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Περίληψη 

Η έλευση των Δίσκων Στερεάς Κατάστασης (SSDs) προκάλεσε μεγάλο ενδιαφέρον για 
έρευνα και αξιοποίηση στο μέγιστο δυνατό βαθμό των δυνατοτήτων του νέου δίσκου. Η 
παρούσα εργασία επικεντρώνεται στη μελέτη της σχετικής επίδοσης και των οφελών των 
SSDs έναντι των μαγνητικών δίσκων (HDDs) όταν χρησιμοποιούνται ως αποθηκευτικά 
μέσα για το Hadoop MapReduce. Ειδικότερα, με αφετηρία τις προηγούμενες σχετικές 
εργασίες, εξετάζουμε τις MapReduce διεργασίες και δεδομένα κατάλληλα για εκτέλεση 
ανάλυσης σε σύνθετα δίκτυα, που παρουσιάζουν διαφορετικά πρότυπα εκτέλεσης. Παρά 
την πληθώρα των αλγορίθμων και εφαρμογών για ανάλυση σύνθετων δικτύων, εμείς 
επιλέξαμε προσεκτικά τις μεθόδους αξιολόγησης επιδόσεών μας, έτσι ώστε να 
περιλαμβάνουν μεθόδους που εκτελούν ταυτόχρονα και τοπικές και σε επίπεδο δικτύου 
εργασίες σε ένα σύνθετο δίκτυο, και επίσης είναι αρκετά γενικές, με την έννοια ότι μπορούν 
να χρησιμοποιηθούν ως αρχέτυπα για πιο εξελιγμένες εφαρμογές επεξεργασίας του 
δικτύου. Αξιολογήσαμε την απόδοση των SSDs και HDDs εκτελώντας αυτούς τους 
αλγορίθμους σε πραγματικά δεδομένα κοινωνικών δικτύων εξαιρουμένων των επιπτώσεων 
του εύρους ζώνης του δικτύου που μπορεί δραματικά να αλλοιώσει τα αποτελέσματα. Τα 
ληφθέντα αποτελέσματα επιβεβαίωσαν εν μέρει παλαιότερες μελέτες που έδειξαν ότι οι SSD 
είναι επωφελείς για Hadoop. Ωστόσο, δόθηκαν σοβαρές αποδείξεις για τον σημαντικό ρόλο 
του μοντέλου επεξεργασίας στην εφαρμογή που εκτελείται, και ως εκ τούτου μελλοντικές 
μελέτες δεν πρέπει να προσθέσουν τυφλά SSDs στο Hadoop, αλλά θα πρέπει να 
δημιουργήσουν συστατικά για να εκτιμηθεί το είδος του μοτίβου επεξεργασίας της 
εφαρμογής και στη συνέχεια να κατευθύνουν τα δεδομένα στο κατάλληλο μέσο 
αποθήκευσης. 
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Abstract 

The advent of Solid State Drives (SSDs) stimulated a lot of research to investigate and 
exploit to the extent possible the potentials of the new drive. The focus of this work is on 
the investigation of the relative performance and benefits of SSDs versus hard disk drives 
(HDDs) when they are used as underlying storage for Hadoop's MapReduce. In particular, 
we depart from all earlier relevant works in that we do not use their workloads, but 
examine MapReduce tasks and data suitable for performing analysis of complex networks 
which present different execution patterns. Despite the plethora of algorithms and 
implementations for complex network analysis, we carefully selected our "benchmarking 
methods" so that they include methods that perform both local and network-wide 
operations in a complex network, and also they are generic enough in the sense that they 
can be used as primitives for more sophisticated network processing applications. We 
evaluated the performance of SSDs and HDDs by executing these algorithms on real 
social network data and excluding the effects of network bandwidth which can severely 
bias the results. The obtained results confirmed in part earlier studies which showed that 
SSDs are beneficial to Hadoop. However, we also provided solid evidence that the 
processing pattern of the running application has a significant role, and thus future studies 
must not blindly add SSDs to Hadoop, but they should build components for assessing the 
type of processing pattern of the application and then direct the data to the appropriate 
storage medium. 
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Chapter 1 

Introduction 

A complex network is a graph with topological features such as scale-free properties, 
existence of communities, hubs, and so on that is used to model real systems, for 
example, technological (Web, Internet, power grid, online social networks) networks, 
biological networks (gene, protein), social networks [18]. The analysis of online social 
networks (OSNs) such as Facebook, Twitter, Instagram has received significant attention 
because all these networks store and process colossal volumes of data, mainly in the form 
of pair-wise interactions, thus giving birth to networks, i.e., graphs which record persons" 
interactions whose analysis and mining offers both operational and business advantages 
to the OSN owner. 

Modern OSNs are comprised by millions of nodes and even billions of edges; 
therefore, any algorithm for their analysis that relies on a single machine (centralized) -
exploiting solely the machine's main memory and/or its disk - is eventually doomed to fail 
due to lack of resources. Thus, the digitization of the aforementioned relationships 
produces a vast amount of collected data, i.e., big data [9] requiring extreme processing 
power that only distributed computing can offer. However, developing a distributed solution 
is a challenging task because it must deal sometimes with sequential processes. Some 
analysis algorithms based on distributed solutions that can run only on a small cluster of 
machines are still insufficient, since modern OSNs are maintained by Internet giants such 
as Google, LinkedIn and Facebook who own huge datacenters and operate clusters of 
several thousand machines. These clusters are usually programmed by data-parallel 
frameworks of the MapReduce type [2], a big data analytics platform. 

The Hadoop [5][23] middleware was designed to solve problems where the "same, 
repeated processing" had to be applied to peta-scale volumes of data. Hadoop's initial 
design was based on magnetic disk's characteristics, enforcing sequential read and write 
operations introducing its own distributed file system (HDFS - Hadoop Distributed File 
System) with blocks of large size. 

Recently with the advent of faster Solid State Drives (SSDs) research is emerging to 
test/exploit the potential of the new technologically advanced drive [10][11 ][17]. The lack of 
seek overhead gives them a significant advantage with respect to Hard Disk Drives 
(HDDs) for workloads whose processing requires random access instead of sequential 
access. Even though the cost-per-capacity of SSDs is still high, their adoption could be 
widespread if their performance was solidly proved to be superior to that of HDDs. The 
world of databases has long time ago started [15] to assess the benefits of using SSDs in 
various points of the database architecture, but the Hadoop world has only recently 
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[11][12][17][24] started a similar investigation. 

Providing a clear answer to the question of whether SSDs significantly outperform or offer 
increased performance in same cases compared to HDDs in the Hadoop environment is 
not straightforward, because the results of a system-analysis-based investigation are 
affected by the network speed and topology, by the cluster (size, architecture, . . .) , and by 
the nature of the benchmarks used (MapReduce algorithms, input data). The efforts done 
so far to provide light to this question suffer either because the experimentation was 
executed on a virtualized cluster [12], or because their setup was affected by the 
underlying network [17], or because their benchmark algorithms and data were mostly 
read-oriented [11] [17], thus biasing the results in such a way that no clear answer and 
universally holding conclusions could be drawn. 

1.1 Contributions 

Our work attempts to start the investigation from a new basis and to provide a clear 
answer to the following basic question: Ignoring any network biases and storage media 
cost considerations, do SSDs provide improved performance over HDDs for real 
workloads that are not dominated by either reads or writes? 

In this context, our work makes the following contributions: 

• It uses a different set of MapReduce jobs, i.e., complex network analysis tasks, 
which have radically different characteristics from the earlier used benchmarks. 

• It isolates "external" dependencies, i.e., network, cost considerations. 

• It shows that there exists at least one case where HDDs can deliver superior 
performance to SSDs, which has not been documented in any earlier study. 

• It provides solid evidence that the MapReduce job's read/write behavior will 
eventually provide the answer of whether SSDs are preferable over HDDs, which is 
consistent with the conclusions reported in [16] where random writes in SSDs are 
the "killing" application pattern for SSDs (with respect to reads and sequential 
writes). 

The rest of this work is organized as follows: In chapter 2, we present the related work and 
in chapter 3 we briefly describe Hadoop's structure. In chapter 4 we provide information 
about the three algorithms that will be evaluated in the storage media and in chapter 5 we 
describe the performance evaluation. Chapter 6 contains the evaluation results, and finally, 
chapter 7 concludes the thesis. 
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Chapter 2 

Related Work 

Introducing and investigating the usage of SSDs in Hadoop clusters has been a hot 
issue of discussion very recently. The most relevant work to ours is included in the 
following articles [11 ][12][17][21][24]. The first effort [12] to study the impact of SSDs on 
Hadoop was on a virtualized cluster (multiple Hadoop nodes on a single physical machine) 
and showed up to three times improved performance of SSDs versus HDDs. However, it 
remains unclear whether the conclusions still hold in non-virtualized environments. The 
work in [17] compared Hadoop performance on SSDs and HDDs on hardware with non-
uniform bandwidth and cost using the Terasort benchmark. The major finding is that SSDs 
can accelerate the shuffle phase of MapReduce. However, this work is confined by the 
very limited type of application/workload used to make the investigation and the 
intervention of data transfers across the network. Cloudera's employees in [11], using a set 
of same-rack-mounted machines (not reporting how many of them), focus on measuring 
the relative performance of SSDs and HDDs for equal-bandwidth storage media. The 
MapReduce jobs they used are either read-heavy (Teravalidate, Teraread, WordCount) or 
network-heavy (Teragen, HDFS data write), and the Terasort which is read/write/shuffle 
"neutral". Thus, neither the processing pattern is mixed nor the network effects are neutral. 
Their findings showed SSD has higher performance compared to HDD, but the benefits 
vary depending on the MapReduce job involved, which is exactly where the present study 
aims at. 

The analysis performed in [21] using Intel's HiBench benchmark [3][4] concluded that 
" . t h e performance of SSD and HDD is nearly the same", which contradicts all previously 
mentioned works. A study of both pure (only with HDDs or only with SSDs) and hybrid 
systems (combined SSDs and HDDs) is reported in [24] using a five node cluster and the 
HiBench benchmark. Differently from the present work, in that work, the authors 
investigated the impact of HDFS"s block size, memory buffers, and input data volume on 
execution time showing that when the input data set size and/or the block size increases, 
then the performance gap between a pure SSD system with a pure HDD system widens in 
favor of the SSD system. Moreover, for hybrid systems, the work showed that more SSDs 
result in better performance. These conclusions are again expected since voluminous data 
imply increased network usage among nodes. 

Earlier work [8][22] studied the impact of interconnection on Hadoop performance in SSDs 
identifying bandwidth as a potential bottleneck. The increase of bandwidth by using high-
performance interconnects benefits HDFS performance on both disk types, but especially 
SSDs. Both conclusions are expected since a lot of data transfer takes place among 
nodes in map-shuffle-reduce operations. 
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Finally, some works propose extensions to Hadoop with SSDs. For instance, [10] proposes 
extensions to enable clusters of reconfigurable active SSDs to process streaming data 
from SSDs using FPGAs. VENU [14] is a proposal for an extension to Hadoop that will use 
SSDs as a cache for the slower HDDs not for all data, but only for those that are expected 
to benefit from the use of SSDs. This work still leaves open the question about how to tell 
which applications are going to benefit from the performance characteristics of SSDs. 
Remotely related to our work is the discussion about the introduction of SSDs in database 
systems, e.g., [15]. 

Chapter 3 

Hadoop Structure 

Hadoop is a free framework, written in the Java programming language which allows the 
processing of large data sets in a distributed computing environment. 

HDFS and MapReduce (MR) are the two core components of Apache Hadoop. With latest 
versions of Hadoop (version 2.x) YARN (Yet Another Resource Negotiator) has been 
added. 

HDFS is Hadoop's distributed file system that provides high-throughput access to data, 
high-availability and fault tolerance. Data are saved as large blocks (default size 128MB) 
making it suitable for applications that have large data sets. It creates replicas of each 
block and distributes them among the nodes of the cluster. 

MapReduce is a software framework that allows to write applications. Submitting a 
MapReduce job usually splits the input file to several chunks (block sized) that are 
processed by map tasks at parallel. Due to block replication of HDFS tasks are scheduled 
to run on nodes where the required chunks of data already exist, minimizing unnecessary 
transfer of data. 

The key functions to be implemented are Map and Reduce. The MR framework functions 
exclusively on <key,value> pairs. Each map processes an input split (block) generating 
intermediate data of <key,value> format. Then they are sorted and partitioned by key so 
later at reduce phase, pairs of the same key will be aggregated to the same reducer for 
further processing. 

Here lays Hadoop's main advantage. Partitions from different nodes with the same key are 
transferred (shuffle phase) to a single node and then merged (sort phase) and get ready to 
be fed to the reduce task. 

Output of reduce task is of format <key,value> as well. 
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HOFS 

outpul 

Figure 1 Overview of Map/Reduce and Hadoop 

Chapter 4 

Investigated algorithms 

Complex network analysis comprises a large set of diverse tasks (algorithms for finding 
communities, centralities, network growth models, resilience to attacks, epidemics, etc.) 
that cannot be enumerated here, and whose particular form depends on the field of study 
(technology, biology, sociometry, medicine) and also on the particular application that the 
"human miner" is interested in. Apparently, not all these tasks accept distributed solutions 
(at least, efficient ones) in the form of MapReduce algorithms, but there is already a 
significant body of works that developed MapReduce algorithms for solving problems such 
as triangle enumeration [13], k-shell computation [20], k-means clustering [26], neural 
networks [26], etc. 
Therefore, among all these problems and their associated MapReduce solutions, we had 
to select some of them based on a) their usefulness in complex network analysis tasks, b) 
in their suitability to the MapReduce programming paradigm, c) the availability of their 
implementations (free/open code) for purposes of reproducibility of measurements, and d) 
complexity in terms of multiple rounds of map-reduce operations. Based on these criteria, 
we selected three problems/algorithms for running our experimentations. The first 
algorithm deals with a very simple problem which is at the same time a fundamental 
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operation in Facebook 1 , that of finding mutual friends. 
The second algorithm deals with a network-wide path-based analysis for finding connected 
components which finds applications in reachability queries, techniques for testing network 
robustness and resilience to attacks, epidemics, etc. The third algorithm is about counting 
triangles which is a fundamental operation for higher level tasks such as calculating the 
clustering coefficient, or executing community finding algorithms based on clique 
percolation concepts [19]. We wanted to have problems that deal with both the local and 
global structure of the network. Table 1 summarizes the "identity" of the examined tasks. 

Table 1 Characterization of problems/algorithms examined 

Primitive task Type of analysis Type of analysis 
Mutual friends Neighbor-based Local network (neighborhood) 

properties 
Recommendation queries 

Connected Components Path-based Large-scale network properties 
Reachability queries 
Resilience queries 

Triangle counting Mixed (extended 
neighborhood & paths) 

Large-scale network properties 
Clustering/communities finding 
queries 

We need to emphasize that it is not the purpose of our work to develop a benchmark suite 
of algorithms and input data for MapReduce, even though we clearly recognize this need 
and call for the development of a really generic and representative benchmark; current 
efforts in this topic (like the Hibench [3][4]) are in a rather infantile age and their tasks 
(wordCount, k-means clustering, Bayesian classification, PageRank, etc.) are mostly 
appropriate for information retrieval or basic, traditional data mining tasks. So, our 
benchmark includes representative (in the notion described above) MapReduce jobs to 
cover common IO and computer patterns expected to be seen in complex network 
analysis. We deferred a more advanced method for measuring the performance for multi¬
job workload such as the one described in [1], because the standalone, one-job-at-the-
time method allows for the examination of interaction between MapReduce and storage 
media without the interventions of job scheduling and task placement algorithms. 
We aim at showing that the conclusions about the relative performance of SSDs versus 
HDDs are strongly depended on the features of the algorithms examined, which has 
largely been neglected in earlier relative studies [11 ][12][17], and based on these features 
we draw some conclusions on the relative benefits of SSDs. For purposes of our work's 
self-completeness, we present in the following three sections the selected algorithms and 
a brief explanation of their operation. 

1 www.facebook.com 
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4.1 Mutual Friends 

A common feature of various social networks is providing information of the 
existence of mutual friends once visiting some other user's profile page. A simple algorithm 
was implemented for the calculation of mutual friends. The necessary condition is that this 
pair of users are already friends (connected) with each other. Pseudocode for the 
MapReduce algorithm is given in Algorithm 1. 
The basic idea behind the algorithm is for every user (i.e., node) and his friend-list (i.e., 
adjacency list) to create all possible triples consisting of: 

Algorithm 1 MapReduce pseudo-code for finding mutual friends. 

1st MR job - CalculateAdjacencyList: 

on map do: 
for each KV pair do: 

K<-source_node 
V<-destination_node 
context.write (K,V) 
context.write (V,K) 

on reduce do: 
for each K[V] pair do: 

ego_user<-get(k) 
for each v in V 

Add v to nodes_list 
Sort the nodes_list 
for each node_id in nodes_list 

append node_id to friendlist 
context.write (ego_user,friendlist) 

2nd MR job - Creating triples: 

on map do: 
for each KV pair do: 

K<-ego_user 
V<-friendlist 
for each friend in friendlist 

for each other_friend in friendlist 
if ego_user<friend then 
context.write (ego_user-
NULL) 
else 
context.write (friend-

ego_user:other_friend , NULL) 
on reduce do: 
for each KV pair do: 

if |V|==2 then 
context.write (triple,NULL) 

friend:other_friend 
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3rd MR job: 

for each K V pair do: 
pair_and_mutual=K.split(":") 

pair=pair_and_mutual(0) 
mutual=pair_and_mutual(1) 
context.write (pair,mutual) 

on reduce do: 

for each K V pair do: 
pair<-get(K) 
for each v in V 

v<-mutual 
mutuals_list.add(mutual) 

context.write (pair,mutuals_list) 

• the owner of the friend-list 
• a user of the friend-list who will make a pair with the owner and 
• another user of the friend-list who will be the candidate mutual friend 

The same work is performed for each and every user and his friend-list. Eventually, 
if two exact triples are spotted, then the candidate is classified as a mutual friend for the 
specified pair. For the implementation three MR jobs are required: 
1) Calculation of the adjacency list (friend-list). The input file is a graph containing all the 
ties among the nodes. Each node is a number unique for each user. All used social 
network datasets, were un-weighted, undirected graphs. Each line consists of a source 
node and destination node. Duplicate relationships aren't present in the original files. On 
the contrary, such supplementary information is necessary for the creation of adjacency 
lists, thus created by the Map function. Reduce function produces lines of every node and 
its adjacency list. 
2) Creation of all available triples according to the basic concept that was mentioned 
previously. The Mapper output creates all available triples as key. Value is set to NULL. At 
Reducer, for a specific Key aggregating two NULL values, confirms the existence of a 
mutual friend. 
3) Creation of the lists of mutual friends. At the Mapper, from each triple the pair is 
extracted as Key and their mutual as Value. The Reducer completes the creation of mutual 
friends list for every pair. 

4.2 Connected Components 

Another very useful and primitive process of complex network analysis is the 
detection of connected components i.e., clusters of nodes where every node of the cluster 
can eventually be accessed by any other node of the cluster following a path of arbitrary 
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number of hops. This task finds applications in reachability analysis, in epidemics, i.e., 
once isolated users or groups are found, the spread of a contagion can be stopped, etc. 

For this task, the implementation by Thomas Jungblut [7] of an iterative algorithm based on 
message passing technique is used (see Algorithm 2). 

At the first iteration, the algorithm maps every first element as key and its adjacency list in 
vertex form as a pointsTo tree. Also, it maps each edge of the tree in vertex form. At 
reduce, the algorithm marks all vertexes having a pointsTo tree as activated. It sets the 
smallest element of this list (comparing to the key as well), as vertex's minimal. Then, it 
writes key and vertex in context. At next iterations, map writes each key and vertex as it is. 
Also for every activated vertex, it loops through the pointsTo tree and writes a message 
(vertex with empty tree) with the (for this vertex) minimal vertex to every edge of the tree. 
At reduce, it merges messages with the related vertex and if a new minimum is found then 
activates the vertex. The updated counter gets incremented. Otherwise deactivates the 
vertex. Iterations continue till no vertex gets updated. 

Algorithm 2 MapReduce pseudo-code for finding connected components 

1st MR job 
ON MAP DO: 
for each line (adjacency list) 

realkey<-first edge of adjacency list 
vertex<-al l other edges sor ted, plus min imal 
context.wri te (realkey, vertex) 

for all edges in vertex 
context.wri te (edge, new empty vertex with edge as minimal) 

end map 

ON REDUCE DO: 
for each K V pair do: 

if V is not message then 
realVertex<-edges of V 
activate realVertex 
increment UPDATED counter 
context.write(key, realVertex) 

end reduce 
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2 n d MR job 
on map do: 

for each K V pair do: 
context.write (K,V) 
if V is act ivated then 

for all edges in V 
if edge != minimal of V 

newVertex<-nul l edges 
newVertex<-minimal of V 
context.wri te (edge, newVertex) 

end map 

on reduce do: 
for each K [V ] pair do: 

if v in Vis not message then 
realVertex<-v 

else 
track newMinimal among messages v in V 

if realVertex.minimal > newMinimal then 
update realVertex with the lower newMinimal 
activate the realVertex 
increment UPDATED counter 

else 
deact ivate the realVertex 

context.write(key, realVertex) 
end reduce 

4.3 Counting Triangles 

Counting the number of triangles in a graph is a fundamental problem with various 
applications especially in social network analysis. For example, the clustering coefficient is 
frequently quoted as an important index for measuring the concentration of clusters in 
graphs respectively its tendency to decompose into communities. We used the 
implementation by Walkauskas [6] (pseudo-code in Figure 4) which includes three 
MapReduce jobs: 

• A triangle exists when a vertex has two adjacent vertexes that are also adjacent to 
each other. The first job constructs all of the triads in the graph. A triad is formed by 
a pair of edges sharing a vertex, called its apex. Original edges are written, as well. 
The above are written as keys with the value of 1 or 0 respectively to distinguish 
triads from original edges. 

• The second MR Job maps previous input line. And reducer aggregates the triads 
with the edges for a specific triple. In order for a triangle to exist there should be at 
least one candidate triad and the edge connecting the apex. The reducer eventually 
writes sum to context as "0, sum". 

• The third MR Job aggregates the number of triangles that was found from previous 
job for all chunks. 
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Algorithm 3 MapReduce pseudo-code for triangle counting. 

1st MR job - Tr iadConstruct ion: 
on map do: 
for each KV pair do: 

if K < V wri te to context 

on reduce do: 
for each K[V] pair do: 

for each v in V 
save v in Array 
context.wri te (Kv, "zero") 

Sort the Array 
for each v of sorted Array 

for each v' fol lowing v in the Array 
context.wri te (vv', "one") 

2nd MR job - Tr iadConstruct ion: 
on map do: 
for each K V pair do: 

K<-source_node 
V<-dest inat ion_node 
context.wri te (K,V) 

on reduce do: 
for each K[V] pair do: 

sum all v values in V 
compare the sum to the #v in V 
if not equal 
increase #tr iangles found by sum 
context.wri te(zero, count) 

3rd MR job - AggregateTr iangles: 
on map do: 
for each K V pair do: 

K<-source_node 
V<-dest inat ion_node 
context.wri te (K,V) 

on reduce do: 
for each K[V] pair (only one pair wi th "zero" key) do: 

sum all v in V 
context.wri te (sum, null) 
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Chapter 5 

Performance evaluation 

For the evaluation of the two disk types a sample of real data was required. Recall 
that earlier efforts e.g., [17] used dummy data files that were read and some primitive 
statistics were written out. Social networks are a representative sub-genre of complex 
networks. Thus up to ten real social network graphs were used (Table 2). They were 
retrieved from https://snap.stanford.edu/ and http://konect.uni-koblenz.de/. The number of 
nodes and edges vary from a few thousands to a few millions. Thus, we used networks 
that vary up to two orders of magnitude in their size (number of nodes and/or edges). 

Table 2 Social Networks used for evaluation 

# Social Network Name Num of Nodes Num of Edges 

1 Brightkite location based 
online Social Network 

58,228 214,078 

2 
Gowalla location based 
online Social Network 

196,591 950,327 

3 Amazon product co-
purchasing network 

334,863 925,872 

4 DBLP collaboration 
network 

317,08 1,049,866 

5 YouTube online Social 
Network 

1,134,890 2,987,624 

6 YouTube (ver. 2) online 
Social Network 

3,223,589 9,375,374 

7 Flickr 1,715,255 15,550,782 

8 LiveJournal online Social 
Network 

3,997,962 34,681,189 

9 
LiveJournal (ver. 2) 
online Social Network 

5,204,176 49,174,620 

10 Orkut online Social 
Network 

3,072,441 117,185,083 

The evaluation will take place along two dimensions. The first one is similar to that in [17] 
using TestDFSIO and the second one is the complex network analysis-oriented that is the 
focus of this article. We have performed up to five experiments for each of the "Mutual 
Friends" and "Counting Triangles" algorithms and up to ten experiments for the 
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"Connected Components", one for each dataset shown at Table 2. The latter algorithm 
acquired less disk space during execution allowing us to evaluate it with larger datasets. 
The two SSDs were of different size disallowing the execution of some datasets. The most 
important measures we captured were the Map and Reduce execution times, as also Sort 
(merge) and Shuffle phase. The aforementioned measures would indicate practical 
performance differentiations between the two disk types. One common side effect is 
"cache hits" from previous executions that was also experienced in [17]. In order to give 
each experiment an equal environment to eliminate any possible interaction effects from 
previous executions, Hadoop was halted and page cache was flushed, after each 
experiment. Before each test HDFS was re-formatted. 

5.1 The Testing environment 

A commodity computer (Table 3) was used for the experiments. Three storage 
media were used (Table 3) with capacities similar to that used in [17]. CPU and disks were 
similar to the ones used in [12]. On each of the three drives (one HDD and two SSDs) a 
separate and identical installation of the latest version of required software (Table 3) was 
used. We emphasize at this point that since we need to factor out the network effects, we 
used single machine installations. Three different incremental setting setups were used: a) 
with default settings, allowing 6 parallel maps, b) with modified containers allowing 3 
parallel maps, and c) with custom settings (Table 5). In all these setups, speculative 
execution was disabled and no early shuffling was permitted. 

Table 3 System specifications 

Hardware Software 

CPU: Intel i5 4670 3.4Ghz (non HT) OS: 
Ubuntu 14.04 LTS 
64bit 

RAM: 
8gb 1600mhz DDR3 (1333mhz 
with disabled XMP) 

Java SDK: 
Oracle Java 1.8.0_25 
(8u25) 

Disk 1 (HDD): 
Western Digital Blue 
WD10EZEX 1TB 

Hadoop 
Installation: 

Hadoop 2.5.2 (pre-
built 32-bit i386-Linux 
native Hadoop library) 

Disk 2 (SSD1): Samsung 840 Evo 120GB 
Monitoring 
tools: 

Collectl V3.6.9-1 

Disk 3 (SSD2): Crucial MX100 512GB 

Power saving options and boosting technologies like Turbo-boost and IEST were 
disabled through BIOS to minimize unexpected fluctuations among executions (Table 4). 
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Table 4 Disabled BIOS settings 

Disable Settings Description 

Turbo boost Increases core's frequency at high workloads taking 
in consideration parameters like temperature 

Enhanced Halt (C1E) Power saving feature when system is idle 

C3 State Power saving state enabled during sleep mode 

C 6/7 State They Offer reduced idle power consumption 
EIST (Enhanced Intel 
Speed Step Technology) 

Allows the system to dynamically adjust processor 
voltage and core frequency 

Intel Extreme Memory 
Profile (XMP) 

Allows over-clocking compatible DDR3/DDR4 
memory to perform beyond standard specifications 

Hadoop was installed in pseudo-distributed mode where each Hadoop daemon runs as a 
separate Java process. Default settings were preserved. 

Table 5 Custom Hadoop settings 

mapreduce.reduce.shuffle.parallel.copies 5->50 
mapreduce.task.io.sort.factor 10->100 
mapreduce.map.sort.spill.percent 0.80->0.90 
io.file.buffer.size 4kb->64kb 

Chapter 6 

Experimental results 

In this section we provide the obtained results for each one of the three algorithms 
presented earlier, starting with standard TestDFSIO results. 

6.1 TestDFSIO 

We begin with the HDFS throughput measurement. Test Distributed File System 
(TestDFSIO) is an industry-standard benchmark which distributes map tasks that 
read/write complete dummy files on nodes; each map task reads the complete file and 
writes some statistics. Reduce tasks simply gather these statistics for output. For writing 
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sequential files, with the increase of file size, SSD1"s performance is decreasing, falling 
behind the HDD. Contrariwise, the SSD2 appears much faster (Figure 2) with stable 
throughput. 

Figure 2 Comparing TestDFSIO write throughput for 3 disks. 

As expected, both SSDs' sequential read throughput is outstanding. The magnetic 
disk again demonstrates stable performance, although noticeably slower than that of the 
SSDs (Figure 3). 
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6.2 Mutual Friends 

The complexity of this algorithm is exponential due to the mapper of the 2nd MapReduce 
job ("creating triples" - as described at 4.1) where for each user and his friend-list every 
possible triple is formed (double "for" used). Thus, the 2nd MapReduce job is the most 
resource-intensive of the three jobs, rendering it a good inspection point for our measures 
(see Table 6), whereas the 1st and 3rd MapReduce jobs were fast-executed and almost 
identical for all disks. For Amazon, Brightkite and DBLP, the three disks performed almost 
equally. Remarkably, in comparison with both SSD drives, the magnetic disk gives 
competitive execution times for reduce phase, for bigger datasets, where HDD performs 
lower for map phase. The SSD2 displays superior performance at shuffling. 
Times for the 1 s t M-R job "Creating the adjacency" and the 3 r d M-R job "Calculating the 
mutual friends" were quite low and almost identical between SSDs and HDD. 

Table 6 Average times for each phase for 2nd job (creating triples) of "mutual friends" algorithm using default 
settings 

Defaults: Triples 12 n d Job ! 
Avg Map Avg Shuffle Avg Merge Avg Reduce 

HDD SSD1 SSD2 HDD SSD1 SSD2 HDD SSD1 SSD2 HDD SSD1 SSD2 
Bright kite 52 52 52 1 1 1 0 0 0 11 10 10 
Amazon 38 35 35 2 1 1 0 0 0 8 7 8 
Gowalla 1780 1752 1593 120 103 42 0 0 0 178 195 194 
• BLP 90 89 89 5 2 3 0 0 0 18 17 17 
YouTube 11197 9708 812 - 0 0 918 984 

Modifying container's size doesn't affect the performance in general, comparing to 
defaults, for the mutual friends' algorithm. 

Table 7 Average times for each phase for 2nd job (creating triples) of "mutual friends" algorithm using 
modified containers settings 

Containers: Triples ( 2 n d Job* 
Avg Map Avg Shuffle Avg Merge Avg Reduce 

HDD SSD1 SSD2 HDD SSD1 SSD2 HDD SSD1 SSD2 HDD SSD1 SSD2 
Bright kite 52 52 52 2 1 1 0 0 0 11 10 10 
Amazon 38 35 35 1 1 1 0 0 0 8 8 7 
Gowalla 1774 1741 1819 121 120 42 0 0 0 181 205 199 
DBLP 89 88 88 4 2 2 0 0 0 17 17 17 
YouTube 11285 9583 838 - 258 0 0 988 

Using custom settings decreases map times for big datasets. HDD for YouTube gets 
increased performance for shuffle and reduce, whereas SSD2 gets same performance or 
even worst at reduce phase. 
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Table 8 Average times for each phase for 2nd job (creating triples) of "mutual friends" algorithm using custom 
settings 

Customs: Triples (2 Job) 
Avg Map Avg Shuffle Avg Merge Avg Reduce 

HDD SSD1 SSD2 HDD SSD1 SSD2 HDD SSD1 SSD2 HDD SSD1 SSD2 
Bright kite 52 51 51 1 1 1 0 0 0 10 10 10 
Amazon 36 35 38 1 1 1 0 0 0 8 8 7 
Gowalla 1423 1395 1341 109 85 43 0 0 0 195 193 198 
• BLP 80 79 79 3 2 2 0 0 0 17 17 17 
YouTube 8320 7779 899 - 258 0 0 884 1029 

6.3 Counting Triangles 

Here, the SSDs outperform the HDD for all the datasets that were tested. At "forming the 
triads" job, HDD appeared competitive behavior at reduce phase (Table 10). The "counting 
the triangles" job demonstrated greater variations in execution times. With small datasets 
the performance differentiations between the two disk types are small (Table 9). But with 
larger ones (like YouTube dataset), SSDs capabilities become evident for shuffle and 
merge (sort) phases. 

Table 9 Average times for each phase for 2nd job (calculate triangles) of "counting triangles" algorithm, using 
default settings 

A) Defaults: Triangles |2 n d ) job 
Avg Map Avg Shuffle Avg Merge Avg Reduce 

HDD SSD1 SSD2 HDD SSD1 SSD2 HDD SSD1 SSD2 HDD SSD1 SSD2 
Bright kite 18 18 18 1 1 1 0 0 0 4 4 3 
Amazon 9 9 9 1 1 1 0 0 0 2 2 2 
Gowalla 38 39 38 52 82 21 79 88 70 106 106 110 
DBLP 14 14 14 1 1 1 0 0 0 7 5 5 
YouTube 42 41 855 141 820 888 889 551 

For the 1st MR job (creating triads), map, shuffle and merge phases finished quite fast and 
with almost zero differentiations among disks. Reduce phase lasted significantly longer 
with both disks performing equally (Table 9). With containers settings, the biggest dataset 
of Flickr gets significant improvement for both disk types (Table 10). No further 
improvement achieved with custom settings. 
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Table 10 Average times for each phase for 1st job (create triads) of "counting triangles" algorithm, using 
default settings. 

Defaults: Triads [1 5 t l job 
Avg Map Avg Shuffle Avg Merge Avg Reduce 

HDD SSD2 HDD SSD2 HDD SSD2 HDD SSD2 
Gowalla 
YouTube 
Flickr 

2 2 
6 6 
13 13 

1 1 0 0 
0 0 
0 0 

142 140 
706 694 

5053 5125 

Table 11 Average times for each phase for 1st job (create triads) of "counting triangles" algorithm, using 
modified containers. 

Containers: Triads (1 s t} job 
Avg Map Avg Shuffle Avg Merge Avg Reduce 

HDD SSD2 HDD SSD2 HDD SSD2 HDD SSD2 
Gowalla 2 2 1 1 0 0 141 138 
YouTube 6 6 1 1 1 1 (=97 707 
Flickr 13 13 1 1 6 6 4163 4140 

Comparing containers settings (Table 11) to customs (Table 12) for the 2 n d job increased 
performance can be noticed, especially for the magnetic disk. For YouTube at shuffling, 
only the HDD gets improved times. Both disks get improvement at reduce times. 
Especially at merge, using custom settings minimizes the sorting times for both disks, 
favoring mostly the HDD, whose times are much higher than SSD2 with just modified 
containers settings. 

Table 12 Average times for each phase for 2nd job (calculate triangles) of "counting triangles" algorithm, 
using modified containers settings 

B) Containers: Triangles (2 n d ) job 
Avg Map 

HDD SSD1 SSD2 
Avg Shuffle 

HDD SSD1 SSD2 
Avg Merge 

HDD SSD1 SSD2 
Avg Reduce 

HDD SSD1 SSD2 
Bright kite 
Amazon 
Gowalla 
DBLP 
YouTube 

18 18 18 
10 9 9 
24 24 23 
14 14 14 
25 - 25 

1 1 1 
1 1 1 

73 84 69 
1 1 1 

565 - 359 

3 3 3 
I 1 1 

I I 14 
5 5 5 

596 - 339 

3 3 3 
2 1 2 

100 96 95 
4 4 4 

720 - 538 

Table 13 Average times for each phase for 2nd job (calculate triangles) of "counting triangles" algorithm, 
using custom settings. 
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C} Customs: Tr iangles j Z n d ) job 
Avg Map 

HDD SSD1 SSD2 
Avg Shuffle 

HDD SSD1 SSD2 
Avg Merge 

HDD SSD1 SSD2 
Avg Reduce 

HDD SSD1 SSD2 
Avg Map 

HDD SSD1 SSD2 
Avg Shuffle 

HDD SSD1 SSD2 
Avg Merge 

HDD SSD1 SSD2 
Avg Reduce 

HDD SSD1 SSD2 
Bright kite 
Amazon 
Gowalla 
DBLP 
YouTube 

18 18 18 
10 10 9 
24 24 24 
14 14 14 
28 - 25 

1 1 1 
1 1 1 

87 71 65 
1 1 1 

402 - 351 

3 3 3 
1 1 1 

14 15 
5 5 5 
14 - 16 

3 3 3 
2 2 1 

104 9c 96 
4 4 4 

838 - 482 

6.4 Connected Components 

Comparing SSD1 to the HDD, the Connected Components algorithm seems to 
slightly favor the SSD1 for small datasets (first five ones), at reduce phase. Map, shuffle 
and phase times are close for both disk types. For the datasets of Flickr and LiveJournal 
the magnetic disk takes the lead at reduce phase which is mostly characterized as "write" 
procedure for the Hadoop framework. Surprisingly, SSD1 performs quite slowly at shuffle 
phase for the LiveJournal dataset. The SSD2 generally delivers great performance 
especially at map and shuffle phase, noticeably as the datasets" size increase. For the 
reduce phase HDD falls behind SSD2, but not with a great margin. 

Table 14 Sum of average times for each phase for the iterative Jobs of "Connected Components" 

Avg Map Avg Shuffle Avg Merge Avg Reduce 
HDD SSD1 SSD2 HDD SSD1 SSD2 HDD SSD1 SSD2 HDD SSD1 SSD2 

Bright kite 14 14 14 11 11 11 0 0 0 0 0 0 
Amazon 104 106 103 34 34 34 0 0 0 74 61 62 
Gowalla 27 26 26 10 10 10 0 0 0 14 14 16 
DBLP 54 54 54 15 15 15 0 0 0 35 34 33 
YouTube 126 124 123 14 14 14 0 0 0 101 96 98 
YouTube 2 247 242 244 28 24 24 0 0 0 428 424 408 
Flickr 170 168 167 30 19 20 0 0 0 309 314 304 
LiveJournal 353 380 322 104 143 45 1 0 0 666 682 651 
LiveJournal 2 417 347 137 57 0 0 930 912 
Orkut 456 552 295 1448 1204 

Similarly, to the "Counting Triangles" algorithm, using custom settings minimizes merge 
time for both disks with big datasets, improving at the same time the shuffling of the 
magnetic disk. The SSD2 already performs great and gets no further improvement. 

Table 15 Sum of average times for each phase for the iterative Jobs of "Connected Components", containers 
settings 
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Avg Map 
HDD SSD1 SSD2 

Avg Shuffle 
HDD SSD1 SSD2 

Avg Merge 
HDD SSD1 SSD2 

Avg Reduce 
HDD SSD1 SSD2 

LiveJournal 
LiveJournal 2 
Orkut 

Avg Map 
HDD SSD1 SSD2 

Avg Shuffle 
HDD SSD1 SSD2 

Avg Merge 
HDD SSD1 SSD2 

Avg Reduce 
HDD SSD1 SSD2 

LiveJournal 
LiveJournal 2 
Orkut 

230 234 
231 - 211 
239 

72 84 
106 
567 

48 53 39 
63 - 49 

262 

629 636 
940 
1464 -

Table 16 Sum of average times for each phase for the iterative Jobs of "Connected Components", custom 
settings 

Avg Map 
HDD SSD1 SSD2 

Avg Shuffle 
HDD SSD1 SSD2 

Avg Merge 
HDD SSD1 SSD2 

Avg Reduce 
HDD SSD1 SSD2 

Avg Map 
HDD SSD1 SSD2 

Avg Shuffle 
HDD SSD1 SSD2 

Avg Merge 
HDD SSD1 SSD2 

Avg Reduce 
HDD SSD1 SSD2 

LiveJournal 
LiveJournal 2 
Orkut 

232 232 
234 - 212 
246 

63 74 
104 - 48 
492 

43 48 
60 - 47 
16 - 7 

617 656 
955 
1483 

Hadoop's default settings allowed the execution of up to 6 maps simultaneously. Thus the 
execution of Orkut dataset (input file of 14 blocks at HDFS) was executed in three waves 
of maps. The map phase is CPU intensive hitting 100% utilization. High disk throughput is 
required as well, with the disk constituting system's bottleneck causing high CPU wait 
times especially for HDD (Figure 4), where during map phase CPU utilization falls between 
map waves. Consequently, using SSD2 provides better CPU utilization. Excessive disk 
usage appears at shuffle phase demonstrating each disk's capabilities (Figure 5-Figure 7). 
At reduce, SSD2 performs slightly better. 

Figure 4 CPU utilization for Connected Components algorithm with Orkut, using HDD, 1st Iteration, default 
settings 

01:01:00 01:02:00 01:03:00 01:04:00 01:05:00 01:06:00 01:07:00 01:08:00 01:09:00 01:10:00 

Figure 5 Disk Usage for Connected Components algorithm with Orkut, using HDD, 1st 1teration, default 
settings 
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Figure 6 CPU utilization for Connected Components algorithm with Orkut, using SSD2, 1st 1teration, default 
settings 

22:49:00 22:50:00 22:51:00 22:52:00 22 : 5 3 : 0 0 22:54:00 22:55:00 

Figure 7 Disk Usage for Connected Components algorithm with Orkut, using SSD2, 1st 1teration, default 
settings 

Using custom settings decreased times for both disk types (Table 17), especially for the 
magnetic disk, with improved CPU wait times (fig. 8). 

Table 17 Execution times for 1st iteration of Connected components algorithm, at Orkut, 
using default and custom settings. 

Defaults Customs 
Elapsed Avg Map Shuffle Merge Reduce Avg Map Shuffle Merge Reduce 

HDD 
10mins, 
15sec 95 89 36 220 

8mins, 38sec ( -1min, 
37sec) 43 75 1 212 

SSD2 7mins, 2sec 60 27 34 184 6mins, 56sec (-6 sec) 37 30 1 181 

22:06:00 22:07:00 22:08:00 22:09:00 22:10:00 22:11:00 22:12:00 22:13:00 22:14:00 

Figure 8 CPU utilization for Connected Components algorithm with Orkut, using HDD, 1st 1teration, custom 
settings 
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t customs-cc-orkut-mario3-HDD T20150430.,tab.qz: DiskMB. | , , , , ι „ c n 

Γ 2 b u ReadMB 
WriteMB 

22:06 :00 22 :07 :00 22 :08 :00 22 :09 :00 22 :10 :00 2 2 : 1 1 : 0 0 22 :12 :00 2 2 : 1 3 : 0 0 22 :14 :00 

Figure 9 Disk Usage for Connected Components algorithm with Orkut, using HDD, 1st 1teration, custom 
settings 

23:24:00 23:25:00 23:26:00 23:27:00 23:28:00 23:29:00 23:30:00 

Figure 10 CPU utilization for Connected Components algorithm with Orkut, using SSD2, 1st 1teration, 
custom settings 

customs— c c - o r k u t — m a r i o s - 5 5 D 2 - 2 0 L50504 • t a b • ga: DigkMB ι ι ..- n 

Γ l b a ReadMB 

23:24:00 23:25:00 23:26:00 23:27:00 23:28:00 23:29:00 23:30:00 

Figure 11 Disk Usage for Connected Components algorithm with Orkut, using SSD2, 1st 1teration, custom 
settings 

6.5 Optimization settings 

Hadoop contains a large number of configuration settings [27] that affect system's 
performance. 
We tested a variety of optimizations with the magnetic disk's performance getting 
significant improvement. 
Not all the settings triggered noticeable improvement. 
Generally, increasing the number of streams to merge at once while sorting files -
mapreduce.task.io.sort.factor - from 10 to 100 minimizes the merge (sort) time, favoring 
mostly the magnetic disk. 
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Increasing the size of buffer for use in sequence files - io.file.buffer.size - from 4kb to 
128kb gives a general boost at HDD performance, besides map phase. Further increase of 
the above setting causes worst performance. The SSD's performance remains unaffected 
by changing the file buffer's size. 

To optimize performance, increasing the following settings provided best results for the 
magnetic disk, compared to "containers" settings: 

a) The number of streams to merge at once while sorting files. Minimizes merge time for 
both disk types. Improves HDD shuffling time as well. 

Table 18 Performance difference for YouTube dataset at "Counting Triangles", increasing sort factor, for HDD 

just containers and io.sort.factor 10->100 
Elapsed Avg Map Avg Shuffle Avg Merge Avg Reduce 
40mins. 28sec 25 471[-94) 14(-582) 667(-53) 

Table 19 Performance difference for YouTube dataset at "Counting Triangles", increasing sort factor, for 
SSD2 

just containers and io.so rt.f actor 10->100 
35mins, 15sec 25 371(+12) 16(-323; 497 [-41; 

b) The buffer size for I/O (read/write) operations. 

Table 20 Performance difference for YouTube dataset at "Counting Triangles", increasing file buffer size, for 
HDD 

just containers and io.fi le.buffer.size 4kb->128kb 
46mins, 44sec (-Smins. 59sec) 25 445[-120) 470(-12E) 619( ) 

On the other hand, increasing the buffer size for I/O operations had minimal effect on 
SSD2 performance. 

Table 21 Performance difference for YouTube dataset at "Counting Triangles", increasing file buffer size, for 
SSD2 

just containers and io.fi le.huffer.size 4kb->128kb 
41mins, 9sec i-1 sec) 24 381 (-2) 331 554 (-18) 

Table 22 Percentage difference between "customs" and "containers settings for YouTube dataset, at 
"Counting Triangles" algorithm 

"Customs" Difference to "Containers" 
map shuffle merge reduce 

HDD 4.00% -28.85% -97.85% -1139% 
SSD2 0.00% -2.23% -95.28% -10.41% 
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Table 23 Percentage difference between "customs" and "containers settings for YouTube dataset, at "Mutual 
Friends" algorithm 

'Customs" difference to "Containers" 
map shuffle 

HDD 
S3D2 

merge 
-25 14% 
-18.33% 

-15 59% 
0.73% 

reduce 
-9.72% 
4.36% 

Chapter 7 

Conclusions 

Hadoop platform is used for the processing of big data, especially to run analytics that is 
computationally intensive, such as social network analysis. Some tasks can be solved with 
a single or more consecutive and distinct jobs whereas others require iterative ones. Due 
to the SSD"s provided substantial benefits over traditional hard disk drives, Hadoop 
administrators have started considering the addition or even replacement of the existing 
HDDs with SSDs. Yet, Hadoop's internal design - especially HDFS - doesn't appear to 
fully harness the potential of solid state drives. 

We compared the performance of solid state drives and hard disk drives for social network 
analysis. Three casual complex network analysis algorithms were used leaving space for 
the implementation and testing of many others, for even larger data sets. 

A potential upgrade should be considered based on the tested applications' performance. 
In our tests SSDs didn't come out as the undisputed winner. There were noticed great 
performance fluctuations between the two SSDs. The second SSD performed significantly 
better. Otherwise, in many cases SSD1 and the magnetic disk came into a draw. Although 
SSD1 was slightly faster in many tests, in some cases the magnetic disk outperformed the 
SSD1. Even comparing to the faster SSD2, the magnetic disk provided competitive times 
for reduce phase, especially with the "mutual friends" algorithm, where it performed 
marginally better. 

Customizing Hadoop settings proves crucial. Magnetic disk's shuffle times can be reduced. 
SSD"s performance doesn't present further improvement. Nevertheless, HDD can't catch 
up with SSD"s superior performance at shuffling. With tweaking merge-sort can be 
performed in less steps minimizing merge's phase times for both disk types, slightly 
favoring magnetic disk that would perform slower otherwise. For map phase both disk 
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types can get similar performance improvement. 

Overall, having no clear storage media winner, the paper suggests that the development of 
"application profilers" that will try to predict the applications" read/write pattern 
(random/sequential) and then incorporation of them into the Hadoop architecture will help 
reap the performance benefits of any current or new storage media. 
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