
ΠΑΝΕΠΙΣΤΉΜΙΟ ΘΕΣΣΑΛΊΑς

Σ ύ ν θ ε σ η Αρχιτεκτονικών για
ένα Ετερογενές Σύστημα

βασισμένο σε FPGA

Συγγραφέας:

ΠΑΝΑΓΙΏΤΗς ΣΚΡΙΜΠΟΝΗς

Επιβλέπον:

ΝΙΚΌΛΑΟς ΜΠΕΛΛΑς

Αναπληρωτής Καθηγητής

Συνεπιβλέπον:

ΧΡΉΣΤΟς ΣΩΤΉΡΙΟΙ

Αναπληρωτής Καθηγητής

ΠΑΝΕΠΙΣΤΉΜΙΟ ΘΕΣΣΑΛΊΑς

Σ ύ ν θ ε σ η Αρχιτεκτονικών για
ένα Ετερογενές Σύστημα

βασισμένο σε FPGA

Συγγραφέας: Επιβλέπον:

ΠΑΝΑΓΙΏΤΗς ΣΚΡΙΜΠΟΝΗς ΝΙΚΌΛΑΟς ΜΠΕΛΛΑς

Αναπληρωτής Καθηγητής

Συνεπιβλέπον:

ΧΡΉΣΤΟς ΣΩΤΉΡΙΟΙ

Αναπληρωτής Καθηγητής

Εγκρίθηκε από την διμελή εξεταστική επιτροπή στις 2 Οκτωβρίου 2015

Επιβλέπον:
ΝΙΚΟΛΑΟΣ ΜΠΕΛΛΑΣ
Αναπληρωτής Καθηγητής

Συνεπιβλέπον:
ΧΡΗΣΤΟΣ ΣΩΤΗΡΙΟΙ

Αναπληρωτής Καθηγητής

Διπλωματική Εργασία για την απόκτηση του Διπλώματος του Μηχανικών Η
λεκτρονικών Υπολογιστών, Τηλεπικοινωνιών και Δικτύων του Πανεπιστημίου
Θεσσαλίας, στα πλαίσια του Προγράμματος Προπτυχιακών Σπουδών του Τμήμα
τος Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών του Πανεπιστη
μίου Θεσσαλίας.

Παναγιώτης Σκριμπόνης
Διπλωματούχος Μηχανικός Ηλεκτρονικών Υπολογιστών, Τηλεπικοινωνιών και
Δικτύων του Πανεπιστημίου Θεσσαλίας

Copyright ©Panag io t i s Skrimponis, 2015
Με επιφύλαξη παντός δικαιώματος. A l l rights reserved.

Απαγορεύεται η αντιγραφή, αποθήκευση και διανομή της παρούσας εργασίας, εξ
ολοκλήρου ή τμήματος αυτής, για εμπορικό σκοπό. Επιτρέπεται η ανατύπωση,
αποθήκευση και διανομή για σκοπό μη κερδοσκοπικό, εκπαιδευτικής ή ερευνη¬
τικής φύσης, υπό την προϋπόθεση να αναφέρεται η πηγή προέλευσης και να
διατηρείται το παρόν μήνυμα. Ερωτήματα που αφορούν τη χρήση της εργασίας
για κερδοσκοπικό σκοπό πρέπει να απευθύνονται προς τον συγγραφέα.

1

UNIVERSITY OF THESSALY

High-Level Synthesis for an
FPGA-based Heterogeneous

System

Author:
Panagiotis SKRIMPONIS

Co-Supervisor:
CHRISTOS S O T I R I O U

Associate Professor

Supervisor:
N I K O L A O S B E L L A S

Associate Professor

Acknowledgments

The work of this thesis has been one of the most significant academic chal
lenge I have faced so far. W i t h o u t the support, patience and guidance of the
people around me this thesis would not have been completed.
First of all, my enormous debt of gratitude goes to my thesis advisor and
mentor Professor Nikolaos Bellas. I am thankful for his knowledge and his
belief i n me, which provided the support required to overcome the in i t i a l
problems encountered and keep working w i t h passion. I would also like to
thank my Professor Christos Sotiriou, for providing important feedback for
my thesis. Throughout the period of my studies, they were there for me to
actively support and guide me toward taking the best possible decisions.
I would also like to thank Professor Paolo Ienne and Dr . Muhsen Owaida
for giving me the opportunity to work in such an inspiring research unit at
E P F L and more important ly for their guidance, motivation and provisioning
of the funding required for my research.
Especially, I would like to thank my friends, for supporting me every day.
I total ly believe that great achievements require friends to celebrate, and
throughout my lifetime I was always t ry ing to meet new people and make
new friends.
Most importantly, I would like to thank my family and Maria for their sup¬
port all of these years. There are no words that can express my gratitude
and appreciation for all they have done for me. W i t h o u t their patience and
support, I would not have been able to finish my thesis. The least I can do
in recognition is to dedicate this thesis to them.

1

To my family, Maria and my friends

2

Abstract

Recently, FPGA-based acceleration is becoming more appealing for appli¬
cation developers and cloud computing platform manufacturers. Integrating
the F P G A i n a cloud platform requires the abil ity to map simultaneously mul¬
tiple applications on the F P G A and dynamically share its resources across
multiple users. Every user sees a v i r tua l space of the F P G A resources that is
completely isolated and independent of other users. One of the problems we
tact for the incorporation of FPGAs inside this heterogeneous system is the
communication interface, which has to be high-throughput and low-latency,
by using the PCIe l ink. As partial reconfiguration becoming a standard fea¬
ture of modern F P G A devices, dynamic sharing of resources between multiple
users is feasible.

3

Contents

1 I n t r o d u c t i o n 7

2 B a c k g r o u n d 9
2.1 F P G A 9

2.1.1 Architecture 10
2.2 Vir tex Series 12
2.3 Microblaze 13
2.4 PCIe 14
2.5 A M B A ® A X I 4 14

3 A r c h i t e c t u r a l E x p l o r a t i o n 16
3.1 Blur 17
3.2 Monte Carlo Simulation 20
3.3 Results 21

3.3.1 Blur 21
3.3.2 Monte-Carlo simulation 23

4.1 RIFFA 25
4.1.1 Architecture 27
4.1.2 Hardware Interface 29
4.1.3 C / C + + Interface 30

5.1 V i r t u a l Memory 31
5.2 Memory Management U n i t 32
5.3 Page Table Architecture 33
5.4 Memory Allocation 34

5.4.1 First F i t 34
5.4.2 Best F i t 34
5.4.3 Buddy Allocation 34

4 C P U - F P G A C o m m u n i c a t i o n 25

5 M e m o r y M a n a g e m e n t 31

1

5.5 Memory Deallocation 35

6 A p p l i c a t i o n M a n a g e r 36
6.1 Manager A P I 36
6.2 Application Scheduling 37
6.3 Partial Reconfiguration 38

6.3.1 X i l i n x I C A P 38

7 C o n c l u s i o n a n d F u t u r e W o r k 40

2

List of Figures

1.1 Modern Cloud Computing CPU-FPGA Abstraction 7

2.1 F P G A Architecture 9
2.2 F P G A Architecture 10
2.3 VC707 Evaluation Board 11
2.4 VC707 Internal Architecture 12
2.5 Microblaze Internal Architecture 13
2.6 A X I 4 Memory Mapped 15

3.1 Our System-Level Architecture 16
3.2 Baseline platform architecture used for our experimental eval¬

uation. The dark shaded area shows the customizable logic. . 18
3.3 Duplication of the baseline architecture using two RIFFA chan¬

nels 19
3.4 Using A X I streaming interface between RIFFA channels, the

two accelerators and the D R A M . 19
3.5 Experimental performance results for the Blur, numbers above

the bars are improvement over the optimized C P U implemen¬
tat ion 21

3.6 Experimental performance results for the Monte-Carlo appli¬
cations, numbers above the bars are improvement over the
optimized CPU implementation 23

4.1 RIFFA Architecture 25
4.2 Graph of Bandwidth vs Transfer Size 26
4.3 RIFFA Upstream 28
4.4 RIFFA Downstream 29

5.1 V i r t u a l Memory 31
5.2 Page Table Architecture 33

6.1 CPU-FPGA Application A P I 37

3

6.2 Partial Reconfiguation of an Application w i t h Mult ip le Ker
nels on one Partial Reconfigurable Region 38

7.1 Our System-Level Architecture 40

4

Listings

3.1 Blur Horizontal kernel 17
3.2 Blur Vertical kernel 17
4.1 RIFFA C / C + + example 30
6.1 Host-CPU / FPGA-Manger Communication A P I 36
6.2 Application Kernel Scheduling 37

5

Glossary

F P G A Field Programmable Gate Array. 7-9

H L S High Level Synthesis. 7

H P C High Performance Computing. 7, 8

O T P One-Time Programmable. 10

6

Chapter 1

Introduction

Recent advances in F P G A technology and HLS methodologies have placed
re-configurable systems on the road-map of heterogeneous HPC. F P G A accel
erators offer superior performance, power and cost characteristics compared
to a homogeneous Central Process Unit (CPU) based platform, and are more
energy efficient than Graphics Process Unit (GPU) platforms. As a result
FPGA-based acceleration is becoming more appealing for application devel¬
opers and cloud computing platform manufacturers.

Figure 1.1: Modern Cloud Computing CPU-FPGA Abstraction

7

However, one big obstacle for the adoption of F P G A technology in a CPU-
F P G A heterogeneous system is that F P G A programming sti l l requires in
timate knowledge of low-level hardware design and can lead to long devel
opment cycles. These characteristics make Hardware Description Languages
(HDL) an unsuitable technology to implement a HPC application on an
FPGA.
This problem can be easily tact w i t h HLS tools, which allow designers to use
high-level languages and programming models such as C / C + + and OpenCL.
By elevating the hardware design process at the level of software develop¬
ment, HLS not only allows quick prototyping, but also enables architectural
exploration inside a component. Most of the HLS tools offer optimization
directives to inform the HLS synthesis engine about how to optimize parts of
the source code. The HLS synthesizer implements a hardware accelerators
optimized for performance or area according to these directives
Another big obstacle for the adoption of F P G A technology i n a CPU-FPGA
heterogeneous system, is that there is not straightforward way for integrating
F P G A devices in a CPU-based platform.
This thesis intend to tact this specific problem, by designing infrastructure
for FPGAs on the Cloud, a system-level architecture capable of executing
multiple applications simultaneously, virtualizing and sharing the resources
between the applications. A t first we w i l l take a set of applications i n order
to exploit different architectures, and find which the best architecture for our
system. Then based on this architecture we w i l l start developing our features

8

Chapter 2

Background

2.1 FPGA
F P G A are programmable semiconductor devices that are based around a
matr ix of Configurable Logic Blocks (CLB) connected through programmable
interconnects. FPGAs allow designers to change their designs very late in the
design cycle, even after the end product has been manufactured and deployed
in the field.

Figure 2.1: F P G A Architecture

9

FPGAs can be programmed to the desired application or functionality re¬
quirements, opposed to Application Specific Integrated Circuits (ASIC), where
the device is custom buil t for the particular design. FPGAs are ideal for a
wide variety of applications, from high-volume applications to state-of-the-art
products. Each series of F P G A includes different features, such as embedded
memory, Digita l Signal Processing (DSP) blocks, high-speed transceivers, or
high-speed I / O pins, to cover a broad range of end products. Although
OTP FPGAs are available, the dominant type are SRAM-based which can
be reprogrammed as the design evolves.

2.1.1 Architecture
The F P G A architecture consist of an array of CLB, a hierarchy of inter¬
connects that enables the cooperation of those blocks,I/O banks which are
able to support many I / O standards, DSP components for high-performance
computation, memory elements like flip-flops and blocks of R A M and Clock
Management Tiles (CMTs) . A few modern FPGAs even include embedded
microprocessors and related peripherals to form a System on a Chip (SoC).

Figure 2.2: F P G A Architecture

10

The CLB is the basic logic unit i n a FPGA. Exact numbers and features
vary from device to device, but every CLB consists of a configurable switch
matr ix w i t h 4 or 6 inputs, some selection circuitry (M U X , etc), and flip-
flops. The switch matr ix is highly flexible and can be configured to handle
combinational logic, shift registers or R A M .
The routing channels are responsible for routing the signals between the
clock, CLBs,RAMs and I/Os. I n order for these routes to be optimal and
fast, the routing task is hidden from the user and is completed solely by the
tool , applying any optimization needed for the design.
The I / O features of an F P G A vary from device to device. Most of them
support USB, video outputs; V G A or/and H D M I , audio lines i n and out,
Ethernet and connectors for many other features or devices such as cameras,
sensors and many more. Digita l clock management provides users the abil ity
to manage the original clock generated from an oscillator on the F P G A and
create new clocks, w i t h lower or higher frequency.
Most FPGAs support very powerful soft-core and on-chip processors. W i t h
these abilities, these devices combine the software programmability of an em¬
bedded processor w i t h the hardware programmability of an FPGA, resulting
in outstanding system performance, and power efficiency.

Figure 2.3: VC707 Evaluation Board

11

2.2 Virtex Series
The VC707 evaluation board for the V i r t e x ® - 7 F P G A provides a hardware
environment for developing and evaluating designs targeting the Virtex-7
XC7VX485T-2FFG1761C FPGA. The VC707 board provides features com¬
mon to many embedded processing systems, including a DDR3 S O D I M M
memory, an 8-lane P C I Express®® interface, a tri-mode Ethernet PHY, gen¬
eral purpose I / O , and two U A R T interfaces. Other features can be added by
using mezzanine cards attached to either of two VITA-57 F P G A mezzanine
connectors (FMC) provided on the board. Two high pin count (HPC) FMCs
are provided.

Figure 2.4: VC707 Internal Architecture

12

2.3 Microblaze
The MicroBlaze is a soft microprocessor core designed for X i l i n x FPGAs
from Xi l inx . As a soft-core processor, MicroBlaze is implemented entirely i n
the general-purpose memory and logic fabric of X i l i n x FPGAs.

Figure 2.5: Microblaze Internal Architecture

The MicroBlaze soft core processor is highly configurable, allowing you to
select a specific set of features required by your design. Such as cache size,
pipeline depth (3-stage or 5-stage), embedded peripherals, memory manage¬
ment uni t , and bus-interfaces can be customized. Microblaze is a critical
component to our system because the application manager we developed
runs on the Microblaze.

13

2.4 PCIe
P C I Express (Peripheral Component Interconnect Express), officially abbre¬
viated as PCIe, is a high-speed serial computer expansion bus standard de¬
signed to replace the older PCI , PCI-X, and AGP bus standards. PCIe has
numerous improvements over the older standards, including higher maximum
system bus throughput, lower I / O p in count and smaller physical footprint,
better performance scaling for bus devices, a more detailed error detection
and reporting mechanism (Advanced Error Reporting, AER[1]) , and native
hot-plug functionality. More recent revisions of the PCIe standard provide
hardware support for I / O virtualization.

2.5 A M B A ® A X I 4
Advanced Microcontroller Bus Architecture (AMBA)®® Advanced extensible
Interface 4 (AXI4) is the fourth generation of the A M B A interface specifica
t ion from ARM®®. A X I targets system designs w i t h high clock frequencies. I t
has separate address/control and data phases and supports non-aligned data
transfers using byte signals. Hosts can issue multiple addresses for more ef¬
ficient bus uti l ization, and burst-based transactions only need to supply the
start address.

14

Figure 2.6: A X I 4 Memory Mapped

The A X I architecture allows additional register stages so designers can pro¬
vide t iming closure.AXI is a host/client interface that can be extended using
a switch or fabric. The A X I interconnect can be implemented in a number of
ways w i t h varying levels of performance and complexity. Interconnects can
support one or more A X I masters. Obviously, a single master interconnect
w i l l be easier and less complex to implement.

15

Chapter 3

Architectural Exploration

I n order to incorporate FPGAs as part of a modern heterogeneous system,
we exploited the standardization of communication abstractions provided by
modern high-level synthesis tools like Vivado HLS and SOpenCL to create
our system. Our final system-level architecture is on Figure 3.5.

Figure 3.1: Our System-Level Architecture

16

3.1 Blur
Listing 1.1 and Listing 1.2 shows the pseudocode of the Blur filter, one of
the applications under evaluation. The algorithm first applies a horizontal
and then a vertical 3-tap low pass filter to an incoming image, temporarily
storing the output of the horizontal filter to the memory. This pseudocode
is optimized for a C P U execution, not for a hardware design, which leads
to drawbacks when i t is processed by HLS tools. This code results into
two hardware accelerators, which have to communicate via a large memory
implemented either via D R A M or as an on-chip B R A M (i f the size of the
B R A M is large enough).
The dark shaded logic of Figure 3.2 is generated by the Vivado toolset, based
on instructions by the system developer. Two accelerators are instantiated
and are connected w i t h a B R A M memory through an AXI4-master intercon¬
nect. This baseline architecture is extended by automatically exploring the
number and type of the various resources. Such resources include the accel¬
erators i n terms of throughput, area, latency and number. I t also includes
the bus structure and number of separate buses, the number and type of
memories, and the interface to the Host uni t .
I n addition to the customizable part of the architecture, extra resources are
required for communication w i t h the Host uni t . We use an open-source
framework, RIFFA to provide an abstraction for software developers to access
the F P G A as a PCIe-based accelerator

Listing 3.1: Blur Horizontal kernel

f o r (i = 0; i < H e i g h t ;
f o r (j = 0; j < W i d t h ;

t m p (i , j) = j - 1) + j) +

Listing 3.2: Blur Vertical kernel

f o r (i = 0 ; i < H e i g h t ; i + +)
f o r (j = 0; j < W i d t h ;

o u t (i , j) = (t m p (i - 1 , j) + t m p (i , j) +
t m p (i + 1 , j)) / 3;

17

Figure 3.2: Baseline platform architecture used for our experimental evalua¬
t ion. The dark shaded area shows the customizable logic.

The RIFFA hardware implements the PCIe Endpoint protocol so that the
user does not need to get involved w i t h the connectivity details of the accel¬
erator. From the accelerator side, RIFFA provides a set of streaming channel
interfaces that send and receive data between the CPU main memory and
the customizable logic. On the Host uni t , the RIFFA 2.0 architecture is a
combination of a kernel device driver and a set of language bindings. RIFFA
provides a very simple A P I to the user that allows for accessing individual
channels for communicating data to the accelerator logic.
Figure 3.3 and Figure 3.4 shows two indicative architectural scenarios, ex¬
panding the baseline architecture of Figure 3.2. We can effectively duplicate
the customizable logic using an extra RIFFA channel Figure 3.3. Even better,
the streaming, point-to-point nature of the Blur application allows us to use
the AXI4-Stream protocol to channel data between consumer and producers
Figure 3.4. Some configurations may use external DDR3 memory (which
includes an F P G A DDR3 memory controller) to be able to accommodate

18

larger images at the cost of increasing latency and worse performance.

Figure 3.3: Duplication of the baseline architecture using two RIFFA chan¬
nels

Figure 3.4: Using A X I streaming interface between RIFFA channels, the two
accelerators and the D R A M .

To navigate through the large design space smartly, we devised a set of
heuristics for making design decisions:

1. Keep data local as close as possible to the accelerator. The goal here
is to minimize read/write latency between the accelerator and data
memory.

19

2. Minimize shared resources between independent accelerators. Follow¬
ing this guideline helps eliminating collisions between multiple acceler¬
ators while accessing communication channels and memory ports.

3. Overlap data transfers w i t h accelerators execution. The objective here
is to minimize accelerators idle time waiting for data to be available.
Our design space exploration approach starts from the baseline archi¬
tecture of Figure 3.2. We then incrementally make design decisions
while considering the aforementioned heuristics and evaluating the ef¬
fects of the taken decisions on overall system performance.

3.2 Monte Carlo Simulation
Monte-Carlo simulation is a compute intensive kernel w i t h minimal memory
accesses. Hence the different implementation scenarios are made of different
accelerator configurations and by instantiating multiple instances of the ac
celerator. I n the baseline scenario, the accelerator is configured to perform a
single walk of a single point per invocation, and a single accelerator is allo¬
cated (MC_1_walk_1_point_1_chnl). This scenario performs much worse than
the CPU implementation. Double precision operations have larger latency on
FPGAs than a CPU. Also, Vivado HLS libraries of trigonometric operators
(sin, cos) are not pipelined and less efficient than their CPU counterparts.
The strength of the F P G A is to perform more computations i n parallel. Un¬
fortunately, the M C kernel computations of a single walk are sequential and
cannot be parallelized. As such, the F P G A baseline implementation performs
badly. To improve performance we need to exploit coarser-grain parallelism
across multiple points and walks. The second scenario allocates two accel¬
erator instances to parallelize the computations of walks for a single point
(MC_1_walk_1_point_2_chnl). I t reduces the execution time to half, but sti l l
worse than the CPU. We need to allocate around 40 accelerator replicas to
reach the C P U performance.
Another aspect to improve on is to minimize the accelerator invocation over¬
head by coarsening the computations granularity per a single accelerator
instance. This allows for pipelining computations of multiple walks, which
w i l l have a strong impact on performance. The t h i r d scenario minimizes
accelerator invocation overhead by configuring the accelerator to perform
all the walks of a single point per invocation (MC_alLwalks_1^oint_1_chnl).
The fourth scenario allocates five accelerators to parallelize computations
(MC_alLwalks_1_point_5_chnl) across multiple points. The last scenario sat¬
urates the F P G A resources and almost achieves near CPU performance.

20

3.3 Results

3.3.1 Blur

Figure 3.5: Experimental performance results for the Blur, numbers above
the bars are improvement over the optimized CPU implementation

Six implementation scenarios are studied for the Blur application. The first
scenario represents the baseline architecture i n Figure 3.2 (bram_naive_1_chnl).
The host CPU sends a single row for the horizontal blur kernel for process¬
ing and waits for the result from the accelerator before sending the next
row unt i l the entire image is processed. The same is done for the vertical
blur, but here 3 rows are needed for the vertical blur to start. This sce¬
nario is reasonable when there is not enough on-chip or off-chip memory to
save the whole image, then we part i t ion the image into smaller partitions
that fit on the available memory resources. Another version of this scenario
(bram_naive_2_chnl) replicates the hardware of a single RIFFA channel on
2 channels to exploit parallelism i n the Blur application. While the second
scenario improves on the performance of the B R A M naive implementation i t
is st i l l worse than that of the optimized CPU implementation. Sending small
chunks of data over the PCIe is not efficient because we pay the overhead of
in i t ia t ing a PCIe read/write transaction many times. As a result, the PCIe
transactions occupy two thirds of the total execution time.
Scenario three of the Blur (ddr_naive_1_chnl) makes use of the off-chip D D R
to store the whole image instead of part i t ioning i t into multiple portions. Us¬
ing a D D R provides few benefits; The PCIe read/write transactions consume
less t ime compared to the first scenarios because we eliminate the overhead

21

of in i t ia t ing PCIe transactions. The second benefit of the D D R is that we
do not need to send the horizontal blur output back to the host CPU, but
keep i t i n the D D R for the vertical blur to process i t , then write back to the
host CPU the result of the vertical blur. As such, the t h i r d scenario achieves
improvement over optimized CPU time.
To improve performance of scenario # 3 , we allow the horizontal blur to start
as soon as the first row of the image is stored in the D D R and not wait
for the whole image to be loaded. We also allow wr i t ing data back to the
host CPU even before the vertical blur accelerator finishes execution. This
is demonstrated i n the fourth scenario (ddr_overlapped_1_chnl). The over¬
lapping of accelerators execution w i t h FPGA-Host data transfers is possible
because of the regular access patterns of the blur kernels. While this scenario
eliminates most data transfers overhead, moving data between D D R and the
accelerators introduces a non-negligible overhead.
To improve further and minimize the DDR-Accelerator communication over¬
head, we use AXI-stream interfaces for horizontal and vertical blur acceler
ators (ddr_streaming_1_chnl, ddr_streaming_2_chnl). Instead of storing the
image in the DDR, the horizontal blur accelerator uses AXI-stream interface
to read data from the channel FIFOs and write result to the DDR. The verti¬
cal blur w i l l read data from the DDR, process i t and send the results directly
to the RIFFA channel through an AXI-stream interface. I n this scenario
we eliminate 60% of the DDR-Accelerator data movements. This is possible
because of the streaming nature of the blur kernels. This scenario achieves
the best performance compared to the C P U implementation. Moreover, this
scenario consumes less area than the D D R naive and overlapped implemen¬
tations, which allows allocating more replicas of the accelerators to exploit
parallelism and improve performance as the case i n ddr_streaming_2_chnl.

22

3.3.2 Monte-Carlo simulation

MC FPGA Implementation Performance

Figure 3.6: Experimental performance results for the Monte-Carlo applica¬
tions, numbers above the bars are improvement over the optimized CPU
implementation

M C is a compute intensive kernel w i t h minimal memory accesses. Hence the
different implementation scenarios are made of different accelerator configu¬
rations and by instantiating multiple instances of the accelerator. I n the base¬
line scenario, the accelerator is configured to perform a single walk of a single
point per invocation, and a single accelerator is allocated (MC_1_walk_1_point_1_chnl).
This scenario performs much worse than the CPU implementation. Double
precision operations have larger latency on FPGAs than a CPU. Also, V i -
vado HLS libraries of trigonometric operators (sin, cos) are not pipelined
and less efficient than their CPU counterparts. The strength of the F P G A
is to perform more computations in parallel. Unfortunately, the M C kernel
computations of a single walk are sequential and cannot be parallelized. As
such, the F P G A baseline implementation performs badly. To improve perfor¬
mance we need to exploit coarser-grain parallelism across multiple points and
walks. The second scenario allocates two accelerator instances to parallelize
the computations of walks for a single point (MC_1_walk_1_point_2_chnl). I t
reduces the execution time to half, but sti l l worse than the CPU. We need
to allocate around 40 accelerator replicas to reach the C P U performance.
Another aspect to improve on is to minimize the accelerator invocation over¬
head by coarsening the computations granularity per a single accelerator
instance. This allows for pipelining computations of multiple walks, which
w i l l have a strong impact on performance. The t h i r d scenario minimizes

23

accelerator invocation overhead by configuring the accelerator to perform
all the walks of a single point per invocation (MC_alLwalks_1^oint_1_chnl).
The fourth scenario allocates five accelerators to parallelize computations
(MC_alLwalks_1_point_5_chnl) across multiple points. The last scenario sat¬
urates the F P G A resources and almost achieves near CPU performance.

24

Chapter 4

CPU-FPGA Communication

4.1 RIFFA
Reusable Integration Framework for F P G A Accelerators (RIFFA) is a simple
framework for communicating data from a host CPU to a F P G A via a P C I
Express bus. The framework requires a PCIe enabled workstation and a
F P G A on a board w i t h a PCIe connector. RIFFA supports Windows and
Linux, Altera and Xi l inx , w i t h bindings i n C / C + + , Python, M A T L A B and
Java.

Figure 4.1: RIFFA Architecture

25

On the software side there are two main functions: data send and data re¬
ceive. These functions are exposed via user libraries i n C / C + + , Python,
M A T L A B , and Java. The driver supports multiple FPGAs (up to 5) per
system. The software bindings work on Linux and Windows operating sys¬
tems. Users can communicate w i t h F P G A IP cores by wr i t ing only a few
lines of code.
On the hardware side, users access an interface w i t h independent transmit
and receive signals. The signals provide transaction handshaking and a first
word fall through FIFO interface for reading/writ ing data to the host. No
knowledge of bus addresses, buffer sizes, or PCIe packet formats is required.
Simply send data on a FIFO interface and receive data on a FIFO interface.
RIFFA does not rely on a PCIe Bridge and therefore is not subject to the
limitations of a bridge implementation. Instead, RIFFA works directly w i t h
the PCIe Endpoint and can run fast enough to saturate the PCIe l ink.
RIFFA communicates data using direct memory access (D M A) transfers and
interrupt signaling. This achieves high bandwidth over the PCIe l ink. I n our
tests we are able to saturate (or near saturate) the l ink i n all our tests. The
RIFFA distribution contains examples and guides for setting up designs on
several standard development boards.

Figure 4.2: Graph of Bandwidth vs Transfer Size

26

RIFFA 2.2 is significantly more efficient than its predecessor RIFFA 1.0.
RIFFA 2.2 is able to saturate the PCIe l ink for nearly all l ink configurations
supported. Figure 4.2 shows the performance of designs using the 32 b i t , 64
bi t , and 128 bi t interfaces. The colored bands show the bandwidth region
between the theoretical maximum and the maximum achievable. PCIe Gen
1 and 2 use 8 bi t / 10 bi t encoding which l imits the maximum achievable
bandwidth to 80% of the theoretical. Our experiments show that RIFFA can
achieve 80% of the theoretical bandwidth i n nearly all cases. The 128 bi t
interface achieves 76% of the theoretical maximum.

4.1.1 Architecture
A sequence diagram for an upstream transfer is shown to the right A n up¬
stream transfer is init iated by the FPGA. However, they w i l l not begin unt i l
the user application calls the user l ibrary function fpga_recv. Upon doing so,
the thread enters the kernel driver and begins the pending upstream request.
I f the upstream request has not yet been received, the thread waits for i t
to arrive (bounded by the timeout parameter). On the diagram, the user
library and device driver are represented by the single node labeled " R I F F A
Library" .
Servicing the request involves building a list of scatter gather elements which
identify which pages of physical memory correspond to the receptacle byte
array. The scatter gather elements are wr i t ten to a shared buffer. This
buffer location and content length are provided to the FPGA. Each page
enumerated by the scatter gather list is pinned to memory to avoid costly
paging. The F P G A reads the scatter gather data then issues write requests to
memory for the upstream data. I f more scatter gather elements are needed,
the F P G A w i l l request additional elements via interrupt. Otherwise, the
kernel driver waits unt i l all the data is wr i t ten . The F P G A provides this
notification, again via an interrupt.
After the upstream transaction is complete, the driver reads the F P G A for
a final count of data words wr i t ten . This is necessary as the scatter gather
elements only provide an upper bound on the amount of data that is to be
wri t ten . This completes the transfer and the function call returns to the
application w i t h the final count.

27

Figure 4.3: RIFFA Upstream

A similar sequence exists for downstream transfers. The left figure illustrates
this sequence. I n this direction, the application initiates the transfer by
calling the l ibrary function fpga_send The thread enters the kernel driver and
writes to the F P G A to init iate the transfer. Again, a scatter gather list is
compiled, pages are pinned, and the F P G A reads the scatter gather elements.
Each of the elements results i n one or more read requests by the FPGA. The
read requests are serviced and the kernel driver is notified only when more
scatter gather elements are needed or when the transfer has completed.

28

Figure 4.4: RIFFA Downstream

Upon completion, the driver reads the final count read by the FPGA. I n
error free operation, this value should always be the length of all the scatter
gather elements. The final count is returned to the application.

4.1.2 Hardware Interface
A single RIFFA 2 channel has two sets of signals, one for receiving data (RX)
and one for sending data (T X) . RIFFA 2 has simplified the interface to use a
minimal handshake and receive/send data using a FIFO w i t h first word fall
through semantics (valid+read interface). The clocks used for receiving and

29

sending can be asynchronous from each other and from the PCIe interface
(RIFFA clock). The table below describes the ports. The input /output
designations are from your user core's perspective (i.e. the core(s) you write
and connect to the RIFFA 2.0 channel).

4.1.3 C / C + + Interface
The software interface is provided by bindings for C / C + + . After installation
all bindings are available in their respective runtime environments. The
A P I is based on the notion of channels. RIFFA 2 can be configured to
support between 1 - 12 independent channels. Each channel connects to an
IP core and can be addressed by specifying the channel number from the
user application. The channels are independent and thread safe. A t most
one thread should be used to access a single channel.
The C / C + + bindings are used by including the jriffa.h^ header file and
l inking w i t h the -lriffa library. Below is a complete example and an A P I
listing.

i n c l u d e < s t d i o . h >
i n c l u d e < s t d l i b . h >
i n c l u d e " r i f f a . h "

d e f i n e BUFJSIZE (1 * 1024 * 1024)
u n s i g n e d i n t b u f [BUFJSIZE] ;

i n t m a i n ()

{

Listing 4.1: RIFFA C / C + + example

f p g a _ t * f p g a ;
i n t f i d = 0;
i n t c h a n n e l = 0;

f p g a = f p g a _ o p e n (f i d) ;
f p g a _ s e n d (fpga , c h a n n e l
f p g a _ r e c v (fpga , c h a n n e l
f p g a _ c l o s e (f p g a) ;
r e t u r n 0;

(v o i d *) b u f , BUFJSIZE, 0 , 1 , 0) ;
(v o i d *) b u f , BUFJSIZE , 0) ;

}

30

Chapter 5

Memory Management

Memory management is the act of managing computer memory at the system
level. The essential requirement of memory management is to provide ways
to dynamically allocate portions of memory to programs at their request,
and free i t for reuse when no longer needed. This is critical to our cloud
computing system where more than a single process might be underway at
any time. The quality of the memory manager can have an extensive effect
on overall system performance.

Figure 5.1: V i r t u a l Memory

Application 1

Application 2

5.1 Vir tua l Memory
V i r t u a l Memory is a memory management technique that is implemented
using both hardware and software resources. I t maps memory addresses
used by an application, called v i r tua l addresses, into physical addresses in
the F P G A and DDR3 memory. Main storage as seen by an application
appears as a contiguous address space or collection of contiguous segments.

31

Although, these address space is not contiguous i n the F P G A and DDR3
memory. The memory manager that runs on the microblaze manages v i r tua l
address spaces and the assignment of real memory to v ir tua l memory.
I n a cloud computing system we need to have multiple applications running
simultaneously on the same machine. Each application needs to be com¬
pletely isolated and independent of the other applications. As a result, the
applications w i l l run i n a V i r t u a l Memory (V M) system. The applications
w i l l create v i r tua l addresses which w i l l be translated by the Memory Man¬
agement Unit (M M U) into physical addresses that w i l l be used to access the
physical memory.
Address translation hardware in the FPGA, often referred to as a M M U ,
which automatically translates v i r tua l addresses to physical addresses. Soft¬
ware w i t h i n the operating system may extend these capabilities to provide a
v ir tua l address space that can exceed the capacity of real memory and thus
reference more memory than is physically present in the computer.

5.2 Memory Management Unit
Page Tables are used to translate the v i r tua l addresses seen by the appli¬
cation into physical addresses used by the hardware to process instructions;
such hardware that handles this specific translation is often known as the
memory management unit . Each entry i n the page table holds a flag indi¬
cating whether the corresponding page is i n real memory or not. I f i t is in
real memory, the page table entry w i l l contain the real memory address at
which the page is stored. When a reference is made to a page by the hard¬
ware, i f the page table entry for the page indicates that i t is not currently in
real memory, the hardware raises a page fault exception, invoking the paging
supervisor component of the operating system.

32

5.3 Page Table Architecture
The internal architecture of the page table is simple and efficient i n terms of
area and performance. We use the axi side channel to identify i f the memory
request is made by the system, or by an application that runs on the partial
reconfigurable regions. I n order to store the translations of each application
we use on-chip memory(BRAM) . The rest of the A X I signals go directly to
the register.

Figure 5.2: Page Table Architecture

Every time we have a new application request or a dynamic memory alloca¬
t ion request, the memory manager that runs on the microblaze has to update
the page table w i t h the new values. Also when an application finishes or we
have a dynamic memory deallocation request we have to mark the proper
translations of this application as not valid.

33

5.4 Memory Allocation
Memory allocation is the process of assigning blocks of memory on request.
Typically the allocator receives a memory request from the PCIe controller
or from the application and has to allocate the proper amount of memory.
Our memory system is divided into pages, in order to make the allocation
easier.

1. First F i t

2. Best F i t

3. Buddy Allocation

5.4.1 First Fit
I n the first fit algorithm, the allocator keeps a list of free pages (known as the
free list) and, on receiving a request for memory, scans along the list for the
first pages that is large enough to satisfy the request. The first fit algorithm
performs reasonably well, as i t ensures that allocations are quick.

5.4.2 Best Fit
I n the best fit algorithm, the allocator keeps a list of free blocks (known as
the free list) and, on receiving a request for memory, scans along the list for
the first block that is large enough to satisfy the request. I f the chosen block
is significantly larger than that requested, then i t is usually split, and the
remainder added to the list as another free block. The best fit algorithm
performs reasonably well, as i t ensures that allocations are quick.

5.4.3 Buddy Allocation
I n a buddy system, the allocator w i l l only allocate blocks of certain sizes,
and has many free lists, one for each permitted size. The permitted sizes
are usually either powers of two, or form a Fibonacci sequence (see below for
example), such that any block except the smallest can be divided into two
smaller blocks of permitted sizes. The main advantage of the buddy system
is that coalescence is cheap because the "buddy" of any free block can be
calculated from its address.

34

5.5 Memory Deallocation
Memory deallocation is the process of freeing blocks of memory on request.
Typically the deallocator receives a request to deallocate a part or all the
memory for a specific application. I n order to do this we have to update the
page table, and simply make the translations as invalid. We also have to
change the control registers w i t h the new l imits .

35

Chapter 6

Application Manager

Our Application Manager runs on the microblaze, and is responsible for
managing and sharing the resources between multiple applications. On the
Manager we also run the scheduler for all the applications and the kernels of
the applications.

6.1 Manager A P I
We implemented an A P I for the Host-CPU i n order to communicate effi
ciently w i t h the FPGA-Manager.

Listing 6.1: Host-CPU / FPGA-Manger Communication A P I
i n t a p p _ r e q (i n t num_pr , i n t p r i o r i t y , i n t mem_size) ;
v o i d a p p _ s n d _ b i t (i n t * b i t s t r e a m s , i n t a p p _ i d) ;
v o i d a p p _ s n d _ s c h (i n t * s c h e d u l i n g , i n t a p p _ i d , i n t l a s t) ;
v o i d a p p _ s n d _ d a t a (i n t * d a t a . b u f , i n t a p p _ i d , i n t l a s t) ;
i n t a p p _ r c v _ d a t a (i n t * d a t a _ b u f , i n t a p p _ i d , i n t l a s t) ;

First of all , we are able to send an application request from the Host-CPU
to the FPGA. I n the application request, we are requesting for a specific
amount of memory, a number of min imum partial reconfigurable regions and
the prior i ty of the application. The return of this function is the answer of
the manager, i f the manager has enough space for the application then he
replies w i t h the application id , otherwise he replies negative.
Then i f the reply of the manager is the application id , the application send the
partial bitstreams, the scheduling micro-code and starting data. When the
application finishes sending the bitstream, the scheduling information, and
the starting data (if the application has) we indicating to the PCIe controller
to start the application.

36

When the application finishes the execution on the FPGA, the application
that runs on the Host-CPU i n able to read data back. When the application
is ready to read data back indicates to the PCIe controller that has read all
the data i n order the Garbage Collector that runs on the F P G A to free all
the allocated memory of this application.

Figure 6.1: CPU-FPGA Application A P I

6.2 Application Scheduling
We have developed an application scheduler that has a predefined number
of maximum applications, and maximum number of kernels per application.
For each of this applications we have a queue w i t h the scheduling instruc¬
tions. The application scheduler checks the application queues i f there are
instructions that can be executed. I f there are instructions of applications
w i t h high prior i ty we execute them first. The scheduling is based on this
simple instruction set:

Listing 6.2: Application Kernel Scheduling

v o i d E x e c u t e _ K e r n e l _ a n d _ W a i t (i n t k e r n e l _ i d) ;
v o i d E x e c u t e _ K e r n e l _ a n d _ C o n t i n u e (i n t k e r n e l _ i d) ;

37

v o i d A l l o c a t e _ M e m o r y _ B l o c k (i n t b l o c k _ s i z e) ;
v o i d F r e e _ M e m o r y _ B l o c k (i n t b l o c k . i z e) ;

This minimal set of instructions we support allows the application devel¬
oper to create his scheduling program and run his application. However, the
complexity of controlling the data dependencies between kernels i n on the
application developer. We intend to change the way we do the scheduling,
so that the application developer give us his control/data flow-graph, which
is more simple than having to control all the data dependencies. W i t h this
approach we w i l l add one more layer of abstraction for the application de¬
veloper, and we w i l l increase the performance gain, because we w i l l able to
start a kernel of an application when the data are ready.

Partial Reconfiguration is the abil ity to dynamically modify blocks of logic
by downloading partial b i t files while the remaining logic continues to oper
ate without interruption. X i l inx Partial Reconfiguration technology allows
designers to change functionality on the fly, eliminating the need to fully
reconfigure and re-establish links, dramatically enhancing the flexibility that
FPGAs offer. The use of Partial Reconfiguration can allow designers to move
to fewer or smaller devices, reduce power, and improve system upgradability.
Make more efficient use of the silicon by only loading in functionality that is
needed at any point i n time.

Figure 6.2: Partial Reconfiguation of an Application w i t h Mult ip le Kernels
on one Partial Reconfigurable Region

6.3.1 Xi l inx I C A P
The A X I Hardware I C A P enables an embedded microprocessor, such as M i -
croBlaze, to read and write the F P G A configuration memory through the
Internal Configuration Access Port (ICAP) . This enables a user to write
software programs that can modify F P G A circuit structure and functional¬
i ty during the operation of the circuit.

6.3 Partial Reconfiguration

38

The I C A P state machine (ISM) constantly monitors the read port of the
FIFO for bitstream data. The FIFO read port is 32 bits wide, clocked at 100
MHz - the maximum clock frequency supported by the ICAP. As soon as
the FIFO empty signal is de-asserted, the ISM fetches data from the FIFO
and writes i t to the ICAP. Since the FIFO depth is double the maximum
PCIe read request size, the bitstream read from host memory can overlap
w i t h I C A P transactions, maximising reconfiguration throughput.
We have created an interrupt based D M A that transfers the partial bi t-
streams from the D R A M to the FIFO port of the the ICAP. As a result
the microblaze does not have to wait for the partial reconfiguration to fin
ish. Moreover, by using the dynamic reconfiguration port (DRP) we can
dynamically overclock the I C A P in order to achieve better performance.

39

Chapter 7

Conclusion and Future Work

We proposed an infrastructure that intends to tact the problem of integrating
the FPGAs inside a high-performance CPU-FPGA system, and particularly
inside a cloud computing system. We do this by designing a system-level
architecture capable of executing multiple applications simultaneously, vir-
tualizing and sharing the resources between the applications.

Figure 7.1: Our System-Level Architecture

The first part of my thesis we exploited many system-level architectures. The
result of this work was published on the paraFPGA symposium on Septem-

40

ber,2016 w i t h the t i t le "Explor ing Automatical ly Generated Platforms i n
High Performance FPGAs" .
A t first we took a set of applications in order to exploit multiple system-level
architectures, and found the baseline architecture for our system. Then based
on this architecture we developed the features we needed for virtualizing
and using efficiently the F P G A resources. Like memory management units,
scheduler of applications and scheduler of application's kernels. We support
unique features like dynamic memory allocation, and dynamic memory free.
We designed a efficient page table i n terms of area and performance, which
is the most critical component of our architecture. We also support partial
reconfiguration which is a must for real-time systems, in order to be able to
reconfigure the F P G A on the fly and change the application on real-time.
Reaching target performance does not have a t r iv i a l solution. Customizing
the accelerator configuration while using a fixed system architecture is not
enough to compete w i t h state-of-the-art CPUs. I t is essential to customize
the system architecture to reach this goal, especially in applications where
data movement overhead dominates overall performance. I n this effort we
studied few directions in system-level architectural exploration to orchestrate
an approach for customizing system-level components, such as number and
type of bus interfaces, memory hierarchies, and number of accelerators. We
considered different data transfer protocols as a way to minimize data move¬
ment overhead. We intend to study other types of applications to extract
more efficient ways of system customization. Last but not least, we intend
to explore more complex architectures, smarter scheduling techniques and
virtualization of multiple FPGAs.

41

Bibliography

1. P. Skrimponis, G. Zindros, I . Parnassos, M . Owaida, N . Bellas, P. Ienna.
Exploring Automatical ly Generated Platforms i n High Performance
FPGAs. Parallel Computing w i t h FPGAs (ParaFPGA). Edinburgh,
Scotland, September 1-4, 2015

2. K. V i p i n , S. Fahmy. D y R A C T : A Partial Reconfiguration Enabled
Accelerator and Test Platform. Field-programmable Logic and Appli¬
cations (FPL) . Munich, Germany, September 2 - 4, 2014

3. K. V i p i n , S. Shreejith, D. Gunasekera, S. A . Fahmy, N . Kapre. System-
Level F P G A Device Driver w i t h High-Level Synthesis Support. Inter¬
national Conference on Field Programmable Technology (FPT) , Kyoto,
Japan, December 9-11, 2013

4. K. Fleming, H. J. Yang, M . Adler, J. Emer. The L E A P F P G A Oper¬
ating System. 24th International Conference on Field Programmable
Logic and Applications (FPL) . Munich, Germany, September 2-4, 2014

5. H. J. Yang, K. Fleming, M . Adler, J. Emer. L E A P Shared Memories:
Automating the Construction of F P G A Coherent Memories. 22nd In¬
ternational Symposium on Field Programmable Custom Computing
Machines (FCCM). Boston, USA, May 11-13, 2014

6. Vivado Design Suite User Guide: High Level Synthesis. Online at
www.xi l inx.com

7. Altera OpenCL SDK Programming Guide. Online at www.altera.com

8. M . Jacobsen, R. Kastner. RIFFA 2.0: A reusable integration frame¬
work for F P G A accelerators. 23rd International Conference on Field
programmable Logic and Applications (FPL) . Porto, Portugal, Septem¬
ber 2-4, 2013.

42

http://www.xilinx.com
http://www.altera.com

9. A. Agne, M . Happe, A . Keller, E. Lubbers, B. Plattner, M . Platzner, C.
Plessl. ReconOS: A n Operating System Approach for Reconfigurable
Computing. Micro, IEEE (Volume:34 , Issue: 1)

10. C. Plessl, M . Platzner. Virtual izat ion of Hardware - Introduction and
Survey. European Regional Science Association(ERSA). Las Vegas,
Nevada, USA, 2004

43

