
University of Thessaly

Hardware Profiling in a FPGA-based
SoC

Author:

Ioannis Parnassos

Supervisors:

Dr. Nikolaos Bellas

Dr. Christos Antonopoulos

A thesis submitted in fulfilment of the requirements

for the degree of Diploma of Science in Computer and Communication

Engineering

in the

Department of Electrical and Computer Engineering

University of Thessaly

October 14, 2015

http://www.uth.gr
http://www.inf.uth.gr
http://www.uth.gr

UNIVERSITY OF THESSALY

Department of Electrical and Computer Engineering

Hardware Profiling in a FPGA-based SoC

Ανάλυση απόδοσης υλικού για FPGA-based SoC

by

Ioannis Parnassos

Graduate Thesis

for

the degree of

Diploma of Science in Computer and Communication Engineering

http://www.uth.gr
http://www.inf.uth.gr

Declaration of Authorship

I, Ioannis Parnassos, confirm that this thesis is my own work. All direct or indirect

sources used are acknowledged as references. This thesis was not previously pre-

sented to another examination board and has not been published.

Copyright c© 2015 by Parnassos Ioannis.

“The copyright of this thesis rests with the author. No quotations from it should be

published without the author’s prior written consent and information derived from

it should be acknowledged”.

iii

Dedicated to my family and friends. . .

iv

Abstract

Developing a complete FPGA-based system architecture requires a vast vari-

ety of design approaches to be examined and evaluated. Several attempts ostensibly

sufficient will not produce the expected outcome in terms of overall system perfor-

mance. Locating the system’s bottleneck cannot be relied entirely on simulation.

The purpose of this Thesis is to fulfill the need of profiling analysis for FPGA-

based SoC presenting the development of a hardware design with capabilities similar

to software event-based profilers.

RIFFA framework offers a user friendly implementation for communicating

data from a host CPU to a FPGA via PCI Express bus and was used as infrastruc-

ture. The created design extends RIFFA with profiling mechanisms for monitoring

and logging of user created IP cores based on a predefined event set. RIFFA Mon-

itor was tested with already implemented designs and collected data were used for

time analysis and event visualization.

During development several tasks were incorporated into RIFFA Monitor

and even more are left as future extensions, with the ambition to create a practical

and convenient tool for hardware design engineers.

vi

Περίληψη

Κατά την ανάπτυξη ενός συστήματος βασισμένου σε FPGA θα εξεταστούν και

θα αξιολογηθούν αρκετές διαφορετικές προσεγγίσεις σχεδιασμού. Πολλές από αυτές

μπορεί να δίνουν την εντύπωση ενός ορθά υλοποιημένου συστήματος αλλά δεν θα πα-

ράγουν τα αναμενόμενα αποτελέσματα όσον αφορά τη συνολική απόδοση. Ο εντοπισμός

συμφόρησης του συστήματος δεν μπορεί να βασιστεί αποκλειστικά στην προσομοίωση.

Ο σκοπός αυτής της διατριβής είναι να καλύψει την ανάγκη για ανάλυση απόδο-

σης σε FPGA-based SoC παρουσιάζοντας τον σχεδιασμό και την ανάπτυξη υλικού με

δυνατότητες αντίστοιχες λογισμικών ανάλυσης απόδοσης βασισμένων σε γεγονότα.

Το RIFFA προσφέρει ένα φιλικό προς το χρηστή πλαίσιο για την επικοινωνία

δεδομένων ανάμεσα στο λογισμικό και σε μια FPGA μέσω του διαύλου PCI Express,

και χρησιμοποιήθηκε ως υποδομή. Το προαναφερθέν πλαίσιο εμπλουτίστηκε με μηχα-

νισμούς για την παρακολούθηση και καταγραφή στιγμιότυπων λειτουργίας των συστη-

μάτων συμφώνα με ένα σύνολο προκαθορισμένων γεγονότων. Το παραγόμενο υλικό

ονόματι RIFFA Monitor χρησιμοποιήθηκε για την παρακολούθηση και αξιολόγηση υ-

λοποιημένων συστημάτων και τα δεδομένα που συλλέχτηκαν χρησιμοποιήθηκαν για την

ανάλυση λειτουργιάς και οπτικοποιήθηκαν.

΄Οσο ο RIFFA Monitor βρισκόταν υπό ανάπτυξη υιοθέτησε μια πληθώρα λειτουρ-

γιών, ενώ αρκετές ακόμα δοκιμάζονται για μελλοντικές επεκτάσεις, με τη φιλοδοξία να

δημιουργήσουν ένα πρακτικό και βολικό εργαλείο για τους μηχανικούς σχεδίασης υλι-

κού.

vii

Acknowledgements

For the fullfilment of this Thesis, I would like to thank my my professor Dr.

Nikolaos Bellas for his advice and guidance and my colleague George Zindros for

his support, collaboration and ideas.

Also i would like to thank my family for their support and patience...

viii

Contents

Declaration of Authorship iii

Abstract vi

Acknowledgements viii

Contents ix

List of Figures xi

List of Tables xii

Abbreviations xiii

1 Introduction 1

1.1 Describing the Motives . 1

1.2 Thesis Structure . 2

2 Background 3

2.1 Field Programmable Gate Array - FPGA 3

2.1.1 FPGA Architecture . 4

2.1.2 Virtex 7TMVC707 Evaluation board 8

2.2 Reusable Integration Framework for FPGA Accelerators - RIFFA . . 9

2.2.1 RIFFA Architecture . 10

2.2.2 RIFFA Hardware Interface 13

2.2.3 RIFFA Sorfware API . 17

2.3 Vivado Design Suite . 20

3 RIFFA Monitor Core Design & Implementation 21

3.1 Purpose & Approach . 21

3.2 Event-Based Profiler . 22

3.3 High Level Design . 23

3.4 Module Analysis . 24

3.4.1 Monitor Top Module . 24

3.4.1.1 Control Mechanism 26

ix

Contents x

3.4.1.2 Tail . 29

3.4.1.3 Parameters . 30

3.4.2 Global Timer . 32

3.4.3 Monitor Submodule . 33

3.4.4 Event Log . 34

3.5 Driver . 36

3.6 Architectural exploration . 39

4 Conclusion 41

4.1 Project Report . 41

4.2 In the Future . 41

A Verilog Source Code 43

B Software interface - RIFFA Monitor API 56

Bibliography 62

List of Figures

2.1 Overview of Island-Style FPGA architecture 4

2.2 Simplified example illustration of a logic cell 5

2.3 Switch box Topology . 6

2.4 FPGA Software Flow . 7

2.5 VC707 Evaluation board . 8

2.6 VC707 board block diagram . 8

2.7 XC7VX485T FPGA Feature Summary 9

2.8 RIFFA high level architectural diagram 10

2.9 Sequence diagram for upstream transfer 11

2.10 Sequence diagram for downstream transfer 12

2.11 Timing diagram for receiving data 14

2.12 Timing diagram for transmitting data 15

2.13 Vivado High Level Synthesis . 20

3.1 RIFFA with Monitor high level architecture 23

3.2 RIFFA Monitor block diagram . 24

3.3 Monitor’s RTL schematic . 25

3.4 Monitor’s abstract view and I/O . 25

3.5 Monitor’s Finite State Machine . 27

3.6 Global Timer RTL schematic . 32

3.7 Event Monitor . 33

3.8 Monitor Submodule RTL schematic 34

3.9 Monitor module ID generation . 34

3.10 Event Log Module RTL schematic 35

3.11 Output of INFO function call . 37

3.12 Output of LOG function call . 38

3.13 Basic Vilsualization . 39

xi

List of Tables

2.1 RX - TX interface Signals . 13

3.1 Monitor’s OPCODE bits . 26

xii

Abbreviations

API Application Programming Inteface

ASIC Application Specific Integrated Circuit

BRAM Block Random Access Memory

CAD Computer Aided Design

CMT Clock Managment Tile

CLB Configurable Logic Block

DMA Direct Memory Access

DFF D Flip Flop

DSP Digital Signal Processing

FPGA Field Programmable Gate Array

HDL Hardware Description Language

HLS High Level Synthesis

LUT Look Up Table

MMCM Mixed Mode Clock Managment

MUX MUultipleXer

PCI Peripheral Component Interconnect

PLL Phase Locked Loop

RIFFA Reusable Integration Framework for FPGA Accelerators

RTL Register Transfer Level

xiii

Chapter 1

Introduction

1.1 Describing the Motives

In software engineering, profiling is a form of dynamic program analysis. Infor-

mation provided can point out which pieces of a program are slower than expected,

and might be candidates for rewriting. It can also tell which functions are being

called more or less often and can help spotting bugs that had otherwise been unno-

ticed.

On the other hand when hardware engineers design an FPGA-based SoC they

have to rely on simulation for the evaluation and optimization of their work due

to the lack of hardware profiling tools. Collecting useful information during SoC

run time is either partially supported if a soft processor is implemented, or require

manual addition of profiling mechanisms.

The purpose of this Thesis is the development of a hardware design offering

similar capabilities to software profiling tools. Hardware Profiler will assist in mon-

itoring, debugging and evaluating FPGA designs, perform time analysis and locate

system bottlenecks.

1

Chapter 1. Introduction 2

1.2 Thesis Structure

Thesis is divided in three main Chapters, each one of those includes smaller sections

and possibly subsections.

Chapter 2 provides background information over the hardware and software used in

this project. It begins in section 2.1 with a brief overview over FPGA architecture

and operation, and then focuses on the technical characteristics of Virtex 7 VC707

evalution board on which the design was developed. Following in section 2.2 the

RIFFA framework is presented and described and in section 2.3 we have a short

reference on the development suite.

Chapter 3 analytically describe the RIFFA 2.0 Profiler Core. In the first sections

we come across the purpose of the project, a high level view of the architecture, an

an introduction to event-based profilers, followed on section 3.4 by a complete anal-

ysis of each module. Afterwards the software bindings are provided and expanded.

Finally the last section will focus on the development milestones.

Chapter 4 summarizes the work done, results generated and provides ideas for future

development.

Chapter 2

Background

2.1 Field Programmable Gate Array - FPGA

A field-programmable gate array (FPGA) is an integrated circuit designed

to be configured by a customer or a designer after manufacturing – hence ”field-

programmable”. The FPGA configuration is generally specified using a hardware

description language (HDL). As opposed to Application Specific Integrated Circuits

(ASICs), where the device is custom built for the particular design, FPGAs can be

programmed to the desired application or functionality requirements.

FPGAs contain an array of programmable logic blocks, and a hierarchy of

reconfigurable interconnects that allow the blocks to be ”wired together”, like many

logic gates that can be inter-wired in different configurations. Logic blocks can be

configured to perform complex combinational functions, or merely simple logic gates

like AND and XOR. In most FPGAs, logic blocks also include memory elements,

which may be simple flip-flops or more complete blocks of memory.

An FPGA can be used to solve any problem which is computable. This is

trivially proven by the fact FPGA can be used to implement a soft microprocessor.

Their advantage lies in that they are sometimes significantly faster for some appli-

cations due to their parallel nature and optimality in terms of the number of gates

used for a certain process.

3

Chapter 2. Background 4

2.1.1 FPGA Architecture

Logic blocks

The most common FPGA architecture among academic and commercial FP-

GAs consists of an island-style array of logic blocks (called Configurable Logic Block,

CLB, or Logic Array Block, LAB, depending on vendor), I/O pads, and routing

channel.

Figure 2.1: Overview of Island-Style FPGA architecture

CLB is a the fundamental building block a FPGA and can be configured by

the engineer to provide reconfigurable logic gates. A logic block consists of a few

logical cells (called ALM, LE, Slice etc.). A typical cell consists of a 4-input LUT,

a Full adder (FA) and a D-type flip-flop, as shown in figure 2.1. The LUTs are in

this figure split into two 3-input LUTs. In normal mode those are combined into

a 4-input LUT through the left mux. In arithmeticmode, their outputs are fed to

the FA. The selection of mode is programmed into the middle multiplexer. The

Chapter 2. Background 5

output can be either synchronous or asynchronous, depending on the programming

of the mux to the right, in the figure example. In recent years, manufacturers have

started moving to 6-input LUTs in their high performance parts, claiming increased

performance.

Figure 2.2: Simplified example illustration of a logic cell

Hard blocks

Modern FPGA families expand upon the above capabilities to include higher

level functionality fixed into the silicon. Having these common functions embedded

into the silicon reduces the area required and gives those functions increased speed

compared to building them from primitives. Examples of these include multipli-

ers, generic DSP blocks, embedded processors, high speed I/O logic and embedded

memories. Higher-end FPGAs can contain high speed multi-gigabit transceivers and

hard IP cores such as processor cores, Ethernet MACs, PCI/PCI Express controllers,

and external memory controllers. These cores exist alongside the programmable fab-

ric, but they are built out of transistors instead of LUTs so they have ASIC level

performance and power consumption while not consuming a significant amount of

fabric resources, leaving more of the fabric free for the application-specific logic.

The multi-gigabit transceivers also contain high performance analog input and out-

put circuitry along with high-speed serializers and deserializers, components which

cannot be built out of LUTs. Higher-level PHY layer functionality such as line

coding may or may not be implemented alongside the serializers and deserializers

in hard logic, depending on the FPGA.

Chapter 2. Background 6

Routing

An application circuit must be mapped into an FPGA with adequate resources.

While the number of CLBs/LABs and I/Os required is easily determined from the

design, the number of routing tracks needed may vary considerably even among de-

signs with the same amount of logic. Generally, the FPGA routing is unsegmented.

That is, each wiring segment spans only one logic block before it terminates in a

switch box. By turning on some of the programmable switches within a switch

box, longer paths can be constructed. For higher speed interconnect, some FPGA

architectures use longer routing lines that span multiple logic blocks.

Figure 2.3: Switch box Topology

Software Flow

FPGA architectures have been intensely investigated over the past two decades.

A major aspect of FPGA architecture research is the development of Computer

Aided Design (CAD) tools for mapping applications to FPGAs. It is well estab-

lished that the quality of an FPGA-based implementation is largely determined by

the effectiveness of accompanying suite of CAD tools. Benefits of an otherwise well

designed, feature rich FPGA architecture might be impaired if the CAD tools can-

not take advantage of the features that the FPGA provides. Thus, CAD algorithm

research is essential to the necessary architectural advancement to narrow the per-

formance gaps between FPGAs and other computational devices like ASICs.

The software flow (CAD flow) takes an application design description in a

Hardware Description Language (HDL) and converts it to a stream of bits that is

Chapter 2. Background 7

eventually programmed on the FPGA. The process of converting a circuit descrip-

tion into a format that can be loaded into an FPGA can be roughly divided into

five distinct steps, namely: synthesis, technology mapping, mapping, placement and

routing. The final output of FPGA CAD tools is a bitstream that configures the

state of the memory bits in an FPGA. The state of these bits determines the logical

function that the FPGA implements.

Figure 2.4: FPGA Software Flow

Chapter 2. Background 8

2.1.2 Virtex 7TMVC707 Evaluation board

The project was developed on a Virtex-7 VC707 Evaluation board using the

XC7VX485T-2FFG1761C FPGA. Virtex is the flagship family of FPGA products

developed by Xilinx optimized for highest system performance and capacity. The

VC707 board block diagram is shown in Figure 2.6.

Figure 2.5: VC707 Evaluation board

Figure 2.6: VC707 board block diagram

Chapter 2. Background 9

Figure 2.7: XC7VX485T FPGA Feature Summary

7 series FPGA slice contains four LUTs and eight flip-flops; only some slices can

use their LUTs as distributed RAM or SRLs. Each DSP slice contains a pre-adder,

a 25 x 18 multiplier, an adder, and an accumulator. Block RAMs are fundamentally

36 Kb in size; each block can also be used as two independent 18 Kb blocks. Each

CMT contains one MMCM and one PLL.

2.2 Reusable Integration Framework for FPGA Accel-

erators - RIFFA

RIFFA (Reusable Integration Framework for FPGA Accelerators) is a simple

framework for communicating data from a host CPU to a FPGA via a PCI Express

bus. The framework requires a PCIe enabled workstation and a FPGA on a board

with a PCIe connector. RIFFA supports Windows and Linux, Altera and Xilinx,

with bindings for C/C++, Python, MATLAB and Java.

On the software side there are two main functions: data send and data receive.

These functions are exposed via user libraries in C/C++, Python, MATLAB, and

Java. The driver supports multiple FPGAs (up to 5) per system. The software

bindings work on Linux and Windows operating systems. Users can communicate

with FPGA IP cores by writing only a few lines of code.

On the hardware side, users access an interface with independent transmit and

receive signals. The signals provide transaction handshaking and a first word fall

through FIFO interface for reading/writing data. No knowledge of bus addresses,

buffer sizes, or PCIe packet formats is required. Simply send data on a FIFO inter-

face and receive data on a FIFO interface. RIFFA does not rely on a PCIe Bridge

and therefore is not subject to the limitations of a bridge implementation. Instead,

RIFFA works directly with the PCIe Endpoint and can run fast enough to saturate

Chapter 2. Background 10

the PCIe link. It communicates data using direct memory access (DMA) transfers

and interrupt signaling, achieving high bandwidth over the PCIe link.

For the development of this Thesis RIFFA version 2.0.2 was used as infrastruc-

ture. The provided analysis is a replica of the information illustrated in the official

RIFFA 2 site.

2.2.1 RIFFA Architecture

Interface has been simplified to expose data as a first word fall through FIFO

(valid-data-ready interface). The data is transferred by RIFFA’s RX and TX DMA

engines using scatter gather address information from the workstation. These en-

gines issue and service PCIe packets to and from the PCIe Endpoint. RIFFA relies

on a Vendor PCIe Endpoint core to drive the transceivers. These are lowest-level

interface that FPGA vendors provide. The RIFFA interface supports 32-bit, 64-

bit and 128-bit widths, depending on the PCIe link configuration. A high level

architectural diagram of the RIFFA framework is illustrated in figure 2.8.

Figure 2.8: RIFFA high level architectural diagram

Chapter 2. Background 11

The upstream transfer is initiated by the FPGA. However, they will not begin

until the user application calls the user library function fpga recv. Upon doing so,

the thread enters the kernel driver and begins the pending upstream request. If

the upstream request has not yet been received, the thread waits for it to arrive

(bounded by the timeout parameter). On the diagram, the user library and device

driver are represented by the single node labeled ”RIFFA Library”.

Figure 2.9: Sequence diagram for upstream transfer

Servicing the request involves building a list of scatter gather elements which

identify which pages of physical memory correspond to the receptacle byte array.

The scatter gather elements are written to a shared buffer. This buffer location and

content length are provided to the FPGA. Each page enumerated by the scatter

gather list is pinned to memory to avoid costly paging. The FPGA reads the

scatter gather data then issues write requests to memory for the upstream data. If

more scatter gather elements are needed, the FPGA will request additional elements

via interrupt. Otherwise, the kernel driver waits until all the data is written. The

FPGA provides this notification, again via an interrupt.

Chapter 2. Background 12

After the upstream transaction is complete, the driver reads the FPGA for a

final count of data words written. This is necessary as the scatter gather elements

only provide an upper bound on the amount of data that is to be written. This

completes the transfer and the function call returns to the application with the final

count.

A similar sequence exists for downstream transfers. In this direction, the ap-

plication initiates the transfer by calling the library function fpga send The thread

enters the kernel driver and writes to the FPGA to initiate the transfer. Again, a

scatter gather list is compiled, pages are pinned, and the FPGA reads the scatter

gather elements. Each of the elements results in one or more read requests by the

FPGA. The read requests are serviced and the kernel driver is notified only when

more scatter gather elements are needed or when the transfer has completed.

Upon completion, the driver reads the final count read by the FPGA. In error

free operation, this value should always be the length of all the scatter gather ele-

ments. The final count is returned to the application.

Figure 2.10: Sequence diagram for downstream transfer

Chapter 2. Background 13

2.2.2 RIFFA Hardware Interface

A single RIFFA channel has two sets of signals, one for receiving data (RX)

and one for sending data (TX). RIFFA has simplified the interface to use a min-

imal handshake and receive/send data using a FIFO with first word fall through

semantics (valid+read interface). The clocks used for receiving and sending can be

asynchronous from each other and from the PCIe interface (RIFFA clock). The

table below describes the ports. The input/output designations are from your user

core’s perspective (i.e. the core(s) you write and connect to the RIFFA channel).

Table 2.1: RX - TX interface Signals

For better understanding of the RX and TX procedures an example of each

with their timing diagrams are provided bellow.

Chapter 2. Background 14

Figure 2.11: Timing diagram for receiving data

Figure 2.11 shows the RIFFA channel receiving a data transfer of 16 words

(64 bytes). When CHNL RX is high, CHNL RX LAST, CHNL RX LEN, and

CHNL RX OFF will all be valid. In this example, CHNL RX LAST is high, indi-

cating to the user core that there are no other transactions following this one and

that the user core can start processing the received data as soon as the transaction

completes. CHNL RX LAST may be set low if multiple transactions will be initi-

ated before the user core should start processing received data. Of course, the user

core will always need to read the data as it arrives, even if CHNL RX LAST is low.

In the example CHNL RX OFF is 0. However, if the PC specified a value for

offset when it initiated the send, that value would be present on the CHNL RX OFF

signal. The 31 least significant bits of the 32 bit integer specified by the PC thread

are transmitted (due to packing constraints). The CHNL RX OFF signal is meant

to be used in situations where data is transferred in multiple sends and the user

core needs to know where to write the data (if, for example it is writing to BRAM

or DRAM).

The user core must pulse the CHNL RX ACK signal high for at least one cycle

to acknowledge the receive transaction. The RIFFA channel will not recognize that

the transaction has been received until it receives a CHNL RX ACK pulse. Note

that data on CHNL RX DATA may arrive before CHNL RX ACK is pulsed, but

the FIFO will never overflow.

The combination of CHNL RX DATA VALID high and CHNL RX DATA REN

high consumes the data on CHNL RX DATA. New data will be provided until the

Chapter 2. Background 15

FIFO is drained. Note that the FIFO may drain completely before all the data has

been received. The CHNL RX signal will remain high until all data for the trans-

action has been received into the FIFO. Note that CHNL RX may go low while

CHNL RX DATA VALID is still high. That means there is still data in the FIFO

to be read by the user core. Attempting to read (asserting CHNL RX DATA REN

high) while CHNL RX DATA VALID is low, will have no affect on the FIFO. The

user core may want to count the number of words received and compare against the

value provided by CHNL RX LEN to keep track of how much data is expected.

In the event of a transmission error, the amount of data received may be less

than the amount expected (advertised on CHNL RX LEN). It is the user core’s

responsibility to detect this discrepancy if important to the user core.

RIFFA channel’s TX interface is nearly symmetric to the receive example.

In figure 2.12 RIFFA channel is sending a data transfer of 16 words (64 bytes).

Figure 2.12: Timing diagram for transmitting data

The user core sets CHNL TX high and asserts values for CHNL TX LAST,

CHNL TX LEN, and CHNL TX OFF for the duration CHNL TX is high. CHNL TX

must remain high until all data has been consumed. RIFFA will expect to read

CHNL TX LEN words from the user core. Any more data provided may be con-

sumed, but will be discarded. The user core can provide less than CHNL TX LEN

words and drop CHNL TX at any point. Dropping CHNL TX indicates the end of

Chapter 2. Background 16

the transaction. Whatever data was consumed before CHNL TX was dropped will

be sent and reported as received to the software thread.

As with the receive interface, setting CHNL TX LAST high will signal to

the PC thread to not wait for additional transactions (after this one). Setting

CHNL TX OFF will cause the transferred data to be written into the PC thread’s

buffer starting CHNL TX OFF 4 bytes words from the beginning. This can be use-

ful when sending multiple transactions and needing to order them in the PC thread’s

receive buffer. CHNL TX LEN defines the length of the transaction in 4 byte words.

As the CHNL TX DATA bus can be 32 bits, 64 bits, or 128 bits wide, it may

be that the number of 32 bit words the user core wants to transfer is not an even

multiple of the bus width. In this case,CHNL TX DATA VALID must be high

on the last cycle CHNL TX DATA has at least 1 word to send. The channel will

only send as many words as is specified by CHNL TX LEN. So any additional data

consumed, past the last word, will be discarded. Shortly after CHNL TX goes

high, the RIFFA channel will pulse high the CHNL TX ACK and begin to consume

the CHNL TX DATA bus. The combination of CHNL TX DATA VALID high and

CHNL TX DATA REN high will consume the data currently on CHNL TX DATA.

New data can be consumed every cycle. After all the data is consumed, CHNL TX

can be dropped. Keeping CHNL TX DATA VALID high while CHNL TX DATA REN

is low will have no effect.

Chapter 2. Background 17

2.2.3 RIFFA Sorfware API

The software interface is provided by bindings for C/C++. After installation

all bindings are available in their respective runtime environments. The API is

based on the notion of channels. RIFFA can be configured to support between 1

- 12 independent channels. Each channel connects to an IP core and can be ad-

dressed by specifying the channel number from the user application. The channels

are independent and thread safe. At most one thread should be used to access a

single channel. The C/C++ bindings are used by including the riffa.h header file

and linking with the -lriffa library.

API

• int fpga list(fpga info list * list);

Populates the fpga info list pointer with all FPGAs registered in the system.

See riffa driver.h for the fpga info list definition. Returns 0 on success, a

negative value on error.

list - Pointer to a fpga info list struct to populate.

Returns: 0 on success, a negative value on error.

• fpga t * fpga open(int id);

Initializes the FPGA specified by id. On success, returns a pointer to a fpga t

struct. On error, returns NULL. Each FPGA must be opened before any

channels can be accessed. Once opened, any number of threads can use the

fpga t struct pointer.

id - Identifier for the FPGA (in single FPGA installations, this is always 0).

Returns: A fpga t struct pointer or NULL.

• void fpga close(fpga t * fpga);

Cleans up memory/resources for the FPGA specified by the descriptor.

Chapter 2. Background 18

fpga - Pointer to fpga t struct.

Returns: Nothing.

• int fpga send(fpga t * fpga, int chnl, void * data, int len, int destoff,

int last, long long timeout);

fpga - Pointer to fpga t structure.

chnl - Channel number over which to communicate.

data - Pointer to array of data to send.

len - Length of data to send, in (32 bit) words. Thus a value of 4 means send

16 bytes.

destoff - Value sent to FPGA core to indicate where to start writing this data.

Only the least significant 31 bits are sent (not all 32).

last - If 1, this transfer is the last in a sequence of transfers. If 0, this transfer

is not the last in a sequence of transfers (more transfers to come).

timeout - Timeout value in ms. If 0, no timeout is specified. Otherwise, the

PC will wait up to timeout ms in between PC/FPGA communications.

Sends len words (4 byte words) from data to FPGA channel chnl using the

fpga t struct. The FPGA channel will be sent len, destoff, and last. The value

of destoff is used to support sending data across multiple send transactions.

Note that only the low 31 bits of this unsigned int are sent. If last is 1, the

channel should interpret the end of this send as the end of a transaction. If

last is 0, the channel should wait for additional sends before the end of the

transaction. If timeout is non-zero, this call will send data and wait up to

timeout ms for the FPGA to respond (between packets) before timing out. If

timeout is zero, this call may block indefinitely. Multiple threads sending on

the same channel may result in corrupt data or error. This function is thread

safe across channels.

Returns: The number of words sent.

Chapter 2. Background 19

• int fpga recv(fpga t * fpga, int chnl, void * data, int len, long long

timeout);

fpga - Pointer to fpga t structure.

chnl - Channel number over which to communicate.

data - Pointer to buffer array where received data will be written.

len - Length of buffer array, in (32 bit) words. Thus a value of 4 means send

16 bytes.

timeout - Timeout value in ms. If 0, no timeout is specified. Otherwise, the

PC will wait up to timeout ms in between PC/FPGA communications.

Receives data from the FPGA channel chnl to the data pointer, using the

fpga t struct. The FPGA channel can send any amount of data, so the data

array should be large enough to accommodate. The len parameter specifies

the actual size of the data buffer in words (4 byte words). The FPGA will

specify an offset value which will determine where received data will start be-

ing written. If the amount of data plus the offset exceed the size of the data

array, then the additional data will be discarded. If timeout is non-zero, this

call will wait up to timeout ms for the FPGA to respond (between packets)

before timing out. If timeout is zero, this call may block indefinitely. Returns

the number of words received to the data array.

Returns: The number of words received to the data array.

• void fpga reset(fpga t * fpga);

Resets the state of the FPGA and all transfers across all channels. This

is meant to be used as an alternative to rebooting if an error occurs while

sending/receiving. Calling this function while other threads are sending or

receiving will result in unexpected behavior.

fpga - Pointer to fpga t structure.

Returns: Nothing.

Chapter 2. Background 20

2.3 Vivado Design Suite

This project was desing and implemented on Xilinx’s Vivado Design Suite.

Vivado is a software suit for synthesis and analysis of HDL designs, superseding

Xilinx ISE with additional features for system-on-chip development and high-level

synthesis. It includes an in-built logic simulator and high-level synthesis, with a

toolchain that converts C code into programmable logic. Vivado HLS was used for

the creation of accelarators that were attached to RIFFA channels and monitored.

Figure 2.13: Vivado High Level Synthesis

Chapter 3

RIFFA Monitor Core Design &

Implementation

This chapter presents the RIFFA 2.0 Monitor Core. The purpose, design and

implementation of every module will be described in depth, followed by a brief anal-

ysis of the C based API. It concludes with a summary of the different architectural

approaches while searching for a viable solution in the transparency and compati-

bility of the project.

3.1 Purpose & Approach

The purpose of this project is to expand the functionality that RIFFA frame-

work provides with metrics and logging, creating a profiling mechanism for FPGA

based SoC. The original concept was that Monitor core would make use of hardware

performance counters just like those built into modern microprocessors. Although

this was a simple task, the variety of IP cores users can attach to RIFFA channels

made it harder to come up with a universal solution. And while the project was

already evolving to a viable state the next dilemma emerged. How to perform the

extra operations but keep their existence transparent at user level, and at the same

time retain compatibility with predated projects.

Every RIFFA project consists of two main parts, the user IP core (accelerator

21

Chapter 3. Design & Implementation 22

/ SoC) to be instantiated in riffa adapter module, and the corresponding software

using RIFFA API to access the core. Accelerators should be able to instantiate as is

without additional logic or interconnections, besides when users manually demand

a specific event to be monitored. At software level the objective was to leave the

original API intact. Furthermore all existing RIFFA projects should be able to

operate properly on the monitored framework.

Apart from the functionality, compatibility and transparency that is expected

the next major factor determining the success of the implementation is the percent-

age of resource occupation. Monitor had to be designed as a lightweight module,

using only the minimum amount of combinational logic possible. It would be mean-

ingless if there was not enough resources left for the actual SoC - accelerator.

3.2 Event-Based Profiler

Monitor started as a single hardware counter measuring the duration of accel-

erator usage and gradually evolved into a tool capable of monitoring and recording

any activity in the user generated modules. That activity will be mentioned as

events and consists of RIFFA RX /TX engine usage (channel transactions) and

user specified triggers.

Similar to event-based profilers triggering on certain events in the code, RIFFA

2.0 Monitor exhaustively monitors and records every trigger associated with his ap-

pointed set of events. User specified triggers are optional and they have to be

manual wired to the Monitor. With this simple step a maximum of 16 different

events can be monitored and logged simultaneously. For each one Monitor core will

count the number of occurrences, measure their duration and log them. The latest

version can support a maximum of 16 unique events.

Since RIFFA Monitor is a hardware design event’s definition differs from orig-

inal software profilers. In software engineering an event is a unique trigger like an

exception, a function call or a specific mark in the code. On the other hand a

hardware event usually has a solid duration. For example a hardware event could

be the signal of a sole wire, a specific state on an FSM or even an active transaction

of the AXI BUS interface.

Chapter 3. Design & Implementation 23

3.3 High Level Design

In order to assign a custom IP core to RIFFA channels we have to instantiate

it inside riffa adapter module in user-space provided and we are obliged to use the

proper interconnects of RX and TX interfaces. In Figure 2.3 of section 2.2 we show

a high level diagram of the original RIFFA architecture.

After a series of trials in different architectural approaches we concluded that

the most easy-to-use and compatible with predated projects solution is to instan-

tiate a single Monitor core inside riffa adapter module, and redirect user space for

instantiations one level deeper in module hierarchy. One Monitor core will supervise

all channels and monitor all user IP cores. To achieve this profiler core exists be-

tween user cores and riffa adapter and intercepts all TX and RX signals. In figure

3.1 we display the high level architecture of RIFFA with the interfering Monitor

module acting as a wrapper for all user cores.

Figure 3.1: RIFFA with Monitor high level architecture

Chapter 3. Design & Implementation 24

3.4 Module Analysis

In this section we will begin to tear down the Monitor core starting from the

top module profiler.v. We will see a detailed analysis of the logic behind the FSM

controlling all the functionality, the combinational logic intercepting the wiring

of TX and RX interface and the level of elasticity we can achieve with various

parameters. Monitoring and Logging are handled at a lower hierarchy level offering

the ability to instantiate only what is essential over each project for economy in

resource occupancy.

3.4.1 Monitor Top Module

Monitor’s top module actually implements most of the required logic. It is

designed for the 128-bit version of RIFFA 2.0 framework. The clock used is RIFFA’s

user clock at 250 Mhz (4ns period). The pre-definition of every register’s value

through initialization after fpga programming makes it unnecessary to insert a global

reset network.

Figure 3.2: RIFFA Monitor block diagram

Chapter 3. Design & Implementation 25

Figure 3.3: Monitor’s RTL schematic

To the upper RIFFA hierarchy levels Monitor seems just like any other IP core

instantiated and connected to RIFFA channels. RIFFA framework offer a maximum

of 12 channels. Through them accelerators are able to communicate with software

using the PCI express link. Monitor control unit is able to receive orders without

binding any channel. It connects to all available channels and intercepts every

transaction. So when a user core get instantiated inside the redirected user space

neither RIFFA modules nor the IP core should be altered to conform with Monitor’s

existence. Furthermore If we don’t manually communicate with Monitor through

his driver, it will silently let user cores to run and will record events in the LOG.

Figure 3.4: Monitor’s abstract view and I/O

Chapter 3. Design & Implementation 26

The interception of RX interface gives Monitor the ability to communicate

with software without using extra resources and it will be discussed in section

3.4.1.1. On the other hand interception of TX interface gave us the ability to

keep transmission active for one extra cycle, providing 128 extra bits of information

sent back to the software level. The operation of attaching additional data in

accelerator’s transmission is called TAIL and will be covered in section 3.4.1.2.

3.4.1.1 Control Mechanism

Operation Code

Monitor must be able to communicate with software without binding any RIFFA

channel. To achieve this without altering the original drivers or RIFFA’s higher level

modules the only way is to share a channel with a user IP/accelerator core. now

each time RIFFA has an incoming transaction through this channel the incoming

data are aimed at either the Monitor or the accelerator. By adding a header to the

data frame we now have an operation code to make this distinction clear. Profiler

is sharing channel 0 and will be solely responsible start every RX transaction on

this channel. The two LSB act as Job Select and indicate the proper operation.

• FORWARD - Give channel control to user IP core.

• INFO - Transmit the specified information frame.

• FLUSH - Transmit all valid entries in Log’s BRAM.

• SET - Reset specific counters and enable or disable tail.

Bits 2 to 6 are read only when operation selected is SET (2 LSB = = 11) , and

each on is associated with a unique operation.

Table 3.1: Monitor’s OPCODE bits

Chapter 3. Design & Implementation 27

Users won’t have to worry about sending the correct OPCODE since it is already

handled by Monitor’s API. On every transaction targeting the Soc - accelerator a

header with OPCODE 00 (FORWARD) will be automatically attached.

FSM

Monitor’s top module has to perform several actions including event monitoring

and logging, and also has to share a channel with a user core in order to receive

orders and send back information. Even though profiler receives orders and sends

data only through channel 0 to minimize the combinational logic, there still remain

considerable amount of tasks to be organized.

To coordinate every operation we need a solid and reliable FSM impervious to

poorly designed user cores and their misbehaviors and simultaneously simple, light

and with minimum latency. Latest Profiler’s version uses a simplified FSM with 4

states.

Figure 3.5: Monitor’s Finite State Machine

00 - IDLE

Idle is Monitor’s initial state. It is also the state to return to after riffa reset, giving

Chapter 3. Design & Implementation 28

Monitor the ability to recover even if user IP cores have undetermined behavior.

Monitor will remain in this state until RX signal of channel 0 is high. This indicates

either the start of transmission from software to the user core connected on channel

0 or a request to the Monitor. Since we are no longer in idle state control is handed

over to state 01.

01 - READ OPCODE

Monitor’s driver is responsible to attach the right header on the incoming data.

As soon they are valid, Monitor reads the first 128 bits and freezes RX procedure

by dropping channel’s RX read enable signal. Now depending on the header that

is basically an operation code (OPCODE) the proper job will be selected. Even

though we don’t need all 128 bits, using a full transfer as a header is chosen so that

we don’t mess with data alignment. A total of 7 bits are used as OPCODE since

it was a fair trade between clarification and resource economy. The next state will

be determined depending on OPCODES’s two LSB and at this point Monitor has

to select from four different operations.

1. Do nothing, go to state 10. Transaction was actually targeting accelerator on

channel 0.

2. Transmit through channel 0 useful information about channel usage, last mea-

surements, timestamp and parameter values, go to state 11.

3. Transmit through channel 0 all valid entries recorded in the Log, go to state

11.

4. Reset specific counters, activate or deactivate tail, return to idle state 00.

10 - FORWARD TO USER CORE

Incoming Data was sent to accelerator attached on channel 0. The 128-bit

header is removed since its already consumed by Monitor at state 01 and the re-

maining data will be delivered to the accelerator. From this moment on accelerator

has complete control over channel 0 when he is ready he will raise the channel’s

RX read enable flag. A specific event must trigger the moment when Monitor can

regain channel management. Using a hard coded trigger would require manual

Chapter 3. Design & Implementation 29

addition on every IP core connected on channel 0, with extra logic and an extra

interconnection. As a result efforts for transparency and compatibility would go

to waste. Using as consensus the fact that almost every time a RX transaction to

the IP core is followed by the immediate response with a TX transaction, Monitor

will regain channel 0 control after TX is finished and return to IDLE state. It was

achieved with minimal additional logic because all RX and TX signals are already

intercepted. One extra cycle of delay before we jump to IDLE is added if tail is

enabled.

11 - TRANSMIT (LOG OR INFO)

In this state Monitor will use RIFFA’s TX engine to transmit through channel

0. Two distinct operations can be performed, flush the log or return values of

specific registers. The first one will return all entries recorded in Log’s BRAM.

The mechanism that forwards entries from BRAM to TX data buffer is aware of

transmission delays and and uses a secondary register array to avoid data loss. The

flush procedure and the structure of the entries will be presented and explained in

section 3.3.4.

The second operation has as default configuration the return of a data frame

containing parameter values, tail setup, number of user-specified events, size of Log’s

BRAM, number of valid entries, the current timestamp and recorded values of events

usage and duration. The structure of this frame can be efficiently reconfigured to

match user’s needs.

3.4.1.2 Tail

Appending a number of bits with extra information on accelerator’s transac-

tions was in fact the original functionality and source of the whole project. Started

as part of accelerator’s logic was later removed since all operation requiring major

changes to user IP cores were excluded. With the massive intercepting of every sig-

nal and complete knowledge of RIFFA’s TX engine timing diagram is now possible

to attach the extra bits without even interfering with accelerator’s TX FSM. Since

Monitor is designed for the 128-bit version of RIFFA endpoint, just one extra cy-

cle of active transmission offers 128-bit of information. This was not only straight

Chapter 3. Design & Implementation 30

forward to implement but also sufficient for the amount of data to be attached.

As default return values are chosen the current timestamp and the duration of

the corresponding accelerator usage. Those values can be changed to match user’s

needs.

On the software level when the final user want to receive the extra information

attached to the original data he should manually increase the number of the received

words and adjust the buffer’s size accordingly. If he doesn’t do that the result is

not catastrophic, the tailed data will just be ignored by software. One small detail

that deserves some notice is that if word count of outgoing data are not a multiple

of 4, the tail is actually more than one 128-bit frame. The missing words of last

frame will be filled with zeros so that tail is completely aligned in a single transfer

frame.

Once tail is enabled through the correct OPCODE register TAIL value will be

set to 1. To determine if TX has finished we need one more register named TAIL

FLAG. This flag remains high for all the duration of the TX plus one cycle.

3.4.1.3 Parameters

Monitor core expands the list of parameters that were inherited from riffa adapter

module with seven new that will be presented bellow. RIFFA alone is already re-

source consuming and if we expect to use it with massive designs at least the profiling

part should occupy as less space on FPGA as possible. With enough parameters to

specify required functionality and number of events, Monitor core will be generated

with only the necessary amount of modules and part of the designed logic.

C DATA WIDTH

RX/TX interface data width. This parameter is inherited by RIFFA top mod-

ule and passed directly to user IP cores. The current Monitor version is designed

at 128-bit but with further modification 32-bit and 64-bit support will be achieved.

C NUM CHNL

Number of RIFFA channels (1-12). The second parameter coming directly from

Chapter 3. Design & Implementation 31

RIFFA. Increasing the number of channels does not significantly raise Monitor’s

resource usage, since the controlling mechanism is only connected to channel 0.

BRAM SIZE

Log’s memory size in words. Entries are 64 bit wide so a total of BRAM SIZE/2

events can fit in the Log. Default value is 2048 which translates in 128KB, 144KB

with parity.(4 x 36KB primitive BRAMs are used)

MONITOR CHANNELS

If high information of each channel usage will be recorded creating the pseudo-

event of a full RX-accelerator usage-TX cycle. That info consists of 64-bit, 16MSB

for occurrences number and 48LSB for duration.

LOG CHANNEL

If high RX and TX of each channel will be recorded in the log , providing a

timing analysis for the event mentioned above.

TRIGGERS NUM

Number of user defined Events (Triggers). Default value is 0 since it is an op-

tional function and users have to manually attach their events them to TRIGGER

wire.

LOG TRIGGER

If high Triggers will be saved as events in the log. Default value is 0 since those

triggers are optional events that users want to monitor and they have to manually

attach them to TRIGGER wire.

SUM

If high durations (triggers or channel usage) will be accumulated. If low only

the last duration will be available.

MERGE PULSES

If high a total of 16 different events can be monitored (instead of 8). The num-

ber of events depends on the size of their ID when saved in the Log. Since we use

Chapter 3. Design & Implementation 32

64-bit entries with 48-bit timestamps ID consists of the remaining 16 bits. Default

option (0) uses 2 bits per event, on for the begging and 1 for termination since it

simplifies decoding and visualizing the recored data.

If both LOG CHANNELS and LOG TRIGGERS are 0 there is no need to

instantiate event log and its BRAM. Likewise MONITOR CHANNELS and TRIG-

GERS NUM define the number of trigger monitor modules. Properly setting those

parameters can minimize Monitor’s size on FPGA.

3.4.2 Global Timer

This minor module has the sole job of counting every cycle since first fpga

programming and can only be reseted manually with PROFILER SET function. It

uses 48 bit counter which means: 248 * 4 ns = 13.0312489 days of nonstop operation.

Output of global timer module is the 48bit timestamp which can be sent directly to

the Monitor’s driver through TX engine with TAIL and INFO operations or used

in the logging procedure.

Figure 3.6: Global Timer RTL schematic

In order to restart global timer Monitor must be provided with the proper

OPCODE, regardless of riffa reset. An important detail is that timer cannot be

Chapter 3. Design & Implementation 33

restarted if Log is not reseted also. This way we avoid mixing new entries with

invalid outdated ones.

3.4.3 Monitor Submodule

Real time monitoring of events is achieved with the assistance of module trig-

ger monitor. It is responsible for counting event occurrences, measuring their dura-

tion, and generating pulses at their beginning and ending. Those pulses will notify

Monitor and new entries will be recorded in the Log. For each event monitor module

uses a 16-bit counter to counter the occurrences and a 48-bit to measure the last

duration or accumulate total duration depending on parameter SUM. All counters

combined are propagated with o INFO output to the parent module(Monitor’s top

module) and will be used at INFO and TAIL operations.

Figure 3.7: Event Monitor

Generated pulses START and STOP reach top module through output o ID.

If parameter MERGED is high instead of apointing an exclusive bit to every signal,

START[i] and STOP[i] will be compined. This way we can increase the number of

monitored events from 8 to 16.

Chapter 3. Design & Implementation 34

RIFFA Monitor will instantiate up to two versions of this module, one for

channels transactions and one for user specified events. Similar to global timer,

reseting the counters is achieved by providing the proper OPCODE.

Figure 3.8: Monitor Submodule RTL schematic

Figure 3.9: Monitor module ID generation

3.4.4 Event Log

Module event log serves as RIFFA Monitor’s memory in which the moments

that each event begin or terminate are recorded. Each entry consists of 64-bits.

Chapter 3. Design & Implementation 35

16-bits to classify the trigger and 48-bit as a time stamp. The default number of

entries is 2048, chosen to be small related to total resources and on the same time

sufficient.

Event log instantiates and manages a 128KB dual port BRAM primitive mod-

ule with a 64-bit wide write port (A) and a 128-bit wide read port (B). Only one

record can be added per cycle, and it is acceptable since in the 16-bit ID are encoded

all possible combinations of the monitored events. When memory is FLUSHed two

entries are read per cycle to fill the 128 available bits of the DATA frame. A

log(#entries)-bit register is used to keep the current address and in case of memory

overflow the logic presented below prevents the out-of-order fetching of valid entries.

The module’s RTL shcematic is presented in figure 3.6.

Figure 3.10: Event Log Module RTL schematic

BRAM FLUSH

This is the procedure of requesting and downloading all the recorded entries of

the Log. While the user cores - accelerators are operating all predefined and man-

ually specified events are recorded in the Log. To export those entries users have

to call the function PR LOG, built in the software interface. OPCODE 0000010

signaling the FLUSH operation will be provided to Monitor’s control mechanism.

BRAM entries will be streamed through TX engine taking into consideration all

possible delays from RIFFA interface. Additional options for displaying and visu-

alization of the downloaded entries are provided and will be presented in software

API section.

Chapter 3. Design & Implementation 36

3.5 Driver

The software api extends the already installed RIFFA driver with additional

functions. To use an accelerator attached on the monitored RIFFA framework users

have to include in their source code Monitor’s library. For fast reconfigurability and

following RIFFA’s simplified API structure driver is compressed to a single file.

• int PR fpga send(fpga t * fpga, int chnl, void * data, int len,

int destoff, int last, long long timeout)

fpga - Pointer to fpga t structure.

chnl - Channel number over which to communicate.

data - Pointer to array of data to send.

len - Length of data to send in words.

destoff - Value sent to FPGA core to indicate where to start writing this data.

last - If 1, this transfer is the last in a sequence of transfers.

timeout - Timeout value in ms. If 0, no timeout is specified. Otherwise, the

PC will wait up to timeout ms in between PC/FPGA communications.

All user calls to RIFFA’s fpga send are redirected to PR fpga send. If channel

selected is 0 a header of 128 zeros will be attached to the send data buffer.

Afterwards the original function fpga send is called with the same set of pa-

rameters. Only len’s value and the contents of data will be modified if needed.

• unsigned long PR INFO(fpga t * fpga, int print)

fpga - Pointer to fpga t structure.

print - Optional display of downloaded information in console.

The initial version of this function was supposed to return a single Times-

tamp. While profiler was evolving and enriched with additional metrics and

log the core purpose of PR INFO changed completely several times. Instead

of wasting resources on logic for data selection, all available metrics recorded

will be downloaded with a single function call. Additional delay of a couple

Chapter 3. Design & Implementation 37

cycles is insignificant in front of the overhead for one transaction. The current

timestamp is returned and all additional info are printed in console. As future

development a struct can be populated with the received data.

Figure 3.11: Output of INFO function call

• void PR SET(fpga t * fpga, int TAIL, int RST TRG CNTS,

int RST CHNL CNTS, int RST LOG,

int RST GLTIMER, int print)

fpga - Pointer to fpga t structure.

TAIL - enable or disable TAIL operation.

RST TRG CNTS - reset duration and count of every user specified event.

RST CHNL CNTS - reset duration and count of every channel transactions

RST LOG - reset the log by setting valid entries number to zero. New entries

will overwrite outdated ones.

RST GLTIMER - restart global timer.

print - Optional display of setting in console.

This function provides the proper OPCODE for reseting specific counters and

enable or disable TAIL operation. Since all metrics are not connected to global

reset network they retain their values after a RIFFA reset call.

Chapter 3. Design & Implementation 38

• void PR LOG(fpga t * fpga, unsigned short **triggers,

long **timestamps, int print, int file,

int timeline)

fpga - Pointer to fpga t structure.

triggers - Array of downloaded triggers.

timestamps - Array of downloaded timestamps.

print - Optional display of downloaded entries in console.

file - Optional printing of downloaded entries in file.

timeline - If not 0 a basic visualization of downloaded entries will be printed

in file.

The continuation of FLUSH operation on software side is implemented in

PR LOG function. The downloaded entries are displayed, printed in raw and

expanded form and visualized in a minimalistic timeline. A console output

example can be seen in figure 3.10.

Figure 3.12: Output of LOG function call

Each line is a recorded entry in the Log. Trigger column contains the 16-bit

IDS which decodes in every combination of events. Reading the ID from right

to left every 2 bits correspond to the beginning and termination of the defined

events. If timeline parameter is non zero a basic visualization will be print in

Chapter 3. Design & Implementation 39

timeline.txt. The overall period since FPGA programming or Global Timer

reset will be split into a number of sections equal to timeline value and will

be visualized according to the logged entries.

Figure 3.13: Basic Vilsualization in the form of a Timeline

3.6 Architectural exploration

1. Before Monitor become a stand-alone module he was implemented as addi-

tional lines of code in the accelerator we wanted to monitor. A couple of

hardware counters measured execution time and the result was embedded in

the returned data stream. The attachment was achieved by the proper alter-

ation of accelerator’s TX interface handler. And since user created IP cores

don’t follow a specific design pattern different logic should be implemented

for each one.

2. Next generation was developed as a wrapper module. One accelerator was in-

stantiated in one Monitor wrapper. This was the first step towards a universal

design for all accelerators. Again hardware counters were used to measure ei-

ther total accelerator usage or a manually specified event and results were sent

to software level with a mechanism similar to TAIL but with several flaws.

Only this function was performed so communication with software level was

not required.

3. The next attempt inserted a global timer as extra module, accessed by every

Monitor wrapper and apart from duration a timestamp was attached on the

outgoing results. We tried to separate Monitor from accelerator and instan-

tiate them on the same hierarchy level but several compatibility issues arose.

Chapter 3. Design & Implementation 40

Once again operation selection was hard coded in the design so RX signals

were propagated as is.

4. The next implementation was a top profiler module containing Global timer,

memory blocks for logging and one profiler wrapper for each channel. Since

users should be able to download the recorded data a basic communication

with profiler and software was necessary. The fact that every channel had an

appointed profiler wrapper made it easier to intercept RX signals, but less

user friendly. It was also uncombable with accelerators that use more than

one channel.

5. In the next to last design Monitor top module was monitoring and logging

every event and was communicating with software through all available chan-

nels. Tail operation was fully functional but the design lacked optimizations.

Limiting controls to a single channel, parameterizing the module generation,

minimizing the FSM and merging similar operation led to the current version

of RIFFA Monitor.

Chapter 4

Conclusion

4.1 Project Report

A hardware design for SoC monitoring and logging was successfully devel-

oped. After a series of testing and debugging RIFFA Monitor has reached a stable

state, user-friendly and resource efficient. It has already been used for evaluation

of mathematical accelerators and for better understating of the RIFFA commu-

nication engine. Compatibility with legacy RIFFA designs added extra value on

deserted projects and will be a useful tool for every future work based on RIFFA

infrastructure.

4.2 In the Future

Reaching a stable version was an important milestone but several tasks and

ideas are still waiting to be implemented. Extra functionality for sampling will

give a more statistical approach though the necessity of such information is still

under discussion. Monitoring of standard IPs and AXI bus still requires manual

work to be done by user and it could be automated just like RIFFA communication

engine. Support for single trigger events without duration could be inserted to avoid

wasted entries (2 for 1). Timestamps are chosen to be absolute time in ns for easier

understanding of the log but a later version could use time difference and change

the balance of ID and TIMESTAMP bit count. RIFFA Monitor at the moment

41

Chapter 4. Conclusion 42

is implemented at 128-bit but 32-bit and 64-bit support is ongoing. Apart from

hardware improvements and additions, Monitor’s software can be greatly upgraded

by adding a graphical user interface. Data interpretation and visualization combined

with plenty automatizations will promote RIFFA monitor to a handy and convenient

tool for fpga design engineers .

Appendix A

Verilog Source Code

RIFFA Monitor top module
1 ‘timescale 1ns/1ns

2

3 module profiler (clk,o_RX_CLK, i_RX, o_RX_ACK,

4 i_RX_LAST, i_RX_LEN, i_RX_OFF, i_RX_DATA,

5 i_RX_DATA_VALID, o_RX_DATA_REN, o_TX, i_TX_ACK,

6 o_TX_LAST, o_TX_LEN, o_TX_OFF, o_TX_DATA,

7 o_TX_DATA_VALID, i_TX_DATA_REN,rst);

8

9 parameter C_DATA_WIDTH = 9’d128;

10 parameter C_NUM_CHNL = 4’d1;

11 parameter BRAM_SIZE = 16’d4096;

12 parameter MONITOR_CHANNELS = 1’b1;

13 parameter LOG_CHANNELS = 1’b1;

14 parameter TRIGGERS_NUM = 4’d0;

15 parameter LOG_TRIGGERS = 1’b0;

16 parameter SUM = 1’b0;

17 parameter MERGE_PULSES = 1’b0;

18

19 input clk;

20 output [C_NUM_CHNL-1:0] o_RX_CLK;

21 input [C_NUM_CHNL-1:0] i_RX;

22 output [C_NUM_CHNL-1:0] o_RX_ACK;

23 input [C_NUM_CHNL-1:0] i_RX_LAST;

43

Appendix A. Verilog Source Code 44

24 input [(C_NUM_CHNL*32)-1:0] i_RX_LEN;

25 input [(C_NUM_CHNL*31)-1:0] i_RX_OFF;

26 input [(C_NUM_CHNL*C_DATA_WIDTH)-1:0] i_RX_DATA;

27 input [C_NUM_CHNL-1:0] i_RX_DATA_VALID;

28 output [C_NUM_CHNL-1:0] o_RX_DATA_REN;

29

30 output [C_NUM_CHNL-1:0] o_TX_CLK;

31 output [C_NUM_CHNL-1:0] o_TX;

32 input [C_NUM_CHNL-1:0] i_TX_ACK;

33 output [C_NUM_CHNL-1:0] o_TX_LAST;

34 output [(C_NUM_CHNL*32)-1:0] o_TX_LEN;

35 output [(C_NUM_CHNL*31)-1:0] o_TX_OFF;

36 output [(C_NUM_CHNL*C_DATA_WIDTH)-1:0] o_TX_DATA;

37 output [C_NUM_CHNL-1:0] o_TX_DATA_VALID;

38 input [C_NUM_CHNL-1:0] i_TX_DATA_REN;

39 input rst;

40

41 reg DONE = 1’b0;

42 reg RX0 = 1’b0;

43 reg TAIL = 1’b0;

44 reg FLUSH = 1’b0;

45 reg chnl_rx_last_buff = 1’b0;

46 reg [31:0] chnl_rx_len_buff = {32{1’b0}};

47 reg [30:0] chnl_rx_off_buff = {31{1’b0}};

48 reg [5:0] OPCODE = {6{1’b0}};

49 reg [31:0] LEN = {32{1’b0}};

50 reg [29:0] WCOUNT = {29{1’b0}};

51 reg [1:0] PR_STATE = {2{1’b0}};

52 reg [9:0] ADDRESS = {10{1’b0}};

53 reg [C_NUM_CHNL-1:0] TAIL_FLAG = {C_NUM_CHNL{1’b0}};

54 reg [C_NUM_CHNL-1:0] TX_DELAY = {C_NUM_CHNL{1’b0}};

55 reg [C_DATA_WIDTH-1:0] TxDATA = {C_DATA_WIDTH{1’b0}};

56 reg [C_DATA_WIDTH-1:0] TxDATA_BUFF= {C_DATA_WIDTH{1’b0}};

57

58 wire [C_DATA_WIDTH-1:0] LOG;

59 wire [TRIGGERS_NUM-1:0] TRIGGER;

60 wire [2*TRIGGERS_NUM-1:0] TR_ID;

61 wire [2*C_NUM_CHNL-1:0] CH_ID;

Appendix A. Verilog Source Code 45

62 wire [15:0] ID;

63 wire [TRIGGERS_NUM*64-1:0] TR_INFO;

64 wire [C_NUM_CHNL*64-1:0] CH_INFO;

65 wire [47:0] TIMESTAMP;

66 wire [15:0] ENTRIES;

67

68 wire user_clk;

69 wire riffa_reset;

70 wire [C_NUM_CHNL-1:0] chnl_rx_clk;

71 wire [C_NUM_CHNL-1:0] chnl_rx;

72 wire [C_NUM_CHNL-1:0] chnl_rx_ack;

73 wire [C_NUM_CHNL-1:0] chnl_rx_last;

74 wire [(C_NUM_CHNL*32)-1:0] chnl_rx_len;

75 wire [(C_NUM_CHNL*31)-1:0] chnl_rx_off;

76 wire [(C_NUM_CHNL*C_DATA_WIDTH)-1:0] chnl_rx_data;

77 wire [C_NUM_CHNL-1:0] chnl_rx_data_valid;

78 wire [C_NUM_CHNL-1:0] chnl_rx_data_ren;

79 wire [C_NUM_CHNL-1:0] chnl_tx_clk;

80 wire [C_NUM_CHNL-1:0] chnl_tx;

81 wire [C_NUM_CHNL-1:0] chnl_tx_ack;

82 wire [C_NUM_CHNL-1:0] chnl_tx_last;

83 wire [(C_NUM_CHNL*32)-1:0] chnl_tx_len;

84 wire [(C_NUM_CHNL*31)-1:0] chnl_tx_off;

85 wire [(C_NUM_CHNL*C_DATA_WIDTH)-1:0] chnl_tx_data;

86 wire [C_NUM_CHNL-1:0] chnl_tx_data_valid;

87 wire [C_NUM_CHNL-1:0] chnl_tx_data_ren;

88

89 ///

90 //// ASSIGN PROFILER OUTPUTS & ACCELERATOR INPUTS //////

91 ///

92 assign o_RX_CLK = chnl_rx_clk;

93 assign o_RX_ACK[0] = (PR_STATE == 2’d1);

94 assign o_RX_DATA_REN[0] = (PR_STATE == 2’d1) | ((PR_STATE == 2’d2) &

chnl_rx_data_ren[0]);

95 assign o_TX_CLK = chnl_tx_clk;

96 assign o_TX[0] = (PR_STATE == 2’d3) | TAIL_FLAG[0]| chnl_tx[0];

97 assign o_TX_LAST[0] = (PR_STATE == 2’d3) | chnl_tx_last[0];

Appendix A. Verilog Source Code 46

98 assign o_TX_LEN[31:0] = (PR_STATE == 2’d3) ? LEN : (TAIL ? -1 :

chnl_tx_len[31:0]);

99 assign o_TX_OFF[30:0] = (PR_STATE == 2’d3) ? 31’d0 : chnl_tx_off[30:0];

100 assign o_TX_DATA[C_DATA_WIDTH-1:0]= (PR_STATE == 2’d3) ? TxDATA :

(chnl_tx_data_valid[0] ? chnl_tx_data[C_DATA_WIDTH-1:0] :

{TIMESTAMP,16’b0,CH_INFO[47:0]});

101 assign o_TX_DATA_VALID[0]= (PR_STATE == 2’d3) | TAIL_FLAG[0] |

chnl_tx_data_valid[0];

102 assign user_clk = clk;

103 assign riffa_reset = rst;

104 assign chnl_rx[0] = (PR_STATE == 2’d2) & RX0;

105 assign chnl_rx_last[0] = chnl_rx_last_buff;

106 assign chnl_rx_len[31:0]= chnl_rx_len_buff;

107 assign chnl_rx_off[30:0]= chnl_rx_off_buff;

108 assign chnl_rx_data_valid[0]= (PR_STATE == 2’d2) & i_RX_DATA_VALID[0];

109 assign chnl_rx_data = i_RX_DATA;

110 assign chnl_tx_ack = i_TX_ACK;

111 assign chnl_tx_data_ren= i_TX_DATA_REN;

112 genvar q;

113 generate

114 for (q = 1; q < C_NUM_CHNL; q = q + 1) begin : assign_chnls_1_12

115 assign o_RX_ACK[q] = chnl_rx_ack[q];

116 assign o_RX_DATA_REN[q] = chnl_rx_data_ren[q];

117 assign o_TX[q] = TAIL_FLAG[q] | chnl_tx[q];

118 assign o_TX_LAST[q] = chnl_tx_last[q];

119 assign o_TX_LEN[32*(q+1)-1:32*q]= TAIL ? -1 :

chnl_tx_len[32*(q+1)-1:32*q];

120 assign o_TX_OFF[31*(q+1)-1:31*q]= chnl_tx_off[31*(q+1)-1:31*q];

121 assign o_TX_DATA[C_DATA_WIDTH*(q+1)-1 : C_DATA_WIDTH*q] =

chnl_tx_data_valid[q] ? chnl_tx_data[C_DATA_WIDTH*(q+1)-1 :

C_DATA_WIDTH*q] : {TIMESTAMP,16’b0,CH_INFO[64*(q+1)-17:64*q]};

122 assign o_TX_DATA_VALID[q]= TAIL_FLAG[q] | chnl_tx_data_valid[q];

123 assign chnl_rx[q] = i_RX[q];

124 assign chnl_rx_last[q] = i_RX_LAST[q];

125 assign chnl_rx_len[32*(q+1)-1:32*q] = i_RX_LEN[32*(q+1)-1:32*q];

126 assign chnl_rx_off[31*(q+1)-1:31*q] = i_RX_OFF[31*(q+1)-1:31*q];

127 assign chnl_rx_data_valid[q] = i_RX_DATA_VALID[q];

128 end

Appendix A. Verilog Source Code 47

129

130 case ({LOG_TRIGGERS,LOG_CHANNELS})

131 2’b00: assign ID = 0;

132 2’b01: assign ID = CH_ID;

133 2’b10: assign ID = TR_ID;

134 2’b11: assign ID = {TR_ID,CH_ID};

135 endcase

136

137 for (q = 0; q < C_NUM_CHNL; q = q + 1) begin : fix_tail

138 always @(posedge clk)

139 TAIL_FLAG[q] <= TAIL_FLAG[q] ? chnl_tx[q] | ~i_TX_DATA_REN[q]

: chnl_tx[q] & ~TX_DELAY[q] & TAIL;

140 end

141

142 endgenerate

143

144 always @(posedge clk) {TX_DELAY,RX0} <= {chnl_tx,i_RX[0]};

145

146 // FSM

147

148 always @(posedge clk)

149 if(rst) PR_STATE <= 0;

150 else

151 case (PR_STATE)

152 //IDLE

153 2’b00:

154 begin

155 {FLUSH,DONE,OPCODE,WCOUNT} <= 0;

156 if (i_RX[0] & ~TAIL_FLAG[0])

157 begin

158 chnl_rx_len_buff <= i_RX_LEN[31:0] -(C_DATA_WIDTH/32);

159 chnl_rx_last_buff <= i_RX_LAST[0];

160 chnl_rx_off_buff <= i_RX_OFF[30:0];

161 PR_STATE <= 2’b01;

162 end

163 end

164 //READ OPCODE

165 2’b01:

Appendix A. Verilog Source Code 48

166 begin

167 if (i_RX_DATA_VALID[0])

168 begin

169 OPCODE <= i_RX_DATA[5:0];

170 case (i_RX_DATA[1:0])

171 2’b00: PR_STATE <= 2’b10;//USE ACCELERATOR

172 2’b01://RETURN DURATION OR TIMESTAMP

173 begin

174 LEN <= 32’d68;

175 TxDATA <=

{SUM,MERGE_PULSES,MONITOR_CHANNELS,LOG_TRIGGERS,

LOG_CHANNELS,TAIL,12’b0,TRIGGERS_NUM,12’b0,C_NUM_CHNL,

BRAM_SIZE,ENTRIES,TIMESTAMP};

176 PR_STATE <= 2’b11;

177 end

178 2’b10://FLUSH LOG

179 begin

180 LEN <= BRAM_SIZE;

181 TxDATA <= LOG;

182 FLUSH <= 1’b1;

183 ADDRESS <= ADDRESS + 1;

184 end

185

186 2’b11: //RESET TIMER-COUNTERS, SET TAIL (128-BIT EXTRA INFO AFTER EACH

TRANSMITION)

187 begin

188 TAIL <= i_RX_DATA[6];

189 PR_STATE <= 2’b00;

190 end

191 endcase

192 end

193 else if (FLUSH) {ADDRESS,PR_STATE} <= {ADDRESS + 1, 2’b11};

194 end

195 //ASSUME ACCELARATOR WORK COMPLETED AFTER TRANSMITION

196 2’b10:

197 if (TX_DELAY[0] & ~chnl_tx[0]) PR_STATE <= 2’b00;

198 //DATA TRANSMISSION

199 2’b11:

Appendix A. Verilog Source Code 49

200 begin

201 if (i_TX_DATA_REN[0])

202 begin

203 WCOUNT <= WCOUNT + (C_DATA_WIDTH/32);

204 if (WCOUNT >= LEN-4) {PR_STATE,FLUSH,ADDRESS} <= ’b0;

205 else if (OPCODE == 2’b01)

206 begin

207 TxDATA[63:0] <= CH_INFO>>(WCOUNT<<4);

208 TxDATA[127:64] <= TR_INFO>>(WCOUNT<<4);

209 end

210 else

211 begin

212 {TxDATA,FLUSH} <= FLUSH ? {LOG,1’b1} : {TxDATA_BUFF, 1’b1};

213 ADDRESS <= ADDRESS + 1’b1;

214 end

215 end

216 else if (FLUSH) {FLUSH,TxDATA_BUFF} <= {1’b0,LOG};

217 end

218

219 endcase

220

221 // INSTANTIATIONS

222 global_timer gt0(

223 .clk(clk),

224 .o_TIMESTAMP(TIMESTAMP),

225 .rst(&OPCODE[3:0])

226);

227 generate

228 if ((LOG_CHANNELS & MONITOR_CHANNELS) | LOG_TRIGGERS)

229 begin

230 event_log ev0(

231 .clk(clk),

232 .i_ID(ID),

233 .i_ADDRESS(ADDRESS),

234 .i_TIMESTAMP(TIMESTAMP),

235 .o_LOG(LOG),

236 .o_ENTRIES(ENTRIES[10:0]),

237 .rst(&OPCODE[2:0])

Appendix A. Verilog Source Code 50

238);

239 end

240 if (MONITOR_CHANNELS)

241 begin

242 reg [C_NUM_CHNL-1:0] RX_DELAY = {C_NUM_CHNL{1’b0}};

243 reg [C_NUM_CHNL-1:0] CHNL_TRIGGER = {C_NUM_CHNL{1’b0}};

244 always @(posedge clk) RX_DELAY <= chnl_rx;

245 for (q = 0; q < C_NUM_CHNL; q = q + 1) begin : trigg

246 always @(posedge clk)

247 if (chnl_rx[q] & !RX_DELAY[q]) CHNL_TRIGGER[q] <=

1’b1;

248 else if ((!chnl_tx[q] & TX_DELAY[q])|rst) CHNL_TRIGGER[q] <=

1’b0;

249 end

250 trigger_monitor #(C_NUM_CHNL, SUM, MERGE_PULSES) cm0(

251 .clk(clk),

252 .i_TRIGGER(CHNL_TRIGGER),

253 .o_ID(CH_ID),

254 .o_INFO(CH_INFO),

255 .rst(OPCODE[0]&OPCODE[1]&OPCODE[5])

256);

257 end

258 if (TRIGGERS_NUM)

259 begin

260 trigger_monitor #(TRIGGERS_NUM, SUM ,MERGE_PULSES) tm0(

261 .clk(clk),

262 .i_TRIGGER(TRIGGER),

263 .o_ID(TR_ID),

264 .o_INFO(TR_INFO),

265 .rst(OPCODE[0]&OPCODE[1]&OPCODE[4])

266);

267 end

268 endgenerate

269 ////////////////////////////////////

270 // START USER CODE (do edit)

271 ////////////////////////////////////

272

273 // CHANNEL TESTER EXAMPLE

Appendix A. Verilog Source Code 51

274 genvar i;

275 generate

276 for (i = 0; i < C_NUM_CHNL; i = i + 1) begin : profile_channels

277 chnl_tester #(C_DATA_WIDTH) module1 (

278 .CLK(user_clk),

279 .RST(riffa_reset), // riffa_reset includes riffa_endpoint resets

280 // Rx interface

281 .CHNL_RX_CLK(chnl_rx_clk[i]),

282 .CHNL_RX(chnl_rx[i]),

283 .CHNL_RX_ACK(chnl_rx_ack[i]),

284 .CHNL_RX_LAST(chnl_rx_last[i]),

285 .CHNL_RX_LEN(chnl_rx_len[32*i +:32]),

286 .CHNL_RX_OFF(chnl_rx_off[31*i +:31]),

287 .CHNL_RX_DATA(chnl_rx_data[C_DATA_WIDTH*i +:C_DATA_WIDTH]),

288 .CHNL_RX_DATA_VALID(chnl_rx_data_valid[i]),

289 .CHNL_RX_DATA_REN(chnl_rx_data_ren[i]),

290 // Tx interface

291 .CHNL_TX_CLK(chnl_tx_clk[i]),

292 .CHNL_TX(chnl_tx[i]),

293 .CHNL_TX_ACK(chnl_tx_ack[i]),

294 .CHNL_TX_LAST(chnl_tx_last[i]),

295 .CHNL_TX_LEN(chnl_tx_len[32*i +:32]),

296 .CHNL_TX_OFF(chnl_tx_off[31*i +:31]),

297 .CHNL_TX_DATA(chnl_tx_data[C_DATA_WIDTH*i +:C_DATA_WIDTH]),

298 .CHNL_TX_DATA_VALID(chnl_tx_data_valid[i]),

299 .CHNL_TX_DATA_REN(chnl_tx_data_ren[i])

300);

301 end

302 endgenerate

303 ////////////////////////////////////

304 // END USER CODE

305 ////////////////////////////////////

306 endmodule

Global Timer

Appendix A. Verilog Source Code 52

1 ‘timescale 1ns/1ns

2

3 module global_timer(clk, o_TIMESTAMP, rst);

4

5 input clk;

6 output reg [47:0] o_TIMESTAMP = {48{1’b0}};

7 input rst;

8

9 always @(posedge clk)

10 if (rst) o_TIMESTAMP <= {48{1’b0}};

11 else o_TIMESTAMP <= o_TIMESTAMP + 1’b1;

12

13 endmodule

Event Monitor
1 ‘timescale 1ns / 1ps

2

3 module trigger_monitor(

4 clk,

5 i_TRIGGER,

6 o_ID,

7 o_INFO,

8 rst

9);

10

11 parameter TRIGGERS_NUM = 4’d1;

12 parameter SUM = 1’b0;

13 parameter MERGE_PULSES = 1’b0;

14

15 input clk;

16 input [TRIGGERS_NUM-1:0] i_TRIGGER;

17 output [(2-MERGE_PULSES)*TRIGGERS_NUM-1:0] o_ID;

18 output [64*TRIGGERS_NUM-1:0] o_INFO;

19 input rst;

20

Appendix A. Verilog Source Code 53

21 reg [16*TRIGGERS_NUM-1:0] TR_COUNT;

22 reg [48*TRIGGERS_NUM-1:0] TR_DURATION;

23 reg [TRIGGERS_NUM-1:0] PRV = {TRIGGERS_NUM{1’b0}};

24 wire [TRIGGERS_NUM-1:0] START;

25 wire [TRIGGERS_NUM-1:0] STOP;

26

27

28 always @(posedge clk) PRV <= i_TRIGGER;

29

30 assign START = i_TRIGGER & ~PRV;

31 assign STOP = ~i_TRIGGER & PRV;

32

33 genvar i;

34 generate

35 for (i = 0; i < TRIGGERS_NUM; i = i + 1) begin : pg

36

37 if (MERGE_PULSES) assign o_ID[i] = STOP[i] | START[i] ;

38 else assign o_ID[2*i+1:2*i] = {STOP[i] , START[i]};

39

40 assign o_INFO[64*(i+1)-1:64*i] =

{TR_COUNT[16*(i+1)-1:16*i],TR_DURATION[48*(i+1)-1:48*i]};

41

42 always @(posedge clk)

43 begin

44 if (rst) {TR_COUNT[16*(i+1)-1:16*i],TR_DURATION[48*(i+1)-1:48*i]} <=

0;

45 else

46 begin

47 if(START[i]) TR_COUNT[16*(i+1)-1:16*i] <= TR_COUNT[16*(i+1)-1:16*i]

+ 1’b1;

48 if(i_TRIGGER[i])

49 begin

50 if(START[i] & !SUM) TR_DURATION[48*(i+1)-1:48*i] <= 48’d1;

Appendix A. Verilog Source Code 54

Event Log
1 ‘timescale 1ns / 1ps

2

3 module event_log(

4 clk,

5 i_ID,

6 i_ADDRESS,

7 i_TIMESTAMP,

8 o_LOG,

9 o_ENTRIES,

10 rst

11);

12

13 input clk;

14 input [15:0] i_ID;

15 input [9:0] i_ADDRESS;

16 input [47:0] i_TIMESTAMP;

17 output [127:0] o_LOG;

18 output [10:0] o_ENTRIES;

19 input rst;

20

21 reg [10:0] LOG_ADDRESS = {11{1’b0}};

22 reg OVERFLOW = 1’b0;

23 wire [127:0] LOG;

24

25 assign o_LOG = (i_ADDRESS <= LOG_ADDRESS[10:1]) ? LOG : 0;

26 assign o_ENTRIES = OVERFLOW ? {11{1’b1}} : LOG_ADDRESS;

27

28 always @(posedge clk)

29 if (rst) LOG_ADDRESS <= {11{1’b0}};

30 else if (|i_ID) LOG_ADDRESS <= LOG_ADDRESS + 1’b1;

31

32 always @(posedge clk)

33 if (rst) OVERFLOW <= 1’b0;

34 else if ((LOG_ADDRESS=={11{1’b1}})& (|i_ID)) OVERFLOW <= 1’b1;

35

36 // SIMPLE DUAL PORT RAM

Appendix A. Verilog Source Code 55

37 // 128 * 1024

38 blk_mem_gen_0 log(

39 .clka(clk),

40 .wea(|i_ID),

41 .addra(LOG_ADDRESS),

42 .dina({i_ID,i_TIMESTAMP}),

43 .clkb(clk),

44 .addrb(OVERFLOW ? i_ADDRESS + LOG_ADDRESS :i_ADDRESS),

45 .doutb(LOG)

46);

47

48 endmodule

Instantiation
1 profiler #(C_DATA_WIDTH , C_NUM_CHNL) riffa_profiler (

2 .clk(user_clk),

3 .o_RX_CLK(chnl_rx_clk),

4 .i_RX(chnl_rx),

5 .o_RX_ACK(chnl_rx_ack),

6 .i_RX_LAST(chnl_rx_last),

7 .i_RX_LEN(chnl_rx_len),

8 .i_RX_OFF(chnl_rx_off),

9 .i_RX_DATA(chnl_rx_data),

10 .i_RX_DATA_VALID(chnl_rx_data_valid),

11 .o_RX_DATA_REN(chnl_rx_data_ren),

12 .o_TX_CLK(chnl_tx_clk),

13 .o_TX(chnl_tx),

14 .i_TX_ACK(chnl_tx_ack),

15 .o_TX_LAST(chnl_tx_last),

16 .o_TX_LEN(chnl_tx_len),

17 .o_TX_OFF(chnl_tx_off),

18 .o_TX_DATA(chnl_tx_data),

19 .o_TX_DATA_VALID(chnl_tx_data_valid),

20 .i_TX_DATA_REN(chnl_tx_data_ren),

21 .rst(riffa_reset)

22);

Appendix B

Software interface - RIFFA

Monitor API

1 #define TIMEOUT 8000

2 #define BRAM_SIZE 2048

3

4

5 int PR_fpga_send(fpga_t * fpga, int chnl, void * data,

6 int len, int destoff, int last,

7 long long timeout){

8 // If data are sent to channel 0 profiler will use the first 128 bit.

9 // To avoid that extra 128’b0 is added as header.

10 // Profiler will read OPCODE == 0 and forward data without header to

accelarator.

11

12 if (chnl) return fpga_send(fpga, chnl, data, len, destoff, last,

timeout);

13 int i, buffer[len+4];

14 for(i=0; i<len; i++) buffer[i+4] = ((int *)data)[i];

15 buffer[0]= 0;

16 return fpga_send(fpga, chnl, buffer, len+4, destoff, last, timeout);

17 }

18

19 int *PR_PRINT_BINARY(size_t const size, void const * const ptr, int print)

20 // Helper function. Used for proper display of TRIGGERS

56

Appendix B. Software interface - RIFFA Monitor API 57

21 {

22 unsigned char *b = (unsigned char*) ptr;

23 unsigned char byte;

24 int i, j;

25

26 int *bits = (int *)calloc(1000,1);

27 for (i=size-1;i>=0;i--)

28 {

29 for (j=7;j>=0;j--)

30 {

31 byte = b[i] & (1<<j);

32 byte >>= j;

33 if (print) printf("%u", byte);

34 bits[i*8+j] = (int)byte;

35 }

36 }

37 return bits;

38 }

39

40 unsigned long PR_INFO(fpga_t * fpga, int print){

41 // Returns current Timestamp

42 // Prints parameter and counter values. (Populate struct incoming)

43 // Timestamp * clk_period = time since last profiler_reset (or bitstream

assignment)

44

45 int i, *bits;

46 unsigned long buff[34];

47 unsigned short entries, bram_s, n_chnl, n_trigg,

48 tail, log_chnl, log_trigg, mon_chnl, merge, sum;

49 unsigned short * sbuff = (unsigned short *)buff;

50 buff[0]=1;

51

52 fpga_send(fpga, 0, &buff, 1, 0, 1, TIMEOUT);

53 fpga_recv(fpga, 0, &buff, 68, TIMEOUT);

54

55 bits = PR_PRINT_BINARY(sizeof(short),sbuff+7 ,0);

56 entries = sbuff[3];

57 bram_s = sbuff[4];

Appendix B. Software interface - RIFFA Monitor API 58

58 n_chnl = sbuff[5];

59 n_trigg = sbuff[6];

60 sbuff[3] = 0;

61

62 if(print){

63 printf("SUM_DURATION : %d\n", bits[5]);

64 printf("MERGE_PULSES : %d\n", bits[4]);

65 printf("MONITOR_CHNL : %d\n", bits[3]);

66 printf("LOG_TRIGGERS : %d\n", bits[2]);

67 printf("LOG_CHANNELS : %d\n", bits[1]);

68 printf("TAIL : %d\n", bits[0]);

69 printf("TRIGGER_NUM : %d\n", n_trigg);

70 printf("CHANNEL_NUM : %d\n", n_chnl);

71 printf("BRAM_SIZE : %d words\n", bram_s);

72 printf("ENTRIES : %d\n", entries);

73 printf("TIMESTAMP : %ld\n", buff[0]);

74 for (i=0; i<n_chnl; i++){

75 printf("chnl %d calls : %d\n", i, sbuff[11+8*i]);

76 sbuff[11+8*i]=0;

77 printf("chnl %d dur : %ld\n", i, buff[2+2*i]);

78 }

79 for (i=0; i<n_trigg; i++){

80 printf("chnl%d calls : %d\n", i, sbuff[15+8*i]);

81 sbuff[15+8*i]=0;

82 printf("chnl%d dur : %ld\n", i, buff[3+2*i]);

83 }

84 }

85 return buff[0];

86 }

87

88 void PR_LOG(fpga_t * fpga, unsigned short **triggers,

89 long **timestamps, int print, int file,

90 int timeline){

91 // Returns an array with all valid entries in BRAM log.

92 // Each entry is 64bit (16bit ID , 48bit Timestamp)

93

94 int i, w, finished, active ,start, stop;

95 int buffer = 2;

Appendix B. Software interface - RIFFA Monitor API 59

96 char ch;

97 long max, step;

98 unsigned short *ts_buff;

99

100 *triggers = (short *)calloc(BRAM_SIZE,2);

101 *timestamps = (long *)calloc(BRAM_SIZE,8);

102 ts_buff = (short *)(*timestamps);

103

104 fpga_send(fpga, 0, &buffer, 1, 0, 1, TIMEOUT);

105 printf("rcvd %d\n",fpga_recv(fpga, 0, ts_buff, BRAM_SIZE*2, TIMEOUT));

106

107 if (file){

108 FILE *raw_log, *log;

109 raw_log = fopen("RAW_LOG.txt", "w");

110 log = fopen("LOG.txt", "w");

111

112 for (i=0; i<BRAM_SIZE; i++){

113 fprintf(raw_log,"%ld\n",(*timestamps)[i]);

114 (*triggers)[i] = ts_buff[4*i+3];

115 ts_buff[4*i+3] = 0;

116 fprintf(log,"%d\t%ld\n",(*triggers)[i], (*timestamps)[i]);

117 }

118

119 fclose(raw_log);

120 fclose(log);

121 }

122

123 if (print){

124 printf("\n TRIGGER\t\t| TIMESTAMP

\t\t|\n---\n");

125 i=0;

126 while((*triggers)[i] != 0) {

127 PR_PRINT_BINARY(sizeof((*triggers)[i]), (*triggers)+i, 1);

128 printf("\t| %20ld \t|\n\n",(*timestamps)[i]);

129 i++;

130 }

131 }

132

Appendix B. Software interface - RIFFA Monitor API 60

133

134 if (timeline){

135 max = PR_INFO(fpga,0);

136 step = max / timeline;

137 FILE *out = fopen("TIMELINE.txt", "w");

138 start = 0;

139 stop = 1;

140 int *bits = NULL;

141 for (w=0; w<8; w++){

142 finished = 0;

143 active = 0;

144 ch = ’.’;

145 fprintf(out,"%d: ",w);

146 for (i=0; i<=timeline; i++){

147 while ((*timestamps)[active] < i*step) {

148 if ((*timestamps)[active] == 0) break;

149 bits = PR_PRINT_BINARY(sizeof(short), (*triggers)+ active ,0);

150 if (bits[start] == 1) {

151 ch = ’|’;

152 finished = 0;

153 }

154 if (bits[stop] == 1) finished = 1;

155 active++;

156 }

157 fprintf(out,"%c",ch);

158 if (finished) ch = ’.’;

159 }

160 fprintf(out,"\n");

161 start = start + 2;

162 stop = stop + 2;

163 }

164 fclose(out);

165 }

166 }

167

168 void PR_SET(fpga_t * fpga, int TAIL, int RST_TRG_CNTS,

169 int RST_CHNL_CNTS, int RST_LOG, int RST_GLTIMER,

170 int print){

Appendix B. Software interface - RIFFA Monitor API 61

171 // RESET TIMER-COUNTERS, SET TAIL (128-BIT EXTRA INFO AFTER EACH

TRANSMITION)

172

173 int buffer = 3 + (TAIL!=0)*64 + (RST_TRG_CNTS!=0)*32 +

(RST_CHNL_CNTS!=0)*16 + (RST_LOG||RST_GLTIMER)*8 + (RST_GLTIMER!=0)*4;

174 if (fpga_send(fpga, 0, &buffer, 1, 0, 1, TIMEOUT)>0) {

175 if(print){

176 if (RST_GLTIMER) printf("Global Timer Reseted.\n");

177 if (RST_LOG||RST_GLTIMER) printf("Log Reseted\n");

178 if (RST_CHNL_CNTS) printf("\nChannel Counters Reseted\nTrigger

Counters Reseted\n");

179 if (RST_TRG_CNTS) printf("\nChannel Counters Reseted\nTrigger

Counters Reseted\n");

180 if (TAIL) printf("\nTAIL ON\n\n");

181 else printf("\nTAIL OFF\n\n");

182 }

183 }

184 else printf("FPGA_SENT ERROR\n");

185 }

Bibliography 62

BIBLIOGRAPHY

(1) Field-programmable gate array - Wikipedia, the free encyclopedia

http://en.wikipedia.org/wiki/Field-programmable_gate_array

(2) FPGA Architectures: An Overview

http://www.springer.com/cda/content/document/cda_downloaddocument/

9781461435938-c2.pdf?SGWID=0-0-45-1333135-p174308376

(3) Xilinx Virtex-7 FPGA VC707 Evaluation Kit

http://www.xilinx.com/support/documentation/boards_and_kits/vc707/

ug848-VC707-getting-started-guide.pdf

(4) Virtex 7 Series FPGAs Overview

http://www.xilinx.com/support/documentation/data_sheets/ds180_7Series_

Overview.pdf

(5) VC707 Evaluation Board User Guide

http://www.xilinx.com/support/documentation/boards_and_kits/vc707/

ug885_VC707_Eval_Bd.pdf

(6) RIFFA: A Reusable Integration Framework For FPGA Accelerators

http://riffa.ucsd.edu/

(7) Jacobsen, M. and Kastner, R. “RIFFA 2.0: A reusable integration

framework for FPGA accelerators.”

https://sites.google.com/a/eng.ucsd.edu/matt-jacobsen/fccm_final.

pdf?attredirects=0&d=1

(8) Vivado Design Suite

http://www.xilinx.com/products/design-tools/vivado.html

(9) Get Smart About Reset:Think Local, Not Global

http://www.xilinx.com/support/documentation/white_papers/wp272.pdf

(10) Gprof

https://en.wikipedia.org/wiki/Gprof

http://en.wikipedia.org/wiki/Field-programmable_gate_array
http://www.springer.com/cda/content/document/cda_downloaddocument/9781461435938-c2.pdf?SGWID=0-0-45-1333135-p174308376
http://www.springer.com/cda/content/document/cda_downloaddocument/9781461435938-c2.pdf?SGWID=0-0-45-1333135-p174308376
http://www.xilinx.com/support/documentation/boards_and_kits/vc707/ug848-VC707-getting-started-guide.pdf
http://www.xilinx.com/support/documentation/boards_and_kits/vc707/ug848-VC707-getting-started-guide.pdf
http://www.xilinx.com/support/documentation/data_sheets/ds180_7Series_Overview.pdf
http://www.xilinx.com/support/documentation/data_sheets/ds180_7Series_Overview.pdf
 http://www.xilinx.com/support/documentation/boards_and_kits/vc707/ug885_VC707_Eval_Bd.pdf
 http://www.xilinx.com/support/documentation/boards_and_kits/vc707/ug885_VC707_Eval_Bd.pdf
http://riffa.ucsd.edu/
 https://sites.google.com/a/eng.ucsd.edu/matt-jacobsen/fccm_final.pdf?attredirects=0&d=1
 https://sites.google.com/a/eng.ucsd.edu/matt-jacobsen/fccm_final.pdf?attredirects=0&d=1
http://www.xilinx.com/products/design-tools/vivado.html
http://www.xilinx.com/support/documentation/white_papers/wp272.pdf
https://en.wikipedia.org/wiki/Gprof

	Declaration of Authorship
	Abstract
	Acknowledgements
	Contents
	List of Figures
	List of Tables
	Abbreviations
	1 Introduction
	1.1 Describing the Motives
	1.2 Thesis Structure

	2 Background
	2.1 Field Programmable Gate Array - FPGA
	2.1.1 FPGA Architecture
	2.1.2 Virtex 7™VC707 Evaluation board

	2.2 Reusable Integration Framework for FPGA Accelerators - RIFFA
	2.2.1 RIFFA Architecture
	2.2.2 RIFFA Hardware Interface
	2.2.3 RIFFA Sorfware API

	2.3 Vivado Design Suite

	3 RIFFA Monitor Core Design & Implementation
	3.1 Purpose & Approach
	3.2 Event-Based Profiler
	3.3 High Level Design
	3.4 Module Analysis
	3.4.1 Monitor Top Module
	3.4.1.1 Control Mechanism
	3.4.1.2 Tail
	3.4.1.3 Parameters

	3.4.2 Global Timer
	3.4.3 Monitor Submodule
	3.4.4 Event Log

	3.5 Driver
	3.6 Architectural exploration

	4 Conclusion
	4.1 Project Report
	4.2 In the Future

	A Verilog Source Code
	B Software interface - RIFFA Monitor API
	Bibliography

