

ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΙΑΣ
ΠΟΛΥΤΕΧΝΙΚΗ ΣΧΟΛΗ

ΤΜΗΜΑ ΜΗΧΑΝΙΚΩΝ Η/Υ
ΤΗΛΕΠΙΚΟΙΝΩΝΙΩΝ ΚΑΙ

ΔΙΚΤΥΩΝ

Προσομοίωση μεγάλης κλίμακας κυκλωμάτων σε μαζικά
παράλληλες αρχιτεκτονικές

Simulation of large scale circuits on massively parallel
architectures

Διπλωματική Εργασία

Σαχπαλή Χαλήτ

Επιβλέποντες καθηγητές:

Ευμορφόπουλος Νέστωρ, Επίκουρος Καθηγητής

Μάρτιος 2017

1

2

Περίληψη

Γραμμικά συστήματα της μορφής Ax = b, για συμμετρικούς πίνακες με
κυρίαρχη διαγώνιο, προκύπτουν πολύ συχνά σε προβλήματα
προσομοίωσης πολύ μεγάλης κλίμακας κυκλωμάτων. Την τελευταία
δεκαετία έχουν αναπτυχθεί ένα πλήθος εξειδικευμένων επιλυτών με
σκοπό να αντιμετωπίσουν περιορισμένες περιπτώσεις από συστήματα
τέτοιου είδους που προκύπτουν από μία συλλογή ποικίλων
προβλημάτων. Σκοπός αυτής της διπλωματικής εργασίας είναι η
επιτάχυνση της απόδοσης ενός παρόμοιου επιλυτή πάνω σε
παράλληλες αρχιτεκτονικές για συστήματα τα οποία εμφανίζονται στην
προσομοίωση κυκλωμάτων πολύ μεγάλης κλίμακας. Ο επιλυτής αυτός
στηρίζεται στις αρχές της θεωρίας γράφων και επιτυγχάνει εξαιρετικά
αποτελέσματα ενώ παράλληλα παρέχει ισχυρές εγγυήσεις για την
ταχύτητα σύγκλισης.

3

Abstract

Linear systems of the form Ax = b, on symmetric diagonally dominant
matrices, occur frequently in very large scale circuit simulation. In the
past decade a multitude of specialized solvers have been developed to
tackle restricted instances of SDD systems for a diverse collection of
problems. In this thesis, we try to accelerate the performance of a
similar solver on parallel architectures for systems that occur in very
large scale circuit simulation. The solver is based on support graph
theory principles and it achieves state of the art empirical results while
providing robust guarantees on the speed of convergence.

4

Contents
1. Introduction 6

1.1. Problem Description 6
1.2. Thesis Contribution 6

2. Solving Linear Systems 𝜜𝒙 = 𝒃 7
2.1. Sparsity Overview 7
2.2. Iterative Methods 9

2.2.1. Stationary Methods 9
2.2.1.1. The Jacobi Method 9
2.2.1.2. The Gauss-Seidel Method 10

2.2.2. Non-stationary Methods 11
2.2.2.1. Conjugate Gradient (CG) 11
2.2.2.2. BiConjugate Gradient (BiCG) 12

2.3. Computational Aspects of the Methods 13
2.4. Multigrid Method 13

3. Preconditioners 15
3.1. Jacobi Preconditioner 16
3.2. SSOR Preconditioner 16
3.3. Incomplete Factorization Preconditioners 17

4. Combinatorial Multigrid 18
4.1. Related work on SDD solvers 18
4.2. SDD linear systems as graphs 19
4.3. The Multigrid algorithm 21

5. GPU Architecture 23
5.1. Architecture of graphics processing units 25
5.2. Programming Model 27
5.3. Performance Optimization Methods 28

6. Improving the Performance of CMG 29
6.1. Implementation and Optimizations 29

Bibliography 35

5

Chapter 1

Introduction

1.1 Problem Description

Circuit simulation is a technique to control and verify the design of
electrical and electronic circuits, using mathematical models on the
computer software. New designs can be tested and evaluated without
actually constructing circuits or devices. It is used across a wide
spectrum of applications, ranging from integrated circuits and
microelectronics to electrical power distribution networks and power
electronics. Simulating a circuit’s behavior before actually building it
can greatly improve design efficiency by making faulty designs known
as such, and providing insight into the behavior of electronics circuit
designs. Almost all integrated circuits design relies heavily on
simulation.

1.2 Thesis Contribution

The circuit simulation is based on the solution of linear systems in the
form Ax=b. These systems in circuit simulation arise after the Modified
Nodal Analysis or MNA. Several algorithms are based on solving such
sort of linear systems. The contribution of this thesis is implementation
of the algorithm we ported the most time consuming part of the solver
to a GPU, using the Compute Unified Device Architecture (CUDA)
where is provided by NVIDIA, and addition of Combinatorial Multigrid
(CMG) solver in the method preconditioned conjugate gradient (PCG)
which is used as a preconditioner in solving symmetric diagonally
dominant (SDD) systems.

6

Chapter 2

Solving Linear Systems 𝜜𝒙 = 𝒃

The methods used for solving linear systems 𝑨𝒙 = 𝒃 divided into direct
and iterative methods. A direct method solving the system after a finite
number of operations, which depends on the size N of the linear
system. In contrast, iterative methods calculate an approximation of the
real solution of the system, given a tolerance level.

2.1 Sparsity Overview
Consider the solution of linear systems of the form

𝐴𝑥 = 𝑏,

where A is a nxn matrix, and both x and b are nx1 vectors. Of special
interest is the case where A is large and sparse. The term sparse
above refers to the relative number of non-zeros in the matrix A. A nxn
matrix A is considered to be sparse if A has only O(n) non-zero entries.
In this case, the majority of the entries in the matrix are zeros, which do
not have to be explicitly stored. There are many ways of storing a
sparse matrix. Whichever method is chosen, some form of compact
data is required that avoids storing the numerically zero entries in the
matrix. It needs to be simple and flexible so that it can be used in a
wide range of matrix operations.This need is met by the primary data
structure in CSparse, a compressed-column matrix. Some basic
operations that operate on this data structure are matrix-vector
multiplication, matrix-matrix multiplication, matrix addition, and
transpose.

The simplest sparse matrix data structure is a list of the nonzero entries
in arbitrary order. The list consists of two integer arrays i and j and one
real array x of length equal to the number of entries in the matrix.

7

For example, the matrix

is presented in zero-based triplet form below.

The triplet form is simple to create but difficult to use in most sparse
matrix algorithms. The compressed-column (CCS) form is more useful
and is used in almost all functions in CSparse. An m-by-n sparse matrix
that can contain up to 𝑛𝑧𝑚𝑎𝑥 entries is represented with an integer array
p of length n + 1, an integer array i of length 𝑛𝑧𝑚𝑎𝑥, and a real array 𝑥 of
length 𝑛𝑧𝑚𝑎𝑥.

One of the goals of dealing with sparse matrices is to make efficient
use of the sparsity in order to minimize storage throughout the
computations, as well as to minimize the required number of
operations. Sparse linear systems are often solved using different
computational techniques than those employed to solve dense
systems.

8

2.2 Iterative Methods

The iterative methods of solving linear systems of the form 𝐴𝑥 = 𝑏 are
divided into stationary and non-stationary.

2.2.1 Stationary Methods
Iterative methods that can be expressed in the simple form

(where neither B nor c depend upon the iteration count k) are called
stationary iterative methods.

2.2.1.1 The Jacobi Method
The Jacobi method is based on solving for every variable locally with
respect to the other variables; one iteration of the method corresponds
to solving for every variable once. The resulting method is easy to
understand and implement, but convergence is slow.

The definition of the Jacobi method can be expressed as

The Jacobi Method

9

http://api.gmath.guru/cgi-bin/gmath?%5Cdpi%7B480%7Dx%5E%7B(k)%7D%3DBx%5E%7B(k-1)%7D%2Bc

2.2.1.2 The Gauss-Seidel Method

The Gauss-Seidel method is like the Jacobi method, except that it uses
updated values as soon as they are available. In general, if the Jacobi
method converges, the Gauss-Seidel method will converge faster than
the Jacobi method, though still relatively slowly.

The definition of the Gauss-Seidel method can be expressed as

The Gauss-Seidel Method

10

2.2.2 Non-stationary Methods

Nonstationary methods differ from stationary methods in that the
computations involve information that changes at each iteration.
Typically, constants are computed by taking inner products of residuals
or other vectors arising from the iterative method.

2.2.2.1 Conjugate Gradient (CG)

The Conjugate Gradient method is an effective method for symmetric
positive definite systems. The method proceeds by generating vector
sequences of iterates, residuals corresponding to the iterates, and
search directions used in updating the iterates and residuals. Although
the length of these sequences can become large, only a small number
of vectors needs to be kept in memory. In every iteration of the method,
two inner products are performed in order to compute update scalars
that are defined to make the sequences satisfy certain orthogonality
conditions. On a symmetric positive definite linear system these
conditions imply that the distance to the true solution is minimized in
some norm.

The Preconditioned Conjugate Gradient Method

11

2.2.2.2 BiConjugate Gradient (BiCG)

The BiConjugate Gradient method generates two CG-like sequences of
vectors, one based on a system with the original coefficient matrix A,
and one on . This method, like CG, uses limited storage. It is useful
when the matrix is nonsymmetric and nonsingular; however,
convergence may be irregular. BiCG requires a multiplication with the
coefficient matrix and with its transpose at each iteration.

The Preconditioned BiConjugate Gradient Method

12

http://api.gmath.guru/cgi-bin/gmath?%5Cdpi%7B480%7DA%5ET

2.3 Computational Aspects of the Methods

Efficient solution of a linear system includes the selection of the proper
choice of iterative method. However, to obtain good performance,
consideration must also be given to the computational kernels of the
method and how efficient they can be executed on the target
architecture. The performance of direct methods, is largely that of the
factorization of the matrix. However, this lower efficiency of execution
does not imply anything about the total solution time for a given
system. Furthermore, iterative methods are usually simpler to
implement than direct methods, and since no full factorization has to be
stored, they can handle much larger systems than direct methods.

Method Inner
Product

SAXPY Matrix-Vector
Product

Precond
Solve

Storage
Reqmnts

Jacobi Matrix+3n

Gauss
Seidel

CG 2 3 1 1 Matrix+6n

BiCG 2 5 2 2 Matrix+10n

2.4 Multigrid Method

MG methods in numerical analysis is defined as a group of algorithms
for solving differential equations using a hierarchy of discretizations.
They are an example of a class of techniques called multiresolution
methods, very useful in problems exhibiting multiple scales of behavior.
For example, many basic relaxation methods exhibit different rates of
convergence for short and long wavelength components, suggesting
these different scales be treated differently, as in a Fourier analysis
approach to multigrid. MG methods can be used as solvers as well as
preconditioners.

13

http://api.gmath.guru/cgi-bin/gmath?%5Cdpi%7B480%7D1%5Ea
http://api.gmath.guru/cgi-bin/gmath?%5Cdpi%7B480%7D1%5Ea

The main idea of MG is to accelerate the convergence of a basic
iterative method by global correction from time to time, accomplished
by solving a coarse problem. This principle is similar to interpolation
between coarser and finer grids. The typical application for multigrid is
in the numerical solution of elliptic partial differential equations in two or
more dimensions.

Multigrid can be applied in combination with any of the common
discretization techniques.MG methods are among the fastest solution
techniques known today. In contrast to other methods, multigrid
methods are general in that they can treat arbitrary regions and
boundary conditions. They do not depend on the separability of the
equations or other special properties of the equation.

14

Chapter 3

Preconditioners

The convergence rate of iterative methods depends on spectral
properties of the coefficient matrix. For SPD systems, the rate of
convergence of the conjugate gradient method depends on the
distribution of the eigenvalues of A. The purpose of preconditioning is
that the transformed matrix in question will have a smaller spectral
condition number, and eigenvalues clustered around 1.

If M is a nonsingular matrix that approximates A, then the linear system
has the same solution, but must be significantly easier to solve.

In the case of CG method, the preconditioned matrix not formed
explicitly, as this would increase the computational requirements, due
to the reversal of the matrix M. In contrast, the preconditioner is
reduced to solving a number of linear systems (one in each iteration of
CG method), described by the following equation:

𝜧𝒛=𝒓

An efficient preconditioner should approximate well the system matrix
so that the matrix and to accelerate the convergence rate of
the method.

15

http://api.gmath.guru/cgi-bin/gmath?%5Cdpi%7B480%7DM%5E%7B-1%7DAx%3DM%5E%7B-1%7Db
http://api.gmath.guru/cgi-bin/gmath?%5Cdpi%7B480%7DM%5E%7B-1%7DA
http://api.gmath.guru/cgi-bin/gmath?%5Cdpi%7B480%7DM%5E%7B-1%7DA%5Csim%20I

3.1 Jacobi Preconditioner

The preconditioner Jacobi is one of the simplest forms of
preconditioning, in which the preconditioner is selected to be the
diagonal elements of the matrix P=diag(A). Assuming , we get

It is effective for diagonal dominant matrix A.

3.2 SSOR Preconditioner

Assume we have a symmetric matrix A. If this matrix is decomposed as

in its diagonal, lower, and upper triangular part, the SSOR matrix is
defined as

or, parametrized by ω

The SSOR matrix is given in factored form, so this preconditioner
shares many properties of other factorization-based methods. For
example, its suitability for vector processors or parallel architectures
depends strongly on the ordering of the variables.

16

http://api.gmath.guru/cgi-bin/gmath?%5Cdpi%7B480%7DA_%7Bii%7D%5Cneq0
http://api.gmath.guru/cgi-bin/gmath?%5Cdpi%7B480%7DP_%7Bii%7D%5E%7B-1%7D%3D%5Cfrac%7B%5Cdelta_%7Bij%7D%7D%7BA_%7Bij%7D%7D
http://api.gmath.guru/cgi-bin/gmath?%5Cdpi%7B480%7DA%3DD%2BL%2BL%5ET
http://api.gmath.guru/cgi-bin/gmath?%5Cdpi%7B480%7DM%3D(D%2BL)D%5E%7B-1%7D(D%2BL)%5ET
http://api.gmath.guru/cgi-bin/gmath?%5Cdpi%7B480%7DM(%5Comega)%3D%5Cfrac%7B1%7D%7B2-%5Comega%7D(%5Cfrac%7B1%7D%7B%5Comega%7DD%2BL)(%5Cfrac%7B1%7D%7B%5Comega%7DD)%5E%7B-1%7D(%5Cfrac%7B1%7D%7B%5Comega%7DD%2BL)%5ET

3.3 Incomplete Factorization Preconditioners

A broad class of preconditioners is based on incomplete factorizations
of the coefficient matrix. We call a factorization incomplete if during the
factorization process certain fill elements, nonzero elements in the
factorization in positions where the original matrix had a zero, have
been ignored. Such a preconditioner is then given in factored form
M+LU with L lower and U upper triangular. The efficacy of the
preconditioner depends on how well approximates .

When a sparse matrix is factored by Gaussian elimination, fill-in usually
takes place. In that case, sparsity-preserving pivoting techniques can
be used to reduce it. The triangular factors L and U of the coefficient
matrix A are considerably less sparse than A.

Sparse direct methods are not considered viable for solving very large
linear systems due to time and space limitations , however, by
discarding part of the fill-in in the course of the factorization process,
simple but powerful preconditioners can be obtained in the form M = LU
m where L and U are the incomplete (approximate) LU factors.

Summarizing, it can be said that existing solutions to the problem for
incomplete factorization preconditioners for general SPD matrices
follow one of two cases: simple inexpensive fixes that result in low
quality preconditioners in terms of convergence rating, or sophisticated,
expensive strategies that produce high quality preconditioners.

17

http://api.gmath.guru/cgi-bin/gmath?%5Cdpi%7B480%7DM%5E%7B-1%7D
http://api.gmath.guru/cgi-bin/gmath?%5Cdpi%7B480%7DA%5E%7B-1%7D

Chapter 4

Combinatorial Multigrid

4.1 Related work on SDD solvers

Multigrid was originally conceived as a method to solve linear systems
that are generated by the discretization of the Laplace (Poisson)
equation over relatively nice domains. The underlying geometry of the
domain leads to a hierarchy of grids that look similar at
different levels of detail; the picture that the word multigrid often
invokes to mind is that of a tower of 2D grids, with sizes for

. Its provably asymptotically optimal behavior for certain
classes of problems soon lead to an effort, known as Algebraic
Multigrid (AMG), to generalize its principles to arbitrary matrices. In
contrast to classical Geometric Multigrid (GMG) where the hierarchy of
grids is generated by the discretization process, AMG constructs the
hierarchy of “coarse” grids/matrices based only on the algebraic
information contained in the matrix. Various flavors of AMG, based on
different heuristic coarsening strategies, have been proposed in the
literature. AMG has been proven successful in solving more problems
than GMG, though some times at the expense of robustness, a
by-product of the limited theoretical understanding.

It is fair to say that these theoretically described solvers are still
impractical due to the large hidden constants, and the complicated
nature of the underlying algorithms. Combinatorial Multigrid (CMG) is a
variant of multigrid that reconciles theory with practice. Similarly to
AMG, CMG builds a hierarchy of matrices/graphs. The essential
difference from AMG is that the hierarchy is constructed by viewing the
matrix as a graph, and using the discrete geometry of the graph, for
example notions like graph separators and expansion. It is, in a way, a
hybrid of GMG and AMG, or a discrete-geometric MG. The
re-introduction of geometry into the problem allows us to prove

18

http://api.gmath.guru/cgi-bin/gmath?%5Cdpi%7B480%7DA%3DA_0%2C...%2CA_d
http://api.gmath.guru/cgi-bin/gmath?%5Cdpi%7B480%7D2%5E%7Bd-i%7D*2%5E%7Bd-i%7D
http://api.gmath.guru/cgi-bin/gmath?%5Cdpi%7B480%7Di%20%3D%200%2C...%2Cd

sufficient and necessary conditions for the construction of a good
hierarchy and claim strong convergence guarantees for symmetric
diagonally dominant (SDD) matrices based on recent progress in
Steiner preconditioning.

4.2 SDD linear systems as graphs

In this subsection we discuss how SDD linear systems can be viewed
entirely as graphs. Combinatorial preconditioning advocates a
principled approach to the solution of linear systems. The core of CMG
and all other solvers designed in the context of combinatorial
preconditioning is in fact a solver for a special class of matrices, graph
Laplacians. The Laplacian A of a graph G = (V, E, w) with positive
weights, is defined by:

More general systems are solved via light-weight transformations to
Laplacians. Consider for example the case where the matrix A has a
number of positive off-diagonal entries, and the property

Positive off-diagonal entries have been a source of confusion for AMG
solvers, and various heuristics have been proposed. Instead, CMG
uses a reduction known as double-cover. Let 𝐴 = 𝐴𝑝 + 𝐴𝑛 + 𝐷, where D
is the diagonal of A and Ap is the matrix consisting only of the positive
off-diagonal entries of A. It is easy to verify that

19

http://api.gmath.guru/cgi-bin/gmath?%5Cdpi%7B480%7DA_%7Bii%7D%3D%5Csum_%7Bi%20%5Cneq%20j%7D%7CA_%7Bij%7D%7C

In this way, the original system is reduced to a Laplacian system, while
at most doubling the size. In practice it is possible to exploit the obvious
symmetries of the new system, to solve it with an even smaller space
and time overhead.

Matrices of the form , where A is a Laplacian and D e is a
positive diagonal matrix have also been addressed in various ways by
different AMG implementations. In CMG, we again reduce the system
to a Laplacian. If d e is the vector of the diagonal elements of D, we
have

Again it’s possible to implement the reduction in a way that exploits the
symmetry of the new system, and with a small space and time
overhead work only implicitly with the new system.

A symmetric matrix A is called diagonally dominant (SDD), if

The two reductions above can reduce any SDD linear system to a
Laplacian system. Symmetric positive definite matrices (SPD) with
non-positive off-diagonals are known as M-matrices. It is well known
that if A is an M-matrix, there is a positive diagonal matrix D such that

where L is a Laplacian. Assuming D is known, an M-system
can also be reduced to a Laplacian system via a simple change of
variables. In many application D is given, or it can be recovered with
some additional work.

20

http://api.gmath.guru/cgi-bin/gmath?%5Cdpi%7B480%7DA%2BD_e
http://api.gmath.guru/cgi-bin/gmath?%5Cdpi%7B480%7DA_%7Bii%7D%3D%5Csum_%7Bi%20%5Cneq%20j%7D%7CA_%7Bij%7D%7C
http://api.gmath.guru/cgi-bin/gmath?%5Cdpi%7B480%7DA%20%3D%20DLD

4.3 The Multigrid algorithm

The main idea behind a two-level multigrid is that the current smooth

residual error r = 𝑏 - 𝐴𝑥, can be used to calculate a correction
where Q is a smaller graph and R is an m×n restriction operator. The
correction is then added to the iterate x. The hope here is that for

smooth residuals, the low-rank matrix is a good
approximation of . Algebraically, this correction is the application of

the operator to the error vector 𝑒 . The choice of Q
is most often not independent from that of R, as the Galerkin condition
is employed:

At a high level, the key idea behind CMG is that the provably small

condition number , is equal to the condition number

where and .

Two-level Combinatorial Multigrid

The two-level algorithm can naturally be extended into a full multigrid
algorithm, by recursively calling the algorithm when the solution to the
system with Q is requested. This produces a hierarchy of graphs

. The full multigrid algorithm we use, after simplifications in
the algebra of the two-level scheme is as follows

21

http://api.gmath.guru/cgi-bin/gmath?%5Cdpi%7B480%7DR%5ETQ%5E%7B-1%7DRr
http://api.gmath.guru/cgi-bin/gmath?%5Cdpi%7B480%7DR%5ETQ%5E%7B-1%7DRr
http://api.gmath.guru/cgi-bin/gmath?%5Cdpi%7B480%7DA%5E%7B-1%7D
http://api.gmath.guru/cgi-bin/gmath?%5Cdpi%7B480%7DT%3D(I-R%5ETQ%5E%7B-1%7DRA)
http://api.gmath.guru/cgi-bin/gmath?%5Cdpi%7B480%7DA%5E%7B-1%7D
http://api.gmath.guru/cgi-bin/gmath?%5Cdpi%7B480%7DQ%3DRAR%5ET
http://api.gmath.guru/cgi-bin/gmath?%5Cdpi%7B480%7D%5Ckappa(A%2CB)
http://api.gmath.guru/cgi-bin/gmath?%5Cdpi%7B480%7D%5Ckappa(%5Chat%7BA%7D%2C%5Chat%7BB%7D)
http://api.gmath.guru/cgi-bin/gmath?%5Cdpi%7B480%7D%5Chat%7BA%7D%3DD%5E%7B-1%2F2%7DAD%5E%7B-1%2F2%7D
http://api.gmath.guru/cgi-bin/gmath?%5Cdpi%7B480%7D%5Chat%7BB%7D%3DD%5E%7B-1%2F2%7DBD%5E%7B-1%2F2%7D
http://api.gmath.guru/cgi-bin/gmath?%5Cdpi%7B480%7DA%3DA_0%2C...%2CA_d

Full Combinatorial Multigrid

If 𝑛𝑛𝑧 (𝐴) denotes the number of non-zero entries in matrix A, we pick

This choice for the number of recursive calls, combined with the fast
geometric decrease of the matrix sizes, targets a geometric decrease
in the total work per level, while optimizing the condition number.

As we can see at the above figure, the operation of sparse
matrix-vector multiplication (SpMV) occurs in steps 3, 7 and 11 of the
CMG algorithm. Those multiplications consist the worst bottleneck in
CMG solver, so our implementation focuses on solving those
bottlenecks accelerating the time required for those SpMV operations.
The full Combinatorial Multigrid algorithm is called from PCG method
every time we have to solve in preconditioner-solve step.

22

http://api.gmath.guru/cgi-bin/gmath?%5Cdpi%7B480%7DMz%5E%7Bi-1%7D%3Dr%5E%7Bi-1%7D

Chapter 5

GPU Architecture

The Graphics Processing Units (GPUs) traditionally used for graphical
applications mainly in computer games. The architecture of GPUs differ
significantly from that of CPUs and especially newer multi-core CPUs.
Typically GPUs are composed of hundreds of processors SIMD (Single
Instruction Multiple Data) who offer the ability to perform parallel
operations. Conversely the number of processors and even more on
screened multi-core CPUs are dramatically lower.

CPU vs GPU Architecture

In addition, the transistor of GPUs devote themselves to computational
units instead of the caches in the case of CPUs, with the caches of
GPUs are typically 10 times smaller than those of the CPU. The
following figure shows an example of GPU architecture model. Shows

23

how the GPU with multiple processors acting as a coprocessor for the
CPU.

GPU Architecture

This special architectural style of GPUs soon led to the escape of the
exclusively graphic applications and their use in general-use
applications / calculations - General Purpose computation on GPU
(GPGPU). The GPGPU represent for general purpose calculation on
Graphics Processing Units, known as GPU computation. The GPUs
with the use of many-core processors are able to achieve high
performance calculations and data output. Today, GPUs are general
purpose parallel processors to support interfaces to programming
languages like C. Developers of applications on GPUs frequently
achieve speedups versus optimized CPU applications.

24

5.1 Architecture of graphics processing units

Modern graphics processing units consist of a multi-processor number,
each of which has a specific number of cores. Each multi-processor
contains 8, 32/48 or 192 single cores depending generation of the card.
The GPU combines with the CPU via the PCI Express bus. Each
processing unit has a different memory levels, global memory, texture
memory and constant, the shared memory of each multi-processor and
registers. The following figure shows the Fermi architecture.

As for the memory hierarchy in which graphics unit shown below. There
is a global memory and the texture and constant memories. Also, each
multi-processor has its own shared memory also an important number
of registers. The global memory (Device Memory) is dynamic random
access memory (DRAM), a very large capacity but very slow in
response. The main memory response is from 400 to 600 clock cycles.
Data transferred from the main memory of the computer can be stored
in this memory. Also any outcome is required to return to the main

25

memory of the computer must be located in this memory. In global
memory can write and read all the threads of a kernel. The shared
memory is a fast memory, but very small capacity, each multi-processor
having its own. The shared memory response time is 1-32 clock cycles.
In the first generation card size was 16KB, while the Fermi architecture
has 64KB,

Fermi architecture of NVIDIA GPUs

which share the shared memory and the cache (16KB, 48KB).
Depending on the application can be selected by the programmer how
many KB will be available for the cache and how much for the shared
memory. Also important is the fact that the Fermi architecture exist a
cache per multi-processor as mentioned above and a bigger for all
multi-processors. The constant memory is a read-only memory, which
has cache. The texture memory is an small memory which this also has
cache, helping to improve the efficiency in the generation of the first
card and in the third.

26

5.2 Programming Model

Basic element in executing programs GPUs is the thread. Modern
GPUs require a very large number of threads to be executed in order to
have maximum efficiency. This is due to the fact that switching between
threads not aligns time and thus when a number of threads waiting to
get data from the global memory immediately changed to another
thread block having commands for execution.

To run a program in the graphics processing unit must first be allocate
area in the global memory of card and transferred there the data
required. At this point you can begin execution of the "core". The "core"
is the part of code that will go for implementation in the GPU. When
starting a "core" must apart from the usual arguments we give each
function of the language C, to give the number of threads for execution.

The threads are organized into thread blocks with each 3 dimensions.
The thread blocks organized into 3 dimensions in a grid of blocks. A
thread blocks can have more than a specific number of threads for
execution. This number depends on the generation of the graphics card
and the "computing capacity". In the first generation the number of
cards he was 512 and in next (Fermi, Kepler) 1024.

After the implementation of the core is completed, should the data be
turned back into the computer's main memory so that it can be used by
the central processing unit. However following be performed and other
core which is needed data then do not need the data to be returned in
the computer's memory. This happens many times when we want to
synchronize threads of different blocks. While the threads of a block
can be synchronized, there is no similar possibility of threads of
different blocks.

27

5.3 Performance Optimization Methods

There are several details that one should watch to get the best
performance from a single graphics card. First of all, we need data
transfers to and from the card be minimized because they cost in time.
Also, they should be reduced as much as possible accesses to main
memory and those that would be to follow a particular pattern. Should
the threads to read or write in contiguous memory locations. This way
access to main memory is called coalesced and leads to better
performance because the accesses of the threads are grouped into
one. Still, you need to find the appropriate number of blocks and thread
to be used as much as possible the cores of the card. This depends on
the requirements in the registers of each thread and of the limitations of
the material. Important advantage enables the use of shared memory,
which is faster than the global, but usually can not hold all the data of
the problem. Another feature that helps the good performance is to run
as many thread as possible so as to hide the delays of memory.
Something as important as the previous which it must noticed is that
anyone should not, as far as possible, the threads have branch
instructions. Because the threads running concurrently in a
multi-processor execute the same instruction, a branch instruction
would lead to a situation in which some of the threads remain inactive
until you perform the next part of the branch. This leads to decline in
performance.

We should note that in the last years the NVIDIA gives a very important
tool for every programmer GPU. The Nsight that functions as add-on
either the Eclipse or in Visual studio, allows easy debugging
capabilities and performance check capabilities. An analysis is made of
all parameters and are all points that delayed the program.

28

Chapter 6

Improving the Performance of CMG

The CMG solver is an extension of the preconditioned conjugate
gradient method (PCG). Therefore, its core is based on sparse
matrix-vector multiplication where M is the Steiner
preconditioner. The PCG approximates the solution iteratively until the
solution is satisfactory, so in the solve phase exist too many
matrix-vector multiplications which are the biggest bottleneck of CMG.

6.1 Implementation and Optimizations

Sparse matrix-vector multiplication (SpMV) is of crucial importance in
sparse linear algebra as it plays an important role in many numerical
and scientific computing applications such as finite difference and finite
element based methods. SpMV operation represents the dominant
computing cost in those problems and it is very important to improve
the efficiency of the SpMV algorithms.

System Specifications and IBM Power Grid Benchmarks

The hardware and software specifications of our system are described
below

CPU Intel(R) Core(TM) i7 CPU 870 @
2.93GHz

GPU GeForce GTX 690

MEMORY 32GB

GPU MEMORY 4GB

OS Ubuntu 12.04.5 LTS

29

http://api.gmath.guru/cgi-bin/gmath?%5Cdpi%7B480%7DMz%5E%7Bi-1%7D%3Dr%5E%7Bi-1%7D

CUDA Cuda 5.5

GNU COMPILER gcc 4.7.2

NVIDIA COMPILER nvcc 5.5

All the power grid benchmarks presented in this section are presented
below.

Netlist #i #n #r #s #v #l

ibmpg1 10.774 30.638 30.027 14.208 14.308 2

ibmpg2 37.926 127.238 208.325 1.298 330 5

ibmpg3 201.054 851.584 1.401.572 461 955 5

ibmpg4 276.976 953.583 1.560.645 11.682 962 6

IBM Power Grid Benchmarks for DC Analysis

● i for current sources
● n for nodes (total number, does not take shorts into account)
● r for resistors (include shorts)
● s for shorts (zero value resistors and voltage sources)
● v for voltage sources (include shorts)
● l for metal layers

For the MNA analysis of IBM netlists we used a software we had
already implemented. This software parses the netlist file and creates
the corresponding sparse MNA array “A” and right-hand side vector “b”,
which will be used later for solving the system Ax = b. The following
table shows the dimensions and the number of non-zero elements of
the MNA arrays corresponding to each IBM netlist.

30

Netlist Dimension Non-zeros

ibmpg1 44.943 × 44.943 147.315

ibmpg2 127.565 × 127.565 544.545

ibmpg3 852.536 × 852.536 3.656.107

ibmpg4 954.542 × 954.542 4.058.866

Matrix size and non-zero elements of MNA arrays

Below are shows the number of hierarchy levels of matrices for each
benchmark and the average non-zeros per row for all that matrices.

Netlist Hierarchy Levels Average non-zeros
per row

ibmpg1 5 4.8

ibmpg2 6 5.3

ibmpg3 7 5.3

ibmpg4 7 5.3

Hierarchy levels, average non-zeros per row and average segment length for

the IBM benchmarks

The CMG solver was taking advantage of the symmetry occurred in our
SDD matrices by storing only the lower triangular part of the matrix.
This approach leads to less memory requirements. SpMV
multiplications for all the levels of the preconditioner included inside the
operation of the PCG method, are implemented as shown
below

31

http://api.gmath.guru/cgi-bin/gmath?%5Cdpi%7B480%7DMz%5E%7Bi-1%7D%3Dr%5E%7Bi-1%7D

At this approximation, for each element of the sparse matrix that we
stored, we compute the result for both the corresponding row and for
the row which corresponds to the symmetric value (which is not stored)
to get the correct solution.

However, this method causes problems when we try to implement it on
a GPU architecture. The problem that occur is that the time where a
thread with row index “i” adds a value to the current value y[i] of the
solution vector, at the same time another thread which has row index
“z” will may also try to add a value to the current value y[i] for the
corresponding symmetric position at the primal matrix. This case can
cause wrong results and it can be resolved using atomic operations.
However, the atomic operations at the GPU and especially those that
access the global memory are very expensive.

This fact led us to try storing the whole sparse matrices of each
hierarchy at the memory and make the SpMV. The experimental results
of this approximation is shown in the below table, where we compare
the execution times of those two methods.

32

Netlist

Storing full matrix Storing the lower part

SpMv PCG SpMV PCG

ibmpg1 2,13 7,54 2,23 7,08

ibmpg2 0,38 0,71 0,21 0,69

ibmpg3 3.49 6,92 3,12 6,37

ibmpg4 2,24 4,42 1,87 4.01

The above results show that the only thing we gain taking advantage
the symmetry is the storage space. By storing only the lower triangular
part not we earn hardly any speed.

As indicated in the cusparse library of cuda, storage upper or lower
triangular matrix into symmetric matrices do not offer us nothing more
than storage space, we do not get more speed from the kernel of
SpMV.

We mentioned that to solve this system on the GPU in parallel, we
need to use atomic operations, as mentioned above atomic operations
are very expensive on the GPU, or to solve the systems of

and then solve as we have to solve the

33

http://api.gmath.guru/cgi-bin/gmath?%5Cdpi%7B480%7Dy%20%3D%20(L%20%2B%20D)*x
http://api.gmath.guru/cgi-bin/gmath?%5Cdpi%7B480%7Dy%20%3D%20L%5ET*x%2By

transpose of the lower triangular matrix where costs 10x times of the
normal SpMV.

34

Bibliography

[1] F. N. Najm, Circuit Simulation, Wiley,IEEE, 2010.

[2] NVIDIA CUDA C Programming Guide.
http://docs.nvidia.com/cuda/cuda-c-programming-guide/

[3] T. Davis, CSPARSE: a concise sparse matrix package.

[4] T. Davis, Direct Methods for Sparse Linear Systems.Fundamentals
of Algorithms.Society for Industrial and Applied Mathematics, 2006.

[5] I. Koutis and G. Miler, The Combinatorial multigrid solver, in :
Conference Talk,March, 2009.

[6] I. Koutis, G. L. Miller and D. Tolliver, Combinatorial Preconditioners
and Multilevel Solvers for problems in computer vision and image
processing. Computer Vision and Image Understanding,
115(12):1638–1646, 2011.

[7] I. Koutis, Matlab implementation of the combinatorial multigrid
algorithm.

[8] K. Gremban, Combinatorial Preconditioners for Sparse, Symmetric,
Diagonally Dominant Linear Systems. PhD thesis, Carnegie Mellon
University, Pittsburgh, October 1996. CMU CS Tech Report
CMU-CS-96-123.

[9] I. Koutis and G. L. Miller, Graph partitioning into isolated, high
conductance clusters: theory, computation and applications to
preconditioning. In Proceedings of the twentieth annual symposium on
Parallelism in algorithms and architectures,

35

[10] D. A. Spielman and S.-H. Teng, Nearly-Linear Time Algorithms for
Preconditioning and Solving Symmetric, Diagonally Dominant Linear
Systems,

[11] I. Koutis and G. L. Miller, A linear work, O(n1/6) time parallel
algorithm for solving planar Laplacians. In Proceedings of the
eighteenth annual ACM-SIAM symposium on Discrete algorithms,

[12] I. Koutis and G. L. Miller, Approaching optimality for solving,
August 2010.

[13] I. Koutis, G. L. Miller και R. Peng, Solving sdd linear systems in
time O(mlognlog(1/ε)), April 2011.

[14] I. Koutis, Combinatorial and algebraic tools for optimal multilevel
algorithms.PhD thesis, Carnegie Mellon University, Pittsburgh, May
2007. CMU CS Tech Report CMU-CS-07-131, 2007.

[15] cuSPARSE library.
http://docs.nvidia.com/cuda/cusparse/

[16] IBM Power Grid Benchmarks.
http://dropzone.tamu.edu/~pli/PGBench/

36

