TTANETTIZTHMIO OEZZAATIAZ

TMHMA HAEKTPOAOT 2N MHXANIKSIN KAT MHXANIK(N
YTIOAOTIZTSIN

AirAwpariki Epyacia

O¢pa: “YAomoinon kai afioAdynon mpwTokOAAwWY SIKTUWONG HE XpHon TNG
OpenFlow TexvohAoyiag”

PadouvioAng AvaoTtdaoiog

EmpAémwy kaBnyntAc : Kopdkng ABavdoioc (Emikoupog kaBnynthg)
2uvemIPAETTWY KAONYNTAC : Apyupiou Avtwvio¢ (AékTopac kaBnyntng)

Béhoc, 2016

UNIVERSITY OF THESSALY

Department of Electrical and Computer Engineering

Thesis

Title: "Implementation and evaluation of network protocols using
OpenFlow technology”

Radounislis Anastasios

Supervisor professor: Korakis Athanasios
Co-supervisor professor: Argyriou Antonios

Volos , 2016

EuxapioTiec

H mapoUoa dITAWHATIKA epyacia TpaydaTomoiNnOnke ota mAaiolda Tou
TPOTITUXIAKOU TIpoypdupaTog amoudwy Tou TUARATOoC HAekTpoAdYywy
Mnxavikwyv kai Mnxavikwy YToAoyIioTWwy yid Thv dTOKTNON TOU AVTiOTOIX0U
diImAwpaTog. Apxikd Ba NBeAa va euxaploTAowW Tov eMIPAETOVTA KABNYNTA
Kal AéKkTopa Tou TUApaTtog kK. Kopdkn ABavdaio Tou Hou édwae Thv guKdipia
va aoXoAnbw pe 1o B¢épa. Emiong , Oa hBeAa va suxapioTAOW ToV UTTOYRPIo
010dkTopa Tou THAKATOC Xoupa KwvaTtavTivo , yid Tov XpOvo Tou, TIC
OUUPOUAEC Tou Kal Thv kKaBodhynon Tou kaB'oAn Tnv didpKkela TNC epyaaciac.
TéAog , ©a nBeAa va euxapioTAOW TNV OIKOYEVEID HOU KAl TOUG QiAoug Hou
yia Thv oThApIEn TTou Hou Ttapeixav 6Aa autd Ta Xpovid.

TTepiexopeva

EuxapioTieg
TTepiexopeva
TTepiAnyn
Abstract
1. Introduction
1.1 Switching Loop Problem
1.2 Example
1.3 Spanning tree protocol
1.4 Our Solution
2. Tools
2.1 OpenFlow
2.2 Mininet
2.3 Trema
3. The Controller
4. Experiments
4.1 Experiment 1
4.2 Experiment 2
4.3 Conclusion
5. Future work
6. References

TTepiAnyn

2Komdg TNG SIMAWUATIKAG epydciag gival n uhomroinon evég Openflow
Controller o omoiog Ba AUvel To switching loop TpépAnua kar ©a kabioTd
OUVATA Thv €TIKOIVWYVid avdpeod oToug KOUPoUG akopun Kai eav umdpxel
KUKAOG 0TnV ToTroAoyid. AUTO YiveTal XpNOIHOTIOIWVTAC ToVv aAyopiBpo Tou
Kruskal yia Tnv gUpean Tou eAdxiaTou emikaAUTTov 8€VTPOU Kal He amdppiyn
TWV TTAKETWY TTOU KIVOUVTAI OTIC dKUEC 01 oTroieC OEv AVAKOUV OE auTo. 2.av
pdpog akpwv xpnoigomoloUpe 3 SiapopeTIkEG TIHEG: 1)To delay kdOe akung,
2) 1o bandwidth kdB¢ akung kai 3) Tov Adyo bandwidth/delay.
2.Th ouvéxela Tpé€ape Tov controller oe 2 di1apopeTIKEG TOTTOAOYIEC Kal
HETPROAPE To OUVOAIKO pédo RTT Kkai To ouvoAiké péoo Bandwidth yia kaBe

pdpoc.

Abstract

The purpose of this thesis is the development of an OpenFlow
controller that solves the switching loop problem and allows the
communication between the nodes in non loop free topologies. This is
achieved thanks to Kruskal's algorithm finding the minimum spanning tree
of our topology and by dropping the packets a switch receives in a port
that doesn't belong in the tree. As weight we use 3 different values: 1)
delay of links , 2) bandwidth of links and 3) the result of
Bandwidth/delay of each link.

Then we run the controller on top of 2 different topologies and we
measure the total average RTT and the total average Bandwidth for each
weight.

1. Introduction
1.1 Switching Loop problem

A switching loop or bridge loop occurs in computer networks
when there is more than one layer 2 (OSI model) path between two
endpoints. The loop creates broadcast storms as broadcasts and
multicasts are forwarded by switches out every port, the switches
will repeatedly rebroadcast the broadcast messages flooding the
network. Since the Layer 2 header does not support a time-to-live
(TTL) value, if a frame is sent into a looped topology, it can loop
forever.

1.2 Example

Let's examine the topology downwards. We assume that
flow tables of all switches are empty.

h1

h2

1. Full mesh square topology

We are going to see what happens when hl sends a
packet to h2. First sl will receive the packet, because of
unknown destination MAC address the switch will forward the
packet to all ports except the source port.

|

The switches will receive the packet and acting like sl

8

they are going to forward it to all ports. S2 will forward the
packet to s3,54, s3 to s2, s4 and s4 1o s2,s3.

53

After that once more switches will forward again the
same packet which now exists in all links.
As a result the packet will start circulating the network in a
loop and since it doesn't have a TTL value (as Layer 2 packet)
it will loop forever.
Also there is additional overhead because h2 will receive
multiple copies of the same packeft.

The same problem occurs for multicasts and broadcasts and is
knows as broadcast storm . The loop creates broadcast storms as
broadcasts and multicasts are forwarded by switches out every port and
switches will repeatedly rebroadcast the messages flooding the network.

1.2 Spanning Tree Protocol
The Spanning Tree Protocol is a network protocol that
ensures a loop-free topology for any bridged Ethernet local
area network. The basic function of STP is to prevent bridge
loops and esnuring broadcast radiation.
Spanhing Tree consists of the following steps:

> root bridge election based on bridge ID

> root port election based on the lowest path
cost to root port

> designated port election

10

> alternative (blocking) port election

1.3 Our Solution

To avoid switching loop we implement an OpenFlow
controller that solves that problem using Kruskal's Algorithm.
More precisely our controller learns the topology by forcing
the switches to communicate to each other with “discovery”
packets and then when a switch asks the controller what to do
with a packet , the controller using Kruskal's algorithm ,
discovers the minimum spanning tree of the topology and
blocks the ports that are responsible for loops. This happens
only one time in stable topologies, when the first non-
"discovery" packet arrives or when there is a change in the
topology, for example, a switch connects or disconnects o the
network.

Now let's explain OpenFlow and other tools that we use
for the experiments and we will see how the controller exactly
works afterwards.

2. Tools

2.1 OpenFlow

OpenFlow is an open standard that enables researchers
to run experimental protocols in networks we use every day.
OpenFlow is added as a feature to commercial Ethernet
switches, routers and wireless access points and provides a
standarized hook to allow researchers to run experiments,

11

without requiring vendors to expose the internal workings of
their network devices. OpenFlow is currently being
implemented by major vendors, with OpenFlow-enabled
switches now commercially available

The original concept for OpenFlow begun at Stanford
University in 2008. By December 2009, Version 1.0 of the
OpenFlow switch specification was released. Since its
inception, OpenFlow has been managed by the Open
Networking Foundations (ONF), a user-led organization
dedicated fo open standards and SDN adoption.

OpenFlow is considered one of the first software-
defined networking (SDN) standards. It originally defined the
communication protocol in SDN enviroments that enables the
SDN controller to directly interact with the forwarding plane
of network devices such as switches and routers.

To work in an OpenFlow environment, any device that wants to
communicate to an SDN Controller must support the OpenFlow
protocol. Through this interface, the SDN Controller pushes
down changes to the switch/router flow-table allowing
network administrators to partition traffic , control flows for
optimal

performance , and start testing new configurations and
applications.

An OpenFlow switch is a software program or hardware
device that forwards packets in a software-defined
networking (SDN) enviroment. OpenFlow switches are either
based on the OpenFlow protocol or compatible with it. In a
conventional switch, packet forwarding (data plane) and high-
level routing (control plane) occur on the same device. In
software-defined networking, the data plane is decoupled
from the control plane. The data plane is still implemented in
the switch itself but the control plane is implemented in

12

software and a separate SDN controller makes high-level
routing decisions. The switch and controller communicate by
means of the OpenFlow protocol.

Ewova 2. An OpenFlow switch

Ewova 3. A rule in flow-table

OpenFlow switches must be capable of forwarding
Ethernet frames based in rules that are stored in one or more
flow-tables. Each flow table entry contains:

13

e Header fields to match against packets
e Counters to update for matching packet
e Actions to apply to matching packets

When a packet arrives at the OpenFlow switch, the
header fields are compared to flow table entries. If a match
is found, the packet is either forwarded to specified port(s)
or dropped depending on the action stored in the flow table.
When an OpenFlow switch receives a packet that does not
match the flow table entries, it encapsulates the packet and
sends it to the controller. The controller then decides how the
packet should be handled and notifies the switch to either
drop the packet or make a new entry in the flow table to
support the new flow.

{ packet_in }

W yes execute actions as
match in flow table J ' described in flow

fable

h A

send the packet to
controller and wait

for instructions

controller notifies the} .
switch J 7
make a new flow
drop the packet entry to support the
flow

Ewkéva 4. General flow chart

The controller is responsible for maintains all of the
network rules and distributes the appropriate instructions for

14

the network devices. In other words, the OpenFlow controller
is responsible for determining how to handle packets without
valid flow entries, and it manages the switch flow table by
adding and removing flow entries over the secure channel
using OpenFlow protocol.

OpenFlow controllers can operate in different modes
depending on:

e Location: we have the choice of centralized
configuration, where one controller manages and
configures all the switches , or distributed
configuration such as one controller for each
switch

e Flow : we can have one flow entry for each flow
(flow routing) or one flow entry for large groups of
flows.

e Behavior: Here there are two choices.

o Reactive: The controller is designed initially
to do nothing until it receives the first
message

o Proactive: Rather than reacting to a packet an
OpenFlow controller could populate the flow
tables ahead of time for all traffic matches
that could come into the switch.

For our experiments we chose a centralized
configuration with flow routing and a reactive behavior.

2.2 Mininet

Mininet is a network emulator which creates a network
of virtual hosts, switches, controllers, and links. Mininet hosts
run standard Linux network software, and its switches support

15

OpenFlow for highly flexible custom routing and Software-
Defined Networking.

Mininet supports research, development, learning, prototyping,
testing, debugging, and any other tasks that could benefit
from having a complete experimental network on a laptop or

other PC.
Mininet:

Mininet provides
system behavior (and, to the extent supported by your hardware,
performance) and to experiment with topologies.

Provides a simple and inexpensive network
testbed for developing OpenFlow
applications

Enables multiple concurrent developers to
work independently on the same topology
Supports system-level regression tests,
which are repeatable and easily packaged
Enables complex topology testing without
the need to wire up a physical network
Includes a CLI that is topology aware and
OpenFlow-aware, for debugging or running
network-wide tests

Supports arbitrary custom topologies, and
includes a basic set of parametrized
topologies

Is usable out of the box without
programming

Provides a straightforward and extensible
Python API for network creation and
experimentation

an easy way ‘to get correct

Mininet networks run real code including standard Unix/Linux

network applications as well as the real Linux kernel and network
stack (including any kernel extensions which you may have available,
as long as they are compatible with network namespaces.)

16

Because of this, the code you develop and test on Mininet, for
an OpenFlow controller, modified switch, or host, can move to a real
system with minimal changes, for real-world testing, performance
evaluation, and deployment. Importantly this means that a design
that works in Mininet can usually move directly to hardware
switches for line-rate packet forwarding.

2.3. Trema

Trema is an OpenFlow controller programming framework
that provides everything needed to create OpenFlow
controllers in Ruby. It provides a high-level OpenFlow library
and also a network emulator that can create OpenFlow-based
networks for testing on your PC. This self-contained
environment helps streamlines the entire process
ofdevelopment and testing

Goals for Trema project:

« Provide good quality OpenFlow controller
platform to researchers/developers and a
continuous development, maintenance, bug
fixes and user support from the project
team.

« Researchers develop their own controllers
on top of Trema and contribute to the
community.

Ruby is an object-oriented programming language,
written in C and that combine some of the best features of C,
Perl and Python. Is a portable programming language and runs
under GNU/Linux as well as DOS, MS Windows and MAC.

17

3. The Controller

In this chapter we will describe in details how our
controller works.
The purpose of our controller is to solve the switching loop
problem and achieve communication in non loop free topologies.
So, starting, the controller must learn the topology. This is
achieved by "discovery packets” that the controller forces the
switches to send fo their neighbors. Each switch sends to it's
neighbors a packet with it's ID and a string "disc_packet”. The
controller provides special handling for these packets. They
aren't forwarded to next switch. Each switch that receives a
“discovery_packet" updates the global graph variable with an
entry consisting sender’s ID, receiver's ID and the receiver's
port. ([sender_s id, receiver's id, message.in_port])

After little time, the controller has an overall view of
the topology as a graph and knows the port numbers of a pair
of switches that are neighbors.

Then the controller waits for the first packet to be
delivered in a switch.

Taken as fact that the flow tables are empty in the
beginning, when the switch receives the packet it will ask the
controller what to do with it.

Same as flow tables, the forwarding database of the
controller will also be empty so there is not an entry for the
MAC destination address of the packet. Now the controller

18

will order the switch to flood the packet out of all it's ports
except the source port.

But before that, and here comes our contribution, the
controller will apply Kruskal's algorithm in the topology to find
it's minimum spanning tree.

Knowing the tree the controller knows which links are
responsible for loops and it "blocks" the ports of each switch
in the pair that consists the link.

For example if the link between (1,2) is not in the
minimum spanning tree the controller will force switch 1 to
drop the packets coming from the port that it connects with
switch 2. Exactly the same goes for switch 2.

Now that we have a loop free topology there is no
problem for a packet to loop in the network. So the switch
floods the packet out of all it's ports except the source port.

Kruskal's Algorithm is used to find the minimum spanning
tree of a graph(in our case of a network topology) with the
least cost.

For our experiments we used three different values as
weights

« Link delay
o Link bandwidth
« Bandwidth/delay value

Downwards there is a flow chart to help you understand
better what happens when a switch receives a packet.

Also, it's good to know that switches in this experiment
will act like an L2 switch. They will examine each packet, learn
the source-port and associate it with the source MAC address.

If the destination MAC address of the packet is already
associated with a port, the packet will be sent to the given

19

port, else it will be flooded on all ports of the switch.

The controller was built upon the multi-learning switch of
Trema examples in Ruby programming language.

If there is a change in the topology (a new switch connects or
a switch disconnects) the controller will run again Kruskal's
algorithm to find the new MST.

4. Experiments

After the development of the controller we run several
experiments and examine the overall performance of our

20

topology depending on what we choose as a weight in Kruskal's
algorithm.

As weight values we use, delay, bandwidth and the
bandwidth/delay ratio of each link. These values are set in the
python script we execute in Mininet to create the topology
and we provide them manually to the controller.

So the topologies are created in a Mininet VM using
python. All nodes of each topology are wired connected.

The Trema controller runs on the host OS. Host OS and
Mininet VM are bridged connected.

4.1 Experiment 1.

In the first experiment we examine a full mesh square
topology. Each switch is connected fo a host

ITivaxkag 1 Values of each link

21

[-

T I

\

e

-

15

Y ¥

h2
» s2 |
) /
oz
b,
Ksa - >/‘/s4
AN / \ J/
™~ —~ —~
h3 h4 ‘

Ewova 5. Full mesh square topology

e
2

We will see what happens in the first case in details in which
we choose delay as weight. For example hl sends a ping request to
h4. H1 will forward the packet to sl.

Ewova 6 First step. Packet arrives in s1

Because of the empty flow tables there will be no flow for the
packet. Also there will be no match between destination's MAC

22

address and a port, so this leads to a flood.

Before order the switch to flood the packet the controller will
apply Kruskal's algorithm to the graph to remove. Below you can see
the MST with delay as weight.

Ewévo. 7 Delay MST

After finding the MST the controller will order the switch to
flood the packet out of all it's ports except the source port.

23

S1 will flood the packet, but s2 and s4 will drop it because
links (1,2) and (1,4) are not part of the MST. S3 will receive the
packet and as sl it will forward it out of all it's ports.

S2 will drop the packet again because link (3,2) does not
include in the MST. S4 will receive the packet and same as s1 and s3
will flood the packet.

B
C

C
-

24

S1 will drop the packet, s2 will receive it and flood it to h2.
Now the ping request will finally arrive in h4. In all the way down
from sl to s4 all switches have match the source port of the packet
with the MAC address of hl.

So as the ping reply has destination MAC the address of hl
the switches will know in which port to send the packet and there
will be no flooding. Also flow entries will be added in each flow
table. The ping reply will be forwarded to s4 from h4, then to s3,
then to sl and finally h1.

In case h2 sends a ping request to h3 the controller will not
apply Kruskal's algorithm again, the MST is the same, so the packet
will flood to the network.

Below there are the other 2 Minimum-Spanning-Trees.

Ewova 8 Bandwidth MST

25

-

Ewova 9 Bandwidth/delay ratio MST

In each case we measure the total average Round-Trip-Time
and the total average Bandwidth by execute ping and iperf between
all hosts.

In the chart below we can see the results.

25

B RTT(ms)

M Bandwidth(Mbps)

delay bandwidth bandwidth/delay

26

4.2 Experiment 2

For the second experiment we choose a 6-node mesh topology

as shown in the picture below
\-H_A_._»'J

s4 }

'\\-,, N /

s

Ewova 10. 6-node mesh topology

Ewoéva 11. Edges of the 6 node topology

27

The 3 different Minimum-Spanning trees are following

> @

wallies

Ewova 12. MST based on delay

Ewova 13. MST based on Bandwidth

28

Ewéva 14. MST based on bandwidth/delay ratio

In the chart below we can see the results.

W RTT(ms)

B Bandwidth(Mbps)

delay bandwidth bandwidth/delay

29

4.3 Conclusion

As we can see, we have changes in network performance
depending on what we choose as weight. If we want a fast network
we should choose delay as weight, if we want a "fat" network and
delay is not a problem we can choose Bandwidth as weight. If we
want an average approach we can choose bandwidth/delay ratio as
weight because in this case we achieve lower average RTT contrary
to the Bandwidth case and better average Bandwidth contrary to
the Delay case.

5. In the future

In the future we can apply our algorithm with different values
as weight. Also we can measure how much time needs the controller
to learn the entire topology and find it's Minimum Spanning Tree
and we can compare with the time STP needs fo converge.

30

References

[1] OpenFlow https://www.opennetworking.org/sdn-resources/openflow

[2] OpenFlow Switch http://searchsdn.techtarget.com/definition/OpenFlow-switch

[3] OpenFlow Controller http://searchsdn.techtarget.com/definition/OpenFlow-
controller

[4] Switching Loop https://en.wikipedia.org/wiki/Switching loop

[5] Spanning Tree Protocol https://en.wikipedia.org/wiki/Spanning Tree Protocol

[6] Mininet http://mininet.org/

[7] Trema http://www.fp7-ofelia.eu/assets/Uploads/201203xx-TremaTutorial.pdf

[8] Trema Github https://trema.github.io/trema/

[9] MultiLearning Switch https://github.com/trema/learning switch/tree/develop/lib

[10] Open V switch http://openvswitch.org/

[11] Kruskal's Algorithm https://en.wikipedia.org/wiki/Kruskal%27s algorithm

[12] Network Metrics
https://courses.engr.illinois.edu/cs538/sp2016/Lectures/Lecture8-2.pdf

[13] Iperf command https://iperf.fr/

[14] Ping commnad http://linux.about.com/od/commands/|/blcmdI8 ping.htm

31

