UNIVERSITY OF THESSALY

MASTER THESIS

Specification and runtime checking of
timing constraints in distributed
event-based applications

ITpoobloploude xan EAEY YOS xoTé T1) OLdEXELY e
EXTEAEOTG YPOVIXWV TIEQLOPIOUY OE XUTAVEUNUEVES

EQUPUOYEC UE YEYOVOTU

Author: Supervisors:
Nasos Grigoropoulos Spyros Lalis
Thanasis Korakis

Petros Lampsas

A thesis submitted in fulfilment of the requirements for the degree of
Master in the

Department of Electrical and Computer Engineering
University of Thessaly

Volos, July 15, 2015

Institutional Repository - Library & Information Centre - University of Thessaly
11/05/2024 21:32:47 EEST - 18.188.60.124



ABSTRACT

Distributed monitoring and control applications that rely on wireless
sensor and actuator networks need to be developed in a structured
and flexible way. Since such applications may have strict timing con-
straints, static analysis methods and tools can be used to achieve their
correct-by-construction design in terms of timing behavior. In addition,
dynamic analysis techniques can test their behavior for a number of dif-
ferent scenarios. However, since at run-time violations of the timing
constraints can still occur due to a variety of reasons, such as an overly
high processing load at some node, or the typically unpredictable and
unreliable nature of the wireless medium, it is equally important to
monitor the systems performance and detect violations of timing spec-
ifications. To this end, we present an event-oriented component model
and runtime system that aims on the one hand to simplify the devel-
opment of distributed event-based applications, and on the other hand
monitor their timing behavior in order to detect timing errors. In par-
ticular, the user writes the code of the component’s event handlers and
specifies the desirable timing characteristics, while the runtime system
records and logs the time that elapses between the generation of an
event and its delivery time, as well as the time it takes for the corre-
sponding handler to process it. In case the respective timing constraint
is not met, a violation is reported, while the user can inspect the local
logs to determine the cause of failure. Notably, the proposed approach
can be used in conjunction with other testing tools during development
to assist in the correct specification of these timing constraints.
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IIEPIAHVH

H ovdntuln xotaveunuéveny eQupuoy®y TapaxohoUnone xou ehEyyou
mou Bactlovtal ot acUpuoTa dixTUN ACVNTAEKY KoL EVERYOTOLNTWY TEETEL
VoL YIVETOL UE VOl OOUNUEVO GANG o EVEMXTO TEOTO. LTV TERINTWOT)
TIOU QUTES Ol EQUPUOYES EYOLY QUG TNEOVEC YEOVIX0UE TEPLORPIOHOVS, Uédo-
dol xau epYahelar o TUTIXAC AVIALOTC UTopoV Vo yenoronomdoly yia vo
emtevyVel o oyedlaouds Toug Ye 660 TO BUVITOV TEOBAEYN YpovixT
CUUTERLPORT, EVE UE T1) YPYOT) SUVAXWDY TEY VXDV 0VIAUCTS xord o TarTon
BUVITOC 0 EAEY YOG TNG CUUTERLPORAS TOUC Yol Eval TAHDOC BlapopeTIXY
oevapiwy evdlapépovtog. (26T600, BEOOUEVOLU OTL GTO TEAYUATIXO TEEL-
Bdhhov eY%aTAO TAOTE TARUPBLACELS TV YPOVIXWY TEPLOPLOUWY UTOROVY Vol
Tparypatonondoly yia Sidpopoug Aoyous, 6mwe efvan 1 utepBoix adEn-
on Tou popTou encéepyaciag oe xdmoto x6uPo, ¥ To cuvidwg anpdfBie-
mto %o avaElémoTo and TN @Oon Tou achpuato U€co, 1 Tapaxololinon
TNC amdBOONG TOUC XAl O EVIOTOUOS TORUBLACEWY TWV YPOVIXWY TEO-
BLaY PPV TOUS XATA TO YedVo exTéleong elvon e&loou onuavtixd. Ilpog
T TNV xATEVYUVOT), TaPOUGLALOUUE EVa LOVTEND TROYEOUUITIONOU Bo-
OWOUEVO GTA YEYOVOTA %o €Val TEPYBAANOV EXTENEOTC TIOU AMOCXOTEL o
(PEVOC, CTNY AMAOTOMON TNG AVATTUENS XATAVEUNUEVWY EQUOUOYMY UE
YEYOVOTA X0 APETEPOL, TNV BIEUXOALVOT) TG TapaxoloviInone Tne yeo-
VIXTIC CUUTEQLYPORAS. LUYXEXQWEVA, O YPNOTNG YRAPEL TOV XWOXA TOV
YERLOTOV YEYOVOTWY TNE eqopuoyic xar xadopilel tor emduuntd yopa-
ATNENOTIXA YPOVIOHOU TOUG, EVE TO TEPYBAANOY EXTEAECTC XATOYPAPEL
xan amodnxedel To ypdvo mou yecohofBel uetadl Tne mopaywyNS EVOS Ye-
YOVOTOC Xal TNG Topddoonc Tou, Xl xaL To ¥eOVO ToL amaTelTon and
TOV AvVTIOTOLYO YERLOTH Yia TNV emedepyaoio Tou. Ye neplntwon napaio-
oNg Tou avticTolyou YPoVixol TEPLOPLOUOU, O YEHoTNG EWomoLelTal, oL
oaxohodwe pnopel vo emiewpnoet TNy Tomixd anoUnxeLpévr TAnpogopla
yia va tpoodlopioel Ty antior g amotuylac. EmmAiéov, n mpotevouevn
TPOCEYYLON UTopEl var Yenowonointel 6To oTddlo avanTung Twv eQap-
HOYWY OE GUVOLACUO UE Ao EpYaAeiot EAEYYOU (OTE VoL CUVORAUEL GTOV
TEOGOLOPIOUO AUTOV TWV YPOVLXMY TEOBLAYPAPWY.
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1

INTRODUCTION

Wireless Sensor Networks (WSNs) are widely used in the monitoring of
physical and environmental conditions and are considered appropriate
for a wide range of applications, such as intrusion detection, precision
agriculture and fire detection, as they simplify deployment and reduce
costs. While early WSN deployments were focused in sensing the en-
vironment and were organized in a centralized way where the gathered
data were being reported to a sink node, through the years, and with
the inclusion of nodes with acting capability, they evolved to more
decentralized architectures where application components running on
different nodes cooperate in order to achieve a common goal.

In such distributed scenarios, direct interaction between the partici-
pating nodes without the mediation of a centralized sink (or a back-end
infrastructure) can offer many advantages concerning the introduced la-
tency and the resource utilization of the already resource-constrained
nodes. However, since the application’s logic is embodied in the net-
work there is a strong need for proper programming abstractions that
will allow the programmer to focus on the high-level interactions instead
of the implementation details. The event-driven software architecture
pattern offers this kind of abstractions by promoting the production
and consumption of events among the application components, and
hiding the event distribution technicalities from the developer.

Performance-wise, during the application development various tech-
niques can be used to obtain upper bound estimates of the execution
time of the applications tasks. Static analysis techniques usually com-
bine the task code with a more or less abstract model of the system
while dynamic techniques are based on execution measurements on a
given hardware or simulator for a sufficient set of test inputs. In addi-
tion to the aforementioned methods, that are primarily focused in the
node-level execution of tasks, for applications exhibiting the distributed
characteristics described earlier the developers can utilize network-level
simulators, while testbeds, large testing infrastructures, can provide
valuable experimental measurements over true wireless topologies.

However, even if extensively tested during development, in the real
deployment the application may not meet its timing requirements due
to a variety of reasons. For instance, the deployment environment can
affect the wireless communications causing significant delays, while in
overload situations the limited in processing power nodes do not behave
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INTRODUCTION

so well. In such cases, it is desirable to monitor the timing behavior of
the distributed system and detect violations of timing specifications in
order to identify possible problematic situations.

Having all of the above in mind, our objective is to create a frame-
work that would give to the application developer the ability to a) write
distributed monitoring and control applications in a simple way; b) de-
fine the timing constraints of such applications; ¢) refine them through
testing; and d) monitor them at run-time.

Our approach addresses (a) and (b) through a lightweight runtime
that supports the development of distributed event-based applications
together with an API for the specification of their timing constraints,
while (c¢) and (d) are tackled through a decentralized software mon-
itoring system. In a nutshell, an application is composed by soft-
ware components that communicate in a loosely coupled way through
application-defined events. Each component consists of a number of
time- and event-triggered operations that have user-defined timing con-
straints. During development the monitoring system assists in the cor-
rect timing characterization by logging the validation results. In the
real-world deployment violations are reported directly to the back-end
from where the validation logs can be inspected in order to derive infor-
mation concerning the cause of violation and act accordingly. There-
fore, we consider the provided functionality a valuable add-on to both
application developers and system administrators.

The rest of this thesis is structured as follows. Chapter 2 points
out the key characteristics of our approach and presents the API that
can be used to develop such applications. Chapter 3 discusses the
application development process with a complete application example.
Chapter 4 introduces the implementation platform, in terms of both
hardware and software while Chapter 5 discusses the main aspects of
our prototype implementation. Chapter 6 demonstrates our framework
for a violation scenario and evaluates our implementation in terms of
its memory and performance overhead. Chapter 7 discusses related
work. Finally, Chapter 8 concludes the thesis and provides directions
for future work.
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2

BASIC CONCEPTS AND API

2.1 KEY CHARACTERISTICS

The main goal of our model is to promote a structured design of moni-
toring and control applications, which is also sufficiently flexible so as to
enable the seamless distribution of the application logic in the WSAN.
Ideally, the developer should program the application and specify the
respective timing requirements without having to worry about its ac-
tual physical placement in the WSAN. Of course, at deployment time,
the different parts of the application must be placed onto the “proper”
nodes, the ones that feature the required sensors and/or actuators. The
key aspects of both our application composition and timing specifica-
tion model are described in the following.

Application composition

The application is structured as a collection of different software compo-
nents that communicate via events, which are defined by an application-
specific event ontology. A component can publish (produce) and sub-
scribe for (consume) specific events. In the typical scenario, producers
are responsible for detecting certain conditions, e.g., by sensing the en-
vironment, and informing the consumers who in turn are responsible
for applying an appropriate reaction, as shown in Figure

node N1 node N2
I
el et e|2 node N3
(a) Interaction logic (b) Composition example

Figure 2-1: Key characteristics of the component model
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2.1 KEY CHARACTERISTICS

A key feature of the components interaction is that components need
not to know about one another in order to exchange events, they merely
need to be producers and consumers of matching events. It is the re-
sponsibility of the underlying runtime system to deliver the produced
events to the respective consumers. Also, a producer is not aware of
the consumer’s reaction which may not be self-contained, e.g., an event
handling operation can involve processing/filtering and may lead to the
production of another event. This loose coupling between the applica-
tion’s components enables the flexible deployment of the application in
the WSAN, while also allows the easy extensibility/ adjustment of an
already deployed application, with the addition, removal, replication
and replacement of components.

This concept is illustrated in Figure 2-Ib The application example
includes four components C1, C2, C3 and C4. Component C1 produces
events of type el which are consumed by components C2 and CJ. In
addition, CJ produces events of type e2 consumed by C8. While in
the depicted deployment scenario C1 and C2 are co-located on node
N1 and the rest are placed on different nodes, in principal, all the
possible combinations would be feasible, without the need to change
the application code.

Component execution

Each component is a collection of event handlers, which are up-called
by the underlying runtime system whenever an event is delivered to the
component, as shown in Figure[2-2] Inside a handler the component can
read a sensor, drive an actuator, do some processing and publish one or
more events. Note, that event handlers should be non-blocking, hence
they are not allowed to contain any endless loops. In the same spirit,
the event publication operation, which occurs via down-calls through
the runtime API, is non-blocking and returns immediately.

Aside from the handlers for application-level events, a component
may have special handlers which are invoked at a user-specified period.
We refer to those handlers as tasks, and their main usage is to poll
sensors.

handler for event e,

read || processf| issue
Application sensor data event

Component
e, e,
Runtime N
System T \L
deliver access startevent
event sensor propagation

Figure 2-2: Component execution.
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2.2 API

Timing specification model

Our timing specification model is focused in the responsiveness, which
is considered an important performance metric for such sense-and-react
systems. More specifically, the programmer can specify the desirable
response time, T}z, of handlers which is defined as the time elapsed
from the moment the event is issued until the moment the event handler
completes its execution. As shown in Figure this interval can be
decomposed into Tiejivery, the time it took for the event to be delivered
to the component, and T} ocess, the time it took the handler to process
the event.

Subsequently, Tgejivery can be further decomposed into the system-
internal delays at the source node (Ts,.) and the destination node (Tyst),
as well as the event transfer time (Tiransfer). Tsre and Tyg capture
the queuing/scheduling delays at the respective nodes, while Tyyqns fer
captures the transmission time and the network stack delays. We cur-
rently treat the network as a “black box” and do not further decompose
Tiransfer- As a consequence, it includes re-transmissions and routing
overhead (in multi-hop networks).

event send receive deliver event
issued  event event event processed

b T Tose !

Trm'nsfer ],_omcess
i

! p Toetivery | ! !
.

source node

destination node

| T | |

Figure 2-3: llustration of timing constraints.

Obviously, for events that are delivered locally Ty ansfer = Tast = 0,
and the delivery delay equals the time the event remains in the queue
before it is delivered to the application, i.e., Tgejivery = Tsre- Since
timeouts can be viewed as a special type of local events, for tasks also
stands that Tyejivery = Tsre-

2.2 API

The programming constructs that can be used to build such distributed
applications are introduced as macros on top of the C programming
language, and are listed in Table placed for reference at the end of
the section. In the following, these constructs are presented through a
simple component that is part of a ping-pong application, depicted in
Figure More specifically, the component in Listing 2-1| periodically
increments a counter and publishes it using a PING_EVENT event while
also handles PONG_EVENT events.
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2.2 API

PING_EVENT

PING

PONG

component component

PONG_EVENT
Figure 2-4: Ping-pong application interactions.

The interaction capability of the component, i.e., the events it pro-
duces and the ones it handles, are explicitly declared using the PRO-
DUCES and CONSUMES macros that take as parameter a comma
separated list of the respective event ids (line 2-3), while its name
(ping) and its textual description ("Ping sender") are specified using
the COMPONENT macro.

A component’s functionality is implemented in a number of tasks
and event handlers (lines 7-18), that can share global data (e.g., line
5). Besides application-level events, there are also system-level ones
automatically generated by our run-time that have to do with the life
cycle of the component. The user can implement handlers for them in
order to initialize the global variables and allocate/free resources.

The association of a handler with an event, and the assignment of
an invocation period to a task is done using the macros listed in the
second part of Table 2-2 More specifically, ON_INIT and ON_FIN
specify the functions invoked at the initialization and the finalization
of the component, and can be NULL if not needed (e.g., line 23). Tasks
are declared with the TASK macro that assigns a unique numerical
id to them and sets their invocation period, as well as their response
time constraint (line 21). Finally, the HANDLER macro associates
a function with an application-level event and also sets its maximum
response time (line 22).

At this point there are two things that need to be noted: a) system-
level event handlers do not have user-defined timing constraints as they
are expected to be executed just once; and b) the functions have dif-
ferent prototypes depending of their functionality as shown in Table [2]
In particular, application-level event handlers take as parameters a
pointer to the event-specific data and the data length (line 16), while
tasks and system-level event handlers are parameterless (line 7, 11).

According to its logic, a component can interact with others (passing
data or just notifying) by calling the non-blocking PUBLISH func-
tion that takes as parameters the event type, a pointer to the event
payload and the payload’s length. For instance, in Listing [2-T} line 10,
a PING_EVENT event containing a counter is published.

Institutional Repository - Library & Information Centre - University of Thessaly
11/05/2024 21:32:47 EEST - 18.188.60.124



2.2 API

Listing 2-1: A simple component

1 | COMPONENT (ping, "Ping sender");
2 | PRODUCES (PING_EVENT);
3 | CONSUMES (PONG_EVENT) ;
4
5 |uint8_t counter;
6
7 |void init(void){
8 counter = 1;
9 |
10
11 |void send_ping(void){
12 counter++;
13 PUBLISH(PING_EV, &counter, sizeof (uint8_t));
14 |}
15
16 | void handle_pong(void #*data, uint8_t len){
17 BLINK_LEDS (RED);
18 |}
19
20 |ON_INIT (init)
21 | TASK (send_ping, 0, SECS(5), MILLIS(50))
22 | HANDLER (handle_pong, PONG_EVENT, MILLIS (150))
23 | ON_FIN(NULL)
Table 2-1: Function signatures
Function prototype Description
void funcName(void); Used by system-level event handlers

and tasks.

void funcName(void *data, Used by application-level event han-

uint8_t len); dlers. Data is a pointer to a byte ar-
ray containing the event-specific pay-
load and len the payload’s length.

Note that the ping component does not direct the published event
to a specific component; it is programmer’s responsibility to define
the appropriate interaction capability to the pong component. Also,
ping is not aware of the event consumer’s location; its implementation
remains the same either they are installed on the same or on remote
nodes. Nonetheless, the physical placement of the components affects
the response time of the PING_EVENT handler.
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2.2 API

Table 2-2: Basic primitives

’ Statement Description
COMPONENT (name, Declares a component named name
nameStr) with nameStr human readable descrip-
tion.
PRODUCES (eventIDs) Declares the types of events that can
be produced by the component.
CONSUMES(eventIDs) Declares the types of events that can

be consumed by the component.

ON_INIT(funcName)

ON_FIN(funcName)

TASK (funcName,
taskID, prd, rspT)

HANDLER(funcName,
eventID, rspT)

Specifies the function invoked (once)
upon the loading/instantiation of the
component.

Specifies the function invoked (once)
upon the unloading/termination of the
component.

Specifies a function scheduled periodi-
cally every prd time units, under the
identifier taskID, with a desired re-
sponse time rspT.

Specifies a function invoked upon the
reception of the application-level even-
tID event, with a desired response time
rspT.

PUBLISH(eventID,
data, len)

Publish an application-level event,
with identifier eventID, payload wvoid
*data and payload size wint8_t len.

Institutional Repository - Library & Information Centre - University of Thessaly
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APPLICATION DEVELOPMENT

3.1 WORKFLOW

The application development process that we envision has four stages,
as illustrated in Figure [3-1

Design & Write
applicaiton <
components

v

Specificy timing
constraints

!

Offline
(simulations) Testbeds —

Deploy & Monitor

M

Test

Figure 3-1: Application development process.

As a first step, the developer has to design the system components,
define the event ontology of the application and implement them using
the API described in section

Then, for each task and event handler of the implemented compo-
nents, he has to specify the desired timing characteristics. This is not
an one-off process and the developer is expected to return several times
to make adjustments.

The testing step is crucial for the validation of the application’s logic,
as well as for the refinement of the timing constraints before the actual
deployment, and a number of toolsEl can be used for this purpose. In
a first phase, using simulators and emulators the developer can ver-
ify the interactions between the application components and also get
good estimates of the application’s timing behavior. In addition, the
application can be deployed in testbeds to observe its behavior in real

1 For more details on pre-deployment tools see section of Related Work Chapter.
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3.2 CASE STUDY

nodes. In each testing phase, the developer can experiment with differ-
ent topologies and component placements, and based on the gathered
information he can go back to one of the previous steps to revise the
timing constraints or in the extreme case alter the application by merg-
ing/splitting components.

Finally, once the application has been sufficiently tested and has
reached a stable state regarding both its structure and its timing spec-
ifications, it can be deployed in the field by installing the components
on the nodes of interest. In this stage, the timing constraints are being
monitored consistently and the system administrator will get alerted in
case a violation occurs in order to act accordingly. At the same time,
by inspecting the logs of the monitoring system on each node, he can
have an overview of the application’s performance and deduce possible
overloading situations.

3.2 CASE STUDY

Consider the case of a fire alarm system. This is a typical example of a
sense-and-react system, where a number of devices cooperate to detect
the presence of fire and notify people through visual and audio means.
Using Wireless Sensor Network technology such a system can be built
utilizing nodes with sensing and acting capability. In the following we
describe how a simple fire alarm application can be developed using
our programming model and following the proposed work-flow. Note
however that the application’s functionality is indicative.

Application design - Component implementation

During the decomposition of the application’s functionality, the re-
quired components can be classified to fire detectors and fire notifiers.
The former monitor different parameters of the environment and when
specific conditions are met they inform the latter in order to act ac-
cordingly.

In order to simplify the implementation, we do not distinguish the
fire detection conditions and the means of notification is a single event
indicating the possibility of fire. Therefore, we let the fire notifying
components act proactively if just one of the conditions is met.

The application components considered in our example and their
functionality are as follows:

e Fire detectors

— temperature monitor, reads periodically the temperature
sensor and checks if a significant temperature increase oc-
curs or a predefined threshold is reached

— gas monitor, reads periodically the gas sensor and checks if
the carbon monoxide concentration exceeds the safe limit

10
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3.2 CASE STUDY

e Fire notifiers
— visual alarm, issues a visual alert by blinking a red led

— audio alarm, issues an audio alert

Their classification and high-level interactions are shown in Figure [3]
while their actual implementation is presented in Listings
Note that since the detection logic is implemented entirely in the fire
detection components, the event they produce does not include any pay-
load. Also, the timing constraints in the components implementation
are left blank as their specification process is discussed in the sequel.

Figure 3-2: High-level structure of the fire alarm application.

Listing 3-1: Temperature monitor component

/* Threshold in Celcius degrees */

#define TEMP_THRESHOLD 60
/* Rate of rise x/
#define TEMP_INCR 7

COMPONENT (temp_monitor, "Temperature monitor");
PRODUCES (FIRE_EVENT);
CONSUMES (NONE) ;

int32_t prev_temp; /* previous reading */

void read_temp (void){
int32_t temp = get_temp();
if ((temp - prev_temp) > TEMP_INCR) ||
(temp > TEMP_THRESHOLD)){
PUBLISH(FIRE_EVENT, null, 0);
}

prev_temp = temp;

ON_INIT(NULL)
TASK(read_temp, 0, SECS(10), -)
ON_FIN(NULL)
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Listing 3-2: Gas monitor component

/* Threshold in ppm */

#define CO_THRESHOLD 65

COMPONENT (gas_monitor, "Gas monitor");
PRODUCES (FIRE_EVENT) ;

CONSUMES (NONE) ;

void check_gas(void){
int32_t concentration = get_gas();
if (concentration > CO_THRESHOLD)) {
PUBLISH(FIRE_EVENT, null, 0);

ON_INIT(NULL)
TASK(check_gas, 0, SECS(5), -)
ON_FIN(NULL)

Listing 3-3: Audio alarm component

COMPONENT (audio_alarm, "Audio fire alarm");
PRODUCES (NONE) ;
CONSUMES (FIRE_EVENT) ;

void handle_fire(void x*data, uint8_t len){
beep () ;
¥

ON_INIT(NULL)
HANDLER (handle_temp, FIRE_EVENT, -)
ON_FIN(NULL)

Listing 3-4: Visual alarm component

COMPONENT (visual_alarm, "Visual fire alarm");
PRODUCES (NONE) ;
CONSUMES (FIRE_EVENT);

void init (void)({
leds_off (LEDS_ALL);

void handle_fire(void x*data, uint8_t len){
leds_toggle (LEDS_RED);
¥

void fin(void){
leds_off (LEDS_ALL);

ON_INIT(init)
HANDLER (handle_temp, FIRE_EVENT, -)
ON_FIN(fin)
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(a) Isolated (b) Partially distributed

(¢) Fully distributed (d) Single node

Figure 3-3: Indicative deployment scenarios of the fire alarm applica-
tion.

Specification of timing constraints - Testing

Since the developer can not be aware of the timing constraints, at first
they can be rough estimates. However, through testing he can try out
several setups, as shown in Figure [3-3] and observe the application’s
timing behavior. For instance, using one of the ”isolated” deployments
illustrated in Figure where some of the components are excluded
and the remaining are installed on the same node, he can obtain the
lower bounds of the response time for the handlers of each fire notifier.
Then, by deploying more distributed scenarios , like the ones depicted
in Figures and and through experimentation with different
radio interference models he can observe the handlers response time
with the network latency taken into account. In the fully distributed
case, in addition, the ideal response time for the tasks of the fire detec-
tors can be obtained since the local load is minimized. On the contrary,
the maximum local load is created in the setup of Figure [3-3d] where
all the components are installed on a single node. Intuitively, this will
lead to the observation of larger response times for the tasks of the fire
detectors.

While some of these component placements may not be realized in
the actual deployment, e.g., the last one requires multi-sensor nodes,
all of them can provide insight concerning the timing bounds of the
application. Thus, it is generally a good practice to try as many con-
figurations as possible in the simulation environment. Also, recall that
component interactions are based on producer/consumer relationships
and are not related to their physical placement. Therefore, in all of the
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3.2 CASE STUDY

aforementioned cases no changes are required in the components code;
a fact that can simplify and significantly accelerate the testing process.

More realistic measurements can be obtained once the testing proce-
dure moves to a testbed. Although it is difficult to reproduce the fire
alarm conditions on the testbed nodes, since they report real sensor
measurements, the developer can employ a mechanism like the virtual
onboard sensors [1] in order to let the sensors produce the desired ar-
tificial data. This way, even on real nodes the application’s code can
remain untouched.

Deployment

Once the developer feels confident about the application’s state, he can
proceed to the real-world installation and observe at run-time its timing
behavior. It is important to stress the fact that the monitoring mecha-
nism used in the field is the same one used during testing. Hence, the
monitoring operation’s overhead has been already taken into account
during the process of specifying the timing constraints.
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IMPLEMENTATION PLATFORM

In this chapter we present some relevant aspects of the implementation
environment, in terms of both software and hardware, upon which our
prototype was built, namely Contiki OS and Tmote Sky.

4.1 CONTIKI OS

Contiki [2] is an open source operating system for low-power, memory-
constrained, networked embedded systems, such as WSNs, written in
the C language. It was created by Adam Dunkels at the Swedish Insti-
tute of Computer Science (SICS) in 2002 and has been further devel-
oped by a world-wide team of developers, from both academia and in-
dustry, constituting a large, active community. Contiki is built around
an event-driven kernel and inter-process communication is implemented
using message passing via events. Among its main features are the pro-
tothreads, a low-overhead mechanism for multitasking, the dynamic
loading and replacement of code at run-time, and its particular focus
on the Internet of Things (IoT).

Architecture

Unlike other embedded OS’s, like TinyOS, where the whole executable
is statically linked at compile time, Contiki’s architecture is modular
allowing the dynamic loading of code at run-time. A Contiki system is
partitioned into the core and the loaded programs as shown in Figure
[} The core, which typically consists of the kernel, the program loader,
libraries, the device drivers and a communication service is compiled
into a single binary and generally once installed, is not modified. In
contrast, the loaded programs can be distributed independently and
can be application processes and services. Their binaries are obtained
using a wireless or wired communication interface and the program
loader is responsible for their integration in the running system.

The kernel is a lightweight scheduler that removes events from the
event queue and dispatches them to the running processes. The pro-
cesses are implemented as general purpose event handlers whose execu-
tion is not interrupted by the kernel and therefore always run to com-
pletion. Communication between them is realized using events that go
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Figure 4-1: Partitioning of a Contiki system.

through the kernel. The events can be synchronous or asynchronous;
the former are put in the event queue and delivered some time later
while the latter are delivered directly being functionally equivalent to
a function call (see Figure [4-2).

Process A

l

Process B

(a) Asynchronous event (b) Synchronous event

Figure 4-2: Event delivery in Contiki

Programming model

Contiki processes are implemented using the programming abstraction
of protothreads |3]| that provides a conditional blocking wait statement.
This allows the developers to contain the high-level logic of their pro-
gram in a single process which has sequential structure, in contrast
to traditional event-driven systems where the control flow has to be
expressed using a state machine. Protothreads are lightweight, since
they run on the same stack, and context switching is done by stack
rewinding.

Dynamic loading
To facilitate reprogramming and code swapping, Contiki supports the

loading of code modules at runtime . The loadable modules must be
in ELF format and may contain a standalone application or a service
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that is intended to replace one already running. Once the ELF binary is
received by a Contiki system, it is typically stored in an external storage
unit and the dynamic loader is responsible for its linking, relocation and
loading into the system’s image.

Supported communication protocols

Contiki supports three networking mechanisms that can be used de-
pending on the application’s requirements. More specifically, two im-
plementations of the TCP/IP stack for 8-bit/16-bit microcontrollers
exist, namely ulP [5] and ulPv6 [6], offering IPv4 and IPv6 connectiv-
ity respectively. For cases where the IP connectivity is not necessary,
Rime [7], a lightweight and multi-layered protocol stack offering best-
effort and reliable communication primitives, can be used instead.

File system

Contiki provides a minimalistic, yet powerfull, flat file system for flash
memories named Coffee |4]. Beyond the API for basic file operations
(open/close, read /write, seek, remove) Coffee offers the ability for more
efficient memory usage through the micro-logs structure it introduced
while additionally it features a garbage collection mechanism for man-
aging the memory’s wear levelling.

Simulation support

COOJA [8], Contiki’s network simulator, offers the ability to run simu-
lation scenarios with three types of nodes: nodes implemented in Java
using the COOJA API, nodes that run the Contiki OS compiled for
the host computer and nodes that run Contiki OS on an emulated
MSP430 platform. The latest feature is offered through the integrated
MSPSim [9] instruction-level emulator.

4.2 TMOTE SKY

Tmote Sky [10] is a wireless sensor platform widely used in both indus-
try and research. It is built upon the Texas Instruments MSP430F1611
microcontroller that features 10 KB of RAM, 48KB of flash (ROM) and
a number of peripherals such as ADC and DAC modules, timers and
USART modules. It is equipped with leds, on-board humidity, temper-
ature and light sensors, an 1 MB external flash storage unit and the
802.15.4-compatible CC2420 radio chip for the wireless communication.
Sky was among the first hardware platforms fully supporting Contiki
while using MSPSim in COOJA simulations it is possible to emulate
the complete platform behavior including its peripherals.
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Figure 4-3: The TMote Sky platform.

4.3 DEVELOPMENT ENVIRONMENT

The development of our work was conducted in the environment pro-
vided by the Contiki community, namely the Instant Contiki virtual
machine, using the MSPGCC toolchain (ver. 4.7.0). All software de-
veloped is based on the version 2.7 of Contiki while the Contiki kernel

was left unmodified.
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IMPLEMENTATION

In this Chapter we present the key aspects of our design and prototype
implementation. In the first section we outline the architecture and
the main parts of a run-time system that supports the development
of distributed event-based applications, as well as the monitoring of
their timing behavior, while in the following we describe in detail their
interactions/operation. Lastly, we provide a concrete description of
how the run-time support is implemented over the Contiki OS.

5.1 MIDDLEWARE ARCHITECTURE

The runtime system is composed of three core services, namely the
FEvent Manager, the Network Manager and the Timing Monitor. These
elements and their interactions are depicted in Figure -1}

Handlerfunctions ——»f
- TaSk fundions ] Data
1
1
* call return

Application
Component

Component Adapter
M M
register ;  deliver publish timing
events events events info
A4 A4 Y
£ ..
] Event Timing
k< Manager Monitor
)
g event t + 1
= | deliver register
£ |timeoutd ! timers mffsages.& violation | store/
s su scrlptloni &log retriove
o messages | logs
Network
Manager
v $ v 4

=
= -
S Timer J Network J
]

Figure 5-1: Middleware overview.

The Event Manager provides the event distribution mechanism to
the application components, which essentially is a distributed publish/
subscribe service. The Network Manager is responsible for connecting
a node with the network. It receives events from the Fvent Manager,
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constructs the respective packets and forwards them to the underlying
network stack in order to be disseminated to the network and vice versa.
The Timing Monitor is responsible for checking the timing behavior of
the locally installed components, logging the validation results and re-
porting violations. Finally, the Component Adapter is a special glue
layer that connects the application components with the runtime sys-
tem by exposing to them the public runtime API, while in addition
intercepts their execution and collects the respective timing informa-
tion for checking their constraints.

5.2 COMPONENT OPERATION
Initialization

When a component is loaded in the system, the Component Adapter
retrieves its produced and consumed events and registers them to the
Event Manager who keeps track of this information for all the locally
installed components. The Event Manager periodically broadcasts the
"aggregated” event subscriptions of the node via advertisement mes-
sages through the Network Manager. Upon the reception of such a
message a check for matches between the events contained in the mes-
sage and the events from the local publishing list takes place. For each
matched event, an entry in a forwarding table associating the event
with the message sender node is created. In addition, at component
loading the Component Adapter retrieves the information about its
tasks and registers the respective timers to the underlying OS timer
module. The respective interactions are depicted in Figure [5-2

Timer Component Event Network
‘ Module ‘ Component ‘ Adapter ‘ Manager ‘ ‘ Manager Network
etevent |  register
. task data | events
register ; A
timers ; : .
advertise | transmit
i subscriptions | subscriptions
L : =IJI
update i check matches ! receive

iforwardingtablei subscriptions !

Figure 5-2: Component initialization sequence diagram.
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Interaction

When a component publishes an event this is dispatched asynchro-
nously to the Fvent Manager. The FEvent Manager firstly checks if
there are any local components subscribed for this event type and in
case this is true the event is delivered synchronously to each one of
them, in a serial manner. Subsequently, it checks the forwarding table
for remote nodes associated with the specific event and in case there
are any it invokes the Network’s Manager functions that take care of
creating and transmitting the respective event messages.

Upon the reception of an event message, the Network Manager dis-
patches it to the Event Manager who in turn delivers it to the locally
subscribed components. Finally, when a component receives an event
the appropriate handler is invoked. The described event publishing and
handling procedures are depicted in Figure [5-3

Component Event Network
Component Adapter Manager Manager Network

i issue | publish i ! i
! event ! event ' ; :

: > * disseminate !

i : i event

" {
| ; i i transmit !
! H ' ! event !
' H ' ' >
! i ! disseminate ! receive :
; ; i event i event i
! i deliver 7| v H
: ; event ; i '

‘- 1
' handler ' ! ' '
! call ! : i !

! handler ! : :
return i i i

Figure 5-3: Event publishing and handling sequence diagram.

Our prototype implementation deals with one-hop networks but the
provided functionality can be easily extended to multi-hop networks by
employing a network-wide broadcast mechanism and an ad-hoc routing
protocol like AODV [11]. Alternatively, one can use mature ad-hoc
wireless networking technologies, such as ZigBee [12], that come with
built-in routing support.
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5.3 MONITORING OF TIMING CONSTRAINTS

In order to monitor the response time constraint of tasks/handlers at
run-time knowledge of their release time, i.e., the issue time of the
event that causes their execution, and their end of execution time is re-
quired. For tasks the issue time is retrieved through the system’s timer
interface while for application-level event handlers it is encapsulated in
the event as meta-data. Furthermore, in accordance with the timing
model presented in section and in order to provide better monitor-
ing functionality, additional timestamps are included during the event
flow from the producer to the consumer as shown in Figure

Component Event Network
Component Adapter Manager Manager Network
| issue ; publish ; | ;
| event ! event ! ' i
| M disseminate | :
H TSl’ssue: i event '
| ; ' i transmit
| 1 | | event !
E E i ': Tssnd i
i disseminate ! receive
: | : event : event :
: deliver . :
| . event | R e
1 4 1 1
handler ' ! ' '
: call ! . . |
i« s, : : :
handler ' ' '
i return ; i : :
Tsend

Figure 5-4: Timestamping points in the event flow.

Since a locally generated event may be handled in a remote node,
time synchronization is required. To achieve this, the nodes must have
their clocks synchronized or alternatively have knowledge of their clocks
offset in respect to the other nodes. For our prototype implementation
the second approach was chosen and upon the reception of a remote
event, its occurrence time stamp is adjusted accordingly.

The message exchanges of the synchronization protocol are depicted
in Figure and are similar to the Cristian’s algorithm [13]. More
specifically, each node periodically broadcasts a SYNC_REQ message to
the network and waits for a timeout. When a SYNC_REQ is received by
a node, it responds to the originator via a unicast SYNC_RESP message
that includes its current timestamp (T} emote). When the originator re-
ceives a SYNC_RESP message within the timeout, it calculates the phase
offset of the remote node. The network delay, assuming that is equal
in both directions, is estimated by measuring in the originator’s side
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the time at which the request is sent (7s,4) and the time at which a
response is received (T}.¢,) and is equal to Thet = (Trey — Tspa) /2. The
phase offset is then calculated according to the following formula:

Toffset = |Trcv - (Tremote + Tnet)|)

Figure 5-5: Synchronization protocol.

Whenever a task/handler is executed, the Component Adapter col-
lects the timestamps, retrieves the response time constraint along its
identification data and report them to the Timing Monitor who evalu-
ates them and logs the results.

Each log consists of the component’s name, the task’s/handler’s iden-
tifier, the response time constraint and the response time breakdown.
In addition, information about the event’s source (local/remote) and
the local time stamp are saved.

In case a violation occurs, a violation report, composed by the task’s/
handler’s identification data and the local time stamp, is delivered to
the end user. The user in turn has the ability to inspect/query/retrieve
the local logs of a node through a request-reply protocol. Additionally,
utilizing the information of a violation report he can optionally specify
the component of interest whose logs are to be returned. The respective
message exchanges are depicted in Figure

Figure 5-6: Violation reports and log retrieval sequence diagram.
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Violation reports and log requests/responses can be delivered through
a local serial connection or through a wireless interface to a distin-
guished gateway node that has the responsibility of notifying the end
user. The first option is feasible for testbed environments while the
latter is more suitable for real deployments. The address of this dis-
tinguished gateway node, as well as the memory type used for the logs
history storage and its reserved size are specified via a configuration
file.

5.4 RUNTIME SUPPORT

Since our runtime is built on top of the Contiki operating system [2]
it relies on the C programming language. It provides the constructs
described in Section [2.2] by making extensive use of C macros and
moving most of the added complexity at compilation time. Also, a
minimal amount of pre-processing is required. This is done using a
dedicated pre-processor that takes as input a component’s source file
and creates the Contiki-valid code. The code transformation process,
demonstrated in Listings and for the example ping component
of section is as follows:

e the COMPONENT (<name>,<stringName>) statement is split in a
#define COMPONENT_NAME <name> placed in the start of the file
(line 1) and a COMPONENT (<stringName>) macro placed after the
declaration of the publishable and subscribed events (line 4).

e global variables are declared as static (line 6)

o for each task, a timer is declared (line 7) and a reference to it is
added in the respective TASK macro (line 16).

Listing 5-1: Pre-processed code Listing 5-2: Contiki-valid code
1 COMPONENT (ping, "Ping sender"); #define COMPONENT_NAME ping
2 PRODUCES (PING_EVENT) ; PRODUCES (PING_EVENT) ;
3 | CONSUMES (PONG_EVENT) ; CONSUMES (PONG_EVENT) ;
4 COMPONENT ("Ping sender");
5
6 uint8_t counter; static uint8_t counter;
7 static struct etimer et;
8
9 /* Fuction definitions */ /* Fuction definitions unchanged */
10 | void init(void){...} L/

11 | void send_ping(void){...}
12 void handle_pong(void* data,

13 uint8_t len){...}

14

15 | ON_INIT (init) ON_INIT (init)

16 | TASK(send_ping, 0, 5000, 50) TASK (send_ping, 0, &et, 5000, 50)
17 HANDLER (handle_pong, PONG_EV, 150) HANDLER (handle_pong, PONG_EV, 150)
18 | ON_FIN(NULL) ON_FIN (NULL)

Components are mapped to Contiki processes and their internal rep-
resentation, called the component control block (CCB), is a struct en-
capsulating a Contiki process control block with some extra fields (see
Listing. The first field, next, points to the next component control

24

Institutional Repository - Library & Information Centre - University of Thessaly
11/05/2024 21:32:47 EEST - 18.188.60.124
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block in the linked list of active components. Name is a pointer to the
component’s textual name while id is a numerical identifier which is
assigned at runtime. Produces/consumes point to the lists of events
declared through the PRODUCE and CONSUME macros and finally state
holds the component’s current state.

Listing 5-3: The component control block

struct component {

struct component *next; /* pointer to the next component =/

struct process xprocess; /* pointer to the process control block x/
void *xname; /* pointer to the component/process name x*/
uint8_t id; /* component id, assigned by the runtime =x/
void *xproduces; /* pointer to the publishable events x/
void *consumes; /* pointer to the subscribed events x/

uint8_t state; /* component state x/

}s

The component control block is not declared or defined directly, but
through the COMPONENT () macro, which takes as parameter the textual
name of the component, while its variable name is defined indirectly
through the COMPONENT_NAME define.

For structuring the component’s code instead of using the protothreads
abstraction [3], a simpler event-driven approach is followed. More
specifically, the ON_INIT, TASK, HANDLER and ON_FIN macros form the
component’s functions look-up table. The latter additionally defines
the respective Contiki process thread whose body includes a single call
to a dedicated function of the Component Adapter, responsible for in-
voking the appropriate function (task/handler).

The Component Adapter also controls the components life cycle.
When the runtime is initialized, this module reads the lists of publish-
able/subscribed events of all the components included in an ”autostart”
list, in the spirit of Contiki’s respective list, and registers them to the
Event Manager. After the advertisement phase is finished it posts syn-
chronously the standard Contiki process initialization event to all of
them serially, starts their timers and sets their state to ACTIVE. In this
state, a component can receive/publish events and execute its periodic
operations. Moreover, since Contiki does not support periodic timers,
whenever a task is invoked this module is also responsible for resetting
the associated timer. A component can be deactivated only through an
explicit request from the back-end which is handled by the Component
Adapter.

All the core runtime services, i.e., Event Manager, Network Man-
ager and Timing Monitor are implemented as Contiki processes that
receive and send custom Contiki events. More specifically, when the
Network Manager receives a packet containing an application event it
posts REMOTE_PUBLISHING event to the Event Manager. The latter also
handles LOCAL_PUBLISHING events posted by the components through
the Component Adapter’s PUBLISH statement. While these events are
delivered asynchronously through Contiki’s general event queue, the
dispatching of application-level events from the Event Manager to the
components is done via synchronous events. Finally, the Timing Mon-
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itor receives asynchronous CONSTRAINTS_CHECK events from the Com-
ponent Adapter whenever a handler completes its execution, logs the
checking results and in case of a violation transmits a violation report
message to the back-end. In case the external flash is selected as the
storage medium of the logs, the Coffee File System [4] is being used.
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EVALUATION

In this Chapter we evaluate our prototype implementation in terms of
its memory and performance overhead, as well as its timing violation
detection functionality.

6.1 MEMORY FOOTPRINT

The memory requirements of our runtime system are analyzed in Ta-
ble -1} The binary code accounts for less than 4.5 Kbytes in total,
which is roughly a 15% increase over the basic Contiki OS including
the Rime stack layers for one-hop communication and the Coffee file
system. Apart from a small fixed overhead, RAM consumption depends
on several parameters, whose (maximum) values can be set when build-
ing the system. Specifically, the additional RAM required by the Fvent
Manager is X =24 x e+ s+2x (p+c¢) +8x f, where e is the size of
the application-level event queue, p is the total event payload size, p
and c are the number of locally produced and consumed events, and f
is the number of entries in the event forwarding table. For the Network
Manager, the extra RAM usage is Y = 6 x o, where o is the number
of entries in the clock offset table. Finally, for the Timing Monitor the
additional RAM required is Z = 42 x [, where [ is the size of the log
history (I = 0 if logs are kept on the external flash). As an example,
ifp=c=f=e=5s=100, 0 =1 and [ = 0, the total amount
of RAM used is 378 B. For this configuration, the combined image of
Contiki and our runtime system leaves over 32% of ROM and 69% of
RAM free for application development on the TMote Sky.

Table 6-1: Memory consumption of the runtime system

Module Code (B) RAM usage (B)

Component Adapter 1198 0

Event Manager 1116 344+ X

Network Manager 1806 40 +Y

Timing Monitor 232 18+ Z

Total 4352 924+ X +Y +Z7
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Table 6-2: Execution overhead of the runtime system

Configuration Response Overhead
time (ms) (ms)
Native Contiki application 0.098 -
Runtime with basic
event delivery 0.386 0.288
+ timing violation detection 0.671 0.573
+ logging in RAM 0.750 0.652
+ logging in FLASH 3.042 2.944

6.2 PERFORMANCE OVERHEAD

To assess the time penalty introduced by our runtime system, we have
measured the event response time for a test application comprised of
two components that interact in a ping-pong event loop. The appli-
cation does not perform any actual processing of the events. Both
components reside on the same TMote Sky node running at 3.9 MHz,
and the results are averaged over 1000 iterations. Table gives the
end-to-end response time and overhead for different versions of the run-
time system where more functionality is added in an incremental way.
As a reference, we use a native version of the application that runs
directly on top of Contiki (first row).

The overhead of the basic version of the runtime system (event de-
livery only) is due to memory copying (for the event payload) and the
look-up in the local event subscription table. Then, timing monitor-
ing introduces additional overhead mainly due to event timestamping
and violation checks. Finally, more time is needed to store the timing
information produced in the log — if the log is kept on external flash
storage this becomes the most important cost component (by an order
of magnitude compared to everything else). Although the overhead
is substantial (even with logging in RAM) for a “null” application, it
is quite small in absolute terms and its relative importance will drop
significantly for applications that actually perform some processing.

6.3 DETECTION OF TIMING VIOLATIONS

To verify that our runtime system can indeed detect timing constraint
violations, we use an application composed of a Temperature Monitor
component that polls the temperature sensor every 1 second and issues
TEMP_EV ENT events containing the measured value, and an Alarm
Detector component that handles them. The timing constraint of the
respective event handler is set to 50 ms. Each component resides on
a different TMote Sky node. In addition, a third node is used as an
interferer which transmits dummy packets at a high rate. The Network
Manager sends the event messages using Contiki’s Rime stack reliable
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6.3 DETECTION OF TIMING VIOLATIONS

unicast primitive with four retransmissions in 250 ms intervals. The
interferer uses the plain (unreliable) unicast primitive, with the dummy
packets being addressed to a non-existent node.

Figure 6-1: Experiment setup

The test scenario, depicted in Figure has three phases: (i) the
two nodes that host the application’s components boot up in isolation
for 50 seconds; (ii) the interferer node is turned on and injects noise for
50 seconds; (iii) the interferer is turned off, and the other two nodes
continue their execution for another 50 seconds. Figure [6-2] plots the
recorded response time for the TEM P_EV ENT handler of the Alarm
Detector component on the second node. As can be seen, timing vi-
olations are detected/reported when the interferer is turned on. By
inspecting the logs we confirmed that during the test run both Ty,
and Tys were around 0.7 ms and at no point exceeded 0.9 ms, while
Tprocess Was constant at 0.06 ms. What actually varies and results in
the sharp rise of the end-to-end response time is Ti,qns fer, due to packet
loss and the increased number of retransmissions required to deal with
it at the network layer.

Response Time (ms)
o

phase (i) phase (ii) phase (iii)

N I —

50 100 150

Time (s)

Figure 6-2: Application response time during the test run.
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RELATED WORK

In this Chapter we briefly discuss indicative application composition
models and techniques for the specification and monitoring of timing
constraints.

7.1 APPLICATION COMPOSITION MECHANISMS

Component-based programming: In component-based program-
ming, an application is composed by a number of components wired
together through well-defined interfaces. Each component can be seen
as a black-box that has a set of provided interfaces, representing the
functionality it offers, and required interfaces specifying dependencies
on functionality offered by others. In the area of WSNs a lot of work
has been done towards this direction, and the proposed models span
from operating system libraries to middleware solutions.

Typical examples of operating system libraries are nesC [14] and
OpenCom [15]. NesC, which supports the TinyOS |16] operating sys-
tem, provides a static component model where at compile-time an ap-
plication composition is optimized and compiled into a monolithic im-
age. On the contrary, OpenCom, which supports the Lorien [17] WSN
OS, is a dynamic model where each component remains independent
throughout the application lifecycle. Components can be instantiat-
ed/destroyed and connected/disconnected at run-time. Furthermore,
components can be completely and independently unloaded from the
system image at runtime, or other components loaded and integrated
into the running system image.

On the other hand, Remora [18] and RUNES [19] are two well known
middleware solutions focused in the run-time reconfiguration. In Remora,
components and application compositions are described in XML. For
each component except from the provided and required interfaces the
produced and consumed events and properties are specified, with the
latter being used for the parametrization of components at run-time.
While Remora targets only on application-level programming, RUNES,
which is a branch of OpenCom, provides a middleware kernel API that
can be used to build compositions of both application- and middleware-
level components.

30

Institutional Repository - Library & Information Centre - University of Thessaly
11/05/2024 21:32:47 EEST - 18.188.60.124



7.1 APPLICATION COMPOSITION MECHANISMS

Although component models provide a powerful abstraction for com-
posing applications from generic and reusable building blocks, in gen-
eral they focus in the node-level programming and do not support dis-
tributed relationships between components. In case such relationships
must exist it is developer’s responsibility to implement the right dis-
tribution mechanisms. For instance, in RUNES associations between
remote components can be realized through Component Frameworks
(CFs) providing interaction services. Therefore, our work is orthogonal
to these models, as we target distributed application scenarios.

Coordination programming: Coordination is a programming para-
digm whose goal is to separate the definition of the individual behavior
of the application components from the mechanics of their interaction.
This is usually achieved using message passing or data sharing as a
model of interaction. Publish/subscribe is an example of the message
passing model where a subscriber has the ability to express its interest
in an event, or a pattern of events, in order to be notified subsequently
and coordination occurs only through the exchange of messages (events)
among publishers and subscribers. On the other hand, tuple spaces are
an example of data sharing where communication takes place through
the insertion/removal of tuples, into/from the tuple space which is an
abstract of shared memory.

Mires [20], ESCAPE [21] and TinyCOPS [22] are publish/subscribe
WSN middlewares built on top of the static component model pro-
vided by TinyOS, while the Loosely-Coupled Component Infrastruc-
ture (LooCI) [23] offers a dynamic component model. Mires follows a
centralized approach where the subscriptions are driven by and notifi-
cation are forwarded to the end-user through the sink node whereas the
other solutions let remote components interact directly with each other.
In addition, Mires and LooCI use a simple topic-based naming scheme
where the publishers transmit all data referred to the subscribed topics
while the other two allow more expressiveness through content-based
filtering. In TinyCOPS this is achieved by augmenting the subscrip-
tions API with constraints over the content of the published data while
ESCAPE supports it by means of policies which are separated by the
components implementation.

Hood [24] and TeenyLime [25] on the other hand, are middlewares
that revolve around the notion of data sharing within the scope of a
local neighborhood in WSNs. In Hood the elements that a node can
share are defined through its attributes and local updates are reflected
to the neighbors through periodic broadcasting and filtering on the
receiver’s side, while in TeenyLime, which is based on the tuple spaces
paradigm, the tuple spaces are distributed among the devices and data
are transiently shared with the one-hop neighbors.

Both message passing and data sharing paradigms allow high decou-
pling in space and time among event source nodes and event handling
nodes that fits well the inherent event-driven communication model
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7.2 TIMING CONSTRAINTS SPECIFICATION AND RUN-TIME MONITORING

of WSNs. With respect to the aforementioned solutions, our design
approach and programming model has similarities mainly with LooCI
which, however, targets more resource-rich wireless devices. In LooCI
associations between components are specified before deployment or
established at run-time through explicit requests from the back-end.
Differently, in our runtime associations between components are not
programmer’s nor network administrator’s concern, but are formed and
refreshed dynamically through periodic advertisements of the local sub-
scriptions.

7.2 TIMING CONSTRAINTS SPECIFICATION AND RUN-TIME MON-
ITORING

The specification and validation of timing constraints is the process of
describing the timing requirements of specific operations in an applica-
tion and checking them before or after the application deployment.

Pre-deployment methods: During development static and dynamic
timing analysis techniques can be used to obtain estimates of the exe-
cution time and build correct-by-design systems.

Static methods are typically performed by combining some version of
the code (source or object) with a model of the hardware architecture.
More specifically, through program path analysis they derive feasible
execution paths while through the system modelling they get the corre-
sponding instruction timing information. Subsequently, the worst-case
execution time (WCET) is estimated as the program path with the
maximum cost. Such a method is described in [26] while a popular
static analysis tool for embedded systems is Chronos [27].

Dynamic methods are based on measurements retrieved by execut-
ing the code on a given hardware or simulator for some set of test in-
puts. MSPSim [9] and WSim [28] are cycle-accurate WSN simulators
that provide profiling and monitoring tools and can emulate complete
MSP430-based platforms. Respectively, Avrora [29] and ATEMU [30]
provide this functionality for the AVR microcontrollers. On the other
hand, measurements on the hardware can be retrieved in the node-
level using in-circuit programmers, emulators and debuggers, while in
the network-level testbeds, large testing infrastructures, offer the abil-
ity to experiment over true wireless topologies. Notable WSN testbed
are SmartSantader [31] and Wisebed [32], which offers the ability to
combine real nodes with simulated and emulated ones.

In addition, real-time operating systems (RTOS), where the correct-
ness of the system depends not only on the logical results of computa-
tion but also on the time at which these results are produced, advanced
scheduling algorithms such as rate-monotonic and fixed-priority pre-

emptive scheduling are employed in order to guarantee that deadlines
are met. Example RTOS for WSNs are uC/OS-II [33], FreeRTOS [34]
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7.2 TIMING CONSTRAINTS SPECIFICATION AND RUN-TIME MONITORING

and Nano-RK [35] which adapts the Resource Kernel paradigm [36] in
sensor networks and provides guarantees through static resource reser-
vations based on offline estimates of CPU time, packet rates, and sensor
sampling intervals used by the application tasks.

Our work is complementary to all of these techniques that help in the
timing characterization of the applications. In fact, it is intended to be
used in conjunction with them in order to specify the timing properties
taking into account the overhead of the run-time monitoring.

Run-time monitoring: Monitoring of timing constraints has been
widely studied and several approaches have been proposed to detect
event occurrences on the target system and gather the respective timing
information, either for post-processing or for run-time verification.

Hardware and hybrid monitoring approaches [37] [38] [39], utilize
dedicated hardware devices that snoop the target system bus to detect
event occurrences and gather the respective timing information. While
they offer non-intrusiveness to the target system, they are costly to
implement and rather inflexible as the dedicated hardware depends on
the target system.

On the contrary, software monitoring approaches offer more flexibil-
ity and portability at the cost of intrusiveness (prode effects). The ART
Real-Time Monitor |40] is a software monitoring tool focused on the vi-
sualization of the timing behavior of the system processes in distributed
real-time systems. To this end, in the target system the corresponding
state-changing events are recorded and subsequently reported to a re-
mote host for further processing. A different approach is followed by
Jahanian et al. in [41] where they present a method that utilizes a con-
straint graph based algorithm for detecting violations of user-defined
timing assertions at the earliest possible time in distributed real-time
systems.

In the area of WSNs there are several works focused in the post-
deployment monitoring of the network. SNMS [42] is a network man-
agement system which on the one hand provides continuous user-driven
monitoring of (local) application attributes through a query system and
on the other hand offers program-driven notification of one-time events
through an event logging system. PDA [43] allows the user to insert
distributed assertions in the form of Boolean expressions over local
and remote node attributes in the source code. In each node whenever
a local attribute changes value or an assertion is executed respective
messages tagged with a global time stamp are published and passively
collected for evaluation in the back-end. PD2 [44] intends to help users
identify /locate the sources of performance degradation in distributed
WSN applications. To achieve this, it models the data flows generated
by the application as causal paths in a graph of software components
and relates poor application performance to significant data losses or
latencies of some data flows as they traverse the software components
on individual nodes and through the network.
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With SNMS and PDA developers and system administrators can de-
bug and monitor a WSN at run-time but none of them provide mech-
anisms for the detection of timing constraints violations. PD2 could
provide such information but its monitoring operation is triggered only
in case poor performance is exhibited. Thus, it is not appropriate for
the validation of timing constraints, which should be a continuous pro-
cess.

More close to our work is Breadcrumbs [45] which offers similar func-
tionality for detecting violations of timing constraints at runtime. In
Breadcrumbs events refer to state changes in the system, and the con-
straints specification is related to event flows, defined by an initial and
a final event. Before deployment all possible paths of event flows are
analyzed and validation checking code is inserted. At run-time, when a
violation is detected, in the final event’s handling method, the user gets
alerted and can query the network to retrieve the actual path of the
event flow along with the time consumption of each participating soft-
ware module. However, if the earliest possible detection of a violation
is desirable, the event flow should be divided to smaller pieces. Com-
pared to our work, it is less flexible since the modification of a single
timing constraint requires recompilation the application programs; a
fact that could significantly slowdown the testing process in large-sized
programs.
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CONCLUSION

In this thesis we presented a programming model and runtime system
for (a) structuring a distributed WSAN application in terms of compo-
nents that interact via events, (b) specifying constraints regarding the
respective event response times, and (c) checking these constraints dur-
ing execution. By inspecting the information produced, it is possible
to see not only whether there are any timing violations but also their
breakdown along the entire end-to-end path.

Several enhancements could greatly augment the current solution’s
functionality. First of all, we are considering to prioritize the event
forwarding/delivery operations based on the timing specifications. This
way we could support, to some extent, QoS to the applications. We
also think of including report analysis functionality to the back-end
making the debugging procedure more automated.

Finally, since our solution targets both application developers and
system administrators, we wish to evaluate our system and get feedback
from real users. Towards this direction we have already ported Contiki,
along our runtime, to a commercial-strength WSN platform and
we plan to make extensive evaluations in the field.
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