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Περίληψη 
 
Γραμμικά συστήματα της μορφής Ax = b, για συμμετρικούς πίνακες με           
κυρίαρχη διαγώνιο, προκύπτουν πολύ συχνά σε προβλήματα       
προσομοίωσης πολύ μεγάλης κλίμακας κυκλωμάτων. Την τελευταία       
δεκαετία έχουν αναπτυχθεί ένα πλήθος εξειδικευμένων επιλυτών με        
σκοπό να αντιμετωπίσουν περιορισμένες περιπτώσεις από συστήματα       
τέτοιου είδους που προκύπτουν από μία συλλογή ποικίλων        
προβλημάτων. Σκοπός αυτής της διπλωματικής εργασίας είναι η        
επιτάχυνση της απόδοσης ενός παρόμοιου επιλυτή πάνω σε        
παράλληλες αρχιτεκτονικές για συστήματα τα οποία εμφανίζονται στην        
προσομοίωση κυκλωμάτων πολύ μεγάλης κλίμακας. Ο επιλυτής αυτός        
στηρίζεται στις αρχές της θεωρίας γράφων και επιτυγχάνει εξαιρετικά         
αποτελέσματα ενώ παράλληλα παρέχει ισχυρές εγγυήσεις για την        
ταχύτητα   σύγκλισης. 
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Abstract 
 
Linear systems of the form Ax = b, on symmetric diagonally dominant            
matrices, occur frequently in very large scale circuit simulation. In the           
past decade a multitude of specialized solvers have been developed to           
tackle restricted instances of SDD systems for a diverse collection of           
problems. In this thesis, we try to accelerate the performance of a            
similar solver on parallel architectures for systems that occur in very           
large scale circuit simulation. The solver is based on support graph           
theory principles and it achieves state of the art empirical results while            
providing   robust   guarantees   on   the   speed   of   convergence.   
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Chapter   1 
 
Introduction 
 
1.1   Problem   Description 
 
Circuit simulation is a technique to control and verify the design of            
electrical and electronic circuits, using mathematical models on the         
computer software. New designs can be tested and evaluated without          
actually constructing circuits or devices. It is used across a wide           
spectrum of applications, ranging from integrated circuits and        
microelectronics to electrical power distribution networks and power        
electronics. Simulating a circuit’s behavior before actually building it         
can greatly improve design efficiency by making faulty designs known          
as such, and providing insight into the behavior of electronics circuit           
designs. Almost all integrated circuits design relies heavily on         
simulation. 
 
 
1.2   Thesis   Contribution 
 
The circuit simulation is based on the solution of linear systems in the             
form Ax=b. These systems in circuit simulation arise after the Modified           
Nodal Analysis or MNA. Several algorithms are based on solving such           
sort of linear systems. The contribution of this thesis is implementation           
of the algorithm we ported the most time consuming part of the solver             
to a GPU, using the Compute Unified Device Architecture (CUDA)          
where is provided by NVIDIA, and addition of Combinatorial Multigrid          
(CMG) solver in the method preconditioned conjugate gradient (PCG)         
which is used as a preconditioner in solving symmetric diagonally          
dominant   (SDD)   systems. 
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Chapter   2 
 
Solving   Linear   Systems   𝜜𝒙   =   𝒃 
 
The methods used for solving linear systems 𝑨𝒙 = 𝒃 divided into direct             
and iterative methods. A direct method solving the system after a finite            
number of operations, which depends on the size N of the linear            
system. In contrast, iterative methods calculate an approximation of the          
real   solution   of   the   system,   given   a   tolerance   level. 
 
 
2.1   Sparsity   Overview 
Consider   the   solution   of   linear   systems   of   the   form 
 

𝐴𝑥   =   𝑏, 
 

where A is a nxn matrix, and both x and b are nx1 vectors. Of special                
interest is the case where A is large and sparse. The term sparse             
above refers to the relative number of non-zeros in the matrix A. A nxn              
matrix A is considered to be sparse if A has only O(n) non-zero entries.              
In this case, the majority of the entries in the matrix are zeros, which do               
not have to be explicitly stored. There are many ways of storing a             
sparse matrix. Whichever method is chosen, some form of compact          
data is required that avoids storing the numerically zero entries in the            
matrix. It needs to be simple and flexible so that it can be used in a                
wide range of matrix operations.This need is met by the primary data            
structure in CSparse, a compressed-column matrix. Some basic        
operations that operate on this data structure are matrix-vector         
multiplication, matrix-matrix multiplication, matrix addition, and      
transpose. 
 
The simplest sparse matrix data structure is a list of the nonzero entries             
in arbitrary order. The list consists of two integer arrays i and j and one               
real   array   x   of   length   equal   to   the   number   of   entries   in   the   matrix. 
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For   example,   the   matrix 
 

 
 

is   presented   in   zero-based   triplet   form   below. 
 

 
 

The triplet form is simple to create but difficult to use in most sparse              
matrix algorithms. The compressed-column (CCS) form is more useful         
and is used in almost all functions in CSparse. An m-by-n sparse matrix             
that can contain up to 𝑛𝑧𝑚𝑎𝑥 entries is represented with an integer array             
p of length n + 1, an integer array i of length 𝑛𝑧𝑚𝑎𝑥, and a real array 𝑥 of                   
length   𝑛𝑧𝑚𝑎𝑥. 
 

 
 

One of the goals of dealing with sparse matrices is to make efficient             
use of the sparsity in order to minimize storage throughout the           
computations, as well as to minimize the required number of          
operations. Sparse linear systems are often solved using different         
computational techniques than those employed to solve dense        
systems. 
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2.2   Iterative   Methods 
 
The iterative methods of solving linear systems of the form 𝐴𝑥 = 𝑏 are              
divided   into   stationary   and   non-stationary. 
 
2.2.1   Stationary   Methods 
Iterative   methods   that   can   be   expressed   in   the   simple   form 
 

 
 

(where neither B nor c depend upon the iteration count k) are called             
stationary   iterative   methods. 
 
2.2.1.1   The   Jacobi   Method 
The Jacobi method is based on solving for every variable locally with            
respect to the other variables; one iteration of the method corresponds           
to solving for every variable once. The resulting method is easy to            
understand   and   implement,   but   convergence   is   slow. 
 
The   definition   of   the   Jacobi   method   can   be   expressed   as 

 
 

 
The   Jacobi   Method 
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2.2.1.2   The   Gauss-Seidel   Method 
 
The Gauss-Seidel method is like the Jacobi method, except that it uses            
updated values as soon as they are available. In general, if the Jacobi             
method converges, the Gauss-Seidel method will converge faster than         
the   Jacobi   method,   though   still   relatively   slowly. 
 
The   definition   of   the   Gauss-Seidel   method   can   be   expressed   as 
 

 
 

 
The   Gauss-Seidel   Method 
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2.2.2   Non-stationary   Methods 
 
Nonstationary methods differ from stationary methods in that the         
computations involve information that changes at each iteration.        
Typically, constants are computed by taking inner products of residuals          
or   other   vectors   arising   from   the   iterative   method. 
 
2.2.2.1   Conjugate   Gradient   (CG) 
 
The Conjugate Gradient method is an effective method for symmetric          
positive definite systems. The method proceeds by generating vector         
sequences of iterates, residuals corresponding to the iterates, and         
search directions used in updating the iterates and residuals. Although          
the length of these sequences can become large, only a small number            
of vectors needs to be kept in memory. In every iteration of the method,              
two inner products are performed in order to compute update scalars           
that are defined to make the sequences satisfy certain orthogonality          
conditions. On a symmetric positive definite linear system these         
conditions imply that the distance to the true solution is minimized in            
some   norm. 

 

The   Preconditioned   Conjugate   Gradient   Method 
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2.2.2.2   BiConjugate   Gradient   (BiCG) 
 

The BiConjugate Gradient method generates two CG-like sequences of         
vectors, one based on a system with the original coefficient matrix A,            
and one on  . This method, like CG, uses limited storage. It is useful              
when the matrix is nonsymmetric and nonsingular; however,        
convergence may be irregular. BiCG requires a multiplication with the          
coefficient   matrix   and   with   its   transpose   at   each   iteration. 
 

 
The   Preconditioned   BiConjugate   Gradient   Method 
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2.3   Computational   Aspects   of   the   Methods 
 
Efficient solution of a linear system includes the selection of the proper            
choice of iterative method. However, to obtain good performance,         
consideration must also be given to the computational kernels of the           
method and how efficient they can be executed on the target           
architecture. The performance of direct methods, is largely that of the           
factorization of the matrix. However, this lower efficiency of execution          
does not imply anything about the total solution time for a given            
system. Furthermore, iterative methods are usually simpler to        
implement than direct methods, and since no full factorization has to be            
stored,   they   can   handle   much   larger   systems   than   direct   methods. 
 
 

Method Inner 
Product 

SAXPY Matrix-Vector 
Product 

Precond 
Solve 

Storage 
Reqmnts 

Jacobi     Matrix+3n 

Gauss 
Seidel 

     

CG 2 3 1 1 Matrix+6n 

BiCG 2 5 2 2 Matrix+10n 

 
 
2.4   Multigrid   Method 
 
MG methods in numerical analysis is defined as a group of algorithms            
for solving differential equations using a hierarchy of discretizations.         
They are an example of a class of techniques called multiresolution           
methods, very useful in problems exhibiting multiple scales of behavior.          
For example, many basic relaxation methods exhibit different rates of          
convergence for short and long wavelength components, suggesting        
these different scales be treated differently, as in a Fourier analysis           
approach to multigrid. MG methods can be used as solvers as well as             
preconditioners.  
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The main idea of MG is to accelerate the convergence of a basic             
iterative method by global correction from time to time, accomplished          
by solving a coarse problem. This principle is similar to interpolation           
between coarser and finer grids. The typical application for multigrid is           
in the numerical solution of elliptic partial differential equations in two or            
more   dimensions. 
 
Multigrid can be applied in combination with any of the common           
discretization techniques.MG methods are among the fastest solution        
techniques known today. In contrast to other methods, multigrid         
methods are general in that they can treat arbitrary regions and           
boundary conditions. They do not depend on the separability of the           
equations   or   other   special   properties   of   the   equation. 
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Chapter   3 
 
Preconditioners 
 
The convergence rate of iterative methods depends on spectral         
properties of the coefficient matrix. For SPD systems, the rate of           
convergence of the conjugate gradient method depends on the         
distribution of the eigenvalues of A. The purpose of preconditioning is           
that the transformed matrix in question will have a smaller spectral           
condition   number,   and   eigenvalues   clustered   around   1. 
 
If M is a nonsingular matrix that approximates A, then the linear system             
has   the   same   solution,   but   must   be   significantly   easier   to   solve. 
 

 
 
In the case of CG method, the preconditioned matrix not formed            
explicitly, as this would increase the computational requirements, due         
to the reversal of the matrix M. In contrast, the preconditioner is            
reduced to solving a number of linear systems (one in each iteration of             
CG   method),   described   by   the   following   equation: 
 

𝜧𝒛=𝒓 
 

An efficient preconditioner should approximate well the system matrix         
so that the matrix and to accelerate the convergence rate of            
the   method. 
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3.1   Jacobi   Preconditioner  
 
The preconditioner Jacobi is one of the simplest forms of          
preconditioning, in which the preconditioner is selected to be the          
diagonal   elements   of   the   matrix    P=diag(A).   Assuming    ,   we   get 
 

 
 

It   is   effective   for   diagonal   dominant   matrix   A. 
 
 
3.2   SSOR   Preconditioner  
 
Assume   we   have   a   symmetric   matrix   A.   If   this   matrix   is   decomposed   as 
 

 
 

in its diagonal, lower, and upper triangular part, the SSOR matrix is            
defined   as 
 

 
 

or,   parametrized   by   ω 
 

 
 

The SSOR matrix is given in factored form, so this preconditioner           
shares many properties of other factorization-based methods. For        
example, its suitability for vector processors or parallel architectures         
depends   strongly   on   the   ordering   of   the   variables. 
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3.3   Incomplete   Factorization   Preconditioners  
 
A broad class of preconditioners is based on incomplete factorizations          
of the coefficient matrix. We call a factorization incomplete if during the            
factorization process certain fill elements, nonzero elements in the         
factorization in positions where the original matrix had a zero, have           
been ignored. Such a preconditioner is then given in factored form           
M+LU with L lower and U upper triangular. The efficacy of the            
preconditioner   depends   on   how   well       approximates    . 
 
When a sparse matrix is factored by Gaussian elimination, fill-in usually           
takes place. In that case, sparsity-preserving pivoting techniques can         
be used to reduce it. The triangular factors L and U of the coefficient              
matrix   A   are   considerably   less   sparse   than   A. 
 
Sparse direct methods are not considered viable for solving very large           
linear systems due to time and space limitations , however, by           
discarding part of the fill-in in the course of the factorization process,            
simple but powerful preconditioners can be obtained in the form M = LU             
m   where   L   and   U   are   the   incomplete   (approximate)   LU   factors. 
 
Summarizing, it can be said that existing solutions to the problem for            
incomplete factorization preconditioners for general SPD matrices       
follow one of two cases: simple inexpensive fixes that result in low            
quality preconditioners in terms of convergence rating, or sophisticated,         
expensive   strategies   that   produce   high   quality   preconditioners.  
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Chapter   4 
 
Combinatorial   Multigrid 
 
4.1   Related   work   on   SDD   solvers 
 
Multigrid was originally conceived as a method to solve linear systems           
that are generated by the discretization of the Laplace (Poisson)          
equation over relatively nice domains. The underlying geometry of the          
domain leads to a hierarchy of grids that look similar at            
different levels of detail; the picture that the word multigrid often           
invokes to mind is that of a tower of 2D grids, with sizes for               

. Its provably asymptotically optimal behavior for certain        
classes of problems soon lead to an effort, known as Algebraic           
Multigrid (AMG), to generalize its principles to arbitrary matrices. In          
contrast to classical Geometric Multigrid (GMG) where the hierarchy of          
grids is generated by the discretization process, AMG constructs the          
hierarchy of “coarse” grids/matrices based only on the algebraic         
information contained in the matrix. Various flavors of AMG, based on           
different heuristic coarsening strategies, have been proposed in the         
literature. AMG has been proven successful in solving more problems          
than GMG, though some times at the expense of robustness, a           
by-product   of   the   limited   theoretical   understanding.  
 
It is fair to say that these theoretically described solvers are still            
impractical due to the large hidden constants, and the complicated          
nature of the underlying algorithms. Combinatorial Multigrid (CMG) is a          
variant of multigrid that reconciles theory with practice. Similarly to          
AMG, CMG builds a hierarchy of matrices/graphs. The essential         
difference from AMG is that the hierarchy is constructed by viewing the            
matrix as a graph, and using the discrete geometry of the graph, for             
example notions like graph separators and expansion. It is, in a way, a             
hybrid of GMG and AMG, or a discrete-geometric MG. The          
re-introduction of geometry into the problem allows us to prove          

18 

http://api.gmath.guru/cgi-bin/gmath?%5Cdpi%7B480%7DA%3DA_0%2C...%2CA_d
http://api.gmath.guru/cgi-bin/gmath?%5Cdpi%7B480%7D2%5E%7Bd-i%7D*2%5E%7Bd-i%7D
http://api.gmath.guru/cgi-bin/gmath?%5Cdpi%7B480%7Di%20%3D%200%2C...%2Cd


 

sufficient and necessary conditions for the construction of a good          
hierarchy and claim strong convergence guarantees for symmetric        
diagonally dominant (SDD) matrices based on recent progress in         
Steiner   preconditioning.  
 
 
4.2   SDD   linear   systems   as   graphs 
 
In this subsection we discuss how SDD linear systems can be viewed            
entirely as graphs. Combinatorial preconditioning advocates a       
principled approach to the solution of linear systems. The core of CMG            
and all other solvers designed in the context of combinatorial          
preconditioning is in fact a solver for a special class of matrices, graph             
Laplacians. The Laplacian A of a graph G = (V, E, w) with positive              
weights,   is   defined   by: 
 

 
 

More general systems are solved via light-weight transformations to         
Laplacians. Consider for example the case where the matrix A has a            
number   of   positive   off-diagonal   entries,   and   the   property 
 

 
 

Positive off-diagonal entries have been a source of confusion for AMG           
solvers, and various heuristics have been proposed. Instead, CMG         
uses a reduction known as double-cover. Let 𝐴 = 𝐴𝑝 + 𝐴𝑛 + 𝐷, where D                
is the diagonal of A and Ap is the matrix consisting only of the positive               
off-diagonal   entries   of   A.   It   is   easy   to   verify   that 
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In this way, the original system is reduced to a Laplacian system, while             
at most doubling the size. In practice it is possible to exploit the obvious              
symmetries of the new system, to solve it with an even smaller space             
and   time   overhead. 
 
Matrices of the form  , where A is a Laplacian and D e is a               
positive diagonal matrix have also been addressed in various ways by           
different AMG implementations. In CMG, we again reduce the system          
to a Laplacian. If d e is the vector of the diagonal elements of D, we                
have 
 

 
 

Again it’s possible to implement the reduction in a way that exploits the             
symmetry of the new system, and with a small space and time            
overhead   work   only   implicitly   with   the   new   system. 
 
A   symmetric   matrix   A   is   called   diagonally   dominant   (SDD),   if 
 

 
 

The two reductions above can reduce any SDD linear system to a            
Laplacian system. Symmetric positive definite matrices (SPD) with        
non-positive off-diagonals are known as M-matrices. It is well known          
that if A is an M-matrix, there is a positive diagonal matrix D such that               

where L is a Laplacian. Assuming D is known, an M-system            
can also be reduced to a Laplacian system via a simple change of             
variables. In many application D is given, or it can be recovered with             
some   additional   work. 
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4.3   The   Multigrid   algorithm 
 
The main idea behind a two-level multigrid is that the current smooth            

residual   error   r   =   𝑏   -   𝐴𝑥,   can   be   used   to   calculate   a   correction     
where Q is a smaller graph and R is an m×n restriction operator. The              
correction is then added to the iterate x. The hope here is that for              

smooth residuals, the low-rank matrix is a good         
approximation of  . Algebraically, this correction is the application of          

the operator to the error vector  𝑒 . The choice of Q            
is most often not independent from that of R, as the Galerkin condition             
is   employed: 
 

 
 

At a high level, the key idea behind CMG is that the provably small              

condition number , is equal to the condition number          

where       and    . 
 

 
Two-level   Combinatorial   Multigrid 

 
The two-level algorithm can naturally be extended into a full multigrid           
algorithm, by recursively calling the algorithm when the solution to the           
system with Q is requested. This produces a hierarchy of graphs           

. The full multigrid algorithm we use, after simplifications in          
the   algebra   of   the   two-level   scheme   is   as   follows 
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Full   Combinatorial   Multigrid 

 
If   𝑛𝑛𝑧   (𝐴)   denotes   the   number   of   non-zero   entries   in   matrix   A,   we   pick 
 

 
 

This choice for the number of recursive calls, combined with the fast            
geometric decrease of the matrix sizes, targets a geometric decrease          
in   the   total   work   per   level,   while   optimizing   the   condition   number. 
 
As we can see at the above figure, the operation of sparse            
matrix-vector multiplication (SpMV) occurs in steps 3, 7 and 11 of the            
CMG algorithm. Those multiplications consist the worst bottleneck in         
CMG solver, so our implementation focuses on solving those         
bottlenecks accelerating the time required for those SpMV operations.         
The full Combinatorial Multigrid algorithm is called from PCG method          
every   time   we   have   to   solve       in   preconditioner-solve   step. 
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Chapter   5 
 
GPU   Architecture 
 
The Graphics Processing Units (GPUs) traditionally used for graphical         
applications mainly in computer games. The architecture of GPUs differ          
significantly from that of CPUs and especially newer multi-core CPUs.          
Typically GPUs are composed of hundreds of processors SIMD (Single          
Instruction Multiple Data) who offer the ability to perform parallel          
operations. Conversely the number of processors and even more on          
screened   multi-core   CPUs   are   dramatically   lower. 
 

 
CPU   vs   GPU   Architecture 

 
In addition, the transistor of GPUs devote themselves to computational          
units instead of the caches in the case of CPUs, with the caches of              
GPUs are typically 10 times smaller than those of the CPU. The            
following figure shows an example of GPU architecture model. Shows          
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how the GPU with multiple processors acting as a coprocessor for the            
CPU. 
 

 
GPU   Architecture 

 
This special architectural style of GPUs soon led to the escape of the             
exclusively graphic applications and their use in general-use        
applications / calculations - General Purpose computation on GPU         
(GPGPU). The GPGPU represent for general purpose calculation on         
Graphics Processing Units, known as GPU computation. The GPUs         
with the use of many-core processors are able to achieve high           
performance calculations and data output. Today, GPUs are general         
purpose parallel processors to support interfaces to programming        
languages like C. Developers of applications on GPUs frequently         
achieve   speedups   versus   optimized   CPU   applications.  
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5.1   Architecture   of   graphics   processing   units 
 
Modern graphics processing units consist of a multi-processor number,         
each of which has a specific number of cores. Each multi-processor           
contains 8, 32/48 or 192 single cores depending generation of the card.            
The GPU combines with the CPU via the PCI Express bus. Each            
processing unit has a different memory levels, global memory, texture          
memory and constant, the shared memory of each multi-processor and          
registers.   The   following   figure   shows   the   Fermi   architecture.  
 

 
 

As for the memory hierarchy in which graphics unit shown below. There            
is a global memory and the texture and constant memories. Also, each            
multi-processor has its own shared memory also an important number          
of registers. The global memory (Device Memory) is dynamic random          
access memory (DRAM), a very large capacity but very slow in           
response. The main memory response is from 400 to 600 clock cycles.            
Data transferred from the main memory of the computer can be stored            
in this memory. Also any outcome is required to return to the main             
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memory of the computer must be located in this memory. In global            
memory can write and read all the threads of a kernel. The shared             
memory is a fast memory, but very small capacity, each multi-processor           
having its own. The shared memory response time is 1-32 clock cycles.            
In the first generation card size was 16KB, while the Fermi architecture            
has   64KB, 
 

 
Fermi   architecture   of   NVIDIA   GPUs 

 
which share the shared memory and the cache (16KB, 48KB).          
Depending on the application can be selected by the programmer how           
many KB will be available for the cache and how much for the shared              
memory. Also important is the fact that the Fermi architecture exist a            
cache per multi-processor as mentioned above and a bigger for all           
multi-processors. The constant memory is a read-only memory, which         
has cache. The texture memory is an small memory which this also has             
cache, helping to improve the efficiency in the generation of the first            
card   and   in   the   third. 
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5.2   Programming   Model 
 
Basic element in executing programs GPUs is the thread. Modern          
GPUs require a very large number of threads to be executed in order to              
have maximum efficiency. This is due to the fact that switching between            
threads not aligns time and thus when a number of threads waiting to             
get data from the global memory immediately changed to another          
thread   block   having   commands   for   execution.  
 
To run a program in the graphics processing unit must first be allocate             
area in the global memory of card and transferred there the data            
required. At this point you can begin execution of the "core". The "core"             
is the part of code that will go for implementation in the GPU. When              
starting a "core" must apart from the usual arguments we give each            
function   of   the   language   C,   to   give   the   number   of   threads   for   execution. 
 
The threads are organized into thread blocks with each 3 dimensions.           
The thread blocks organized into 3 dimensions in a grid of blocks. A             
thread blocks can have more than a specific number of threads for            
execution. This number depends on the generation of the graphics card           
and the "computing capacity". In the first generation the number of           
cards   he   was   512   and   in   next   (Fermi,   Kepler)   1024. 
 
After the implementation of the core is completed, should the data be            
turned back into the computer's main memory so that it can be used by              
the central processing unit. However following be performed and other          
core which is needed data then do not need the data to be returned in               
the computer's memory. This happens many times when we want to           
synchronize threads of different blocks. While the threads of a block           
can be synchronized, there is no similar possibility of threads of           
different   blocks. 
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5.3   Performance   Optimization   Methods 
 
There are several details that one should watch to get the best            
performance from a single graphics card. First of all, we need data            
transfers to and from the card be minimized because they cost in time.             
Also, they should be reduced as much as possible accesses to main            
memory and those that would be to follow a particular pattern. Should            
the threads to read or write in contiguous memory locations. This way            
access to main memory is called coalesced and leads to better           
performance because the accesses of the threads are grouped into          
one. Still, you need to find the appropriate number of blocks and thread             
to be used as much as possible the cores of the card. This depends on               
the requirements in the registers of each thread and of the limitations of             
the material. Important advantage enables the use of shared memory,          
which is faster than the global, but usually can not hold all the data of               
the problem. Another feature that helps the good performance is to run            
as many thread as possible so as to hide the delays of memory.             
Something as important as the previous which it must noticed is that            
anyone should not, as far as possible, the threads have branch           
instructions. Because the threads running concurrently in a        
multi-processor execute the same instruction, a branch instruction        
would lead to a situation in which some of the threads remain inactive             
until you perform the next part of the branch. This leads to decline in              
performance.  
 
We should note that in the last years the NVIDIA gives a very important              
tool for every programmer GPU. The Nsight that functions as add-on           
either the Eclipse or in Visual studio, allows easy debugging          
capabilities and performance check capabilities. An analysis is made of          
all   parameters   and   are   all   points   that   delayed   the   program. 
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Chapter   6 
 
Improving   the   Performance   of   CMG 
 
The CMG solver is an extension of the preconditioned conjugate          
gradient method (PCG). Therefore, its core is based on sparse          
matrix-vector multiplication where M is the Steiner        
preconditioner. The PCG approximates the solution iteratively until the         
solution is satisfactory, so in the solve phase exist too many           
matrix-vector   multiplications   which   are   the   biggest   bottleneck   of   CMG.  
 
 
6.1   Implementation   and   Optimizations 
 
Sparse matrix-vector multiplication (SpMV) is of crucial importance in         
sparse linear algebra as it plays an important role in many numerical            
and scientific computing applications such as finite difference and finite          
element based methods. SpMV operation represents the dominant        
computing cost in those problems and it is very important to improve            
the   efficiency   of   the   SpMV   algorithms. 
 
System   Specifications   and   IBM   Power   Grid   Benchmarks 
 
The hardware and software specifications of our system are described          
below 
 
 

CPU Intel(R)   Core(TM)   i7   CPU         870      @ 
2.93GHz 

GPU GeForce   GTX   690 

MEMORY 32GB 

GPU   MEMORY 4GB 

OS Ubuntu   12.04.5   LTS 
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CUDA Cuda   5.5 

GNU   COMPILER gcc   4.7.2 

NVIDIA   COMPILER nvcc   5.5 

 
 
All the power grid benchmarks presented in this section are presented           
below. 
 
 

Netlist #i #n #r #s #v #l 

ibmpg1 10.774 30.638 30.027 14.208 14.308 2 

ibmpg2 37.926 127.238 208.325 1.298 330 5 

ibmpg3 201.054 851.584 1.401.572 461 955 5 

ibmpg4 276.976 953.583 1.560.645 11.682 962 6 
 

IBM   Power   Grid   Benchmarks   for   DC   Analysis 
 

● i   for   current   sources 
● n   for   nodes   (total   number,   does   not   take   shorts   into   account) 
● r   for   resistors   (include   shorts) 
● s   for   shorts   (zero   value   resistors   and   voltage   sources) 
● v   for   voltage   sources   (include   shorts) 
● l   for   metal   layers 

 
 

For the MNA analysis of IBM netlists we used a software we had             
already implemented. This software parses the netlist file and creates          
the corresponding sparse MNA array “A” and right-hand side vector “b”,           
which will be used later for solving the system Ax = b. The following              
table shows the dimensions and the number of non-zero elements of           
the   MNA   arrays   corresponding   to   each   IBM   netlist. 
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Netlist Dimension Non-zeros 

ibmpg1 44.943   ×   44.943 147.315 

ibmpg2 127.565   ×   127.565 544.545 

ibmpg3 852.536   ×   852.536 3.656.107 

ibmpg4 954.542   ×   954.542 4.058.866 

Matrix   size   and   non-zero   elements   of   MNA   arrays 
 
Below are shows the number of hierarchy levels of matrices for each            
benchmark   and   the   average   non-zeros   per   row   for   all   that   matrices. 
 
 

Netlist Hierarchy   Levels Average   non-zeros 
per   row 

ibmpg1 5 4.8 

ibmpg2 6 5.3 

ibmpg3 7 5.3 

ibmpg4 7 5.3 

 
Hierarchy   levels,   average   non-zeros   per   row   and   average   segment   length   for 

the   IBM   benchmarks 
 
 
The CMG solver was taking advantage of the symmetry occurred in our            
SDD matrices by storing only the lower triangular part of the matrix.            
This approach leads to less memory requirements. SpMV        
multiplications for all the levels of the preconditioner included inside the           
operation of the PCG method, are implemented as shown          
below 
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At this approximation, for each element of the sparse matrix that we            
stored, we compute the result for both the corresponding row and for            
the row which corresponds to the symmetric value (which is not stored)            
to   get   the   correct   solution. 
 
However, this method causes problems when we try to implement it on            
a GPU architecture. The problem that occur is that the time where a             
thread with row index “i” adds a value to the current value y[i] of the               
solution vector, at the same time another thread which has row index            
“z” will may also try to add a value to the current value y[i] for the                
corresponding symmetric position at the primal matrix. This case can          
cause wrong results and it can be resolved using atomic operations.           
However, the atomic operations at the GPU and especially those that           
access   the   global   memory   are   very   expensive. 
 
This fact led us to try storing the whole sparse matrices of each             
hierarchy at the memory and make the SpMV. The experimental results           
of this approximation is shown in the below table, where we compare            
the   execution   times   of   those   two   methods. 
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Netlist 

Storing   full   matrix Storing   the   lower   part 

SpMv PCG SpMV PCG 

ibmpg1 2,13 7,54 2,23 7,08 

ibmpg2 0,38 0,71 0,21 0,69 

ibmpg3 3.49 6,92 3,12 6,37 

ibmpg4 2,24 4,42 1,87 4.01 

 
 

The above results show that the only thing we gain taking advantage            
the symmetry is the storage space. By storing only the lower triangular            
part   not   we   earn   hardly   any   speed. 
 
As indicated in the cusparse library of cuda, storage upper or lower            
triangular matrix into symmetric matrices do not offer us nothing more           
than storage space, we do not get more speed from the kernel of             
SpMV. 
 
We mentioned that to solve this system on the GPU in parallel, we             
need to use atomic operations, as mentioned above atomic operations          
are very expensive on the GPU, or to solve the systems of            

and then solve as we have to solve the           
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transpose of the lower triangular matrix where costs 10x times of the            
normal   SpMV. 
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