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Abstract

Timing Analysis is an integral part of any integrated circuit (IC)
chip design-closure flow, and is utilized at several stages of the
flow, including pre/post-route timing optimization and timing
signoff. Even though accurate timing analysis is important, at
the same time the run-time of the analysis is evenly crucial with
growing chip design sizes and complexity (for example, growing
number of clocks domains, voltage islands etc.). Furthermore,
the rising importance of variability in the chip manufacturing
process along with environmental variability, demands the use of
variation aware techniques for chip timing analysis which
significantly affects the analysis run-time.

In this diploma thesis project, we study the process variation
parameters that impact the process of timing analysis, then we
categorize and review some previous approaches in variation
aware timing analysis. Next in line, we present the models and
the implementation stages of a tool we developed for timing
analysis under process variations. The innovative element of our
approach is the extensive use of a BFS-like algorithm during the
stage of arc-delay-information propagation as well as the use of
DF'S algorithm through the interconnect delay calculation phase,
in order to minimize the iterations that were necessary so as to
discover all the paths included in the specific net. Finally, we
evaluate the results of our approach, by estimating the yield on
certain nodes of the benchmark netlists, utilizing their PDF and
CDF. Another evaluation metric we used to verify the validity of
our implementation, was the examination for slack constraints
violations by applying a worst-case slack estimation based on the
slack information we gathered.

Keywords: Timing Analysis; Variability; Process Variations;
Timing Graph; Yield Estimation; Slack Violation.
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8ebopevou Tou ouvexwg auSavopevou peyeboug Katl TG IMOAUTIAOKOTNTAG
TOV  APXITEKIOVIK®OV TOV OAOKANPOHEVEOV KUKAoOpAtov. EmrmAéov, 1
auv§avopevn onpacia g petaPAntotnrag ot Sadikaocia napaywyrg
OAOKANPOPEVEOV KURKAQUATOV 0€ ouviuaopd pe tnv  petaBAntotnta
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AapBdavouv unoyn t S1akUPAVOn TV TAPAPETIP®V, 1 oroia ermnpedadet
ONPAVTIKA TO XPOVO €KTEAEONG TG AVAAUOTS.

I OUyKeRPPEVH] SUMA®PATIKY epyaocia, peAetovpe TG MAPAPETPOUS Ol
oroieg ernpeddouv 1o 0tad10 NG AVAAUONS XPOVIOHOU, KATYOP10ITO10UNE
Katl ot ouvexela eGetaloupe pepika rnapadeiypata npotepwv epyaciov oto
OUYKEKPIPNEVO aviikeiplevo €peuvag. Xin ouvexela, rapouotdfoupe ta
povieda Kat ta otadia g UAoIoinong Tou €PYAAEiOU ITOU UAOTIOU|CA}IE.
To mp®toTUIIO OTOXEI0 TNG TIPOOEYYIONG NAG €ival 1 €KTIEVIIS XPT1|O1 TOU
aAyopibpou tng Bewpiag ypapwv Avalrinong katd ITAdatog (BFS) kata to
otabo g petadoong g MmAnpogopiag ywa v kKabuotEpnon 1wV
OTOXEIWV TOU KUKAQPATog, KAaBwg ertiong KAt 1 Xprjon tou aAyopiBpou
Ava{niinong kata BdaBog (DFS) oto otddio tou umoloyliopou tev
KaBuotepnoenv KaAwdinwong tou rKukAopatog. Telog, adiodoyoupe ta
arnotedeopata g emniboong Tou  gpyadeiou  1ou  Ulorooape
ermkevipwvoviag oto yield mou mapouotd{ouv ouykerpipEvol KOpot rmou
eSetdoape ano ta netlists, epappoloviag oug MAnpogopieg kabuotepnong
nmou AdPfape xkata 1tV avaluocr] pag T oUvaptnorn ITUKVOTNTAG
rmBavotntag Kabwg Kat tv abpolotiky] ouvaptnon KATAVOUT|G.
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1. Introduction

Timing analysis, within Flectronic Design Automation (EDA),
refers to the process of determining timing information as signal
transitions propagate throughout a digital circuit, commonly
described by a netlist of circuit elements. Every signal transition
that arrives at the input of a circuit element will be available at
its outputs some time later. Thus, each element introduces a
delay on signal transition propagation. Moreover, we assume
that signal transitions are defined by a slew. Circuit elements
alter the signal transitions at their inputs by modifying their
slew when shown at the outputs. A graphical representation of
the terms delay and slew are displayed in Figure 1.

Figure 1: Circuit and circuit element characterization

Arrival times (at), represent the earliest or the latest moment in
time that a signal transition is about to reach a specific node in
the circuit, travelling from a circuit input. The meaning of the
arrival time depends on whether we consider the early or the
late mode. In early mode, we are interested in the earliest
moment that a signal transition can reach any given circuit
node. Vice versa, in late mode we are interested in the latest
moment that a signal transition can reach any given circuit
node. As a result, arrival times are determined by adding edge
delays throughout a specific path and computing the min or max
(depending on the mode of operation we choose - early or late)

of such delays when they converge at a certain circuit node. For

. . earl earl .
instance, assuming at, Y and aty Y to symbolize the early

arrival times at pins A and B respectively of the circuit element
illustrated in Figure 1, then the early arrival time at the output

pin Y is calculated as follows:

17



at;’a”y = min(atja”y + d,y, atgaﬂy + dBY) (1) .

On the other hand, the late arrival time at the output pin Y will
be:

aty**® = max(atf?® + dyy, at + dgy)  (2) .

Required arrival times (rat), are limits applied on the arrival
times in specified nodes of the circuit. These kind of limits are
usually imposed in order to secure appropriate circuit operation.
Again assuming either early or late mode, when a rat is defined
for a specific circuit node, the following restrictions must be
valid:

atearly > T.atearly (3)

atlate S Tatlate (4)

Slacks (slack) are the disparity between arrival times and
required arrival times, and estimate how well the constraints of

rat are met.

Slackearly — atearly _ ratearly (5)

slacklate = rqtearly — gtlate (6)

Slacks are positive in the event the required arrival time
constraints are met and negative in other case.

Slew (s,) propagation is also vital for timing analysis, as cell and
interconnect delays are a function of the input slew. We will
assume worst-slew propagation, which means that we propagate
either the smallest or the largest slew, when we examine either
early or late mode.

early __ . early early early early
Soy = = Min (So ar \Sia = ) Sopy \Sip (7)

late _ lat late lat late
Soy = max (SoaAie/(SiA ): SoaBg'( SiB )) (8)

We should point out that slew propagates regardless of delay
propagation: we can propagate, for instance the delay from input
A and slew from input B (Figure 1).

From the early 1990s, Static Timing Analysis (STA) has been

widely adopted as a common tool in the process of very-large-
scale-integration (VLSI) design. Static timing analysis is not only
the universal timing tool but also lies at the core of numerous
timing optimization tools. The main advantage of STA over
vector-based timing simulation is the fact that it does not rely

18



on input vectors, which can be difficult to construct and can
easily miss an obscure path in the circuit. The extensive use of
STA can be associated with various factors:

¢ The basic STA algorithm is linear time with circuit size,
allowing analysis of designs in excess of 10 million
instances;

¢ The basic STA is conservative in the sense that it will
overestimate the delay of long paths in the circuit and
underestimate the delay of short paths accordingly. This

provides a “safe” analysis, guaranteeing that the design will
function at least as fast as predicted and will not suffer
from hold-time violations; and

e The STA algorithms have matured over time, addressing
crucial timing issues such as interconnect analysis and
accurate delay modelling.

Conventional STA tools are deterministic (STA is often called

DSTA - deterministic static timing analysis) and compute the
circuit delay for a specific process condition. Hence, all
parameters that affect the delay of a circuit, such as device gate
length and oxide thickness, as well as operating voltage and
temperature, are presumed to be fixed and they are uniformly
applied throughout the devices in the design.

In DSTA, process variation is modeled by running the analysis
multiple times, each at a different process condition. Therefore,
by analyzing an adequate number of process conditions the delay
of the circuit under process variation can be confined.

The fundamental weakness of STA is that while shifts in the
process (referred to as die-to-die variations) can Dbe
approximated by creating multiple corner files, there is no
statistically strict method for modeling variations across a die
(referred to as within-die variations). Despite that, with process
scaling progressing well into the nanometer status quo, process
variations have become significantly more distinct and within-die
variations became a non-negligible component of the total
variation. As a result, the clear inability of STA to model

within-die variation may result either in an over - or
underestimate of the circuit delay, relying solely on the circuit

topology. Consequently, STA’'s desirable quality of being
conservative might no longer hold for specific circuit topologies
while, at the same time, STA may be overly pessimistic for

others. For that reason, STA’s accuracy in advanced processes is
a major concern.

In addition to the increasing importance of within-die process
variations, the total number of process parameters that exhibit
significant variation has also increased [1]. Hence, even the
modeling of only die-to-die variations in STA now requires an
unsustainable number of corner files, which could lead to
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increase the effective runtime of STA by one order of magnitude
or more.

1.1. Problem Description and Challenges

Problem Description

Traditional STA methods extract a timing graph from a circuit,
as shown in Fligure 2. The nodes of the graph represent primary
inputs/outputs of the circuit as well as input/output pins of the

circuit’s gates. Its edges represent timing elements of the circuit
such as the gate input-pin-output-pin delay and wire delay from
one node to the ones adjacent in the timing graph. Device
parameters, like metal thickness and gate length must be treated
as random variables (RVs) as a result of process variation. Thus,
the delay of each edge, since it is a function of these parameters,
turns out to be an RV too. This induction grants the
transformation of the traditional STA timing graph into a
statistical timing graph which is described as follows:

Definition: A timing graph G ={N,E} is a directed acyclic graph
(DAG), where N is a set of nodes and E is a set of edges. The

weight associated with an edge reciprocates to either the gate or
the interconnect delay. The timing graph is said to be a

statistical timing graph if the i — th edge weight d; is an RV.

Primary |

Inputs )
Primary

Outputs

Figure 2: Example circuit (a) and its timing graph (b)
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The arrival times at the source nodes of the timing graph
(primary inputs of the circuit), typically have a deterministic
zero value. In STA, the fundamental goal of the analysis is to
locate the critical path (path with the maximum delay between a
primary input node and a primary output node in the graph).

When modelling process-induced delay variations, the sample
space is set of all manufactured dies, in which case the device
parameters will have different values across the specific sample
space and as a result the critical path (and its delay) will vary
from one die to another. Consequently, the delay of the circuit is
also an RV, and the primary task of Statistical Static Timing
Analysis is to estimate the characteristics of this RV. This is
achieved by computing its probability-distribution function
(PDF) or cumulative-distribution function (CDF) (Figure 3). At
this point, we should remind that the CDF and the PDF can be
derived from each other through differentiation and integration
[2].

Definition: Let a path p; be a set of ordered edges from the
primary input nodes to the primary output nodes in G, and let D;
be the path-length distribution of p;, computed as the sum of the
weights d for all edges k on the path. Finding the distribution of
Dingx = max(Dy, Dy, ... ,D;, Dy_paens) among all paths (indexed from 1 to

n paths) in the graph G is referred to as the statistical static
timing analysis (SSTA) problem of a given circuit.

reld /“ performance  pipgpye Fiy) = [} fir)en
constraint
; -

il
0 ] dp=ifithdt .

Figure 3: PDF and CDF

Similar again to traditional STA, the SSTA problem can be
formulated as the procedure of finding the latest arrival-time

distribution at any of the primary output nodes in G. The latest
at distribution at the primary output nodes can be calculated by

propagating the at from the primary input nodes through the
timing edges of the graph, while at the same time we compute
the latest arrival time at every node in topological order. As a
result of this process, the latest arrival-time distribution at any
of the primary output nodes symbolizes the circuit-delay
distribution.
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Despite the problem of finding the delay of the circuit, which we
have suggested as the primary SSTA problem, statistical
approach in timing analysis is also an answer to the problem of
improving the delay in the event that timing requirements are
not met.

Conventional STA approaches usually report the slack at each
node in the graph, besides the circuit delay and critical paths.
As a reminder to what we already mentioned during the
introduction, the slack associated with each node, is the
difference between the latest a signal can arrive at the specific
node, such that the timing constraints of the circuit are satisfied.
Hence, correspondingly to the circuit delay, the slack of a node
is formulated as an RV in SSTA methodology.

Challenges in SSTA

While SSTA has proven to be quite useful in the task of
handling properly and effectively process variation parameters in
comparison to traditional STA, the statistical formulation of
timing analysis introduced various novel modeling and
algorithmic issues that make SSTA a complex as well as durable
topic for research. In this subsection, we present some of these
issues along with some related terminology.

1) Topological Correlation

Paths that start with one or more shared edges after which
paths separate and join at a later node are called reconvergent
paths. The node at which these paths reconverge is called the

reconvergent node. For example, in Figure 2, the two paths P;
and P, share the same first edge and reconverge at the output of
gate g;. In a case like that, the arrival times at the reconvergent

node become dependent on each other because of the common’s
edge delay. This specific dependence leads to so-called
topological correlation between the arrival times and complicates
the maximum operation at the reconvergent node. The challenge
here for SSTA methods is to capture and propagate this
correlation in order to be properly accounted for during the

computation of the max function.
2) Spatial Correlation

Within-die variation of the physical device parameters usually
exposes spatial correlation, triggering correlation between the
gate delays. Therefore, if the gates that involve two paths have
spatially correlated device parameters they will consequently
have correlated path delays. Thus, correlation is possible to be
introduced amongst paths that do not share timing edges. For

instance, again in Figure 3, the paths P, and P; do not share any

common delay edges, nevertheless if gates g; and g, are within
close proximity on the die, their spatially correlated delays can
arise correlation between the two path delays. Hence, spatial
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correlation (as topological) of the arrival times must be captured
and propagated during SSTA so that it is correctly calculated for

the max function.

While topological correlation impacts solely the maximum
operation, spatial correlation influences both the sum operation

as well as the maximum operation. This brings up two
fundamental issues for SSTA approaches:

¢ How to form gate delays and arrival times so that
spatial correlation of the underlying device parameters
can be formulated

e Granted a model of the spatial correlation, how to
propagate and keep the correlation information at the

same time that performing the sum and maximum
operations.

3) Non-Normal Process Parameters & Nonlinear Delay
Models

Normal or Gaussian are undoubtedly the most broadly observed
distributions for random variables and numerous elegant
analytical results are presented in the statistics literature. As a
consequence, most of the primary works published in the field of
SSTA adopted normal distributions to model physical device
parameters, electrical device parameters, gate delays as well as
arrival times. Nevertheless, some physical device parameters
may present significantly non-normal distributions.

Even if the parameters are indeed normally distributed, the
dependence between the electrical device parameters and the
gate delay on these physical parameters may as well be non-
linear, causing non-normal gate delays to rise. Original work in
modeling spatial correlations in [3] — [5], presented a delay model
that assumed a linear dependence of the gate delay on physical
device parameters. In case the variations are insignificant, this
linear approximation is proven right, as the error introduced by
overlooking higher order terms is negligible. Nevertheless, with
reduction of geometries, process variation is becoming more
notable and the linear approximation may not be precise for
some parameters.

Both non-normal delay and arrival time distributions set forth
vital challenges for efficient SSTA. While this may be considered
as a novel area of research, several members of SSTA research
community have suggested approaches to address this issue [6],
[7] and [8]. At this point, we should note that besides the
difficulty of modeling, the non-normality of an individual RV,
the dependence between two non-normal RVs is no longer
expressed through a sole correlation factor. This complicates
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even more the proper handling of both topological and spatial
correlations.

4) Skewness as a result of Maximum Operation

Even supposing that gate delays are normal, SSTA has to deal

with the fact that maximum operation is an inherently nonlinear
function. The maximum of two normal arrival times will result
in a non-normal arrival time that is typically positively skewed.
Moreover, the non-normal arrival time distribution generated at

one node is the input to the maximum computation at

downstream nodes. Hence, we need a maximum operation that is
able to operate even in non-normal arrival times.

In probability theory, skewness is a measure of the asymmetry of
the probability distribution of a real-valued RV about its mean.
The skewness value can be positive, negative, zero or even
undefined. For further insight, the reader is encouraged to go
through [9].

The majority of existing works overlook the skewness introduced

by the maximum operation and calculate the arrival times with
normal distributions. The fault in this approximation grows
larger in case the input arrival times have comparable means
and dissimilar variances [10]. Namely, the error is more distinct
when two converging paths have formally balanced path delays,
but one of them has a tighter delay distribution in comparison to
the other. This is possible to happen in a circuit when two paths
with equal nominal delay consist of a different number of gates,
or when the correlation among their gates varies. Another
example, is when one path is dominated by interconnect delay
while the other is dominated by gate delay.

To conclude, it is safe to say that the aforementioned problems
shape four basic challenges in SSTA, which have received
massive attention in the literature. Despite that, numerous other
crucial challenges to reach the development of a mature SSTA
tool remain standing.

1.2. Previous Work

To provide an insight of previous attempts in the field of SSTA,
we demonstrate a few examples both from earlier approaches as
well as some state-of-the-art research works. As it is pointed out
in [1], there have been noted original works related to SSTA that
date back to the 1960s [11], the period of introduction of timing
analysis itself, but also later, in the early 1990s, [12] — [14].

In [14], the authors proposed a method for performing statistical
timing analysis which involves structural Boolean properties of a
combinational circuit. The approach suggested the use of a PDF
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and encoded the delay as well as the logic behavior of the circuit
into a Boolean expression that was afterwards simplified using a
binary decision diagram (BDD) representation. Despite the fact
that the results of this technique were only shown in small
circuits, a remarkable observation was related to the
computation of the signal probability (i.e., the probability that
the signal is at logic 1) at the output of a gate.

The approach in [12] suggested a symbolic simulation procedure
for statistical timing analysis. A particularly notable contribution
that has since been used in other work is the idea of using
interval analysis to generate trimming strategies in order to
remove paths that can never be (or exhibit a very low possibility
of being) critical. Unlike [14], this method demonstrated results
on large benchmark circuits, although under interval-based delay
models.

Since these premature efforts were published, SSTA approaches
have evolved and from early 2000s the community of SSTA
researchers has grown immensely. Most of the research work
related to SSTA date from the last decade, with well over a
hundred papers published in this research field from 2001 to
2008. This becomes more obvious when the numbers are
invoked: the vast majority of research work on SSTA date from
the last decade, with well over a hundred papers published since

2001 [1]. Some representative examples of state—of-the-art
approaches that solve the SSTA problem include [3] — [5] and
[15] — [20]. The methods used in these works can be classified
according to the categorization that is provided in Chapter 2.
Authors in [16], [17] and [20] suggest techniques to bound the
delay distributions rather than calculate the exact distributions
using path-based and block-based methods. In [18] an

approximation approach is proposed, which is based on a generic
path analysis rather than evaluating every path statistically.
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1.3. Outline

In this thesis project, we provide a general idea about SSTA and
exhibit some representative works from various approaches.

Furthermore, we unfold its role in today’s design flow process,
and consequently we focus more on Variation Aware Timing
Analysis by giving a description of our own approach to SSTA
and the challenges we coped with.

In Chapter 3, we give an explanation of the models used in the
context of the development of our tool, as well as a rough image
of the representation.

In Chapter 4, we break down the stages of the implementation
and give a brief description of the procedures taking place
during each step.

Finally, in Chapter 5, we present the experimental results
coupled with a short evaluation and also some statistical metrics
that we based our conclusion on. Moreover, we try to conceive
the progress that might take place in the field of SSTA and the
directions that the research community might head towards.
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2. Timing Analysis
2.1. STA in Design Flow

As we mentioned numerous times throughout the introductive
chapter, STA is the predecessor of any SSTA research effort.
Modern approaches that involve statistical methods are simply
attempting to ameliorate the precision of timing analysis through
the design flow stages that it is required.

Timing analysis in general, and STA more specifically, plays a

crucial part in modern design-closure flow. In addition to
determining the longest and shortest timing propagation paths,
STA (and as a result SSTA) can be used to compute arrival
times, required arrival times and slacks at all the points of the
circuit. Hence, every design stage (Figure 4), from floorplaning,
logical synthesis to placement and routing, employs timing
analysis in order to assess circuit performance, and afterwards
modify the design accordingly.

Design Flow

Floorplaning

Timing Analysis

Placement & Routing

Figure 4: Timing analysis in the design flow

Most modern—day companies specialized in EDA, develop
engines, such as Prime Time of Synopsys™ [21] and Encounter
Timing System of Cadence™ [22]. These timing engines are
utilized throughout the synthesis/place—and-route flow.

With that being said, it becomes crystal clear that an efficient

timing analysis method is the key to a successful design process.
Widely used STA approaches, provide limited accuracy as a
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result of the use of simplified delay models. The lack of attention
regarding the function of the circuit, establishes STA as an error
prone approach. For instance, the inclusion of false paths (paths
that are not logically existing in the circuit) jeopardize the
optimization process which follows the timing analysis, as it
might illogically focus on false paths and neglect the real critical
path. Another known issue with traditional STA methods, is
their conservative nature, which naturally leads to over-design
and thus to an increase in the product cost. Taking into
consideration all the facts that we mentioned above, the
improvement of the accuracy of the timing analysis stage was
accomplished by turning to SSTA methods. Despite that, it is
now the research community’s responsibility not to let the
efficiency deteriorate for the sake of accuracy.

2.2. Variation Aware Timing Analysis

In accordance to the aforementioned, with the technology of
semiconductors shrinking under 65 nanometers, the need for an
efficient modeling of process variations throughout a VLSI chip
manufacturing process, has led to extensive research in Variation
Aware Timing Analysis. Manufacturing sources of variability
include device front-end variability (e.g. variations in channel
length, oxide thickness etc.) and back-end-of-line variability
(such as metal variability). Moreover, environmental sources of
variation like voltage and temperature strongly impact circuit
timing. Variability may be classified into different categories like
intra-chip variability and inter-chip variability. Each of these
can be further sub-classified as systematic and random
variability (Figure 7). In general, sources of variation that
impact circuit timing are termed parameters. An easy way to
understand previous work done in the field of statistical timing
analysis is to try to classify roughly the techniques proposed so
far in recent works:

I. Numerical Integration Methods

The most straightforward SSTA approach results immediately
from the problem definition we provided in the previous section.
Basically, a numerical integration over the process parameter
space is applied to estimate the yield of the circuit for a specific
delay. Usually, we express the delay of a set of critical paths as a
linear function of the physical device parameters. As a result, an
attainable region in parameter space is specified from the desired
delay of the circuit. Later, this region we specified is numerically
integrated, examining any possible permutations of physical
device parameter values located in the specified region. Efficient
numerical-integration methods were proposed in [23]. The key
advantage of this approach is that it is entirely generic and as a

28



result process variation with any type of distribution and
correlation can be represented. Nevertheless, there is a
possibility that this type of approaches can be quite costly in
run-time and especially for more balanced circuits that consist of
multiple critical paths.

II1. Monte Carlo Methods

The second general approach, which is also the one used on this
study, performs a statistical sampling of the sample space using
Monte Carlo simulation. The basic idea is to determine the
regions with significant probability and to sample adequately
these regions. By using the PDF of each physical device
parameter, it is possible to extract a sufficient number of
samples. Utilizing traditional STA methods makes it possible to
calculate the circuit delay by employing the PDF of the physical
device parameters. From there on, an estimation of timing yield
is acquired, by evaluating a portion of samples that meet the
timing constraint. If an acceptable number of samples is drawn,
then the prediction error is small. After that, it is feasible to
determine the delay distribution for the entire circuit by
sweeping the timing constraint and determining the yield for
each value. Moreover, it has been observed that the performance
of Monte Carlo techniques can be improved using methods like
importance sampling [24], [25].

Similarly to numerical integration methods, the Monte Carlo
approach holds the advantage of being totally generic. Moreover,
while based on existing STA traditional methods, Monte Carlo
methods perform notably better than the numerical integration-
based approaches. At the same time, it has been noted that
Monte Carlo methods handle expertly the complexities of
variations.

III. Probabilistic Analysis Methods

Both aforementioned approaches are based on sample-space
enumeration, while probabilistic methods specifically model both
gate delay and arrival times with random variables. These
approaches, usually propagate arrival times through the timing
graph, by performing statistical sum and max/min operations. It is
viable to categorize this type of approaches in two wide-ranging
groups:

1) Path-based approaches: In path based algorithms, a group of
circuit paths most likely to eventually be critical is
determined and a statistical analysis is carried out over this
set of paths to approximate the circuit delay distribution.
Initially, we determine the delay distribution of each path by

summing the delay of the path’s edges. If assumed normal

gate delays, the path-delay distribution can be analytically
calculated, as presented in [19], [26] and [27]. Finally, a
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2)

statistical maximum operation is performed over all the path
delays in order to find the overall circuit delay distribution.

The basic advantage of this approach is the fact that the
analysis is distinctly divided into two parts — the computation

of path delays coupled with the statistical max operation over
these path delays. Thus, it is clear why many of the initial
research attempts in SSTA were focused on path-based
approaches [13], [19], [20], [26], [28] and [29]. However, the
obvious obstruction with this approach is how to precisely
determine the subset of candidate paths in a way that no path
that displays a notable probability of being critical will be
omitted. Moreover, when it comes to balanced circuits, the
number of candidate paths under consideration can be very
high. Hence, based on what we mentioned above, it is clear
why most of the later research works have focused on block-
based approach.

Block-based approaches: Block-based methods tend to follow
more strictly the deterministic STA algorithm and traverse
the circuit graph in a topological way. Arrival times at each
node is then calculated based on two fundamental operations:

i. For all fan-in edges of a specific node, the edge delay is
added to the arrival-time at the source node of the edge
using the sum operation, and

ii. given the resulting arrival times, the concluding arrival

time at the node is computed using the maximum
operation.

Thus, block—-based methods propagate exactly two arrival
times (a rise and a fall arrival time) at each circuit node,
resulting in a runtime that is linear with the circuit size. The
computation of the sum function is usually a straightforward
process. Yet, determining the statistical maximum of two
associated arrival times is not insignificant.

As a result of its runtime advantage, many modern research
and commercial works have chosen the block-based over other
approaches.

2.3. Sources of Variation and Sensitivity

In this section we explore the main sources of variation through
the process of timing prediction that makes timing analysis a
demanding task when it comes to nanoscale digital circuits. We
will refer firstly to the different types of uncertainties that rise
as a design goes from specification to implementation and final
field operation. Nevertheless, we will focus on process variations
and specifically on the distinction between die-to-die and within-
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die variations. Lastly, we will address the impact that different
types of process variations have on the timing quantities of a
circuit.

Design Die Application
Implementation Manufacturing Use

Modeling and Process Environmental
Analysis uncertainty uncertainty uncertainty

Figure 5: Steps of the design procedure and the resulting timing uncertainties

The unpredictability in the timing estimation of a design lies
into three main categories:

I. modeling and analysis errors - inaccuracy in device models
in extraction and reduction of interconnect parasitics as
well as in timing analysis algorithms,

II. manufacturing variations - uncertainty in the parameters of
fabricated devices and interconnects from die-to-die and
within-die, and

III. operating-related variations - uncertainty in the operating
environment of a particular device during its lifetime
(temperature, supply voltage, mode of operation etc.).

All these three steps that produce potentially timing
uncertainties, are illustrated in Figure 5. Since each of the three
variabilities represents orthogonal sample spaces, it is an uphill
situation to perform a unified analysis. Environmental
uncertainty and uncertainty due to modeling and analysis error
are usually modeled utilizing worst-case margins, while
uncertainty in process is commonly handled statistically. Thus,
most variation aware timing analysis works, this thesis project
included, focus only on modeling process variations.
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Figure 6: Parameter variations domino effect

The semiconductor manufacturing process has become more
complicated while simultaneously process control precision is
striving to stay relatively accurate with continued process
scaling. This leads to many steps throughout the manufacturing
process to become prone to variations. The main physical
parameters affected are the gate length, the interconnect
thickness and height, as illustrated in Figure 6 and extendedly
explained in [1].

Variations in these physical parameters result in variations in
electrical device characteristics, like threshold voltage, resistance
and capacitance of interconnects. Ultimately, the variations in
electrical characteristics of circuit elements affect the delay
variations of the timing characteristics of the circuit.

It is notable to mention that more than one electrical parameter
may have a dependence on a specific physical parameter. For
instance, both resistance and capacitance of an interconnect
network are influenced by variation in wire width. In Figure 7, a
general taxonomy of process variations is provided in order to
classify them and give a notion of the spatial scale over which
each one operates.

For the sake of simplicity, in our research work we take into

consideration the following global inter-chip sources of variability
and assume that each timing quantity may be sensitive to them:

o environmental: voltage (V), temperature (T)

o front end of line process: channel length (L), device width
(W), voltage threshold (H)

o back end of line: metal (M)
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Figure 7: Taxonomy of process variations

For homogeneity, we suggest only a single parameter M for all
metal layers. These parameters indicate systematic chip-to-chip
(or inter-chip) sources of variation. To provide an example,
variations in parameter temperature suggest that the chips
would be dependent to different environmental temperature
conditions. This parametric variation does not imply intra-chip
systematic temperature differences. For the sake of simplicity,
we ignore systematic intra-chip variations in all parameters.

Besides the global inter-chip parameters we mentioned above,
each one of the timing quantities might enclose an independent
random source of variability (R) that symbolizes both random

inter-chip as well as random intra-chip variation. Any timing
quantity may therefore be expressed in the following notation:

u+ a,AV + a, AT + ;AL + a,,AW + ayAH + a,,AM + a, AR (9),

where u signifies the nominal value of the quantity (in other
words, its value in the absence of variability).

Each parameter may diverge from —3 to +3 sigmas. Parameter
sensitivities are expressed as time units per sigma values (e.g.
@, =5 picoseconds per sigma), and are captured either as
asserted values, or via finite differencing. In the former case, the
sensitivity of a timing quantity to a parameter is attainable
directly as an input (e.g. voltage sensitivity for cells are available
as warranted values in the cell library). Finite differencing in

context of any parameter X suggests that the value of the timing
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quantity Q is feasible (or can be computed) for at least two
sigma corners of X.

Assuming that two sigma corners of X as +3 and —3 sigma, the

finite differenced sensitivity ay is computed as:

oy = Q| x=+30~ Q|X=-30
X 3-(-3)

(10).

For the purposes of this thesis project, we assume all parameters
(except metal (M) to be finite differenced (if required) between
+3 and —3 sigma values. The metal parameter should be finite
differenced between +3 and 0 sigma values, as it benefits faster
analysis (as we will exhibit in the following chapter). All timing

quantities mentioned in this section are assumed to be a function
of variational parameters.
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3. Models and Representation

For the purposes of this thesis project, we assume that for each
benchmark circuit we have two files available: a netlist file and a
library file', which are presented in Appendix A.1. The former,

includes circuit information, topology and other circuit-related
data, that will be modeled in accordance to what will be
explained in the following sections. The netlist, consists of a set
of interconnected elements, particularly cell instances as well as
interconnecting circuitry. The latter, on the other hand, contains
timing information in relation to the cell elements as well as
variability information.

3.1. Interconnect

The primary ingredient of interconnection is a net, which
assumingly has an input pin, called port and one or many output
pins, called taps (Figure 8). For each net, the netlist of its
parasitic RC tree is given in the netlist file. Parasitic RC trees
only include grounded capacitors and resistors located between
nodes in the tree (there are no coupling capacitors or grounded
resistors).

Figure &8: Interconnection representation

The calculation of the delays from port to each potential tap is
performed using a very straightforward delay model, the Elmore
delay model [1], according to which the delay is estimated by the
value of the first moment of the impulse response. For RC tree

networks, we utilize the method described in [31], as summarized
below.

1 The files are formatted according to the TAU Variation Aware Timing
Analysis Contest (2013) [32] standards.
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Consider any two given nodes e and k, where the lumped
capacitance in node k is C;. The resistance Rj, is the resistance of
the common sub-path between the paths from the port to k and
e respectively. Furthermore, R,, is the resistance between the
port and node e. For the example net tree demonstrated in
Figure 8 (right), we have R5; = R4, since the common sub-path
between nodes 1 and 5 includes solely resistor R,. The Elmore
delay, for a given node e, is given by the sum:

de — Zk RkeCk (11)

where the summation extends over all nodes in the network. We
can easily calculate this value by properly traversing the netlist
of the parasitic RC tree. Once more, considering the example
given in Figure 8, we have:

d5 - RA(Cl + C3 + C4) + (RA + RB)CZ + (RA + RB + RE)CS (12)

This value calculated above, provides the nominal or mean wire
delay between the port and the tap. For variation aware
parametric delay computation, we perform finite differencing to
compute the sensitivity of delay to the metal parameter M.

Provided corner specific metal resistance mg scalar values (from
the cell library) are used to acquire the updated resistance and
capacitance values of the interconnect network when the metal

parameter is set to a given corner (4AM = o). Each interconnect
resistance and capacitance is scaled by the provided scalar and
another deterministic delay computation is performed to

compute the delay when AM is at the ¢ corner.

For the example we examined above, considering that the tap
capacitance (s comes partly from the cell pin capacitance C,;
connected to node 5, the remaining capacitance (Cs — (,5) is part
of the interconnect network. Adopting similar notation for tap

capacitance C,, the delay at this corner can be calculated as
follows:

d5|AM=O' - ngA(mg[Cl + C3 + C4 - CPA-] + Cp,4)
+ (mg[R4 + Rg])MZC,
+ (m&[Ra + Ry + R]) (Cps +mE(Cs — Cps))  (13)

We perform the above calculation using the provided sigma
corner of the metal parameter (usually +3 sigma). We then

compute the sensitivity parameter AM utilizing finite differencing
method between this corner and the nominal corner:
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p _ AsjaM=o—dsjaM=0 __ Ads|aM=c—ds

a = = 14
m,5 o—0 o ( )

Hence, the parametric delay model of the interconnection
between the port and the tap node 5 includes two deterministic
delay calculations and finally approximates to a linear model as
demonstrated below:

ds + ap, sAM .

As a result, wire delays will not involve any sensitivity to other
parameters (including random variation).

The nominal value of output slew on any given tap node o, can
be approximated by a two-step procedure, which is illustrated
below. First we calculate the nominal output slew of the impulse

response on o, which can be approximated by the following
formula, as noted in [30], [35]:

80 = 2o — df (15)

Where (5, is the second moment of the impulse response at node
o and d, is the equivalent Elmore delay computed from (11) for
node o. The value of 5, is computed by replacing all capacitance
values C; by C,d;, where d; is the Elmore delay computed from

(11). In Figure 9, the modified parasitic RC tree is demonstrated
for the example of Figure 8.

Figure 9: Modified RC tree for computing the second moment of impulse response

We followed the same procedure in order to calculate fS,:

pe = 2k RkeCrdy (16)
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Consequently, for the parasitic RC tree illustrated in figure 3 we
get:

Bs = R4(Cydy + C3ds + Cydy) + (R4 + Rp)Cod, + (R4 + Rp + Rp)Csds (17)

Since we already computed 5,, we go on to calculate the mean

slew of the response to the input ramp, s,, for which a wvalid
approximation is reached by the expression:

S, = /si2+§§ (18),

where s; is the nominal or mean input slew.

Parametric output slew calculation comprises a bit of
complicated finite differencing. Considering metal variability, §,
is a function of parameter AM only since both [, and d, are
dependent on metal scalars. For a specific metal sigma corner o:

A - 2
So|AM=a ~ \/2.80|AM=0 - do|AM=o- (19),

where d, y-, is the Elmore delay value of the tap at node o at

the specified metal corner, and B, u-, can be calculated by
scaling the interconnect resistance and capacitance values similar
values similar to the way we described earlier as in (13). The
sensitivity to the metal parameter may now be computed via
finite differencing the value of §;, between the two sigma corners

for AM:

.§0 _ §0|AM=0'_§0|AM=O _ §o|AM=0'_§o
a,, = = (20).
o—0 o

We assume that to compute [, at the metal corner o an
additional computation is required to calculate the parametric

output slew S, to an impulse response. Hence, we conclude to:

S, =5, + af,fAM (21).
3.2. Combinational Cells

Now we presume that cell delay, D, and output slew, S,, can be
approximated for a given combinational cell input/output pin
pair by the following equations:

D = a(1+ kyyAV + kg AL + kg AW + kg, AH + kg, AR) + bC, + ¢S; (22)
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So = x(1 + ks, AV + kg (AT + kg AL + kg, AW + kg y AH + ks, AR) + yCp + 2S;  (23),

where a, b, ¢, x, y, z and each k; term are cell-dependent

constants; (; and S; are the parametric output load and
parametric input slew, respectively. The constants for each cell
are provided in the cell library file, for both rise and fall

transition. It should be noted that the k; terms are a
representation of the sensitivity to front end parameters as a

fraction of a or x.

As demonstrated in Figure 10, C;, refers to the downstream
capacitance seen from the output of the cell. Quite a few

complicated models have been suggested in order to compute C;.

Figure 10: Combinational cell illustration

For the sake of simplicity, we adopted a rather straightforward
model for that purpose. Thus, (;, is assumed to be the

summation of all the capacitances in the R(C parasitic tree,
including cell pin capacitances at the taps of the interconnection:

C,L =2k Cr (29).

For the example presented in Figure 8, we have:
CLlAM=0 = Cl + CZ + Cg + C4_ + C5 (25).

Due to the fact that the interconnect capacitances are depending

on AM, consequently C; is also a function of AM. In the above
example we have:

Cojam=o = ME[C1 + Co 4+ C3+ (Co — Cpa) + (C5s — Cps)| + Cpa + Cps  (26),

where (,, and C(,s symbolize the cell pin capacitance
contributions in the tap capacitances C, and (5 respectively, and

m¢ denotes the interconnect capacitance scalar value acquired
from the cell library and it represents the impact of the metal

variation at corner o. Cell input pin capacitances are provided
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also in the cell library file, as fixed values for each pin and each
transition state (rise or fall).

Finally, we compute the effective load’s sensitivity to AM using
finite differencing:

CriamMm=6—CL|aM=0 CriamMm=6—CL|aM=0
Ly = I = (27).

We can then express the effective load C; in a linear parametric
form as follows:

Criam=0 + lmAM  (28),

and afterwards replace it into delay and slew models in
equations (22), (23).

3.3. Flip-Flops

Sequential circuits are composed of combinational logic blocks
interrupted by registers, most commonly implemented with flip-
flops. Normally, they consist of several stages, where a register
attains data from the outputs of a combinational block and
infuses it into the inputs of the combinational block that follows
as the next stage of combinational logic. Register operation is
adjusted by clock signals generated by one or multiple clock
sources. Clock signals that reach different flip-flops (represented
by sinks in the clock tree), are delayed from the clock source by

a known clock latency that will be symbolized as .

Figure 11: Flip-flop description

A flip-flop (and especially a D flip-flop) is a storage element that
captivates a given logic value at its input data pin D, when a

given clock edge is identified at its clock pin CK, and thus
propagates the captured value and its complement at the output
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pins Q and Q. The flip-flop is also capable to enable asynchronous
preset (set) and clear (reset) of the output pins, utilizing the S
and R input pins.

Conventional operation of flip-flop demands the logic value of

the input data pin to be stable for a specific period of time
before the capturing clock edge. This specific period of time is
denoted as setup time and will be represented by tgy, -
Moreover, the logic value of the input data pin must be

simultaneously available and stable for a specified period of time
after the capturing clock edge. The specific period of time is

denoted as hold time and we designate it as t;,,;. We should
point out that both setup and hold times are two of the usual
performance figures provided in cell specification libraries for
storage elements such as flip-flops. Other conventional figures

include delay from clock to output, d¢x_/dck-5 and asynchronous

preset and clear delays, d,.cer and dgeqr. A visualization of the

standard performance metrics we just mentioned is provided in
Figure 11.

Observe now that setup as well as hold time are modeled as
functions of the input slews at both the clock pin, CK, and the
input pin, D, respectively:

tsetup =9 + A S+ S (29)

thold=m+nSiCK+pSiD (30)

Notice that in the above equations the input slews are
parametric and, as a result, so are the setup and hold times.

Figure 12: Signal propagation between two flip-flops
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Let us consider now the standard case of signal propagation
between two flip-flops as it is presented in Fligure 12. Taking for
granted that the clock edge is generated in the clock source at

time 0, then it will reach the injecting flip-flop at time [;,
enabling the data at the input of the combinational block dgk_,q
time later. If the propagation delay in the combinational block is
deomp s then the data will be available at the input of the
capturing flip-flop at time [; + dck_,g + deomp - Presuming that the
clock period is a deterministic constant T, the next clock edge

will reach the capturing flip-flop at time T + [,. To achieve proper
operational conditions, the data must be available at the input of

the flip-flop ts.,, earlier than the next clock edge. Consequently,
at the data input pin, D:

atp® = U + degoq + degimy  (31)

— late __ lat
Tatseryp = ratp° =T + 15" — toerup  (32)

An analogous condition can be extracted from the necessity to
ensure that the hold time is respected. Thus, the data input of

the capturing flip-flop must remain stable for at least t;,,; after
the clock edge reaches the corresponding CK pin. Hence, at the
data input pin, D, we have:

early early

__ jearly
_ early _ jearly
ratpeg = raty, ~ =1, 7 +thoa  (34)

We should note that the arrival and required arrival times
included in the equations above, can be computed from
equations (5) and (6) in Chapter 1.
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4. Stages of Implementation

In this chapter, we give a clear image of the technique we
proposed for this thesis project and of the stages involved in the
process. After providing a thorough description of the models
and the input files used we will proceed by breaking down each
stage of the procedure and explaining the diverging parts which
distinct our work from previous approaches already presented.
To begin with, we provide a flowchart in Figure 13 with the
path that was followed during the process.

Figure 13: Flowchart including the steps we followed during the approach proposed
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4.1. Netlist and Cell Library Parsing

Our first goal was to extract all the necessary data from the
input files and form it accordingly into the desirable data
representation. This primary objective was achieved through the
parsing of the netlist and the cell library files. For the netlist
file, we parsed all the available information, stored it
appropriately and formed the timing graph we described earlier,
by modeling primary inputs, primary outputs and cell pins as
nodes and nets and intra-cell circuitry as edges. A rough sketch
of the netlist parser is provided below:

BEGIN
('empty(netlist))
parse next line L
parse next token

(token)

"input":
insert in primary inputs hash table
initialize slew and at for current node

"output":
insert in primary inputs hash table

"instance":
('L.empty)
(output pin)
type = "outPin"
(internal node)
insert in internal nodes hash table

insert in primary outputs hash table
type = "inPin"
(internal node)

insert in internal nodes hash table

insert in primary inputs hash table
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END

"slew":
find node in primary inputs hash table
assign fall and rise slews to node

"at":
find node in primary inputs hash table
assign early/late fall, early/late rise arrival times to node

"clock":
find node in primary inputs hash table
assign clock period to node

"wire":
find node in primary inputs OR internal nodes hash tables
makeUpNet (node)
"Cap":
assign capacitance to node
"res":
determine starting and ending point of resistance
assign resistance value to starting node

n "

rat":
find node in primary outputs OR internal nodes hash tables
assign operation mode to node

(opMode == "late")
assing late fall/rise values to node

assing early fall/rise values to node

Algorithm 1: Netlist parser main function

As far as the cell library parser is concerned, besides the main
parsing function, which basically operates as the netlist parsing
function we illustrated thoroughly. We utilized some functions
which we describe hereinafter:

classifyCell: Classifies the parsed cell <key> into the cell
library dictionary and returns the correct position of the
dictionary that the cell structure should be stored.

readSlewDelay: Collects the fall /rise slew values and fall/rise
delay values.

readFallRiseConst: Correspondingly to the previous
function, parses the fall/rise constraints information
contained in the line we examine.
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e findCell: As its name states clearly, used to search through
the parsed cell-types and locate the cell with the
corresponding <key>.

4.2. Interconnect Delay Calculation

As aforementioned in Chapter 3, where we described the models,
the basic instance of interconnect wire is a net, which basically
consists of an input pin, namely port, and one or multiple output
pins, namely taps and we illustrate it appropriately in Figure 8.

INPUT: pin -> start of a net

OUTPUT: delay/slew info @ the taps -> end nodes of a net
BEGIN

MAIN STEPS:

-> Compute delay
-> Compute slew
-> Write delay/slew info to the corresponding nodes

Elmore Delay Calculation using DFS algorithm:

Apply DFS to reach the taps
Store path in FIFO
every FIFO(i)
(branch root)
SUM(capacitances of the other branches)

dequeue()

SUM(cap*TOTAL(res))
END

END

SUM is a controlled addition using a stack, in order to sum up the

correct resistances and capacitances (include only the on-path
resistances)

Algorithm 2: Main algorithm of interconnect delay calculation

The computation of port-to-tap delays can be accurately
performed through electrical simulation using a similar software
like Synopsys™ HSpice simulator. Nevertheless, as we mentioned
before we used a much simpler and adequately accurate model,
the Elmore delay model. To provide you with an insight of our
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approach, we demonstrate above the main steps of the algorithm
we implemented.

Besides the mathematical operations that are performed and are

modeled in equations (11) - (20), we employed the DFS
algorithm in order to reach the potential taps of a net wire and
avoid multiple traversals of the same net to discover all the
potential taps. As illustrated in Algorithm 3, we utilized a FiFo
stack structure in order to store temporarily the discovered
paths and then, recursively, proceed with the application of the
mathematical operations on each path.

4.3. Delay information propagation

During this stage, we describe the process of propagating the
delay information both forward (from primary inputs to the
primary outputs) propagating arrival times as well as backwards
(from primary outputs to the primary inputs) propagating
required arrival time throughout the circuit. The procedure is
based on the following steps:

Step 1: Assign delay information to all timing arcs,
while ignoring wire delays at the moment.

Step 2: Perform forward arrival time propagation.
Step 3: Perform backwards required arrival time
propagation.

All of the above steps are based on an algorithm created on top
of breadth-first-search (BFS) algorithm, which is a mainstream
strategy in graph theory for searching in a graph. The BFS
begins at a root node and inspects all of its adjacent nodes.
Thereafter, for each of these adjacent nodes, it inspects in turn
their neighbor nodes which are unvisited, and so on. The
characteristics of this method provide an obvious explanation for
the suitability on the task that we utilize a BFS-like algorithm.

Providing as input a graph ¢ and a root v of G, the following
algorithm implements the BFS algorithm:
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procedure BFS (G, vVv) is
create a queue Q
create a set V
enqueue v onto Q
add v to V
while QO is not empty loop
t « Q.dequeue()
if t is what we are looking for then
return t
end if
for all edges e in G.adjacentEdges(t) loop
u « G.adjacentVertex (t, e)
if u is not in V then
add u to V
enqueue u onto Q
end if
end loop
end loop
return none

end BF'S
Algorithm 3: Breadth-first search algorithm

48



4.4. Monte Carlo Simulations

Following the steps we described above, intervenes the statistical
aspect of our approach, through the Monte Carlo simulations.
After calculating and propagating all the delay information
throughout the timing graph we apply the Monte Carlo
simulations procedure in order to model the variation on the
deterministic values we estimated previously.

Monte Carlo implies the utilization of random numbers in
scientific computing. To be more specific, it implies the
utilization of random numbers to compute something that is not

random. For example, let X be a random variable and denote its
expected value as A =E[X]. Provided that we can generate

Xy, -, Xp 5 n independent random variables with the same
distribution, then we can make the approximation:

X

NgE

A~ A 1
~ A, =—
nk=1

The strong law of large numbers [33] states that A, > A as - o .

The X, and A, are random and (depending on the random
number generator that is utilized) could be different every time

we run the program. Nevertheless, the target number, A, is not
random.

We will emphasize at this point to the distinction between
Monte Carlo and simulation. Simulation implies producing
random variables with a certain distribution just to examine
them. The reason for this distinction is that there may be other

ways to define A that make it easier to estimate. This process, is

called variance reduction, since most of the error in A is

statistical. By reducing the variance of A we achieve also the
reduction of the statistical error.

We often have a choice between Monte Carlo and deterministic
methods. Although this sounds appealing, the general rule is
that deterministic are better than Monte Carlo in any situation
where the deterministic method is a viable option.

This leads to the conclusion that quite often, we are driven to

resort to Monte Carlo due to the “curse of dimensionality’. This
curse, insinuates that the work to solve a multi-dimensional
problem may grow exponentially with the dimension. Suppose,
for example, that we want to compute an integral over ten
variables, an integration in ten dimensional space. Supposing
that we attempt to approximate the integral using twenty points
in each coordinate direction, the total number of integration
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points would be 20° = 103, which is on the edge of what a
computer is able to calculate in a whole day. For the same
example, Monte Carlo could reach the same accuracy with

approximately, say, 10° points.

One beneficial feature of Monte Carlo is that it is possible to
estimate the order of magnitude of statistical error, which is the
dominant error in most Monte Carlo computations. Another
advantageous characteristic of Monte Carlo is that simple but
clever ideas can lead to immense practical improvements in
efficiency and accuracy. Hence, to rephrase what we stated

earlier, while A is given, the algorithm for estimating it is not.
Therefore, the quest for more accurate alternative algorithms is
often called “variance reduction’, with the most common
variance reduction technique being importance sampling [34].

4.5. Output Handling

For the sake of simplicity, we encourage the more thorough
reader to address the Appendix A.3. for more insight on the
output files format, as it is beyond the purposes of this work to
go to deep with technical details.
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5. Evaluation and Conclusion

5.1. Computational Infrastructure

The variation aware timing analysis tool of this thesis project
was developed and evaluated on a machine with the following
specifications:

e Intel® Core™ i7-3770 CPU @ 3.40GHz, 8MB cache

memory and integrated graphics processor Intel® HD
Graphics 4000

e 8GB of RAM

The installed software that was utilized:
¢ Kubuntu 14.04 LTS (Trusty Tahr), 64-bit
e Gcc 4.9.0 20140422
e Eclipse CDT (C/C++ Development Tooling) 8.4.0, 64-bit

5.2. Evaluation

In this section, we present the features of the tool we developed
in this master thesis project, by initially outlining the test cases
we utilized and afterwards provide some experimental results in
order to demonstrate the basic uses of our tool. As an important
remark, we should point out that in any variation-aware
approach, the runtime of the process is not the key metric and
this is the reason we neglect it during the evaluation.

We selected various benchmarks amongst the ISCAS
benchmarks, like the c499 and the s400. We picked specific
primary output nodes from the c499 benchmark, to perform
yield estimation (by calculating the at and slew at the specified
node) and random internal nodes from s400, s27 and other
suitable benchmarks to examine slack violations.

We set the yield percentage at 95%. The function that is
illustrated as the label for the y-axis in Figure 14, is the formula
for the normal distribution, parametrized in terms of the mean
and the variance:

1 _l x__”)Z

(x;u,0%) =——e 2o
AL oV 21
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Benchmark | Node | Op. Mode | Transition | Metric

c499 nod23 late fall at

Figure 14: Yield estimation for nod23 of c499 (at)

Figure 15: Yield estimation for nod23 of c499 using the CDF

In the same manner as illustrated above, we estimate yield in
another node of the c499 benchmark:
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Benchmark

Node

Op. Mode

Transition

Metric

c499

nod30

late

fall

at /slew

Figure 16: Yield estimation for nod30 of c499 (at)

Figure 17: Yield Estimation for nod30 of c499 using CDF
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For nod30, we will demonstrate that it is possible to also use
slew in order to estimate the yield:

Figure 18: Yield Estimation for nod30 of 499 (slew)

Figure 19: Yield Estimation for nod30 of c499 using CDF (slew)
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At this point we should note that we can easily estimate the
total yield from both at and slew metrics by selecting the
minimum yield as the total. Generally, for all the metrics we
could possible take into consideration for yield estimation we can
say that:

Totaly;eq = min(of all metrics)

We now proceed to examine slack violations, or also known as
setup/hold time violations (as we described in Chapter 1),
depending on the operation mode, late or early respectively. We
examined some of the ISCAS that include filp-flops in order to
check the slacks, such as s400, s27 and others.

Benchmark | Node | Op. Mode | Transition | Metric

s400, s27 Various | early/late Fall /rise slack

It is accustomed for designers to set a “blind” guardband in order
to ensure that no setup or hold time violations will occur. This
may be the safest path, nevertheless it is not always optimal, as
it may be quite pessimistic.

After evaluating the slack information we obtained at many
different nodes of various benchmarks, for both early and late
operational mode, we came to the conclusion that there is no

need for us to set a “blind” guardband as the worst-case
hypothesis we used in the evaluation:

is a realistic hypothesis. We came to this conclusion after
converging to the same probability, resulting from the CDF
application on our hypothesis for every particular node (namely
99,9% or more precisely 99,87%) using the slack information we
acquired through the examination of every benchmark netlist.

5.3. Future Work

Deterministic STA has developed enormously over the last two
decades and handles several technology-scaling-related issues,
like resistive and inductive shielding, crosstalk noise, clock skew
and many more. However most researchers have, up to now,
concentrated on the basic statistical timing analysis operations,
the sum and max/min operations required for propagating the
delay information through the timing graph.

As far as our own research plan is to innovate and expand the
current approach. Our primary goal will not differ from the
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current trend, which as we mentioned is to improve the accuracy
and execution runtime of our tool. This will be pursued by
parallelizing the most demanding operations, which are, as

described earlier, the sum and the min/max operations that take
place during the delay information propagation both forward and
backwards through the timing graph. This can be achieved by
implementing our algorithm using state-of-the-art parallel
programming techniques such as CUDA and hence utilizing
GPU cores for these fundamental operations.

Another goal that will be pursued and that potentially would
widen the horizons for our work, is the adaptation of our
approach with the view to process industrial standard cell
libraries. An expansion like this would mean eventually that we
will be able to statistically approximate even better to real
conditions by completing the following two individual tasks:

I. Build empirical models for performance functions based on
the insight gained from data analysis of cell performance
functions for several standard industrial cell libraries. This
will help to determine the optimal polynomial order for
each variation parameter to find the general form of a
compact performance function.

II. Formally classify transition waveforms based on the
statistical analysis of switching transitions for several
standard industrial cell libraries. The anticipated results
can be used to speed up vastly our timing analysis engine
considering real waveform shapes based on lookup tables.
This research aspect could potentially change the way
timing analysis is performed by enabling simulation at a
higher level of abstraction, with the accuracy of circuit-
level simulation. The main applications could be statistical
performance simulation as well as variation-aware
placement and routing.

In general, we could say that the fundamental challenge that
SSTA research community has to face, is to prove itself worthy
of the trust of both the designers as well as of the EDA-tools
major companies. In other words, it is the duty of the research
community to bring variation aware timing analysis to maturity.

5.4. Conclusion

Statistical timing analysis has gained extensive interest in recent
years. Various research findings have been published and at the
same time commercial efforts are underway. Nevertheless, the
obstructions to widespread adoption of statistical approaches in
industry remain challenging. The main issue is that even the
current state-of-the-art variation-aware timing analysis methods
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still do not address many of the issues that are taken for granted
in traditional deterministic static timing analysis.

In this diploma thesis project, we focused on the process
variations that impact the procedure of timing analysis, we
classified and then review some previous approaches in variation
aware timing analysis. Later, we described the models and the
implementation stages of the tool we developed for timing
analysis under process variations. The novel element of our
method is the extensive use of a BFS-based algorithm during the
stage of arc-delay-information propagation as well as the use of
DF'S algorithm through the interconnect delay calculation phase,
in order to minimize the iterations that were necessary so as to
discover all the paths included in the specific net. Finally, we
evaluated the results of our approach, by estimating the yield on
certain nodes of the benchmark netlists. Another evaluation
metric we used to verify the validity of our implementation, was
the examination of slack constraints violations by applying a
worst-case slack estimation based on the slack information we
gathered. We came to the conclusion thanks to the experimental

results, that our approach to determine the worst case at mean +

3 * sigma was a successful choice by estimating nearly the optimal
worst case.

57



References

[1]

[3]

[4]

[5]

[6]

[7]

(8]

[9]

[10]

[11]

David Blaauw, Kaviraj Chopra, Ashish Srivastava and Lou
Scheffer, “Statistical Timing Analysis: From Basic

Principles to State of the Art”, IEFEFE Transactions on

Computer-Aided Design of Integrated Circuits and
Systems, pp. 589-607, April 2008.

S. Bernd, "Cumulative Distribution Functions”, College of
Engineering and Science, Louisiana Tech. University,

http://www2.latech.edu/“schroder /slides/stat /cdf.pdf.

C. Visweswariah, K. Ravindran, K. Kalafala, S. Walker
and S. Narayan, ”“First-Order incremental block-based
statistical timing analysis”, DAC, 2004.

A. Agarwal, D. Blaauw and V. Zolotov, ”Statistical timing
analysis for intra-die process variations with spacial

correlations”, ICCAD, 2003.

H. Chang, S. Sapatnekar, "Statistical timing analysis considering
spatial correlations using a single PERT-like traversal’, ICCAD,
2003.

H. Chang, V. Zolotov, S. Narayan and C. Visweswariah,
"Parametererized block-based statistical timing analysis with
non-Gaussian parameters, nonlinear delay functions”, DAC,
2005.

Y. Zhan, A. Strojwas, X. Li, T. Pileggi, D. Newmark and M.
Sharma, ”"Correlation-aware statistical timing analysis with non-
Gaussian delay distributions”, DAC, 2005.

V. Khandelwal and A. Srivastava, "A general framework for

accurate statistical timing analysis considering correlations”,
DAC, 2005.

Lai, N. Balakrishnan and Chin-Diew, “Continuous Bivariate

Distributions”, Springer, 2009.

C. Clark, "The greatest of a finite set of random variables”, J.
Oper. Res., vol. 9, no. 2, pp. 145-162, March/April 1961.

T. Kirkpatrick and N. Clark, "PERT as an aid to logic design”,
IBM J. Res. Develop., vol. 10, no. 2, pp. 135-141, March 1966.

58


http://www2.latech.edu/~schroder/slides/stat/cdf.pdf

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[24]

[25]

[26]

H. Jyu, S. Malik, S. Devdas and K. Keutzer, “Statistical timing

analysis of combinational logic circuits”, IEEFE Trans. Very Large
Scale Integr. (VLSI) Syst., vol. 1, no. 2, pp. 126-137, June 1993.

R. Brashear, N. Menezes, C. Oh, L. Pillage and M. Mercer,

"Predicting circuit performance using circuit-level statistical
timing analysis”, DATE, 1994.

Y. Deguchi, N. Ishiura, and S. Yajima, ”“Probabilistic ctss:
Analysis of timing error probability in asynchronous logic

circuits”, ACM/IEEFE Design Automation Conference, 1991.

J. A. G. Jess et al., ”"Statistical timing for parametric yield
prediction of digital integrated circuits”, DAC, 2003.

M. Orshansky and A. Bandyopadhyay, "Fast statistical timing
analysis handling arbitrary delay correlations”, DAC, 2004.

A. Agarwal, V. Zolotov and D. Blaauw, ”Statistical timing

analysis using bounds and selective enumeration”, IEEFE Trans.
on CAD, vol. 22, no. 9, pp. 1243-1260, September 2003.

F. N. Najm and N. Menezes, ”“Statistical timing analysis based
on a timing yield model”, DAC, 2004.

A. Gattiker, S. Nassif, R. Dinakar and C. Long, "Timing yield
estimation from static timing analysis”, ISQED, 2001

M. Orshansky and K. Keutzer, “A general probabilistic
framework for worst case timing analysis”, DAC, 2002.
Synopsys, Synopsys PrimeTime™,

http://www.synopsys.com/Tools/Implementation/SignOff/Pages
/PrimeTime.aspx.

Cadence, Cadence Encounter Timing System™,

http://www.cadence.com /products/di/edi’system /pages/default.
aspx .

L. Scheffer, "The count of Monte Carlo”, TAU Int. Workshop
Timing, 2004.

R. Kanj, R. Joshi and S. Nassif, “Mixture importance sampling
and its application to the analysis of SRAM designs in the

presence of rare failure events”’, DAC, 2006.

A. Agarwal, et al., “Statistical delay computation considering
spatial correlations”, ASP-DAC, 2003.

59


http://www.synopsys.com/Tools/Implementation/SignOff/Pages/PrimeTime.aspx
http://www.synopsys.com/Tools/Implementation/SignOff/Pages/PrimeTime.aspx
http://www.cadence.com/products/di/edi_system/pages/default.aspx
http://www.cadence.com/products/di/edi_system/pages/default.aspx

[27]

[28]

[29]

[30]

[31]

[32]

[33]

[34]

[35]

C. Amin, ”Statistical static timing analysis: How simple can we
get?”, DAC, 2005.

R. Lin, M. Wu, "A new statistical approach to timing analysis of
VLSI circuits”, Int. Conf. VLSI Design, 1998.

B. Choi and D. Walker, ”"Timing analysis of combinational
circuits including capacitive coupling and statistical process

variation”, Symp. VLSI Test, 2000.

W. C. Elmore, “The transient response of damped linear

networks with particular regard to wideband amplifiers”, 11
April 1947.

P. Penfield Jr. and J. Rubinstein, ”"Signal delay in RC tree

netwroks”’, Design Automation Conference, 1981.

D. Sinha et al., “"TAU 2013 Variation Aware Timing Analysis
Contest”, 2013.

Snell, Charles M. Grinstead and J. Laurie, ”“Introduction to

Probability”, American Mathematical Society (AMS), 2006.

Peter W. Glynn and Donald L. Iglehart, "Importance Sampling

for Stochastic Simulations”, Management Science, Vol. 35, No.
11, pp. 1367-1392, November 1989.

R. Gupta, B. Tutuianu and L. T. Pileggi, "The Elmore Delay as

a Bound for RC Trees with Generalized Input Signals”, IEEFE

Transactions on Computer-Aided Design for Integrated Clircuits
and Systems, Vol. 16, No. 1, pp. 95-104, January1997.

60



Appendix

A.l. Input Files Formats

Netlist File

In this appendix, we introduce to the reader some more practical
issues concerning the tool developed for this diploma thesis
project. As an introduction to this process, we provide you an

insight to the input files’ structure.
Firstly, we will break down the netlist file, which as we

mentioned before, encloses the description of the circuit
topology:

input <node>
output <node>
instance <cell name> <pin name>:<node> ... <pin name>:<node>
wire <post node> <tap node> ... <tap node>
res <node> <node> <resistance>

cap <node> <capacitance>

slew <node> <slew fall> <slew rise>

clock <node><period>

at <node> <at fall early> <at fall late> <at rise early> <at rise late>
rat <node> <mode of operation> <rat fall> <rat rise>

The keywords included in this netlist type files are the following:

input, primary input node;

e output, primary output node;
e instance, cell instance;

e wire, interconnect net;

e res, cap, resistor and capacitor of a parasitic RC tree
(possible to appear in any order);

e slew, input slew at the primary inputs;

e clock, clock input constraint (only used for primary input
nodes);

e at, arrival time constraint (only used for primary input
nodes);

61



rat, required arrival time constraint.

The corresponding variable fields denoted in the above generic
netlist file are presented below:

<node>, <port node> and <tap node> are node names, of
up to 64 characters, which can contain alphanumeric
characters, the underscore or the dash (the first character
must be a letter);

<cell name> is the name of the library cell (exactly as it
will appear in the cell library file), of up to 32
alphanumeric characters (the first character must be a
letter);

<pin name> is the name of a pin of the cell (exactly as it
will appear in the cell library file), of up to 32
alphanumeric characters;

<resistance> is the value of the resistance in Ohm,
represented in scientific notation;

<capacitance> is the value of the capacitance in Farad,
represented in scientific notation;

<slew fall> and <slew rise> are the fall and rise of the
corresponding primary input, in seconds, represented in
scientific notation. Early and late slews at the inputs are
assumed to be identical;

<period> 1is the clock period in seconds, denoted in
scientific notation;

<at fall early>, <at fall late>, <at rise early> and
<at rise late> are real numbers, represented in scientific
notation, which represent arrival time constraints for
fall /rise transitions in early/late mode, at the primary
inputs (in seconds);

<mode of operation> is the mode of operation and can be
either early or late;

<rat fall> and <rat rise> are real numbers, represented
in scientific notation, which represent required arrival time
constraints for fall/rise transitions and early/late mode in
seconds.

It should be noted that if no input slew is defined for any

primary input, we assumed le—12, for both fall and rise
transitions. The designs described in any netlist of this form, will
have only one clock input pin (one clock domain) at most.
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Cell Library File

Alongside the netlist file we present the format of the cell library
file, which includes the timing information of any cell used and is
formatted as described as follows:

metal <sigma corner> <resistance scale factor> <capacitance scale factor>

cell <cell name>

pin <pin name> input <fall capacitance> <rise capacitance»
pin <pin name> output
pin <pin name> clock <fall capacitance> <rise capacitance>

timing <input pin name> <output pin name> <timing sense> \
<fall slew> <rise slew> <fall delay> <rise delay>

setup <clock pin name> <input pin name> <edge type> \

<fall constraint> <rise constraint>
hold <clock pin name> <input pin name> <edge type> \

<fall constraint> <rise constraint>
preset <input pin name> <output pin name> <edge type> <slew> <delay>
clear <input pin name> <output pin name> <edge type> <slew> <delay>

In accordance to the presentation we provided for the netlist file,
we describe below the keywords and the variable fields utilized
in the cell library files. Firstly, the keywords:

metal, metal parameters scalars at specific sigma corners;
cell, start of cell definition;

pin, start of pin definition;

input, output and clock, pin type;

timing, delay;

setup, setup time;

hold, hold time;

preset, preset time (output node is set to high);

clear, clear time (output node is set to low).

Similarly to the netlist file presentation, we exemplify the
variables presented in the above generic cell library file:

<sigma corner> is the sigma corner value (o) of metal

parameter AM for which resistance and capacitance scale
factors are provided;

63



<resistance scale factor> is the value (m%) by which the
nominal interconnect resistance provided in the netlist
should be scaled at the given metal sigma corner;

<capacitance scale factor> is the value (mg) by which
the nominal interconnect capacitance provided in the
netlist should be scaled at the given metal sigma corner;

<cell name> is the name of the cell, of up to 32 characters
in length, which can contain solely alphanumeric
characters;

<pin name> is the name of a pin of the cell, of up to 32
characters in length, which can contain exclusively
alphanumeric characters, also;

<fall capacitance> and <rise capacitance> are values of

the pin’s input capacitances in Farad, for rise/fall
transitions, represented in scientific notation;

<input pin name>, <output pin name> and <clock pin
name> are the names of the input, output and clock pins
respectively, of a given delay or constraint specification, of
up to 32 characters in length, which is allowed to contain
(once more) only alphanumeric characters;

<timing sense>, can be any of:

o positive_unate, transition direction is preserved
from input to output (rise — rise, fall — fall);

o negative_unate, transition direction is reversed from
input to output (rise — fall, fall — rise);

o non_unate, transition direction cannot be presumed
from a single input (take the worst, among rise/fall);

<slew>, <fall slew>, <rise slew>, are each given by 9 real
numbers separated by white spaces, which match the

parameters x, V, z, kg, kgty Ks1y Kswy ksp, and kg, of equation
calculating S, (fall/rise refers to the transition direction in
the output pin);

<delay>, <fall delay> and <rise delay>, are each given
by 9 real numbers separated by white spaces, which
correspond to the parameters a, b, ¢, kg, kg¢y kars Kgws Kans

and kg, of equation computing D;
<edge type>, can be one of:

o falling, constraint that applies to the falling clock
edge;

o rising, constraint applying to the rising clock edge;
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e <fall constraint> and <rise constraint> are each given
by three real numbers separated by white spaces, which
correspond accordingly to the parameters g, h and j of
equation for the tsy,, or m, n and p of the equation for the

thoia s depending whether we are dealing with setup
constraints or hold constraints, respectively;

We should note that both preset and clear values are
represented for entirety and are ignored for the timing analysis
approach we propose.
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A.2. Example Input Files

The netlist file which includes the circuit topology is formatted
as follows:

input in_1
input in_2
input in_3
input in_ 4
output out
instance AND2X1 A:in_1 B:in_2 Y:w

instance XOR2X1 A:u B:in_4 Y:v
instance NOR2X1 A:k B:h Y:out
wire w k

res w r 0.355

cap r 1.23423e-13

res r k ©.78384

cap h 0.8e-14
wire v h

res v h 9.5

cap h 1.37e-13
wire in_3 u
res in_3 h 0.75

cap u 1.44e-13
at in_1 000 0
at in.2 00 0 0
at in.3 00 0 0
at in_4 0 0 0 0

rat k late 1le-13 2e-13

In the next figure (Figure 14), we illustrate the example circuit
that is described in the above netlist.

Figure 20: Example circuit
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And the cell library file:

metal ©0 1.0 1.0
metal 3 0.85 1.24
cell AND2X1
pin A input 5.14e-16 5.34e-16
pin B input 5.35e-16 5.7e-16
pin Y output
timing A Y positive_unate 4.78193e-12 4807.29 0.000196751 -0.00602524
0.00585616 0.00021047 -0.0000985957 0.000195775 0.00019961 6.88656e-12
11138.6 0.0000843378 -0.012127 0.037587 0.000227912 -0.0000493878
0.0000838057 0.00019257 6.25087e-11 6032.36 0.00247343 -0.0026644
0.00159043 0.0000694437 -0.00371931 0.0000911961 0.000157218 5.56981le-11
11789 -0.000183877 -0.003468 0.00371931 0.0000911961 -0.00012835
0.00023857 0.00022949
timing B Y positive_unate 5.98666e-12 4868.63 0.000112529 -0.0055235
0.00511724 0.000158928 -0.000179324 0.0000354006 0.000151742 6.69766e-12
11142.7 ©0.0000819104 -1.23305 0.03842 0.0000047514 -0.0000607217
0.0000343079 0.00020144 7.51493e-11 6005.01 0.00261237 -0.00222054
0.00135711 0.0000391698 -0.000100236 0.0000324476 0.0000272022
5.93502e-11 11798.7 -0.000224446 -0.0039269 0.00354033 0.000249731
-0.0000545642 0.000128233 0.000209778
cell XOR2X1
pin A input 4.15e-16 4.35e-16
pin B input 4.34e-16 4.7e-16
pin Y output
timing A Y non_unate 5.78193e-12 5807.29 0.000196741 -0.00602425 0.00484616
0.00021057 -0.0000984947 0.000194774 0.00019961 6.88646e-12 11138.6
0.0000853378 -0.012127 0.0374874 0.000227912 -0.0000593878 0.0000838047
0.00019247 6.24087e-11 6032.36 0.00257353 -0.0026655 0.00149053
0.0000695537 -0.000138592 0.000119359 0.000147218 4.46981e-11 11789
-0.000183877 -0.003568 0.00371931 0.0000911961 -0.00012834 0.00023847
0.00022959
timing B Y non_unate 4.98666e-12 5868.63 0.000112429 -0.0044234 0.00411725
0.000148928 -0.000179325 0.0000345006 0.000141752 6.69766e-12 11152.7
0.0000819105 -0.0123304 0.03852 0.0000057415 -0.0000607217 0©.0000353079
0.00020155 7.41593e-11 6004.01 0.00261237 -0.00222045 0.00134711
0.0000391698 -0.000100236 0.0000325576 0.0000272022 4.93402e-11 11798.7
-0.000225556 -0.0039269 0.00345033 0.000259731 -0.0000454652 ©.000128233
0.000209778
cell NOR2X1
pin A input 5.13e-16 5.33e-16
pin B input 5.35e-16 5.7e-16
pin Y output
timing A Y negative_unate 3.78193e-12 3807.29 0.000196761 -0.00602623
0.00686616 0.00021037 -0.0000986967 0.000196776 0.00019961 6.88666e-12
11138.6 ©.0000833378 -0.012127 0.0376876 0.000227912 -0.0000393878
0.0000838067 0.00019267 6.26087e-11 6032.36 0.00237333 -0.0026633
0.00169033 0.0000693337 -0.000138392 0.000119339 0.000167218 6.66981e-11
11789 -0.000183877 -0.003368 0.00371931 0.0000911961 -0.00012836
0.00023867 0.00022939
timing B Y negative_unate 6.98666e-12 3868.63 0.000112629 -0.0066236
0.00611723 0.000168928 -0.000179323 0.0000363006 0.000161732 6.69766e-12
11132.7 ©0.0000819103 -0.012330 0.03832 0.0000037613 -0.0000607217
0.0000333079 0.00020133 7.61393e-11 6006.01 0.00261237 -0.00222063
0.00136711 0.0000391698 -0.000100236 0.0000323376 0.0000272022
6.93602e-11 11798.7 -0.000223336 -0.0039269 0.00363033 0.000239731
-0.0000636632 0.000128233 0.000209778
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A.3. Output File Format

at <node> <at early fall> <at early rise> <at late fall>
<at late rise> <slew early fall> <slew early rise>
<slew late fall> s<slew late rise>

slack <node> early <slack early fall> <slack early rise>
slack <node> late <slack late fall> <slack late rise>

All numerical results will be given in seconds and printed
scientific notation, with 5 decimal places (eg. 1.23456e — 10).
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