
	ΠΑΝΕΠΙΣΤΗΜΙΟ	ΘΕΣΣΑΛΙΑΣ	
ΣΧΟΛΗ	ΘΕΤΙΚΩΝ	ΕΠΙΣΤΗΜΩΝ	
ΔΙΑΤΜΗΜΑΤΙΚΟ	ΠΡΟΓΡΑΜΜΑ	
ΜΕΤΑΠΤΥΧΙΑΚΩΝ	ΣΠΟΥΔΩΝ	

«ΠΛΗΡΟΦΟΡΙΚΗ	ΚΑΙ	ΥΠΟΛΟΓΙΣΤΙΚΗ	
ΒΙΟΙΑΤΡΙΚΗ»	

	
	
	
	
	
	
	

	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

	
	

	
	
	 MASTER	THESIS	
	 Supervisor	

Loukopoulos	Athanasios,	Lecturer	at	the	Department	of	
Computer	Science	and	Biomedical	Informatics,	

University	of	Thessaly	
	
	
	
	
	

	
	
	
	 	Lamia,	3/2017	

EFFICIENT SLICE AND TILE BASED PARALLELIZATION
OF VIDEO ENCODING IN HEVC

Papadopoulos Panagiotis

Institutional Repository - Library & Information Centre - University of Thessaly
05/06/2024 05:32:08 EEST - 18.191.130.254

	 	

Institutional Repository - Library & Information Centre - University of Thessaly
05/06/2024 05:32:08 EEST - 18.191.130.254

	

ΠΑΝΕΠΙΣΤΗΜΙΟ	ΘΕΣΣΑΛΙΑΣ	
ΣΧΟΛΗ	ΘΕΤΙΚΩΝ	ΕΠΙΣΤΗΜΩΝ	

ΔΙΑΤΜΗΜΑΤΙΚΟ	ΜΕΤΑΠΤΥΧΙΑΚΟ	ΠΡΟΓΡΑΜΜΑ	
ΠΛΗΡΟΦΟΡΙΚΗ	ΚΑΙ	ΥΠΟΛΟΓΙΣΤΙΚΗ	ΒΙΟΙΑΤΡΙΚΗ	

ΚΑΤΕΥΘΥΝΣΗ	
	

	
«ΠΛΗΡΟΦΟΡΙΚΗ	ΜΕ	ΕΦΑΡΜΟΓΕΣ	ΣΤΗΝ	ΑΣΦΑΛΕΙΑ,	
ΔΙΑΧΕΙΡΙΣΗ	ΜΕΓΑΛΟΥ	ΟΓΚΟΥ	ΔΕΔΟΜΕΝΩΝ	ΚΑΙ	

ΠΡΟΣΟΜΟΙΩΣΗ»	
	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

MASTER	THESIS	

Supervisor	
Loukopoulos	Athanasios,	Lecturer	at	the	Department	of	Computer	Science	

and	Biomedical	Informatics,	University	of	Thessaly	
	

	
	
	
	
																																									

Lamia,	3/2017	
	

EFFICIENT SLICE AND TILE BASED PARALLELIZATION
OF VIDEO ENCODING IN HEVC

Papadopoulos Panagiotis

Institutional Repository - Library & Information Centre - University of Thessaly
05/06/2024 05:32:08 EEST - 18.191.130.254

«Υπεύθυνη Δήλωση µη λογοκλοπής και ανάληψης προσωπικής ευθύνης»

Με πλήρη επίγνωση των συνεπειών του νόµου περί πνευµατικών δικαιωµάτων, και
γνωρίζοντας τις συνέπειες της λογοκλοπής, δηλώνω υπεύθυνα και ενυπογράφως ότι η
παρούσα εργασία µε τίτλο «Efficient slice and tile based parallelization of video
encoding in HEVC» αποτελεί προϊόν αυστηρά προσωπικής εργασίας και όλες οι πηγές
από τις οποίες χρησιµοποίησα δεδοµένα, ιδέες, φράσεις, προτάσεις ή λέξεις, είτε
επακριβώς (όπως υπάρχουν στο πρωτότυπο ή µεταφρασµένες) είτε µε παράφραση,
έχουν δηλωθεί κατάλληλα και ευδιάκριτα στο κείµενο µε την κατάλληλη παραποµπή
και η σχετική αναφορά περιλαµβάνεται στο τµήµα των βιβλιογραφικών αναφορών µε
πλήρη περιγραφή. Αναλαµβάνω πλήρως, ατοµικά και προσωπικά, όλες τις νοµικές και
διοικητικές συνέπειες που δύναται να προκύψουν στην περίπτωση κατά την οποία
αποδειχθεί, διαχρονικά, ότι η εργασία αυτή ή τµήµα της δεν µου ανήκει διότι είναι
προϊόν λογοκλοπής.

Ο/Η ΔΗΛΩΝ/-ΟΥΣΑ

Ηµεροµηνία: ../3/2017

Υπογραφή

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

Institutional Repository - Library & Information Centre - University of Thessaly
05/06/2024 05:32:08 EEST - 18.191.130.254

	

	

	
	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

Three-member	Committee:	

	
Loukopoulos	Athanasios,	 Lecturer	 at	 the	Department	 of	 Computer	 Science	 and	

Biomedical	Informatics,	University	of	Thessaly	(supervisor)	

	

Stamoulis	 George,	 Professor	 at	 the	 Department	 of	 Electrical	 and	 Computer	

Engineering,	University	of	Thessaly	

	

Anagnostopoulos	 Ioannis,	 Assistant	 Professor	 at	 the	 Department	 of	 Computer	

Science	and	Biomedical	Informatics,	University	of	Thessaly	

	

Scientific	Advisor:	

Koziri	 Maria,	 Adjunct	 Professor	 at	 the	 Department	 of	 Computer	 Science,	

University	of	Thessaly	

	

EFFICIENT SLICE AND TILE BASED PARALLELIZATION
OF VIDEO ENCODING IN HEVC

Papadopoulos Panagiotis

Institutional Repository - Library & Information Centre - University of Thessaly
05/06/2024 05:32:08 EEST - 18.191.130.254

	

	

	

	

	 	

Institutional Repository - Library & Information Centre - University of Thessaly
05/06/2024 05:32:08 EEST - 18.191.130.254

	

Contents	

CHAPTER 1: INTRODUCTION .. 1	
CHAPTER 2: RELATED WORK ... 4	
CHAPTER 3: SLICE-BASED PARALLELIZATION ... 7	

Static even assignment (Static) .. 7	
Weight based algorithm (Weight) .. 7	
Time based slice load balancing using average CTU times (TSLB -Avg) 7	
Time based slice load balancing using actual CTU times (TSLB-C) 9	
Time based slice load balancing for Low Delay (TSLB*) .. 9	

CHAPTER 4: TILE-BASED PARALLELIZATION ... 12	
CHAPTER 5: EXPERIMENTS ... 14	

Slice Partitioning .. 14	
Tile Partitioning ... 20	

CHAPTER 6: CONCLUSIONS AND FUTURE WORK ... 27	
REFERENCES .. 28	
APPENDIX .. 30	

LIST OF FIGURES ... 30	
LIST OF TABLES ... 30	

	

	

Institutional Repository - Library & Information Centre - University of Thessaly
05/06/2024 05:32:08 EEST - 18.191.130.254

Institutional Repository - Library & Information Centre - University of Thessaly
05/06/2024 05:32:08 EEST - 18.191.130.254

1

CHAPTER	1:	INTRODUCTION	

Parts of the master thesis have been published in [37] and in [38]. The ever increasing
demands for high definition video, has driven the development of a new video coding
standard HEVC [17] capable of providing increased compress ratios without sacrificing
video quality. As HEVC is gradually replacing its predecessor H.264/AVC [19],
optimization of encoding and decoding time becomes of paramount importance.
Recognizing the benefits from parallelization, HEVC offers three main options: tile,
slice and wavefront parallelism. In this master thesis we turn our attention on slice level
parallelism in the encoder side, using the reference software HM 16.7 [8] and OpenMP
[14] for thread programming.

Our contributions include the following:

• We further confirm earlier findings that using static, fixed size slices leads to load
imbalances among threads (see for instance [1]).

• We develop a heuristic called TSLB (time-based slice load balancer) which
assigns load based on the time complexity of the previous frame. Two variations
were tested. The first used the average CTU time per slice (TSLB-Avg) as an
estimator while the second (TSLB-C) the actual time of each CTU. It should be
noted that TSLB-C borrows ideas from existing work in H.264/AVC [24] without
though being identical. Through experimental evaluation TSLB heuristics were
shown to outperform static slice assignment as well as the algorithm presented in
[1].

• Results for TSLB establish the actual time complexity of frames as a fast and
efficient estimator. We further improve on initial results by exploiting GOP
structure in the case of Low-Delay (LD), which is similar to but not identical with
hierarchical P coding [9]. The resulting load balancer termed TSLB* is shown to
be a clear winner among its counterparts, with thread imbalances rarely exceeding
20%.

To the best of our knowledge, this is the first work providing empirical evidence on the
performance of five (including Static) slice balancing schemes for HEVC. Furthermore,
the concept of factoring hierarchical P coding in slice balancing decisions is novel. The
performance of TSLB* as shown in the experiments illustrates the merits of our
approach.

Institutional Repository - Library & Information Centre - University of Thessaly
05/06/2024 05:32:08 EEST - 18.191.130.254

2

Also nowadays, large multimedia content providers and social media networks struggle
at keeping pace with the popularity explosion of smart devices [28] and the resource
demands it entails in order to perform filtering [25], processing [36], storage and
delivery [35]. As an example, Cisco reported in [27] that the mobile network traffic
increased by 75% in 2015, the majority of which (54%) was video. Even if the uploaded
user videos are already compressed in some format, there is an ardent need for
transcoding or scalable video coding (SVC) [30] the original sequence to different
resolutions and bitrates in order to support streaming at devices of different
characteristics residing in networks of various loss rates. Furthermore, transcoding
might also involve changing the compression standard e.g., from H.264/AVC [19] to
HEVC [17], the new video coding standard, and in its basic form it entails decoding the
original sequence and re-encoding it again.

Due to the massive number of videos streamed every day, media providers rely more
and more to Cloud resources for video coding purposes. But video coding is a
computationally expensive task on its own, particularly as resolution becomes higher.
Consider for instance that when an encoder nominally achieves real time performance
in some configuration, it means that in order to encode a movie in this configuration
the amount of time might equal (but not exceed) movie length. Thus, it is apparent that
the computational burden placed in related Cloud services is tremendous and speeding
up the encoding process is of utmost importance for both scalability and sustainability
reasons.

Such speedup can only be achieved through efficient parallelization [4]. The new video
standard, HEVC, offers three coarse-grained parallelization opportunities suitable for
parallelization on a CPU core level namely: slice-level, tile-level and wavefront
parallelization (WPP) [5]. While slices existed in H.264/AVC, the other two methods
are new in HEVC and their potential is not fully explored yet.

In this thesis we focus on tile-level parallelization at the encoding part of HEVC.
Specifically, we investigate the potential of using CTU encoding time (Coding Tree
Unit, i.e., the block of pixels where a frame is split into in HEVC; equivalent but not
identical to Macroblocks in H.264/AVC) in order to adapt tile size so that CPU cores
are load balanced and consequently increased speedup is achieved.

Our contributions include the following:

Institutional Repository - Library & Information Centre - University of Thessaly
05/06/2024 05:32:08 EEST - 18.191.130.254

3

• An algorithm (Time-based Tile Load Balancing TTLB) is proposed that
adaptively defines tile partitioning based on the coding times of CTUs.

• Evaluation against the Static approach that evenly partitions a frame into tiles
and keeps the partition fixed, shows significant speedup improvement.
Moreover, this improvement comes at no extra cost compared to Static
partitioning. These results highlight the merits of our approach.

The rest of the thesis is organized as follows: Chapter II provides a brief overview of
the related work. Chapter III illustrates the slice-based parallelization algorithms which
are experimentally evaluated in Chapter V. Chapter IV illustrates the tile-based
parallelization algorithm TTLB which is experimentally evaluated in Chapter V.
Finally, Chapter VI summarizes the thesis and gives the conclusions.

 	

Institutional Repository - Library & Information Centre - University of Thessaly
05/06/2024 05:32:08 EEST - 18.191.130.254

4

CHAPTER	2:	RELATED	WORK	

Parallel techniques have been broadly applied in video coding since the emergence of
MPEG-2 back in the 90s, see for instance [2]. In [12] parallelization of an AVS encoder
with SIMD instructions was presented. In [4] a performance analysis is conducted both
for the encoding and the decoding side of HEVC, illustrating the need for efficient
parallel implementations. In [5] the three different parallelization opportunities in
HEVC namely wavefront, tiles and slices are discussed with a particular interest on the
first one, while [6] focuses on wavefront parallelization, on the decoding side.

Parallelizing the motion estimation process received much attention. In [22] different
parallelization degrees are discussed varying from single CU to groups of CUs. In [18]
a combined GPU – multi core CPU approach for parallel motion estimation is
presented, while in [13] a comparative evaluation is provided between GPU
implementation with CUDA and equivalent implementations using MPI and OpenMP
for parallel motion estimation. In [21] a framework to analyze the dependencies of
neighboring CTUs is introduced. CTUs form a DAG which is then scheduled for
parallel computation. A similar approach is also followed in [23] but for intra encoding
using the open source x265 encoder [20].

The aforementioned works differ from this thesis in the parallelization scope they
consider. More closely related are the works done for slice level parallelism in
H.264/AVC, e.g., [7], [10], [16] and [24] whereby slice level parallelism is discussed.
In [24] adaptive Macroblock assignment to slices is considered. The technique is based
on weighted past average (WPA) calculation with a factor of 0.5 in order to estimate
Macroblock cost for the next frame. Macroblocks are then distributed in slices so as to
minimize differences in aggregated cost. The TSLB-C algorithm borrows the idea of
using the actual Macroblock (CTU in HEVC) coding time as an estimator without
though using WPA.

In [7] the problem of balancing slices was tackled by assigning more slices than the
existing cores in an effort to reduce parallelization granularity, thus, achieving better
balance. Dynamically defining slice number exceeds the scope of the thesis. In [10] an
algorithm that adapts slice size to improve load balance is proposed. The scheme uses
a fast motion estimation preprocessing step and then applies weights to Macroblocks
depending on the results. As a consequence it is not directly applicable to HEVC. In
[16] hierarchical parallelization is considered in two levels. In a first level different
GOPs are distributed to computing nodes. Each frame in a GOP is encoded using slice-
level parallelism. Adaptive slice resizing though is not considered.

Institutional Repository - Library & Information Centre - University of Thessaly
05/06/2024 05:32:08 EEST - 18.191.130.254

5

Concerning HEVC, the authors in [15] evaluated slice-based parallelism under different
encoding scenarios. However, load balancing slices was not taken into account.
Perhaps, the closest to our work is [1] whereby SIMD based parallelization is discussed
as well as slice-level parallelization with adaptive CTU-slice assignment. In the
experiments we also compare the performance of our algorithms against the one in the
aforementioned paper.

Research in the area of video coding parallelization can be broadly categorized
depending on whether it considers fine or coarse-grained parallelization. Fine-grained
approaches usually comprise of works applying SIMD parallelism. In [12] SIMD
operations at the CPU-core level were applied to efficiently implement an AVS
decoder. DCT and cost function parallelization for HEVC is discussed (among others)
in [1]. Motion estimation, either with the Sum of Absolute Differences (SAD) metric
or with other heuristic approaches, e.g., the ones in [29] and [32], has also attracted
SIMD parallelization efforts. In [18] a combined GPU – multi core CPU approach for
parallel motion estimation is presented, while in [13] a comparative evaluation is
provided between GPU implementation of motion estimation with CUDA and
equivalent implementations using MPI and OpenMP. The authors concluded that GPUs
offer significant advantages. In [21] a framework to analyze the dependencies of
neighboring CTUs is introduced. CTUs form a DAG which is then scheduled for
parallel computation. Finally, in [22] different parallelization degrees for motion
estimation are discussed varying from single CU to groups of CUs.

The aforementioned works are orthogonal to ours since in principle tile parallelization
can be combined with SIMD approaches using GPUs. In the coarse-grained category a
significant amount of past work concerned slice parallelization both in H.264/AVC,
e.g., [7] and [24] to name a few, and in HEVC, e.g., [1], [31], [15]. In [24] adaptive
Macroblock assignment to slices based on weighted past average (WPA) of Macroblock
coding times is considered. A similar approach was evaluated in [31] for HEVC. In [7]
the problem of balancing slices was tackled by assigning more slices than the existing
cores in an effort to reduce parallelization granularity, thus, achieving better balance.
Concerning HEVC, the authors in [15] evaluated slice-based parallelism under different
encoding scenarios considering fixed slice sizes. Contrary, in [1] slice-level
parallelization with adaptive CTU-slice assignment is discussed. The proposed
algorithm is based on assigning weights to CTUs depending on the mode and depth of
CTU encoding and assigning CTUs to slices so that aggregate weights are balanced.

Although works on slice-level parallelization differ in scope from the thesis, some of
the ideas discussed there are applicable in the case of tiles as well. Specifically, our
proposed algorithm TTLB is inspired by [24] in order to use the coding times of CTUs
to estimate tile load. Furthermore, the idea of [7] is also applicable for tiles but only in
the cases where video quality is not too important.

Institutional Repository - Library & Information Centre - University of Thessaly
05/06/2024 05:32:08 EEST - 18.191.130.254

6

More closely related are the works done for tile level parallelism in HEVC such as:
[26], [11], [33] and [34]. In [33] the potentials introduced to video coding with the
advent of tiles in HEVC are examined. Performance issues using fixed size tiles are
discussed. Another work presenting results from tile based parallelization but for the
case of intra encoding is [11]. There too, only fixed size tiles were considered.

The motivation for the tile partitioning algorithm in [34] is to use more tiles compared
to the available cores in order to facilitate load balancing. The method is based on
deriving a static tile partition based (among others) on pixel variance and the required
throughput. Tiles are then assigned to cores using a bin packing technique. Since it is
well documented [4], [5] that increasing the number of tiles has a negative quality effect
on compression, we followed an alternative path whereby there was one on one
correspondence between tiles and CPU cores. As shown in the experiments, the lack of
load balancing potential by using fairly large instead of small tiles, is more than
compensated through the adaptive tile resizing mechanism that clearly outperforms a
comparable Static approach.

Finally, in [26] an adaptive content tile partitioning algorithm is proposed. The size of
tiles is decided so as to reduce the losses in coding efficiency generated by the use of
tiles. Instead, we focus on improving the encoding time by reducing tile load
imbalances. As such, we view the work in [26] as orthogonal to ours.

Institutional Repository - Library & Information Centre - University of Thessaly
05/06/2024 05:32:08 EEST - 18.191.130.254

7

CHAPTER	3:	SLICE-BASED	PARALLELIZATION	

In this chapter we describe the algorithms that participate in the experimental evaluation
of Chapter V. We start with the algorithms that don’t consider hierarchical coding and
proceed with TLSB* (published in [37]).

Static	even	assignment	(Static)	

Under this scheme CTUs are evenly distributed to slices and this allocation remains
fixed for all frames. This method is used as a performance yardstick.

Weight	based	algorithm	(Weight)	

The algorithm proposed in [1] is based on assigning a weight cost on every CU
depending on whether the collocated CU in the previous frame was encoded as Skip,
Inter or Intra and its corresponding depth in the quadtree. Table I reproduces the weight
matrix for convenience.

TABLE I. WEIGHT MATRIX

CU Size Skip Inter Intra
64×64 109 760 52
32×32 42 280 16
16×16 9 71 3

8×8 2 19 1

The algorithm calculates each CTU weight as the summation of the corresponding CU
weights and slice weights as the summation of the related CTU weights. It then assigns
the CTUs at each slice so that slices become balanced in weight terms.

Time	based	slice	load	balancing	using	average	CTU	times	(TSLB	-Avg)	

TSLB-Avg works on a slice level. Let Si denote the ith slice (0≤i≤S-1) where S is the
total number of slices. Let Tij be the actual running time to compress Si at the jth frame
and Cij be the total number of CTUs in Si. TSLB-Avg will assign CTUs to slices
proportionally to the actual slice compression times (of the corresponding slice in the
previous frame) as follows. First for each slice the difference between its time and the
average slice time is calculated as per (1).

Institutional Repository - Library & Information Centre - University of Thessaly
05/06/2024 05:32:08 EEST - 18.191.130.254

8

𝐷"# = 𝑇"# − (𝑇(#)*+
(,- 𝑆) (1)

If the difference is positive, the slice should leave CTUs in order to close down to the
average time, otherwise it should get more. The number of CTUs to be left or acquired
is given by:

𝐴"# =
𝐷"#𝐶"#/𝑇"#													, 		𝐷"# > 0	

𝐷"#𝐶 "7+ #/𝑇 "7+ #				,			𝐷"# < 0					 (2)

(2) states that if Si should leave some of its CTUs then the average CTU time in Si
(Tij/Cij) should be used to calculate how many CTUs must be left in order for Si to have
computational time equaling the average of all slices. Otherwise, if it should get CTUs,
these CTUs will come from the subsequent slice, thus, the average CTU time at slice
Si+1 is used. The number of CTUs to leave or acquire is set to |𝐴"#| .

When Si leaves |𝐴"#| CTUs (Dij>0 in (2)), these CTUs will be assigned on the
subsequent slice Si+1. This should be factored in the calculation of (1) for Si+1 by adding
the overhead incurred by the |𝐴"#| CTUs inherited from Si. A similar observation holds
when Si must acquire CTUs belonging to Si+1. (3) and (4) incorporate the above remarks.

𝐷′"# =

𝐷"#																																						, 𝑖 = 0																														

𝐷"# +
|=> ?@A B| C ?@A B

D ?@A B
				 , 𝑖 > 0	 ∧ 	𝐴 "*+ # > 0		

𝐷"# −
|=> ?@A B| C?B

D?B
										 , 𝑖 > 0	 ∧ 	𝐴 "*+ # < 0	

	 (3)

 𝐴′"# =
𝐷′"#𝐶"#/𝑇"#													, 		𝐷′"# > 0	

𝐷′"#𝐶 "7+ #/𝑇 "7+ #				,			𝐷′"# < 0					 (4)

Starting from the first slice (S0) and continuing until SS-2 in an iterative manner, the
algorithm uses (1), (3) and (4) to calculate how many CTUs a slice must get or leave.
The last slice SS-1 gets the remaining unassigned CTUs. To have a visual representation
of how TSLB-Avg performs, Fig. 1 shows the size assignment of 4 slices in the 5th
frame of the Bosphorus sequence [11]. Notice, that the third slice which includes most
of the boat movement is smaller compared to the rest.

Institutional Repository - Library & Information Centre - University of Thessaly
05/06/2024 05:32:08 EEST - 18.191.130.254

9

Figure 1. Screenshot from Bosphorus (frame 5).

Time	based	slice	load	balancing	using	actual	CTU	times	(TSLB-C)	

TSLB-C works in a similar manner to TSLB-Avg. The difference is that instead of
using average CTU times in (3) and (4) it uses the actual CTU coding times.

Time	based	slice	load	balancing	for	Low	Delay	(TSLB*)	

One of the common test conditions defined in JCT-VC [3] is LD (Low Delay) which
uses a hierarchical GOP structure. In all the experiments we used the default
configuration for hierarchical P frames in the reference software HM 16.7 which is also
depicted in Fig. 2.

Figure 2. GOP structure.

Institutional Repository - Library & Information Centre - University of Thessaly
05/06/2024 05:32:08 EEST - 18.191.130.254

10

Hierarchical P frames prediction structure is based on the decomposition into layers.
Within each layer frames share the same parameters (e.g QP offsets, QP factors,
temporal id etc.) and the same pattern in the group of reference pictures. In the case of
temporal scalability, those layers are known as temporal layers and the prediction can
only occur from a picture in the same or lower layer [9]. This restriction is not present
in the structure introduced in LD configuration of HEVC, as each frame may always
reference the previous one, regardless of the layer it belongs to. However, as the scope
of this thesis does not cover scalability this has no impact.

The intuition behind TSLB* is that the time complexity of frames belonging to the base
layer such as P4 and P8 in Fig. 2 will be better predicted by the preceding frame of the
base layer rather than the previous frame number wise. In the example, this means that
P8 will be estimated using P4 rather than P7. Notice that TSLB-Avg, TSLB-C and
Weight will use P7 instead. Another change TSLB* introduces, concerns the estimation
of the frame that immediately follows a base layer frame. Instead of using the base layer
frame, it uses the frame immediately preceding it. For instance the estimation of P9 (not
shown in Fig. 2) will be done from P7 instead of P8. The assignment process of TSLB*
is summarized and generalized for arbitrary GOP sizes (let G) in the following
equations:

𝐸"# =
𝑇"#																																							, 1 + 𝑗𝑚𝑜𝑑𝐺 ∈ [2, 𝐺 − 1]	
𝐶"#𝑇" #*Q7+ /𝐶" #*Q7+ 				, 1 + 𝑗𝑚𝑜𝑑𝐺 = 𝐺																
𝐶"#𝑇" #*+ /𝐶" #*+ 													, 1 + 𝑗𝑚𝑜𝑑𝐺 = 1																

 (5)

𝐷"# = 𝐸"# − (𝐸(#)*+
(,- 𝑆) (6)

𝐷′"# =

𝐷"#																																				, 𝑖 = 0																														

𝐷"# +
|=> ?@A B| R ?@A B

D ?@A B
				 , 𝑖 > 0	 ∧ 	𝐴 "*+ # > 0		

𝐷"# −
|=> ?@A B| R?B

D?B
										 , 𝑖 > 0	 ∧ 	𝐴 "*+ # < 0	

	 (7)

𝐴′"# =
𝐷′"#𝐶"#/𝐸"#													, 		𝐷′"# > 0	

𝐷′"#𝐶 "7+ #/𝐸 "7+ #				,			𝐷′"# < 0					 (8)

Institutional Repository - Library & Information Centre - University of Thessaly
05/06/2024 05:32:08 EEST - 18.191.130.254

11

The rest of the algorithm is similar to TSLB-Avg, namely at each frame j TSLB* starts
calculating the assignment from S0 using (5)-(8) adding or subtracting |𝐴′"#| CTUs to
the current assignment and proceeds up to SS-2 in an iterative manner. The last
unassigned CTUs are allocated to SS-1. When implementing the algorithm, we chose to
use TSLB-Avg for the first GOP and the estimations of TSLB* from the second GOP
onwards.

TABLE II. VIDEO SEQUENCES

Name Resolution
Frames per
second (fps) Total frames

CTUs per
frame

Bosphorus 3840×2160 120 200/600 2040

Traffic 2560×1600 30 150 1000

Kimono 1920×1080 24 240 510

 	

Institutional Repository - Library & Information Centre - University of Thessaly
05/06/2024 05:32:08 EEST - 18.191.130.254

12

CHAPTER	4:	TILE-BASED	PARALLELIZATION	

The Time-based Tile Load Balancing algorithm (TTLB) (published in [38]) defines tile
sizes using the CTU encoding times of the previous frame. Assume that a frame consists
of X×Y CTUs arranged in X CTU rows and Y CTU columns. Furthermore, let the tile
partitioning be into M×N tiles, with M being the tile rows and N being the tile columns.
TTLB first calculates the total time of each CTU row (let Ri) and each CTU column (let
Cj), by aggregating the encoding times of CTUs belonging to the respective row or
column (ith and jth respectively). It then defines the vertical split into N tile columns and
then the horizontal split into M tile rows. Let TCk be the width in CTUs of the kth tile
column (1≤k≤N), and TRl be the height in CTUs of the lth tile row, (1≤l≤M). The
algorithm assigns tile column widths using the following:

𝑊 = 𝐶#T
#,+ (9)

𝑇𝐶U = 𝐶# ≤
W
X
< 𝐶#Y7+

#,Z :		𝑠 = 1 + 𝑇𝐶]		U*+
],+ ,Y

#,Z 	(1≤k≤N-1) (10)

𝑇𝐶X = 𝑌 − 𝑇𝐶UX*+
U,+ (11)

Namely, it calculates the total time of all CTUs in (9), and then attempts to assign at
each tile column a width that will lead to equal time cost assignment (if possible) at
each tile column as per (10) and (11). Specifically, it starts by defining the width of the
first tile column. To do so it adds CTU columns starting from the first one until the total
time of CTUs in the assigned columns is the maximum possible that doesn’t exceed the
required time cost assignment. The algorithm then proceeds by assigning CTU columns
to the second tile column starting with the CTU column that follows the last assigned
CTU column. The last tile column gets the CTU columns that remain from the previous
assignments.

Tile row heights are defined in a similar manner to tile columns using the following:

𝑇𝑅` = 𝑅" ≤
W
a

< 𝑅"Y7+
",Z :		𝑠 = 1 + 𝑇𝑅]		U*+

],+ ,Y
",Z 	(1≤l≤M-1) (12)

𝑇𝑅a = 𝑋 − 𝑇𝑅`a*+
`,+ (13)

Figs. 3,4 presents screenshots from the Bosphorus sequence [11] with a partitioning in
12 tiles using TTLB. Notice that compared to the initial cut at frame 0 (Fig. 3), TTLB

Institutional Repository - Library & Information Centre - University of Thessaly
05/06/2024 05:32:08 EEST - 18.191.130.254

13

in frame 5 (Fig. 4) has reduced the size of the tile enclosing the boat where most of the
motion takes place.

Figure 3. Screenshot from Bosphorus (frame 0).

Figure 4. Screenshot from Bosphorus (frame 5).

Institutional Repository - Library & Information Centre - University of Thessaly
05/06/2024 05:32:08 EEST - 18.191.130.254

14

CHAPTER	5:	EXPERIMENTS	

Slice	Partitioning	

We conducted experiments on a Linux server with two 6-core Intel Xeon E5-2630
CPUs running at 2.3GHz using hyper threading. We used three sequences (summarized
in Table II) one each for FullHD, 2K and 4K. In order to save time in the experiments
we used the first 200 frames of the Bosphorus sequence instead of the complete one.
All results were obtained assuming the LD scenario with an initial I frame followed by
P frames and a GOP size of 4 with the structure shown in Fig. 2. QP was set to 32, bit
depth was 8, CTU size 64×64, max depth for partitioning was set to 4 and search mode
to TZ.

We measured the performance of the algorithms from two aspects. The first is the time
required to process a frame, while the second is the load imbalance incurred among the
execution time of slices measured as the following percentage:

100(MAX_Slice_Time – MIN_Slice_Time)/MIN_Slice_Time

Figure 5. Bosphorus, 4 slices.

Institutional Repository - Library & Information Centre - University of Thessaly
05/06/2024 05:32:08 EEST - 18.191.130.254

15

Figure 6. Bosphorus, 12 slices.

Figure 7. Traffic, 4 slices.

Figure 8. Traffic, 12 slices.

Institutional Repository - Library & Information Centre - University of Thessaly
05/06/2024 05:32:08 EEST - 18.191.130.254

16

Figure 9. Kimono, 4 slices.

Figure 10. Kimono, 12 slices.

Figs. 5-10 plot the imbalance experienced in the three sequences for two different
number of slices: 4 and 12. To avoid cluttering, the performance of Static and TSLB-
Avg are omitted. The first gave performance worse than the Weight algorithm, while
the second one comparable to TSLB-C. The figures show that there exist periodic peaks
which correspond to GOP changes. It is evident from the plots that TSLB* (the intended
line) clearly outperforms other alternatives especially in the 4K sequence.

We would like to note that the peak incurred by TSLB* in the Kimono sequence around
frame 141 is due to scene change. As part of our future work we plan on incorporating
scene detection in TSLB*. Contrary to the above the peak incurred in Fig. 8 around

Institutional Repository - Library & Information Centre - University of Thessaly
05/06/2024 05:32:08 EEST - 18.191.130.254

17

frame 110 is not due to scene change. Nevertheless, this doesn’t diminish the overall
performance of TSLB*.

Next we conducted experiments with the following slice numbers: 2, 4, 8, 12 and 24.
Recall from the experimental setup that there are 12 cores available in the server
running the experiments. Nevertheless, we wanted to test how the algorithms will fair
when less cores than slices are available. Table III summarizes the relevant speedups
achieved by each algorithm. Bolded entries indicate the winner in every run.

TABLE III. SPEEDUPS

Slice Number

2 4 8 12 24

B
os

ph
or

us

Static 1.74 3.35 5.83 8.09 10.44
TSLB-Avg 1.92 3.67 6.90 10.03 12.16

TSLB-C 1.93 3.66 6.88 9.90 12.15
TSLB* 1.94 3.76 7.32 10.63 12.45
Weight 1.74 3.29 5.80 8.14 10.63

T
ra

ff
ic

Static 1.94 3.43 6.45 9.26 11.33
TSLB-Avg 1.92 3.71 7.24 10.41 11.95

TSLB-C 1.93 3.72 7.18 10.52 11.94
TSLB* 1.95 3.79 7.36 10.48 11.71
Weight 1.91 3.57 6.85 9.89 11.64

K
im

on
o

Static 1.85 3.56 6.76 9.69 11.46
TSLB-Avg 1.96 3.81 7.35 10.67 12.05

TSLB-C 1.95 3.79 7.35 10.64 11.43
TSLB* 1.96 3.88 7.39 10.81 12.10
Weight 1.88 3.53 6.74 9.57 11.44

TSLB* is a clear winner in the Bosphorus and Kimono sequences, while for a larger
slice number in the Traffic sequence it is defeated by TSLB variants. Another
observation that can be made is that the performance difference versus the Static
algorithm tends to increase to the number of slices. We should also note that the
performance of TSLB* is particularly high in the 4K sequence, giving a +2.52 speedup
factor versus Static and +0.6 versus the second alternative when slices equaled 12. In
contrast, the Weight algorithm achieves only marginally better performance compared
to Static. Finally, the run with 24 slices over 12 cores provides a margin for
improvement for all algorithms, while not changing the relevant performance order in
most cases. This result is particularly important indicating that further improvement can
be expected for the presented algorithms, when using the hyper threading capabilities
of some processors.

Institutional Repository - Library & Information Centre - University of Thessaly
05/06/2024 05:32:08 EEST - 18.191.130.254

18

To better illustrate the performance difference of algorithms in Figs. 11-13 we plot the
percentage of improvement in execution time terms of each algorithm as compared to
the Static. Specifically, we measure the improvement as follows: (Static_time-
Alg_time)/Static_time. TSLB* (bold unmarked line) is shown to reduce the execution
time of Static by more than 20% in the Bosphorus, more than 10% for Traffic and more
than 8% for the Kimono sequence.

Figure 11. Bosphorus.

Figure 12. Traffic.

Institutional Repository - Library & Information Centre - University of Thessaly
05/06/2024 05:32:08 EEST - 18.191.130.254

19

Figure 13. Kimono.

A last note concerns video quality. It was observed in our experiments that as slice
number increased, quality dropped. This trend is known from H.264/AVC.
Nevertheless, for a fixed slice number both PSNR and bit rate experienced only tiny
differences among the algorithms. This is especially encouraging for TSLB* since it
indicates that its performance gains, especially against the Static, come at no cost
quality wise. We should also like to add that from our experience, once slice
parallelization is implemented, developing any of the algorithms described (TSLB* as
well) demands little programming effort. Hence, TSLB* poses as the most viable
solution (currently) to the problem of slice balancing in particular when Low Delay
hierarchical P frames are considered.

Summarizing our findings we can state the following:

• There exists a performance margin to gain versus the Static approach. This
margin depends on the sequence as well as the slices used.

• Actual coding time of slices is a superior criterion compared to the preprocessed
weight costs in [1].

• By incorporating GOP structure in the decision mechanism a very efficient load
balancer can be designed.

Institutional Repository - Library & Information Centre - University of Thessaly
05/06/2024 05:32:08 EEST - 18.191.130.254

20

Tile	Partitioning	

We implemented TTLB using the reference software HM 16.7 [8] and OpenMP [14]
for threading. We conducted experiments on a Linux server with two 6-core Intel Xeon
E5-2630 CPUs running at 2.3GHz. We used three sequences of different resolution,
summarized in Table II.

In order to save time in the experiments we used the first 200 frames of the Bosphorus
sequence instead of the complete one. All results were obtained assuming the LD
scenario with an initial I frame followed by P frames and a GOP size of 4 [3] which is
similar but not identical to hierarchical P coding [9]. Unless otherwise stated, QP was
set to 32, bit depth was 8, CTU size 64×64, max depth for partitioning was set to 4 and
search mode to TZ.

We experimented with three different tile numbers (in one slice): 4 (2×2), 8 (4×2) and
12 (4×3). Each tile was assigned a separate CPU core on a one on one basis. In the
experiments we compared the performance of TTLB against the static, uniform
assignment obtained by using the relevant option in the reference software. We
measured the achievable speedup, PSNR and bitrate differences as well as the load
imbalance incurred among the execution time of tiles measured as the following
percentage:

100(MAX_Tile_Time – MIN_Tile_Time)/MIN_Tile_Time

Figs. 14-19 show the load imbalance experienced by both Static and TTLB for two
different tile numbers 4 and 12. It can be observed that in all sequences but for Traffic
with 4 tiles (Fig. 16), TTLB is able to reduce significantly the load imbalances that
occur by Static. This improvement is more evident for 12 tiles, which is expected since
more tiles lead to more potential in exploiting spatial locality of video motion. In the
Traffic sequence and for 4 tiles the gains over Static are rather limited. This is due to
the fact that in this sequence there is motion almost everywhere in the frame. Thus,
compared to the other two sequences there exists less potential for improvement. As a
further indication for the above, notice that Static in Fig. 16 exhibits an imbalance of
less than 30% for the biggest part, leaving little room for improvement. Judging from
the figures as a whole, we can say that using TTLB drops load imbalance to less than
20% for 4 tiles while it also drastically improves load balance in the case of 12 tiles.
Performance for 8 tiles (not shown) was found to fall in the middle between the
performance with 4 and 12 tiles.

Institutional Repository - Library & Information Centre - University of Thessaly
05/06/2024 05:32:08 EEST - 18.191.130.254

21

Figure 14. Bosphorus, 4 tiles.

Figure 15. Bosphorus, 12 tiles.

Figure 16. Traffic, 4 tiles.

Institutional Repository - Library & Information Centre - University of Thessaly
05/06/2024 05:32:08 EEST - 18.191.130.254

22

Figure 17. Traffic, 12 tiles.

Figure 18. Kimono, 4 tiles.

Figure 19. Kimono, 12 tiles.

Institutional Repository - Library & Information Centre - University of Thessaly
05/06/2024 05:32:08 EEST - 18.191.130.254

23

Next we plot the speedups over a base scenario with no tile parallelization. Results are
shown in Figs. 20-25 for two different QPs 32 and 22. We can observe that the
performance gains in Bosphorus and Kimono are substantial. In all the figures the
performance gap over Static increases to the number of tiles, leading in certain cases to
a difference in speedup of roughly 2 (Fig. 21). In the Traffic sequence the gains are less
impressive and are considerable only for QP=22.

Figure 20. Bosphorus, QP=32.

Figure 21. Bosphorus, QP=22.

Institutional Repository - Library & Information Centre - University of Thessaly
05/06/2024 05:32:08 EEST - 18.191.130.254

24

Figure 22. Traffic, QP=32.

Figure 23. Traffic, QP=22.

Figure 24. Kimono, QP=32.

Institutional Repository - Library & Information Centre - University of Thessaly
05/06/2024 05:32:08 EEST - 18.191.130.254

25

Figure 25. Kimono, QP=22.

Finally, we measured the impact on quality TTLB has. Table IV summarizes
performance. Specifically it records: (i) the difference in Y-PSNR between TTLB and
Static, and (ii) the difference in bitrate between TTLB and Static measured as the
following percentage:

100(bitrate(TTLB) –bitrate(Static))/bitrate(Static)

As a consequence of the above, positive values on Y-PSNR and negative values for
bitrate percentage indicate TTLB is better than Static.Observe that the differences in Y-
PSNR are rather negligible (in the order of the third digit). A similar observation holds
true for the bitrate which increases by at most 0.48% while there exist cases where it
decreases (maximum value of 0.61%). These results are very encouraging towards
TTLB indicating that the increased performance over Static comes at virtually no cost
quality wise.

Summarizing the results from the experiments we can state that TTLB is able to
improve encoding time compared to a parallel encoder implementation that uses Static
tiles. The gains are particularly substantial for sequences exhibiting motion at specific
frame parts, and less so for sequences exhibiting motion throughout the whole frame
(or little motion overall). However, even in such cases some marginal gains can be
expected. Furthermore, the performance improvement of TTLB comes at no quality
loss compared to Static. Finally, TTLB is rather simple to implement once tile
parallelization is implemented, making it a definite candidate for adoption in related
HEVC encoders.

Institutional Repository - Library & Information Centre - University of Thessaly
05/06/2024 05:32:08 EEST - 18.191.130.254

26

TABLE IV. QUALITY METRICS

Tile Number

Y-PSNR bitrate %

 QP 4 8 12 4 8 12
B

os
ph

or
us

22 -0.006 0.001 -0.000 0.48% -0.09% 0.09%

27 0.002 -0.007 -0.002 -0.24% -0.09% 0.12%

32 0.001 0.006 -0.003 -0.61% -0.43% -0.24%

37 -0.010 0.001 -0.009 0.07% -0.27% 0.02%

T
ra

ff
ic

22 -0.001 0.000 0.001 -0.21% -0.02% 0.05%

27 0.006 0.002 -0.002 -0.15% -0.12% -0.01%

32 -0.001 0.010 0.007 0.05% -0.15% -0.10%

37 -0.009 0.013 -0.001 -0.12% -0.22% 0.10%

K
im

on
o

22 0.002 -0.001 -0.000 -0.08% 0.04% 0.02%

27 -0.001 -0.003 -0.000 0.08% 0.09% 0.02%

32 0.002 -0.001 -0.001 0.20% 0.12% 0.12%

37 0.001 -0.003 0.005 0.17% 0.20% 0.52%

 	

Institutional Repository - Library & Information Centre - University of Thessaly
05/06/2024 05:32:08 EEST - 18.191.130.254

27

CHAPTER	6:	CONCLUSIONS	AND	FUTURE	WORK	

Firstly, in this master thesis we tackled the problem of load balancing slices in HEVC.
We proposed a simple and fast algorithm named TSLB that comes in two versions. In
the first one slice balancing decisions are taken using the recorded slice time while in
the second CTU times. The initial design is extended for hierarchical GOP structures,
resulting in TSLB*. TSLB* was shown to outperform both the Static option and another
alternative from the relevant literature. Reductions in the execution time of Static slice-
parallelization were between 8% and 25% for the majority of test cases.

Designing fast video encoders that capitalize on the HEVC parallelization potentials is
crucial in order to minimize Cloud resource consumption by large multimedia
providers. In this master thesis we also tackled the problem of adaptive tile
parallelization in HEVC. We proposed an algorithm, named TTLB that dynamically
adjusts tile sizes using CTU encoding time, with the aim of balancing CPU core load.
Experiments demonstrate that TTLB achieves substantially better speedup compared to
the static, uniform partitioning, without sacrificing quality.

 	

Institutional Repository - Library & Information Centre - University of Thessaly
05/06/2024 05:32:08 EEST - 18.191.130.254

28

REFERENCES	

[1] Y.-J. Ahn, T.-J. Hwang, D.-G. Sim, and W.-J. Han, “Implementation of fast HEVC encoder based

on SIMD and data-level parallelism,” EURASIP J. Image and Video Processing, vol. 16, 2014.
[2] S.M. Akramullah, I. Ahmad, and M.L. Liou, “A Data-Parallel Approach for Real-Time MPEG-2

Video Encoding,” Journal of Parallel and Distributed Computing, vol. 30, pp. 129-146, 1995.
[3] F. Bossen, Common Test Conditions and Software Reference Configurations, document JCTVC-

H1100, JCT-VC, San Jose, CA, Feb. 2012.
[4] F. Bossen, B. Bross, K. Sühring, and D. Flynn, “HEVC Complexity and Implementation Analysis,”

IEEE Trans. Circuits Syst. Video Techn. vol. 22(12), pp. 1685-1696, 2012.
[5] C. C. Chi, M. A. Mesa, B. Juurlink, G. Clare, F. Henry, S. Pateux, and T. Schierl, “Parallel Scalability

and Efficiency of HEVC Parallelization Approaches,” in IEEE Transactions on Circuits and Systems
for Video Technology, vol. 22, no. 12, pp. 1827-1838, Dec. 2012.

[6] C. C. Chi, M. A. Mesa, J. Lucas, B. H. H. Juurlink, and T. Schierl, “Parallel HEVC Decoding on
Multi- and Many-core Architectures - A Power and Performance Analysis,” Signal Processing
Systems vol. 71(3), pp. 247-260, 2013.

[7] J.-F. Franche, and S. Coulombe, “A multi-frame and multi-slice H.264 parallel video encoding
approach with simultaneous encoding of prediction frames,” in Proc. of the 2012 Int. Conf. on
Consumer Electronics, Communications and Networks (CECNet), pp. 3034-3038, Apr. 2012.

[8] HM 16.7 reference software. http://hevc.hhi.fraunhofer.de
[9] D. Hong, M. Horowitz, A. Eleftheriadis, and T. Wiegand, “H.264 hierarchical P coding in the

context of ultra-low delay, low complexity applications,” PCS 2010, pp. 146-149.
[10] B. Jung, and B. Jeon, “Adaptive slice-level parallelism for H.264/AVC encoding using pre

macroblock mode selection,” J. Visual Communication and Image Representation, vol. 19(8), pp.
558-572, 2008.

[11] A. Koivula, M. Viitanen, J. Vanne, T. D. Hämäläinen, and L. Fasnacht, “Parallelization of Kvazaar
HEVC intra encoder for multi-core processors,” in Proc. IEEE Workshop Signal Process. Syst.,
Hangzhou, China, Oct. 2015, pp. 1-6.

[12] M.G. Koziri, D. Zacharis, I. Katsavounidis, and N. Bellas, “Implementation of the AVS video
decoder on a heterogeneous dual-core SIMD processor,” IEEE Trans. Consumer Electronics,
vol 57(2), pp. 673-681, 2011.

[13] E. Monteiro, B. B. Vizzotto, C. M. Diniz, M. Maule, B. Zatt, S. Bampi, “Parallelization of Full
Search Motion Estimation Algorithm for Parallel and Distributed Platforms,” International Journal
of Parallel Programming, vol. 42(2), pp. 239-264, 2014.

[14] OpenMP API. http://openmp.org
[15] P. Piñol, H. M. Gomis, O. M. L. Granado, and M. P. Malumbres, “Slice-based parallel approach for

HEVC encoder,” Journal of Supercomputing, vol. 71(5), pp. 1882-1892, 2015.
[16] A. Rodríguez, A. González, and M. P. Malumbres, “Hierarchical Parallelization of an H.264/AVC

Video Encoder,” in Proc. PARELEC 2006, pp. 363-368.
[17] G. J. Sullivan, J.-R. Ohm, W.-J. Han, and T. Wiegand, “Overview of the High Efficiency Video

Coding (HEVC) Standard,” IEEE Trans. Circuits Syst. Video Technol., vol. 22, no. 12, pp. 1649-
1668, Dec. 2012.

[18] X. Wang, L. Song, M. Chen, and J-J. Yang, “Paralleling variable block size motion estimation of
HEVC on multi-core CPU plus GPU platform,” ICIP 2013, pp. 1836-1839.

[19] T. Wiegand, G. J. Sullivan, G. Bjøntegaard, and A. Luthra, “Overview of the H.264/AVC video
coding standard,” IEEE Trans. Circuits Syst. Video Technol., vol. 13, no. 7, pp. 560–576, Jul. 2003.

[20] x265 HEVC encoder. http://x265.org.

Institutional Repository - Library & Information Centre - University of Thessaly
05/06/2024 05:32:08 EEST - 18.191.130.254

29

[21] C. Yan, Y. Zhang, F. Dai, and L. Li, “Highly Parallel Framework for HEVC Motion Estimation on
Many-Core Platform,” DCC 2013, pp. 63-72.

[22] Q. Yu, L. Zhao, and S. Ma, “Parallel AMVP candidate list construction for HEVC,” VCIP 2012, pp.
1-6.

[23] Y. Zhao, L. Song, X. Wang, M. Chen, and J. Wang, “Efficient realization of parallel HEVC intra
encoding,” In Proc. ICME Workshops pp. 1-6, 2013.

[24] L. Zhao, J. Xu, Y. Zhou, and M. Ai, “A dynamic slice control scheme for slice-parallel video
encoding,” ICIP 2012, pp. 713-716.

[25] N. Assimakis, M. Adam, M. Koziri, S. Voliotis, and K. Asimakis, “Optimal Decentralized Kalman
Filter and Lainiotis Filter,” Digital Signal Processing, vol. 23(1), pp. 442-452, 2013.

[26] C. Blumenberg, D. Palomino, S. Bampi, and B. Zatt, “Adaptive content-based Tile partitioning
algorithm for the HEVC standard,” PCS 2013, pp. 185-188.

[27] Cisco Systems Inc. Cisco Visual Networking Index: Global Mobile Data Traffic Forecast Update,
2015–2020 (White Paper). Available at: http://www.cisco.com/c/en/us/solutions/collateral/service-
provider/visual-networking-index-vni/mobile-white-paper-c11-520862.html

[28] G. Haralabopoulos, I. Anagnostopoulos, and S. Zeadally, “Lifespan and propagation of information
in On-line Social Networks: A case study based on Reddit,” J. Network and Computer Applications,
vol. 56, pp. 88-100, Oct. 2015.

[29] M.G. Koziri, A.N. Dadaliaris, G.I. Stamoulis, and I. Katsavounidis, “A Novel Low-Power Motion
Estimation Design for H.264,” ASAP 2007, pp. 247-252.

[30] M.G. Koziri and A. Eleftheriadis, “Joint Quantizer Optimization for Scalable Coding,” ICIP 2010,
pp. 1281-1284.

[31] M.G. Koziri, P. Papadopoulos, N. Tziritas, A.N. Dadaliaris, T. Loukopoulos, and S.U. Khan, “Slice-
Based Parallelization in HEVC Encoding: Realizing the Potential through Efficient Load
Balancing,” MMSP 2016, in press.

[32] M.G. Koziri, G.I. Stamoulis, and I. Katsavounidis, “Power Reduction in an H.264 Encoder Through
Algorithmic and Logic Transformations,” ISLPED 2006, pp. 107-112.

[33] K. Misra, A. Segall, M. Horowitz, S. Xu, A. Fuldseth, and M. Zhou, “An overview of tiles in
HEVC,” IEEE Journal of Selected Topics in Signal Processing, vol. 7, no. 6, pp. 969-977, Dec. 2013.

[34] M. Shafique, M. U.K. Khan, and J. Henkel, “Power efficient and workload balanced tiling for
parallelized high efficiency video coding,” ICIP 2014, pp. 1253-1257.

[35] S. Traverso, K. Huguenin, I. Trestian, V. Erramilli, N. Laoutaris, and K. Papagiannaki, “Social-
Aware Replication in Geo-Diverse Online Systems,” IEEE Trans. Parallel Distrib. Syst., vol. 26(2),
pp. 584-593, 2015.

[36] N. Tziritas, T. Loukopoulos, S.U. Khan, and C.-Z. Xu, “Distributed Algorithms for the Operator
Placement Problem,” IEEE Trans. on Computational Social Systems, vol.2(4), pp. 182-196, 2015.

[37] M.G. Koziri, P. Papadopoulos, N. Tziritas, A.N. Dadaliaris, T. Loukopoulos, and S.U. Khan, “Slice-
Based Parallelization in HEVC Encoding: Realizing the Potential Through Efficient Load
Balancing,” Proc. 18th Int. Workshop on Multimedia Signal Processing (MMSP 2016), IEEE,
Montreal, Canada, Sept. 2016.

[38] M.G. Koziri, P. Papadopoulos, N. Tziritas, A.N. Dadaliaris, T. Loukopoulos, S.U. Khan, and C.-Z.
Xu, “Adaptive Tile Parallelization for Fast Video Encoding in HEVC”, Proc. 12th IEEE Int. Conf.
on Green Computing and Communications (GreenCom 2016), IEEE, Chengdu, China, Dec. 2016.

 	

Institutional Repository - Library & Information Centre - University of Thessaly
05/06/2024 05:32:08 EEST - 18.191.130.254

30

APPENDIX	

LIST	OF	FIGURES	

Figure 1. Screenshot from Bosphorus (frame 5). ... 9	
Figure 2. GOP structure. .. 9	
Figure 3. Screenshot from Bosphorus (frame 0). ... 13	
Figure 4. Screenshot from Bosphorus (frame 5). ... 13	
Figure 5. Bosphorus, 4 slices. .. 14	
Figure 6. Bosphorus, 12 slices. .. 15	
Figure 7. Traffic, 4 slices. .. 15	
Figure 8. Traffic, 12 slices. .. 15	
Figure 9. Kimono, 4 slices. .. 16	
Figure 10. Kimono, 12 slices. .. 16	
Figure 11. Bosphorus. .. 18	
Figure 12. Traffic. .. 18	
Figure 13. Kimono. .. 19	
Figure 14. Bosphorus, 4 tiles. .. 21	
Figure 15. Bosphorus, 12 tiles. .. 21	
Figure 16. Traffic, 4 tiles. .. 21	
Figure 17. Traffic, 12 tiles. .. 22	
Figure 18. Kimono, 4 tiles. .. 22	
Figure 19. Kimono, 12 tiles. .. 22	
Figure 20. Bosphorus, QP=32. ... 23	
Figure 21. Bosphorus, QP=22. ... 23	
Figure 22. Traffic, QP=32. ... 24	
Figure 23. Traffic, QP=22. ... 24	
Figure 24. Kimono, QP=32. ... 24	
Figure 25. Kimono, QP=22. ... 25	

LIST	OF	TABLES	

TABLE I. WEIGHT MATRIX .. 7	
TABLE II. VIDEO SEQUENCES .. 11	
TABLE III. SPEEDUPS .. 17	
TABLE IV. QUALITY METRICS ... 26	

Institutional Repository - Library & Information Centre - University of Thessaly
05/06/2024 05:32:08 EEST - 18.191.130.254

Institutional Repository - Library & Information Centre - University of Thessaly
05/06/2024 05:32:08 EEST - 18.191.130.254

Institutional Repository - Library & Information Centre - University of Thessaly
05/06/2024 05:32:08 EEST - 18.191.130.254

