 81% 0% 0% 40% 
500 0% 0% 22% 0% 0% 0% 
1000 0% 0% 3% 0% 0% 0% 

A=500  n φ=-0.8 φ=-0.5 φ=-0.2 φ=-0.8 φ=-0.5 φ=-0.2 

P=0.999 

β=200 

25 100% 99% 97% 78% 94% 96% 
50 100% 99% 98% 23% 77% 94% 

100 93% 98% 98% 1% 40% 90% 
500 0% 66% 95% 0% 0% 46% 

1000 0% 23% 91% 0% 0% 14% 

β=1000 

25 100% 100% 97% 100% 99% 97% 
50 100% 100% 98% 99% 98% 97% 

100 100% 100% 98% 85% 95% 97% 
500 93% 98% 97% 0% 30% 88% 
1000 37% 93% 97% 0% 2% 76% 

P=0.9 

β=200 

25 99% 99% 97% 26% 76% 95% 
50 79% 97% 97% 2% 39% 90% 

100 20% 88% 96% 0% 6% 79% 
500 0% 10% 87% 0% 0% 13% 
1000 0% 0% 75% 0% 0% 1% 

β=1000 

25 100% 99% 97% 38% 84% 95% 
50 92% 98% 97% 4% 52% 92% 

100 40% 93% 97% 0% 13% 83% 
500 0% 22% 90% 0% 0% 22% 
1000 0% 1% 81% 0% 0% 2% 
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Table 5.7 Coverages of the 95% estimated confidence intervals when 0   and s=3. 

  L=2 L=10 

A=70  n φ=0.2 φ=0.5 φ=0.8 φ=0.2 φ=0.5 φ=0.8 

P=0.999 

β=200 

25 87% 68% 38% 74% 19% 2% 
50 86% 65% 39% 64% 5% 0% 

100 85% 59% 36% 45% 0% 0% 
500 69% 23% 15% 1% 0% 0% 

1000 51% 6% 4% 0% 0% 0% 

β=1000 

25 87% 70% 40% 83% 46% 12% 
50 87% 70% 43% 79% 30% 6% 

100 88% 69% 43% 71% 12% 1% 
500 84% 57% 36% 24% 0% 0% 

1000 79% 43% 28% 5% 0% 0% 

P=0.9 

β=200 

25 86% 65% 36% 72% 16% 2% 
50 85% 60% 34% 61% 4% 0% 

100 82% 50% 30% 40% 0% 0% 
500 57% 9% 6% 0% 0% 0% 

1000 33% 1% 1% 0% 0% 0% 

β=1000 

25 86% 66% 37% 73% 19% 2% 
50 85% 63% 37% 64% 6% 0% 

100 84% 54% 33% 45% 0% 0% 
500 63% 15% 9% 1% 0% 0% 

1000 42% 3% 2% 0% 0% 0% 
A=500  n φ=0.2 φ=0.5 φ=0.8 φ=0.2 φ=0.5 φ=0.8 

P=0.999 

β=200 

25 87% 70% 40% 84% 52% 18% 
50 87% 71% 43% 81% 38% 10% 

100 88% 70% 44% 75% 21% 3% 
500 86% 62% 40% 35% 0% 0% 

1000 82% 51% 33% 11% 0% 0% 

β=1000 

25 87% 70% 40% 86% 66% 35% 
50 88% 72% 44% 87% 63% 32% 

100 88% 72% 46% 86% 55% 26% 
500 88% 71% 47% 74% 18% 2% 

1000 88% 69% 45% 60% 4% 0% 

P=0.9 

β=200 

25 87% 70% 40% 85% 56% 23% 
50 88% 71% 43% 83% 46% 15% 

100 88% 71% 44% 79% 30% 6% 
500 87% 65% 42% 46% 1% 0% 

1000 84% 56% 36% 21% 0% 0% 

β=1000 

25 87% 70% 40% 86% 62% 30% 
50 88% 72% 43% 85% 56% 24% 

100 88% 72% 45% 83% 44% 15% 
500 88% 69% 45% 63% 5% 0% 

1000 86% 64% 42% 42% 0% 0% 
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Table 5.8 Coverages of the 95% estimated confidence intervals when 0   and s=9. 

  L=2 L=10 

A=70  n φ=0.2 φ=0.5 φ=0.8 φ=0.2 φ=0.5 φ=0.8 

P=0.999 

β=200 

25 87% 68% 38% 74% 18% 2% 
50 86% 65% 39% 64% 5% 0% 

100 85% 58% 36% 45% 0% 0% 
500 69% 22% 14% 1% 0% 0% 

1000 51% 6% 4% 0% 0% 0% 

β=1000 

25 87% 70% 40% 82% 45% 12% 
50 87% 70% 43% 79% 28% 5% 

100 88% 69% 43% 70% 11% 1% 
500 84% 56% 36% 22% 0% 0% 

1000 79% 42% 27% 4% 0% 0% 

P=0.9 

β=200 

25 84% 58% 27% 69% 11% 1% 
50 81% 48% 24% 55% 2% 0% 

100 75% 33% 17% 32% 0% 0% 
500 34% 1% 1% 0% 0% 0% 

1000 10% 0% 0% 0% 0% 0% 

β=1000 

25 84% 58% 28% 69% 12% 1% 
50 82% 49% 25% 56% 2% 0% 

100 76% 34% 18% 33% 0% 0% 
500 36% 1% 1% 0% 0% 0% 

1000 12% 0% 0% 0% 0% 0% 
A=500  n φ=0.2 φ=0.5 φ=0.8 φ=0.2 φ=0.5 φ=0.8 

P=0.999 

β=200 

25 87% 70% 40% 84% 52% 18% 
50 87% 71% 43% 81% 38% 10% 

100 88% 70% 44% 75% 20% 3% 
500 86% 62% 40% 35% 0% 0% 

1000 82% 51% 33% 11% 0% 0% 

β=1000 

25 87% 70% 40% 86% 66% 34% 
50 88% 72% 44% 87% 63% 32% 

100 88% 72% 46% 86% 55% 25% 
500 88% 71% 47% 74% 17% 2% 

1000 87% 69% 45% 59% 3% 0% 

P=0.9 

β=200 

25 87% 69% 39% 80% 37% 8% 
50 87% 69% 42% 75% 20% 2% 

100 87% 66% 42% 63% 5% 0% 
500 80% 45% 29% 12% 0% 0% 

1000 71% 27% 17% 1% 0% 0% 

β=1000 

25 87% 70% 40% 82% 42% 11% 
50 87% 70% 42% 78% 26% 4% 

100 87% 68% 42% 67% 9% 1% 
500 82% 51% 32% 18% 0% 0% 

1000 75% 34% 22% 2% 0% 0% 
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5.6 Summary 

In this chapter, considering the continuous review (Q,R) inventory model with the cost 

function proposed by Hadley & Whitin (1963) we developed a procedure to determine the 

target inventory measures when the issue of both correlated demand and unknown demand 

parameters was addressed. Considering that the demand process follows the first order 

autoregressive model, AR(1), we developed for the first time estimators for the optimal order 

quantity, optimal reorder point and minimum total cost, using the maximum likelihood 

estimators for the stationary mean, the stationary variance and the theoretical autocorrelation 

coefficient at lag one. 

At first, we studied under which conditions the independent demand model can be a good 

approximation to handle the autocorrelated demand. The investigation was based on the size 

of approximation error in computing the minimum total cost (RAE) for the case in which the 

demand parameters are known. While, on the other hand, when unknown demand parameters 

exist the investigation was based on the actual probability (COV) the prediction interval of the 

independent demand model to include the true minimum cost of an AR(1) demand process. 

From the analysis performed, we concluded that the use of the independent model, apart 

from the size of the first order autocorrelation coefficient, depends on the sizes of A, s, L, n 

and β. In particular, we find out that better approximation is achieved when: 

a) for positive autocorrelation, φ approaches low autocorrelation levels, 

b) for negative autocorrelation, φ approaches low or moderate autocorrelation levels, 

c) large cycle service levels, P, exist, 

d) the lead-time, L, is getting smaller, 

e) the shortage cost, s, is getting smaller, 

     f) the reference period, β, increases but in accordance with the values of the other  

     parameters.  

Based on these remarks, we would not recommend to practice any flat permissible sizes for 

the parameter values in order to make the choice of an independent demand model when the 

demand data generated by autocorrelated structure. We believe that this choice should be left 

to the subjective criteria of the researchers. Using the analysis and the results of this chapter 

we help them to set their own rules for deciding when the independent demand model can 

give acceptable approximations to target inventory measures in the case where autocorrelated 

demand is not negligible. 
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Chapter 6 

Contributions, Conclusions and Extensions of the Thesis 

 

6.1 Introduction 

In this chapter, we discuss the main issues addressed in our research and summarize our 

contributions. Further, we identify the limitations of our theoretical work and suggest avenues 

for further research. 

 

This research aspires to take forward the current state of knowledge on the continuous 

review (Q,R) inventory model. 

 

The objectives of this research as stated in chapter 1 of the thesis are as follows: 

 

1. To examine the convexity problem and to identify the unique minimum for a 

cost function with exact or approximate expressions for the expected on-hand 

inventory level at any point in time 

2. To develop algorithms in order the optimal solution to be attained 

3. To derive optimal policies for unimodal and J-shaped lead-time demand 

distributions 

4. To investigate how the values of the cost parameters affect the optimal solution 

5. To develop estimators for target inventory measures 

6. To derive asymptotic confidence interval for a cost function 

7. To test the validity of the theoretical results on a set of generated data through 

Monte-Carlo simulation 

8. To identify optimal solutions for correlated demand. 

 

All the objectives have been achieved and the contributions of the thesis are summarized in 

the following section. 
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6.2 Contributions 

 

Our contributions can be summarized as follows: 

 

 A theoretically optimization procedure for the Hadley & Whitin’s (1963) cost 

function which results from the sum of the expected annual ordering, inventory 

carrying and shortage costs is proposed. Using exact or approximate expression for 

the expected on-hand inventory level at any point in time, new efficient 

optimization procedures are presented. (Objective 1) 

 

 For the Hadley & Whitin’s (1963) cost function the conditions under which 

convexity exists have derived and displayed. New algorithms are proposed which 

ensure the unique minimum of this cost function. (Objectives 1 and 2) 

 

 The effects of the cost parameters on the target inventory measures are studied. 

Threshold values for the cost parameters are obtained in order the unique minimum 

to be attained either through mathematical optimization or when the optimal 

reorder point takes on the value zero. (Objectives 1, 2, 3 and 4) 

 

 Optimal solutions are derived for different lead-time demand distributions, namely 

either J-shaped or unimodal. The managerial implications of increasing lead-time 

demand variability on the optimal target inventory measures are investigated. 

(Objectives 1, 2 and 3) 

 

 For the first time estimators for target inventory measures are developed for either 

independent or correlated demand. (Objectives 5, 7 and 8) 

 

 Based on the asymptotic properties of the estimators, confidence intervals are 

derived for the true minimum value of the cost function (Objective 6) 
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 Coverage is used as a statistical measure in order to evaluate the performance of the 

confidence interval whose validity is tested by means of Monte-Carlo simulation on 

theoretically generated data. (Objectives 6 and 7) 

 

 The effects of the autocorrelated demand on the optimal solutions are investigated. 

(Objective 8) 

 

6.3 Conclusions 

In this section the main issues explored in this Ph.D. research are drawn together and our 

conclusions are discussed. 

 

To the extent of our knowledge, for the continuous review (Q,R) inventory system with 

backorders and fixed lead-time there are many unsolved practical problems. Considering a 

single echelon structure for the inventory system, we want to determine the optimal order 

quantity Q and the optimal reorder point R for a given item after minimizing the total cost 

function. If the system stocks more than a single item, then we assume that there are no 

interactions between them. Thus, for the average total cost function we study the convexity 

problem and we explore the existence of a unique minimum either for exact or approximate 

expressions for the expected on-hand inventory level at any point in time. In particular, we 

explore the effects of the cost parameters on the optimal solution and we develop algorithms 

for finding the minimum cost.  

Subsequently, since there are not studies which are addressed with the effects of demand 

estimation on target inventory measures neither for autocorrelated (ARMA) nor independent 

demand processes, for the first time we estimate the unknown parameters of demand 

distribution and we develop estimators for the target inventory measures which are explored 

through Monte-Carlo simulation. Further, we investigate the effect of a serially correlated 

demand process on the optimal inventory policies. 
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Our conclusions can be summarized as follows: 

 

A) Exact cost function: 
 

A.1) Independent demand with known demand parameters 

 

 Under J-shaped and unimodal lead-time demand distributions we derive a general 

condition to identify when the minimum of the exact cost function 

 

(a) is obtained through mathematical optimization and  

 

(b) occurs when the reorder point takes on the value zero.  

 

Interval values of the cost parameters are obtained from the general condition in 

order the minimum cost to occur at zero reorder point. Further, the limits of these 

intervals are independent of the form of the lead-time demand distribution and to 

compute them we need, apart from the cost parameter values, the annual expected 

demand and the variance of the lead-time demand. 

 

 We offer an algorithm for finding the minimum of the exact cost function. After 

some numerical experimentation, we observed that as the ordering cost increases 

we move from a situation where the unique minimum cost is attained at a positive 

reorder point to a situation where the minimum cost occurs at zero reorder point. 

 

 We investigate the effects of the lead-time demand variability on the target 

inventory measures. As CV raises with fixed cost parameter values we result in 

larger optimal order quantities and larger minimum costs while the reorder points 

and cycle service levels decline. From the managerial aspects of inventory this 

means that as lead-time demand variability grows the optimal policies lead to 

excessively large orders, zero reorder points and higher minimum costs. 
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B) Hadley &Whitin cost function: 

 

B.1) Independent demand with known demand parameters 

 

 For the continuous review  R,Q  inventory model with backorders and fixed lead-

time, when (a) the Hadley-Whitin (H-W) expression  stocksafety  2Q   is used to 

evaluate the expected annual inventory carrying cost, and (b) the cost per unit 

backordered is used to calculate the annual expected shortage cost, we showed that, 

given a non-negative reorder point the convexity of the H-W cost function depends 

on the monotony of the first derivative of the lead-time probability density 

function.  

 

 Selecting the class of unimodal lead-time demand distributions for which the 

probability density function vanishes at 0R   and when R , we derive 

general conditions for determining the optimal solution in terms of Q and R values 

ensuring the minimum of H-W cost function. 

 

 We showed that a unique minimum cost can be found and the process of finding 

out the associated optimal order quantities and reorder points depends upon the 

values of the fixed ordering cost, the unit shortage cost, and the unit holding cost.  

 

 The analysis demonstrated that as the unit shortage cost declines, or the fixed 

ordering cost increases, we move between three cases of optimal solutions which 

lead to a unique minimum cost. The three cases are: 

 

1. There is a unique optimal solution which is obtained after solving the equations 

resulted from the first-order conditions minimizing the H-W cost function. 

 

2. The minimum of the H-W cost function is attained after comparing the cost at 

0R   with the “local” minimum cost at the optimal solution obtained in case 

1.  

 

3. The minimum of the H-W cost function occurs at 0R  . 
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 These three cases are integrated to a general algorithm, and its application is 

illustrated when the lead-time demand has the Normal and the Log-Normal 

distribution. 

 

 The added value of the general algorithm in the relevant inventory literature is 

illustrated by comparing the minimum of HWCF taken after following the 

algorithm with the corresponding minimum of the exact cost function. The latter 

one is obtained by replacing in the cost function the H-W expression 

 stocksafety  2Q   with the exact expression of the expected on-hand inventory at 

any point in time. 

 

 Contrary to what is believed about the validity of the H-W expression, we show 

that valid approximations using this expression occur even when the cycle service 

level (CSL) is zero, provided that the coefficient of variation is low, preferably 

below 1.  

 

B.2) Independent demand with unknown demand parameters 

 

 Considering fixed lead-time, normally distributed lead-time demand and by 

assuming that the values of demand parameters are unknown we develop an 

estimation process for the minimum value of the Hadley & Whitin’s (1963) cost 

function. 

 

 We make an estimation policy with the assumption that the cycle service level is 

constant in order to study asymptotically the statistical properties of the estimator 

for the minimum cost of the reference period.  

 

 Using ML estimators for the parameters of the Normal distribution we develop, for 

the first time, estimators for the optimal order quantity, optimal reorder point and 

minimum cost of the reference period. 
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 Confidence interval for the minimum cost is derived whose validity is tested 

through Monte-Carlo simulations in different sample sizes. To evaluate the 

performance of the confidence interval, we consider the coverage (COV) as a 

statistical measure. 

 

 Experimenting with different values of the cycle service level (CSL), we find out 

that when CSL decreases then the coverage is getting marginally lower. 

 

 Acceptable COVs greater than 90% always exist for all the combinations of 

parameter values. For this reason, in order to give some crucial managerial 

recommendations regarding to the choice of parameter values of the continuous 

review model, we extend the analysis and examine also the expected half length of 

the estimated confidence intervals. We suggest to practice that better precision, 

namely smaller EHLs, are achieved when either the sample size and the cycle 

service level increase or the lead-time, the reference period and the shortage cost 

are getting smaller. 

 

 Investigation about the use of the Hadley-Whitin’s cost function instead of the 

exact cost function has been conducted. Using simulation analysis we find out that 

the actual probability the confidence interval for the minimum value of the H-W 

cost function to include the true minimum value of the exact cost function 

approaches sizes larger than 90% for all the combinations of parameter values. This 

means that with unknown demand parameters the H-W cost function approximates 

well the exact cost function even when large stockout probabilities exist. 

 

B.3) Correlated demand with unknown demand parameters 

 

 We develop a procedure to determine the target inventory measures when the issue 

of both correlated demand and unknown demand parameters is addressed for the 

Hadley & Whitin’s cost function. 
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 Through numerical experimentation we find out that when the first order 

autocorrelation coefficient, the lead-time, the stockout probability, the reference 

period, the ordering cost and the shortage cost increase then the minimum cost is 

getting larger. 

 

 For the AR(1) model, we develop for the first time estimators for the optimal order 

quantity, optimal reorder point and minimum total cost, using the maximum 

likelihood estimators for the stationary mean, the stationary variance and the 

theoretical autocorrelation coefficient at lag one. 

 

 We study under which conditions the independent demand model can be a good 

approximation to handle the autocorrelated demand. The investigation was based 

on a statistical measure which is related to the size of approximation error in 

computing the minimum total cost for the case in which the demand parameters are 

known. While, on the other hand, when unknown demand parameters exist the 

investigation was based on the actual probability the prediction interval of the 

independent demand model to include the true minimum cost when in fact the 

demand follows the AR(1) model. 

 

 We find out that better approximation can be achieved when 

a) for positive autocorrelation, φ approaches low autocorrelation levels, 

b) for negative autocorrelation, φ approaches low or moderate  

    autocorrelation levels, 

c)  large cycle service levels, P, exist, 

d) the lead-time, L, is getting smaller, 

e) the shortage cost, s, is getting smaller, 

f) the ordering cost, A, increases, 

g) the reference period, β, increases but in accordance with the values of the  

                             other parameters.  
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 Concluding, we would not recommend to practice any flat permissible sizes for the 

parameter values in order to make the choice of an independent demand model 

when autocorrelated demand occurs. We believe that this choice should be left to 

the subjective criteria of the researchers. 

 

6.4 Further research 

In this section we summarize the limitations of the thesis and suggest avenues for further 

research. 

 

 Our thesis is built around the continuous review (Q,R) inventory model. An interest 

direction for future research is the determination of corresponding inventory 

decision values for periodic review models after estimating the target inventory 

measures. 

 

 This thesis focuses on a continuous review policy for which when the inventory 

position (on-hand plus on order minus backorders) drops to or falls below the 

reorder point R then an order of size Q is placed and is delivered after a fixed 

period of time (lead-time) has elapsed. For this review policy, we offer a theoretical 

work assuming either known or unknown demand parameters. An interesting 

avenue for further research may be the performance of this inventory policy for 

variable lead-time and unknown demand parameters. 

 

 Based on the fact that in this study we examine the backorders model with either 

known or unknown demand parameters, an interesting aspect to investigate in the 

future is to consider the lost-sales model with unknown demand parameters. 

 

 In this thesis, we examine the exact annual total cost function which results from 

the sum of the annual expected ordering, holding and shortage costs. Given, 

however, that different ways to compute the holding and shortage costs have been 

suggested in the relevant literature, this type of continuous review policy can be 

differentiated according to the form of the annual total cost objective function. 
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Therefore, interesting avenues to investigate in the future are to determine the 

target inventory measures when unknown demand parameters exist and we use: 

 

a) Different approximate expressions for the expected on-hand inventory 

level at any point in time. Specially, except the Hadley & Whitin (1963) 

case which is examined in this work, in the literature many studies have 

been conducted which can be analyzed in the future (e.g., Holt et al., 

1960; Wagner, 1975; Love, 1979; Yano, 1985). 

 

b) Different shortage cost models. In this thesis, we consider a shortage cost 

per unit backordered. Other models suggested in the literature and can be 

used are either a fixed cost per stockout occasion or a shortage cost per 

unit backordered per year.  

 

 In this work, we make the assumption that the unique minimum cost is obtained for 

positive reorder points. In order to find the unique minimum when the degeneracy 

problem exists, namely there is not optimal solution after minimizing the first order 

conditions of the cost function and thus the reorder point is negative, we consider 

that the unique minimum occurs at zero reorder point. Therefore, considering that 

the reorder point can take either positive or negative values, a further research 

which could be proved useful is to extend our theoretical work for the case in 

which we use the Lau et al.’s (2002b) cost function. 

 

 In chapter 5, we investigate the effects of the correlated demand on the target 

inventory measures by using the relevant moments of the lead-time demand which 

give a fixed reorder point in each inventory cycle. An interesting direction for 

future research is to consider the method of forecasts which provides a variable 

reorder point and gives the chance to study the short term effect of the 

autocorrelation on the distribution parameters. 

 

 In this thesis, the validity of our theoretical work was checked by means of 

simulation on theoretically generated data. A next stage of research may be 

intended to assess the performance of the theoretical work in empirical demand 

data series.  
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