
UNIVERSITY OF THESSALY

IMPLEMENTATION OF A FACE DETECTION
ALGORITHM ON A RECONFIGURABLE

PLATFORM

Author:

Aikaterini Servou

Supervisors:

Dr. Nikolaos Bellas,

Associate Professor

Dr. Christos D. Antonopoulos,

Assistant Professor

A Thesis submitted for the degree of

Diploma of Science in

 Computer and Communication Engineering

University of Thessaly

Department of Electrical and Computer Engineering

Volos, Greece

July 2015

2

3

IMPLEMENTATION OF A FACE DETECTION

ALGORITHM ON A RECONFIGURABLE PLATFORM

ΤΛΟΠΟΘΗ΢Η ΑΛΓΟΡΘΘΜΟΤ ΑΝΑΓΝΩΡΘ΢Η΢

ΠΡΟ΢ΩΠΟΤ ΢Ε ΕΠΑΝΑΠΡΟΓΡΑΜΜΑΣΘΖΟΜΕΝΗ

ΠΛΑΣΦΟΡΜΑ

By

Aikaterini Servou

A THESIS

Submitted in partial fulfillment of the requirements for the degree of

DIPLOMA OF SCIENCE

In Computer and Communication Engineering

UNIVERSITY OF THESSALY

2015

© 2015 Aikaterini Servou

4

Declaration of Authorship

We, Aikaterini Servou and Christos Vakerlis, hereby certify that this thesis titled,

‗Implementation of a face detection algorithm on a reconfigurable platform‘ and the

work presented in it has been composed by us and is based on our own work, unless

stated otherwise.

The research was carried out wholly or mainly while in candidature for the graduate

degree of Diploma of Science in Computer and Communication Engineering at the

University of Thessaly, Department of Electrical and Computer Engineering, Greece.

Wherever we have consulted or quoted from the work of others, it is always attributed

and the source is given. The main sources of help are referenced in the Bibliography

section of this thesis.

Copyright © 2015 by Aikaterini Servou, Christos Vakerlis

―The copyright of this thesis rests with the authors. No quotations from it should be

published without the authors‘ prior written consent and information derived from it

should be acknowledged‖.

5

Dedicated to our families

6

Acknowledgements

With the fulfillment of this project, we would like to thank both of our

supervisors Dr. Nikolaos Bellas and Dr. Christos Antonopoulos for the great

collaboration, and especially our professor Dr. Nikolaos Bellas for his

continuous guidance and help throughout the semester, which played a vital

role in tackling many unpredictable difficulties in the process of fulfilling our

Thesis.

Moreover, we would like to thank all of our friends for their company and

psychological support in this magnificent journey of knowledge that has now

come to its end.

At this point we would like to express our gratitude to all our professors who

put their faith in us and urged us to do better.

In conclusion, we would like to thank our families for the love and support

they provided us through our entire lives, for the sacrifices they made on our

behalf and for believing in us.

7

Abstract

Field Programmable Gate Array (FPGA) technology has gained vital importance

mainly because of its parallel processing hardware which makes it ideal for image and video

processing. In this paper, a step by step approach to apply linear spatial and temporal filters

on real time video frame sent by Omnivision OV7670 camera using Zynq Evaluation and

Development board based on Xilinx XC7Z020 has been discussed. Face detection application

was chosen to explain above procedure. This procedure is applicable to most of the complex

image processing algorithms which needs to be implemented using FPGA.

Face detection is one of the challenging problems in Computer Applications and it is

widely used for many purposes, especially in digital photography, video surveillance,

biometrics and video coding. The applicability of face detection in energy conservation is not

as obvious as in other applications. It is, however, a very time consuming task, hence,

implementing it in hardware is of primary importance when a real time face detection system

is needed.

The purpose of this Thesis was to implement a real-time system on a ZedBoard

FPGA to detect a human face. The face detection system mainly consists of a camera and its

controller that provides a live streaming of RGB color pixels, a module that converts RGB to

YUV color pixels and detects if a pixel is a skin one or not and filter modules that erode and

dilate the regions with skin pixels in order to deplete the noise and the non-skin objects. A

temporal filter was also implemented in order to reduce flickering as even small changes in

lighting could make the result displayed on the VGA screen less stable and finally an attempt

to track the faces from the video streaming.

There are also some filters on the skin regions that algorithm involved color-based

skin segmentation and image filtering. The face location was determined by calculating the

centroid of the detected region. A software version of the algorithm was independently

implemented and tested on still pictures in MATLAB. Although the transition from

MATLAB to Verilog was not as smooth as expected, experimental results proved the

accuracy and effectiveness of the real-time system, even under varying conditions of lights,

facial poses and skin colors. All calculation of the hardware implementation was done in real

time with minimal computational effort, thus suitable for power-limited applications.

8

Περίληψη

Η ηερλνινγία ζπζηνηρηώλ επηηόπησλ πξνγξακκαηηδόκελσλ ππιώλ (FPGA) έρεη

εμειηρζεί ζε δσηηθήο ζεκαζίαο θπξίσο ιόγσ ηεο παξάιιειεο επεμεξγαζίαο ηνπ πιηθνύ, ην

νπνίν ην θαζηζηά ηδαληθό γηα επεμεξγαζία εηθόλαο θαη βίληεν. Σε απηή ηε δηπισκαηηθή

δηαηξηβή επηρεηξείηαη κία βήκα πξνο βήκα πξνζέγγηζε ηεο εθαξκνγήο γξακκηθώλ ρσξηθώλ

θαη ρξνληθώλ θίιηξσλ ζε πξαγκαηηθνύ ρξόλνπ θαξέ, ηα νπνία απνζηέιινληαη από ηελ

θάκεξα Omnivision OV7670 ρξεζηκνπνηώληαο ηελ πιαηθόξκα ZedBoard Xilinx XC7Z020.

Η εθαξκνγή αλίρλεπζεο πξνζώπνπ επηιέρζεθε γηα λα επεμεγήζνπκε ηελ παξαπάλσ

δηαδηθαζία. Απηή θπξίσο ε εθαξκνγή ρξεζηκνπνηείηαη σο βάζε γηα ηνπο πεξηζζόηεξν

ζύλζεηνπο αιγνξίζκνπο επεμεξγαζίαο εηθόλαο κε ηε ρξήζε θάπνηαο FPGA.

Η αλίρλεπζε πξνζώπνπ έγθεηηαη ζηηο κεγαιύηεξεο πξνθιήζεηο ππνινγηζηηθώλ

εθαξκνγώλ θαη επηπιένλ ρξεζηκνπνηείηαη γηα πνηθίινπο ζθνπνύο, θπξίσο ζε ςεθηαθή

θσηνγξαθία, παξαθνινύζεζε βίληεν, βηνκεηξηθά ζηνηρεία θαη θσδηθνπνίεζε βίληεν. Η

εθαξκνζηκόηεηα ηεο αλίρλεπζεο πξνζώπνπ γηα ηελ εμνηθνλόκεζε ελέξγεηαο δελ είλαη ηόζν

πξνθαλήο όζν ζε άιιεο εθαξκνγέο. Είλαη, σζηόζν, έλα ρξνλνβόξν έξγν θαη σο εθ ηνύηνπ ε

πινπνίεζή ηνπ ζε πιηθό είλαη πξσηαξρηθήο ζεκαζίαο ζε πεξηπηώζεηο πνπ απαηηείηαη ε ρξήζε

ελόο ζπζηήκαηνο αλίρλεπζεο πξνζώπνπ πξαγκαηηθνύ ρξόλνπ.

Σθνπόο απηήο ηεο δηπισκαηηθήο δηαηξηβήο είλαη ε πινπνίεζε ελόο ζπζηήκαηνο

πξαγκαηηθνύ ρξόλνπ ζε κία πιαθέηα ZedBoard FPGA γηα ηελ αλίρλεπζε αλζξώπηλσλ

πξνζώπσλ. Τν ζύζηεκα αλίρλεπζεο πξνζώπνπ απνηειείηαη θπξίσο από ηελ θάκεξα θαη ηνλ

ειεγθηή πνπ παξέρεη κία δσληαλή ξνή από RGB pixels ρξώκαηνο, κία κνλάδα πνπ κεηαηξέπεη

ην RGB ζε YUV pixels ρξώκαηνο θαη αληρλεύεη εάλ ην pixel αληηζηνηρεί ζε δέξκα ή όρη,

θαζώο θαη θίιηξα δηάβξσζεο θαη δηαζηνιήο ησλ πξηνρώλ πνπ αληηζηνηρνύλ ζε δέξκα, κε

ζθνπό ηε κείσζε ηνπ ζνξύβνπ θαη ησλ αληηθεηκέλσλ πνπ δελ είλαη δέξκα. Επηπξόζζεηα,

πινπνηήζεθε έλα ρξνληθό θίιηξν, έηζη ώζηε λα κεησζεί ην «ηξεκόπαηγκα», θαζώο αθόκε θαη

κηθξέο αιιαγέο ζην θσηηζκό ήηαλ δπλαηόλ λα ζπκβάιινπλ ζε έλα αζηαζέο απνηέιεζκα ζηελ

νζόλε Video Graphics Array (VGA) θαη ελ ηέιεη επηρεηξήζεθε κία πξνζπάζεηα

παξαθνινύζεζεο ηνπ αληρλεπζέληνο πξνζώπνπ.

Υινπνηήζεθαλ, επίζεο, θάπνηα θίιηξα ζηηο πεξηνρέο δέξκαηνο, ηα νπνία

εκπεξηέρνληαη ζηνλ αιγόξηζκν θαηαθεξκαηηζκνύ ηνπ δέξκαηνο κε βάζε ην ρξώκα θαη ζην

θηιηξάξηζκα ηεο εηθόλαο. Μία έθδνζε ινγηζκηθνύ ηνπ αιγνξίζκνπ πινπνηήζεθε αλεμάξηεηα

9

θαη ειέρζεθε ζε κεκνλσκέλεο εηθόλεο ζην MATLAB. Παξόιν πνπ ε κεηάβαζε από ην

MATLAB ζε γιώζζα πεξηγξαθήο πιηθνύ (Verilog HDL) δελ ήηαλ νκαιή, ηα απνηειέζκαηα

ησλ πεηξακάησλ απέδεημαλ ηελ εγθπξόηεηα θαη ηελ απνηειεζκαηηθόηεηα ηνπ ζπζηήκαηνο

πξαγκαηηθνύ ρξόλνπ, αθόκε θαη ππό κεηαβαιιόκελεο ζπλζήθεο θσηηζκνύ, ζέζεσλ

πξνζώπνπ θαη ρξσκάησλ δέξκαηνο. Όινη νη ππνινγηζκνί ηεο πινπνίεζεο ζε πιηθό

επηηεύρζεθε ζε πξαγκαηηθό ρξόλν κε ειάρηζην ππνινγηζηηθό θόζηνο, γεγνλόο πνπ ην θαζηζηά

θαηάιιειν γηα πεξηνξηζκέλεο θαηαλάισζεο ελέξγεηαο εθαξκνγέο.

10

Contents

Declaration of Authorship 4

Acknowledgements 6

Abstract 7

Πεξίιεςε 8

Content s 10

List of Figures 12

List of Tables 14

Abbreviations 15

1 Introduction 16

1.1 Describing the motives 16

1.2 Thesis Structure 17

2 Background 19

2.1 Field Programmable Gate Array – FPGA 19

2.1.1 Architecture of a FPGA 20

2.1.2 ZedBoard
TM

21

2.2 OmniVision OV7670 CMOS VGA (640x480) CAMERACHIP
TM

 Sensor 23

2.2.1 I2C Bus Protocol 26

2.2.2 OV7670 CAMERACHIP
TM

 Device Control Registers 27

2.3 VGA Protocol 36

3 Design and Implementation 41

3.1 High Level Design 42

3.1.1 Camera Interface 43

3.2 Skin Detection 47

3.3 Spatial Filters 51

3.3.1 Erode Filter 52

3.3.2 Dilate Filter 53

3.4 Temporal Filter 54

11

3.5 Tracking of the Detected Faces 55

4 Conclusion 58

4.1 Results 58

4.2 Project Report 62

4.3 Problems & Solutions 62

4.4 Future Work 63

Bibliography 64

12

List of Figures

2.1 Overview of FPGA architecture 19

2.2 Basic Configurable Logic Block Structure 20

2.3 Basic SelectIO (IOBs) Structure 21

2.4 Overview of the ZedBoard 22

2.5 System architecture‘s block diagram for Zynq-7000 AP SoC 23

2.6 Functional Block Diagram of OV7670 CAMERACHIPTM 26

2.7 I2C Sender Module 26

2.8 I2C Bus Protocol Communication Waveform 27

2.9 ov7670_registers Module Block Diagram 28

2.10 Different Options for Saturation and Auto White Balance (AWB) 29

2.11 Different Options for Brightness 30

2.12 Different Options for Saturation and Contrast 31

2.13 Different Options for Gamma (RGB) 32

2.14 Different Options for Fix Gain Control (Red, Green, Blue) 33

2.15 Different Options for Fix Gain Control (Red, Green, Blue) 34

2.16 Block Diagram of Camera Controller 36

2.17 Horizontal and Vertical Inversion Process 37

2.18 VGA Synchronization through h_sync and v_sync Signals 38

2.19 VGA Connector Pins 40

3.1 Face Detection Algorithm Design Flow 42

3.2 High Level Block Diagram of the Digital Circuit 43

3.3 ZedBoard and Camera Interconnection 44

3.4 High Level Camera Design 45

3.5 Data Transmission of a single pixel RGB565 color data 46

3.6 RGB444 Color Pixel Stored in Frame Buffer 47

3.7 Different Skin Tone Samples 48

3.8 Skin Segmentation Process 49

3.9 Block Diagram of Skin Detection Implementation 51

3.10 Ten Shift Registers for Ten Consecutive Rows 53

3.11 Pipeline of Spatial & Temporal Filters 55

3.12 Computing Centroids for Face Regions 57

13

4.1 YUV vs RGB skin ranges 59

4.2 One Face Present 59

4.3 Face Detection and Tracking with FP Faces 60

4.4 Face Detection and Tracking for 3-5 Faces 61

4.5 Initial Image Displayed on Monitor 62

14

List of Tables

2.1 Programmable logic of ZedBoardTM 23

2.2 Key Specifications of OV7670 CAMERACHIPTM 24

2.3 OV7670 Pins 25

2.4 Parameterized Camera Operations and Configurations 35

2.5 General Timing 38

2.6 Horizontal Timing for a single line 39

2.7 Vertical Timing for a whole frame 39

4.1 The resources report for the final version of the project 62

15

Abbreviations

ASIC Application Specific Integrated Circuit

AWB Auto White Balance

BRAM Block RAM

CLB Configurable Logic Block

DSP Digital Signal Processing/Processor

FP False Positive

FPGA Field Programmable Gate Array

HDL Hardware Description Language

ISE Integrated Synthesis Environment

MATLAB Matrix Laboratory

RAM Random Access Memory

RGB Red Green Blue

RTL Register Transfer Level

SCCB Serial Camera Control Bus

SIOC Serial Input Output Clock

SIOD Serial Input Output Data

VGA Video Graphics Array

16

Chapter 1

Introduction

1.1 Describing the motives

Now a days image processing has become very powerful tool in the field of medical

imaging, digital photography, video surveillance etc. Face detection is a computer technology

that identifies human faces in digital images. It detects human faces which might then be used

for recognizing a particular face [5]. Face detection can be regarded as a specific case

of object-class detection. In object-class detection, the task is to find the locations and sizes of

all objects in an image that belong to a given class. Examples include upper torsos,

pedestrians, and cars. Image processing usually requires very large number of operations and

high speed data transfer, therefore parallel processing or multiprocessing hardware is

essential. Because of this, FPGA is one of the best alternatives for image processing as it

performs the operations in parallel fashion.

There are various algorithms used in the detection process right from the skin color

detection to the estimation model. In recent years, skin color detection has become a hot topic

between researchers, and great progress has been made in this field. Therefore, there are

variety of applications using skin color detection like detecting and tracking human faces and

gestures, filtering web image contents and retrieving people in databases and Internet, even

diagnosing diseases. In our hardware-based approach to the face detection algorithm skin

detection is of primary importance, as it sets the appropriate thresholds to locate the face

portion of a human. This allows easy face localization of potential facial regions without any

consideration of its texture and geometrical properties.

Many different types of color models are used for skin detection. Each one differs

from the others in terms of the manner of transformation (linear or non-linear), the robustness

to adapt to light changing, and shadow noises. There are many skin color spaces like RGB,

HSV, YCbCr, YIQ, YUV, etc. that are used for skin color segmentation. The RGB color

model represents the colors that are in the red, green, and blue planes and does not separate

17

the luminance from the chrominance components, which makes it a poor choice for color

analysis and color based recognition. In this thesis, we used a proposed threshold, which is

based on the YUV and RGB color spaces. Our approach is able to benefit from the

characteristics of each color model for enhancing the accuracy of skin detection [3].

The next step of the face detection system involves the use of morphological

operations to refine the skin regions extracted from the segmentation step. To do so, we have

used spatial filters to reproduce in the first place the erosion operation in MATLAB, which

basically shrinks the object in order to remove noise and other non-skin pixels, and

subsequently the dilate operation, which can group together fragmented sub-regions by

applying simple dilation on the large regions. A temporal filter applied on the final result

displayed in the VGA screen, allowed flickering to be reduced significantly as even small

changes in lighting could make the frame to be depicted less stable.

Finally, centroid computation and tracking was implemented to locate the face region

with a maximum of seven (7) faces detected under ideal circumstances, where other skin

regions are not falsely detected as human faces (false positives). Due to the limitations of the

hardware used, it was infeasible to calculate the centroid and track each face region

separately. Our final design is a fully hardware implementation of the face detection

algorithm that corresponds to its software implementation and thus it is considered a success.

1.2 Thesis Structure

This thesis is divided in three main Chapters, each one of those includes smaller sections and

possibly subsections.

Chapter 2 provides background information useful to understanding the development

and the hardware used in this project. At first, it describes the architecture and operation of

FPGAs in general and then focuses on the technical characteristics of ZedBoard Xilinx

XC7Z020, the FPGA used for development. It also offers information concerning the camera

module, OV7670 by OmniVision, used for real time video capture. Finally, the functionality

of a general VGA controller is described in order to explain how the output is displayed on a

monitor.

18

Chapter 3 begins with a brief introduction to the hierarchy of the design and then

follows with an exhaustive analysis divided into sections for each of its parts. Parts of the

design are considered algorithms implemented, in which case the algorithm is explained first

and then the approach of its design, or functions necessary to the whole operation of the

project. More specifically, an initial approach in the YUV algorithm for color thresholding

and skin segmentation, and its implementation are thoroughly analyzed, and then a detailed

description on the hardware implementation of the spatial and temporal filters along with the

design and realization of the tracking are also examined.

Chapter 4 summarizes the results generated, the problems faced and the given

solutions along with the project summary and the resources used in the FPGA. Finally, it

provides some future improvements and potential work that could possibly lead to a design

corresponding to its software implementation.

19

Chapter 2

Background

2.1 Field Programmable Gate Array – FPGA [6]

FPGAs are programmable semiconductor devices that are based around a matrix of

Configurable Logic Blocks (CLBs) connected through programmable interconnects. As

opposed to Application Specific Integrated Circuits (ASICs), where the device is custom built

for the particular design, FPGAs can be programmed to the desired application or

functionality requirements. Although One-Time Programmable (OTP) FPGAs are available,

the dominant type is SRAM-based which can be reprogrammed as the design evolves. Due to

this programmability, FPGAs are ideal for a large variety of markets such as ASIC

prototyping, Aerospace and Defense, Automotive, Communications, High Performance

Computing, Industrial, Medical and Video and Image Processing.

Figure 2.1: Overview of FPGA architecture

http://www.xilinx.com/fpga/asic.htm

20

2.1.1 Architecture of a FPGA

FPGAs have evolved far beyond the basic capabilities present in their predecessors,

and incorporate hard (ASIC type) blocks of commonly used functionality such as RAM, clock

management, and DSP. The following are the basic components in a FPGA [6]:

o Configurable Logic Blocks (CLBs) - The CLB is the basic logic unit in a FPGA.

Exact numbers and features vary from device to device, but every CLB consists

of a configurable switch matrix with 4 or 6 inputs, some selection circuitry

(MUX, etc), and flip-flops. The switch matrix is highly flexible and can be

configured to handle combinatorial logic, shift registers or RAM.

Figure 2.2: Basic Configurable Logic Block Structure [6]

o Interconnect - While the CLB provides the logic capability, flexible interconnect

routing routes the signals between CLBs and to and from I/Os. Routing comes in

several flavors, from that designed to interconnect between CLBs to fast

horizontal and vertical long lines spanning the device to global low-skew routing

for Clocking and other global signals. The design software makes the

interconnect routing task hidden to the user unless specified otherwise, thus

significantly reducing design complexity.

o SelectIO (IOBs) - Today‘s FPGAs provide support for dozens of I/O standards

thus providing the ideal interface bridge in our system. I/O in FPGAs is grouped

in banks with each bank independently able to support different I/O standards.

21

Figure 2.3: Basic SelectIO (IOBs) Structure [6]

o Memory - Embedded Block RAM memory is available in most FPGAs, which

allows for on-chip memory in your design.

o Complete Clock Management - Digital clock management provides users the

ability to manage the original clock generated from an oscillator on the FPGA

and create new clocks, with lower or higher frequency. The most advanced

FPGAs offer both digital clock management and phase-looped locking that

provide precision clock synthesis combined with jitter reduction and filtering.

2.1.2 ZedBoardTM
[14]

The project was developed on the ZedBoard
TM

, which uses Xilinx ZynqR-7000 All

Programmable SoC 7z020-CLG484. The device is equipped with an ARM
®

 Processor of

approximately 900 MHz and with a variety of Hardware Programmable Logic, allowing

designers to add peripherals according to the desirable application.

22

Figure 2.4: Overview of the ZedBoard [14]

The Programmable Logic (PL) section is ideal for implementing high-speed logic,

arithmetic and data flow subsystems, while the Processing System (PS) supports software

routines and/or operating systems, meaning that the overall functionality of any designed

system can be appropriately partitioned between hardware and software. Links between the

PL and PS are made using industry standard Advanced eXtensible Interface (AXI)

connections.

23

Figure 2.5: System architecture‘s block diagram for Zynq-7000 AP SoC [12]

The device‘s technical features are provided in the table below:

Device Name Z-7020

Xilinx 7 Series Programmable Logic Equivalent Artix-7 FPGA

Programmable Logic Cells (Approximate ASIC

Gates(4))

85K Logic Cells (1.3M)

Look-Up Tables (LUTs) 53,200

Flip-Flops 106,400

Extensible Block RAM (# 36 Kb Blocks) 560 KB (140)

Programmable DSP Slices (18x25 MACCs) 220

Peak DSP Performance (Symmetric FIR) 276 GMACs

Table 2.1: Programmable logic of ZedBoardTM

2.2 OmniVision OV7670 CMOS VGA (640x480) CAMERACHIP
TM

Sensor [7]

The OV7670 CAMERACHIP
TM

image sensor is a low voltage CMOS device that

provides the full functionality of a single-chip VGA camera and image processor in a small

footprint package. The OV7670 camera provides an image sensor with 18 (9x2) pins package,

which operates at maximum of 30 fps. It has highest resolution of 640 x 480 (VGA) which is

equivalent to 0.3 megapixels. This resolution is used in our design. It has built-in digital

24

signal processor which processes the image before sending to the Zedboard. The pre-

processing of image is done by digital signal processor via I2C control bus by setting different

values for device control registers which are contained by OV7670 camera module. The

coding was done in such a way that outputs of camera module were inputs to the Zedboard

and outputs of Zedboard were inputs to the camera. An RGB565 output format of OV7670

was chosen by setting appropriate registers. The key specifications of the camera module are

listed in the table below:

Active Array Size 640x480

Power Supply
Digital Core 1.8VDC ±10%

Analog 2.45V to 3.0V

I/O 1.7V to 3.0V

Power

Requirements

Active 60 mW typical (15fps VGA YUV format)

Standby <20 uA

Temperature

Range

Operation -30°C to 70°C

Stable Image 0°C to 70°C

Output Formats (8-bit)

YUV/YCbCr 4:2:2

RGB565/555/444

GRB 4:2:2

Raw RGB Data

Lens Size 1/6ʺ

Chief Ray Angle 25°

Maximum Image Transfer Rate 30 fps for VGA

Sensitivity 1.3 V/(Lux·sec)

S/N Ratio 46 dB

Dynamic Range 52 dB

Scan Mode Progressive

Electronic Exposure Up to 510:1 (for selected fps)

Pixel Size 3.6 um x 3.6 um

Dark Current 12 mV/s at 60°C

Well Capacity 17 K e

Image Area 2.36 mm x 1.76 mm

Package Dimensions 3785 um x 4235 um

Table 2.2: Key Specifications of OV7670 CAMERACHIPTM

25

The pin diagram and description for each pin are shown below:

Pin Type Description

3V3, GND Power Power Supply, Ground

SIOC Input SCCB serial interface clock

input

SIOD Input SCCB serial interface data

I/O

XCLK Input Camera clock input

PWDN Input Power down mode selection

(Active High)

RESET Input Resets all registers to default

value (Active Low)

D[7:0] Output RGB video component

output (parallel data)

HREF Output Horizontal synchronization

VSYNC Output Vertical synchronization

PCLK Output Pixel clock output

Table 2.3: OV7670 Pins

The functionality of the camera‘s module is shown in the following figure:

26

Figure 2.6: Functional Block Diagram of OV7670 CAMERACHIPTM [1]

2.2.1 I2C Bus Protocol

OV7670 is a versatile camera module due to its inner Digital Signal Processor (DSP),

which can pre-process image before it is sent. This DSP can be accessed via an I2C bus

protocol interface. I2C_sender module is responsible to send the configurations of

OV7670_registers module to the camera. As a result, it creates a 32-bit vector and sends it

serially using Serial Input Output Clock (SIOC) and Serial Input Output Data (SIOD) signals.

Figure 2.7: I2C Sender Module

27

The vector sent to the camera has the following format: {3‘b100, id, 1‘b0, reg, 1‘b0,

value, 3‘b001}. The three first bits ―100‖ correspond to the starting sequence, the last two

―01‖ correspond to the stopping sequence and the ‗0‘ after ‗id‘ , ‗reg‘ and ‗value‘ indicates

that the Slave is not asked to return acknowledgment for their successful transmission. In our

design we have only one slave module for the I2C bus protocol, i.e. the camera.

The ‗id‘ indicates the code for the Slave‘s address and if we want to write to or read

from it. We only need to write to camera‘s registers and the according code for the OV7670

camera is 0x42(hex). Signal ‗taken‘ becoming high (i.e. ‗1‘) means that the 32-bit vector has

been sent to the camera and the OV7670_registers module needs to give the next

configuration to be sent. As long as signal ‗send‘ is high that means that OV7670_registers

module has at least one valid data to send to the camera. An 8-bit counter is used in order to

create SIOC frequency dividing the original clk frequency (50MHz) by 256 (2^8).

Figure 2.8: I2C Bus Protocol Communication Waveform

2.2.2 OV7670 CAMERACHIP
TM

Device Control Registers

Device Control registers contained in the OV7670 enable different configurations

(e.g. saturation, brightness, contrast etc.) and operating modes. In our design we have used the

7 out of 8 switches (SW 1-7) and the left and right buttons of the ZedBoard to model such

configurations and change their default values.

The ov7670_registers module is responsible for initializing the camera with the

desired configurations. We use a counter initialized to zero and for each counter‘s value there

is a different output (command: {reg, value}) via a multiplexer. These outputs are the

configurations of the camera showing the value that will be written to the camera‘s

corresponding register. When ‗advance‘ becomes high, the counter is incremented by 1 giving

the next output. There are many stored configurations that can affect the camera‘s output and

28

combinations according to the Switches 1-7 and buttons left and right. The counter stops

increasing when the output takes the value ‗ffff‘, which is the last one. If ‗resend‘ becomes

high, the counter is initialized back to ‗0‘.

Figure 2.9: ov7670_registers Module Block Diagram

As mentioned above, we have managed to make the values of some basic camera

configurations parameterized using the switches and buttons of the FPGA board. The

significance of each of them will be presented in the section below [8]:

 Saturation: High color saturation would make the picture look more vivid, but the

side effect is the bigger noise and not accurate skin color.

 Auto White Balance (AWB): Simple white balance assumes ―gray world‖, which

means the average color of world is gray. It is true for most environments. The

advantage of simple AWB is that it does not depend on lens. A general setting for

simple white balance could be applied for all modules with different lens.

However, the disadvantage of simple AWB is that the color is not accurate in

conditions where ―gray world‖ is not true. For example, if there is in the

background a huge red, blue or green etc., the color of the foreground would not

be accurate. If the camera targets single color such as red, blue, green, the simple

white balance will make the single color gray.

29

Figure 2.10: Different Options for Saturation and Auto White Balance (AWB)

 Brightness: Higher brightness will make the picture brighter. The side effect,

however, is the picture looks foggy.

30

Figure 2.11: Different Options for Brightness

 Contrast: Higher contrast will make the picture sharp, but the side effect is losing

dynamic range.

31

Figure 2.12: Different Options for Saturation and Contrast

 Gamma (Red, Green, Blue): Gamma is the relationship between the brightness of

a pixel as it appears on the screen, and the numerical value of that pixel. Gamma

encoding of images is used to optimize the usage of bits when encoding an image

or bandwidth used to transport an image, by taking advantage of the non-linear

manner in which humans perceive light and color.

32

Figure 2.13: Different Options for Gamma (RGB)

 Gain Control (Red, Green, Blue): Increasing the gain control of a single color

would increase the component of this specific color against the other colors for

each color pixel.

33

Figure 2.14: Different Options for Fix Gain Control (Red, Green, Blue)

34

Figure 2.15: Different Options for Fix Gain Control (Red, Green, Blue)

If the user would like to change any of the parameterized configurations, he should

then also press the reset button (center button) on the ZedBoard to reinitialize the camera with

the changed settings. In case he would like to return to the initial configurations, he should

press the left and right button simultaneously on the FPGA. The default values came from

different attempts and some of these registers‘ values are cited in the given references ([2], [8]

and [16]).

These parameterized configurations and the corresponding switches and buttons used

are shown in the Table 2.4 that follows:

35

Table 2.4: Parameterized Camera Operations and Configurations

36

The design and interface of the camera controller is shown in the following diagram:

Figure 2.16: Block Diagram of Camera Controller

2.3 VGA Protocol

VGA stands for "Video Graphics Array". VGA has become a well-known standard

interface in many embedded systems such as video surveillance systems, ATM machines, or

video players. It provides a simple method to connect a system with a monitor for showing

information/images, or for users to interact with the system. The VGA standard was originally

developed by IBM in 1987 and allowed for a display resolution of 640x480 pixels. Since

then, many revisions of the standard have been introduced. The most common is Super VGA

37

(SVGA), which allows for resolutions greater than 640x480, such as 800x600 or 1024x768

[21].

In order to display an image on screen, VGA monitor controller has to read every

pixel data of the image while driving the color signals and synchronization signals of the

VGA interface. All pixels are scanned in raster order at a frequency called pixel frequency.

To ensure the visual quality, whole image will be re-drawn at a rate determined by refresh

rate. The pixel frequency certainly depends on the display resolution and the refresh rate,

better resolution or higher fresh rate will require higher pixel frequency.

Figure 2.17: Horizontal and Vertical Inversion Process

The video displayed is a stream of still frames that the eye perceives as a moving

image. Each frame is an array of pixels set horizontally and vertically that are drawn in order

of lines from top to bottom and in each line from left to right. The interface provides the

monitor with horizontal and vertical sync signals, color magnitudes, and ground references.

The hsync and vsync are digital signals that synchronize the signal timings with the monitor.

Both follow the same wavelength pattern but with different timings. These wavelengths can

be divided into two main regions. The reset is the active region where color is transmitted and

the actual display takes place. The second is the blanking region, where color should not be

transmitted. In about the middle of this blanking interval, a pulse of the synch signal takes

place that defines three inner regions. The region before the pulse is called front porch,

followed by the pulse region and then the back porch. While the pattern is the same for both

signals, the hsync wavelength applies to a single line, but the vsync wavelength applies to a

38

whole frame. So during the active region of the vsync signal all lines must be drawn, meaning

the hsynch signal has to repeat its pattern multiple times.

Figure 2.18: VGA Synchronization through h_sync and v_sync Signals [13]

The system clock is the source clock for the side of bus interface and is equivalent to

a 50MHz clock frequency, while the pixel clock is used for the side of VGA interface and is

equivalent to a 25 MHz clock frequency. The pixel clock frequency is required according to

the display standard for a resolution of 640x480 pixels at 60 Hz Refresh Rate. It is driven by

an on-chip clock generator using Digital Clock Manager and PLL blocks of the ZedBoard

chips [9]. The VGA standard timings are shown in the tables below [10]:

General Timing

Screen refresh rate 59.52 Hz

Vertical refresh 31.25 kHz

Pixel freq. 25 MHz

 Table 2.5: General Timing [10]

39

Horizontal Timing (Line) - Polarity of horizontal sync pulse is negative.

Scanline part Pixels Time [us]

Visible area 640 25.6

Front porch 16 0.64

Sync pulse 96 3.84

Back porch 48 1.92

Whole line 800 32

 Table 2.6: Horizontal Timing for a single line [10]

Vertical Timing (Frame) - Polarity of vertical sync pulse is negative.

Frame part Lines Time [ms]

Visible area 480 15.36

Front porch 10 0.32

Sync pulse 2 0.064

Back porch 33 1.056

Whole line 525 16.8

 Table 2.7: Vertical Timing for a whole frame [10]

In order to calculate the pixel‘s clock frequency needed, we have to multiply the number of

clock cycles a frame needs by the frame rate. The calculations are shown below:

 PixelClockFreq = FrameClockCycles * FrameRate

 = LinesPerFrame * LineClockCycles * FrameRate

 = 525 * 800 * 60

 = 25.2 MHz

40

Each pixel‘s color is a combination of red, green and blue, the size of which depends

on the output device. The output pixel‘s color size from the Zynq 7z020 FPGA board to the

VGA cable is 12-bit wide (4 bits for each color), resulting in 4096 possible colors, imposed

by ZedBoard‘s characteristics. The color magnitudes are 0V-0.7V analog signals sent over to

the RGB wires (Red, Green and Blue). To produce those magnitudes a digital representation

of arbitrary bit size for each of red, green and blue passes through a Digital to Analog

Converter (DAC), along with all the other signals properly set from the VGA controller. The

connector consists of 15 pins. Six pins are used for the colors (RGB), and their respective

ground signals two for the hsync and vsync signals, two for grounds and the remaining five

are not used.

Figure 2.19: VGA Connector Pins

41

Chapter 3

Design and Implementation

In this chapter we will focus on the design and implementation of our work; the

implementation of the face detection and tracking algorithm in a FPGA device purely in

hardware using both VHDL and Verilog Hardware Description Languages. In the first section

we will introduce an abstract view of the design, the modules and the interconnections of the

digital circuit. Following, we will elaborate each module and describe the algorithms

implemented in hardware. Finally, we will present an algorithm for tracking the detected

faces on real-time video streaming.

The concept of the design is based on the software implementation of the face

detection algorithm using the OpenCV functions erode() and dilate() in C++. A general

approach to the algorithm is compromised by some specific steps. More explicitly, a skin

detection algorithm is used as a first step for color segmentation, as this approach has been

proved to be an effective method to detect face regions due to its low computational

requirements and ease of implementation. The original image is converted to a different color

space, i.e. from RGB to YUV. Then spatial filtering is applied to reduce false positives and

create solid areas of skin-based pixels. A temporal filter is also applied to reduce the

flickering of the image in the monitor due to lighting. Finally, only regions with large area are

considered face regions and for each of them a centroid is computed to show its location.

A general design stages hardware implementation is illustrated in Figure 3.1:

42

Figure 3.1: Face Detection Algorithm Design Flow [4]

3.1 High Level Design

Face detection and tracking algorithm in real-time video streaming is fully

implemented in hardware, and thus no processor is needed for the operations of the YUV skin

thresholding, the spatial filters (i.e. erode and dilate), the temporal filter for flickering

reduction and finally the tracking of the detected faces. The modules used are the VGA

controller, a debounce module for each of the five buttons (up, down, left, right and center) on

the FPGA board, the controller for the camera module OV7670, which consists of the I2C

sender bus protocol and the registers for the configurations of the camera along with the

capture module for the pixel‘s color data transmission, and also the spatial and temporal

filters used along with a face tracking implementation.

A high level illustration of the design is shown in the block diagram below:

43

Figure 3.2: High Level Block Diagram of the Digital Circuit

3.1.1 Camera Interface

The image processing is achieved with the use of a low cost camera module

(OV7670) as mentioned before. The camera is connected to the JA and JB ports of ZedBoard

using jumper wires and PMOD connectors. The VGA output port of ZedBoard is connected

to monitor through DB-15 connector. Image processing setup via ZedBoard and OV7670 is

shown in the following picture:

44

Figure 3.3: ZedBoard and Camera Interconnection

We have already analyzed the camera controller on Chapter 2. The camera

implementation and interface with the ZedBoard is based on the work of reference [2]. Now we

will discuss on the ov7670_capture module and data manipulation. An abstract representation

of the camera design is shown below [1]:

45

Figure 3.4: High Level Camera Design [1]

The ov7670_capture module has four inputs: pclk (all write data operations to the

Block RAMs are held through this clock), href, vsync (synchronization signals) and Data

[7:0] (camera 8 bits parallel data output), and outputs the signal ‗write enable‘, and two

vectors; addr [18:0] (pixel write address for the frame buffer) and dout [15:0] (RGB565 color

pixel). A data transmission is accomplished only if vsync signal is low; then href starts a pixel

transfer that takes 2 cycles. More specifically, we acquire the first byte (8 bits parallel data) of

pixel data output during the first cycle, and on the next cycle we acquire the second byte of

data (a total of 16 bits RGB565 color pixel). The code in Verilog HDL that implements the

described logic for the capture module is given below:

always@(posedge pclk) begin

 If (vsync) begin

 addr <= 19‘b0;

 we <= 1‘b0;

 wr_hold <= 2‘b0;

 end

 else begin

 Dout[7:0] <= d;

46

 Dout[15:0] <= Dout[7:0];

 wr_hold <= {wr_hold[0], href && ~wr_hold[0]};

 if (wr_hold[1]) begin

 we <= 1;

 addr <= addr + 1;

 end

 else

 we <= 0;

 end

end

The waveforms in Figure 3.5 indicate the operation of href signal and the data

transmission as described above:

Figure 3.5: Data Transmission of a single pixel RGB565 color data

47

The 640 x 480 pixels frame is stored in 3 Block RAMs, one BRAM for each color (Red,

Green and Blue) where in each address in the frame buffer is stored a 4-bit data for each color

pixel (RGB444) as shown in the Figure 3.6:

Figure 3.6: RGB444 Color Pixel Stored in Frame Buffer

3.2 Skin Detection

Many different types of color models are used for skin detection. Each one differs

from the others in terms of the manner of transformation (linear or non-linear), the robustness

to adapt to light changing, and shadow noises. Converting the skin pixel information to the

48

modified YUV color space would be more advantageous since human skin tones tend to fall

within a certain range of chrominance values (i.e. U-V component), regardless of the skin

type. You can see these ranges and different skin tone samples in the Figure 3.7:

Figure 3.7: Different Skin Tone Samples

The YUV color space was chosen due to the fast transformation of the RGB model.

The Y channel represents the luminance of the color, while the U and V channels represent

the chrominance. Separating the luma from the chromatic reduces the effect of light changing

and shadow noises. This method starts by converting the RGB color space to the YUV color

space using the following equations [3]:

After skin pixels are converted to the modified YUV space, the skin pixels are segmented

based on the following thresholds for both YUV and RGB color spaces:

49

The following flowchart shows the process of skin color segmentation:

Figure 3.8: Skin Segmentation Process [3]

The RGB color signals deriving from the camera capture are consisted initially by 16

bits (5 bits for Red, 6 bits for Green, 5 bits for Blue). Because in the upper flowchart the

calculations need 24 bits RGB color signals (8 bits for Red, 8 bits for Green, 8 bits for Blue),

we have to shift left the initial RGB signals in order to have the required sizes. The outcome

of this approach (having less resolution than needed) results in having multiples of 4 for

Green and 8 for Red and Blue, which did not harm the efficiency of our system.

This proposed method is proved to detect skin regions with low false positive and

false negative rates and at a high detection rate. In order to implement operations with floating

point numbers, at first we had to multiply each of the floating point numbers with 256 (this

selected number gave us a good estimation on the desired accuracy), which actually means

that the floating point number is shifted left 8 times and then proceed with the rest of the

calculations. The result of these operations was again divided with 256 (right shift 8 times) in

order to estimate the appropriate YUV ranges. Ranges from the RGB color space are also

applied to achieve the final result with raw skin and non-skin pixels.

50

Here are examples of how the operations with floating numbers are implemented for

the U and V component:

U = -0.147*R -0.289*G +0.436*B + 128 = (-0.147*256*R -0.289*256*G

+0.436*256*B) / 256 + 128 =>

U = ((-0.147<<8)*R + (-0.289<<8)*G + (0.436<<8)*B) >> 8 + 128 =>

U ≈ (-38*R - 74*G + 112*B) >> 8 + 128

V = +0.615*R -0.515*G -0.100*B + 128 = (157.44*R - 131.84*G - 25.6*B) / 256 +

128 =>

V ≈ (158*R - 132*G - 26*B) >> 8 + 128

38R = {R,5'b0} + {R,2'b0} + {R,1'b0}

74G = {G,6'b0} + {G,3'b0} + {G,1'b0}

112B = {B,6'b0} + {B,5'b0} + {B,4'b0}

158R = {R,7'b0} + {R,4'b0} + {R,3'b0} + {R,2'b0} + {R,1'b0}

132G = {G,7'b0} + {G,2'b0}

26B = {B,4'b0} + {B,3'b0} + {B,1'b0}

As shown from the equations above, no multiplication operations were applied. All

calculations resulted from fast operations, i.e. shifts and additions.

The outcome of these calculations for the predefined ranges is a binary image with

raw segmentation result. Now every pixel is assigned a single bit value (1 if it is considered a

skin pixel and 0 for non-skin pixel). Every pixel of the image after thresholding is driven to

the filters for processing and it is stored to block RAM ip Core namely skin_frame_buffer, in

order the frame to be displayed on the monitor as a black and white image.

51

In the following diagram an illustration of the skin detection implementation is shown:

Figure 3.9: Block Diagram of Skin Detection Implementation

3.3 Spatial Filters

A spatial filtering on image is a neighborhood operation which changes the value of

any pixel by a predefined function of the values of pixels in a neighborhood of that pixel.

Spatial filtering can be used to perform some of the significant image operations such as edge

enhancement, image sharpening and noise reduction. These operations can be linear or

nonlinear. If the operation performed on the pixels are linear then the corresponding filter is

called a linear filter otherwise it is a nonlinear filter. In our design we have implemented only

linear spatial filters.

52

After thresholding, the resulting data needs to be stored in case we want it displayed

to the monitor; hence it can be stored in ‗skin_frame_buffer‘ according to the switches of the

FPGA. Here output is written to the block RAM according to write address (―wraddress‖), i.e.

valid pixel‘s address that originates from camera and then the stored data is read according to

read address (―rdaddress‖), i.e. address for displaying the pixels on VGA monitor. Both the

addresses are 19 bit vectors to address 640x480 = 307200 number of pixels.

3.3.1 Erode Filter

This step is similar to the erosion operation used in the software algorithm, which

basically shrinks the object [19]. According to this method, for every pixel p, its neighboring

pixels in a 9x9 neighborhood are checked. If more than 74% approximately, i.e. 60 of its

neighbors are skin pixels, then p is declared a skin pixel. Otherwise p is declared a non-skin

pixel. This threshold can be modified using the buttons of the FPGA board as shown in Table

2.4. This stage allows most background noise to be removed because noise is usually scattered

randomly through space.

To examine the neighbors around a pixel, their values needed to be stored. Therefore,

ten shift registers were created to buffer the values of ten consecutive rows in each frame. As

seen in Figure 3.10, each register is 640-bit long to hold the binary values of 640 pixels in a

row. Each bit in data_reg1 is updated according to the X coordinate. For instance, when the X

coordinate is 2, data_reg1[2] is updated according to the result of thresholding from the

previous stage. Thus, data_reg1 is updated every clock cycle with the values of a new line.

When all the bits of data_reg1 are updated, its entire value is shifted to data_reg2, while the

bits of data_reg2 are shifted to the next register in a sequential manner. Thus, other registers

(from data_reg2 to data_reg10) are only updated when the X coordinate was 0. Values of

data_reg2 to data_reg10 are used to examine a pixel‘s neighborhood [4].

53

Figure 3.10: Ten Shift Registers for Ten Consecutive Rows [4]

There was a trade-off between the number of shift registers being used (i.e. the size of

the neighborhood) and the performance of the spatial filter. A larger neighborhood required

more registers to be used but, at the same time, allowed more noise to be removed. The

resulted image after erosion is stored in simple dual port block RAM ‗skin_frame_buffer‘, the

same used for storing data after skin detection through YUV algorithm.

3.3.2 Dilate Filter

This step is similar to the dilation operation used in the software algorithm, which

basically dilates the object by filling small gaps created during the previous steps [19].

Considering that most of the noise is now extracted from the image after dilation filtering and

in saving resources from the ZedBoard, we used the same technique as mentioned before with

the ten shift registers, where each register is now 320-bit long to hold the binary values of all

the odd columns by applying a bitwise ‗or‘ operation between the value of the odd column‘s

pixel and the value of the previous pixel.

According to this method, for every pixel p, its neighboring pixels in a 9x5 (5 out of

9) neighborhood are checked. If more than 33.3% approximately, i.e. 15 of its neighbors are

skin pixels, then p is declared a skin pixel. Otherwise p is declared a non-skin pixel. This

threshold can also be modified using the buttons of the FPGA board as shown in Table 2.4.

This stage allows some of the missing pixels of the detected face regions to be filled in.

The process remains the same as with the erode filter with the ten shift registers and

their operation based on the neighboring pixels of every pixel. The resulted image after

dilation is also stored in simple dual port BRAM ‗skin_frame_buffer‘, the same used for

storing data after skin detection through YUV algorithm and erosion filtering.

54

3.4 Temporal Filter

Even small changes in lighting could cause flickering and made the result displayed

on the VGA screen less stable. Applying temporal filtering allowed flickering to be reduced

significantly. In order to implement the functionality of such filter, we store in a simple dual

port BRAM ‗history_frame_buffer‘ the binary value of each pixel from three (3) consecutive

frames as it results after dilation filtering for all the 320x480 pixels. Therefore, a 3-bit vector

used as 3 history bits is stored in each pixel address of the 320x480 pixels of the

‗history_frame_buffer‘, which corresponds to the value of the pixel in the three previous

frames.

In order a pixel to be considered non-skin all the values of the 3 history bits and the

current value of it should be ‗0‘; else the pixel is considered a skin-pixel. This assumption

relies on the fact that during the two spatial filters most of the noise is now reduced and these

regions of pixels are truly skin pixels. Consequently, the temporal filter smoothed the output

and, thus, reduced flicker significantly, although it creates a sense of slow motion in the

displayed image.

55

In the Figure 3.11 a block diagram for the implementation of the pipeline for the

filters, both spatial and temporal, is shown:

Figure 3.11: Pipeline of Spatial & Temporal Filters

3.5 Tracking of the Detected Faces

Finally, centroid is computed to locate the face region. Because it was infeasible to

calculate the centroid for each face region separately, in our design the maximum number of

faces that can be detected is seven (7). In order to achieve that, we created seven detectors.

The detectors can be divided in 3 categories according to their priority. The Center detector

56

has the greatest priority among the others and the average X and Y coordinates of the detected

face arise almost from the whole frame (purple ranges in Figure 3.12). The detectors with the

next most significant priority are L and R and arise from the yellow ranges as shown in Figure

3.12. The L detector can detect a face on the left side of the face that is detected from the

Center detector (Avg_X). Accordingly, the R detector detects a face on the right side of the

face that is detected from the Center detector (Avg_X). The detectors with the lowest

significance LL, LR, RL and RR can detect faces from the regions that are separated from the

3 detectors L, Center and R (LL left from L, LR right from L, RL left from R and RR right

from R) and arise from the red ranges as shown in Figure 3.12.

After the initial step for finding the average X and Y coordinates for all the detectors,

as shown in Figure 3.12, a counter named ‗threshold‘ is created for each detector showing

how many skin pixels are near (dashed ranges as shown in Figure 3.12) to each average X and

Y. For the three most significant detectors (L, R and Center) a new average Y is calculated

from its previous value up to the top of the image giving importance to the upper pixels, due

to the assumption that the head is higher than other skin regions, e.g. arms and hands. Finally,

the X and Y centroids‘ coordinates for each detector will be activated if the analogous

threshold is big enough and at the same time if there are detectors with greater priority, they

have to be de-activated or be far away from this specific detector. If a detector is de-activated

its X and Y centroids‘ coordinates are set to zero.

 Finally, in ―Face_Detection‖ module for each detector‘s coordinates X and Y, if their

value is greater than zero that subsequently implies that a face is detected by this detector. For

this reason, when X and Y coordinates coming from VGA controller are placed in a neighbor

15x15 with center the centroid of any detector then a signal ―centoidOut‖ is triggered in order

this neighbor to be drawn red. This denotes the presence and tracking operation of a detected

face.

57

Figure 3.12: Computing Centroids for Face Regions

58

Chapter 4

Conclusion

In recent years, face detection has attracted much attention and its research has

rapidly expanded by not only engineers but also neuroscientists, since it has many potential

applications in computer vision communication and automatic access control system.

However, face detection is not straightforward because it has lots of variations of image

appearance, such as pose variation (front, non-front), occlusion, image orientation,

illuminating condition and facial expression [20].

In our design we tried to create a functional system fully implemented in hardware,

which is capable to detect and track faces in real time. Although the tracking capability of the

algorithm is limited up to 4 faces and in ideal circumstances can reach a limit of 7 faces, it can

still detect the presence of their faces. Experiments also showed that different light settings

did not significantly alter the final results. Furthermore, the system was able to ignore

background noise very well—mostly came from light reflection. When there were objects that

had color similar to skin color, both spatial and temporal filtering helped erode these detected

regions, therefore reducing the number of false positives.

4.1 Results

In the following images we present the functionality and the results of our system in

real time video streaming:

59

Figure 4.1: YUV vs RGB skin ranges

In Figure 4.1 we show the different stages of the algorithm for both YUV and RGB

skin thresholding from skin detection to the erode, dilate and finally temporal filter, where no

face is present. An object, however, with color similar to the skin is still detected.

Figure 4.2: One Face Present

In Figure 4.2 we show the different stages of the face detection system for both YUV

and RGB thresholding with the presence of one person.

60

Figure 4.3: Face Detection and Tracking with FP Faces

In Figure 4.3 different cases are shown where two faces are correctly and incorrectly

detected. In the case of correct detection there are indeed two faces. In the other case a FP (False

Positive) detection and tracking occurs in the presence of a box with color similar to human‘s skin.

61

Figure 4.4: Face Detection and Tracking for 3-5 Faces

In Figure 4.4 it is shown the functionality of the algorithm for 3, 4 and 5 present

faces, which are all properly detected and tracked.

62

4.2 Project Report

The project was described on both VHDL and Verilog HDL and after its synthesis to

a netlist file was mapped to the FPGA resources. The final device utilization is available in

Table 4.1 below:

Table 4.1: The resources report for the final version of the project

4.3 Problems & Solutions

One of the first and most crucial problems we encountered was the quality of the

camera output. More specifically, the image was blurry and the colors were distorted, and as a

result we were not able to distinguish the displayed objects. The following image shows the

displayed frame on the monitor:

Figure 4.5: Initial Image Displayed on Monitor

63

In order to face this problem we had to change and experiment on the camera

configurations and thus we created reconfigurable configurations giving the user the

possibility to change the default characteristics and operations according the imposed needs.

Another issue was the limited resources of the FPGA board and especially the

BRAMs, which resulted in storing the half frame for the temporal filter. Moreover, in saving

resources we could only create seven detectors for the centroid computations as an optimal,

yet functional solution.

4.4 Future Work

In this project, the goal of implementing a hardware system to detect and track human

faces in real time was achieved. A software implementation of the algorithm was examined in

order to study, transform and finally implement the functionality of the OpenCV functions

erode() and dilate(). Although the transition from software to hardware required some

modification to the original algorithm, the initial goal was still accomplished. The face

detection algorithm was derived from a skin detection method. Face tracking was achieved by

computing the centroid of each detected region, although it only worked in the presence of at

most 4 to 5 people. Different types of filter were applied to avoid flickering and stabilize the

output displayed on the VGA screen. The system was proved to work in real time with no

lagging and under varying conditions of facial expressions, skin tones, and lighting.

 However, a future improvement of the design could result in tracking accurately more

than 4 faces with the implementation of a more efficient tracking algorithm. That would

probably require the displayed frame be segmented in more sections.

Another improvement would be the application of a morphological filter in order to

extract large regions of skin pixels that are falsely detected as faces. That would reduce the

ratio of false positives and will result in a more effective algorithm. Yet such implementation

would require more resources currently unavailable in the used ZedBoard edition.

64

Bibliography

[1] OV7670 Camera Design

http://hamsterworks.co.nz/mediawiki/index.php/OV7670_camera

[2] OV7670 Camera Module attached to ZedBoard using PMOD connectors

http://hamsterworks.co.nz/mediawiki/index.php/Zedboard_OV7670

[3] Skin Segmentation Using YUV and RGB Color Spaces

http://jips-k.org/dlibrary/JIPS_v10_no2_paper9.pdf

[4] Real-Time Face Detection and Tracking

http://people.ece.cornell.edu/land/courses/eceprojectsland/STUDENTPROJ/2012to2013/tnn7/

tnn7_report_201212141110.pdf

[5] Real Time Implementation of Spatial Filtering on FPGA

http://www.academia.edu/10478288/REAL_TIME_IMPLEMENTATION_OF_SPATIAL_FI

LTERING_ON_FPGA

[6] Field Programmable Gate Array (FPGA)

http://www.xilinx.com/training/fpga/fpga-field-programmable-gate-array.htm

[7] OV7670 CMOS VGA (640x480) CAMERACHIP
TM

Sensor Datasheet by OmniVision

http://www.cutedigi.com/pub/sensor/Imaging/OV7670-Datasheet.pdf

[8] OV7670 Software Application Note – Camera Configurations

http://wenku.baidu.com/view/aab1f11cc281e53a5802ffe4.html

[9] FPGA Implementation of VGA Controller

http://www.researchgate.net/publication/233743657_FPGA_IMPLEMENTATION_OF_VGA

_CONTROLLER

[10] VGA Signal 640 x 480 @ 60 Hz Industry standard timing

http://tinyvga.com/vga-timing/640x480@60Hz

[11] Hacking the OV7670 camera module (SCCB cheat sheet inside)

http://embeddedprogrammer.blogspot.jp/2012/07/hacking-ov7670-camera-module-sccb-

cheat.html

http://hamsterworks.co.nz/mediawiki/index.php/OV7670_camera
http://hamsterworks.co.nz/mediawiki/index.php/Zedboard_OV7670
http://jips-k.org/dlibrary/JIPS_v10_no2_paper9.pdf
http://people.ece.cornell.edu/land/courses/eceprojectsland/STUDENTPROJ/2012to2013/tnn7/tnn7_report_201212141110.pdf
http://people.ece.cornell.edu/land/courses/eceprojectsland/STUDENTPROJ/2012to2013/tnn7/tnn7_report_201212141110.pdf
http://www.academia.edu/10478288/REAL_TIME_IMPLEMENTATION_OF_SPATIAL_FILTERING_ON_FPGA
http://www.academia.edu/10478288/REAL_TIME_IMPLEMENTATION_OF_SPATIAL_FILTERING_ON_FPGA
http://www.xilinx.com/training/fpga/fpga-field-programmable-gate-array.htm
http://www.cutedigi.com/pub/sensor/Imaging/OV7670-Datasheet.pdf
http://wenku.baidu.com/view/aab1f11cc281e53a5802ffe4.html
http://www.researchgate.net/publication/233743657_FPGA_IMPLEMENTATION_OF_VGA_CONTROLLER
http://www.researchgate.net/publication/233743657_FPGA_IMPLEMENTATION_OF_VGA_CONTROLLER
http://tinyvga.com/vga-timing/640x480@60Hz
http://embeddedprogrammer.blogspot.jp/2012/07/hacking-ov7670-camera-module-sccb-cheat.html
http://embeddedprogrammer.blogspot.jp/2012/07/hacking-ov7670-camera-module-sccb-cheat.html

65

[12] Field-programmable gate array

https://en.wikipedia.org/wiki/Field-programmable_gate_array

[13] VGA Controller (VHDL)

https://eewiki.net/pages/viewpage.action?pageId=15925278

[14] ZedBoard

http://zedboard.org/product/zedboard

[15] Face Detection using Skin Color Model and Distance between Eyes

http://www.warse.org/pdfs/ijccn01132012.pdf

[16] Linux Drivers – OV7670 Camera Configurations

http://lxr.free-electrons.com/source/drivers/media/i2c/ov7670.c#L167

[17] OmniVision Serial Camera Control Bus (SCCB) Functional Specification

http://www.ovt.com/download_document.php?type=document&DID=63

[18] Piping OV7670 video to VGA output on ZYBO

https://github.com/laurivosandi/hdl/blob/master/zynq/zybo-ov7670-to-vga.rst

[19] Morphological Transformations

http://opencv-python-

tutroals.readthedocs.org/en/latest/py_tutorials/py_imgproc/py_morphological_ops/py_morpho

logical_ops.html

[20] Face detection

https://web.stanford.edu/class/ee368/Project_03/Project/reports/ee368group02.pdf

[21] Video Graphics Array – Wikipedia

https://en.wikipedia.org/wiki/Video_Graphics_Array

https://en.wikipedia.org/wiki/Field-programmable_gate_array
https://eewiki.net/pages/viewpage.action?pageId=15925278
http://zedboard.org/product/zedboard
http://www.warse.org/pdfs/ijccn01132012.pdf
http://lxr.free-electrons.com/source/drivers/media/i2c/ov7670.c#L167
http://www.ovt.com/download_document.php?type=document&DID=63
https://github.com/laurivosandi/hdl/blob/master/zynq/zybo-ov7670-to-vga.rst
http://opencv-python-tutroals.readthedocs.org/en/latest/py_tutorials/py_imgproc/py_morphological_ops/py_morphological_ops.html
http://opencv-python-tutroals.readthedocs.org/en/latest/py_tutorials/py_imgproc/py_morphological_ops/py_morphological_ops.html
http://opencv-python-tutroals.readthedocs.org/en/latest/py_tutorials/py_imgproc/py_morphological_ops/py_morphological_ops.html
https://web.stanford.edu/class/ee368/Project_03/Project/reports/ee368group02.pdf
https://en.wikipedia.org/wiki/Video_Graphics_Array

