
UNIVERSITY OF THESSALY
DEPARTMENT OF ELECTRICAL

AND COMPUTER ENGINEERING

Μεταπτυχιακό Πρόγραμμα Σπουδών

Επιστήμη και Τεχνολογία των Υπολογιστών Τηλεπικοινωνιών και
Δικτύων

«Hadoop-MapReduce performance on S S D for Complex Network
anarysis»

«Επίδοση του Hadoop MapReduce σε Δίσκους Στερεάς Κατάστασης για

Ανάλυση Σύνθετων Δικτύων»

Μεταπτυχιακή εργασία

Μάριος Μπακρατσάς
Επιβλέποντες Καθηγητές:

Κατσαρός Δημήτριος
Μποζάνης Παναγιώτης

Τσομπανοπούλου Παναγιώτα Βόλος, Σεπτέμβριος 2015

Institutional Repository - Library & Information Centre - University of Thessaly
08/06/2024 04:58:29 EEST - 3.133.122.126

Ευχαριστίες

Με την περάτωση αυτής της μεταπτυχιακής εργασίας θα ήθελα να ευχαριστήσω τους
επιβλέποντες καθηγητές της εργασίας για την υποστήριξη που μου προσφέρανε κατά τη
διάρκεια της φοίτησής μου, αλλά και κατά την εκπόνηση της διπλωματικής μου εργασίας.
Και ειδικά τον κ. Κατσαρό, πρωτίστως για την ευκαιρία που μου έδωσε να εντρυφήσω στο
συγκεκριμένο θέμα, καθώς επίσης και για τις χρήσιμες συμβουλές και υποδείξεις του.

Τέλος, ευχαριστώ θερμά την οικογένειά μου για την αμέριστη συμπαράσταση που μου
παρείχε όλα αυτά τα χρόνια για την ολοκλήρωση των σπουδών μου.

2

Institutional Repository - Library & Information Centre - University of Thessaly
08/06/2024 04:58:29 EEST - 3.133.122.126

Περίληψη

Η έλευση των Δίσκων Στερεάς Κατάστασης (SSDs) προκάλεσε μεγάλο ενδιαφέρον για
έρευνα και αξιοποίηση στο μέγιστο δυνατό βαθμό των δυνατοτήτων του νέου δίσκου. Η
παρούσα εργασία επικεντρώνεται στη μελέτη της σχετικής επίδοσης και των οφελών των
SSDs έναντι των μαγνητικών δίσκων (HDDs) όταν χρησιμοποιούνται ως αποθηκευτικά
μέσα για το Hadoop MapReduce. Ειδικότερα, με αφετηρία τις προηγούμενες σχετικές
εργασίες, εξετάζουμε τις MapReduce διεργασίες και δεδομένα κατάλληλα για εκτέλεση
ανάλυσης σε σύνθετα δίκτυα, που παρουσιάζουν διαφορετικά πρότυπα εκτέλεσης. Παρά
την πληθώρα των αλγορίθμων και εφαρμογών για ανάλυση σύνθετων δικτύων, εμείς
επιλέξαμε προσεκτικά τις μεθόδους αξιολόγησης επιδόσεών μας, έτσι ώστε να
περιλαμβάνουν μεθόδους που εκτελούν ταυτόχρονα και τοπικές και σε επίπεδο δικτύου
εργασίες σε ένα σύνθετο δίκτυο, και επίσης είναι αρκετά γενικές, με την έννοια ότι μπορούν
να χρησιμοποιηθούν ως αρχέτυπα για πιο εξελιγμένες εφαρμογές επεξεργασίας του
δικτύου. Αξιολογήσαμε την απόδοση των SSDs και HDDs εκτελώντας αυτούς τους
αλγορίθμους σε πραγματικά δεδομένα κοινωνικών δικτύων εξαιρουμένων των επιπτώσεων
του εύρους ζώνης του δικτύου που μπορεί δραματικά να αλλοιώσει τα αποτελέσματα. Τα
ληφθέντα αποτελέσματα επιβεβαίωσαν εν μέρει παλαιότερες μελέτες που έδειξαν ότι οι SSD
είναι επωφελείς για Hadoop. Ωστόσο, δόθηκαν σοβαρές αποδείξεις για τον σημαντικό ρόλο
του μοντέλου επεξεργασίας στην εφαρμογή που εκτελείται, και ως εκ τούτου μελλοντικές
μελέτες δεν πρέπει να προσθέσουν τυφλά SSDs στο Hadoop, αλλά θα πρέπει να
δημιουργήσουν συστατικά για να εκτιμηθεί το είδος του μοτίβου επεξεργασίας της
εφαρμογής και στη συνέχεια να κατευθύνουν τα δεδομένα στο κατάλληλο μέσο
αποθήκευσης.

3

Institutional Repository - Library & Information Centre - University of Thessaly
08/06/2024 04:58:29 EEST - 3.133.122.126

Abstract

The advent of Solid State Drives (SSDs) stimulated a lot of research to investigate and
exploit to the extent possible the potentials of the new drive. The focus of this work is on
the investigation of the relative performance and benefits of SSDs versus hard disk drives
(HDDs) when they are used as underlying storage for Hadoop's MapReduce. In particular,
we depart from all earlier relevant works in that we do not use their workloads, but
examine MapReduce tasks and data suitable for performing analysis of complex networks
which present different execution patterns. Despite the plethora of algorithms and
implementations for complex network analysis, we carefully selected our "benchmarking
methods" so that they include methods that perform both local and network-wide
operations in a complex network, and also they are generic enough in the sense that they
can be used as primitives for more sophisticated network processing applications. We
evaluated the performance of SSDs and HDDs by executing these algorithms on real
social network data and excluding the effects of network bandwidth which can severely
bias the results. The obtained results confirmed in part earlier studies which showed that
SSDs are beneficial to Hadoop. However, we also provided solid evidence that the
processing pattern of the running application has a significant role, and thus future studies
must not blindly add SSDs to Hadoop, but they should build components for assessing the
type of processing pattern of the application and then direct the data to the appropriate
storage medium.

4

Institutional Repository - Library & Information Centre - University of Thessaly
08/06/2024 04:58:29 EEST - 3.133.122.126

Contents

1 Introduction 9

1.1 Contributions 10

2 Related Work 11

3 Hadoop Structure 12

4 Investigated algorithms 13

4.1 Mutual Friends 15

4.2 Connected Components 16

4.3 Counting Triangles 17

5 Performance evaluation 20

5.1 The Testing environment 21

6 Experimental results 22

6.1 TestDFSIO 22

6.2 Mutual Friends 24

6.3 Counting Triangles 25

6.4 Connected Components 27

6.5 Optimization settings 30

7 Conclusions 32

8 References 33

5

Institutional Repository - Library & Information Centre - University of Thessaly
08/06/2024 04:58:29 EEST - 3.133.122.126

Figure List

Figure 1 Overview of Map/Reduce and Hadoop 13

Figure 2 Comparing TestDFSIO write throughput for 3 disks 23

Figure 3 Comparing TestDFSIO read throughput for 3 disks 23

Figure 4 CPU utilization for Connected Components algorithm with Orkut, using HDD, 1 s t

1teration, default settings 28

Figure 5 Disk Usage for Connected Components algorithm with Orkut, using HDD, 1 s t

1teration, default settings 28

Figure 6 CPU utilization for Connected Components algorithm with Orkut, using SSD2, 1st

1teration, default settings 29

Figure 7 Disk Usage for Connected Components algorithm with Orkut, using SSD2, 1st

1teration, default settings 29

Figure 8 CPU utilization for Connected Components algorithm with Orkut, using HDD, 1 s t

1teration, custom settings 29

Figure 9 Disk Usage for Connected Components algorithm with Orkut, using HDD, 1st

1teration, custom settings 30

Figure 10 CPU utilization for Connected Components algorithm with Orkut, using SSD2,

1st 1teration, custom settings 30

Figure 11 Disk Usage for Connected Components algorithm with Orkut, using SSD2, 1st

1teration, custom settings 30

List of Algorithms

Algorithm 1 MapReduce pseudo-code for finding mutual friends 15

Algorithm 2 MapReduce pseudo-code for finding connected components 17

Algorithm 3 MapReduce pseudo-code for triangle counting 19

List of Tables

Table 1 Characterization of problems/algorithms examined 14

Table 2 Social Networks used for evaluation 20

6

Institutional Repository - Library & Information Centre - University of Thessaly
08/06/2024 04:58:29 EEST - 3.133.122.126

file:///C:/Users/nebul/Desktop/diplwmatikh.doc%23_Toc432905229
file:///C:/Users/nebul/Desktop/diplwmatikh.doc%23_Toc432905230
diplwmatikh-22.doc%23_Toc429420640
diplwmatikh-22.doc%23_Toc429420641
diplwmatikh-22.doc%23_Toc429420642

Table 3 System specifications 21

Table 4 Disabled BIOS settings 22

Table 5 Custom Hadoop settings 22

Table 6 Average times for each phase for 2nd job (creating triples) of "mutual friends"

algorithm using default settings 24

Table 7 Average times for each phase for 2nd job (creating triples) of "mutual friends"

algorithm using modified containers settings 24

Table 8 Average times for each phase for 2nd job (creating triples) of "mutual friends"

algorithm using custom settings 25

Table 9 Average times for each phase for 2nd job (calculate triangles) of "counting

triangles" algorithm, using default settings 25

Table 10 Average times for each phase for 1st job (create triads) of "counting triangles"

algorithm, using default settings 26

Table 11 Average times for each phase for 1st job (create triads) of "counting triangles"

algorithm, using modified containers 26

Table 12 Average times for each phase for 2nd job (calculate triangles) of "counting

triangles" algorithm, using modified containers settings 26

Table 13 Average times for each phase for 2nd job (calculate triangles) of "counting

triangles" algorithm, using custom settings 26

Table 14 Sum of average times for each phase for the iterative Jobs of "Connected

Components" 27

Table 15 Sum of average times for each phase for the iterative Jobs of "Connected

Components", containers settings 27

Table 16 Sum of average times for each phase for the iterative Jobs of "Connected

Components", custom settings 28

Table 17 Execution times for 1 s t iteration of Connected components algorithm, at Orkut,

using default and custom settings 29

Table 18 Performance difference for YouTube dataset at "Counting Triangles", increasing

sort factor, for HDD 31

Table 19 Performance difference for YouTube dataset at "Counting Triangles", increasing

sort factor, for SSD2 31

Table 20 Performance difference for YouTube dataset at "Counting Triangles", increasing

file buffer size, for HDD 31

7

Institutional Repository - Library & Information Centre - University of Thessaly
08/06/2024 04:58:29 EEST - 3.133.122.126

Table 21 Performance difference for YouTube dataset at "Counting Triangles", increasing

file buffer size, for SSD2 31

Table 22 Percentage difference between "customs" and "containers settings for YouTube

dataset, at "Counting Triangles" algorithm 31

Table 23 Percentage difference between "customs" and "containers settings for YouTube

dataset, at "Mutual Friends" algorithm 32

8

Institutional Repository - Library & Information Centre - University of Thessaly
08/06/2024 04:58:29 EEST - 3.133.122.126

Chapter 1

Introduction

A complex network is a graph with topological features such as scale-free properties,
existence of communities, hubs, and so on that is used to model real systems, for
example, technological (Web, Internet, power grid, online social networks) networks,
biological networks (gene, protein), social networks [18]. The analysis of online social
networks (OSNs) such as Facebook, Twitter, Instagram has received significant attention
because all these networks store and process colossal volumes of data, mainly in the form
of pair-wise interactions, thus giving birth to networks, i.e., graphs which record persons"
interactions whose analysis and mining offers both operational and business advantages
to the OSN owner.

Modern OSNs are comprised by millions of nodes and even billions of edges;
therefore, any algorithm for their analysis that relies on a single machine (centralized) -
exploiting solely the machine's main memory and/or its disk - is eventually doomed to fail
due to lack of resources. Thus, the digitization of the aforementioned relationships
produces a vast amount of collected data, i.e., big data [9] requiring extreme processing
power that only distributed computing can offer. However, developing a distributed solution
is a challenging task because it must deal sometimes with sequential processes. Some
analysis algorithms based on distributed solutions that can run only on a small cluster of
machines are still insufficient, since modern OSNs are maintained by Internet giants such
as Google, LinkedIn and Facebook who own huge datacenters and operate clusters of
several thousand machines. These clusters are usually programmed by data-parallel
frameworks of the MapReduce type [2], a big data analytics platform.

The Hadoop [5][23] middleware was designed to solve problems where the "same,
repeated processing" had to be applied to peta-scale volumes of data. Hadoop's initial
design was based on magnetic disk's characteristics, enforcing sequential read and write
operations introducing its own distributed file system (HDFS - Hadoop Distributed File
System) with blocks of large size.

Recently with the advent of faster Solid State Drives (SSDs) research is emerging to
test/exploit the potential of the new technologically advanced drive [10][11][17]. The lack of
seek overhead gives them a significant advantage with respect to Hard Disk Drives
(HDDs) for workloads whose processing requires random access instead of sequential
access. Even though the cost-per-capacity of SSDs is still high, their adoption could be
widespread if their performance was solidly proved to be superior to that of HDDs. The
world of databases has long time ago started [15] to assess the benefits of using SSDs in
various points of the database architecture, but the Hadoop world has only recently

9

Institutional Repository - Library & Information Centre - University of Thessaly
08/06/2024 04:58:29 EEST - 3.133.122.126

[11][12][17][24] started a similar investigation.

Providing a clear answer to the question of whether SSDs significantly outperform or offer
increased performance in same cases compared to HDDs in the Hadoop environment is
not straightforward, because the results of a system-analysis-based investigation are
affected by the network speed and topology, by the cluster (size, architecture, . . .) , and by
the nature of the benchmarks used (MapReduce algorithms, input data). The efforts done
so far to provide light to this question suffer either because the experimentation was
executed on a virtualized cluster [12], or because their setup was affected by the
underlying network [17], or because their benchmark algorithms and data were mostly
read-oriented [11] [17], thus biasing the results in such a way that no clear answer and
universally holding conclusions could be drawn.

1.1 Contributions

Our work attempts to start the investigation from a new basis and to provide a clear
answer to the following basic question: Ignoring any network biases and storage media
cost considerations, do SSDs provide improved performance over HDDs for real
workloads that are not dominated by either reads or writes?

In this context, our work makes the following contributions:

• It uses a different set of MapReduce jobs, i.e., complex network analysis tasks,
which have radically different characteristics from the earlier used benchmarks.

• It isolates "external" dependencies, i.e., network, cost considerations.

• It shows that there exists at least one case where HDDs can deliver superior
performance to SSDs, which has not been documented in any earlier study.

• It provides solid evidence that the MapReduce job's read/write behavior will
eventually provide the answer of whether SSDs are preferable over HDDs, which is
consistent with the conclusions reported in [16] where random writes in SSDs are
the "killing" application pattern for SSDs (with respect to reads and sequential
writes).

The rest of this work is organized as follows: In chapter 2, we present the related work and
in chapter 3 we briefly describe Hadoop's structure. In chapter 4 we provide information
about the three algorithms that will be evaluated in the storage media and in chapter 5 we
describe the performance evaluation. Chapter 6 contains the evaluation results, and finally,
chapter 7 concludes the thesis.

10

Institutional Repository - Library & Information Centre - University of Thessaly
08/06/2024 04:58:29 EEST - 3.133.122.126

Chapter 2

Related Work

Introducing and investigating the usage of SSDs in Hadoop clusters has been a hot
issue of discussion very recently. The most relevant work to ours is included in the
following articles [11][12][17][21][24]. The first effort [12] to study the impact of SSDs on
Hadoop was on a virtualized cluster (multiple Hadoop nodes on a single physical machine)
and showed up to three times improved performance of SSDs versus HDDs. However, it
remains unclear whether the conclusions still hold in non-virtualized environments. The
work in [17] compared Hadoop performance on SSDs and HDDs on hardware with non-
uniform bandwidth and cost using the Terasort benchmark. The major finding is that SSDs
can accelerate the shuffle phase of MapReduce. However, this work is confined by the
very limited type of application/workload used to make the investigation and the
intervention of data transfers across the network. Cloudera's employees in [11], using a set
of same-rack-mounted machines (not reporting how many of them), focus on measuring
the relative performance of SSDs and HDDs for equal-bandwidth storage media. The
MapReduce jobs they used are either read-heavy (Teravalidate, Teraread, WordCount) or
network-heavy (Teragen, HDFS data write), and the Terasort which is read/write/shuffle
"neutral". Thus, neither the processing pattern is mixed nor the network effects are neutral.
Their findings showed SSD has higher performance compared to HDD, but the benefits
vary depending on the MapReduce job involved, which is exactly where the present study
aims at.

The analysis performed in [21] using Intel's HiBench benchmark [3][4] concluded that
" . t h e performance of SSD and HDD is nearly the same", which contradicts all previously
mentioned works. A study of both pure (only with HDDs or only with SSDs) and hybrid
systems (combined SSDs and HDDs) is reported in [24] using a five node cluster and the
HiBench benchmark. Differently from the present work, in that work, the authors
investigated the impact of HDFS"s block size, memory buffers, and input data volume on
execution time showing that when the input data set size and/or the block size increases,
then the performance gap between a pure SSD system with a pure HDD system widens in
favor of the SSD system. Moreover, for hybrid systems, the work showed that more SSDs
result in better performance. These conclusions are again expected since voluminous data
imply increased network usage among nodes.

Earlier work [8][22] studied the impact of interconnection on Hadoop performance in SSDs
identifying bandwidth as a potential bottleneck. The increase of bandwidth by using high-
performance interconnects benefits HDFS performance on both disk types, but especially
SSDs. Both conclusions are expected since a lot of data transfer takes place among
nodes in map-shuffle-reduce operations.

11

Institutional Repository - Library & Information Centre - University of Thessaly
08/06/2024 04:58:29 EEST - 3.133.122.126

Finally, some works propose extensions to Hadoop with SSDs. For instance, [10] proposes
extensions to enable clusters of reconfigurable active SSDs to process streaming data
from SSDs using FPGAs. VENU [14] is a proposal for an extension to Hadoop that will use
SSDs as a cache for the slower HDDs not for all data, but only for those that are expected
to benefit from the use of SSDs. This work still leaves open the question about how to tell
which applications are going to benefit from the performance characteristics of SSDs.
Remotely related to our work is the discussion about the introduction of SSDs in database
systems, e.g., [15].

Chapter 3

Hadoop Structure

Hadoop is a free framework, written in the Java programming language which allows the
processing of large data sets in a distributed computing environment.

HDFS and MapReduce (MR) are the two core components of Apache Hadoop. With latest
versions of Hadoop (version 2.x) YARN (Yet Another Resource Negotiator) has been
added.

HDFS is Hadoop's distributed file system that provides high-throughput access to data,
high-availability and fault tolerance. Data are saved as large blocks (default size 128MB)
making it suitable for applications that have large data sets. It creates replicas of each
block and distributes them among the nodes of the cluster.

MapReduce is a software framework that allows to write applications. Submitting a
MapReduce job usually splits the input file to several chunks (block sized) that are
processed by map tasks at parallel. Due to block replication of HDFS tasks are scheduled
to run on nodes where the required chunks of data already exist, minimizing unnecessary
transfer of data.

The key functions to be implemented are Map and Reduce. The MR framework functions
exclusively on <key,value> pairs. Each map processes an input split (block) generating
intermediate data of <key,value> format. Then they are sorted and partitioned by key so
later at reduce phase, pairs of the same key will be aggregated to the same reducer for
further processing.

Here lays Hadoop's main advantage. Partitions from different nodes with the same key are
transferred (shuffle phase) to a single node and then merged (sort phase) and get ready to
be fed to the reduce task.

Output of reduce task is of format <key,value> as well.

12

Institutional Repository - Library & Information Centre - University of Thessaly
08/06/2024 04:58:29 EEST - 3.133.122.126

input
HOFS

outpul

Figure 1 Overview of Map/Reduce and Hadoop

Chapter 4

Investigated algorithms

Complex network analysis comprises a large set of diverse tasks (algorithms for finding
communities, centralities, network growth models, resilience to attacks, epidemics, etc.)
that cannot be enumerated here, and whose particular form depends on the field of study
(technology, biology, sociometry, medicine) and also on the particular application that the
"human miner" is interested in. Apparently, not all these tasks accept distributed solutions
(at least, efficient ones) in the form of MapReduce algorithms, but there is already a
significant body of works that developed MapReduce algorithms for solving problems such
as triangle enumeration [13], k-shell computation [20], k-means clustering [26], neural
networks [26], etc.
Therefore, among all these problems and their associated MapReduce solutions, we had
to select some of them based on a) their usefulness in complex network analysis tasks, b)
in their suitability to the MapReduce programming paradigm, c) the availability of their
implementations (free/open code) for purposes of reproducibility of measurements, and d)
complexity in terms of multiple rounds of map-reduce operations. Based on these criteria,
we selected three problems/algorithms for running our experimentations. The first
algorithm deals with a very simple problem which is at the same time a fundamental

13

Institutional Repository - Library & Information Centre - University of Thessaly
08/06/2024 04:58:29 EEST - 3.133.122.126

operation in Facebook 1 , that of finding mutual friends.
The second algorithm deals with a network-wide path-based analysis for finding connected
components which finds applications in reachability queries, techniques for testing network
robustness and resilience to attacks, epidemics, etc. The third algorithm is about counting
triangles which is a fundamental operation for higher level tasks such as calculating the
clustering coefficient, or executing community finding algorithms based on clique
percolation concepts [19]. We wanted to have problems that deal with both the local and
global structure of the network. Table 1 summarizes the "identity" of the examined tasks.

Table 1 Characterization of problems/algorithms examined

Primitive task Type of analysis Type of analysis
Mutual friends Neighbor-based Local network (neighborhood)

properties
Recommendation queries

Connected Components Path-based Large-scale network properties
Reachability queries
Resilience queries

Triangle counting Mixed (extended
neighborhood & paths)

Large-scale network properties
Clustering/communities finding
queries

We need to emphasize that it is not the purpose of our work to develop a benchmark suite
of algorithms and input data for MapReduce, even though we clearly recognize this need
and call for the development of a really generic and representative benchmark; current
efforts in this topic (like the Hibench [3][4]) are in a rather infantile age and their tasks
(wordCount, k-means clustering, Bayesian classification, PageRank, etc.) are mostly
appropriate for information retrieval or basic, traditional data mining tasks. So, our
benchmark includes representative (in the notion described above) MapReduce jobs to
cover common IO and computer patterns expected to be seen in complex network
analysis. We deferred a more advanced method for measuring the performance for multi¬
job workload such as the one described in [1], because the standalone, one-job-at-the-
time method allows for the examination of interaction between MapReduce and storage
media without the interventions of job scheduling and task placement algorithms.
We aim at showing that the conclusions about the relative performance of SSDs versus
HDDs are strongly depended on the features of the algorithms examined, which has
largely been neglected in earlier relative studies [11][12][17], and based on these features
we draw some conclusions on the relative benefits of SSDs. For purposes of our work's
self-completeness, we present in the following three sections the selected algorithms and
a brief explanation of their operation.

1 www.facebook.com
14

Institutional Repository - Library & Information Centre - University of Thessaly
08/06/2024 04:58:29 EEST - 3.133.122.126

http://www.facebook.com

4.1 Mutual Friends

A common feature of various social networks is providing information of the
existence of mutual friends once visiting some other user's profile page. A simple algorithm
was implemented for the calculation of mutual friends. The necessary condition is that this
pair of users are already friends (connected) with each other. Pseudocode for the
MapReduce algorithm is given in Algorithm 1.
The basic idea behind the algorithm is for every user (i.e., node) and his friend-list (i.e.,
adjacency list) to create all possible triples consisting of:

Algorithm 1 MapReduce pseudo-code for finding mutual friends.

1st MR job - CalculateAdjacencyList:

on map do:
for each KV pair do:

K<-source_node
V<-destination_node
context.write (K,V)
context.write (V,K)

on reduce do:
for each K[V] pair do:

ego_user<-get(k)
for each v in V

Add v to nodes_list
Sort the nodes_list
for each node_id in nodes_list

append node_id to friendlist
context.write (ego_user,friendlist)

2nd MR job - Creating triples:

on map do:
for each KV pair do:

K<-ego_user
V<-friendlist
for each friend in friendlist

for each other_friend in friendlist
if ego_user<friend then
context.write (ego_user-
NULL)
else
context.write (friend-

ego_user:other_friend , NULL)
on reduce do:
for each KV pair do:

if |V|==2 then
context.write (triple,NULL)

friend:other_friend

15

Institutional Repository - Library & Information Centre - University of Thessaly
08/06/2024 04:58:29 EEST - 3.133.122.126

3rd MR job:

for each K V pair do:
pair_and_mutual=K.split(":")

pair=pair_and_mutual(0)
mutual=pair_and_mutual(1)
context.write (pair,mutual)

on reduce do:

for each K V pair do:
pair<-get(K)
for each v in V

v<-mutual
mutuals_list.add(mutual)

context.write (pair,mutuals_list)

• the owner of the friend-list
• a user of the friend-list who will make a pair with the owner and
• another user of the friend-list who will be the candidate mutual friend

The same work is performed for each and every user and his friend-list. Eventually,
if two exact triples are spotted, then the candidate is classified as a mutual friend for the
specified pair. For the implementation three MR jobs are required:
1) Calculation of the adjacency list (friend-list). The input file is a graph containing all the
ties among the nodes. Each node is a number unique for each user. All used social
network datasets, were un-weighted, undirected graphs. Each line consists of a source
node and destination node. Duplicate relationships aren't present in the original files. On
the contrary, such supplementary information is necessary for the creation of adjacency
lists, thus created by the Map function. Reduce function produces lines of every node and
its adjacency list.
2) Creation of all available triples according to the basic concept that was mentioned
previously. The Mapper output creates all available triples as key. Value is set to NULL. At
Reducer, for a specific Key aggregating two NULL values, confirms the existence of a
mutual friend.
3) Creation of the lists of mutual friends. At the Mapper, from each triple the pair is
extracted as Key and their mutual as Value. The Reducer completes the creation of mutual
friends list for every pair.

4.2 Connected Components

Another very useful and primitive process of complex network analysis is the
detection of connected components i.e., clusters of nodes where every node of the cluster
can eventually be accessed by any other node of the cluster following a path of arbitrary

16

Institutional Repository - Library & Information Centre - University of Thessaly
08/06/2024 04:58:29 EEST - 3.133.122.126

number of hops. This task finds applications in reachability analysis, in epidemics, i.e.,
once isolated users or groups are found, the spread of a contagion can be stopped, etc.

For this task, the implementation by Thomas Jungblut [7] of an iterative algorithm based on
message passing technique is used (see Algorithm 2).

At the first iteration, the algorithm maps every first element as key and its adjacency list in
vertex form as a pointsTo tree. Also, it maps each edge of the tree in vertex form. At
reduce, the algorithm marks all vertexes having a pointsTo tree as activated. It sets the
smallest element of this list (comparing to the key as well), as vertex's minimal. Then, it
writes key and vertex in context. At next iterations, map writes each key and vertex as it is.
Also for every activated vertex, it loops through the pointsTo tree and writes a message
(vertex with empty tree) with the (for this vertex) minimal vertex to every edge of the tree.
At reduce, it merges messages with the related vertex and if a new minimum is found then
activates the vertex. The updated counter gets incremented. Otherwise deactivates the
vertex. Iterations continue till no vertex gets updated.

Algorithm 2 MapReduce pseudo-code for finding connected components

1st MR job
ON MAP DO:
for each line (adjacency list)

realkey<-first edge of adjacency list
vertex<-al l other edges sor ted, plus min imal
context.wri te (realkey, vertex)

for all edges in vertex
context.wri te (edge, new empty vertex with edge as minimal)

end map

ON REDUCE DO:
for each K V pair do:

if V is not message then
realVertex<-edges of V
activate realVertex
increment UPDATED counter
context.write(key, realVertex)

end reduce

17

Institutional Repository - Library & Information Centre - University of Thessaly
08/06/2024 04:58:29 EEST - 3.133.122.126

2 n d MR job
on map do:

for each K V pair do:
context.write (K,V)
if V is act ivated then

for all edges in V
if edge != minimal of V

newVertex<-nul l edges
newVertex<-minimal of V
context.wri te (edge, newVertex)

end map

on reduce do:
for each K [V] pair do:

if v in Vis not message then
realVertex<-v

else
track newMinimal among messages v in V

if realVertex.minimal > newMinimal then
update realVertex with the lower newMinimal
activate the realVertex
increment UPDATED counter

else
deact ivate the realVertex

context.write(key, realVertex)
end reduce

4.3 Counting Triangles

Counting the number of triangles in a graph is a fundamental problem with various
applications especially in social network analysis. For example, the clustering coefficient is
frequently quoted as an important index for measuring the concentration of clusters in
graphs respectively its tendency to decompose into communities. We used the
implementation by Walkauskas [6] (pseudo-code in Figure 4) which includes three
MapReduce jobs:

• A triangle exists when a vertex has two adjacent vertexes that are also adjacent to
each other. The first job constructs all of the triads in the graph. A triad is formed by
a pair of edges sharing a vertex, called its apex. Original edges are written, as well.
The above are written as keys with the value of 1 or 0 respectively to distinguish
triads from original edges.

• The second MR Job maps previous input line. And reducer aggregates the triads
with the edges for a specific triple. In order for a triangle to exist there should be at
least one candidate triad and the edge connecting the apex. The reducer eventually
writes sum to context as "0, sum".

• The third MR Job aggregates the number of triangles that was found from previous
job for all chunks.

18

Institutional Repository - Library & Information Centre - University of Thessaly
08/06/2024 04:58:29 EEST - 3.133.122.126

Algorithm 3 MapReduce pseudo-code for triangle counting.

1st MR job - Tr iadConstruct ion:
on map do:
for each KV pair do:

if K < V wri te to context

on reduce do:
for each K[V] pair do:

for each v in V
save v in Array
context.wri te (Kv, "zero")

Sort the Array
for each v of sorted Array

for each v' fol lowing v in the Array
context.wri te (vv', "one")

2nd MR job - Tr iadConstruct ion:
on map do:
for each K V pair do:

K<-source_node
V<-dest inat ion_node
context.wri te (K,V)

on reduce do:
for each K[V] pair do:

sum all v values in V
compare the sum to the #v in V
if not equal
increase #tr iangles found by sum
context.wri te(zero, count)

3rd MR job - AggregateTr iangles:
on map do:
for each K V pair do:

K<-source_node
V<-dest inat ion_node
context.wri te (K,V)

on reduce do:
for each K[V] pair (only one pair wi th "zero" key) do:

sum all v in V
context.wri te (sum, null)

19

Institutional Repository - Library & Information Centre - University of Thessaly
08/06/2024 04:58:29 EEST - 3.133.122.126

Chapter 5

Performance evaluation

For the evaluation of the two disk types a sample of real data was required. Recall
that earlier efforts e.g., [17] used dummy data files that were read and some primitive
statistics were written out. Social networks are a representative sub-genre of complex
networks. Thus up to ten real social network graphs were used (Table 2). They were
retrieved from https://snap.stanford.edu/ and http://konect.uni-koblenz.de/. The number of
nodes and edges vary from a few thousands to a few millions. Thus, we used networks
that vary up to two orders of magnitude in their size (number of nodes and/or edges).

Table 2 Social Networks used for evaluation

Social Network Name Num of Nodes Num of Edges

1 Brightkite location based
online Social Network

58,228 214,078

2
Gowalla location based
online Social Network

196,591 950,327

3 Amazon product co-
purchasing network

334,863 925,872

4 DBLP collaboration
network

317,08 1,049,866

5 YouTube online Social
Network

1,134,890 2,987,624

6 YouTube (ver. 2) online
Social Network

3,223,589 9,375,374

7 Flickr 1,715,255 15,550,782

8 LiveJournal online Social
Network

3,997,962 34,681,189

9
LiveJournal (ver. 2)
online Social Network

5,204,176 49,174,620

10 Orkut online Social
Network

3,072,441 117,185,083

The evaluation will take place along two dimensions. The first one is similar to that in [17]
using TestDFSIO and the second one is the complex network analysis-oriented that is the
focus of this article. We have performed up to five experiments for each of the "Mutual
Friends" and "Counting Triangles" algorithms and up to ten experiments for the

20

Institutional Repository - Library & Information Centre - University of Thessaly
08/06/2024 04:58:29 EEST - 3.133.122.126

https://snap.stanford.edu/
http://konect.uni-koblenz.de/

"Connected Components", one for each dataset shown at Table 2. The latter algorithm
acquired less disk space during execution allowing us to evaluate it with larger datasets.
The two SSDs were of different size disallowing the execution of some datasets. The most
important measures we captured were the Map and Reduce execution times, as also Sort
(merge) and Shuffle phase. The aforementioned measures would indicate practical
performance differentiations between the two disk types. One common side effect is
"cache hits" from previous executions that was also experienced in [17]. In order to give
each experiment an equal environment to eliminate any possible interaction effects from
previous executions, Hadoop was halted and page cache was flushed, after each
experiment. Before each test HDFS was re-formatted.

5.1 The Testing environment

A commodity computer (Table 3) was used for the experiments. Three storage
media were used (Table 3) with capacities similar to that used in [17]. CPU and disks were
similar to the ones used in [12]. On each of the three drives (one HDD and two SSDs) a
separate and identical installation of the latest version of required software (Table 3) was
used. We emphasize at this point that since we need to factor out the network effects, we
used single machine installations. Three different incremental setting setups were used: a)
with default settings, allowing 6 parallel maps, b) with modified containers allowing 3
parallel maps, and c) with custom settings (Table 5). In all these setups, speculative
execution was disabled and no early shuffling was permitted.

Table 3 System specifications

Hardware Software

CPU: Intel i5 4670 3.4Ghz (non HT) OS:
Ubuntu 14.04 LTS
64bit

RAM:
8gb 1600mhz DDR3 (1333mhz
with disabled XMP)

Java SDK:
Oracle Java 1.8.0_25
(8u25)

Disk 1 (HDD):
Western Digital Blue
WD10EZEX 1TB

Hadoop
Installation:

Hadoop 2.5.2 (pre-
built 32-bit i386-Linux
native Hadoop library)

Disk 2 (SSD1): Samsung 840 Evo 120GB
Monitoring
tools:

Collectl V3.6.9-1

Disk 3 (SSD2): Crucial MX100 512GB

Power saving options and boosting technologies like Turbo-boost and IEST were
disabled through BIOS to minimize unexpected fluctuations among executions (Table 4).

21

Institutional Repository - Library & Information Centre - University of Thessaly
08/06/2024 04:58:29 EEST - 3.133.122.126

Table 4 Disabled BIOS settings

Disable Settings Description

Turbo boost Increases core's frequency at high workloads taking
in consideration parameters like temperature

Enhanced Halt (C1E) Power saving feature when system is idle

C3 State Power saving state enabled during sleep mode

C 6/7 State They Offer reduced idle power consumption
EIST (Enhanced Intel
Speed Step Technology)

Allows the system to dynamically adjust processor
voltage and core frequency

Intel Extreme Memory
Profile (XMP)

Allows over-clocking compatible DDR3/DDR4
memory to perform beyond standard specifications

Hadoop was installed in pseudo-distributed mode where each Hadoop daemon runs as a
separate Java process. Default settings were preserved.

Table 5 Custom Hadoop settings

mapreduce.reduce.shuffle.parallel.copies 5->50
mapreduce.task.io.sort.factor 10->100
mapreduce.map.sort.spill.percent 0.80->0.90
io.file.buffer.size 4kb->64kb

Chapter 6

Experimental results

In this section we provide the obtained results for each one of the three algorithms
presented earlier, starting with standard TestDFSIO results.

6.1 TestDFSIO

We begin with the HDFS throughput measurement. Test Distributed File System
(TestDFSIO) is an industry-standard benchmark which distributes map tasks that
read/write complete dummy files on nodes; each map task reads the complete file and
writes some statistics. Reduce tasks simply gather these statistics for output. For writing

22

Institutional Repository - Library & Information Centre - University of Thessaly
08/06/2024 04:58:29 EEST - 3.133.122.126

sequential files, with the increase of file size, SSD1"s performance is decreasing, falling
behind the HDD. Contrariwise, the SSD2 appears much faster (Figure 2) with stable
throughput.

Figure 2 Comparing TestDFSIO write throughput for 3 disks.

As expected, both SSDs' sequential read throughput is outstanding. The magnetic
disk again demonstrates stable performance, although noticeably slower than that of the
SSDs (Figure 3).

23

Institutional Repository - Library & Information Centre - University of Thessaly
08/06/2024 04:58:29 EEST - 3.133.122.126

6.2 Mutual Friends

The complexity of this algorithm is exponential due to the mapper of the 2nd MapReduce
job ("creating triples" - as described at 4.1) where for each user and his friend-list every
possible triple is formed (double "for" used). Thus, the 2nd MapReduce job is the most
resource-intensive of the three jobs, rendering it a good inspection point for our measures
(see Table 6), whereas the 1st and 3rd MapReduce jobs were fast-executed and almost
identical for all disks. For Amazon, Brightkite and DBLP, the three disks performed almost
equally. Remarkably, in comparison with both SSD drives, the magnetic disk gives
competitive execution times for reduce phase, for bigger datasets, where HDD performs
lower for map phase. The SSD2 displays superior performance at shuffling.
Times for the 1 s t M-R job "Creating the adjacency" and the 3 r d M-R job "Calculating the
mutual friends" were quite low and almost identical between SSDs and HDD.

Table 6 Average times for each phase for 2nd job (creating triples) of "mutual friends" algorithm using default
settings

Defaults: Triples 12 n d Job !
Avg Map Avg Shuffle Avg Merge Avg Reduce

HDD SSD1 SSD2 HDD SSD1 SSD2 HDD SSD1 SSD2 HDD SSD1 SSD2
Bright kite 52 52 52 1 1 1 0 0 0 11 10 10
Amazon 38 35 35 2 1 1 0 0 0 8 7 8
Gowalla 1780 1752 1593 120 103 42 0 0 0 178 195 194
• BLP 90 89 89 5 2 3 0 0 0 18 17 17
YouTube 11197 9708 812 - 0 0 918 984

Modifying container's size doesn't affect the performance in general, comparing to
defaults, for the mutual friends' algorithm.

Table 7 Average times for each phase for 2nd job (creating triples) of "mutual friends" algorithm using
modified containers settings

Containers: Triples (2 n d Job*
Avg Map Avg Shuffle Avg Merge Avg Reduce

HDD SSD1 SSD2 HDD SSD1 SSD2 HDD SSD1 SSD2 HDD SSD1 SSD2
Bright kite 52 52 52 2 1 1 0 0 0 11 10 10
Amazon 38 35 35 1 1 1 0 0 0 8 8 7
Gowalla 1774 1741 1819 121 120 42 0 0 0 181 205 199
DBLP 89 88 88 4 2 2 0 0 0 17 17 17
YouTube 11285 9583 838 - 258 0 0 988

Using custom settings decreases map times for big datasets. HDD for YouTube gets
increased performance for shuffle and reduce, whereas SSD2 gets same performance or
even worst at reduce phase.

24

Institutional Repository - Library & Information Centre - University of Thessaly
08/06/2024 04:58:29 EEST - 3.133.122.126

Table 8 Average times for each phase for 2nd job (creating triples) of "mutual friends" algorithm using custom
settings

Customs: Triples (2 Job)
Avg Map Avg Shuffle Avg Merge Avg Reduce

HDD SSD1 SSD2 HDD SSD1 SSD2 HDD SSD1 SSD2 HDD SSD1 SSD2
Bright kite 52 51 51 1 1 1 0 0 0 10 10 10
Amazon 36 35 38 1 1 1 0 0 0 8 8 7
Gowalla 1423 1395 1341 109 85 43 0 0 0 195 193 198
• BLP 80 79 79 3 2 2 0 0 0 17 17 17
YouTube 8320 7779 899 - 258 0 0 884 1029

6.3 Counting Triangles

Here, the SSDs outperform the HDD for all the datasets that were tested. At "forming the
triads" job, HDD appeared competitive behavior at reduce phase (Table 10). The "counting
the triangles" job demonstrated greater variations in execution times. With small datasets
the performance differentiations between the two disk types are small (Table 9). But with
larger ones (like YouTube dataset), SSDs capabilities become evident for shuffle and
merge (sort) phases.

Table 9 Average times for each phase for 2nd job (calculate triangles) of "counting triangles" algorithm, using
default settings

A) Defaults: Triangles |2 n d) job
Avg Map Avg Shuffle Avg Merge Avg Reduce

HDD SSD1 SSD2 HDD SSD1 SSD2 HDD SSD1 SSD2 HDD SSD1 SSD2
Bright kite 18 18 18 1 1 1 0 0 0 4 4 3
Amazon 9 9 9 1 1 1 0 0 0 2 2 2
Gowalla 38 39 38 52 82 21 79 88 70 106 106 110
DBLP 14 14 14 1 1 1 0 0 0 7 5 5
YouTube 42 41 855 141 820 888 889 551

For the 1st MR job (creating triads), map, shuffle and merge phases finished quite fast and
with almost zero differentiations among disks. Reduce phase lasted significantly longer
with both disks performing equally (Table 9). With containers settings, the biggest dataset
of Flickr gets significant improvement for both disk types (Table 10). No further
improvement achieved with custom settings.

25

Institutional Repository - Library & Information Centre - University of Thessaly
08/06/2024 04:58:29 EEST - 3.133.122.126

Table 10 Average times for each phase for 1st job (create triads) of "counting triangles" algorithm, using
default settings.

Defaults: Triads [1 5 t l job
Avg Map Avg Shuffle Avg Merge Avg Reduce

HDD SSD2 HDD SSD2 HDD SSD2 HDD SSD2
Gowalla
YouTube
Flickr

2 2
6 6
13 13

1 1 0 0
0 0
0 0

142 140
706 694

5053 5125

Table 11 Average times for each phase for 1st job (create triads) of "counting triangles" algorithm, using
modified containers.

Containers: Triads (1 s t} job
Avg Map Avg Shuffle Avg Merge Avg Reduce

HDD SSD2 HDD SSD2 HDD SSD2 HDD SSD2
Gowalla 2 2 1 1 0 0 141 138
YouTube 6 6 1 1 1 1 (=97 707
Flickr 13 13 1 1 6 6 4163 4140

Comparing containers settings (Table 11) to customs (Table 12) for the 2 n d job increased
performance can be noticed, especially for the magnetic disk. For YouTube at shuffling,
only the HDD gets improved times. Both disks get improvement at reduce times.
Especially at merge, using custom settings minimizes the sorting times for both disks,
favoring mostly the HDD, whose times are much higher than SSD2 with just modified
containers settings.

Table 12 Average times for each phase for 2nd job (calculate triangles) of "counting triangles" algorithm,
using modified containers settings

B) Containers: Triangles (2 n d) job
Avg Map

HDD SSD1 SSD2
Avg Shuffle

HDD SSD1 SSD2
Avg Merge

HDD SSD1 SSD2
Avg Reduce

HDD SSD1 SSD2
Bright kite
Amazon
Gowalla
DBLP
YouTube

18 18 18
10 9 9
24 24 23
14 14 14
25 - 25

1 1 1
1 1 1

73 84 69
1 1 1

565 - 359

3 3 3
I 1 1

I I 14
5 5 5

596 - 339

3 3 3
2 1 2

100 96 95
4 4 4

720 - 538

Table 13 Average times for each phase for 2nd job (calculate triangles) of "counting triangles" algorithm,
using custom settings.

26

Institutional Repository - Library & Information Centre - University of Thessaly
08/06/2024 04:58:29 EEST - 3.133.122.126

C} Customs: Tr iangles j Z n d) job
Avg Map

HDD SSD1 SSD2
Avg Shuffle

HDD SSD1 SSD2
Avg Merge

HDD SSD1 SSD2
Avg Reduce

HDD SSD1 SSD2
Avg Map

HDD SSD1 SSD2
Avg Shuffle

HDD SSD1 SSD2
Avg Merge

HDD SSD1 SSD2
Avg Reduce

HDD SSD1 SSD2
Bright kite
Amazon
Gowalla
DBLP
YouTube

18 18 18
10 10 9
24 24 24
14 14 14
28 - 25

1 1 1
1 1 1

87 71 65
1 1 1

402 - 351

3 3 3
1 1 1

14 15
5 5 5
14 - 16

3 3 3
2 2 1

104 9c 96
4 4 4

838 - 482

6.4 Connected Components

Comparing SSD1 to the HDD, the Connected Components algorithm seems to
slightly favor the SSD1 for small datasets (first five ones), at reduce phase. Map, shuffle
and phase times are close for both disk types. For the datasets of Flickr and LiveJournal
the magnetic disk takes the lead at reduce phase which is mostly characterized as "write"
procedure for the Hadoop framework. Surprisingly, SSD1 performs quite slowly at shuffle
phase for the LiveJournal dataset. The SSD2 generally delivers great performance
especially at map and shuffle phase, noticeably as the datasets" size increase. For the
reduce phase HDD falls behind SSD2, but not with a great margin.

Table 14 Sum of average times for each phase for the iterative Jobs of "Connected Components"

Avg Map Avg Shuffle Avg Merge Avg Reduce
HDD SSD1 SSD2 HDD SSD1 SSD2 HDD SSD1 SSD2 HDD SSD1 SSD2

Bright kite 14 14 14 11 11 11 0 0 0 0 0 0
Amazon 104 106 103 34 34 34 0 0 0 74 61 62
Gowalla 27 26 26 10 10 10 0 0 0 14 14 16
DBLP 54 54 54 15 15 15 0 0 0 35 34 33
YouTube 126 124 123 14 14 14 0 0 0 101 96 98
YouTube 2 247 242 244 28 24 24 0 0 0 428 424 408
Flickr 170 168 167 30 19 20 0 0 0 309 314 304
LiveJournal 353 380 322 104 143 45 1 0 0 666 682 651
LiveJournal 2 417 347 137 57 0 0 930 912
Orkut 456 552 295 1448 1204

Similarly, to the "Counting Triangles" algorithm, using custom settings minimizes merge
time for both disks with big datasets, improving at the same time the shuffling of the
magnetic disk. The SSD2 already performs great and gets no further improvement.

Table 15 Sum of average times for each phase for the iterative Jobs of "Connected Components", containers
settings

27

Institutional Repository - Library & Information Centre - University of Thessaly
08/06/2024 04:58:29 EEST - 3.133.122.126

Avg Map
HDD SSD1 SSD2

Avg Shuffle
HDD SSD1 SSD2

Avg Merge
HDD SSD1 SSD2

Avg Reduce
HDD SSD1 SSD2

LiveJournal
LiveJournal 2
Orkut

Avg Map
HDD SSD1 SSD2

Avg Shuffle
HDD SSD1 SSD2

Avg Merge
HDD SSD1 SSD2

Avg Reduce
HDD SSD1 SSD2

LiveJournal
LiveJournal 2
Orkut

230 234
231 - 211
239

72 84
106
567

48 53 39
63 - 49

262

629 636
940
1464 -

Table 16 Sum of average times for each phase for the iterative Jobs of "Connected Components", custom
settings

Avg Map
HDD SSD1 SSD2

Avg Shuffle
HDD SSD1 SSD2

Avg Merge
HDD SSD1 SSD2

Avg Reduce
HDD SSD1 SSD2

Avg Map
HDD SSD1 SSD2

Avg Shuffle
HDD SSD1 SSD2

Avg Merge
HDD SSD1 SSD2

Avg Reduce
HDD SSD1 SSD2

LiveJournal
LiveJournal 2
Orkut

232 232
234 - 212
246

63 74
104 - 48
492

43 48
60 - 47
16 - 7

617 656
955
1483

Hadoop's default settings allowed the execution of up to 6 maps simultaneously. Thus the
execution of Orkut dataset (input file of 14 blocks at HDFS) was executed in three waves
of maps. The map phase is CPU intensive hitting 100% utilization. High disk throughput is
required as well, with the disk constituting system's bottleneck causing high CPU wait
times especially for HDD (Figure 4), where during map phase CPU utilization falls between
map waves. Consequently, using SSD2 provides better CPU utilization. Excessive disk
usage appears at shuffle phase demonstrating each disk's capabilities (Figure 5-Figure 7).
At reduce, SSD2 performs slightly better.

Figure 4 CPU utilization for Connected Components algorithm with Orkut, using HDD, 1st Iteration, default
settings

01:01:00 01:02:00 01:03:00 01:04:00 01:05:00 01:06:00 01:07:00 01:08:00 01:09:00 01:10:00

Figure 5 Disk Usage for Connected Components algorithm with Orkut, using HDD, 1st 1teration, default
settings

28

Institutional Repository - Library & Information Centre - University of Thessaly
08/06/2024 04:58:29 EEST - 3.133.122.126

Figure 6 CPU utilization for Connected Components algorithm with Orkut, using SSD2, 1st 1teration, default
settings

22:49:00 22:50:00 22:51:00 22:52:00 22 : 5 3 : 0 0 22:54:00 22:55:00

Figure 7 Disk Usage for Connected Components algorithm with Orkut, using SSD2, 1st 1teration, default
settings

Using custom settings decreased times for both disk types (Table 17), especially for the
magnetic disk, with improved CPU wait times (fig. 8).

Table 17 Execution times for 1st iteration of Connected components algorithm, at Orkut,
using default and custom settings.

Defaults Customs
Elapsed Avg Map Shuffle Merge Reduce Avg Map Shuffle Merge Reduce

HDD
10mins,
15sec 95 89 36 220

8mins, 38sec (-1min,
37sec) 43 75 1 212

SSD2 7mins, 2sec 60 27 34 184 6mins, 56sec (-6 sec) 37 30 1 181

22:06:00 22:07:00 22:08:00 22:09:00 22:10:00 22:11:00 22:12:00 22:13:00 22:14:00

Figure 8 CPU utilization for Connected Components algorithm with Orkut, using HDD, 1st 1teration, custom
settings

29

Institutional Repository - Library & Information Centre - University of Thessaly
08/06/2024 04:58:29 EEST - 3.133.122.126

t customs-cc-orkut-mario3-HDD T20150430.,tab.qz: DiskMB. | , , , , ι „ c n

Γ 2 b u ReadMB
WriteMB

22:06 :00 22 :07 :00 22 :08 :00 22 :09 :00 22 :10 :00 2 2 : 1 1 : 0 0 22 :12 :00 2 2 : 1 3 : 0 0 22 :14 :00

Figure 9 Disk Usage for Connected Components algorithm with Orkut, using HDD, 1st 1teration, custom
settings

23:24:00 23:25:00 23:26:00 23:27:00 23:28:00 23:29:00 23:30:00

Figure 10 CPU utilization for Connected Components algorithm with Orkut, using SSD2, 1st 1teration,
custom settings

customs— c c - o r k u t — m a r i o s - 5 5 D 2 - 2 0 L50504 • t a b • ga: DigkMB ι ι ..- n

Γ l b a ReadMB

23:24:00 23:25:00 23:26:00 23:27:00 23:28:00 23:29:00 23:30:00

Figure 11 Disk Usage for Connected Components algorithm with Orkut, using SSD2, 1st 1teration, custom
settings

6.5 Optimization settings

Hadoop contains a large number of configuration settings [27] that affect system's
performance.
We tested a variety of optimizations with the magnetic disk's performance getting
significant improvement.
Not all the settings triggered noticeable improvement.
Generally, increasing the number of streams to merge at once while sorting files -
mapreduce.task.io.sort.factor - from 10 to 100 minimizes the merge (sort) time, favoring
mostly the magnetic disk.

30

Institutional Repository - Library & Information Centre - University of Thessaly
08/06/2024 04:58:29 EEST - 3.133.122.126

Increasing the size of buffer for use in sequence files - io.file.buffer.size - from 4kb to
128kb gives a general boost at HDD performance, besides map phase. Further increase of
the above setting causes worst performance. The SSD's performance remains unaffected
by changing the file buffer's size.

To optimize performance, increasing the following settings provided best results for the
magnetic disk, compared to "containers" settings:

a) The number of streams to merge at once while sorting files. Minimizes merge time for
both disk types. Improves HDD shuffling time as well.

Table 18 Performance difference for YouTube dataset at "Counting Triangles", increasing sort factor, for HDD

just containers and io.sort.factor 10->100
Elapsed Avg Map Avg Shuffle Avg Merge Avg Reduce
40mins. 28sec 25 471[-94) 14(-582) 667(-53)

Table 19 Performance difference for YouTube dataset at "Counting Triangles", increasing sort factor, for
SSD2

just containers and io.so rt.f actor 10->100
35mins, 15sec 25 371(+12) 16(-323; 497 [-41;

b) The buffer size for I/O (read/write) operations.

Table 20 Performance difference for YouTube dataset at "Counting Triangles", increasing file buffer size, for
HDD

just containers and io.fi le.buffer.size 4kb->128kb
46mins, 44sec (-Smins. 59sec) 25 445[-120) 470(-12E) 619()

On the other hand, increasing the buffer size for I/O operations had minimal effect on
SSD2 performance.

Table 21 Performance difference for YouTube dataset at "Counting Triangles", increasing file buffer size, for
SSD2

just containers and io.fi le.huffer.size 4kb->128kb
41mins, 9sec i-1 sec) 24 381 (-2) 331 554 (-18)

Table 22 Percentage difference between "customs" and "containers settings for YouTube dataset, at
"Counting Triangles" algorithm

"Customs" Difference to "Containers"
map shuffle merge reduce

HDD 4.00% -28.85% -97.85% -1139%
SSD2 0.00% -2.23% -95.28% -10.41%

31

Institutional Repository - Library & Information Centre - University of Thessaly
08/06/2024 04:58:29 EEST - 3.133.122.126

Table 23 Percentage difference between "customs" and "containers settings for YouTube dataset, at "Mutual
Friends" algorithm

'Customs" difference to "Containers"
map shuffle

HDD
S3D2

merge
-25 14%
-18.33%

-15 59%
0.73%

reduce
-9.72%
4.36%

Chapter 7

Conclusions

Hadoop platform is used for the processing of big data, especially to run analytics that is
computationally intensive, such as social network analysis. Some tasks can be solved with
a single or more consecutive and distinct jobs whereas others require iterative ones. Due
to the SSD"s provided substantial benefits over traditional hard disk drives, Hadoop
administrators have started considering the addition or even replacement of the existing
HDDs with SSDs. Yet, Hadoop's internal design - especially HDFS - doesn't appear to
fully harness the potential of solid state drives.

We compared the performance of solid state drives and hard disk drives for social network
analysis. Three casual complex network analysis algorithms were used leaving space for
the implementation and testing of many others, for even larger data sets.

A potential upgrade should be considered based on the tested applications' performance.
In our tests SSDs didn't come out as the undisputed winner. There were noticed great
performance fluctuations between the two SSDs. The second SSD performed significantly
better. Otherwise, in many cases SSD1 and the magnetic disk came into a draw. Although
SSD1 was slightly faster in many tests, in some cases the magnetic disk outperformed the
SSD1. Even comparing to the faster SSD2, the magnetic disk provided competitive times
for reduce phase, especially with the "mutual friends" algorithm, where it performed
marginally better.

Customizing Hadoop settings proves crucial. Magnetic disk's shuffle times can be reduced.
SSD"s performance doesn't present further improvement. Nevertheless, HDD can't catch
up with SSD"s superior performance at shuffling. With tweaking merge-sort can be
performed in less steps minimizing merge's phase times for both disk types, slightly
favoring magnetic disk that would perform slower otherwise. For map phase both disk

32

Institutional Repository - Library & Information Centre - University of Thessaly
08/06/2024 04:58:29 EEST - 3.133.122.126

types can get similar performance improvement.

Overall, having no clear storage media winner, the paper suggests that the development of
"application profilers" that will try to predict the applications" read/write pattern
(random/sequential) and then incorporation of them into the Hadoop architecture will help
reap the performance benefits of any current or new storage media.

References

[I] Y. Chen, A. Ganapathi, R. Griffith, R. Katz, "The case for evaluating MapReduce performance using
workload suites", Proceedings of the IEEE International Symposium on Modelling, Analysis, and
Simulation of Computer and Telecommunication Systems (MASCOTS), pp. 390-399, 2011.

[2] J. Dean, S. Ghemawat, "MapReduce: Simplified data processing on large clusters", Proceedings of the
USENIX/ACM Symposium on Operating Systems Design and Implementation (OSDI), pp. 137-150,
2004.

[3] S. Huang, J. Huang, J. Dai, T. Xie, B. Huang, "The HiBench benchmark suite: Characterization of the
MapReduce-based data analysis", Proceedings of the IEEE International Conference on Data
Engineering Workshops (ICDEW), pp. 41-51, 2010.

[4] S. Huang, J. Huang, J. Dai, T. Xie, B. Huang, "The HiBench benchmark suite: Characterization of the
MapReduce-based data analysis", Frontiers in Information and Software as Services, Lecture Notes in
Business Information Processing, vol. 74, pp 209-228, 2011.

[5] https://hadoop.apache.org/

[6] http://www.vertica.com/2011/09/21/counting-triangles/

[7] http://codingwiththomas.blogspot.de/2011/04/graph-exploration-with-hadoop-mapreduce.html
[8] N. Islam, M. Rahman, J. Jose, R. Rajachandrasekar, H. Wang, H. Subramoni, C. Murthy, and D. Panda,

"High performance RDMA-design of HDFS over InfiniBand' Proceedings of the International Conference
on High Performance Computing, Networking, Storage and Analysis (SC), 2012.

[9] H.V. Jagadish, J. Gehrke, A. Labrinidis, Y. Papakonstantinou, J.M. Patel, R. Ramakrishnan, C. Shahabi,
"Big data and its technical challenges", Communications of the ACM, vol. 57, no. 7, pp. 86-94, 2014.

[10] A. Kaitoua, H. Hajj, MA. R. Saghir, H. Artail, H. Akkary, M. Awad, M. Sharafeddine, K. Mershad,
"Hadoop extensions for distributed computing on reconfigurable active SSD clusters", ACM Transactions
on Architecture and Code Optimization, vol. 11, no. 2, article 22, 2014.

[I I] K. Kambatla, Y. Chen, "The truth about MapReduce performance on SSDs", Proceedings of the Large
Installation System Administration Conference (LISA), pp. 109-117, 2014.

[12] S.-H. Kang, D.-H. Koo, W.-H. Kang, S.-W. Lee, "A case for flash memory SSD in Hadoop applications",
International Journal of Control and Automation, vol. 6, no. 1, pp. 201-201, 2013.

[13] T.G. Kolda, A. Pinar, T. Plantenga, C. Seshadhri, C. Task, "Counting triangles in massive graphs with
MapReduce", SIAM Journal on Scientific Computing, vol. 36, no. 5, pp. 48-77, 2014.

[14] K.R. Krish, M.S. Iqbal, A.R. Butt, "VENU: Orchestrating SSDs in Hadoop storage", Proceedings of the
IEEE International Conference on Big Data (BigData), pp. 207-212, 2014.

33

Institutional Repository - Library & Information Centre - University of Thessaly
08/06/2024 04:58:29 EEST - 3.133.122.126

https://hadoop.apache.org/
http://www.vertica.com/2011/09/21/counting-triangles/
http://codingwiththomas.blogspot.de/2011/04/graph-exploration-with-hadoop-mapreduce.html

[15] S. Lee, B. Moon, C. Park, S. Kim, "A case for flash memory SSD in enterprise database applications",
Proceedings of the ACM Conference on the Management of Data (SIGMOD), pp. 1075-1086, 2008.

[16] C. Min, K. Kim, H. Cho, S.-W. Lee, Y.I. Eom, "SFS: Random Write Considered Harmful in Solid State
Drives", Proceedings of the USENIX Conference on File and Storage Technologies (FAST), 2012.

[17] S. Moon, J. Lee, Y.S. Kee, "Introducing SSDs to the Hadoop MapReduce framework", Proceeding of the
IEEE International Conference on Cloud Computing (CLOUD), pp. 272-279, 2014.

[18] M.E.J. Newman, "Networks: An Introduction", Oxford University Press, 2013.

[19] G. Palla, I. Derenyi, I. Farkas, T. Vicsek, "Uncovering the overlapping community structure of complex
networks in nature and society, Nature, vol. 435, pp. 814-818, 2005.

[20] K. Pechlivanidou, D. Katsaros, L. Tassiulas, "MapReduce-based distributed k-shell decomposition for
online social networks", Proceedings of the International Workshop on Personalized Web Tasking
(PWT), pp. 30-37, 2014.

[21] P. Saxena, Dr. Jerry Chou, "How much Solid State Drive can improve the performance of Hadoop
cluster? Performance evaluation of Hadoop on SSD and HDD", International Journal of Modern
Communication Technologies & Research, vol. 2, no. 5, 2014.

[22] S. Sur, H. Wang, J. Huang, X. Ouyang, and D. Panda, "Can high-performance interconnects benefit
Hadoop Distributed File System", Proceedings of the Workshop on Micro Architectural Support for
Virtualization, Data Center Computing, and Clouds (MASVDC), 2010.

[23] T. White, "Hadoop: The Definitive Guide", O'Reilly Media, 2012.
[24] D. Wu, W. Xie, X. Ji, W. Luo, J. He, D. Wu, "Understanding the impacts of Solid-State Storage on the

Hadoop performance", Proceedings of the International Conference on Advanced Coud and Big Data,
pp. 125-130, 2013.

[25] K. Zhang, X.-W. Chen, "Large-scale Deep Belief Nets with MapReduce", IEEE Access, vol. 2, pp. 395¬
403, 2014.

[26] W. Zhao, H. Ma, Q. He, "Parallel k-means clustering based on MapReduce", Proceedings of the
International Conference on Cloud Computing (CloudCom), pp. 674-679, 2009.

[27] http://hadoop.apache.org/docs/r2.5.2/hadoop-project-dist/hadoop-common/ClusterSetup.html

34

Institutional Repository - Library & Information Centre - University of Thessaly
08/06/2024 04:58:29 EEST - 3.133.122.126

http://hadoop.apache.org/docs/r2.5.2/hadoop-project-dist/hadoop-common/ClusterSetup.html

