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Abstract 
Timing Analysis is an integral part of any integrated circuit (IC) 

chip design-closure flow, and is utilized at several stages of the 

flow, including pre/post-route timing optimization and timing 

signoff. Even though accurate timing analysis is important, at 

the same time the run-time of the analysis is evenly crucial with 

growing chip design sizes and complexity (for example, growing 

number of clocks domains, voltage islands etc.). Furthermore, 

the rising importance of variability in the chip manufacturing 

process along with environmental variability, demands the use of 

variation aware techniques for chip timing analysis which 

significantly affects the analysis run-time. 

In this diploma thesis project, we study the process variation 

parameters that impact the process of timing analysis, then we 

categorize and review some previous approaches in variation 

aware timing analysis. Next in line, we present the models and 

the implementation stages of a tool we developed for timing 

analysis under process variations. The innovative element of our 

approach is the extensive use of a BFS-like algorithm during the 

stage of arc-delay-information propagation as well as the use of 

DFS algorithm through the interconnect delay calculation phase, 

in order to minimize the iterations that were necessary so as to 

discover all the paths included in the specific net. Finally, we 

evaluate the results of our approach, by estimating the yield on 

certain nodes of the benchmark netlists, utilizing their PDF and 

CDF. Another evaluation metric we used to verify the validity of 

our implementation, was the examination for slack constraints 

violations by applying a worst-case slack estimation based on the 

slack information we gathered. 

 

 

Keywords: Timing Analysis; Variability; Process Variations; 

Timing Graph; Yield Estimation; Slack Violation.  
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Περίληψη 

Η Ανάλυση Χρονισμού αποτελεί αναπόσπαστο κομμάτι της διαδικασίας 

σχεδίασης οποιουδήποτε ολοκληρωμένου κυκλώματος και 

χρησιμοποιείται μάλιστα σε αρκετά από τα στάδια της σχεδίασης. Παρόλο 

που μια ακριβής ανάλυση χρονισμού είναι ζωτικής σημασίας, ταυτόχρονα 

ο χρόνος εκτέλεσης της ανάλυσης είναι εξίσου σημαντικό στοιχείο, 

δεδομένου του συνεχώς αυξανόμενου μεγέθους και της πολυπλοκότητας 

των αρχιτεκτονικών των ολοκληρωμένων κυκλωμάτων. Επιπλέον, η 

αυξανόμενη σημασία της μεταβλητότητας στη διαδικασία παραγωγής 

ολοκληρωμένων κυκλωμάτων σε συνδυασμό με την μεταβλητότητα 

περιβάλλοντος, απαιτούν τη χρήση τεχνικών ανάλυσης χρονισμού που θα 

λαμβάνουν υπόψη τη διακύμανση των παραμέτρων, η οποία επηρεάζει 

σημαντικά το χρόνο εκτέλεσης της ανάλυσης. 

Στη συγκεκριμένη διπλωματική εργασία, μελετούμε τις παραμέτρους οι 

οποίες επηρεάζουν το στάδιο της ανάλυσης χρονισμού, κατηγοριοποιούμε 

και στη συνέχεια εξετάζουμε μερικά παραδείγματα πρότερων εργασιών στο 

συγκεκριμένο αντικείμενο έρευνας. Στη συνέχεια, παρουσιάζουμε τα 

μοντέλα και τα στάδια της υλοποίησης του εργαλείου που υλοποιήσαμε. 

Το πρωτότυπο στοιχείο της προσέγγισής μας είναι η εκτενής χρήση του 

αλγορίθμου της θεωρίας γράφων Αναζήτησης κατά Πλάτος (BFS) κατά το 

στάδιο της μετάδοσης της πληροφορίας για την καθυστέρηση των 

στοιχείων του κυκλώματος, καθώς επίσης και η χρήση του αλγορίθμου 

Αναζήτησης κατά Βάθος (DFS) στο στάδιο του υπολογισμού των 

καθυστερήσεων καλωδίωσης του κυκλώματος. Τέλος, αξιολογούμε τα 

αποτελέσματα της επίδοσης του εργαλείου που υλοποιήσαμε 

επικεντρώνοντας στο yield που παρουσιάζουν συγκεκριμένοι κόμβοι που 

εξετάσαμε από τα netlists, εφαρμόζοντας στις πληροφορίες καθυστέρησης 

που λάβαμε κατά την ανάλυσή μας τη συνάρτηση πυκνότητας 

πιθανότητας καθώς και την αθροιστική συνάρτηση κατανομής. 
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1. Introduction 

Timing analysis, within Electronic Design Automation (EDA), 

refers to the process of determining timing information as signal 

transitions propagate throughout a digital circuit, commonly 

described by a netlist of circuit elements. Every signal transition 

that arrives at the input of a circuit element will be available at 

its outputs some time later. Thus, each element introduces a 

delay on signal transition propagation. Moreover, we assume 

that signal transitions are defined by a slew. Circuit elements 

alter the signal transitions at their inputs by modifying their 

slew when shown at the outputs. A graphical representation of 

the terms delay and slew are displayed in Figure 1. 

 

Figure 1: Circuit and circuit element characterization 

 

Arrival times (𝑎𝑡), represent the earliest or the latest moment in 

time that a signal transition is about to reach a specific node in 

the circuit, travelling from a circuit input. The meaning of the 

arrival time depends on whether we consider the early or the 

late mode. In early mode, we are interested in the earliest 

moment that a signal transition can reach any given circuit 

node. Vice versa, in late mode we are interested in the latest 

moment that a signal transition can reach any given circuit 

node. As a result, arrival times are determined by adding edge 

delays throughout a specific path and computing the 𝑚𝑖𝑛 or 𝑚𝑎𝑥 
(depending on the mode of operation we choose - early or late) 

of such delays when they converge at a certain circuit node. For 

instance, assuming 𝑎𝑡𝐴
𝑒𝑎𝑟𝑙𝑦

 and 𝑎𝑡𝐵
𝑒𝑎𝑟𝑙𝑦

 to symbolize the early 

arrival times at pins 𝐴 and 𝐵 respectively of the circuit element 

illustrated in Figure 1, then the early arrival time at the output 

pin 𝑌 is calculated as follows:  
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𝑎𝑡𝑌
𝑒𝑎𝑟𝑙𝑦

= min(𝑎𝑡𝐴
𝑒𝑎𝑟𝑙𝑦

+ 𝑑𝐴𝑌, 𝑎𝑡𝐵
𝑒𝑎𝑟𝑙𝑦

+ 𝑑𝐵𝑌)    (1) . 

On the other hand, the late arrival time at the output pin 𝑌 will 

be: 

𝑎𝑡𝑌
𝑙𝑎𝑡𝑒 = max(𝑎𝑡𝐴

𝑙𝑎𝑡𝑒 + 𝑑𝐴𝑌, 𝑎𝑡𝐵
𝑙𝑎𝑡𝑒 + 𝑑𝐵𝑌)    (2) . 

Required arrival times (𝑟𝑎𝑡), are limits applied on the arrival 

times in specified nodes of the circuit. These kind of limits are 

usually imposed in order to secure appropriate circuit operation. 

Again assuming either early or late mode, when a 𝑟𝑎𝑡 is defined 

for a specific circuit node, the following restrictions must be 

valid: 

𝑎𝑡𝑒𝑎𝑟𝑙𝑦 ≥ 𝑟𝑎𝑡𝑒𝑎𝑟𝑙𝑦
   (3) 

𝑎𝑡𝑙𝑎𝑡𝑒 ≤ 𝑟𝑎𝑡𝑙𝑎𝑡𝑒   (4) 

Slacks ( 𝑠𝑙𝑎𝑐𝑘 ) are the disparity between arrival times and 

required arrival times, and estimate how well the constraints of 

𝑟𝑎𝑡 are met. 

𝑠𝑙𝑎𝑐𝑘𝑒𝑎𝑟𝑙𝑦 = 𝑎𝑡𝑒𝑎𝑟𝑙𝑦 − 𝑟𝑎𝑡𝑒𝑎𝑟𝑙𝑦
   (5) 

𝑠𝑙𝑎𝑐𝑘𝑙𝑎𝑡𝑒 = 𝑟𝑎𝑡𝑒𝑎𝑟𝑙𝑦 − 𝑎𝑡𝑙𝑎𝑡𝑒
   (6) 

Slacks are positive in the event the required arrival time 

constraints are met and negative in other case. 

Slew (𝑠𝑜) propagation is also vital for timing analysis, as cell and 

interconnect delays are a function of the input slew. We will 

assume worst-slew propagation, which means that we propagate 

either the smallest or the largest slew, when we examine either 

early or late mode. 

𝑠𝑜 𝑌
𝑒𝑎𝑟𝑙𝑦

= min (𝑠𝑜 𝐴𝑌
𝑒𝑎𝑟𝑙𝑦

( 𝑠𝑖 𝐴
𝑒𝑎𝑟𝑙𝑦

 ),  𝑠𝑜 𝐵𝑌
𝑒𝑎𝑟𝑙𝑦

( 𝑠𝑖 𝐵
𝑒𝑎𝑟𝑙𝑦

 ))   (7) 

𝑠𝑜 𝑌
𝑙𝑎𝑡𝑒 = 𝑚𝑎𝑥 (𝑠𝑜 𝐴𝑌

𝑙𝑎𝑡𝑒( 𝑠𝑖 𝐴
𝑙𝑎𝑡𝑒 ),  𝑠𝑜 𝐵𝑌

𝑙𝑎𝑡𝑒 ( 𝑠𝑖 𝐵
𝑙𝑎𝑡𝑒 ))   (8) 

We should point out that slew propagates regardless of delay 

propagation: we can propagate, for instance the delay from input 

A and slew from input B (Figure 1). 

From the early 1990s, Static Timing Analysis (STA) has been 

widely adopted as a common tool in the process of very-large-
scale-integration (VLSI) design. Static timing analysis is not only 

the universal timing tool but also lies at the core of numerous 

timing optimization tools. The main advantage of STA over 

vector-based timing simulation is the fact that it does not rely 
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on input vectors, which can be difficult to construct and can 

easily miss an obscure path in the circuit. The extensive use of 

STA can be associated with various factors: 

 The basic STA algorithm is linear time with circuit size, 

allowing analysis of designs in excess of 10 million 

instances; 

 The basic STA is conservative in the sense that it will 

overestimate the delay of long paths in the circuit and 

underestimate the delay of short paths accordingly. This 

provides a “safe” analysis, guaranteeing that the design will 

function at least as fast as predicted and will not suffer 

from hold-time violations; and 

 The STA algorithms have matured over time, addressing 

crucial timing issues such as interconnect analysis and 

accurate delay modelling. 

Conventional STA tools are deterministic (STA is often called 

DSTA – deterministic static timing analysis) and compute the 

circuit delay for a specific process condition. Hence, all 

parameters that affect the delay of a circuit, such as device gate 

length and oxide thickness, as well as operating voltage and 

temperature, are presumed to be fixed and they are uniformly 

applied throughout the devices in the design. 

In DSTA, process variation is modeled by running the analysis 

multiple times, each at a different process condition. Therefore, 

by analyzing an adequate number of process conditions the delay 

of the circuit under process variation can be confined. 

The fundamental weakness of STA is that while shifts in the 

process (referred to as die-to-die variations) can be 

approximated by creating multiple corner files, there is no 

statistically strict method for modeling variations across a die 

(referred to as within-die variations). Despite that, with process 

scaling progressing well into the nanometer status quo, process 

variations have become significantly more distinct and within-die 

variations became a non-negligible component of the total 

variation. As a result, the clear inability of STA to model 

within-die variation may result either in an over – or 

underestimate of the circuit delay, relying solely on the circuit 

topology. Consequently, STA’s desirable quality of being 

conservative might no longer hold for specific circuit topologies 

while, at the same time, STA may be overly pessimistic for 

others. For that reason, STA’s accuracy in advanced processes is 

a major concern. 

In addition to the increasing importance of within-die process 

variations, the total number of process parameters that exhibit 

significant variation has also increased [1]. Hence, even the 

modeling of only die-to-die variations in STA now requires an 

unsustainable number of corner files, which could lead to 
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increase the effective runtime of STA by one order of magnitude 

or more. 

1.1. Problem Description and Challenges 

Problem Description 

Traditional STA methods extract a timing graph from a circuit, 

as shown in Figure 2. The nodes of the graph represent primary 

inputs/outputs of the circuit as well as input/output pins of the 

circuit’s gates. Its edges represent timing elements of the circuit 

such as the gate input-pin-output-pin delay and wire delay from 

one node to the ones adjacent in the timing graph. Device 

parameters, like metal thickness and gate length must be treated 

as random variables (RVs) as a result of process variation. Thus, 

the delay of each edge, since it is a function of these parameters, 

turns out to be an RV too. This induction grants the 

transformation of the traditional STA timing graph into a 

statistical timing graph which is described as follows: 

Definition: A timing graph 𝐺 = {𝑁, 𝐸} is a directed acyclic graph 

(DAG), where 𝑁 is a set of nodes and 𝐸 is a set of edges. The 

weight associated with an edge reciprocates to either the gate or 

the interconnect delay. The timing graph is said to be a 

statistical timing graph if the 𝑖 − 𝑡ℎ edge weight 𝑑𝑖 is an RV. 

 

Figure 2: Example circuit (a) and its timing graph (b) 
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The arrival times at the source nodes of the timing graph 

(primary inputs of the circuit), typically have a deterministic 

zero value. In STA, the fundamental goal of the analysis is to 

locate the critical path (path with the maximum delay between a 

primary input node and a primary output node in the graph). 

When modelling process-induced delay variations, the sample 

space is set of all manufactured dies, in which case the device 

parameters will have different values across the specific sample 

space and as a result the critical path (and its delay) will vary 

from one die to another. Consequently, the delay of the circuit is 

also an RV, and the primary task of Statistical Static Timing 
Analysis is to estimate the characteristics of this RV. This is 

achieved by computing its probability-distribution function 

(PDF) or cumulative-distribution function (CDF) (Figure 3). At 

this point, we should remind that the CDF and the PDF can be 

derived from each other through differentiation and integration 

[2]. 

Definition: Let a path 𝑝𝑖  be a set of ordered edges from the 

primary input nodes to the primary output nodes in 𝐺, and let 𝐷𝑖 

be the path-length distribution of 𝑝𝑖, computed as the 𝑠𝑢𝑚 of the 

weights 𝑑 for all edges 𝑘 on the path. Finding the distribution of 

𝐷𝑚𝑎𝑥 = max (𝐷1, 𝐷2, … , 𝐷𝑖 , 𝐷𝑛−𝑝𝑎𝑡ℎ𝑠) among all paths (indexed from 1 to 

𝑛 paths) in the graph 𝐺  is referred to as the statistical static 
timing analysis (SSTA) problem of a given circuit. 

 

Figure 3: PDF and CDF 

 

Similar again to traditional STA, the SSTA problem can be 

formulated as the procedure of finding the latest arrival-time 

distribution at any of the primary output nodes in 𝐺. The latest 

𝑎𝑡 distribution at the primary output nodes can be calculated by 

propagating the 𝑎𝑡 from the primary input nodes through the 

timing edges of the graph, while at the same time we compute 

the latest arrival time at every node in topological order. As a 

result of this process, the latest arrival-time distribution at any 

of the primary output nodes symbolizes the circuit-delay 

distribution. 
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Despite the problem of finding the delay of the circuit, which we 

have suggested as the primary SSTA problem, statistical 

approach in timing analysis is also an answer to the problem of 

improving the delay in the event that timing requirements are 

not met. 

Conventional STA approaches usually report the slack at each 

node in the graph, besides the circuit delay and critical paths. 

As a reminder to what we already mentioned during the 

introduction, the slack associated with each node, is the 

difference between the latest a signal can arrive at the specific 

node, such that the timing constraints of the circuit are satisfied. 

Hence, correspondingly to the circuit delay, the slack of a node 

is formulated as an RV in SSTA methodology. 

Challenges in SSTA 

While SSTA has proven to be quite useful in the task of 

handling properly and effectively process variation parameters in 

comparison to traditional STA, the statistical formulation of 

timing analysis introduced various novel modeling and 

algorithmic issues that make SSTA a complex as well as durable 

topic for research. In this subsection, we present some of these 

issues along with some related terminology. 

1) Topological Correlation 

Paths that start with one or more shared edges after which 

paths separate and join at a later node are called reconvergent 
paths. The node at which these paths reconverge is called the 

reconvergent node. For example, in Figure 2, the two paths 𝑃1 

and 𝑃2 share the same first edge and reconverge at the output of 

gate 𝑔3. In a case like that, the arrival times at the reconvergent 

node become dependent on each other because of the common’s 

edge delay. This specific dependence leads to so-called 

topological correlation between the arrival times and complicates 

the maximum operation at the reconvergent node. The challenge 

here for SSTA methods is to capture and propagate this 

correlation in order to be properly accounted for during the 

computation of the 𝑚𝑎𝑥 function. 

2) Spatial Correlation 

Within-die variation of the physical device parameters usually 

exposes spatial correlation, triggering correlation between the 

gate delays. Therefore, if the gates that involve two paths have 

spatially correlated device parameters they will consequently 

have correlated path delays. Thus, correlation is possible to be 

introduced amongst paths that do not share timing edges. For 

instance, again in Figure 3, the paths 𝑃1 and 𝑃3 do not share any 

common delay edges, nevertheless if gates 𝑔1 and 𝑔2 are within 

close proximity on the die, their spatially correlated delays can 

arise correlation between the two path delays. Hence, spatial 
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correlation (as topological) of the arrival times must be captured 

and propagated during SSTA so that it is correctly calculated for 

the 𝑚𝑎𝑥 function. 

While topological correlation impacts solely the 𝑚𝑎𝑥𝑖𝑚𝑢𝑚 

operation, spatial correlation influences both the 𝑠𝑢𝑚 operation 

as well as the 𝑚𝑎𝑥𝑖𝑚𝑢𝑚  operation. This brings up two 

fundamental issues for SSTA approaches: 

 How to form gate delays and arrival times so that 

spatial correlation of the underlying device parameters 

can be formulated 

 Granted a model of the spatial correlation, how to 

propagate and keep the correlation information at the 

same time that performing the 𝑠𝑢𝑚  and 𝑚𝑎𝑥𝑖𝑚𝑢𝑚 

operations. 

 

3) Non-Normal Process Parameters & Nonlinear Delay 
Models 

Normal or Gaussian are undoubtedly the most broadly observed 

distributions for random variables and numerous elegant 

analytical results are presented in the statistics literature. As a 

consequence, most of the primary works published in the field of 

SSTA adopted normal distributions to model physical device 

parameters, electrical device parameters, gate delays as well as 

arrival times. Nevertheless, some physical device parameters 

may present significantly non-normal distributions. 

Even if the parameters are indeed normally distributed, the 

dependence between the electrical device parameters and the 

gate delay on these physical parameters may as well be non-

linear, causing non-normal gate delays to rise. Original work in 

modeling spatial correlations in [3] – [5], presented a delay model 

that assumed a linear dependence of the gate delay on physical 

device parameters. In case the variations are insignificant, this 

linear approximation is proven right, as the error introduced by 

overlooking higher order terms is negligible. Nevertheless, with 

reduction of geometries, process variation is becoming more 

notable and the linear approximation may not be precise for 

some parameters. 

Both non-normal delay and arrival time distributions set forth 

vital challenges for efficient SSTA. While this may be considered 

as a novel area of research, several members of SSTA research 

community have suggested approaches to address this issue [6], 

[7] and [8]. At this point, we should note that besides the 

difficulty of modeling, the non-normality of an individual RV, 

the dependence between two non-normal RVs is no longer 

expressed through a sole correlation factor. This complicates 
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even more the proper handling of both topological and spatial 

correlations. 

4) Skewness as a result of Maximum Operation 

Even supposing that gate delays are normal, SSTA has to deal 

with the fact that 𝑚𝑎𝑥𝑖𝑚𝑢𝑚 operation is an inherently nonlinear 

function. The maximum of two normal arrival times will result 

in a non-normal arrival time that is typically positively skewed. 

Moreover, the non-normal arrival time distribution generated at 

one node is the input to the 𝑚𝑎𝑥𝑖𝑚𝑢𝑚  computation at 

downstream nodes. Hence, we need a 𝑚𝑎𝑥𝑖𝑚𝑢𝑚 operation that is 

able to operate even in non-normal arrival times. 

In probability theory, skewness is a measure of the asymmetry of 

the probability distribution of a real-valued RV about its mean. 

The skewness value can be positive, negative, zero or even 

undefined. For further insight, the reader is encouraged to go 

through [9]. 

The majority of existing works overlook the skewness introduced 

by the 𝑚𝑎𝑥𝑖𝑚𝑢𝑚 operation and calculate the arrival times with 

normal distributions. The fault in this approximation grows 

larger in case the input arrival times have comparable means 

and dissimilar variances [10]. Namely, the error is more distinct 

when two converging paths have formally balanced path delays, 

but one of them has a tighter delay distribution in comparison to 

the other. This is possible to happen in a circuit when two paths 

with equal nominal delay consist of a different number of gates, 

or when the correlation among their gates varies. Another 

example, is when one path is dominated by interconnect delay 

while the other is dominated by gate delay. 

To conclude, it is safe to say that the aforementioned problems 

shape four basic challenges in SSTA, which have received 

massive attention in the literature. Despite that, numerous other 

crucial challenges to reach the development of a mature SSTA 

tool remain standing. 

1.2. Previous Work 

To provide an insight of previous attempts in the field of SSTA, 

we demonstrate a few examples both from earlier approaches as 

well as some state-of-the-art research works. As it is pointed out 

in [1], there have been noted original works related to SSTA that 

date back to the 1960s [11], the period of introduction of timing 

analysis itself, but also later, in the early 1990s, [12] – [14]. 

In [14], the authors proposed a method for performing statistical 

timing analysis which involves structural Boolean properties of a 

combinational circuit. The approach suggested the use of a PDF 
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and encoded the delay as well as the logic behavior of the circuit 

into a Boolean expression that was afterwards simplified using a 

binary decision diagram (BDD) representation. Despite the fact 

that the results of this technique were only shown in small 

circuits, a remarkable observation was related to the 

computation of the signal probability (i.e., the probability that 

the signal is at logic 1) at the output of a gate. 

The approach in [12] suggested a symbolic simulation procedure 

for statistical timing analysis. A particularly notable contribution 

that has since been used in other work is the idea of using 

interval analysis to generate trimming strategies in order to 

remove paths that can never be (or exhibit a very low possibility 

of being) critical. Unlike [14], this method demonstrated results 

on large benchmark circuits, although under interval-based delay 

models. 

Since these premature efforts were published, SSTA approaches 

have evolved and from early 2000s the community of SSTA 

researchers has grown immensely. Most of the research work 

related to SSTA date from the last decade, with well over a 

hundred papers published in this research field from 2001 to 

2008. This becomes more obvious when the numbers are 

invoked: the vast majority of research work on SSTA date from 

the last decade, with well over a hundred papers published since 

2001 [1]. Some representative examples of state–of–the–art 

approaches that solve the SSTA problem include [3] – [5] and 

[15] – [20]. The methods used in these works can be classified 

according to the categorization that is provided in Chapter 2. 
Authors in [16], [17] and [20] suggest techniques to bound the 

delay distributions rather than calculate the exact distributions 

using path–based and block–based methods. In [18] an 

approximation approach is proposed, which is based on a generic 

path analysis rather than evaluating every path statistically. 
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1.3. Outline 

In this thesis project, we provide a general idea about SSTA and 

exhibit some representative works from various approaches. 

Furthermore, we unfold its role in today’s design flow process, 

and consequently we focus more on Variation Aware Timing 
Analysis by giving a description of our own approach to SSTA 

and the challenges we coped with. 

In Chapter 3, we give an explanation of the models used in the 

context of the development of our tool, as well as a rough image 

of the representation. 

In Chapter 4, we break down the stages of the implementation 

and give a brief description of the procedures taking place 

during each step. 

Finally, in Chapter 5, we present the experimental results 

coupled with a short evaluation and also some statistical metrics 

that we based our conclusion on. Moreover, we try to conceive 

the progress that might take place in the field of SSTA and the 

directions that the research community might head towards. 
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2. Timing Analysis 
 

2.1. STA in Design Flow 

As we mentioned numerous times throughout the introductive 

chapter, STA is the predecessor of any SSTA research effort. 

Modern approaches that involve statistical methods are simply 

attempting to ameliorate the precision of timing analysis through 

the design flow stages that it is required. 

Timing analysis in general, and STA more specifically, plays a 

crucial part in modern design–closure flow. In addition to 

determining the longest and shortest timing propagation paths, 

STA (and as a result SSTA) can be used to compute arrival 

times, required arrival times and slacks at all the points of the 

circuit. Hence, every design stage (Figure 4), from floorplaning, 

logical synthesis to placement and routing, employs timing 

analysis in order to assess circuit performance, and afterwards 

modify the design accordingly. 

 

 

Figure 4: Timing analysis in the design flow 

 

Most modern–day companies specialized in EDA, develop 

engines, such as Prime Time of Synopsys™ [21] and Encounter 

Timing System of Cadence™ [22]. These timing engines are 

utilized throughout the synthesis/place–and–route flow. 

With that being said, it becomes crystal clear that an efficient 

timing analysis method is the key to a successful design process. 

Widely used STA approaches, provide limited accuracy as a 
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result of the use of simplified delay models. The lack of attention 

regarding the function of the circuit, establishes STA as an error 

prone approach. For instance, the inclusion of false paths (paths 

that are not logically existing in the circuit) jeopardize the 

optimization process which follows the timing analysis, as it 

might illogically focus on false paths and neglect the real critical 

path. Another known issue with traditional STA methods, is 

their conservative nature, which naturally leads to over-design 

and thus to an increase in the product cost. Taking into 

consideration all the facts that we mentioned above, the 

improvement of the accuracy of the timing analysis stage was 

accomplished by turning to SSTA methods. Despite that, it is 

now the research community's responsibility not to let the 

efficiency deteriorate for the sake of accuracy. 

2.2. Variation Aware Timing Analysis 

In accordance to the aforementioned, with the technology of 

semiconductors shrinking under 65 nanometers, the need for an 

efficient modeling of process variations throughout a VLSI chip 

manufacturing process, has led to extensive research in Variation 
Aware Timing Analysis. Manufacturing sources of variability 

include device front-end variability (e.g. variations in channel 

length, oxide thickness etc.) and back-end-of-line variability 

(such as metal variability). Moreover, environmental sources of 

variation like voltage and temperature strongly impact circuit 

timing. Variability may be classified into different categories like 

intra-chip variability and inter-chip variability. Each of these 

can be further sub-classified as systematic and random 

variability (Figure 7). In general, sources of variation that 

impact circuit timing are termed parameters. An easy way to 

understand previous work done in the field of statistical timing 

analysis is to try to classify roughly the techniques proposed so 

far in recent works: 

I. Numerical Integration Methods 

The most straightforward SSTA approach results immediately 

from the problem definition we provided in the previous section. 

Basically, a numerical integration over the process parameter 

space is applied to estimate the yield of the circuit for a specific 

delay. Usually, we express the delay of a set of critical paths as a 

linear function of the physical device parameters. As a result, an 

attainable region in parameter space is specified from the desired 

delay of the circuit. Later, this region we specified is numerically 

integrated, examining any possible permutations of physical 

device parameter values located in the specified region. Efficient 

numerical-integration methods were proposed in [23]. The key 

advantage of this approach is that it is entirely generic and as a 
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result process variation with any type of distribution and 

correlation can be represented. Nevertheless, there is a 

possibility that this type of approaches can be quite costly in 

run-time and especially for more balanced circuits that consist of 

multiple critical paths. 

II. Monte Carlo Methods 

The second general approach, which is also the one used on this 

study, performs a statistical sampling of the sample space using 

Monte Carlo simulation. The basic idea is to determine the 

regions with significant probability and to sample adequately 

these regions. By using the PDF of each physical device 

parameter, it is possible to extract a sufficient number of 

samples. Utilizing traditional STA methods makes it possible to 

calculate the circuit delay by employing the PDF of the physical 

device parameters. From there on, an estimation of timing yield 

is acquired, by evaluating a portion of samples that meet the 

timing constraint. If an acceptable number of samples is drawn, 

then the prediction error is small. After that, it is feasible to 

determine the delay distribution for the entire circuit by 

sweeping the timing constraint and determining the yield for 

each value. Moreover, it has been observed that the performance 

of Monte Carlo techniques can be improved using methods like 

importance sampling [24], [25]. 

Similarly to numerical integration methods, the Monte Carlo 

approach holds the advantage of being totally generic. Moreover, 

while based on existing STA traditional methods, Monte Carlo 

methods perform notably better than the numerical integration-

based approaches. At the same time, it has been noted that 

Monte Carlo methods handle expertly the complexities of 

variations. 

III. Probabilistic Analysis Methods 

Both aforementioned approaches are based on sample-space 

enumeration, while probabilistic methods specifically model both 

gate delay and arrival times with random variables. These 

approaches, usually propagate arrival times through the timing 

graph, by performing statistical 𝑠𝑢𝑚 and 𝑚𝑎𝑥/𝑚𝑖𝑛 operations. It is 

viable to categorize this type of approaches in two wide-ranging 

groups: 

1) Path-based approaches: In path based algorithms, a group of 

circuit paths most likely to eventually be critical is 

determined and a statistical analysis is carried out over this 

set of paths to approximate the circuit delay distribution. 

Initially, we determine the delay distribution of each path by 

summing the delay of the path’s edges. If assumed normal 

gate delays, the path-delay distribution can be analytically 

calculated, as presented in [19], [26] and [27]. Finally, a 
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statistical 𝑚𝑎𝑥𝑖𝑚𝑢𝑚 operation is performed over all the path 

delays in order to find the overall circuit delay distribution. 

The basic advantage of this approach is the fact that the 

analysis is distinctly divided into two parts – the computation 

of path delays coupled with the statistical 𝑚𝑎𝑥 operation over 

these path delays. Thus, it is clear why many of the initial 

research attempts in SSTA were focused on path-based 

approaches [13], [19], [20], [26], [28] and [29]. However, the 

obvious obstruction with this approach is how to precisely 

determine the subset of candidate paths in a way that no path 

that displays a notable probability of being critical will be 

omitted. Moreover, when it comes to balanced circuits, the 

number of candidate paths under consideration can be very 

high. Hence, based on what we mentioned above, it is clear 

why most of the later research works have focused on block-

based approach. 

2) Block-based approaches: Block-based methods tend to follow 

more strictly the deterministic STA algorithm and traverse 

the circuit graph in a topological way. Arrival times at each 

node is then calculated based on two fundamental operations: 

i. For all fan-in edges of a specific node, the edge delay is 

added to the arrival-time at the source node of the edge 

using the 𝑠𝑢𝑚 operation, and 

ii. given the resulting arrival times, the concluding arrival 

time at the node is computed using the 𝑚𝑎𝑥𝑖𝑚𝑢𝑚 

operation. 

Thus, block–based methods propagate exactly two arrival 

times (a rise and a fall arrival time) at each circuit node, 

resulting in a runtime that is linear with the circuit size. The 

computation of the 𝑠𝑢𝑚 function is usually a straightforward 

process. Yet, determining the statistical maximum of two 

associated arrival times is not insignificant. 

As a result of its runtime advantage, many modern research 

and commercial works have chosen the block-based over other 

approaches. 

2.3. Sources of Variation and Sensitivity 

In this section we explore the main sources of variation through 

the process of timing prediction that makes timing analysis a 

demanding task when it comes to nanoscale digital circuits. We 

will refer firstly to the different types of uncertainties that rise 

as a design goes from specification to implementation and final 

field operation. Nevertheless, we will focus on process variations 

and specifically on the distinction between die-to-die and within-
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die variations. Lastly, we will address the impact that different 

types of process variations have on the timing quantities of a 

circuit. 

 

 

Figure 5: Steps of the design procedure and the resulting timing uncertainties  

The unpredictability in the timing estimation of a design lies 

into three main categories: 

I. modeling and analysis errors - inaccuracy in device models 

in extraction and reduction of interconnect parasitics as 

well as in timing analysis algorithms, 

II. manufacturing variations - uncertainty in the parameters of 

fabricated devices and interconnects from die-to-die and 

within-die, and 

III. operating-related variations - uncertainty in the operating 

environment of a particular device during its lifetime 

(temperature, supply voltage, mode of operation etc.). 

All these three steps that produce potentially timing 

uncertainties, are illustrated in Figure 5. Since each of the three 

variabilities represents orthogonal sample spaces, it is an uphill 

situation to perform a unified analysis. Environmental 

uncertainty and uncertainty due to modeling and analysis error 

are usually modeled utilizing worst-case margins, while 

uncertainty in process is commonly handled statistically. Thus, 

most variation aware timing analysis works, this thesis project 

included, focus only on modeling process variations. 
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Figure 6: Parameter variations domino effect 

The semiconductor manufacturing process has become more 

complicated while simultaneously process control precision is 

striving to stay relatively accurate with continued process 

scaling. This leads to many steps throughout the manufacturing 

process to become prone to variations. The main physical 

parameters affected are the gate length, the interconnect 

thickness and height, as illustrated in Figure 6 and extendedly 

explained in [1]. 

Variations in these physical parameters result in variations in 

electrical device characteristics, like threshold voltage, resistance 

and capacitance of interconnects. Ultimately, the variations in 

electrical characteristics of circuit elements affect the delay 

variations of the timing characteristics of the circuit. 

It is notable to mention that more than one electrical parameter 

may have a dependence on a specific physical parameter. For 

instance, both resistance and capacitance of an interconnect 

network are influenced by variation in wire width. In Figure 7, a 

general taxonomy of process variations is provided in order to 

classify them and give a notion of the spatial scale over which 

each one operates. 

For the sake of simplicity, in our research work we take into 

consideration the following global inter-chip sources of variability 

and assume that each timing quantity may be sensitive to them: 

o environmental: voltage (V),  temperature (T) 

o front end of line process: channel length (L), device width 

(W), voltage threshold (H) 

o back end of line: metal (M) 
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Figure 7: Taxonomy of process variations 

For homogeneity, we suggest only a single parameter M for all 

metal layers. These parameters indicate systematic chip-to-chip 

(or inter-chip) sources of variation. To provide an example, 

variations in parameter temperature suggest that the chips 

would be dependent to different environmental temperature 

conditions. This parametric variation does not imply intra-chip 

systematic temperature differences. For the sake of simplicity, 

we ignore systematic intra-chip variations in all parameters. 

Besides the global inter-chip parameters we mentioned above, 

each one of the timing quantities might enclose an independent 

random source of variability (𝑅) that symbolizes both random 

inter-chip as well as random intra-chip variation. Any timing 

quantity may therefore be expressed in the following notation: 

𝜇 + 𝛼𝑣𝛥𝑉 + 𝛼𝑡𝛥𝛵 + 𝛼𝑙𝛥𝐿 + 𝛼𝑤𝛥𝑊 + 𝛼ℎ𝛥𝛨 + 𝛼𝑚𝛥𝛭 + 𝛼𝑟𝛥𝑅    (9), 

where 𝜇  signifies the nominal value of the quantity (in other 

words, its value in the absence of variability). 

Each parameter may diverge from −3 to +3 sigmas. Parameter 

sensitivities are expressed as time units per sigma values (e.g. 

𝛼𝑣 = 5  picoseconds per sigma), and are captured either as 

asserted values, or via finite differencing. In the former case, the 

sensitivity of a timing quantity to a parameter is attainable 

directly as an input (e.g. voltage sensitivity for cells are available 

as warranted values in the cell library). Finite differencing in 

context of any parameter 𝑋 suggests that the value of the timing 



34 
 

quantity 𝑄  is feasible (or can be computed) for at least two 

sigma corners of 𝑋. 

Assuming that two sigma corners of 𝑋 as +3 and −3 sigma, the 

finite differenced sensitivity 𝛼𝛸 is computed as: 

𝛼𝑋 =
𝑄|𝑋=+3𝜎− 𝑄|𝑋=−3𝜎

3−(−3)
     (10). 

For the purposes of this thesis project, we assume all parameters 

(except metal (𝑀) to be finite differenced (if required) between 

+3 and −3 sigma values. The metal parameter should be finite 

differenced between +3 and 0 sigma values, as it benefits faster 

analysis (as we will exhibit in the following chapter). All timing 

quantities mentioned in this section are assumed to be a function 

of variational parameters. 
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3. Models and Representation 

For the purposes of this thesis project, we assume that for each 

benchmark circuit we have two files available: a netlist file and a 

library file1, which are presented in Appendix A.1. The former, 

includes circuit information, topology and other circuit-related 

data, that will be modeled in accordance to what will be 

explained in the following sections. The netlist, consists of a set 

of interconnected elements, particularly cell instances as well as 

interconnecting circuitry. The latter, on the other hand, contains 

timing information in relation to the cell elements as well as 

variability information. 

3.1. Interconnect 

The primary ingredient of interconnection is a net, which 

assumingly has an input pin, called port and one or many output 

pins, called taps (Figure 8). For each net, the netlist of its 

parasitic 𝑅𝐶  tree is given in the netlist file. Parasitic 𝑅𝐶  trees 

only include grounded capacitors and resistors located between 

nodes in the tree (there are no coupling capacitors or grounded 

resistors). 

 

Figure 8: Interconnection representation 

The calculation of the delays from port to each potential tap is 

performed using a very straightforward delay model, the Elmore 
delay model [1], according to which the delay is estimated by the 

value of the first moment of the impulse response. For 𝑅𝐶 tree 

networks, we utilize the method described in [31], as summarized 

below. 

                                 
1  The files are formatted according to the TAU Variation Aware Timing 
Analysis Contest (2013) [32] standards. 
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Consider any two given nodes 𝑒  and 𝑘 , where the lumped 

capacitance in node 𝑘 is 𝐶𝑘. The resistance 𝑅𝑘𝑒 is the resistance of 

the common sub-path between the paths from the port to 𝑘 and 

𝑒  respectively. Furthermore, 𝑅𝑒𝑒  is the resistance between the 

port and node 𝑒 . For the example net tree demonstrated in 

Figure 8 (right), we have 𝑅15 = 𝑅𝐴, since the common sub-path 

between nodes 1 and 5 includes solely resistor 𝑅𝐴. The Elmore 

delay, for a given node 𝑒, is given by the sum: 

𝑑𝑒 = ∑ 𝑅𝑘𝑒𝐶𝑘𝑘     (11) 

where the summation extends over all nodes in the network. We 

can easily calculate this value by properly traversing the netlist 

of the parasitic RC tree. Once more, considering the example 

given in Figure 8, we have: 

𝑑5 = 𝑅𝐴(𝐶1 + 𝐶3 + 𝐶4) + (𝑅𝐴 + 𝑅𝐵)𝐶2 + (𝑅𝐴 + 𝑅𝐵 + 𝑅𝐸)𝐶5    (12) 

This value calculated above, provides the nominal or mean wire 

delay between the port and the tap. For variation aware 

parametric delay computation, we perform finite differencing to 

compute the sensitivity of delay to the metal parameter M. 

Provided corner specific metal resistance 𝑚𝐶
𝜎 scalar values (from 

the cell library) are used to acquire the updated resistance and 

capacitance values of the interconnect network when the metal 

parameter is set to a given corner (𝛥𝛭 = 𝜎). Each interconnect 

resistance and capacitance is scaled by the provided scalar and 

another deterministic delay computation is performed to 

compute the delay when 𝛥𝛭 is at the 𝜎 corner. 

For the example we examined above, considering that the tap 

capacitance 𝐶5  comes partly from the cell pin capacitance 𝐶𝑝,5 

connected to node 5, the remaining capacitance (𝐶5 − 𝐶𝑝,5) is part 

of the interconnect network. Adopting similar notation for tap 

capacitance 𝐶4 , the delay at this corner can be calculated as 

follows: 

𝑑5|𝛥𝛭=𝜎 = 𝑚𝑅
𝜎𝑅𝐴(𝑚𝐶

𝜎[𝐶1 + 𝐶3 + 𝐶4 − 𝐶𝑝,4] + 𝐶𝑝,4)

+ (𝑚𝑅
𝜎[𝑅𝐴 + 𝑅𝐵])𝑚𝐶

𝜎𝐶2

+ (𝑚𝑅
𝜎[𝑅𝐴 + 𝑅𝐵 + 𝑅𝐸]) (𝐶𝑝,5 + 𝑚𝐶

𝜎(𝐶5 − 𝐶𝑝,5))   (13) 

We perform the above calculation using the provided sigma 

corner of the metal parameter (usually +3  sigma). We then 

compute the sensitivity parameter 𝛥𝛭 utilizing finite differencing 

method between this corner and the nominal corner: 
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𝑎𝑚,5
𝐷 =

𝑑5|𝛥𝛭=𝜎−𝑑5|𝛥𝛭=0

𝜎−0
=

𝑑5|𝛥𝛭=𝜎−𝑑5

𝜎
     (14) 

Hence, the parametric delay model of the interconnection 

between the port and the tap node 5 includes two deterministic 

delay calculations and finally approximates to a linear model as 

demonstrated below: 

𝑑5 + 𝑎𝑚,5
𝐷 𝛥𝛭  . 

As a result, wire delays will not involve any sensitivity to other 

parameters (including random variation). 

The nominal value of output slew on any given tap node 𝑜, can 

be approximated by a two-step procedure, which is illustrated 

below. First we calculate the nominal output slew of the impulse 

response on 𝑜 , which can be approximated by the following 

formula, as noted in [30], [35]: 

�̂�0 ≈ √2𝛽0 − 𝑑0
2     (15) 

Where 𝛽𝑜 is the second moment of the impulse response at node 

𝑜 and 𝑑𝑜 is the equivalent Elmore delay computed from (11) for 

node 𝑜. The value of 𝛽𝑜 is computed by replacing all capacitance 

values 𝐶𝑘 by 𝐶𝑘𝑑𝑘, where 𝑑𝑘 is the Elmore delay computed from 

(11). In Figure 9, the modified parasitic 𝑅𝐶 tree is demonstrated 

for the example of Figure 8. 

 

Figure 9: Modified RC tree for computing the second moment of impulse response 

We followed the same procedure in order to calculate 𝛽𝑒: 

𝛽𝑒 = ∑ 𝑅𝑘𝑒𝐶𝑘𝑑𝑘𝑘  (16) 
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Consequently, for the parasitic RC tree illustrated in figure 3 we 

get: 

𝛽5 = 𝑅𝐴(𝐶1𝑑1 + 𝐶3𝑑3 + 𝐶4𝑑4) + (𝑅𝐴 + 𝑅𝐵)𝐶2𝑑2 + (𝑅𝐴 + 𝑅𝐵 + 𝑅𝐸)𝐶5𝑑5 (17) 

Since we already computed �̂�𝑜, we go on to calculate the mean 

slew of the response to the input ramp, 𝑠𝑜 , for which a valid 

approximation is reached by the expression: 

𝑠𝑜 ≈ √𝑠𝑖
2 + �̂�𝑜

2    (18), 

where 𝑠𝑖 is the nominal or mean input slew. 

Parametric output slew calculation comprises a bit of 

complicated finite differencing. Considering metal variability, �̂�𝑜 

is a function of parameter 𝛥𝛭  only since both 𝛽𝑜  and 𝑑𝑜  are 

dependent on metal scalars. For a specific metal sigma corner 𝜎: 

�̂�𝑜|𝛥𝛭=𝜎 ≈ √2𝛽𝑜|𝛥𝛭=𝜎 − 𝑑𝑜|𝛥𝛭=𝜎
2

    (19), 

where 𝑑𝑜|𝛥𝛭=𝜎 is the Elmore delay value of the tap at node 𝑜 at 

the specified metal corner, and 𝛽𝑜|𝛥𝛭=𝜎  can be calculated by 

scaling the interconnect resistance and capacitance values similar 

values similar to the way we described earlier as in (13). The 

sensitivity to the metal parameter may now be computed via 

finite differencing the value of �̂�0 between the two sigma corners 

for 𝛥𝛭: 

𝑎𝑚
�̂�0 =

�̂�0|𝛥𝛭=𝜎−�̂�0|𝛥𝛭=0

𝜎−0
=

�̂�𝑜|𝛥𝛭=𝜎−�̂�𝑜

𝜎
    (20). 

We assume that to compute 𝛽𝑜  at the metal corner 𝜎  an 

additional computation is required to calculate the parametric 

output slew �̂�𝑜 to an impulse response. Hence, we conclude to: 

�̂�𝑜 = �̂�𝑜 + 𝑎𝑚
�̂�0𝛥𝛭    (21). 

3.2. Combinational Cells 

Now we presume that cell delay, 𝐷, and output slew, 𝑆𝑜, can be 

approximated for a given combinational cell input/output pin 

pair by the following equations: 

𝐷 = 𝑎(1 + 𝑘𝑑,𝑣𝛥𝑉 + 𝑘𝑑,𝑙𝛥𝐿 + 𝑘𝑑,𝑤𝛥𝑊 + 𝑘𝑑,ℎ𝛥𝐻 + 𝑘𝑑,𝑟𝛥𝑅) + 𝑏𝐶𝐿 + 𝑐𝑆𝑖 (22) 
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𝑆𝑜 = 𝑥(1 + 𝑘𝑠,𝑣𝛥𝑉 + 𝑘𝑠,𝑡𝛥𝑇 + 𝑘𝑠,𝑙𝛥𝐿 + 𝑘𝑠,𝑤𝛥𝑊 + 𝑘𝑠,ℎ𝛥𝛨 + 𝑘𝑠,𝑟𝛥𝑅) + 𝑦𝐶𝐿 + 𝑧𝑆𝑖   (23), 

where a, b, c, x, y, z and each 𝑘𝑖  term are cell-dependent 

constants; 𝐶𝐿  and 𝑆𝑖  are the parametric output load and 

parametric input slew, respectively. The constants for each cell 

are provided in the cell library file, for both rise and fall 

transition. It should be noted that the 𝑘𝑖  terms are a 

representation of the sensitivity to front end parameters as a 

fraction of 𝑎 or 𝑥. 

As demonstrated in Figure 10, 𝐶𝐿  refers to the downstream 

capacitance seen from the output of the cell. Quite a few 

complicated models have been suggested in order to compute 𝐶𝐿. 

 

Figure 10: Combinational cell illustration 

For the sake of simplicity, we adopted a rather straightforward 

model for that purpose. Thus, 𝐶𝐿  is assumed to be the 

summation of all the capacitances in the 𝑅𝐶  parasitic tree, 

including cell pin capacitances at the taps of the interconnection: 

𝐶𝐿 = ∑ 𝐶𝑘𝑘    (24). 

For the example presented in Figure 8, we have: 

𝐶𝐿|𝛥𝛭=0 = 𝐶1 + 𝐶2 + 𝐶3 + 𝐶4 + 𝐶5   (25). 

Due to the fact that the interconnect capacitances are depending 

on 𝛥𝛭 , consequently 𝐶𝐿  is also a function of 𝛥𝛭 . In the above 

example we have: 

𝐶𝐿|𝛥𝛭=𝜎 = 𝑚𝐶
𝜎[𝐶1 + 𝐶2 + 𝐶3 + (𝐶4 − 𝐶𝑝,4) + (𝐶5 − 𝐶𝑝,5)] + 𝐶𝑝,4 + 𝐶𝑝,5   (26), 

where 𝐶𝑝,4  and 𝐶𝑝,5  symbolize the cell pin capacitance 

contributions in the tap capacitances 𝐶4 and 𝐶5 respectively, and 

𝑚𝐶
𝜎  denotes the interconnect capacitance scalar value acquired 

from the cell library and it represents the impact of the metal 

variation at corner 𝜎. Cell input pin capacitances are provided 
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also in the cell library file, as fixed values for each pin and each 

transition state (rise or fall). 

Finally, we compute the effective load’s sensitivity to 𝛥𝛭 using 

finite differencing: 

𝑙𝑚 =
𝐶𝐿|𝛥𝛭=𝜎−𝐶𝐿|𝛥𝛭=0

𝜎−0
=

𝐶𝐿|𝛥𝛭=𝜎−𝐶𝐿|𝛥𝛭=0

𝜎
    (27). 

We can then express the effective load 𝐶𝐿 in a linear parametric 

form as follows: 

𝐶𝐿|𝛥𝛭=0 + 𝑙𝑚𝛥𝛭   (28), 

and afterwards replace it into delay and slew models in 

equations (22), (23). 

3.3. Flip-Flops 

Sequential circuits are composed of combinational logic blocks 

interrupted by registers, most commonly implemented with flip-
flops. Normally, they consist of several stages, where a register 

attains data from the outputs of a combinational block and 

infuses it into the inputs of the combinational block that follows 

as the next stage of combinational logic. Register operation is 

adjusted by clock signals generated by one or multiple clock 

sources. Clock signals that reach different flip-flops (represented 

by sinks in the clock tree), are delayed from the clock source by 

a known clock latency that will be symbolized as 𝑙. 

 

Figure 11: Flip-flop description 

A flip-flop (and especially a D flip-flop) is a storage element that 

captivates a given logic value at its input data pin 𝐷, when a 

given clock edge is identified at its clock pin 𝐶𝐾 , and thus 

propagates the captured value and its complement at the output 
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pins 𝑄 and �̅�. The flip-flop is also capable to enable asynchronous 

preset (set) and clear (reset) of the output pins, utilizing the 𝑆 

and 𝑅 input pins. 

Conventional operation of flip-flop demands the logic value of 

the input data pin to be stable for a specific period of time 

before the capturing clock edge. This specific period of time is 

denoted as setup time and will be represented by 𝑡𝑠𝑒𝑡𝑢𝑝 . 

Moreover, the logic value of the input data pin must be 

simultaneously available and stable for a specified period of time 

after the capturing clock edge. The specific period of time is 

denoted as hold time and we designate it as 𝑡ℎ𝑜𝑙𝑑 . We should 

point out that both setup and hold times are two of the usual 

performance figures provided in cell specification libraries for 

storage elements such as flip-flops. Other conventional figures 

include delay from clock to output, 𝑑𝐶𝐾→𝑄/𝑑𝐶𝐾→�̅� and asynchronous 

preset and clear delays, 𝑑𝑝𝑟𝑒𝑠𝑒𝑡 and 𝑑𝑐𝑙𝑒𝑎𝑟. A visualization of the 

standard performance metrics we just mentioned is provided in 

Figure 11. 

Observe now that setup as well as hold time are modeled as 

functions of the input slews at both the clock pin, 𝐶𝐾, and the 

input pin, 𝐷, respectively: 

𝑡𝑠𝑒𝑡𝑢𝑝 = 𝑔 + ℎ 𝑆𝑖
𝐶𝐾 + 𝑗 𝑆𝑖

𝐷
   (29) 

𝑡ℎ𝑜𝑙𝑑 = 𝑚 + 𝑛 𝑆𝑖
𝐶𝐾 + 𝑝 𝑆𝑖

𝐷
   (30) 

Notice that in the above equations the input slews are 

parametric and, as a result, so are the setup and hold times. 

 

 

Figure 12: Signal propagation between two flip-flops 

 



42 
 

Let us consider now the standard case of signal propagation 

between two flip-flops as it is presented in Figure 12. Taking for 

granted that the clock edge is generated in the clock source at 

time 0, then it will reach the injecting flip-flop at time 𝑙𝑖 , 

enabling the data at the input of the combinational block 𝑑𝐶𝐾→𝑄 

time later. If the propagation delay in the combinational block is 

𝑑𝑐𝑜𝑚𝑏 , then the data will be available at the input of the 

capturing flip-flop at time 𝑙𝑖 + 𝑑𝐶𝐾→𝑄 + 𝑑𝑐𝑜𝑚𝑏 . Presuming that the 

clock period is a deterministic constant 𝑇, the next clock edge 

will reach the capturing flip-flop at time 𝑇 + 𝑙𝑜. To achieve proper 

operational conditions, the data must be available at the input of 

the flip-flop 𝑡𝑠𝑒𝑡𝑢𝑝 earlier than the next clock edge. Consequently, 

at the data input pin, 𝐷: 

𝑎𝑡𝐷
𝑙𝑎𝑡𝑒 = 𝑙𝑖

𝑙𝑎𝑡𝑒 + 𝑑𝐶𝐾→𝑄 + 𝑑𝑐𝑜𝑚𝑏
𝑙𝑎𝑡𝑒

   (31) 

𝑟𝑎𝑡𝑠𝑒𝑡𝑢𝑝 = 𝑟𝑎𝑡𝐷
𝑙𝑎𝑡𝑒 = 𝑇 + 𝑙𝑜

𝑙𝑎𝑡𝑒 − 𝑡𝑠𝑒𝑡𝑢𝑝   (32) 

An analogous condition can be extracted from the necessity to 

ensure that the hold time is respected. Thus, the data input of 

the capturing flip-flop must remain stable for at least 𝑡ℎ𝑜𝑙𝑑 after 

the clock edge reaches the corresponding 𝐶𝐾 pin. Hence, at the 

data input pin, 𝐷, we have: 

𝑎𝑡𝐷
𝑒𝑎𝑟𝑙𝑦

=  𝑙𝑖
𝑒𝑎𝑟𝑙𝑦

+ 𝑑𝐶𝐾→𝑄 + 𝑑𝑐𝑜𝑚𝑏
𝑒𝑎𝑟𝑙𝑦

   (33) 

𝑟𝑎𝑡ℎ𝑜𝑙𝑑 = 𝑟𝑎𝑡𝐷
𝑒𝑎𝑟𝑙𝑦

= 𝑙𝑜
𝑒𝑎𝑟𝑙𝑦

+ 𝑡ℎ𝑜𝑙𝑑   (34) 

We should note that the arrival and required arrival times 

included in the equations above, can be computed from 

equations (5) and (6) in Chapter 1. 
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4. Stages of Implementation 

In this chapter, we give a clear image of the technique we 

proposed for this thesis project and of the stages involved in the 

process. After providing a thorough description of the models 

and the input files used we will proceed by breaking down each 

stage of the procedure and explaining the diverging parts which 

distinct our work from previous approaches already presented. 

To begin with, we provide a flowchart in Figure 13 with the 

path that was followed during the process. 

 

 

Figure 13: Flowchart including the steps we followed during the approach proposed 
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4.1. Netlist and Cell Library Parsing 

Our first goal was to extract all the necessary data from the 

input files and form it accordingly into the desirable data 

representation. This primary objective was achieved through the 

parsing of the netlist and the cell library files. For the netlist 

file, we parsed all the available information, stored it 

appropriately and formed the timing graph we described earlier, 

by modeling primary inputs, primary outputs and cell pins as 

nodes and nets and intra-cell circuitry as edges. A rough sketch 

of the netlist parser is provided below: 

 

BEGIN 
  while(!empty(netlist)) 
    parse next line L 
    parse next token 
 
    switch (token) 
      case "input": 
        insert in primary inputs hash table 
        initialize slew and at for current node 
 
      case "output": 
        insert in primary inputs hash table 
 
      case "instance": 
        while(!L.empty) 
          if(output pin) 
            type = "outPin" 
            if(internal node) 
              insert in internal nodes hash table 
            else 
              insert in primary outputs hash table 
          else 
            type = "inPin" 
            if(internal node) 
              insert in internal nodes hash table 
            else 
              insert in primary inputs hash table 
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      case "slew": 
        find node in primary inputs hash table 
        assign fall and rise slews to node 
 
      case "at": 
        find node in primary inputs hash table 
        assign early/late fall, early/late rise arrival times to node 
 
      case "clock": 
        find node in primary inputs hash table 
        assign clock period to node 
 
      case "wire": 
        find node in primary inputs OR internal nodes hash tables 
        makeUpNet(node) 
 
      case "cap": 
        assign capacitance to node 
 
      case "res": 
        determine starting and ending point of resistance 
        assign resistance value to starting node 
 
      case "rat": 
        find node in primary outputs OR internal nodes hash tables 
        assign operation mode to node 
 
        if(opMode == "late") 
          assing late fall/rise values to node 
        else 
          assing early fall/rise values to node 
END 

 

Algorithm 1: Netlist parser main function 

As far as the cell library parser is concerned, besides the main 

parsing function, which basically operates as the netlist parsing 

function we illustrated thoroughly. We utilized some functions 

which we describe hereinafter: 

 classifyCell: Classifies the parsed cell <key> into the cell 

library dictionary and returns the correct position of the 

dictionary that the cell structure should be stored. 

 readSlewDelay: Collects the fall/rise slew values and fall/rise 

delay values. 

 readFallRiseConst: Correspondingly to the previous 

function, parses the fall/rise constraints information 

contained in the line we examine. 
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 findCell: As its name states clearly, used to search through 

the parsed cell-types and locate the cell with the 

corresponding <key>. 

4.2. Interconnect Delay Calculation 

As aforementioned in Chapter 3, where we described the models, 

the basic instance of interconnect wire is a net, which basically 

consists of an input pin, namely port, and one or multiple output 

pins, namely taps and we illustrate it appropriately in Figure 8.  

INPUT: pin -> start of a net 

 
OUTPUT: delay/slew info @ the taps -> end nodes of a net 

 
BEGIN 

 
MAIN STEPS: 

 
-> Compute delay 

-> Compute slew 

-> Write delay/slew info to the corresponding nodes 

 
 
Elmore Delay Calculation using DFS algorithm: 
 

 Apply DFS to reach the taps 

 Store path in FIFO 

 for every FIFO(i) 

  if(branch root) 

   SUM(capacitances of the other branches) 

  dequeue() 

  SUM(cap*TOTAL(res)) 

 END for 

END 
 

SUM is a controlled addition using a stack, in order to sum up the 
correct resistances and capacitances (include only the on-path 
resistances) 

Algorithm 2: Main algorithm of interconnect delay calculation 

The computation of port-to-tap delays can be accurately 

performed through electrical simulation using a similar software 

like Synopsys™ HSpice simulator. Nevertheless, as we mentioned 

before we used a much simpler and adequately accurate model, 

the Elmore delay model. To provide you with an insight of our 
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approach, we demonstrate above the main steps of the algorithm 

we implemented. 

Besides the mathematical operations that are performed and are 

modeled in equations (11) – (20), we employed the DFS 

algorithm in order to reach the potential taps of a net wire and 

avoid multiple traversals of the same net to discover all the 

potential taps. As illustrated in Algorithm 3, we utilized a FiFo 

stack structure in order to store temporarily the discovered 

paths and then, recursively, proceed with the application of the 

mathematical operations on each path. 

4.3. Delay information propagation 

During this stage, we describe the process of propagating the 

delay information both forward (from primary inputs to the 

primary outputs) propagating arrival times as well as backwards 

(from primary outputs to the primary inputs) propagating 

required arrival time throughout the circuit. The procedure is 

based on the following steps: 

Step 1: Assign delay information to all timing arcs, 

while ignoring wire delays at the moment. 

 Step 2: Perform forward arrival time propagation. 

Step 3: Perform backwards required arrival time 
propagation. 

All of the above steps are based on an algorithm created on top 

of breadth-first-search (BFS) algorithm, which is a mainstream 

strategy in graph theory for searching in a graph. The BFS 

begins at a root node and inspects all of its adjacent nodes. 

Thereafter, for each of these adjacent nodes, it inspects in turn 

their neighbor nodes which are unvisited, and so on. The 

characteristics of this method provide an obvious explanation for 

the suitability on the task that we utilize a BFS-like algorithm. 

Providing as input a graph 𝐺 and a root 𝑣 of 𝐺 , the following 

algorithm implements the BFS algorithm: 
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procedure BFS(G,v) is 
    create a queue Q 
    create a set V 
    enqueue v onto Q 
    add v to V 
    while Q is not empty loop 
        t ← Q.dequeue() 
        if t is what we are looking for then 
            return t 
        end if 
        for all edges e in G.adjacentEdges(t) loop 
            u ← G.adjacentVertex(t,e) 
            if u is not in V then 
                add u to V 
                enqueue u onto Q 
            end if 
        end loop 
    end loop 
    return none 
end BFS 

Algorithm 3: Breadth-first search algorithm 
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4.4. Monte Carlo Simulations 

Following the steps we described above, intervenes the statistical 

aspect of our approach, through the Monte Carlo simulations. 

After calculating and propagating all the delay information 

throughout the timing graph we apply the Monte Carlo 

simulations procedure in order to model the variation on the 

deterministic values we estimated previously. 

Monte Carlo implies the utilization of random numbers in 

scientific computing. To be more specific, it implies the 

utilization of random numbers to compute something that is not 

random. For example, let 𝑋 be a random variable and denote its 

expected value as 𝐴 = 𝐸[𝑋] . Provided that we can generate 

𝑋1, … , 𝑋𝑛 , 𝑛  independent random variables with the same 

distribution, then we can make the approximation: 

𝐴 ≈ �̂�𝑛 =
1

𝑛
∑ 𝑋𝑘

𝑛

𝑘=1

 

The strong law of large numbers [33] states that �̂�𝑛 → 𝐴 as → ∞ . 

The 𝑋𝑘  and �̂�𝑛  are random and (depending on the random 

number generator that is utilized) could be different every time 

we run the program. Nevertheless, the target number, 𝐴, is not 

random. 

We will emphasize at this point to the distinction between 

Monte Carlo and simulation. Simulation implies producing 

random variables with a certain distribution just to examine 

them. The reason for this distinction is that there may be other 

ways to define 𝐴 that make it easier to estimate. This process, is 

called variance reduction, since most of the error in �̂�  is 

statistical. By reducing the variance of �̂� we achieve also the 

reduction of the statistical error. 

We often have a choice between Monte Carlo and deterministic 

methods. Although this sounds appealing, the general rule is 

that deterministic are better than Monte Carlo in any situation 

where the deterministic method is a viable option. 

This leads to the conclusion that quite often, we are driven to 

resort to Monte Carlo due to the “curse of dimensionality”. This 

curse, insinuates that the work to solve a multi-dimensional 

problem may grow exponentially with the dimension. Suppose, 

for example, that we want to compute an integral over ten 

variables, an integration in ten dimensional space. Supposing 

that we attempt to approximate the integral using twenty points 

in each coordinate direction, the total number of integration 
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points would be 2010 ≈ 1013 , which is on the edge of what a 

computer is able to calculate in a whole day. For the same 

example, Monte Carlo could reach the same accuracy with 

approximately, say, 106 points. 

One beneficial feature of Monte Carlo is that it is possible to 

estimate the order of magnitude of statistical error, which is the 

dominant error in most Monte Carlo computations. Another 

advantageous characteristic of Monte Carlo is that simple but 

clever ideas can lead to immense practical improvements in 

efficiency and accuracy. Hence, to rephrase what we stated 

earlier, while 𝐴 is given, the algorithm for estimating it is not. 

Therefore, the quest for more accurate alternative algorithms is 

often called “variance reduction”, with the most common 

variance reduction technique being importance sampling [34]. 

4.5. Output Handling 

For the sake of simplicity, we encourage the more thorough 

reader to address the Appendix A.3. for more insight on the 

output files format, as it is beyond the purposes of this work to 

go to deep with technical details. 
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5. Evaluation and Conclusion 

5.1. Computational Infrastructure 

The variation aware timing analysis tool of this thesis project 

was developed and evaluated on a machine with the following 

specifications: 

 Intel® Core™ i7-3770 CPU @ 3.40GHz, 8MB cache 

memory and integrated graphics processor Intel® HD 

Graphics 4000 

 8GB of RAM 

The installed software that was utilized: 

 Kubuntu 14.04 LTS (Trusty Tahr), 64-bit 

 Gcc 4.9.0 20140422 

 Eclipse CDT (C/C++ Development Tooling) 8.4.0, 64-bit 

5.2. Evaluation 

In this section, we present the features of the tool we developed 

in this master thesis project, by initially outlining the test cases 

we utilized and afterwards provide some experimental results in 

order to demonstrate the basic uses of our tool. As an important 

remark, we should point out that in any variation-aware 

approach, the runtime of the process is not the key metric and 

this is the reason we neglect it during the evaluation. 

We selected various benchmarks amongst the ISCAS 

benchmarks, like the c499 and the s400. We picked specific 

primary output nodes from the c499 benchmark, to perform 

yield estimation (by calculating the 𝑎𝑡 and 𝑠𝑙𝑒𝑤 at the specified 

node) and random internal nodes from s400, s27 and other 

suitable benchmarks to examine slack violations. 

We set the yield percentage at 95%. The function that is 

illustrated as the label for the y-axis in Figure 14, is the formula 

for the normal distribution, parametrized in terms of the mean 

and the variance: 

𝑓(𝑥; 𝜇, 𝜎2) =
1

𝜎√2𝜋
𝑒−

1

2
(

𝑥−𝜇

𝜎
)2
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Benchmark Node Op. Mode Transition Metric 

c499 nod23 late fall at 
 

 

 

Figure 14: Yield estimation for nod23 of c499 (at)  

 

 

Figure 15: Yield estimation for nod23 of c499 using the CDF 

 

 

In the same manner as illustrated above, we estimate yield in 

another node of the c499 benchmark: 
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Benchmark Node Op. Mode Transition Metric 

c499 nod30 late fall at/slew 

 

 

Figure 16: Yield estimation for nod30 of c499 (at) 

 

Figure 17: Yield Estimation for nod30 of c499 using CDF 
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For nod30, we will demonstrate that it is possible to also use 

slew in order to estimate the yield: 

 

Figure 18: Yield Estimation for nod30 of 499 (slew) 

 

Figure 19: Yield Estimation for nod30 of c499 using CDF (slew) 
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At this point we should note that we can easily estimate the 

total yield from both at and slew metrics by selecting the 

minimum yield as the total. Generally, for all the metrics we 

could possible take into consideration for yield estimation we can 

say that: 

𝑇𝑜𝑡𝑎𝑙𝑦𝑖𝑒𝑙𝑑 = 𝑚𝑖𝑛(𝑜𝑓 𝑎𝑙𝑙 𝑚𝑒𝑡𝑟𝑖𝑐𝑠) 

We now proceed to examine slack violations, or also known as 

setup/hold time violations (as we described in Chapter 1), 

depending on the operation mode, late or early respectively. We 

examined some of the ISCAS that include filp-flops in order to 

check the slacks, such as s400, s27 and others. 

Benchmark Node Op. Mode Transition Metric 

s400, s27  Various early/late Fall/rise slack 

It is accustomed for designers to set a “blind” guardband in order 

to ensure that no setup or hold time violations will occur. This 

may be the safest path, nevertheless it is not always optimal, as 

it may be quite pessimistic. 

After evaluating the slack information we obtained at many 

different nodes of various benchmarks, for both early and late 

operational mode, we came to the conclusion that there is no 

need for us to set a “blind” guardband as the worst-case 

hypothesis we used in the evaluation: 

𝑊𝑂𝑅𝑆𝑇𝐶𝐴𝑆𝐸 = (𝑀𝐸𝐴𝑁 + 3 ∗ 𝑆𝐼𝐺𝑀𝐴) 

is a realistic hypothesis. We came to this conclusion after 

converging to the same probability, resulting from the CDF 

application on our hypothesis for every particular node (namely 

99,9% or more precisely 99,87%) using the slack information we 

acquired through the examination of every benchmark netlist. 

5.3. Future Work 

Deterministic STA has developed enormously over the last two 

decades and handles several technology-scaling-related issues, 

like resistive and inductive shielding, crosstalk noise, clock skew 

and many more. However most researchers have, up to now, 

concentrated on the basic statistical timing analysis operations, 

the 𝑠𝑢𝑚  and 𝑚𝑎𝑥/𝑚𝑖𝑛  operations required for propagating the 

delay information through the timing graph. 

As far as our own research plan is to innovate and expand the 

current approach. Our primary goal will not differ from the 
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current trend, which as we mentioned is to improve the accuracy 

and execution runtime of our tool. This will be pursued by 

parallelizing the most demanding operations, which are, as 

described earlier, the 𝑠𝑢𝑚 and the 𝑚𝑖𝑛/𝑚𝑎𝑥 operations that take 

place during the delay information propagation both forward and 

backwards through the timing graph. This can be achieved by 

implementing our algorithm using state-of-the-art parallel 

programming techniques such as CUDA and hence utilizing 

GPU cores for these fundamental operations. 

Another goal that will be pursued and that potentially would 

widen the horizons for our work, is the adaptation of our 

approach with the view to process industrial standard cell 

libraries. An expansion like this would mean eventually that we 

will be able to statistically approximate even better to real 

conditions by completing the following two individual tasks: 

I. Build empirical models for performance functions based on 

the insight gained from data analysis of cell performance 

functions for several standard industrial cell libraries. This 

will help to determine the optimal polynomial order for 

each variation parameter to find the general form of a 

compact performance function. 

II. Formally classify transition waveforms based on the 

statistical analysis of switching transitions for several 

standard industrial cell libraries. The anticipated results 

can be used to speed up vastly our timing analysis engine 

considering real waveform shapes based on lookup tables. 

This research aspect could potentially change the way 

timing analysis is performed by enabling simulation at a 

higher level of abstraction, with the accuracy of circuit-

level simulation. The main applications could be statistical 

performance simulation as well as variation-aware 

placement and routing. 

 In general, we could say that the fundamental challenge that 

SSTA research community has to face, is to prove itself worthy 

of the trust of both the designers as well as of the EDA-tools 

major companies. In other words, it is the duty of the research 

community to bring variation aware timing analysis to maturity. 

5.4. Conclusion 

Statistical timing analysis has gained extensive interest in recent 

years. Various research findings have been published and at the 

same time commercial efforts are underway. Nevertheless, the 

obstructions to widespread adoption of statistical approaches in 

industry remain challenging. The main issue is that even the 

current state-of-the-art variation-aware timing analysis methods 
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still do not address many of the issues that are taken for granted 

in traditional deterministic static timing analysis. 

In this diploma thesis project, we focused on the process 

variations that impact the procedure of timing analysis, we 

classified and then review some previous approaches in variation 

aware timing analysis. Later, we described the models and the 

implementation stages of the tool we developed for timing 

analysis under process variations. The novel element of our 

method is the extensive use of a BFS-based algorithm during the 

stage of arc-delay-information propagation as well as the use of 

DFS algorithm through the interconnect delay calculation phase, 

in order to minimize the iterations that were necessary so as to 

discover all the paths included in the specific net. Finally, we 

evaluated the results of our approach, by estimating the yield on 

certain nodes of the benchmark netlists. Another evaluation 

metric we used to verify the validity of our implementation, was 

the examination of slack constraints violations by applying a 

worst-case slack estimation based on the slack information we 

gathered. We came to the conclusion thanks to the experimental 

results, that our approach to determine the worst case at 𝑚𝑒𝑎𝑛 +

3 ∗ 𝑠𝑖𝑔𝑚𝑎 was a successful choice by estimating nearly the optimal 

worst case. 
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Appendix 

A.1. Input Files Formats 

 

Netlist File 

In this appendix, we introduce to the reader some more practical 

issues concerning the tool developed for this diploma thesis 

project. As an introduction to this process, we provide you an 

insight to the input files’ structure. 

Firstly, we will break down the netlist file, which as we 

mentioned before, encloses the description of the circuit 

topology: 

input <node> 
output <node> 
instance <cell name> <pin name>:<node> ... <pin name>:<node> 
wire <post node> <tap node> ... <tap node> 
 res <node> <node> <resistance> 
 ... 
 cap <node> <capacitance> 
 ... 
slew <node> <slew fall> <slew rise> 
clock <node><period> 
at <node> <at fall early> <at fall late> <at rise early> <at rise late> 
rat <node> <mode of operation> <rat fall> <rat rise> 

 

The keywords included in this netlist type files are the following: 

 input, primary input node; 

 output, primary output node; 

 instance, cell instance; 

 wire, interconnect net; 

 res, cap, resistor and capacitor of a parasitic 𝑅𝐶  tree 

(possible to appear in any order); 

 slew, input slew at the primary inputs; 

 clock, clock input constraint (only used for primary input 

nodes); 

 at, arrival time constraint (only used for primary input 

nodes); 
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 rat, required arrival time constraint. 

The corresponding variable fields denoted in the above generic 

netlist file are presented below: 

 <node>, <port node> and <tap node> are node names, of 

up to 64 characters, which can contain alphanumeric 

characters, the underscore or the dash (the first character 

must be a letter); 

 <cell name> is the name of the library cell (exactly as it 

will appear in the cell library file), of up to 32 

alphanumeric characters (the first character must be a 

letter); 

 <pin name> is the name of a pin of the cell (exactly as it 

will appear in the cell library file), of up to 32 

alphanumeric characters; 

 <resistance> is the value of the resistance in Ohm, 

represented in scientific notation; 

 <capacitance> is the value of the capacitance in Farad, 

represented in scientific notation; 

 <slew fall> and <slew rise> are the fall and rise of the 

corresponding primary input, in seconds, represented in 

scientific notation. Early and late slews at the inputs are 

assumed to be identical; 

 <period> is the clock period in seconds, denoted in 

scientific notation; 

 <at fall early>, <at fall late>, <at rise early> and 

<at rise late> are real numbers, represented in scientific 

notation, which represent arrival time constraints for 

fall/rise transitions in early/late mode, at the primary 

inputs (in seconds); 

 <mode of operation> is the mode of operation and can be 

either early or late; 

 <rat fall> and <rat rise> are real numbers, represented 

in scientific notation, which represent required arrival time 

constraints for fall/rise transitions and early/late mode in 

seconds. 

It should be noted that if no input slew is defined for any 

primary input, we assumed 1𝑒 − 12 , for both fall and rise 

transitions. The designs described in any netlist of this form, will 

have only one clock input pin (one clock domain) at most. 
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Cell Library File 

Alongside the netlist file we present the format of the cell library 

file, which includes the timing information of any cell used and is 

formatted as described as follows: 

metal <sigma corner> <resistance scale factor> <capacitance scale factor> 
 ... 
cell <cell name> 
 pin <pin name> input <fall capacitance> <rise capacitance> 
 pin <pin name> output 
 pin <pin name> clock <fall capacitance> <rise capacitance> 
 ... 
 timing <input pin name> <output pin name> <timing sense> \ 
     <fall slew> <rise slew> <fall delay> <rise delay> 
 setup <clock pin name> <input pin name> <edge type> \ 
    <fall constraint> <rise constraint> 
 hold <clock pin name> <input pin name> <edge type> \ 
   <fall constraint> <rise constraint> 
 preset <input pin name> <output pin name> <edge type> <slew> <delay> 
 clear <input pin name> <output pin name> <edge type> <slew> <delay> 

 

In accordance to the presentation we provided for the netlist file, 

we describe below the keywords and the variable fields utilized 

in the cell library files. Firstly, the keywords: 

 metal, metal parameters scalars at specific sigma corners; 

 cell, start of cell definition; 

 pin, start of pin definition; 

 input, output and clock, pin type; 

 timing, delay; 

 setup, setup time; 

 hold, hold time; 

 preset, preset time (output node is set to high); 

 clear, clear time (output node is set to low). 

Similarly to the netlist file presentation, we exemplify the 

variables presented in the above generic cell library file: 

 <sigma corner> is the sigma corner value (𝜎 ) of metal 

parameter 𝛥𝛭  for which resistance and capacitance scale 

factors are provided; 
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 <resistance scale factor> is the value (𝑚𝑅
𝜎) by which the 

nominal interconnect resistance provided in the netlist 

should be scaled at the given metal sigma corner; 

 <capacitance scale factor> is the value (𝑚𝐶
𝜎 ) by which 

the nominal interconnect capacitance provided in the 

netlist should be scaled at the given metal sigma corner; 

 <cell name> is the name of the cell, of up to 32 characters 

in length, which can contain solely alphanumeric 

characters; 

 <pin name> is the name of a pin of the cell, of up to 32 

characters in length, which can contain exclusively 

alphanumeric characters, also; 

 <fall capacitance> and <rise capacitance> are values of 

the pin’s input capacitances in Farad, for rise/fall 

transitions, represented in scientific notation; 

 <input pin name>, <output pin name> and <clock pin 

name> are the names of the input, output and clock pins 

respectively, of a given delay or constraint specification, of 

up to 32 characters in length, which is allowed to contain 

(once more) only alphanumeric characters; 

 <timing sense>, can be any of: 

o positive_unate, transition direction is preserved 

from input to output (rise → rise, fall → fall); 

o negative_unate, transition direction is reversed from 

input to output (rise → fall, fall → rise); 

o non_unate, transition direction cannot be presumed 

from a single input (take the worst, among rise/fall); 

 <slew>, <fall slew>, <rise slew>, are each given by 9 real 

numbers separated by white spaces, which match the 

parameters 𝑥, 𝑦, 𝑧, 𝑘𝑠,𝑣, 𝑘𝑠,𝑡, 𝑘𝑠,𝑙, 𝑘𝑠,𝑤, 𝑘𝑠,ℎ, and 𝑘𝑠,𝑟 of equation 

calculating 𝑆𝑜 (fall/rise refers to the transition direction in 

the output pin); 

 <delay>, <fall delay> and <rise delay>, are each given 

by 9 real numbers separated by white spaces, which 

correspond to the parameters 𝑎, 𝑏, 𝑐, 𝑘𝑑,𝑣, 𝑘𝑑,𝑡, 𝑘𝑑,𝑙, 𝑘𝑑,𝑤, 𝑘𝑑,ℎ, 

and 𝑘𝑑,𝑟 of equation computing 𝐷; 

 <edge type>, can be one of: 

o falling, constraint that applies to the falling clock 

edge; 

o rising, constraint applying to the rising clock edge; 
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 <fall constraint> and <rise constraint> are each given 

by three real numbers separated by white spaces, which 

correspond accordingly to the parameters 𝑔 , ℎ  and 𝑗  of 

equation for the 𝑡𝑠𝑒𝑡𝑢𝑝 or 𝑚, 𝑛 and 𝑝 of the equation for the 

𝑡ℎ𝑜𝑙𝑑 , depending whether we are dealing with setup 

constraints or hold constraints, respectively; 

We should note that both preset and clear values are 

represented for entirety and are ignored for the timing analysis 

approach we propose. 
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A.2.  Example Input Files 

The netlist file which includes the circuit topology is formatted 

as follows: 

input in_1 
input in_2 
input in_3 
input in_4 
output out 
instance AND2X1 A:in_1 B:in_2 Y:w 
instance XOR2X1 A:u B:in_4 Y:v 
instance NOR2X1 A:k B:h Y:out 
wire w k 
 res w r 0.355 
 cap r 1.23423e-13 
 res r k 0.7884 
 cap h 0.8e-14 
wire v h 
 res v h 0.5 
 cap h 1.37e-13 
wire in_3 u 
 res in_3 h 0.75 
 cap u 1.44e-13 
at in_1 0 0 0 0 
at in_2 0 0 0 0 
at in_3 0 0 0 0 
at in_4 0 0 0 0 
rat k late 1e-13 2e-13  

In the next figure (Figure 14), we illustrate the example circuit 

that is described in the above netlist. 

 

Figure 20: Example circuit 
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And the cell library file: 

metal 0 1.0 1.0 
metal 3 0.85 1.24 
cell AND2X1 
  pin A input 5.14e-16 5.34e-16 
  pin B input 5.35e-16 5.7e-16 
  pin Y output 
  timing A Y positive_unate 4.78193e-12 4807.29 0.000196751 -0.00602524 

0.00585616 0.00021047 -0.0000985957 0.000195775 0.00019961 6.88656e-12 
11138.6 0.0000843378 -0.012127 0.037587 0.000227912 -0.0000493878 
0.0000838057 0.00019257 6.25087e-11 6032.36 0.00247343 -0.0026644 
0.00159043 0.0000694437 -0.00371931 0.0000911961 0.000157218 5.56981e-11 
11789 -0.000183877 -0.003468 0.00371931 0.0000911961 -0.00012835 
0.00023857 0.00022949 

timing B Y positive_unate 5.98666e-12 4868.63 0.000112529 -0.0055235 
0.00511724 0.000158928 -0.000179324 0.0000354006 0.000151742 6.69766e-12 
11142.7 0.0000819104 -1.23305 0.03842 0.0000047514 -0.0000607217 
0.0000343079 0.00020144 7.51493e-11 6005.01 0.00261237 -0.00222054 
0.00135711 0.0000391698 -0.000100236 0.0000324476 0.0000272022 
5.93502e-11 11798.7 -0.000224446 -0.0039269 0.00354033 0.000249731 
-0.0000545642 0.000128233 0.000209778 

cell XOR2X1 
  pin A input 4.15e-16 4.35e-16 
  pin B input 4.34e-16 4.7e-16 
  pin Y output 
  timing A Y non_unate 5.78193e-12 5807.29 0.000196741 -0.00602425 0.00484616 

0.00021057 -0.0000984947 0.000194774 0.00019961 6.88646e-12 11138.6 
0.0000853378 -0.012127 0.0374874 0.000227912 -0.0000593878 0.0000838047 
0.00019247 6.24087e-11 6032.36 0.00257353 -0.0026655 0.00149053 
0.0000695537 -0.000138592 0.000119359 0.000147218 4.46981e-11 11789 

    -0.000183877 -0.003568 0.00371931 0.0000911961 -0.00012834 0.00023847 
0.00022959 

  timing B Y non_unate 4.98666e-12 5868.63 0.000112429 -0.0044234 0.00411725 
0.000148928 -0.000179325 0.0000345006 0.000141752 6.69766e-12 11152.7 
0.0000819105 -0.0123304 0.03852 0.0000057415 -0.0000607217 0.0000353079 
0.00020155 7.41593e-11 6004.01 0.00261237 -0.00222045 0.00134711 
0.0000391698 -0.000100236 0.0000325576 0.0000272022 4.93402e-11 11798.7 
-0.000225556 -0.0039269 0.00345033 0.000259731 -0.0000454652 0.000128233 
0.000209778 

cell NOR2X1 
  pin A input 5.13e-16 5.33e-16 
  pin B input 5.35e-16 5.7e-16 
  pin Y output 
  timing A Y negative_unate 3.78193e-12 3807.29 0.000196761 -0.00602623 

0.00686616 0.00021037 -0.0000986967 0.000196776 0.00019961 6.88666e-12 
11138.6 0.0000833378 -0.012127 0.0376876 0.000227912 -0.0000393878 
0.0000838067 0.00019267 6.26087e-11 6032.36 0.00237333 -0.0026633 
0.00169033 0.0000693337 -0.000138392 0.000119339 0.000167218 6.66981e-11 
11789 -0.000183877 -0.003368 0.00371931 0.0000911961 -0.00012836 
0.00023867 0.00022939 

timing B Y negative_unate 6.98666e-12 3868.63 0.000112629 -0.0066236 
0.00611723 0.000168928 -0.000179323 0.0000363006 0.000161732 6.69766e-12 
11132.7 0.0000819103 -0.012330 0.03832 0.0000037613 -0.0000607217 
0.0000333079 0.00020133 7.61393e-11 6006.01 0.00261237 -0.00222063 
0.00136711 0.0000391698 -0.000100236 0.0000323376 0.0000272022 
6.93602e-11 11798.7 -0.000223336 -0.0039269 0.00363033 0.000239731 
-0.0000636632 0.000128233 0.000209778 
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A.3.    Output File Format  

at <node> <at early fall> <at early rise> <at late fall> 
<at late rise> <slew early fall> <slew early rise> 
<slew late fall> s<slew late rise> 

... 
slack <node> early <slack early fall> <slack early rise> 
slack <node> late <slack late fall> <slack late rise> 
... 

All numerical results will be given in seconds and printed 

scientific notation, with 5 decimal places (eg. 1.23456𝑒 − 10). 
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