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Περίληψη 

 
Στην παρούσα μεταπτυχιακή διατριβή, ασχολούμαστε με το 

ανθρώπινο γονίδιο και με το πού παράγεται η πρωτεΐνη στο ανθρώπινο 

γονιδίωμα. Συγκεκριμένα, ο στόχος μας είναι να ταυτοποιήσουμε αν 

όντως οι περιοχές που παρουσιάζονται ως κωδικές περιοχές του 

γονιδιώματος, οι οποίες είναι οι περιοχές που παράγεται πρωτεΐνη στο 

ανθρώπινο γονιδίωμα είναι ή δεν είναι κωδικές και αντίστοιχα αν όντως οι 

περιοχές που χαρακτηρίζονται ως μη κωδικές, που είναι μέρη του 

ανθρώπινου οργανισμού που δε συντίθεται πρωτεΐνη, είναι ή δεν είναι μη 

κωδικές αντίστοιχα, δηλαδή παράγουν ή δεν παράγουν πρωτείνη στα 

κύτταρα του ανθρώπινου οργανισμού. Ο τρόπος με τον οποίο γίνεται η 

ανίχνευση και η ταυτοποίηση αποτελείται από διάφορα στάδια και 

διαδικασίες που περιγράφονται στα επόμενα κεφάλαια. Ένα πολύ 

σημαντικό κομμάτι της συγκεκριμένης εργασίας, είναι ο εντοπισμός και η 

σύγκριση των τελικών αποτελεσμάτων, ανάμεσα σε κάποια από τα πιο 

γνωστά προγράμματα που υπάρχουν για την ανίχνευση και ταυτοποίηση 

των γονιδίων, που ευθύνονται για την παραγωγή πρωτεΐνης στον 

άνθρωπο και έπειτα ο τρόπος λειτουργίας τους, το τι προσφέρουν στο 

χρήστη και πώς μπορούν να βελτιωθούν. Το τελικό κομμάτι της διατριβής 

είναι η παρουσίαση της δικιάς μας πρότασης για την ανίχνευση και την 

ταυτοποίηση των κωδικών και μη περιοχών, με τη χρήση ενός εργαλείου 

και νέων σύγχρονων αλγορίθμων που έχουμε δημιουργήσει. Τέλος 

έχουμε τη σύγκριση των αποτελεσμάτων μας έναντι των πιο γνωστών 

εργαλείων που υπάρχουν.        
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Abstract 

 
In this thesis, we deal with the human gene and which regions of 

the human genome produce protein. Specifically, our goal is to identify 

if areas that seem like gene coding regions(mRNAs), which are the areas 

that produce proteins in the human genome, are indeed coding or not, 

and reversely, if areas identified as non-coding, namely, parts of the 

human genome that don’t produce protein are in fact non-coding 

(ncRNAs). Detection and identification of coding and non-coding 

regions respectively consists of several stages and procedures which are 

described in the following chapters. A very important part of this work 

was to identify and compare the final results among some of the most 

known programs (state of the art) that exist for the detection and 

identification of genes which are responsible for the production of 

proteins in humans. Also find the way these programs operate and what 

they offer to the user and suggest improvements. The final part of this 

thesis presents our own integrated pipeline for the distinguish of coding 

genes (mRNAs) from non – coding genes (ncRNAs) and more specific 

from long non - coding genes (lincRNAs). In the end we have the 

comparison of our results versus most common available TIS tools. 
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Chapter 1 

Introduction to Biology 
 

 

1.1 The Central Dogma of Molecular Biology  
Before proceeding to the main subject this master’s thesis deals 

with, it would be good to remember the central dogma of molecular 

biology. 

  

 The central dogma of molecular biology is an explanation of the 

flow of genetic information within a biological system, as shown in Figure 

1.1. It was first stated by Francis Crick in 1956 and then re-stated in a 

publication in 1970 (Crick 1970) and is currently the bible of molecular 

biology. 

 

The central dogma of molecular biology deals with the detailed 

relationship between DNA, RNA and PROTEIN. RNA is produced from 

DNA and then PROTEIN is produced from RNA. Even the main functions 

of DNA, RNA and PROTEIN production are depicted in the central 

dogma; the DNA replicates with the help of DNA polymerase, it is 

transcribed to RNA with the help of RNA polymerase and the RNA is 

translated to PROTEIN by the Ribosome.  

 

During the following decades the molecular basis of the central 

dogma was elucidated (Watson 2007) and special routes that don’t exist 

in all species were included. These are RNA replication and reverse 

transcription and we will refer to them briefly in 1.3 About RNA. 

 

 

   
Figure 1.1: The Central Dogma of Molecular Biology. 
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1.2 About DNA 
 

Deoxyribonucleic acid, else known as DNA, is a molecule that 

carries most of the genetic instructions used in the development and 

functioning of all known living organisms and many viruses. DNA is a 

nucleic acid; alongside proteins and carbohydrates, nucleic acids 

compose the three major macromolecules essential for all known forms 

of life. Most DNA molecules consist of two biopolymer strands coiled 

around each other to form a double helix (Berg, Tymoczko et al. 2007). 

The two DNA strands are known as polynucleotides since they are 

composed of simpler units called nucleotides. Each nucleotide is 

composed of a nitrogen-containing nucleobase—either guanine (G), 

adenine (A), thymine (T), or cytosine (C)—as well as a monosaccharide 

sugar called 2-deoxyribose and a phosphate group. The nucleotide 

sugars are joined together by phosphate groups that form 

phosphodiester bonds between the third and fifth carbon atoms of 

adjacent sugar rings, consequently composing the DNA backbone. 

Attached to each sugar is one of the four types of nucleobases and it is 

the sequence of them that encodes biological information. According 

to base pairing rules (A with T, and C with G), hydrogen bonds bind the 

nucleobases of the two separate polynucleotide strands to make 

double-stranded DNA.  

In a double helix, the direction of the nucleotides in one strand is 

opposite to their direction in the other strand: the strands are antiparallel. 

The asymmetric ends of DNA strands are called the 5′ (five prime) and 3′ 

(three prime) ends, with the 5′ end having a terminal phosphate group 

and the 3′ end a terminal hydroxyl group. 

 

The DNA double helix is stabilized primarily by two forces: 

hydrogen bonds between nucleotides and base-stacking interactions 

among aromatic nucleobases. In the aqueous environment of the cell, 

the conjugated π bonds of nucleotide bases align perpendicular to the 

axis of the DNA molecule, minimizing their interaction with the solvation 

shell and therefore, the Gibbs free energy. 

 

Double-strand DNA contains a major and a minor groove, 

created by the way each pair of bases is lined up after the other (Berg, 

Tymoczko et al. 2007). Additionally, it can form various types of helices; 

the most common and first one to be identified is B-DNA, a right-handed 

helix with wide and deep grooves that permit easier interaction with 

DNA-binding proteins. A-DNA is also right-handed but the ribose 

molecules are more tightly packed, leading to a more compact 

conformation with a narrow major groove and a shallow minor groove. 

A-DNA is favored in dehydrated DNA, or in double-strand RNA, or in 

DNA-RNA hybrid molecules. Lastly, Z-DNA is an even tighter, left-handed, 
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helix conformation that is observed only in short oligonucleotide chains 

with a specific sequence; Its biological role is still under question. 

 
Figure 1.2: The antiparallel DNA strands form a double helix [4]. 

 

 

DNA is well-suited for biological information storage. The DNA 

backbone is resistant to cleavage, and both strands of the double-

stranded structure store the same biological information, “immediately 

suggesting a possible copying mechanism for the genetic material”, as 

Watson and Crick pointed out in 1953 (Watson and Crick 1953); 

biological information is replicated as the two strands are separated. A 

significant portion of DNA (more than 98% for humans) is non-coding, 

meaning that these sections do not serve as patterns for protein 

sequences. 

Within cells, DNA is organized into long structures called 

chromosomes. During cell division these chromosomes are duplicated in 

the process of DNA replication, providing each cell its own complete set 

of chromosomes. Eukaryotic organisms (Animalia, Plantae, Fungi, and 

Protista) store most of their DNA inside the cell nucleus and some of their 

DNA in organelles, such as mitochondria or chloroplasts (Russell 2010). In 

contrast, prokaryotes (Bacteria and Archaea) store their DNA only in a 

roughly defined space in the cytoplasm called nucleoid. Within the 

chromosomes, chromatin proteins such as histones compact and 

organize DNA. These compact structures guide the interactions 

between DNA and other proteins, helping control which parts of the 

DNA are transcribed. 

Historically, DNA was first identified and isolated by Friedrich 

Miescher in 1871, and the double helix structure of DNA was first 

discovered by James Watson and Francis Crick, using experimental data 
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collected by Rosalind Franklin and Maurice Wilkins. Its two helical chains 

are coiled around the same axis, each with a pitch of 34 ångströms and 

a radius of 10 ångströms. Although each individual repeating unit is very 

small, DNA polymers can be very large molecules containing millions of 

nucleotides. For instance, the largest human chromosome, 

chromosome number 1, consists of approximately 220 million base pairs 

and is 85 mm long. 

 

Apart from its uses in molecular biology and genetic engineering, 

DNA is also used by researchers as a molecular tool to explore physical 

laws and theories, such as the ergodic theorem and the theory of 

elasticity. The unique material properties of DNA have made it an 

attractive molecule for material scientists and engineers interested in 

micro- and nano-fabrication. Among notable advances in this field are 

DNA origami and DNA-based hybrid materials. 

The obsolete synonym "desoxyribonucleic acid" may occasionally 

be encountered, for example, in pre-1953 genetics.  

 

 

1.3 About RNA 
 

Ribonucleic acid, known as RNA is a polymeric molecule. It is 

implicated in various biological roles in coding, regulation, and 

expression of genes. Like DNA, RNA is assembled as a chain of 

nucleotides, but unlike DNA it is more often found in nature as a single-

strand folded unto itself, rather than a paired double-strand. Organisms 

use messenger RNA known as mRNA to convey genetic information that 

directs synthesis of specific proteins. Many viruses encode their genetic 

information using an RNA genome. 

Some RNA molecules play an active role within cells by catalyzing 

biological reactions, controlling gene expression, or sensing and 

communicating responses to cellular signals. One of these active 

processes is protein synthesis, a universal function whereby mRNA 

molecules direct the assembly of proteins on ribosomes. This process uses 

transfer RNA known as tRNA molecules to deliver amino acids to the 

ribosome, where ribosomal RNA, known as rRNA links amino acids 

together to form proteins. 

Each nucleotide in RNA contains a ribose sugar, with carbons 

numbered 1' through 5'. A base is attached to the 1' position, in general, 

adenine (A), cytosine (C), guanine (G), or uracil (U). Adenine and 

guanine are purines, cytosine and uracil are pyrimidines. A phosphate 

group is attached to the 3' position of one ribose and the 5' position of 

the next. The phosphate groups have a negative charge each at 

physiological pH, making RNA a charged molecule. The bases form 

hydrogen bonds between C and G, between A and U and between G 

and U (Lee and Gutell 2004). However, other interactions are possible, 
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such as a group of adenine bases binding to each other in a bulge 

(Barciszewski, Clark et al. 1999), or the GNRA tetraloop that has a 

guanine–adenine base-pair (Lee and Gutell 2004). 

 

 

 
Figure1.3: Ribose & Deoxyribose [3]. 

 

 

 As shows in Figure 1.3, an important structural feature of RNA that 

distinguishes it from DNA is the presence of a hydroxyl group at the 2' 

position of the ribose sugar. The presence of this functional group causes 

the helix to adopt the A-form geometry rather than the B-form most 

commonly observed in DNA (Sedova and Banavali 2015). This results in a 

very deep and narrow major groove and a shallow and wide minor 

groove (Hermann and Patel 2000). A second consequence of the 

presence of the 2'-hydroxyl group is that in conformation ally flexible 

regions of an RNA molecule, it can chemically attack the adjacent 

phosphodiester bond to cleave the backbone (Mikkola, Stenman et al. 

1999). 

 

Although RNA is transcribed with only four bases, these bases and 

attached sugars can be modified in numerous ways as the RNAs mature. 

Pseudouridine, in which the linkage between uracil and ribose is 

changed from a C–N bond to a C–C bond, and ribothymidine are found 

in various places(Yu and Morrow 2001). Another notable modified base 

is hypoxanthine, a deaminated adenine base whose nucleoside is 

called inosine. Inosine plays a key role in the wobble hypothesis of the 

genetic code, that is, the matching of RNA base pairs not according to 

the classic base pair rules(Elliott and Trewyn 1984). 

 

There are more than 100 other naturally occurring modified 

nucleosides(Cantara, Crain et al. 2011). The greatest structural diversity 

of modifications can be found in tRNA, while pseudouridine and 

nucleosides with 2'-O-methylribose often present in rRNA are the most 

common (Kiss 2001). The specific roles of many of these modifications in 

RNA are not fully understood. However, it is notable that, in ribosomal 
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RNA, many of the post-transcriptional modifications occur in highly 

functional regions, such as the peptidyl transferase center and the 

subunit interface, implying that they are important for normal function 

(King, Liu et al. 2003). 

 

The functional form of single-stranded RNA molecules, just like 

proteins, frequently requires a specific tertiary structure. The scaffold for 

this structure is provided by secondary structural elements that are 

hydrogen bonds within the molecule. This leads to several recognizable 

domains of secondary structure like hairpin loops, bulges, and internal 

loops (Mathews, Disney et al. 2004). Since RNA is negatively charged, 

metal ions such as Mg2+ are needed to stabilize many secondary and 

tertiary structures. 

 

Synthesis of RNA is usually catalyzed by an enzyme—RNA 

polymerase—using DNA as a template, a process known as 

transcription. Initiation of transcription begins with the binding of the 

enzyme to a promoter sequence in the DNA, usually found "upstream" 

of a gene. The DNA double helix is unwound by the helicase activity of 

the enzyme. The enzyme then progresses along the template strand in 

the 3’ to 5’ direction, synthesizing a complementary RNA molecule with 

elongation occurring in the 5’ to 3’ direction. The DNA sequence also 

dictates where termination of RNA synthesis will occur (Nudler and 

Gottesman 2002). 

 

Primary transcript RNAs are often modified by enzymes after 

transcription. For example, a poly (A) tail and a 5' cap are added to 

eukaryotic pre-mRNA and introns are removed by the spliceosome. 

 

There are also a number of RNA-dependent RNA polymerases 

that use RNA as their template for synthesis of a new strand of RNA. For 

instance, a number of RNA viruses use this type of enzyme to replicate 

their genetic material (Hansen, Long et al. 1997). Also, RNA-dependent 

RNA polymerase is part of the RNA interference pathway in many 

organisms(Ahlquist 2002). 

 

Coding and non-coding RNA species 

Messenger RNA or else mRNA, is the RNA class that carries 

information from DNA to the ribosome, the cellular site of protein 

synthesis or translation. The coding sequence of the mRNA determines 

the amino acid sequence(Cooper and Hausman 2004). However, many 

RNAs do not code for protein, about 97% of the transcriptional output is 

non-protein-coding in eukaryotes (Mattick 2001, Mattick 2003).  

These so-called non-coding RNAs, or ncRNA, can be encoded by 

their own genes, but can also derive from mRNA introns (St Laurent, 

Shtokalo et al. 2012). The most prominent examples of non-coding RNAs 

are transfer RNA or tRNA and ribosomal RNA or rRNA, both of which are 
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involved in the process of translation. There are also non-coding RNAs 

involved in gene regulation, RNA processing and other roles. Certain 

RNAs are able to catalyze chemical reactions such as cutting and 

ligating other RNA molecules (Rossi 2004), and the catalysis of peptide 

bond formation in the ribosome. These are known as ribozymes (Nissen, 

Hansen et al. 2000). 

 

In translation, the messenger RNA carries information about a 

protein sequence to the ribosomes, the protein synthesis factories in the 

cell. It is coded so that every three nucleotides or else a codon 

correspond to one amino acid. In eukaryotic cells, once precursor mRNA 

or pre-mRNA has been transcribed from DNA, it is processed to mature 

mRNA. This removes its introns—non-coding sections of the pre-mRNA. 

The mRNA is then exported from the nucleus to the cytoplasm, where it 

is bound to ribosomes and translated into its corresponding protein form 

with the help of tRNA. In prokaryotic cells, which do not have nucleus 

and cytoplasm compartments, mRNA can bind to ribosomes while it is 

being transcribed from DNA. After a certain amount of time the 

message degrades into its component nucleotides with the assistance 

of ribonucleases (Cooper and Hausman 2004). 

 

Transfer RNA is a small RNA chain of about 80 nucleotides that 

transfers a specific amino acid to a growing polypeptide chain at the 

ribosomal site of protein synthesis during translation. It has sites for amino 

acid attachment and an anticodon region for codon recognition that 

binds to a specific sequence on the messenger RNA chain through 

hydrogen bonding. [26] 

 

Ribosomal RNA is the catalytic component of the ribosomes. 

Eukaryotic ribosomes contain four different rRNA molecules: 18S, 5.8S, 

28S and 5S rRNA. S, Svedberg, is a non-SI unit of sedimentation, 

practically the time a molecule needs to settle at the bottom of a test 

tube under an acceleration of 107 m/s2, in a centrifuge. Svedberg units 

are not directly additive, as they depend on the particle mass, shape 

and density (Correia and Stafford 2015). Three of the rRNA molecules are 

synthesized in the nucleolus, and one is synthesized elsewhere. In the 

cytoplasm, ribosomal RNA and protein combine to form a nucleoprotein 

complex called a ribosome. The ribosome binds mRNA and carries out 

protein synthesis. Several ribosomes may be attached to a single mRNA 

at any time (Cooper and Hausman 2004). Most RNA found in a typical 

eukaryotic cell is rRNA. 

 

Transfer-messenger RNA or else tmRNA is found in many bacteria 

and plastids. It tags proteins encoded by mRNAs that lack stop codons 

for degradation and prevents the ribosome from stalling (Gueneau de 

Novoa and Williams 2004). 
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Regulatory RNAs: 

 Several types of RNA can down-regulate gene expression by 

being complementary to a part of an mRNA or a gene's DNA. 

microRNAs are found in eukaryotes and act through RNA interference 

or RNAi, where an effector complex of miRNA and enzymes can cleave 

complementary mRNA, block the mRNA from being translated, or 

accelerate its degradation (Guo, Ingolia et al. 2010).  

 

Small interfering RNAs or siRNA are often produced by breakdown 

of viral RNA, but there can also be endogenous sources of siRNAs 

(Vazquez, Vaucheret et al. 2004). siRNAs act through RNA interference 

in a fashion similar to miRNAs. Some miRNAs and siRNAs can cause genes 

they target to be methylated, thereby decreasing or increasing 

transcription of those genes (Sontheimer and Carthew 2005, Pushparaj, 

Aarthi et al. 2008).  

 

Animals have Piwi-interacting RNAs or piRNA that are active in 

germline cells and are thought to be a defense against transposons and 

play a role in gametogenesis (Girard, Sachidanandam et al. 2006, 

Horwich, Li et al. 2007). 

 

Many prokaryotes have CRISPR RNAs, a regulatory system similar 

to RNA interference (Horvath and Barrangou 2010). Antisense RNAs are 

widespread; most downregulate a gene, but a few are activators of 

transcription (Wagner, Altuvia et al. 2002). One way antisense RNA can 

act is by binding to an mRNA, forming double-stranded RNA that is 

enzymatically degraded. There are many long non-coding RNAs that 

regulate genes in eukaryotes (Amaral and Mattick 2008), one such RNA 

is Xist, which coats one X chromosome in female mammals and 

inactivates it (Heard, Mongelard et al. 1999). 

 

An mRNA may contain regulatory elements itself, such as 

riboswitches, in the 5' untranslated region or 3' untranslated region, these 

cis-regulatory elements regulate the activity of that mRNA. The 

untranslated regions can also contain elements that regulate other 

genes (Scotto and Assoian 1993, Batey 2006). 

 

RNA processing species: 

Many RNAs are involved in modifying other RNAs. Introns are spliced out 

of pre-mRNA by spliceosomes, which contain several small nuclear RNAs 

known as snRNA(Berg, Tymoczko et al. 2007) or the introns can be 

ribozymes that are spliced by themselves (Steitz and Steitz 1993). RNA 

can also be altered by having its nucleotides modified to other 

nucleotides than A, C, G and U. In eukaryotes, modifications of RNA 

nucleotides are in general directed by small nucleolar RNAs, found in the 

nucleolus and cajal bodies. snoRNAs associate with enzymes and guide 

them to a spot on an RNA by basepairing to that RNA. These enzymes 
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then perform the nucleotide modification. rRNAs and tRNAs are 

extensively modified, but snRNAs and mRNAs can also be the target of 

base modification (Xie, Zhang et al. 2007). RNA can also be methylated 

(Cavaille, Nicoloso et al. 1996). 

 

RNA genomes:  

Much like DNA, RNA can carry genetic information. RNA viruses 

have genomes composed of RNA that encodes a number of proteins. 

The viral genome is replicated by some of those proteins, while other 

proteins protect the genome as the virus particle moves to a new host 

cell. Viroids are another group of pathogens, but they consist only of 

RNA, do not encode any protein and are replicated by a host plant cell's 

polymerase (Daros, Elena et al. 2006). 

 

In reverse transcription, reverse transcribing viruses replicate their 

genomes by reverse transcribing DNA copies from their RNA. Either the 

same or the opposite (antisense) DNA chain of these copies can then 

be transcribed to new RNAs (Madigan, Madigan et al. 2009). 

Retrotransposons also spread by copying DNA and RNA from one 

another (Kalendar, Vicient et al. 2004), and telomerase contains an RNA 

that is used as template for building the ends of eukaryotic 

chromosomes (Podlevsky, Bley et al. 2008). 

 

Double-stranded RNA or else dsRNA is RNA with two 

complementary strands, similar to the DNA found in all cells. dsRNA forms 

the genetic material of some viruses like double-stranded RNA viruses. 

Double-stranded RNA such as viral RNA or siRNA can trigger RNA 

interference in eukaryotes, as well as interferon response in 

vertebrates(Blevins, Rajeswaran et al. 2006, Whitehead, Dahlman et al. 

2011).  

 

It is worth emphasizing again the fact that RNA can carry 

biological information as well as have an enzymatic activity; it is a less 

stable macromolecule than DNA and it can catalyze less diverse 

reactions that proteins. Therefore, although today it is positioned as an 

intermediate of information flow between DNA and proteins, the “RNA 

world hypothesis” is being shaped since the 1950s, suggesting that self-

replicating RNA molecules are precursors of all current life forms on Earth 

(Berg, Tymoczko et al. 2007, Robertson and Joyce 2012). 

 

 

1.4 About Protein 
 

 Proteins are macromolecules, consisting of one or more long 

chains of amino acid residues. Proteins perform a vast array of functions 

within living organisms, including catalyzing metabolic reactions, 
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replicating DNA, responding to stimuli, and transporting molecules from 

one location to another. Proteins differ from one another primarily in their 

sequence of amino acids, which is dictated by the nucleotide sequence 

of their genes, and which usually results in folding of the protein into a 

specific three-dimensional structure that determines its activity. 

 

A linear chain of amino acid residues is called a polypeptide(Berg, 

Tymoczko et al. 2007). A protein contains at least one long polypeptide. 

Short polypeptides, containing less than about 20-30 residues, are rarely 

considered to be proteins and are commonly called peptides, or 

sometimes oligopeptides. The individual amino acid residues are 

bonded together by peptide bonds and adjacent amino acid residues. 

The sequence of amino acid residues in a protein is defined by the 

sequence of a gene, which is encoded in the genetic code. In general, 

the genetic code specifies 20 standard amino acids, however, in certain 

organisms the genetic code can include selenocysteine and—in certain 

archaea—pyrrolysine (Rother and Krzycki 2010). Shortly after or even 

during synthesis, the residues in a protein are often chemically modified 

by posttranslational modifications (PTMs), which alter the physical and 

chemical properties, folding, stability, activity, and ultimately, the 

function of the proteins. Sometimes proteins have non-peptide groups 

attached, which can be called prosthetic groups or cofactors(Khoury, 

Baliban et al. 2011). Proteins can also work together to achieve a 

particular function, and they often associate to form stable protein 

complexes. 

 

Once formed, proteins only exist for a certain period of time and 

are then degraded and recycled by the cell's machinery through the 

process of protein turnover (Toyama and Hetzer 2013). A protein's 

lifespan is measured in terms of its half-life and covers a wide range. They 

can exist for minutes or years with an average lifespan of 1–2 days in 

mammalian cells. Abnormal and/or misfolded proteins are degraded 

more rapidly either due to being targeted for destruction or due to being 

unstable. 

 

Like other biological macromolecules such as polysaccharides 

and nucleic acids, proteins are essential parts of organisms and 

participate in virtually every process within cells. Many proteins are 

enzymes that catalyze biochemical reactions and are vital to 

metabolism. Proteins also have structural or mechanical functions, such 

as actin and myosin in muscle and the proteins in the cytoskeleton, 

which form a system of scaffolding that maintains cell shape. Other 

proteins are important in cell signaling, immune responses, cell adhesion, 

and the cell cycle. Proteins are also necessary in animals' diets, since 

animals cannot synthesize all the amino acids they need and must 

obtain essential amino acids from food. Through the process of 
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digestion, animals break down ingested protein into free amino acids 

that are then used in metabolism. 

 

Proteins may be purified from other cellular components using a 

variety of techniques such as ultracentrifugation, precipitation, 

electrophoresis, and chromatography; the advent of genetic 

engineering has made possible a number of methods (Labrou 2014) to 

facilitate purification. Methods commonly used to study protein structure 

and function include immunohistochemistry, site-directed mutagenesis, 

X-ray crystallography, nuclear magnetic resonance and mass 

spectrometry. 

 

 

1.5 DNA Replication 

 
DNA replication is the process of producing two identical replicas 

from one original DNA molecule. This biological process occurs in all 

living organisms and is the basis for biological inheritance. DNA is made 

up of two strands and each strand of the original DNA molecule serves 

as a template for the production of the complementary strand, a 

process referred to as semiconservative replication. Cellular 

proofreading and error-checking mechanisms ensure near perfect 

fidelity for DNA replication (Berg, Tymoczko et al. 2007). 

 

In a cell, DNA replication begins at specific locations, or origins of 

replication, in the genome. Unwinding of DNA at the origin and synthesis 

of new strands results in replication forks growing bidirectional from the 

origin. A number of proteins are associated with the replication fork 

which helps in terms of the initiation and continuation of DNA synthesis. 

Most prominently, DNA polymerase synthesizes the new DNA by adding 

complementary nucleotides to the template strand. 

 

DNA replication can also be performed in vitro (artificially, outside 

a cell). DNA polymerases isolated from cells and artificial DNA primers 

can be used to initiate DNA synthesis at known sequences in a template 

DNA molecule. The polymerase chain reaction (PCR), a common 

laboratory technique, cyclically applies such artificial synthesis to 

amplify a specific target DNA fragment from a pool of DNA. 

 

The pairing of complementary bases in DNA through hydrogen 

bonding means that the information contained within each strand is 

redundant. The nucleotides on a single strand can be used to 

reconstruct nucleotides on a newly synthesized partner strand(Alberts 

2008). 
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DNA polymerases are a family of enzymes that carry out all forms 

of DNA replication (Berg, Tymoczko et al. 2007). DNA polymerases in 

general cannot initiate synthesis of new strands, but can only extend an 

existing DNA or RNA strand paired with a template strand. To begin 

synthesis, a short fragment of RNA, called a primer, must be created and 

paired with the template DNA strand. 

 

DNA polymerase adds a new strand of DNA by extending the 3' 

end of an existing nucleotide chain, adding new nucleotides matched 

to the template strand one at a time via the creation of phosphodiester 

bonds. The energy for this process of DNA polymerization comes from 

hydrolysis of the high-energy phosphate or known as phosphoanhydride 

bonds between the three phosphates attached to each 

unincorporated base. Free bases with three attached phosphate 

groups are called nucleoside triphosphates. When a nucleotide is being 

added to a growing DNA strand, the formation of a phosphodiester 

bond between the proximal phosphate of the nucleotide to the growing 

chain is accompanied by hydrolysis of a high-energy phosphate bond 

with release of the two distal phosphates as a pyrophosphate. Enzymatic 

hydrolysis of the resulting pyrophosphate into inorganic phosphate 

consumes a second high-energy phosphate bond and renders the 

reaction effectively irreversible. 

 

As described in 1.2, DNA strands have a directionality, and the 

different ends of a single strand are called the 3' end and the 5' end. By 

convention, if the base sequence of a single strand of DNA is given, the 

left end of the sequence is 5' end, while the right end of the sequence is 

the 3' end. The strands of the double helix are anti-parallel with one 

being 5' to 3', and the opposite strand 3' to 5'. These terms refer to the 

carbon atom in deoxyribose to which the next phosphate in the chain 

attaches. Directionality has consequences in DNA synthesis, because 

DNA polymerase can synthesize DNA in only one direction by adding 

nucleotides to the 3' end of a DNA strand. Therefore, replication goes on 

normally on the 3’ to 5’ strand, resulting in the making of a new strand 

called leading strand. On the other hand, many more RNA primers bind 

on the 5’ to 3’ strand and elongation happens uncontinuously with 5’ to 

3’ directionality. The occurring DNA fragments, called Okazaki 

fragments, are then stiched together by DNA ligase and finally form the 

so-called lagging strand, as seen on the figure (Berg, Tymoczko et al. 

2007). 

 

In general, DNA polymerases are highly accurate, with an intrinsic 

error rate of less than one mistake for every 107 nucleotides added 

(McCulloch and Kunkel 2008). In addition, some DNA polymerases also 

have proofreading ability; they can remove nucleotides from the end of 

a growing strand in order to correct mismatched bases. Finally, post-

replication mismatch repair mechanisms monitor the DNA for errors, 
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being capable of distinguishing mismatches in the newly synthesized 

DNA strand from the original strand sequence. Together, these three 

discrimination steps enable replication fidelity of less than one mistake 

for every 109 nucleotides added. 

 

In the sense that DNA replication must occur if genetic material is 

to be provided for the progeny of any cell, whether somatic or 

reproductive, the copying from DNA to DNA arguably is the 

fundamental step in the central dogma. A complex group of proteins 

called the replisome performs the replication of the information from the 

parent strand to the complementary daughter strand (Figure 1.4). The 

replisome comprises a helicase: 

 
Figure1.4: Unwinding of the superhelix (Ruiz Mariana, 01-24-2007, Public Domain). 

 

that unwinds the superhelix as well as the double-stranded DNA helix to 

create a replication fork, SSB protein that binds open the double-

stranded DNA to prevent it from reassociating, RNA primase that adds a 

complementary RNA primer to each template strand as a starting point 

for replication, DNA polymerase III that reads the existing template chain 

from its 3' end to its 5' end and adds new complementary nucleotides 

from the 5' end to the 3' end of the daughter chain, DNA polymerase I 

that removes the RNA primers and replaces them with DNA, DNA ligase 

that joins the two Okazaki fragments with phosphodiester bonds to 

produce a continuous chain. This process typically takes place during S 

phase of the cell cycle. 

 

 

1.6 RNA Transcription 

 
Transcription is the process by which the information contained in 

a section of DNA is replicated in the form of a newly assembled piece of 

messenger RNA known as mRNA (Berg, Tymoczko et al. 2007). Enzymes 

facilitating the process include RNA polymerase and transcription 

factors. In eukaryotic cells the primary transcript is the pre-mRNA. Pre-

mRNA must be processed for translation to proceed. Processing includes 
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the addition of a 5' cap and a poly-A tail to the pre-mRNA chain, 

followed by splicing.  

 

5’ cap is a methylated guanine making a rare 5’-5’ triphosphate 

bond on the 5’ end. This cap provides stability to the mRNA by guarding 

its 5’ end from nuclease or phospatase activity and additionally it 

enhances its translation. These are also believed to be the roles of the 

long adenine chain (polyA-tail) that is added at the 3’ end. 

 

Splicing is the process during which the spliceosome, a complex 

molecular machine at the nucleus removes introns from a pre-mRNA 

and combines introns, forming the processed mRNA that can be 

translated into protein. Alternative splicing occurs when appropriate, 

utilizing different exons to increase the diversity of the proteins that any 

single mRNA can produce. The product of the entire transcription 

process that began with the production of the pre-mRNA chain, is a 

mature mRNA chain. 

 

 

1.7 Protein Translation 

 
In molecular biology and genetics, translation is the process in 

which cellular ribosomes create proteins. In translation, mRNA is 

decoded by a ribosome to produce a specific amino acid chain, or 

polypeptide. The polypeptide later folds into an active protein and 

performs its functions in the cell. The ribosome facilitates decoding by 

inducing the binding of complementary tRNA anticodon sequences to 

mRNA codons. The tRNAs carry specific amino acids that are chained 

together into a polypeptide as the mRNA passes through and is "read" 

by the ribosome. The entire process is a part of gene expression. In brief, 

translation proceeds in four phases and is shown in Figure 1.5: 

 

 Initiation:  

o The ribosome assembles around the target mRNA. The first 

tRNA is attached at the start codon. 

 Elongation:  

o The tRNA transfers an amino acid to the tRNA 

corresponding to the next codon. 

 Translocation: 

o The ribosome then moves (translocates) to the next mRNA 

codon to continue the process, creating an amino acid 

chain. 

 Termination:  

o When a stop codon is reached, the ribosome releases the 

polypeptide. 
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Figure 1.5: RNA translation protein synthesis (Kalvinsong, 12-14-2012, Creative Commons) 

 

 

In bacteria, translation occurs in the cell's cytoplasm, where the 

large and small subunits of the ribosome bind to the mRNA. In 

eukaryotes, translation occurs in the cytosol or across the membrane of 

the endoplasmic reticulum. In many instances, the entire 

ribosome/mRNA complex binds to the outer membrane of the rough 

endoplasmic reticulum (ER); the newly created polypeptide is stored 

inside the ER for later vesicle transport and secretion outside of the cell. 

 

The basic process of protein production is addition of one amino 

acid at a time to the end of a protein. This operation is performed by a 

ribosome. The choice of amino acid type to add is determined by an 

mRNA molecule. Each amino acid added is matched to a three 

nucleotide subsequence of the mRNA. For each such triplet possible, the 

corresponding amino acid is accepted. The successive amino acids 

added to the chain are matched to successive nucleotide triplets in the 

mRNA. In this way the sequence of nucleotides in the template mRNA 

chain determines the sequence of amino acids in the generated amino 

acid chain (Campbell and Reece 2005). Addition of an amino acid 

occurs at the C-terminus of the peptide and thus translation is said to be 

amino-to-carboxyl directed. 

 

The mRNA carries genetic information encoded as a ribonucleotide 

sequence from the chromosomes to the ribosomes (Berg, Tymoczko et 

al. 2007). The ribonucleotides are "read" by translational machinery in a 

sequence of nucleotide triplets called codons. Each of those triplets 

codes for a specific amino acid.  

 

The ribosome molecules translate this code to a specific sequence 

of amino acids. The ribosome is a multisubunit structure containing rRNA 

Institutional Repository - Library & Information Centre - University of Thessaly
18/05/2024 18:16:59 EEST - 18.118.184.137



 
 

16 
 

and proteins. It is the "factory" where amino acids are assembled into 

proteins. tRNAs are small noncoding RNA chains (74-93 nucleotides) that 

transport amino acids to the ribosome. tRNAs have a site for amino acid 

attachment, and a site called an anticodon. The anticodon is an RNA 

triplet complementary to the mRNA triplet that codes for their cargo 

amino acid.  

 

Aminoacyl tRNA synthetases (enzymes) catalyze the bonding 

between specific tRNAs and the amino acids that their anticodon 

sequences call for. The product of this reaction is an aminoacyl-tRNA. 

This aminoacyl-tRNA is carried to the ribosome by EF-Tu, where mRNA 

codons are matched through complementary base pairing to specific 

tRNA anticodons. Aminoacyl-tRNA synthetases that mispair tRNAs with 

the wrong amino acids can produce mischarged aminoacyl-tRNAs, 

which can result in inappropriate amino acids at the respective position 

in protein. This "mistranslation" of the genetic code naturally occurs at 

low levels in most organisms, but certain cellular environments cause an 

increase in permissive mRNA decoding, sometimes to the benefit of the 

cell (Moghal, Mohler et al. 2014). 

 

The ribosome has three sites for tRNA to bind. They are the 

aminoacyl site (abbreviated A), the peptidyl site (abbreviated P) and 

the exit site (abbreviated E). With respect to the mRNA, the three sites 

are oriented 5’ to 3’ E-P-A, because ribosomes move toward the 3' end 

of mRNA. The A site binds the incoming tRNA with the complementary 

codon on the mRNA. The P site holds the tRNA with the growing 

polypeptide chain. The E site holds the tRNA without its amino acid. 

When an aminoacyl-tRNA initially binds to its corresponding codon on 

the mRNA, it is in the A site. Then, a peptide bond forms between the 

amino acid of the tRNA in the A site and the amino acid of the charged 

tRNA in the P site. The growing polypeptide chain is transferred to the 

tRNA in the A site. Translocation occurs, moving the tRNA in the P site, 

now without an amino acid, to the E site; the tRNA that was in the A site, 

now charged with the polypeptide chain, is moved to the P site. The 

tRNA in the E site leaves and another aminoacyl-tRNA enters the A site 

to repeat the process (Griffiths 2008). 

 

After the new amino acid is added to the chain, and after the 

mRNA is released out of the nucleus and into the ribosome's core, the 

energy provided by the hydrolysis of a GTP bound to the translocase EF-

G (in prokaryotes) and eEF-2 (in eukaryotes) moves the ribosome down 

one codon towards the 3' end. The energy required for translation of 

proteins is significant. For a protein containing n amino acids, the number 

of high-energy phosphate bonds required to translate it is 4n-1[citation 

needed]. The rate of translation varies; it is significantly higher in 

prokaryotic cells (up to 17-21 amino acid residues per second) than in 
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eukaryotic cells (up to 6-9 amino acid residues per second) (Ross and 

Orlowski 1982). 

In activation, the correct amino acid is covalently bonded to the 

correct transfer RNA (tRNA). The amino acid is joined by its carboxyl 

group to the 3' OH of the tRNA by an ester bond. When the tRNA has an 

amino acid linked to it, it is termed "charged". Initiation involves the small 

subunit of the ribosome binding to the 5' end of mRNA with the help of 

initiation factors (IF). Termination of the polypeptide happens when the 

A site of the ribosome faces a stop codon (UAA, UAG, or UGA). No tRNA 

can recognize or bind to this codon. Instead, the stop codon induces 

the binding of a release factor protein that prompts the disassembly of 

the entire ribosome/mRNA complex. 

 

Whereas other aspects such as the 3D structure, called tertiary 

structure, of protein can only be predicted using sophisticated 

algorithms, the amino acid sequence, called primary structure, can be 

determined solely from the nucleic acid sequence with the aid of a 

translation table. 

 

This approach may not give the correct amino acid composition of 

the protein, in particular if unconventional amino acids such as 

selenocysteine are incorporated into the protein, which is coded for by 

a conventional stop codon in combination with a downstream hairpin 

(SElenoCysteine Insertion Sequence, or SECIS). 

 

There are many computer programs capable of translating a 

DNA/RNA sequence into a protein sequence. Normally this is performed 

using the Standard Genetic Code, many bioinformaticians have written 

at least one such program at some point in their education. However, 

few programs can handle all the "special" cases, such as the use of the 

alternative initiation codons. For instance, the rare alternative start 

codon CTG codes for Methionine when used as a start codon, and for 

Leucine in all other positions. Figure 1.6 depicts the standard genetic 

code. 
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Figure 1.6: Standard genetic code 

 

 

1.8 Reading frame  

In molecular biology, a reading frame is a way of dividing the 

sequence of nucleotides in a nucleic acid (DNA or RNA) molecule into 

a set of consecutive, non-overlapping triplets. Where these triplets 

equate to amino acids or stop signals during translation, they are called 

codons (an example of a reading frame shown in Figure 1.7).   

A single strand of a nucleic acid molecule has a phosphoryl end, 

called the 5′-end, and a hydroxyl or 3′-end. These define the 5'→3' 

direction. There are three reading frames that can be read in this 5'→3' 

direction, each beginning from a different nucleotide in a triplet. In a 

double stranded nucleic acid, an additional three reading frames may 

be read from the other, complementary strand in the 5'→3' direction 

along this strand. As the two strands of a double stranded nucleic acid 

molecule are antiparallel, the 5'→3' direction on the second strand 

corresponds to the 3'→5' direction along the first strand (Badger and 

Olsen 1999). 

In general, at most one reading frame in a given section of a 

nucleic acid is biologically relevant (open reading frame, ORF). Some 

viral transcripts can be translated using multiple, overlapping reading 

frames (Kawano, Neeley et al. 2013). There is one example of 

overlapping reading frames in mammalian mitochondrial DNA: coding 

portions of genes for 2 subunits of ATPase overlap.    
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DNA encodes protein sequence by a series of three-nucleotide 

codons. Any given sequence of DNA can therefore be read in six 

different ways: Three reading frames in one direction (starting at different 

nucleotides) and three in the opposite direction. However, during 

transcription, the template DNA strand is transcribed to mRNA in the 

3'→5' direction. The resulting 5’ to 3’ mRNA is single-stranded and 

therefore only contains three possible reading frames, of which only one 

is translated. The codons of the mRNA reading frame are translated in 

the 5'→3' direction into amino acids by a ribosome to produce a 

polypeptide chain.  

An open reading frame (ORF) is a reading frame that has the 

potential to be transcribed into RNA and translated into protein. It 

requires a continuous sequence of DNA from a start codon, through a 

subsequent region which usually has a length that is a multiple of 3 

nucleotides, to a stop codon in the same reading frame. 

The usage of multiple reading frames leads to the possibility of 

overlapping genes; there may be many of these in virus, prokaryote, and 

mitochondrial genomes (Johnson and Chisholm 2004). Some viruses, e.g. 

Hepatitis B virus and BYDV, use several overlapping genes in different 

reading frames. 

In rare cases, a ribosome may shift from one frame to another 

during translation of an mRNA (translational frameshift). This causes the 

first part of the mRNA to be translated in one reading frame, and the 

latter part to be translated in a different reading frame. This is distinct 

from a frameshift mutation, as the nucleotide sequence (DNA or RNA) is 

not altered—only the frame in which it is read. 

 

Figure 1.7: One strand has three possible reading frames. This figure has been designed for the 
purpose of this thesis. 

 

1.9 Open reading frame 

In molecular genetics, an open reading frame (ORF) is the part of 

a reading frame that has the potential to code for a protein or peptide. 

An ORF is a continuous stretch of DNA beginning with a start codon, 

usually methionine (ATG), and ending with a stop codon (the nucleotide 
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triplets TAA, TAG or TGA in most genomes), example is shows in Figure 

1.8. The transcription termination pause site is located after the ORF, 

beyond the translation stop codon, because if transcription were to 

cease before the stop codon, an incomplete protein would be made 

during translation. Normally, inserts which interrupt the reading frame of 

a subsequent region after the start codon cause frameshift mutation of 

the sequence and dislocate the sequences for stop codons.  

 

Figure 1.8: Open reading frame ATG – Stop codon TAG, TAA, TGA. This figure has been designed for 
the purpose of this thesis. 

 

One common use of open reading frames is as one piece of 

evidence to assist in gene prediction. Long ORFs are often used, along 

with other evidence, to initially identify candidate protein coding regions 

in a DNA sequence (Deonier, Tavaré et al. 2005). The presence of an 

ORF does not necessarily mean that the region is ever translated. For 

example, in a randomly generated DNA sequence with an equal 

percentage of each nucleotide, a stop-codon would be expected 

once every 21 codons. A simple gene prediction algorithm for 

prokaryotes might look for a start codon followed by an open reading 

frame that is long enough to encode a typical protein, where the codon 

usage of that region matches the frequency characteristic for the given 

organism's coding regions. By itself even a long open reading frame is 

not conclusive evidence for the presence of a gene.   

  

Since DNA has two anti-parallel strands, an additional three 

reading frames arise, giving a possible six frame translations as is shown 

in Figure 1.9. 
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Figure 1.9: Six frame translations (Thatsonginc, 5-7-2014, Creative Commons) 

 

1.10 Coding region 

The coding region of a gene, also known as the coding sequence 

or CDS (from coding DNA sequence), is that portion of a gene's DNA or 

RNA, composed of exons, that codes for protein. The region is bounded 

nearer the 5' end by a start codon and nearer the 3' end with a stop 

codon. The coding region in mRNA is bounded by the five prime 

untranslated region and the three prime untranslated region, which are 

also parts of the exons. The CDS is that portion of an mRNA transcript that 

is translated by a ribosome.       

While identification of open reading frames within a DNA 

sequence is straightforward, identifying coding sequences is not, 

because the cell translates only a subset of all open reading frames to 

proteins. Currently CDS prediction uses sampling and sequencing of 

mRNA from cells, although there is still the problem of determining which 

parts of a given mRNA are actually translated to protein. CDS prediction 

is a subset of gene prediction, the latter also including prediction of DNA 

sequences that code not only for protein but also for other functional 

elements such as RNA genes and regulatory sequences. 
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Chapter 2 

Introduction 
 

 

2.1 Introduction to the problem 

In   February   2001, the first assembly of the human genome was 

published by the International Human Genome Sequencing Consortium 

(Consortium, 2001). According to this study human gene tend to have 

small exons (encoding in average only 50 codons) separated by long 

introns (some exceeding 10 kb). This phenomenon increases the signal-

to-noise ratio for algorithms that attempt to facilitate gene prediction, 

leading to significantly limited accuracy. Instead, the performance of 

such algorithms relies mostly on the availability of coding sequences that 

can be utilized to develop robust predictive models. This thesis presents 

a novel in silico approach that can readily identify the coding segments 

of either known or putative genic loci. To this end, the algorithm must be 

capable of: i) locating all Open Reading Frames (ORFs) located in the 

queried sequence, ii) identifying the correct ORF, whose 5’end is 

considered the Translation Initiation Site (TIS). The ORF is defined as a 

stretch of DNA codons (triplets of nucleotides) that start with ATG (start 

codon) and terminate with TAA/TAG/TGA (stop codons). Stop codons 

are not considered part of the ORF. Since all codons represent triplets of 

nucleotides, there can be up to three ORFs per single stranded DNA 

sequence. The immediate flanking loci of coding regions do not encode 

for proteins and can be considered as non-coding (3’ and 5’ 

UnTranslated Regions, UTRs). This is a phenomenon that the proposed 

methodology attempts to exploit since in general, the patterns of 

nucleotide composition greatly differ between coding and non-coding 

sequences. 

The original work for the identification of TIS in coding sequences 

dates back to 1987, when Kozak developed the first weight matrix from 

an extended collection of data (Kozak, 1987). The consensus motif 

derived from this matrix was GCCACCatgG, describing a G residue 

following the ATG codon, and a purine, preferably A, three nucleotides 

upstream, as two highly conserved positions that exert the strongest 

effect. While attempting to describe what really happens in the cell, 

Kozak developed the ribosome-scanning model. According to this 

model (Kozak, 1996), ribosomes initially attach to the specific cap region 
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in the 5’ end of mRNAs and subsequently scan the sequence until they 

find the first ATG located in an optimal nucleotide context. This is 

described as the site where the translation of codons into amino acids 

begins. Although this process characterizes most studied mRNA’s, there 

are some notable exceptions (Kozak, 1996 and Pain,1996). 

In cases where the first ATG codon of the sequence has a less than 

optimal nucleotide context, it can actually be bypassed by the 

ribosome, which then initiates translation from a subsequent start codon 

located in a more optimal nucleotide context further downstream. This 

phenomenon is also known as leaky scanning. 

In reinitiation, the translation starts from an ATG codon upstream 

of the coding region, located in optimal nucleotide context inside the 5’ 

UTR region and is terminated at the first stop codon, normally in a short 

downstream distance. Scanning then continues until the authentic ATG 

codon (start codon) is reached. 

In internal initiation, the ribosome directly binds near the authentic 

ATG codon. This is mostly a characteristic of some viral mRNAs of peculiar 

structure. 

During the last decade, a plethora of computational methods has 

emerged aiming to facilitate the distinction between coding and non-

coding sequences. Even though the amount of available 

implementations is quite large, only a small fraction provides source 

code for stand-alone usage, while the vast majority can only be 

accessed through web servers of limited throughput capacity. The most 

notable implementations for TIS or Coding Potential (CP) prediction that 

are also discussed and tested in this thesis include CPAT, CPC, PLEK, 

PORTRAIT and OrfPredictor. 

In the following chapter, the rationale behind the state-of-the-art 

is explained in details. 
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Chapter 3 

Existing methodologies for TIS 

prediction  
 

 

3.1 The Coding Potential Assessment Tool or    

CPAT  

 The Coding Potential Assessment Tool or CPAT (Wang, Park et al. 

2013) is a tool which is used to distinguish coding from non-coding genes 

or transcripts. The tool does not use an alignment method and is built 

with four sequence features. The first feature finds the open reading 

frame size of a gene or transcript. The second finds the open reading 

frame coverage. For the third feature the Fickett TESTCODE statistic 

method is used. And the forth feature finds the hexamer for the gene or 

transcript. 

          CPAT developers claimed that their software gave the highest 

results compared with other state-of-the-art methods. They also claimed 

that their method is not only accurate but also fast. That enables the 

users to give big datasets for prediction.  

CPAT has also developed a web interface which allows users to 

give their sequences for online prediction and receive the results 

instantly. 

 

Figure 3.1: How CPAT works online. This figure has been designed for the purpose of this thesis. 
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3.2 Coding Potential Calculator or CPC 

The Coding Potential Calculator or CPC(Kong, Zhang et al. 2007) 

is another method which is used to distinguish protein genes from non-

coding. CPC is characterized by six sequence features. The three of the 

features are used to find the quality of Open Reading Frame (ORF) and 

the other three are used to give a score prediction of each sequence. 

These six features are given to a support vector machine (SVM) for 

training. More specifically, CPC uses the LIBSVM (SVM) method for 

training.  

CPC developers claimed that their method can distinguish coding 

from non-coding transcripts with high accuracy. They also claimed that 

their method is extremely fast in predicting different test sets. Also CPC 

works online in a web-based interface at the following link: 

http://cpc.cbi.pku.edu.cn. The online CPC method also displays the 

detailed sequence features with graphics and figures. 

 

 

Figure 3.2: How CPC works for online prediction. This figure has been designed for the purpose of this 
thesis. 
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Figure 3.3: CPC online prediction example. This figure has been designed for the purpose of this thesis. 

 

 

 

3.3 Predictor of long non-coding RNAs and 

messenger   RNAs based on an improved k-

mer scheme or PLEK 

PLEK (Li, Zhang et al. 2014) is another tool which is used to 

distinguish mRNAs from non-coding RNAs. More specifically, mRNAs from 

lncRNAs. PLEK is an alignment free method, built from five k-mer binary 

features with sliding windows.  The first feature is the 1-mer. The second 

feature is the 2-mer. The third and fourth features are 3-mer and 4-mer 

and the last feature is 5-mer. PLEK uses these binary features on a support 

vector machine (SVM) with LIBSVM for training. 

PLEK authors claimed that their method is eightfold faster than a 

newly developed alignment-free tool. And extremely faster than one of 

the most popular alignment-based tool, Coding Potential Calculator 

(CPC). PLEK is only for stand-alone usage and can be downloaded from 

the link: http://sourceforge.net/projects/plek/files/latest/download. 
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3.4 Prediction of transcriptomic ncRNA by ab 

initio methods or PORTRAIT 

PORTRAIT (Arrial, Togawa et al. 2009) is an algorithm which is 

suitable for the distinction between ncRNAs and mRNAs.  PORTRAIT uses 

“ANGLE” software package to produce the features which have been 

trained with the support vector machine (SVM) method with LIBSVM 

package.  

PORTRAIT is used only for stand-alone installation. The users can 

download the software from the following link: 

http://bioinformatics.cenargen.embrapa.br/portrait/download/. 

 

3.5 OrfPredictor: predicting protein-coding 

regions in EST-derived sequences 

OrfPredictor(Min, Butler et al. 2005) is the last method used in our 

thesis for the distinction of coding transcripts from non-coding. 

OrfPredictor is an online tool. The program uses BLASTX to distinguish 

coding and non-coding genes.  

OrfPredictor is available from the link: 

https://fungalgenome.concordia.ca/tools/OrfPredictor.html. Also the 

users can ask the authors for the open-source software which is only for 

“Linux”. 
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Chapter 4 

Datasets 

 

 

4.1 Positive/Negative set selection 

Aim of the project described in this thesis was to develop a 

computational method able to distinguish between coding and non-

coding DNA sequences. In order to build a robust predictive model, high 

quality and well annotated DNA sequences are required. This set of 

sequences needs to include positive (coding) as well as negative (non-

coding) examples. The one will be used as a set of positive examples 

and the other one as a set of negative examples. For this reason, we 

downloaded from Ensembl (Yates, Akanni et al. 2016) human coding 

DNA transcripts and non-coding which are located upstream of cDNA. 

For additional information regarding the sets visit the Appendix. 

The positive set consists of 11.565 well annotated coding DNA 

sequences and the negative set consists of 11.565 non-coding 

sequences which are located upstream of cDNA. This set, called “Initial 

set”. 

For the training of our method which called D-TIS used two sets. A 

training set which used for the training of the first part of D-TIS and 

another training set which used for the training of the second part of D-

TIS. 

The first training set consists of 6.666 positive and 6.666 negative 

sequences out of 11.565 of Initial set. The first training set, called “Training 

Set A”. 

The second training set consists of 3.334 positive and 3.334 

negative sequences out of 11.565 of Initial set. The second training set, 

called “Training Set B”. 

For the test of D-TIS used two test sets. The first test set consists of 

1.565 positive and 1565 negative sequences out of 11.565 of initial set. 

This test set, called “Test Set A”.  

The second test set built from 364 sORFs which derived from the 

supplementary material of (Mackowiak, Zauber et al. 2015) and 364 non-

coding sequences from the upstream flank of cDNA. This set, called “Test 
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Set B”. We created the Test Set B, because the existed TIS algorithms find 

difficult to distinguish the small Open Reading Frame sequences.  

The “Initial set” downloaded by Ensembl which is an authorized 

and a reliable genome browser. Also D-TIS and the other TIS tools which 

described in chapter 3 except PORTRAIT and OrfPredictor tested on the 

Test Set A and Test Set B. PORTRAIT and OrfPredictor do not return the 

probability score for the predicted sequence so we could not to 

compare them with the other tools. For additional information regarding 

the sets visit the Appendix. 
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Chapter 5 

Description of D-TIS algorithm  
 

 

5.1 Algorithm Description 

Aim of D-TIS algorithm is to go beyond the state-of-the-art in the 

scientific research topic of exploring the coding potential of genic DNA 

loci. To this end, two distinct features, named Ribosome Signal (RS) and 

Coding Potential (CP), have been utilized to train an equal number of 

Machine Learning models on a high-quality set of already annotated 

protein-coding and non-coding DNA sequences. In order to maximize 

the algorithm’s performance, the results of both models are combined 

into a third one which provides the final predictions. 

The one sensitive to the coding or non-coding potential around 

the start codon of a sequence, called Ribosome Signal and the other 

sensitive to the conserved motif, called Coding Potential. These two 

features are based on Graphic Process Unit Library for Support Vector 

Machines (Athanasopoulos, Dimou et al, 2011).  

The rationale behind the choice of these two features is based on 

observations made by previous studies that highlight them as the most 

informative in terms of distinguishing between coding and non-coding 

sequences. However, D-TIS algorithm is the first computational method 

that integrates these two features into a robust Machine Learning 

framework. 

In the following sections, the algorithmic procedure of D-TIS will be 

presented step by step. 
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5.1.1 Ribosome Signal Module 

Prior to both feature calculations, for each queried sequence the 

algorithm identifies the largest Open Reading Frame (ORF) in the sense 

strand. An ORF is defined as a continuous stretch of codons (triplets of 

nucleotides) that start with ATG (start codon) and finish with 

TAA/TAG/TGA (stop codon). The stop codon is not included into the ORF 

however. 

Subsequently, in order to calculate the RS feature, a window of 18 

nucleotides long is applied. The window spans the positions from -12 to 

+9 surrounding the start codon (+1). 

 

 

 

Figures 5.1 & 5.2: Graphical representation of the Translation Initiation Start (TIS) site by the 
ribosome, a procedure that leads to protein production. This figure has been derived from the study of 

(Hatzigeorgiou 2002). 

 

The resulting 18 nucleotides are converted into a binary string 

based on a 4-digit code (figure 5.4). The binary string is directly 

forwarded to its corresponding Support Vector Machine (SVM) model in 

order to calculate the RS score of the queried sequence. The training 

process of the SVM models is presented in the following paragraphs of 

the current section. 
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Figures 5.3: How the Ribosome Signal picks the bigger ORF for each frame for a sequence. This figure 
has been designed for the purpose of this thesis. 

 

 

Figure 5.4: How Classifier Ribosome Signal converts the 18 nucleotides scanning window to a binary 
format. This figure has been designed for the purpose of this thesis. 

 

Nucleotide Binary Format 

A 1 0 0 0 

T 0 1 0 0 

C 0 0 1 0 

G 0 0 0 1 
Table 5.1: Binary format for Ribosome Signal. This table has been designed for the purpose of 

this thesis. 

The RS SVM model was trained on positive and negative instances 

of open reading frame start codons. The positive set was Training set A. 

The negative set was derived by randomly selecting one of the 

remaining ORFs that belonged to each coding sequence in the positive 
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set. The ratio between positive and negative instances was 1:1. In order 

to significantly speed up both the training and test process, a modified 

version of libsvm (GPU LIBSVM) was utilized which is based on CUDA 

programming and exploits the multicore capabilities of a computer’s 

graphics processing unit (Athanasopoulos, Dimou et al, 2011). This 

resulted in processing a model of 13.332 instances in 15 minutes as 

compared to 6 hours in a typical multi-CPU environment. 

 The optimal values of C (log2c=1) and gamma (log2g=-3) 

parameters of the SVM model were found by applying a grid search 

approach which resulted in 78.70% accuracy. The best kernel function 

for our training set was Radial Basis Function (RBF). The “5-fold” cross-

validation accuracy of the model was 78%. An example of the model’s 

input and output is presented in Tables 5.2 and 5.3. 

  

Nucleotide Sequence Binary Format 

CCGGAG 001000100001000110000001 
Table 5.2: Example, conversion of Nucleotide Sequence to Binary format for Ribosome Signal. 

This table has been designed for the purpose of this thesis. 

 

Label Positive probability 

Score 

Negative probability 

Score  

1 0.6884 0.3116 
Table 5.3: Example, what the SVM returns for a single gene. This table has been designed for 

the purpose of this thesis. 

 

For the distinction of our training set we used the positive 

probability score and the real label given by us for each set. Plus, for the 

elements of a positive set and minus for the elements of a negative set 

(+1, -1). 

 

5.1.2 Coding Potential Module 

 The CP module of D-TIS utilizes a scanning window that starts 60 

nucleotides downstream of the start codon. Four windows of different 

length were utilized in order to evaluate whether the size parameter 

influences the model’s performance in recognizing the coding region of 

gene loci. 

The first scanning window initiates at the 60th nt downstream of 

each start codon and has a size of 60 nts. Therefore, this window was 

named Classifier Coding Potential +60 - +120 (Figure 5.4). 
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Figure 5.5: How Classifier Coding Potential create +60 - +120 downstream scanning window. This 
figure has been designed for the purpose of this thesis. 

 

The second scanning window also initiates at the 60th nucleotide 

downstream of each start codon and its size is 90nts. Therefore, it is 

named Classifier Coding Potential +60 - +150 (Figure 5.5). 

 

 

Figure 5.6: How Classifier Coding Potent Potential create +60 - +150 downstream scanning window. 
This figure has been designed for the purpose of this thesis 

 

The third scanning window initiates at the 60th nucleotide 

downstream of each start codon and its size is 120nts. Therefore, it is 

named Classifier Coding Potential +60 - +180 (Figure 5.7). 
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Figure 5.7: How Classifier Coding Potential create +60 - +180 downstream scanning window. This 
figure has been designed for the purpose of this thesis. 

 

 

The final scanning window also initiates at the 60th nucleotide 

downstream of each start codon and its size is 150nts. Therefore, it is 

named Classifier Coding Potential +60 - +210 (Figure 5.8). 

 

 

Figure 5.8: How Classifier Coding Potential create +60 - +210 downstream scanning window. This 
figure has been designed for the purpose of this thesis. 

 

 

 

The highest results for the recognition of the coding region   

returned from the Classifier Coding Potential +60 - +180.  
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Figure 5.9: Results for the different windows. This figure has been designed for the purpose of this 
thesis. 

 

Windows AUC 

Coding Potential +60 +120 0.9615 

Coding Potential +60 +150 0.9517 

Coding Potential +60 +180 0.9703 

Coding Potential +60 +210 0.9669 
Table 5.4: The AUC scores from sliding windows for Test Set A. This table has been designed for the 

purpose of this thesis. 

 

 

 

The evaluation process of each window was based on Training set 

A which consists of 6.666 well annotated coding DNA sequences 

(positive set) and 6.666 non-coding sequences (negative set) located 

upstream of the positive instances. The results indicate that the best 
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performing window was Coding Potential +60 - +180 (Figure 5.9) which 

was incorporated into the D-TIS algorithm. 

As described the Coding Potential as Ribosome Signal keeps the 

bigger ORF for each sequence.  

The CP module of the algorithm utilizes the best performing 

window by applying a sliding strategy. It initiates 4 nts downstream of the 

start codon and the process is terminated at the last nucleotide before 

the in-frame stop codon of the ORF. Subsequently, every sliding window 

is converted into a binary string based on the previously described 4-

digit code. The resulting binary string is forwarded to the CP SVM model 

which assigns a score to the corresponding queried sequence. The final 

score of the CP module is the average SVM score for each scanning 

window. 

 

Figure 5.10: How we calculated the sliding window for Coding Potential +60-+180. This figure has been 
designed for the purpose of this thesis. 

 

The optimal parameters on GPU LIBSVM method were found to be 

C = 8 and gamma= 0.0078125 with an accuracy of 82.37%, as 

determined by grid search. The best kernel function for our training set 

was Radial Basis Function (RBF). The “5-fold” cross-validation accuracy 

of the model was 82%. An example of the model’s output is presented 

in Table 5.6. 

An example of the CP module input and output is presented in 

Tables 5.5 and 5.6. 

 

Nucleotide Sequence Binary Format 

CCGGAG 001000100001000110000001 
Table 5.5: Example, how converted Nucleotide Sequence to Binary format for Coding Potential 

+60+180. This table has been designed for the purpose of this thesis. 

 

Label Positive probability 

Score 

Negative probability 

Score  

1 0.6884 0.3116 
Table 5.6: Example, what the SVM return for a single gene. This figure has been designed for the 

purpose of this thesis. 
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5.1.3 Extended Classifier 

The Extended Classifier is the final module of D-TIS. It combines the 

results of RS and CP module in order to extract the final score of each 

queried sequence. This module was trained on Training Set B which 

consists of 3.334 coding DNA sequences (positive set) and 3.334 non-

coding sequences (negative set) derived from the immediately 

upstream regions of the coding sequences in the positive set. An 

overview of the algorithm is presented in Figure 5.10.  

 

 

Figure 5.11: How D-TIS works. This figure has been designed for the purpose of this thesis. 

 

The optimal values of C (13, log2 scale) and gamma (1, log2 

scale) parameters were found by applying a grid search approach 

which reported 93.07% accuracy. The best kernel function for our 

training set was Radial Basis Function (RBF). The “5-fold” cross-validation 

accuracy of the model was 92%. An example of the model’s output is 

presented in Table 5.8. 

 An example of the CP module input and output is presented in 

Tables 5.7 and 5.8. 

Ribosome Signal Libsvm Positive 

Probability Score 

Coding Potential Libsvm Positive 

Probability Score 

0.7875 0.8987 
Table 5.7: Example, what our method give to the SVM. This table has been designed for the purpose of 

this thesis. 

 

Label Positive probability 

Score 

Negative probability 

Score  
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1 0.9644 0.0356 
Table 5.8: Example, what the SVM return for a single gene. This table has been designed for the 

purpose of this thesis. 

 

The Test set A and B were used for the Extended Classifier and 

returned the final score for D-TIS. As described above, the Test set A was 

built from 1.565 coding DNA sequences as the positive set and 1.565 non-

coding sequences from the upstream flank of cDNA as the negative set. 

The Test set B was built from 354 sORFs and 354 non-coding sequences 

from the upstream flank of cDNA. The results from Test set A and the Test 

set B were the final results of D-TIS and were used for the comparison 

among the other coding potential algorithms, like CPAT, CPC and PLEK. 

At this point, it must be mentioned that D-TIS compared   CPAT, 

CPC and PLEK algorithms and the reason was that PORTRAIT and 

OrfPredictor did not return a probability score for the given test set. They 

only returned a label which is used to show if the gene given was 

positive, when the label format was equal to 1 or negative, when the 

label format was equal to -1.  

The comparison of our method with PORTRAIT and OrfPredictor 

could only be established, if the default threshold used for comparison 

in machine learning was equal to 0.5 - something that will happen in the 

future. 
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Chapter 6  

Comparing the Results 
 

 

6.1 Comparing the Results for the Test set A 

The purpose of this section is to present the comparison for the D-

TIS versus CPAT, CPC and PLEK for the Test set A. 

As described above, D-TIS could only be compared with CPAT 

CPC and PLEK. The reason was that PORTRAIT and OrfPredictor do not 

give the probability score for the test sets, so rejected. For the 

comparison we used the Test set A. The Test set A consisted of 1.565 

positive sequences and 1.565 negative sequences out of 11.565 

sequences of the Initial set. 

To compare D-TIS versus CPAT, CPC and PLEK we used different 

types of diagrams, such as Receiver Operating Characteristic curve, or 

more commonly known as “ROC” curve, “Precision-Recall” and “Recall-

Precision” curves, “True Positives-True Negatives” curve and finally “False 

Positives-False Negatives” curve. 

For our comparison among these methods the first thing we did 

was to use the probability positive scores which returned for the Test set 

A from each algorithm and to create a table with the final results for the 

different thresholds. 

The table for each prediction of each algorithm consists of 

Threshold, TP, FP, TN, FN, Precision, Recall, Specificity, Sensitivity and 

Accuracy. 

 One last thing which must be mentioned is that the tables which 

were created to find the results above had different probability scores 

and threshold. Only D-TIS and CPAT had the same probability range 

which was “0 – 1”. CPC and PLEK used their own probability ranges. 

 After that, we took the results from each table for each algorithm 

and created the different diagrams mentioned above to make the 

comparison between the algorithms.  
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 6.1.1 ROC Curve Comparison for Test Set A 

The Receiver Operating Characteristic curve or more commonly 

known as ROC Curve was the first diagram used for the comparison 

between the algorithms.  

 The ROC Curve is a graphical plot that illustrates the performance 

of a classifier system as its discrimination threshold is varied. The curve is 

created by plotting the true positive rate known as (TPR) against the false 

positive rate known as (FPR) at various threshold settings. The true-

positive rate is also known as “Sensitivity” or “recall” in machine learning. 

The false-positive rate is also known as the “Specificity” and can be 

calculated as “1 – Specificity”. The ROC Curve created by Sensitivity for 

y-axis and Specificity for x-axis for each threshold and all thresholds 

create the area under the curve, known as “AUC”. 

 The mathematical formula used to calculate the “Sensitivity” and 

the “Specificity” is given in the figures below: 

                                        

Figures 6.1 & 6.2: Mathematical formula for Sensitivity and Specificity. This figure has been designed 
for the purpose of this thesis. 

 

The “ROC” curve for D-TIS versus CPAT, CPC and PLEK is shown in 

the figure below: 
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Figure 6.3: ROC Curve for Test Set A. This figure has been designed for the purpose of this thesis. 

 

 

 As shown in (figure 6.3) D-TIS with CPAT gave the highest “AUC” 

score. After that, CPC followed and last PLEK. The area under the curve 

(AUC) for each program is given in the table below: 

 

ALGORITHM AUC 

D-TIS 0.9766 

CPAT 0.9747 

CPC 0.9738 

PLEK 0.9589 
Table 6.1: The AUC scores from algorithms for Test SET A. This table has been designed for the purpose 

of this thesis. 

 

 The “ROC” curve is one of the best methods to compare 

algorithms based on machine learning. To give more reliable results we 

need to take into consideration other diagrams too, especially 

“Precision-Recall”.  
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6.1.2 Precision-Recall Curve for Test Set A 

In pattern recognition and information retrieval with binary 

classification “Precision” is also called positive predictive value. It is the 

fraction of retrieved instances that are relevant, while “Recall”, also 

known as “sensitivity”, is the fraction of relevant instances that are 

retrieved. Both “Precision” and “Recall” are therefore based on an 

understanding and measure of relevance. 

The mathematical formula which is used to calculate the 

“Precision” and “Recall” is given in the figures below:  

                                

Figures 6.4 & 6.5: Mathematical formula for Precision and Recall. This figure has been designed for the 
purpose of this thesis. 

 

The “Precision – Recall” and “Recall – Precision” curves for D-TIS 

versus CPAT, CPC and PLEK are shown in the figures below: 

 

Figure 6.6: Precision - Recall curve for Test Set A. This figure has been designed for the purpose of this 
thesis. 
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Figure 6.7: Recall Recall – Precision curve for Test Set A. This figure has been designed for the purpose 
of this thesis. 

 

As shown in the diagrams above, D-TIS and CPAT returned the 

highest results and then came CPC and PLEK. Our method gave high 

“Precision” with high “Recall”. 

 

6.1.3 TP-TN Curve for Test Set A 

 The “TP-TN” curve is a diagram which consists of the “True Positive” 

in y-axis and the “True Negative” in x-axis. The range of the two axis 

consist of the range of Test set A. So, the range of the Test set A was “0-

1565”. This diagram can calculate how many “True Positives” and “True 

Negatives” an algorithm can predict for the different thresholds. “TP-TN” 

curves are shown in the figure below:  
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Figure 6.8: TP – TN curve for Test Set A. This figure has been designed for the purpose of this thesis. 

 

In this diagram D-TIS and CPAT returned the best results and as in 

the previous diagrams CPC and PLEK came third and fourth. 

 

6.1.4 FP-FN Curve for Test Set A 

The fourth and last diagram used to calculate D-TIS versus CPAT, 

CPC and PLEK was the “False Positive” and “False Negative” diagram.  

 The y-axis consists of “False Positives” and the x-axis from “False 

Negatives”. The range of axis was the range of the Test set A. So the 

range was “0-1565”. The purpose of this diagram was to show which 

algorithm can predict “True Positives” and “True Negatives” with high 

accuracy for the different ranges of threshold. See the diagram in the 

figure below:  
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Figure 6.9: FP – FN curve for Test set A. D-TIS with CPAT returned the best results and after came CPC 
and last PLEK. This figure has been designed for the purpose of this thesis. 
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6.1.5 Thresholds Final Results for Test Set A 

 The diagrams showed that D-TIS returned the best results for the 

prediction of the Test set A. After it, CPAT followed, while CPC and PLEK 

came third and fourth respectively. 

 To be more accurate, one must choose a specific threshold for 

the prediction of the Test set A or to present the behavior of all the 

algorithms for the different thresholds. The tables below returned for 

each threshold show how accurate the algorithms were. As mentioned 

before, D-TIS and CPAT had threshold range “0-1”, but CPC and PLEK 

had their own ranges. For more details, check the tables: 

 

 D-TIS threshold table for Test Set A: 

Table 6.2: D-TIS thresholds table for Test Set A. This table has been designed for the purpose of this 

thesis. 

 

CPAT thresholds table for Test Set A: 

Threshold TP FP TN FN Precision Recall Specificity Sensitivity Acc 

0.1 1560 573 992 5 0.7313 0.9968 0.6338 0.9968 0.8153 

0.2 1551 404 1161 14 0.7933 0.9910 0.7418 0.9910 0.8664 

0.3 1546 320 1245 19 0.8285 0.9878 0.7955 0.9878 0.8916 

0.4 1541 267 1298 24 0.8523 0.9846 0.8293 0.9846 0.9070 

0.5 1527 225 1340 38 0.8715 0.9757 0.8562 0.9757 0.9159 

0.6 1517 178 1387 48 0.8949 0.9693 0.8862 0.9693 0.9277 

0.7 1503 149 1416 62 0.9098 0.9603 0.9047 0.9603 0.9325 

0.8 1482 121 1444 83 0.9245 0.9469 0.9226 0.9469 0.9348 

0.9 1447 90 1475 118 0.9414 0.9246 0.9424 0.9246 0.9335 

1.0 1140 24 1541 425 0.9793 0.7284 0.9846 0.7284 0.8565 

Table 6.3: CPAT thresholds table for Test Set A. This table has been designed for the purpose of this 

thesis.  

 

CPC thresholds table for Test Set A: 

Threshold TP FP TN FN Precision Recall Specificity Sensitivity Acc 

-0.831893 1549 488 1077 16 0.7604 0.9897 0.6881 0.9897 0.8389 

-0.224236 1423 91 1474 142 0.9398 0.9092 0.9418 0.9092 0.9255 

0.383421 1223 31 1534 342 0.9752 0.7814 0.9801 0.7814 0.8808 

0.991078 974 18 1547 591 0.9818 0.6223 0.9884 0.6223 0.8054 

Threshold TP FP TN FN Precision Recall Specificity Sensitivity Acc 

0.1 1542 292 1273 23 0.8407 0.9853 0.8134 0.9853 0.8993 

0.2 1523 207 1358 42 0.8803 0.9731 0.8677 0.9731 0.9204 

0.3 1507 163 1402 58 0.9023 0.9629 0.8958 0.9629 0.9293 

0.4 1495 130 1435 70 0.92 0.9552 0.9169 0.9552 0.9361 

0.5 1486 119 1446 79 0.9258 0.9495 0.9239 0.9495 0.9367 

0.6 1468 97 1468 97 0.9380 0.9380 0.9380 0.9380 0.9380 

0.7 1447 74 1491 118 0.9513 0.9246 0.9527 0.9246 0.9386 

0.8 1420 59 1506 145 0.9601 0.9073 0.9623 0.9073 0.9348 

0.9 1355 37 1528 210 0.9734 0.8658 0.9763 0.8658 0.9210 

1.0 2 0 1565 1563 1.0 0.0012 1.0 0.0012 0.5006 
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1.598735 780 16 1549 785 0.9798 0.4984 0.9897 0.4984 0.7440 

2.206392 596 11 1554 969 0.9818 0.3808 0.9929 0.3808 0.6869 

2.814049 467 8 1557 1098 0.9831 0.2984 0.9948 0.2984 0.6466 

3.421706 381 4 1561 1184 0.9896 0.2434 0.9974 0.2434 0.6204 

4.3331915 266 3 1562 1299 0.9888 0.1699 0.9980 0.1699 0.5840 

16.182503 4 0 1565 1561 1 0.0025 1 0.0025 0.5012 

Table 6.4: CPC thresholds table for Test Set A. This table has been designed for the purpose of this 
thesis. 

 

PLEK thresholds table for Test Set A: 

Threshold TP FP TN FN Precision Recall Specificity Sensitivity Acc 

-1.599223 1563 1363 202 2 0.5341 0.9987 0.1290 0.9987 0.5638 

-1.127835 1557 1080 485 8 0.5904 0.9948 0.3099 0.9948 0.6523 

0.28633 1388 140 1425 177 0.9083 0.8869 0.9105 0.8869 0.8987 

0.488353 1322 91 1474 243 0.9355 0.8447 0.9418 0.8447 0.8932 

0.690377 1231 52 1513 334 0.9594 0.7865 0.9667 0.7865 0.8766 

0.959742 1048 25 1540 517 0.9767 0.6696 0.9840 0.6696 0.8268 

1.161765 871 15 1550 694 0.9830 0.5565 0.9904 0.5565 0.7734 

1.498471 606 5 1560 959 0.9918 0.3872 0.9968 0.3872 0.6920 

1.902518 359 1 1564 1206 0.9972 0.2293 0.9993 0.2293 0.6143 

3.586048 2 0 1565 1563 1 0.0012 1 0.0012 0.5006 

Table 6.5: PLEK thresholds table for Test Set A. This table has been designed for the purpose of this 

thesis. 

 

The results obtained from the thresholds tables showed that D-TIS 

gave the highest accuracy. The type of accuracy is: 

 

Figure 6.10: Mathematical formula for Accuracy. This figure has been designed for the purpose of this 

thesis. 

 

 A good method to finish with our comparison of the Test set A was 

to set as a threshold “0.5” which is the default threshold for machine 

learning. 

 In the table below we can see the comparison between 

algorithms for set threshold equal to “0.5”. For CPC and PLEK we used 

the threshold which had the best results for each program. CPC 

threshold was equal to “- 0.224236” and PLEK equal to “0.28633”. 

Algorithm TP FP TN FN Precision Recall Specificity Sensitivity Acc 

D-TIS  1486 119 1446 79 0.9258 0.9495 0.9239 0.9495 0.9367 

CPAT 1527 225 1340 38 0.8715 0.9757 0.8562 0.9757 0.9159 

CPC 1423 91 1474 142 0.9398 0.9092 0.9418 0.9092 0.9255 

PLEK 1388 140 1425 177 0.9083 0.8869 0.9105 0.8869 0.8987 

Table 6.6: Algorithms final results for Test Set A. This table has been designed for the purpose of this 

thesis. 
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The table above shows that D-TIS had the highest “Accuracy” for 

the prediction of the Test set A. That means that D-TIS predicted with high 

rate the True Positives and the True Negatives and it predicted with low 

rate False Positives and False Negatives. That created a balance 

between “Specificity” and “Sensitivity”. 

CPAT had the highest “Sensitivity” but the lowest “Specificity” rate. 

So, CPAT predicted with high rate the True Positives but returned a lot of 

False Positives.  

CPC had the highest “Specificity” but low “Sensitivity” rate. So, 

CPC predicted the True Negatives correctly but did not do so well with 

the True Positives as it returned a high rate of False Negatives. 

PLEK had the lowest results. It predicted the True Negatives 

correctly but not the True Positives. 

D-TIS, as shown in the different types of diagrams and the different 

sets of thresholds, predicted with high rate the True Positives and the True 

Negatives respectively. It kept a balance as an algorithm with high 

“Sensitivity”, “Specificity” and “Precision” rates. 

The other three methods were not so balanced in their results. 

CPAT, as described above, had an excellent rate for True Positives with 

a bad rate for True Negatives. Evenly, CPC had excellent “Specificity” 

rate but low “Sensitivity” rate. Finally, PLEK had the lowest “Accuracy” 

rate. 

D-TIS is a reliable new method for coding potential. It is 

competitive compared to the other three methods, some of which are 

state-of-the art methods for coding potential, like CPAT and CPC. 
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6.2 Comparing the Results for Test Set B 

The purpose of this section is to present the comparison for the D-

TIS versus CPAT and CPC for the Test set B. PLEK was not included for the 

comparison between the D-TIS, CPAT and CPC. The reason was that 

PLEK do not designed for the prediction of small Open Reading Frames 

(sORFs). 

For the comparison we used the Test set B. The Test set B consisted 

of 354 positive sORF sequences and 354 non-coding sequences from the 

upstream flank of cDNA. 

To compare D-TIS versus CPAT and CPC we used different types of 

diagrams, such as Receiver Operating Characteristic curve, or more 

commonly known as “ROC” curve, “Precision-Recall” and “Recall-

Precision” curves, “True Positives-True Negatives” curve and finally “False 

Positives-False Negatives” curve. 

For our comparison among these methods the first thing we did 

was to use the probability positive scores which returned for the Test set 

B from each algorithm and to create a table with the final results for the 

different thresholds. 

The table for each prediction of each algorithm consists of 

Threshold, TP, FP, TN, FN, Precision, Recall, Specificity, Sensitivity and 

Accuracy. 

One last thing which must be mentioned is that the tables which 

were created to find the results above had different probability scores 

and threshold. Only D-TIS and CPAT had the same probability range 

which was “0 – 1”. CPC used own probability ranges. 

After that, we took the results from each table for each algorithm 

and created the different diagrams mentioned above to make the 

comparison between the algorithms. 
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6.2.1 ROC Curve Comparison for Test Set B 

As previously mentioned, the Receiver Operating Characteristic 

curve, also known as ROC Curve, was the first diagram used for the 

comparison between the algorithms. 

For Test Set B the ROC Curve results are shown in figure 6.10. 

 

Figure 6.11: ROC Curve for Test Set B. This figure has been designed for the purpose of this thesis. 

 

As shown in figure 6.10, D-TIS and CPC gave the highest AUC 

score. After these, CPAT followed. The area under the curve (AUC) for 

each program is given in the table below: 

 

ALGORITHM AUC 

D-TIS 0.9236 

CPAT 0.8204 

CPC 0.9001 
Table 6.7: The AUC scores from algorithms for Test Set B. This table has been designed for the purpose 

of this thesis. 

 

To give more reliable results we needed to take into consideration 

the others diagrams also, especially “Precision-Recall”.  
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6.2.2 Precision-Recall Curve for Test Set B 

The “Precision – Recall” and “Recall – Precision” curves for the 

prediction of Test Set B, D-TIS returned higher results than the other 

programs. CPC and CPAT could predict sORFs genes but not so well. 

Their “Precision” after “0.7” threshold created a reverse curve. This 

paradox curve was created by a specific threshold and CPC and CPAT 

predicted a high ratio of False Positives (FP). For this reason, CPAT and 

CPC returned this paradox curve. 
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6.2.3 TP-TN Curve for the Test Set B 

 Another diagram used for the comparison of Test Set B between 

D-TIS, CPAT and CPC was the True Positives (TP) and True Negatives (TN) 

curve. The results of this diagram are described in figure 6.13.  

 

Figure 6.12: TP – TN curve for Test Set B. This figure has been designed for the purpose of this thesis. 

 

As shown, CPC and D-TIS returned the highest scores. The next 

highest results returned from CPAT. 
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6.2.4 FP-FN Curve for Test Set B 

 A last diagram used to compare D-TIS versus CPAT and CPC for 

Test Set B. It was the False Positives (FP) and False Negatives (FN) curve. 

The diagram is presented in figure 5.24: 

 

Figure 6.13: FP – FN for Test Set B. This figure has been designed for the purpose of this thesis. 

 

As shown CPC and D-TIS returned the highest score. The next 

highest results returned from CPAT. 
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6.2.5 Thresholds Final Results for Test Set B 

 The diagrams showed that D-TIS returned the highest score for the 

prediction of Test Set B. The next highest results returned from CPC and 

last came CPAT. 

 To be more accurate, we must choose a specific threshold for the 

comparison of the algorithms for the prediction of the Test Set B or to 

present how each algorithm behaved with different thresholds. The 

tables below returned for a specific range of thresholds, the scores of 

the algorithms. As described before, D-TIS and CPAT had threshold range 

“0-1”. CPC had different threshold ranges. CPC had range from “-

1.37072” to “3.548819”. More details are presented in the tables below: 

 

 D-TIS thresholds table for Test Set B: 

Table 6.8: Extend Rib & Cp thresholds table for Test Set B. This table has been designed for the purpose 

of this thesis  

 

CPAT thresholds table for Test Set B: 

Threshold TP FP TN FN Precision Recall Specificity Sensitivity Acc 

0.1 313 123 243 49 0.7178 0.8646 0.6639 0.8646 0.7637 

0.2 272 76 290 90 0.7816 0.7513 0.7923 0.7513 0.7719 

0.3 248 64 302 114 0.7948 0.6850 0.8251 0.6850 0.7554 

0.4 215 52 314 147 0.8052 0.5939 0.8579 0.5939 0.7266 

0.5 188 44 322 174 0.8103 0.5193 0.8797 0.5193 0.7005 

0.6 157 40 326 205 0.7969 0.4337 0.8907 0.4337 0.6634 

0.7 127 35 331 235 0.7839 0.3508 0.9043 0.3508 0.6291 

0.8 88 34 332 274 0.7213 0.2430 0.9071 0.2430 0.5769 

0.9 49 25 341 313 0.6621 0.1353 0.9316 0.1353 0.5357 

1.0 0 5 361 362 0 0 0.9863 0 0.4958 

Table 6.9: CPAT thresholds table for Test Set B. This table has been designed for the purpose of this 

thesis. 

 

 

 

 

Threshold TP FP TN FN Precision Recall Specificity Sensitivity Acc 

0.1 326 57 307 38 0.8511 0.8956 0.8434 0.8956 0.8695 

0.2 315 34 330 49 0.9025 0.8653 0.9065 0.8653 0.8859 

0.3 308 29 335 56 0.9139 0.8461 0.9203 0.8461 0.8832 

0.4 306 23 341 58 0.9300 0.8406 0.9368 0.8406 0.8887 

0.5 304 19 345 60 0.9411 0.8351 0.9478 0.8351 0.8914 

0.6 298 17 347 66 0.9460 0.8186 0.9532 0.8186 0.8859 

0.7 291 14 350 73 0.9540 0.7994 0.9615 0.7994 0.8804 

0.8 283 11 353 81 0.9625 0.7774 0.9697 0.7774 0.8732 

0.9 269 8 356 95 0.9711 0.7390 0.9780 0.7390 0.8585 

1.0 2 0 364 362 1.0 0.0054 1.0 0.0054 0.5027 
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CPC thresholds table for Test set B: 

Threshold TP FP TN FN Precision Recall Specificity Sensitivity Acc 

-1.37072 362 366 0 0 0.4972 1 0 1 0.4972 

-1.026352 360 220 146 2 0.6206 0.9944 0.3989 0.9944 0.6950 

-0.927961 356 154 212 6 0.6980 0.9834 0.5792 0.9834 0.7802 

-0.829570 350 96 270 12 0.7847 0.9668 0.7377 0.9668 0.8516 

-0.731179 339 69 297 23 0.8308 0.9364 0.8114 0.9364 0.8736 

-0.583593 283 47 319 79 0.8575 0.7817 0.8715 0.7817 0.8269 

-0.485202 228 37 329 134 0.8603 0.6298 0.8989 0.6298 0.7651 

-0.386812 185 28 338 177 0.8685 0.5110 0.9234 0.5110 0.7184 

-0.288421 127 22 344 235 0.8523 0.3508 0.9398 0.3508 0.6469 

-0.091639 44 15 351 318 0.7457 0.1215 0.9590 0.1215 0.5425 

Table 6.10: CPC thresholds table for Test Set B. This table has been designed for the purpose of this 

thesis. 

 

A good method to finish with our comparison for Test Set B was to 

set as threshold the “0.5”, which is the default threshold for machine 

learning. 

 In the table below we can see the comparison between 

algorithms for set threshold equal to “0.5”. For the comparison of CPC 

used a threshold which had the best results for the program. CPC 

threshold was equal to “- 0.731179800000001”. 

 

Algorithm TP FP TN FN Precision Recall Specificity Sensitivity Acc 

D-TIS  304 19 345 60 0.9411 0.8351 0.9478 0.8351 0.8914 

CPAT 188 44 322 174 0.8103 0.5193 0.8797 0.5193 0.7005 

CPC 339 69 297 23 0.8308 0.9364 0.8114 0.9364 0.8736 

Table 6.11: Algorithms final results for Test Set B. This table has been designed for the purpose of this 

thesis. 

 

The table 6.11 shows that D-TIS returned the highest “Accuracy”. 

The other programs, except for CPC, gave low results. The results are 

discussed further in the next chapter. 
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Chapter 7  

Discussion and Conclusion  
 

 

7.1 Discussion 

 As shown from different kinds of diagrams and from the thresholds 

tables, D-TIS returned the highest scores for the prediction of the Test Set 

A and Test Set B.  

 A big challenge for the TIS tools are the discrimination of sORFs 

genes from ncRNAs. sORFs, as described, were small Open Reading 

Frames (ORF) which produce proteins and their length was smaller than 

300 nucleotides. It is very difficult to distinguish these genes from non-

coding sequences. The reason is that non-coding sequences have in 

average the same length as sORFs. sORFs because of their 

distinctiveness with their length and because their existence was 

detected recently. There are yet no reliable tools which can distinguish 

sORFs from non-coding sequences with high accuracy.  

The most significant challenge for D-TIS was not only to distinguish 

with high accuracy the Test Set A but to distinguish with high accuracy 

the Test Set B which consists from 364 sORFs as positive set and 364 non-

coding sequences upstream of cDNA region. 

 

7.1.1 Discussion about the Test Set A prediction  

D-TIS for the prediction of Test Set A, along with CPAT, returned the 

highest scores. D-TIS had the highest “Accuracy” of all the other 

methods, equal to “0.9367”. Furthermore, D-TIS had high “Sensitivity” 

score equal to “0.9495” and “Specificity” equal to “0.9239” for threshold 

= “0.5”. D-TIS returned the second highest score for “Precision” = 0.9258. 

Also, D-TIS could distinguish with high ratio the “True Positives” from “True 

Negatives”. The disadvantage was that D-TIS produced a significant rate 

of “False Positives”. That means that it predicted as “Positives” a rate of 

“Negatives”. 

CPAT for threshold equal to “0.5” returned the highest “Sensitivity” 

score, equal to “0.9757”. CPAT could predict with high ratio the “True 

Positives” from “Negatives”. At the same time, it predicted with high rate 
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the “False Positives”. That means that CPAT predicted “True Negatives” 

as “Positives”. That is the reason why it had the lowest “Specificity” score, 

equal to “0.8562” and one of the lowest “Accuracy” scores equal to 

“0.9159”, compared to the other methods. CPAT predicted the positive 

set with extreme positive probability score equal to “1”. For that reason, 

there was a high score of AUC, equal to “0.9747”. 

CPC had a different range for threshold. But we tried to find an 

approximate threshold to make the comparison between the methods. 

CPC as shown from the “ROC” curve gave the third highest “AUC” score 

equal to “0.9738”. CPC for a specific threshold = “- 0.224236” gave the 

highest “Specificity” score = “0.9418”. That means that CPC could 

predict “True Negatives” with higher accuracy than “True Positives” but 

produced a high rate of “False Negatives” and that created low 

“Sensitivity” = “0.9092”. Furthermore, CPC had the higher “Precision” 

score of all methods equal to “0.9398”. 

PLEK, as CPC had different thresholds range.  But we tried, 

approximately, to find a threshold to make the comparison between the 

methods. That threshold was equal to “0.28633”. PLEK returned the 

lowest “Accuracy” score = “0.8987” compared to the other methods. 

Also, it had the lowest rate of “True Positives”. CPC could not predict with 

high accuracy the “True Positives” and produced a high rate of “False 

Negatives” and “False Positives”. PLEK had the lowest “Sensitivity” score 

= “0.8869” and the second lowest “Specificity” score equal to “0.9105”. 

The final conclusion about Test Set A is that we created a new 

method, called D-TIS to distinguish coding sequences from non-coding 

sequences. The D-TIS method compared to the state-of-the-art methods 

for coding potential, such as CPAT succeeded in reaching and 

surpassing the rates of success even of the best algorithms. Also, D-TIS 

keeps a balance between “Specificity” and “Sensitivity” and for this 

reason it returned the highest “Accuracy” equal to “0.9367”. 
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7.1.2 Discussion about the Test Set B prediction 

As mentioned above, a new bigger challenge is to distinguish 

sORFs sequences from non-coding sequences.  

For the prediction of the Test Set B, D-TIS returned the highest 

scores. More specifically, for threshold = “0.5” D-TIS gave the highest 

“Accuracy” score equal to “0.8914”, the highest “Precision” and 

“Specificity” scores, respectively equal to “0.9411” and “0.9478”. That 

means that D-TIS could distinguish with high accuracy the “True 

Negatives” from “True Positives”. The disadvantage was that D-TIS 

produced a significant rate of “False Negatives”. Furthermore, D-TIS 

returned the highest “AUC” score for the “ROC” curve equal to “0.9236”. 

CPAT, as described in the diagrams and tables above, could not 

distinguish the Test Set B for different thresholds with high rates. CPAT, and 

more specifically for the default machine learning threshold which is 

equal to “0.5”, had extremely low rates. There was extremely low 

“Sensitivity” = “0.5193” and low “Accuracy” = “0.7005”. CPAT in contrast 

with “Sensitivity” has high “Specificity” = “0.8797”. CPAT “AUC” was 

“0.8204”, which was the last rate score in comparison with the methods. 

From “Precision-Recall” curve it turns out that CPAT had a problem with 

the prediction of Test Set B. More specifically, CPAT from threshold equal 

to “0.7” predicted with high rate “False Negatives” and for this reason it 

produced the paradox with the “Precision” curve. For threshold “0.7” the 

predicted “True Positives” were equal to “127” and the “False Negatives” 

equal to “235” genes. The conclusion about CPAT is that CPAT was not 

trustworthy for the prediction of Test Set B. 

CPC returned the second highest score for the prediction of Test 

Set B for an approximate threshold. More specifically, CPC produced the 

highest “Sensitivity” = “0.9364” score, it had low “Specificity” score equal 

to “0.8114” and “Accuracy” score = “0.8736”. From the analysis of the 

results it turns out that CPC could predict with high rate the “True 

Positives” from “True Negatives”. But in contrast with D-TIS, CPC 

produced a lot of “False Positives” rates. From the “Precision-Recall” 

curve it turns out that CPC had a problem with the prediction of Test Set 

B. More specifically, CPC, from threshold “-0.485202” and then, as did 

CPAT, predicted with high rate “False Negatives”. For this reason, it 

produced the paradox with the “Precision” curve. Moreover, for 

threshold “-0.485202” the predicted “True Positives” were equal to “228” 

genes and “False Negatives” equal to “134” genes. 

The final conclusion about the Test Set B is that we created a new 

method, called D-TIS to distinguish coding sequences from non-coding 

sequences. That new method was compared with the state-of-the-art 
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methods for coding potential, such as CPAT. It succeeded in reaching 

and surpassing the rates of success of the best algorithms. And for this 

reason, we used D-TIS to distinguish small Open Reading Frame 

sequences from non-coding sequences. The results showed that D-TIS 

which was trained to distinguish coding sequences from cDNA from non-

coding sequences could distinguish equally well and sORFs from non-

coding sequences. The other methods like CPAT and CPC could not 

distinguish sORF sequence from non-coding sequences so well as D-TIS. 

 

7.2 Conclusion 
The final conclusion of our thesis is that we introduced an 

integrated computational pipeline based on a machine learning 

technique and more specifically in a support vector machine on GPU- 

LIBSVM method. The pipeline was designed to distinguish coding DNA 

sequences from non-coding sequences. For the method we created an 

algorithm, called D-TIS which is based on two biologically meaningful 

sequence features.  

For the test of D-TIS used two test sets. The first test set consists of 

1.565 positive and 1565 negative sequences out of 11.565. This test set, 

called “Test Set A”.  

The second test set built from 354 sORFs which derived from the 

supplementary material of (Mackowiak, Zauber et al. 2015) and 354 non-

coding sequences from the upstream flank of cDNA. This set, called “Test 

Set B”. 

The results showed that D-TIS could distinguish the two sets with 

high rates. That makes D-TIS competitive compared to other programs 

which are used for coding potential prediction.  

Our thesis is a new integrated computational pipeline which 

consists of exclusively two biologically meaningful sequence features 

based on GPU-LIBSVM. The method is sufficiently competitive compared 

to the other coding potential programs which are used to distinguish 

coding from non-coding sequences, like CPAT, CPC and PLEK.  The most 

significant point is that our pipeline can be used to distinguish equally 

well coding sequences from non-coding sequences and small Open 

Reading Frame sequences from non-coding. A last detail is that our 

pipeline can be used to distinguish with high success rates and small 

Open Reading Frame sequences from non-coding without being 

trained to distinguish them. 
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Appendices 
 

 

Appendix A    How to install CPAT    

 

 

What does CPAT need to work? 

 CPAT can work from its web interface or the users can download 

it and install it on a personal computer. The users can download from this 

link http://rna-cpat.sourceforge.net/#install-cpat-to-local-computer the 

last version of CPAT only for the operating system UNIX or can use the 

online edition from the link below http://lilab.research.bcm.edu/cpat/.

  

 CPAT needs some other programs to be installed to work properly. 

The users need to download and install the following programs: 

1. Python 2.7 ++( In this thesis we used Python 2.7.9) 

2. NumPy 1.9.2 

3. Cython 0.22 

4. Nose 1.3.6 

5. R-studio 

6. CPAT 

 

CPAT installation 

 After seeing what CPAT needs, let’s see how the users can install 

the above programs. First, the users need to install the “Python” and after 

that all other programs. Let’s see the installation step by step. 

 

How to install Python for CPAT 

 Let’s install “Python”. First, the users need to open the “Linux” 

terminal and follow the steps below: 

1. Download Python-2.7.9 

2. https://www.python.org/downloads 

3. Unzip the downloaded file to a specific location 

4. Go to the location with the command 

5. cd /the users location/Python-2.7.9 
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6. Install Python with the command 

7. sudo ./configure 

8. sudo make 

9. sudo make install 

After these steps, the installation of “Python” has finished. Attention 

with the command “sudo”, you need to insert your password. 

 

How to install NumPy for CPAT 

 Since the users have finished the installation of “Python”, they 

need to install the “NumPy”. The users need to open the terminal and 

follow the steps: 

1. Download NumPy 1.9.2 from the link bellow 

 ://sourceforge.net/projects/numpy/files/NumPy/1.9.2/numpy-

1.9.2.tar.gz/download 

2. Unzip the downloaded file to a specific location 

3. Go to the specific location and find the unzip folder 

4. Cd/users specific location/NumPy 1.9.2 

5. sudo python setup.py install 

 

How to install Cython for CPAT 

 The users need to install the “Cython 0.22” version for the 

installation of CPAT. Let’s see the process step by step, but first open 

“Linux” terminal: 

 

1. Download Cython from the following link 

 http://cython.org/release/Cython-0.22.tar.gz 

2. Unzip the downloaded file to a specific location 

3. Go to the specific location and find the unzip folder 

4. Cd/users specific location/Cython 0.22 

5. sudo python setup.py install. 

 

How to install Nose for CPAT 

1. Download Nose 1.3.6 from the following link 

 https://pypi.python.org/packages/source/n/nose/nose-

1.3.6.tar.gz#md5=0ca546d81ca8309080fc80cb389e7a16 

2. Unzip the downloaded file to a specific location 

3. Go to the specific location and find the unzip folder 
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4. cd/users specific location/Nose 1.3.6 

5. sudo python setup.py install 

 

How to install R-studio for CPAT 

1. Download R-studio from the link bellow 

 http://cran.rstudio.com 

2. Download R for Linux 

3. Choose your operating system (etc. Ubuntu) 

4. Choose mirror for download 

5. deb http://<my.favorite.cran.mirror>/bin/linux/ubuntu vivid/ 

6. Open terminal and write the following commands 

7. sudo apt-get update 

8. sudo apt-get install r-base 

9. sudo apt-get install r-base-dev 

 

How to install CPAT for CPAT 

 When the users have finished with the installation of the above 

programs, they are ready to install CPAT. First, they need to open Linux 

terminal and proceed as follows: 

1. Download CPAT-1.2.2 from the link below 

 http://rna-cpat.sourceforge.net/#install-cpat-to-local-

computer 

2. Unzip the downloaded file  

3. tar zxf CPAT-1.2.2.tar.gz 

4. Go to the folder 

5. cd CPAT-1.2.2 

 

Install the CPAT. 

1. sudo python setup.py install 

2. cd CPAT-1.2.2/test 

3. On folder test the user insert the FASTA and BED files with the 

following format: 

 For FASTA files: 

o Name.fa 

 For BED files: 

o Name.bed 

4. Execute the program. User needs to stay to the folder test and 

run the following commands: 
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 cpat.py -g Name.fa  -d ../dat/Human_logitModel.RData -x 

../dat/Human_Hexamer.tsv -o output2 

 head output2 

With the two last commands the users can give the FASTA file 

which is needed for the test and can change the output2 into the file 

name by which they want to print the results. CPAT returns three files: 

output2, output2.dat and output2.r. 
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Appendix B    How to install CPC   

 

 

What does CPC need to work?  

 CPC can work from its web interface or users can download it and 

install it on their personal computer. Users can download the program 

from this link: http://cpc.cbi.pku.edu.cn/download The latest version of 

CPC only works for the operating system “UNIX”. In addition, the users 

can use the online version of the program from the link below 

http://cpc.cbi.pku.edu.cn/.  

CPC also needs NCBI BLAST package to work. So the users need 

to download and install the NCBI BLAST database. 

 

CPC installation 

 After seeing what CPC needs, let’s see how the users can install 

the above database. Let’s take the installation step by step. 

 

How to install NCBI BLAST package for CPC 

 Let’s install NCBI BLAST package. First, the users need to open the 

Linux terminal and follow these steps: 

1. Download NCBI BLAST package with a browser: 

 ftp://ftp.ncbi.nlm.nih.gov/blast/executables/LATEST/ 

2. Choose version: 

 ncbi-blast-2.2.30+-x64-linux.tar.gz 

3. Go on Linux terminal and find the downloaded file and unzip 

and follow the bellow commands: 

 tar zxvpf ncbi-blast-2.2.30+-x64-linux.tar.gz 

 export PATH=”$PATH:$HOME/ncbi-blast-2.2.30+/bin” 

 mkdir ./ncbi-blast-2.2.30+/db 

 cd ncbi-blast-2.2.30+/db 

 ftp ftp.ncbi.nlm.nih.gov 

4. Name (ftp.ncbi.nlm.nih.gov:user): anonymous 

5. Asks for name, choose anonymous 

6. Password:konstantinosli*******@gmail.com 

 Asks for password, put a valid E-mail 

7. cd blast/db 

8. bin 
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9. get refseq_protein.00.tar.gz 

10.  bye 

11.  tar zxvpf refseq_protein.00.tar.gz 

12.  ls -ltr refseq_protein.00* 

13.  rm refseq_protein.00.tar.gz 

Once the users have finished with the commands above, they must 

go and copy the NCBI BLAST package into the CPC folder. 

 

How to install CPC for CPC 

Now the users must install the CPC only for “Linux” operating system. Let’s 

install CPC. First, the users need to download CPC. After that, install it 

from the terminal. Let’s see the instructions step by step: 

1. Download CPC from the following link: 

 http://cpc.cbi.pku.edu.cn/download 

2. Find the downloaded file 

3. Open terminal and write the following commands: 

 gzip -dc cpc-0.9.tar.gz | tar xf – 

 cd cpc-0.9 

 export CPC_HOME="$PWD" 

 cd libs/libsvm 

 gzip -dc libsvm-2.81.tar.gz | tar xf – 

 cd libsvm-2.81 

 make clean && make 

 cd ../.. 

 gzip -dc estate.tar.gz | tar xf – 

 cd estate 

 make clean && make 

4. Go to the base NCI BLAST database package ncbi-blast-

2.2.30+db and copy the folder db into the folder cpc/data and 

rename it into prot_db 

5. Go to terminal and continue with the commands bellow: 

 cd $CPC_HOME/data 

 formatdb -i (your_fasta_file) -p T -n prot_db 

 The user must put FASTA file into cpc/data folder and 

with these style: “Name.fasta” 

 cd $CPC_HOME 

 bin/run_predict.sh input_seq result_in_table working_dir 

result_evidence 

 

“input_seq” stands for the FASTA which needs prediction, 

“result_in_table” stands for the file where the results will print out, 
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“working dir” stands for the folder “ncbi-blast-2.2.30+” and the 

“result_evidence” is the file with the result evidence as printed out. CPC 

will return three files to the user: result_evidence.homo, 

result_evidence.orf and result_in_table. 
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Appendix C   How to install PLEK 

 

  

 

What does PLEK need to work? 

 PLEK is easy to install. It is an open-source software for “Linux”. Let’s 

see how to install PLEK. 

 

How to install PLEK 

 As mentioned above, PLEK works only for “Linux”. So, let’s see the 

steps which are needed to install the software. 

1. Download the software from this link: 

 http://sourceforge.net/projects/plek/files/latest/downld 

2. Unzip the downloaded file 

3. Open Linux terminal and find the destination of the unzip file and 

follow the command: 

 python PLEK_setup.py 

1. Put FASTA files with these form “Name.fa” and put it into the PLEK 

folder 

2. Run PLEK with the following command: 

 python PLEK.py -fasta FastaName.fa -out predicted -

thread 10 

Or 

 python PLEK.py -fasta FastaName.fa -out predicted -

thread 10 -minlength 150 

  PLEK returns only one text file with the default name “predicted”. 
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Appendix D   How to install PORTRAIT 

 

 

What does PORTRAIT need to work? 

 PORTRAIT needs some extra programs to work. First the users need 

to download and install PORTRAIT. Afterwards, users need to install three 

other extra programs, “LIBSVM 2.84”, “CAST 1.0” and “ANGLE”. PORTRAIT 

is a software which works for operating system of “Linux”. Let’s see how 

to install PORTRAIT software on “Linux”. 

 

How to install PORTRAIT 

 PORTRAIT can be installed only for “Linux”. So the users need to 

download PORTRAIT software and the three extra programs to be in 

position to work with them. Let’s see how to install the programs. 

 

How to install LIBSVM 2.84 for PORTRAIT 

1. Download the LIBSVM 2.84 software from the link above. 

2. Find the downloaded file. 

3. Open Linux terminal and unzip the file with this command: 

 gunzip -c libsvm-2.84.tar.gz | tar xvf - 

4. Wait to download the PORTRAIT software and then copy the file 

and put it into the PORTRAIT folder. 

5. Afterwards install the LIBSVM with the following commands: 

 cd libsvm-2.84 

 make 

 

 

How to install CAST 1.0 for PORTRAIT 

1. Download the CAST 1.0 software from the link: 

 http://bioinformatics.cenargen.embrapa.br/portrait/do

wnload/ 

2. Find the downloaded file and unzip it. 

3. Wait to download the PORTRAIT software and then copy the file 

and put it into the PORTRAIT folder. 

 

How to install ANGLE for PORTRAIT 
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1. Download the CAST 1.0 software from the link: 

 http://bioinformatics.cenargen.embrapa.br/portrait/do

wnload/ 

2. Find the downloaded file and unzip it. 

3. Wait to download the PORTRAIT software and after that copy the 

file and put it into the PORTRAIT folder. 

 

How to install PORTRAIT for PORTRAIT 

1. Download PORTRAIT from the above link: 

2. http://bioinformatics.cenargen.embrapa.br/portrait/download/ 

3. Open Linux terminal find the file and unzip it with this command: 

4. gunzip -c portrait-1.1.tar.gz | tar xvf – 

5. Install the program with the following command: 

6. perl portrait-1.1.pl 

7. give the PORTRAIT folder direction 

8. give the LIBVSM-2.84 folder direction 

9. give the CAST 1.0 folder direction 

10. give the ANGLE folder direction 

11. Run again the following command 

12. perl portrait-1.1.pl 

13. Run the program for prediction with this command: 

14. perl portrait-1.1.pl -i FastaName.fasta -s(or -c or -a) 

The users need to save the FASTA file with a specific format like 

“Name.fasta” inside the PORTRAIT folder. PORTRAIT software has finished 

with the prediction and returns three to sixteen text files to users, 

depending on the type of genes.  
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Appendix E   How to install OrfPredictor 

 

 

What does OrfPredictor need to work? 

 OrfPredictor can easily be installed on a personal computer. The 

only thing needed is the OrfPredictor program. 

 

How to install OrfPredictor 

 The first thing to do to install OrfPredictor is to ask the authors of 

OrfPredictor to send the software for installation. Next, the users must 

follow the steps below: 

1. On Linux find the downloaded file 

2. Unzip the file 

3. Open Linux terminal and find with cd command the 

destination of the unzip file 

4. Install the program with the following commands: 

5. chmod 777 ./extractCDS.pl 

6. chmod 777 ./OrfPredictor_web3.pl 

7. Run the program for prediction with the following 

command: 

8. perl ./OrfPredictor_web3.pl FastaName.fasta BLASTX bFlog 

strand Email Evalue output url 

The users need to insert the FASTA file into the OrfPredictor folder 

with the format “Name.fasta”. OrfPredictor returns three text files to users, 

“noORF_id.txt”, “ORF6frame.txt” and “output.txt”. But before finishing 

with the OrfPredictor, let’s see the last command. In the last command 

the users need to choose some info.  This info is: 

 

1. BLASTX  

• If we have a folder with BLASTX then we must give 

the name of the folder 

OR 

• Give a void file as BLASTX 

2. bFlog 

      • If we have BLASTX give for the bFlog the price =1 
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OR 

      • bFlog =0 

3. strand 

      • Search for both with the command both 

      • Search for + with the command + 

      • Search for – with the command – 

4. Email  

      • Give a valid E-mail 

5. Evalue  

      • Keep it as is 

6. Output 

      • Keep it as is 

7. Url 

       • Write www.yoururl.** 
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Appendix F   How we selected our datasets 

 

 

In order to select our datasets, the users need to download the 

datasets from authorized and reliable genome browsers like Ensembl, 

see link: http://www.ensembl.org/index.html, Biomart in the link bellow: 

http://www.biomart.org/ and GENCODE from this link:  

http://www.gencodegenes.org/.  

 

How to make a dataset with sequences 

 The first thing users need to do is to make a dataset with all human 

genes with their FASTA format. To build our datasets, the users need to 

determine which types of genes they want to build in order to use them 

in the TIS tools. So let’s see what is needed to create these datasets. 

 Go to Ensembl genes browser and choose Biomart 

 Choose Database 

 Ensembl Genes 80 or later versions 

 Choose Dataset 

 Homo sapiens genes (GRCh38.p2) 

 Attributes 

 Sequences 

 cDNA sequences 

 Header Information 

 Associated Gene Name 

 Ensembl Gene ID 

 Ensembl Transcript ID 

 CDS start (within cDNA) 

 CDS end (within cDNA) 

 Results 

 Export all results to Compressed file (.gz) 

 Go 

It will download a compressed file with 320-megabyte size. The 

compressed file will provide the dataset which the users will select genes 

from with their sequences in FASTA format. These sets will be tested to TIS 

Tools, CPAT, CPC, PLEK, PORTRAIT and OrfPredictor. 
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How to make the dataset “Coding genes 11.955” from 

BIOMART 

 In this section we will introduce the way to make the dataset for 

the coding genes, known as positive set. The first thing the users need to 

do is to visit the gene browser Biomart and take the following steps: 

 Visit Biomart genes browser and choose browser data 

 In the Datasets tab choose 

 Database: 

 Ensembl 79 Genes(WTSI, UK) 

 Datasets: 

 Homo sapiens genes(GRCh38.p2) 

 In the Filters tab, do not pick go to the Output tab 

 In the Output tab choose 

 Attributes 

 Features, Gene, Ensembl  

o Version(Transcript) 

o Status(Transcript) 

o Status(Gene) 

o Transcript type 

o Gene type 

o Associated Gene Name 

o GENCODE basic annotation 

o Transcript Support Level(TSL) 

o Transcript Length 

o Transcript End(bp) 

o Transcript Start(bp) 

o Strand 

o Chromosome Name 

o Ensembl Protein ID 

o Ensembl Transcript ID 

o Ensembl Gene ID 

 External References 

o UniProt/SwissProt ID 

o RefSeq mRNA[e.g.NM_001195597] 

o CCDS ID 

o VEGA transcript ID(s) (OTTT) 

o APPRIS 

 Results 

o Download Data 

The Biomart will return a text file named “results.txt” with size 

35.9 MB.  
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How to filter the dataset “Coding genes  11.955” from BIOMART 

 Once we have finished with our dataset, the next step is to filter it. 

So, let’s see how to filter our dataset. To do this, users need to open the 

dataset as .xlsx. and choose: 

 UniProt/SwissProt ID  

 (Select All / No Blanks) 

 RefSeq mRNA [e.g.NM_001195597] 

 (Select All / No Blank) 

 CCDS ID 

 (Select All / No Blanks) 

 Version(transcript) 

 (Select All) 

 Status(transcript) 

 (KNOWN) 

 Status(gene) 

 (KNOWN) 

 Transcript type 

 (protein_coding) 

 Gene type 

 (protein_coding) 

 Associated Gene Name 

 (Select All) 

 APPRIS principal isoform annotation 

 (Select All / No Blanks) 

 GENCODE basic annotation 

 (Select All) 

 Transcript Support Level(TSL) 

 (tsl1-3 / No Blanks / No tsl4, tsl5, tslNA ) 

 VEGA transcript ID(s)(OTTT) 

 (All / No Blanks) 

The attributes Transcript length, Transcript End (bp), Transcript Start 

(bp), Strand, Chromosome Name, Ensembl Protein ID, Ensembl Transcript 

ID and Ensembl Gene ID did not need filtering. So, the filtered dataset 

returned 14.252 genes.   
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Why do we need to keep the unique Coding genes from the 

dataset “Coding genes 11.955” from BIOMART? 

 In this section we will discuss the reason why we need to keep the 

unique coding genes from the filtered dataset. The reason we need to 

keep the longest mRNA for each gene is that some genes have only one 

transcript mRNA and some others can have more than one, because of 

exons and their combinations. So, to achieve high accuracy in our 

prediction we need to keep the longest mRNA transcript for each gene. 

Now the users must choose three attributes from the dataset:  

 Associated Gene Name 

 Ensembl Transcript ID 

 Transcript length 

 Choose Data and Sort the tables like: 

 Associated Gene Name  

 A-Z 

 Transcript length 

 Large to Small 

 Save the document as: 

 Excel Workbook 

 Text(tab) 

 CSV 

After that, we take the new text document and, with a script 

program, remove the duplicated genes and keep the longest mRNA 

transcript for each gene. The genes which remained were 11.955 in total. 

 

How to make the dataset “Ensembl-Biomart & GENCODE” 

 To be sure that we will pick the most common non-coding genes, 

we have to make a dataset with all genes from two different bases, 

Ensembl-Biomart and GENCODE. The result is a dataset with seventeen 

attributes from both bases and totally 214.286 genes. The attributes are: 

 Ensembl Transcript ID 

 Ensembl Gene ID 

 Ensembl Description 

 Ensembl Gene Start 

 Ensembl Gene End 

 Ensembl Transcript Length 

 Ensembl Transcript Support Level 

 Ensembl GENCODE basic annotation 

 Ensembl Associated Gene Name 

 Ensembl Gene Type 
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 Ensembl Transcript Type 

 Ensembl RefSeq NR 

 GENCODE Transcript ID 

 GENCODE Gene Name 

 GENCODE Gene Status 

 GENCODE Transcript Status 

 GENCODE Transcript Support Level 

 

How to make the dataset “Long non-coding genes 6.250” from 

Ensembl-Biomart & GENCODE 

The purpose of this section is to present how to pick the most common 

long non-coding genes from the above dataset, “Ensembl-Biomart & 

GENCODE”. The first thing one must do is to filter the dataset which 

returns 11.140 genes in total. But after that, we need to remove the 

duplicated genes. The dataset was filtered, considering the attributes 

below: 

 Ensembl Gene Type 

 lncRNA 

 Ensembl Transcript Type 

 lncRNA 

 GENCODE Transcript Status 

 KNOWN 

 

Why we need to remove duplicate genes from our dataset 

“Long non-coding genes 6.250” from Ensembl-Biomart & 

GENCODE 

 The reason why we need to remove the duplicate genes is the 

fact that we want to pick the long non-coding genes which are unique. 

The reason is because we need to have the most accurate results 

possible for the prediction. The users must choose three attributes from 

the dataset: 

 Associated Gene Name 

 Ensembl Transcript ID 

 Transcript length 

 Choose Data and Sort the tables like: 

 Associated Gene Name  

 A-Z 

 Transcript length 
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 Large to Small 

 Save the document as: 

 Excel Workbook 

 Text(tab) 

 CSV 

After that, we take the new text document and, with a script 

program, remove the duplicate genes and keep the unique long non-

coding genes. The genes which remain are totally 6.250. These are the 

genes which are used for our prediction.  
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Appendix G   Results from TIS Tools for the sets 

 

 

Introduction 
          In this chapter our aim is to present and compare the results of the 

two datasets, the dataset for coding genes, “Coding genes 11.955”, and 

the dataset for long non-coding genes, “Long non-coding genes 6.250”, 

run with the previously mentioned programs.  

 

“Coding genes 11.955” TIS Tools Results, Differences & 

Comparison 

 In this section we will present the results, the differences and the 

comparisons for the dataset “Coding genes 11.955” for TIS Tools, such as 

CPAT, CPC, PLEK, PORTRAIT and OrfPredictor. 

 

CPAT results for dataset “Coding genes 11.955” 

 CPAT returned excellent results for the prediction of Coding genes 

with a percentage of 97.7% accuracy (see Figure 5.2). CPAT returns three 

files, “output2”, “output2.dat” and “output2.r” after finishing with the 

prediction. The most significant file was the “output2” which contains six 

attributes. The attributes were: “mRNA size”, “ORF size”, “Transcript 

length”, “Fickett score”, “Hexamer score” and “Coding probability”. An 

important detail is that CPAT detects as coding genes those with 

probability score equal to >= 0,364. Example of CPAT results (see Table 

appendix 1.1): 

 

mRNA  

size 

ORF 

size 

Transcript 

length 

Fickett 

score 

Hexamer 

score 

Coding 

probability 

LLGL1|ENSG00000131 3195 4260 11971 0.5210719152 1 

LEPR|ENSG000001166 

3498 8227 0.6382 

-0.047639341 1 

SMIM15|ENSG000001 

261 2889 0.6733 

-0.503522132 0.003014182 

OST4|ENSG000002284 

117 561 0.8146 

-0.262144065 0.004806479 

C14ORF2|ENSG00000 

177 643 0.8474 

0.0945008133 0.084022062 

COX20|ENSG0000020 

357 2631 0.6056 

-0.075859121 0.086952384 
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UBL3|ENSG000001220 

354 4384 0.7674 

-0.008322209 0.180416918 

COA5|ENSG00000183 

225 1754 0.8589 

0.1546023877 0.181167149 

MRPL33|ENSG000002 

198 518 0.9553 

0.1411021336 0.183565434 

COPS2|ENSG0000016 

1332 6628 0.8938 

0.1229986903 0.999973483 

Table appendix 1.1: Example of CPAT results for coding genes. This table has been designed for the purpose of this 

thesis. 

 

CPAT returns the ”ORF size”. That means that it can predict the 

Open Reading Frame (ORF) for each gene. Only CPAT and PORTRAIT 

gave users this information. CPAT detects the “ORF size” with 97.36% 

success rate (see Figure 5.1).  To make this comparison we made a 

program which compared the “CDS length” from Ensembl and the “ORF 

size” of CPAT output for each gene. The results for this comparison are 

shown in a new tab named “Equal/Not Equal”. That shows the 

association between “CDS length” and “ORF size”.  Example for CPAT 

how it predicted ORF size (see Table appendix 1.2): 

 

mRNA 

size 

CDS 

length 

ORF 

size 

Equal/Not 

Equal 

Transcript 

length 

Fickett 

score 

Hexamer 

score 

Coding 

probability 

LLGL1|3195 3195 3195 EQUAL 4260 11971 0.52107 1 

LEPR|3498 3498 3498 EQUAL 8227 0.6382 -0.04763934 1 

RIMS1|5079 5079 5079 EQUAL 5079 0.7024 0.160987573 1 

UPF1 |3357 3357 3357 EQUAL 5348 12715 0.564062099 1 

ZNF197 |3090 3090 3090 EQUAL 3275 0.8835 0.120634713 1 

CENPF |9345 9345 9345 EQUAL 10307 10975 0.185642958 1 

SYNJ2|4491 4491 4491 EQUAL 7378 10549 0.356128968 1 

PXDNL|4392 4392 4392 EQUAL 4805 0.8436 0.202934828 1 

MTR|3798 3798 3798 EQUAL 10529 11808 0.247650143 1 

PSMD2|2727 2727 2967 NOT_EQUAL 3449 11711 0.378994377 1 

Table appendix 1.2: Example of CPAT how predict ORF size. This table has been designed for the 

purpose of this thesis. 
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Figure appendix 1.1: CPAT results for ORF size of dataset “Coding genes 11.681”. This figure has been 
designed for the purpose of this thesis. 

 CPAT predicted as coding 11.681 genes out of 11.955 coding 

genes with 97.7% success rate and only 274 coding genes detected as 

non-coding with 2.3%  success rate.  

 

 

Figure appendix 1.2: CPAT results for dataset “Coding genes 11.955”. This figure has been designed for 

the purpose of this thesis. 
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CPC results for dataset “Coding genes 11.955” 

 CPC results for the prediction of coding genes achieved 85.1% 

success rate. CPC printed three documents, “result_evidence.HOMO” 

file, “result_evidence.ORF” file and “result_in_table”, after finishing with 

the prediction. The file “result_in_table” was the most significant of the 

three files and contained four features: “mRNA”, “Transcript length”, 

“Coding/Non Coding” and “Coding probability”. The other two files 

contained information about the “BLASTX”. The “result_evidence.ORF” 

file contained information’s for “ORF frame” and only for the coding 

genes. Example of CPC results: 

 

mRNA Transcript 

length 

Coding/NonCoding Coding 

Probability 

YIPF3|ENSG00000137207 1576 coding 220.951 

LLGL1|ENSG00000131899 4260 coding 784.909 

LEPR|ENSG00000116678 8227 coding 426.735 

DAPK2|ENSG00000035664 1741 coding 244.912 

GLA|ENSG00000102393 1318 coding 133.811 

PLA2G10|ENSG00000069764 1000 noncoding -0.448982 

NDUFC1|ENSG00000109390 809 noncoding -0.963918 

KLHDC9|ENSG00000162755 1314 noncoding -0.249919 

PTS|ENSG00000150787 935 noncoding -0.311758 

SERF2|ENSG00000140264 1931 noncoding -0.876614 

Table appendix 1.3: Example of CPC results for coding genes. This table has been designed for the 

purpose of this thesis. 

 

CPC predicted as coding the 10.171 out of the 11.955 coding 

genes  with 85.1% success rate, while 1.784 coding genes were detected 

as non-coding with 14.9% false rate. (see Figure appendix 1.3) 
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Figure appendix 1.3: CPC results for dataset “Coding genes 11.955”. This figure has been designed for 

the purpose of this thesis. 

 

PLEK results for dataset “Coding genes 11.955” 

 PLEK results for the prediction of coding genes had 93.4% success 

rate (see Figure 5.6). PLEK printed one file after finishing with the 

prediction, named “Predicted”. The file contained three features, 

“mRNA", ”Coding/Non Coding” and “Coding probability”. PLEK did not 

return the “ORF size”. Example of PLEK results (see Table appendix 1.4): 

 

mRNA Coding/Non-coding Coding Propability 

YIPF3|ENSG00000137207 Coding 1.731.320 

IL20|ENSG00000162891 Coding 1.105.280 

LLGL1|ENSG00000131899 Coding 1.867.890 

RPS6KB2|ENSG00000175634 Coding 1.930.390 

MXD4|ENSG00000123933 Coding 1.232.050 

LYSMD1|ENSG00000163155 Non-coding -0.008743 

BPIFA2|ENSG00000131050 Non-coding -0.869155 

IL36A|ENSG00000136694 Non-coding -0.583599 

PCYT1B|ENSG00000102230 Non-coding -0.027357 

SERPINA6|ENSG00000170099 Non-coding -0.096317 

Table appendix 1.4: Example of PLEK results for coding genes. This table has been designed for the 

purpose of this thesis. 
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PLEK predicted as coding 11.165 out of 11.955 coding genes with 

93.4% success rate and 790 coding genes were detected as non-coding 

with 6.6% false rate. (see Figure appendix 1.4) 

 

 

Figure appendix 1.4: PLEK results for dataset “Coding genes 11.955”. This figure has been designed for 

the purpose of this thesis. 

 

PORTRAIT results for dataset “Coding genes 11.955” 

 PORTRAIT results for the prediction of coding genes had 99.7% 

success rate. PORTRAIT printed three to sixteen text files after finishing 

with the prediction. The files were: ”Name.FASTA”, 

”Name.FASTA_RESULTS”, “Name.ORF”, “Name.CAST_PARSED”, 

“Name.CAST_RAW”, “Name.AACOMP”, “Name.IEP”, “Name.ORFSIZE”, 

”Name.SOAP”, “Name.WITHORFS”, “Name.NT1”, “Name.NT2”, 

“Name.NT3”, “Name.RNASIZE”, “Name.WITHOUTORFS”. We took the 

“ORF file” which contained two features, “mRNA" and “ORF size”. 

Example of PORTRAIT results (see Table appendix 1.5): 

 

mRNA ORF size 
YIPF3|ENSG00000137207 1200 

IL20|ENSG00000162891 531 

LLGL1|ENSG00000131899 3291 

RPS6KB2|ENSG00000175634 1494 

MXD4|ENSG00000123933 798 

C1orf100|ENSG00000173728 N/A 

DEFB105B|ENSG00000186599 N/A 

LMO7DN|ENSG00000178734 N/A 
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USMG5|ENSG00000173915 N/A 

DEFB124|ENSG00000180383 N/A 

Table appendix 1.5: Example of PORTAIT results for coding genes. This table has been designed for the 

purpose of this thesis. 

 

PORTRAIT returned the “ORF size”. That means that it can predict 

the Open Reading Frame (ORF) for each gene (see Figure 5.5).  But to 

make the comparison more accurate, we made a program which 

compared “CDS length” from Ensembl and the “ORF size” of PORTRAIT 

output for each gene. The program returned a new tab named 

“Equal/Not Equal”. This tab showed association between “CDS length” 

and “ORF size” for each gene of the set. PORTRAIT returned the “ORF 

size” for the predicted coding genes with 52.63% percentage of success 

rate as Equal and the 47.37% rate as Not Equal.  Example for PORTRAIT 

how predicted “ORF size” (see Table appendix 1.6):  

 

mRNA CDS Length ORF Size EQUAL/NOT 

EQUAL 
YIPF3|ENSG00000137207 1053 1200 NOT_EQUAL 

IL20|ENSG00000162891 531 531 EQUAL 

LLGL1|ENSG00000131899 3195 3291 NOT_EQUAL 

RPS6KB2|ENSG00000175634 1449 1494 NOT_EQUAL 

MXD4|ENSG00000123933 630 798 NOT_EQUAL 

LEPR|ENSG00000116678 3498 3291 NOT_EQUAL 

DAPK2|ENSG00000035664 1113 1113 EQUAL 

GLA|ENSG00000102393 1290 1227 NOT_EQUAL 

FCGRT|ENSG00000104870 1098 1098 EQUAL 

PLBD1|ENSG00000121316 1662 1662 EQUAL 

Table appendix 1.6: Example of PORTRAIT how predict ORF size results. This table has been designed 
for the purpose of this thesis. 
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Figure appendix 1.5: PORTRAIT results for ORF size of dataset “Coding genes 11.681”. This figure has 

been designed for the purpose of this thesis. 

 

PORTRAIT predicted as coding 11.923 out of 11.955 coding genes 

with 99.7% success rate and only 32 coding genes were predicted as 

non-coding with 0.3% false rate. 

 

 

Figure appendix 1.6: PORTRAIT results for dataset “Coding genes 11.955”. This figure has been 

designed for the purpose of this thesis. 
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OrfPredictor results for dataset “Coding genes 11.955” 

The OrfPredictor results for the prediction of coding genes were 

100% accurate(see Figure 5.7). OrfPredictor printed three files after 

finishing with the prediction, “noORF”, “ORF6frame” and “output”. 

Example of OrfPredictor from file “output”, showed in table below (see 

Table appendix 1.7): 

 

mRNA Strand ORF end ORF start 
YIPF3|ENSG00000137207 1 184 1233 

IL20|ENSG00000162891 3 45 572 

LLGL1|ENSG00000131899 1 97 3288 

RPS6KB2|ENSG00000175634 1 46 1491 

MXD4|ENSG00000123933 3 147 941 

LEPR|ENSG00000116678 3 186 3680 

DAPK2|ENSG00000035664 2 32 1141 

GLA|ENSG00000102393 2 23 1309 

FCGRT|ENSG00000104870 1 487 1581 

PLBD1|ENSG00000121316 3 654 2312 

Table appendix 1.7: Example of OrfPredictor results for coding genes. This table has been designed for 

the purpose of this thesis. 

 

 

Figure appendix 1.7: OrfPredictor results for dataset “Coding genes 11.955”. This figure has been 
designed for the purpose of this thesis. 
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All TIS Tools results for dataset “Coding genes 11.955”  

 All the results from the TIS Tools are presented in the chart below. 

As we can see all tools have gathered very good results (see Figure 

appendix 1.8 & Figure appendix 1.9).  

 

 

Figure appendix 1.8: TIS Tools results for dataset “Coding genes 11.955”. This figure has been designed 
for the purpose of this thesis. 
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Figure appendix 1.9: Tools results Non-coding for dataset “Coding genes 11.955”. This figure has been 

designed for the purpose of this thesis. 

 

“Long non-coding genes 6.250” TIS Tools Results, Differences & 

Comparison 

 In this section we will present the results, the differences and the 

comparisons for the dataset “Long non-coding genes 6.250” for TIS Tools, 

such as CPAT, CPC, PLEK, PORTRAIT and OrfPredictor. 

 

CPAT results for dataset “Long non-coding genes 6.250” 

 CPAT returned very good results for the prediction of Long non-

coding genes with a percentage of 93.5%  accuracy(see Figure 5.10). 

CPAT returns three files, “output2”, “output2.dat” and “output2.r” after 

finishing with the prediction. The most significant file was the “output2” 

which contains six attributes. The attributes were: “mRNA size”, “ORF 

size”, “Transcript length”, “Fickett score”, “Hexamer score” and “Coding 

probability”. An important detail is that CPAT detects as coding genes 

those with probability score equal to >= 0,364. Example of CPAT results  

(see Table appendix 1.8): 
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mRNA size ORF 

size 

start 

ORF 

size 

end 

Fickett 

score 

Hexamer 

score 

Coding 

probability 

PCAT29|ENSG00000259641 201 2121 0.6425 -0.061896285 0.020697418 

LINC01493|ENSG00000254562 168 581 0.8389 -0.274950698 0.008514461 

CTD-2313F11.3|ENSG00000248029 159 567 0.8128 -0.120467217 0.017812465 

RP11-19P22.5|ENSG00000265788 354 2110 0.5025 -0.012582804 0.088842652 

RP11-763E3.1|ENSG00000262052 162 585 0.9535 -0.141441226 0.026095088 

ZNF833P|ENSG00000197332 3383 837 0.909 -0.099152971 0.979806783 

ZNF883|ENSG00000228623 2319 1044 1.0068 0.058714362 0.999474872 

U73166.2|ENSG00000230454 2625 495 0.6333 0.013510196 0.457757046 

TUNAR|ENSG00000250366 3197 198 1.1488 0.212493369 0.368415692 

TRBV11-2|ENSG00000241657 408 345 0.8835 0.157222304 0.502144887 

Table appendix 1.8: Example of CPAT results for long non-coding genes. This table has been designed 
for the purpose of this thesis. 

 

 

CPAT predicted as long non-coding 5.847  out of  6.250 long non-

coding genes with 93.5% success rate and only 403 long non-coding 

genes detected as coding with 6.5% false rate.  

 

 

Figure appendix 1.10: CPAT results for dataset “Long non-coding genes 6.250”. This figure has been 
designed for the purpose of this thesis. 
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CPC results for dataset “Long non-coding genes 6.250” 

 CPC results for the prediction of long non-coding genes achieved 

98.8% success rate (see Figure 5.11). CPC printed three documents, 

“result_evidence.HOMO” file, “result_evidence.ORF” file and 

“result_in_table”, after finishing with the prediction. The file 

“result_in_table” was the most significant of the three files and contained 

four features: “mRNA”, “Transcript length”, “Coding/Non Coding” and 

“Coding probability”. The other two files contained information about 

the “BLASTX”. The “result_evidence.ORF” file contained information’s for 

“ORF frame” and only for the coding genes. Example of CPC results: (see 

Table appendix 1.9): 

 

mRNA Transcript 

length 

Coding/Non 

Coding 

Coding 

Probability 
PCAT29|ENSG00000259641 2121 noncoding -1.12625 

LINC01493|ENSG00000254562 581 noncoding -1.08397 

CTD-2313F11.3|ENSG00000248029 567 noncoding -0.779052 

RP11-19P22.5|ENSG00000265788 2110 noncoding -0.898423 

RP11-763E3.1|ENSG00000262052 585 noncoding -0.913101 

C10orf91|ENSG00000180066 1846 coding 0.0566741 

AP000696.2|ENSG00000231324 1133 coding 0.178134 

CTC-786C10.1|ENSG00000262601 777 coding 0.330483 

LINC00371|ENSG00000226792 2743 coding 0.370696 

LINC00940|ENSG00000235049 2350 coding 1.12195 

Table appendix 1.9: Example of CPC results for long non-coding genes. This table has been designed 
for the purpose of this thesis. 
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CPC predicted as long non-coding the 6.176 out of 6.250 of long 

non-coding genes with 98.8% success rate, while 74 long non-coding 

genes were detected as coding with 1.2% false rate. (see Figure 

appendix 1.11) 

 

 

Figure appendix 1.11: CPC results for dataset “Long non-coding genes 6.250”. This figure has been 

designed for the purpose of this thesis. 

 

PLEK results for dataset “Long non-coding genes 6.250” 

 PLEK removed 63 genes as short genes from 6.250 long non-

coding genes. PLEK results for the prediction of long non-coding genes 

had 98% success rate (see Figure 5.12). PLEK printed one file after 

finishing with the prediction, named “Predicted”. The file contained 

three features, “mRNA",”Coding/Non Coding” and “Coding 

probability”. PLEK did not return the “ORF size”. Example of PLEK result 

(see Table appendix 1.10): 

mRNA Coding/Non-Coding Coding probability 
LINC01012|ENSG00000281706 Coding 0.348473 

RP11-1102P16.1|ENSG00000253379 Coding 0.410042 

LINC00998|ENSG00000214194 Coding 0.605475 

RP11-403I13.5|ENSG00000232721 Coding 0.10709 

AC011747.4|ENSG00000236008 Coding 0.264657 

AC013727.1|ENSG00000232597 Non-coding -1.44806 

RP4-754E20__A.5|ENSG00000236117 Non-coding -2.05644 

LINC00678|ENSG00000254934 Non-coding -1.7675 

RP13-463N16.6|ENSG00000242147 Non-coding -1.54915 

RP11-35J1.2|ENSG00000280511 Non-coding -2.10556 
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Table appendix 1.10: Example of PLEK results for long non-coding genes. This table has been designed 

for the purpose of this thesis. 
 

         PLEK predicted as long non-coding 6.062 out of 6.187 long non-

coding genes with 98% success rate and 2 long non-coding genes 

were detected as coding with 2% false rate. 

 

 

Figure appendix 1.12: PLEK results for dataset “Long non-coding genes 6.250”. This figure has been 

designed for the purpose of this thesis. 

 

PORTRAIT results for dataset “Long non-coding genes 6.250” 

 PORTRAIT results for the prediction of long non-coding genes had 

42.4% success rate (see Figure 5.13). PORTRAIT printed three to sixteen 

text files after finishing with the prediction. The files were: ”Name.FASTA”, 

”Name.FASTA_RESULTS”, “Name.ORF”, “Name.CAST_PARSED”, 

“Name.CAST_RAW”, “Name.AACOMP”, “Name.IEP”, “Name.ORFSIZE”, 

”Name.SOAP”, “Name.WITHORFS”, “Name.NT1”, “Name.NT2”, 

“Name.NT3”, “Name.RNASIZE”, “Name.WITHOUTORFS”. We took the 

“ORF file” which contained two features, “mRNA" and “ORF size”. 

Example of PORTRAIT results (see Table appendix 1.11): 

 

 

mRNA Scores 
PCAT29|ENSG00000259641 0.883721 

LINC01493|ENSG00000254562 0.861678 

CTD-2313F11.3|ENSG00000248029 0.564427 
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RP11-19P22.5|ENSG00000265788 0.560353 

RP11-111M22.5|ENSG00000271757 0.932177 

CTD-2231E14.5|ENSG00000267373 0.949482 

AP000654.4|ENSG00000269895 0.730877 

CTD-2308B18.3|ENSG00000248296 0.812577 

RP11-462L8.1|ENSG00000229656 0.914486 

RP11-37B2.1|ENSG00000251136 0.720935 

Table appendix 1.11: Example of PORTRAIT results for long non-coding genes. This table has been 

designed for the purpose of this thesis. 

 

PORTRAIT predicted as long non-coding 2.651 out of 6.250 long 

non-coding genes with 42.4% success rate and 3.599 long non-coding 

genes were detected as coding with 57.6% false rate. 

 

 

Figure appendix 1.13: PORTRAIT results for dataset “Long non-coding genes 6.250”. This figure has 

been designed for the purpose of this thesis. 
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OrfPredictor results for dataset “Long non-coding genes 6.250” 

The OrfPredictor results for the prediction of long non-coding 

genes had 1% success rate (see Figure 5.14). OrfPredictor printed three 

files after finishing with the prediction, “noORF”, “ORF6frame” and 

“output”. Example of OrfPredictor from file “output”, showed in table 

below (see Table appendix 1.12). 

 

mRNA Strand ORF end ORF start 
PCAT29|ENSG00000259641 -1 4 264 

LINC01493|ENSG00000254562 1 265 429 

CTD-2313F11.3|ENSG00000248029|ENST00000445660 -1 343 543 

RP11-19P22.5|ENSG00000265788|ENST00000583179 1 28 378 

RP11-763E3.1|ENSG00000262052|ENST00000571972 -2 227 583 

RP11-111M22.5|ENSG00000271757|ENST00000607673 3 312 683 

CTD-2231E14.5|ENSG00000267373|ENST00000587693 3 3 95 

RP11-166A12.1|ENSG00000251538|ENST00000511194 -3 981 1181 

CTD-2308B18.3|ENSG00000248296|ENST00000503145 1 1 369 

AC008991.1|ENSG00000267683|ENST00000587850 -2 2 226 

Table appendix 1.12: Example of OrfPredictor results for long non-coding genes. This table has been 

designed for the purpose of this thesis. 

 

 OrfPredictor predicted as long non-coding 12 out of 6.250 long 

non-coding genes with 1% success rate and 32 long non-coding genes 

were detected as coding with 99% false rate. 

 

Figure appendix 1.14: OrfPredictor results for dataset “Long non-coding genes 6.250”. This figure has 

been designed for the purpose of this thesis. 
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All TIS Tools results for dataset “Long non-coding genes 6.250”  

 All the results from TIS Tools are presented in the chart below. As 

we can see all tools have gathered very good results except 

OrfPredictor (see Figure appendix 1.15& Figure appendix 1.16). 

 

 

Figure appendix 1.15: TIS Tools results for dataset “Long non-coding genes 6.250”. This figure has 

been designed for the purpose of this thesis. 
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Figure appendix 1.16: TIS Tools results coding for dataset “Long non-coding genes 6.250”. This figure 

has been designed for the purpose of this thesis. 
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Figure appendix 1.17: Overall results for TIS Tools for two datasets “Coding genes 11.955” & “Long 

non-coding genes 6.250”. This figure has been designed for the purpose of this thesis. 
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Appendix H    D-TIS algorithm description 

 

 

 

Figure appendix 1.18: How the D-TIS works. This figure has been designed for the purpose of this 

thesis. 
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