

University of Thessaly
School of Engineering

Department of Electrical
and Computer Engineering

“Study of Timing Analysis of

Digital Integrated Circuits under

Process Variation”

Diploma Thesis Project

Athanasios G. Koltsidas

Supervisors:
Georgios Stamoulis

Professor

University of Thessaly

Nestor Evmorfopoulos

Assistant Professor

University of Thessaly

Πανεπιστήμιο Θεσσαλίας
Πολυτεχνική Σχολή

Τμήμα Ηλεκτρολόγων Μηχανικών

και Μηχανικών Υπολογιστών

«Μελέτη Ανάλυσης Χρονισμού

Ολοκληρωμένων Ψηφιακών Κυκλωμάτων

υπό την Επίδραση της Διακύμανσης

Κατασκευαστικών Παραμέτρων»

Διπλωματική Εργασία

Αθανάσιος Γ. Κολτσίδας

Επιβλέποντες Καθηγητές:

Γεώργιος Σταμούλης
Καθηγητής

Πανεπιστήμιο Θεσσαλίας

Νέστωρ Ευμορφόπουλος
Επίκουρος Καθηγητής

Πανεπιστήμιο Θεσσαλίας

Εγκρίθηκε από τη διμελή εξεταστική επιτροπή την 11/7/2014

………………………………… …………………………………

 Γεώργιος Σταμούλης Νέστωρ Ευμορφόπουλος

 Καθηγητής Επίκουρος Καθηγητής

Διπλωματική εργασία για την απόκτηση του Διπλώματος του Μηχανικού

Ηλεκτρονικών Υπολογιστών, Τηλεπικοινωνιών και Δικτύων του

Πανεπιστημίου Θεσσαλίας, στα πλαίσια του Προγράμματος Προπτυχιακών

Σπουδών του Τμήματος Ηλεκτρολόγων Μηχανικών και Μηχανικών Η/Υ

του Πανεπιστημίου Θεσσαλίας.

……………………………

Αθανάσιος Κολτσίδας

Διπλωματούχος Μηχανικός Ηλεκτρονικών Υπολογιστών, Τηλεπικοινωνιών

και Δικτύων του Πανεπιστημίου Θεσσαλίας

Copyright © Athanasios Koltsidas, 2014

Με επιφύλαξη παντός δικαιώματος, All rights reserved.

Απαγορεύεται η αντιγραφή, αποθήκευση και διανομή της παρούσας

εργασίας, εξ ολοκλήρου ή τμήματος αυτής, για εμπορικό σκοπό.

Επιτρέπεται η ανατύπωση, αποθήκευση και διανομή για σκοπό μη

κερδοσκοπικό, εκπαιδευτικής ή ερευνητικής φύσης, υπό την προϋπόθεση

να αναφέρεται η πηγή προέλευσης και να διατηρείται το παρόν μήνυμα.

Ερωτήματα που αφορούν τη χρήση της εργασίας για κερδοσκοπικό σκοπό

πρέπει να απευθύνονται προς το συγγραφέα.

5

Table of Contents

Table of Contents ... 5

List of Figures .. 7

List of Acronyms ... 8

List of Algorithms .. 9

Acknowledgments ... 10

Ευχαριστίες .. 12

Abstract... 14

Περίληψη .. 15

1. Introduction ... 17

1.1. Problem Description and Challenges 20

1.2. Previous Work ... 24

1.3. Outline... 26

2. Timing Analysis ... 27

2.1. STA in Design Flow .. 27

2.2. Variation Aware Timing Analysis 28

2.3. Sources of Variation and Sensitivity 30

3. Models and Representation 35

3.1. Interconnect .. 35

3.2. Combinational Cells ... 38

3.3. Flip-Flops ... 40

4. Stages of Implementation .. 43

4.1. Netlist and Cell Library Parsing 44

4.2. Interconnect Delay Calculation 46

4.3. Delay Information Propagation 47

4.4. Monte Carlo Simulations ... 49

4.5. Output Handling ... 50

6

5. Evaluation and Conclusion 51

5.1. Computational Infrastructure 51

5.2. Evaluation .. 51

5.3. Future Work ... 55

5.4. Conclusion.. 56

References .. 58

Appendix... 61

A.1. Input Files Formats .. 61

A.2. Example Input Files ... 66

A.3. Output File Format .. 68

7

List of Figures

Figure 1: Circuit and circuit element characterization 17

Figure 2: Example circuit (a) and its timing graph (b) 20

Figure 3: PDF and CDF .. 21

Figure 4: Timing analysis in the design flow 27

Figure 5: Steps of the design procedure and the resulting timing

uncertainties .. 31

Figure 6: Parameter variations domino effect.................................... 32

Figure 7: Taxonomy of process variations .. 33

Figure 8: Interconnection representation ... 35

Figure 9: Modified RC tree for computing the second moment of

impulse response ... 37

Figure 10: Combinational cell illustration .. 39

Figure 11: Flip-flop description ... 40

Figure 12: Signal propagation between two flip-flops 41

Figure 13: Flowchart including the steps we followed during the

approach proposed .. 43

Figure 14: Yield estimation for nod23 of c499 (at) 52

Figure 15: Yield estimation for nod23 of c499 using the CDF 52

Figure 16: Yield estimation for nod30 of c499 (at) 53

Figure 17: Yield Estimation for nod30 of c499 using CDF 53

Figure 18: Yield Estimation for nod30 of 499 (slew) 54

Figure 19: Yield Estimation for nod30 of c499 using CDF (slew) 54

Figure 20: Example circuit ... 66

8

List of Acronyms

AT Arrival Time

BDD Binary Decision Diagram

BFS Breadth-First Search

CDF Cumulative Distribution Function

CDT C/C++ Development Tooling

CPU Central Process Unit

DAG Directed Acyclic Graph

DFS Depth-First Search

DSTA Deterministic Static Timing Analysis

EDA Electronic Design Automation

FiFo First in, First out

GCC GNU Compiler Collection

IC Integrated Circuit

LTS Long Term Support

PDF Probability Density Function

RAT Required Arrival Time

RC Resistance Capacitance

RV Random Variable

SSTA Statistical Static Timing Analysis

STA Static Timing Analysis

VLSI Very-Large-Scale Integration

9

List of Algorithms

Algorithm 1: Netlist parser main function

Algorithm 2: Breadth-First Search algorithm

Algorithm 3: Interconnect delay calculation
algorithm

10

Acknowledgments
As this long journey as an undergraduate student draws to an

end, I would like to seize the opportunity and acknowledge the

people who helped me and supported me throughout this process

and made my academic years in Volos interesting, illuminating

but also quite joyful.

First of all, I would like to thank my advisor, Professor George

Stamoulis for his encouragement, support and insight. Through

our perennial relationship since I was a freshman, I obtained

knowledge not only related to the field of Computer Science, but

also the wisdoms of life. The blessing, help and guidance

provided by him from time to time shall carry me a long way in

the journey of life on which I am about to embark.

My deepest gratitude is due to the co-advisor, Assistant

Professor Nestoras Evmorfopoulos, without whose knowledge

and assistance this thesis project would not have been successful.

Furthermore, I am so grateful to all the graduate students in the

VEDA Labs, for making the group a dream-place to work.

Special thanks are in line to Babis Antoniadis and Panagiotis

Giannakou who stood by me throughout my undergraduate

studies not only as invaluable contributors but also as precious

friends. Last but not least, I am deeply thankful to Konstantis

Daloukas for his tireless aid and for his kindness and tolerance

throughout our coexistence in VEDA Labs. He became during

the last years of my studies one of the closest collaborators as

well as a trusted and consistent friend.

I would also like to express my truehearted appreciation to my

closest friends in life, Michalis, George, Noah and Giorgos for

their love and encouragement. My life would be much less joyful

and interesting without her, so I owe to my person, Marina, all

my gratefulness for providing the smile and warmth to my

everyday life and I am truthfully thankful for that.

Finally, I would like to thank my parents, my sister and my

brother, for their uninterrupted support and trust, their loyalty,

their unconditional love and most of all their patience. I would

be nothing without them and I will always keep them in the

most special place in my heart. My eternal gratitude is due to

my parents for providing me everything and for being present in

all the important events of my life. I own a lot of thanks

especially to my father, who triggered my competitive nature

from early in my life and condemned me never to settle, to

endlessly strive to excel in all the aspects of my life. Lastly, I

could not even express in words all the sacrifices my mother had

to make in personal time and hard work in order to be successful

in her profession, but also as a mother and wife. She will always

11

be a role model for me for her hard-working nature and her

resourcefulness.

12

Ευχαριστίες

Καθώς αυτό το μακρύ ταξίδι ως προπτυχιακός φοιτητής φτάνει στο τέλος

του, δράττομαι της ευκαιρίας να ευχαριστήσω τους ανθρώπους που με

στήριξαν και με βοήθησαν καθ’ όλη τη διάρκεια αυτής της διαδικασίας

και γέμισαν τα χρόνια μου στο Βόλο με χαρούμενες και ενδιαφέρουσες

στιγμές κι εμπειρίες.

Αρχικά, θα ήθελα να ευχαριστήσω τον επιβλέποντα της διπλωματικής

μου, Καθηγητή κ. Γιώργο Σταμούλη για την υποστήριξη και την αρωγή

του. Μέσα από τη μακρόχρονη επαφή μαζί του από το πρώτο έτος των

σπουδών μου, απέκτησα γνώσεις τόσο σχετιζόμενες με την Επιστήμη των

Υπολογιστών καθώς και εμπειρίες σχετιζόμενες με τη ζωή εν γένει. Η

βοήθειά και η καθοδήγηση που μου παρείχε κατά καιρούς στη φοιτητική

μου ζωή είναι εφόδια που θα με συνοδεύουν στην μετέπειτα πορεία της

ζωής μου.

Θα ήθελα επίσης να ευχαριστήσω από τα βάθη της καρδιάς μου τον

δεύτερο επιβλέποντα της διπλωματικής μου, Επίκουρο Καθηγητή κ.

Νέστορα Ευμορφόπουλο, χωρίς τις γνώσεις και τη βοήθεια του οποίου η

διπλωματική εργασία αυτή δε θα μπορούσε να στεφθεί με επιτυχία.

Επιπροσθέτως, δε θα μπορούσα να μην εκφράσω την ευγνωμοσύνη μου

προς όλους τους μεταπτυχιακούς και διδακτορικούς φοιτητές στο

Εργαστήριο Ηλεκτρονικής, οι οποίοι κατέστησαν το εργαστήριό μας το

ιδανικό εργασιακό περιβάλλον. Ειδικότερα, θα ήθελα να ευχαριστήσω

τους μεταπτυχιακούς φοιτητές Μπάμπη Αντωνιάδη και Παναγιώτη

Γιαννακού, οι οποίοι στάθηκαν δίπλα μου ως ανεκτίμητης αξίας

συνεργάτες και φίλοι. Επίσης, να εκφράσω τις ευχαριστίες μου και στον

διδάκτορα του Τμήματος Ηλεκτρολόγων Μηχανικών & Μηχανικών Η/Υ

Κωνσταντή Νταλούκα για την αδιάκοπη βοήθεια, την ευγένεια και την

ανοχή του καθ’ όλη τη διάρκεια της συνύπαρξής μας στο εργαστήριο.

Μετά το πέρας των σπουδών μου νιώθω ότι πέρα από έναν στενό

συνεργάτη, κέρδισα έναν καλό κι έμπιστο φίλο.

Θα ήθελα επίσης να πω ένα τεράστιο και ειλικρινές ευχαριστώ στους

φίλους μου, το Μιχάλη, το Γιώργο, το Νώε και το Γιώργο, για την αγάπη

και την συμπαράστασή τους όλα αυτά τα χρόνια. Η ζωή μου θα ήταν πολύ

λιγότερο ενδιαφέρουσα και ευχάριστη εάν δεν είχαμε συναντηθεί,

χρωστάω λοιπόν στον άνθρωπό μου, στη Μαρίνα, την αναγνώριση για όλα

όσα μου παρείχε, το χαμόγελο και την κατανόηση στην καθημερινότητά

μου, πράγματα που τόσο πολύ χρειαζόμουνα και γι’ αυτό την ευχαριστώ.

Τέλος, θα ήθελα να ευχαριστήσω την οικογένεια μου, τα αδέρφια μου και

τους γονείς μου, για τη συνεπή στήριξη και την εμπιστοσύνη τους, την

13

πίστη τους σε εμένα, την άνευ όρων αγάπη τους και κυρίως την υπομονή

τους. Χωρίς αυτούς δε θα ήμουνα τίποτα και για αυτό θα έχουν πάντα μια

ξεχωριστή θέση στην καρδιά μου. Χρωστάω αιώνια ευγνωμοσύνη στους

γονείς μου, οι οποίοι μου παρείχαν τα πάντα, βρισκόντουσαν εκεί σε όλα

τα σημαντικά γεγονότα της ζωής μου. Ειδική μνεία οφείλω στον πατέρα

μου Γιώργο, ο οποίος προκαλούσε πάντα την ανταγωνιστικότητά μου,

γεγονός που με οδήγησε στο να μη συμβιβάζομαι ποτέ και να προσπαθώ

αδιάκοπα για το καλύτερο σε όλους τους τομείς της ζωής μου. Κράτησα

για το τέλος το δυσκολότερο, καθώς δεν υπάρχουν λόγια για να

περιγράψω τις θυσίες και τη σκληρή δουλειά που η μητέρα μου

Αναστασία, κατέβαλε ώστε να καταφέρει να επιτύχει σε όλους τους ρόλους

που είχε αναλάβει, τόσο στο επάγγελμά της όσο και ως μητέρα και

σύζυγος. Θα είναι για πάντα ένα παράδειγμα προς μίμηση για τη σκληρή

δουλειά και την αυταπάρνηση που τη διακρίνει.

14

Abstract
Timing Analysis is an integral part of any integrated circuit (IC)

chip design-closure flow, and is utilized at several stages of the

flow, including pre/post-route timing optimization and timing

signoff. Even though accurate timing analysis is important, at

the same time the run-time of the analysis is evenly crucial with

growing chip design sizes and complexity (for example, growing

number of clocks domains, voltage islands etc.). Furthermore,

the rising importance of variability in the chip manufacturing

process along with environmental variability, demands the use of

variation aware techniques for chip timing analysis which

significantly affects the analysis run-time.

In this diploma thesis project, we study the process variation

parameters that impact the process of timing analysis, then we

categorize and review some previous approaches in variation

aware timing analysis. Next in line, we present the models and

the implementation stages of a tool we developed for timing

analysis under process variations. The innovative element of our

approach is the extensive use of a BFS-like algorithm during the

stage of arc-delay-information propagation as well as the use of

DFS algorithm through the interconnect delay calculation phase,

in order to minimize the iterations that were necessary so as to

discover all the paths included in the specific net. Finally, we

evaluate the results of our approach, by estimating the yield on

certain nodes of the benchmark netlists, utilizing their PDF and

CDF. Another evaluation metric we used to verify the validity of

our implementation, was the examination for slack constraints

violations by applying a worst-case slack estimation based on the

slack information we gathered.

Keywords: Timing Analysis; Variability; Process Variations;

Timing Graph; Yield Estimation; Slack Violation.

15

Περίληψη

Η Ανάλυση Χρονισμού αποτελεί αναπόσπαστο κομμάτι της διαδικασίας

σχεδίασης οποιουδήποτε ολοκληρωμένου κυκλώματος και

χρησιμοποιείται μάλιστα σε αρκετά από τα στάδια της σχεδίασης. Παρόλο

που μια ακριβής ανάλυση χρονισμού είναι ζωτικής σημασίας, ταυτόχρονα

ο χρόνος εκτέλεσης της ανάλυσης είναι εξίσου σημαντικό στοιχείο,

δεδομένου του συνεχώς αυξανόμενου μεγέθους και της πολυπλοκότητας

των αρχιτεκτονικών των ολοκληρωμένων κυκλωμάτων. Επιπλέον, η

αυξανόμενη σημασία της μεταβλητότητας στη διαδικασία παραγωγής

ολοκληρωμένων κυκλωμάτων σε συνδυασμό με την μεταβλητότητα

περιβάλλοντος, απαιτούν τη χρήση τεχνικών ανάλυσης χρονισμού που θα

λαμβάνουν υπόψη τη διακύμανση των παραμέτρων, η οποία επηρεάζει

σημαντικά το χρόνο εκτέλεσης της ανάλυσης.

Στη συγκεκριμένη διπλωματική εργασία, μελετούμε τις παραμέτρους οι

οποίες επηρεάζουν το στάδιο της ανάλυσης χρονισμού, κατηγοριοποιούμε

και στη συνέχεια εξετάζουμε μερικά παραδείγματα πρότερων εργασιών στο

συγκεκριμένο αντικείμενο έρευνας. Στη συνέχεια, παρουσιάζουμε τα

μοντέλα και τα στάδια της υλοποίησης του εργαλείου που υλοποιήσαμε.

Το πρωτότυπο στοιχείο της προσέγγισής μας είναι η εκτενής χρήση του

αλγορίθμου της θεωρίας γράφων Αναζήτησης κατά Πλάτος (BFS) κατά το

στάδιο της μετάδοσης της πληροφορίας για την καθυστέρηση των

στοιχείων του κυκλώματος, καθώς επίσης και η χρήση του αλγορίθμου

Αναζήτησης κατά Βάθος (DFS) στο στάδιο του υπολογισμού των

καθυστερήσεων καλωδίωσης του κυκλώματος. Τέλος, αξιολογούμε τα

αποτελέσματα της επίδοσης του εργαλείου που υλοποιήσαμε

επικεντρώνοντας στο yield που παρουσιάζουν συγκεκριμένοι κόμβοι που

εξετάσαμε από τα netlists, εφαρμόζοντας στις πληροφορίες καθυστέρησης

που λάβαμε κατά την ανάλυσή μας τη συνάρτηση πυκνότητας

πιθανότητας καθώς και την αθροιστική συνάρτηση κατανομής.

16

To my family & my friends

17

1. Introduction

Timing analysis, within Electronic Design Automation (EDA),

refers to the process of determining timing information as signal

transitions propagate throughout a digital circuit, commonly

described by a netlist of circuit elements. Every signal transition

that arrives at the input of a circuit element will be available at

its outputs some time later. Thus, each element introduces a

delay on signal transition propagation. Moreover, we assume

that signal transitions are defined by a slew. Circuit elements

alter the signal transitions at their inputs by modifying their

slew when shown at the outputs. A graphical representation of

the terms delay and slew are displayed in Figure 1.

Figure 1: Circuit and circuit element characterization

Arrival times (𝑎𝑡), represent the earliest or the latest moment in

time that a signal transition is about to reach a specific node in

the circuit, travelling from a circuit input. The meaning of the

arrival time depends on whether we consider the early or the

late mode. In early mode, we are interested in the earliest

moment that a signal transition can reach any given circuit

node. Vice versa, in late mode we are interested in the latest

moment that a signal transition can reach any given circuit

node. As a result, arrival times are determined by adding edge

delays throughout a specific path and computing the 𝑚𝑖𝑛 or 𝑚𝑎𝑥
(depending on the mode of operation we choose - early or late)

of such delays when they converge at a certain circuit node. For

instance, assuming 𝑎𝑡𝐴
𝑒𝑎𝑟𝑙𝑦

 and 𝑎𝑡𝐵
𝑒𝑎𝑟𝑙𝑦

 to symbolize the early

arrival times at pins 𝐴 and 𝐵 respectively of the circuit element

illustrated in Figure 1, then the early arrival time at the output

pin 𝑌 is calculated as follows:

18

𝑎𝑡𝑌
𝑒𝑎𝑟𝑙𝑦

= min(𝑎𝑡𝐴
𝑒𝑎𝑟𝑙𝑦

+ 𝑑𝐴𝑌, 𝑎𝑡𝐵
𝑒𝑎𝑟𝑙𝑦

+ 𝑑𝐵𝑌) (1) .

On the other hand, the late arrival time at the output pin 𝑌 will

be:

𝑎𝑡𝑌
𝑙𝑎𝑡𝑒 = max(𝑎𝑡𝐴

𝑙𝑎𝑡𝑒 + 𝑑𝐴𝑌, 𝑎𝑡𝐵
𝑙𝑎𝑡𝑒 + 𝑑𝐵𝑌) (2) .

Required arrival times (𝑟𝑎𝑡), are limits applied on the arrival

times in specified nodes of the circuit. These kind of limits are

usually imposed in order to secure appropriate circuit operation.

Again assuming either early or late mode, when a 𝑟𝑎𝑡 is defined

for a specific circuit node, the following restrictions must be

valid:

𝑎𝑡𝑒𝑎𝑟𝑙𝑦 ≥ 𝑟𝑎𝑡𝑒𝑎𝑟𝑙𝑦
 (3)

𝑎𝑡𝑙𝑎𝑡𝑒 ≤ 𝑟𝑎𝑡𝑙𝑎𝑡𝑒 (4)

Slacks (𝑠𝑙𝑎𝑐𝑘) are the disparity between arrival times and

required arrival times, and estimate how well the constraints of

𝑟𝑎𝑡 are met.

𝑠𝑙𝑎𝑐𝑘𝑒𝑎𝑟𝑙𝑦 = 𝑎𝑡𝑒𝑎𝑟𝑙𝑦 − 𝑟𝑎𝑡𝑒𝑎𝑟𝑙𝑦
 (5)

𝑠𝑙𝑎𝑐𝑘𝑙𝑎𝑡𝑒 = 𝑟𝑎𝑡𝑒𝑎𝑟𝑙𝑦 − 𝑎𝑡𝑙𝑎𝑡𝑒
 (6)

Slacks are positive in the event the required arrival time

constraints are met and negative in other case.

Slew (𝑠𝑜) propagation is also vital for timing analysis, as cell and

interconnect delays are a function of the input slew. We will

assume worst-slew propagation, which means that we propagate

either the smallest or the largest slew, when we examine either

early or late mode.

𝑠𝑜 𝑌
𝑒𝑎𝑟𝑙𝑦

= min (𝑠𝑜 𝐴𝑌
𝑒𝑎𝑟𝑙𝑦

(𝑠𝑖 𝐴
𝑒𝑎𝑟𝑙𝑦

), 𝑠𝑜 𝐵𝑌
𝑒𝑎𝑟𝑙𝑦

(𝑠𝑖 𝐵
𝑒𝑎𝑟𝑙𝑦

)) (7)

𝑠𝑜 𝑌
𝑙𝑎𝑡𝑒 = 𝑚𝑎𝑥 (𝑠𝑜 𝐴𝑌

𝑙𝑎𝑡𝑒(𝑠𝑖 𝐴
𝑙𝑎𝑡𝑒), 𝑠𝑜 𝐵𝑌

𝑙𝑎𝑡𝑒 (𝑠𝑖 𝐵
𝑙𝑎𝑡𝑒)) (8)

We should point out that slew propagates regardless of delay

propagation: we can propagate, for instance the delay from input

A and slew from input B (Figure 1).

From the early 1990s, Static Timing Analysis (STA) has been

widely adopted as a common tool in the process of very-large-
scale-integration (VLSI) design. Static timing analysis is not only

the universal timing tool but also lies at the core of numerous

timing optimization tools. The main advantage of STA over

vector-based timing simulation is the fact that it does not rely

19

on input vectors, which can be difficult to construct and can

easily miss an obscure path in the circuit. The extensive use of

STA can be associated with various factors:

 The basic STA algorithm is linear time with circuit size,

allowing analysis of designs in excess of 10 million

instances;

 The basic STA is conservative in the sense that it will

overestimate the delay of long paths in the circuit and

underestimate the delay of short paths accordingly. This

provides a “safe” analysis, guaranteeing that the design will

function at least as fast as predicted and will not suffer

from hold-time violations; and

 The STA algorithms have matured over time, addressing

crucial timing issues such as interconnect analysis and

accurate delay modelling.

Conventional STA tools are deterministic (STA is often called

DSTA – deterministic static timing analysis) and compute the

circuit delay for a specific process condition. Hence, all

parameters that affect the delay of a circuit, such as device gate

length and oxide thickness, as well as operating voltage and

temperature, are presumed to be fixed and they are uniformly

applied throughout the devices in the design.

In DSTA, process variation is modeled by running the analysis

multiple times, each at a different process condition. Therefore,

by analyzing an adequate number of process conditions the delay

of the circuit under process variation can be confined.

The fundamental weakness of STA is that while shifts in the

process (referred to as die-to-die variations) can be

approximated by creating multiple corner files, there is no

statistically strict method for modeling variations across a die

(referred to as within-die variations). Despite that, with process

scaling progressing well into the nanometer status quo, process

variations have become significantly more distinct and within-die

variations became a non-negligible component of the total

variation. As a result, the clear inability of STA to model

within-die variation may result either in an over – or

underestimate of the circuit delay, relying solely on the circuit

topology. Consequently, STA’s desirable quality of being

conservative might no longer hold for specific circuit topologies

while, at the same time, STA may be overly pessimistic for

others. For that reason, STA’s accuracy in advanced processes is

a major concern.

In addition to the increasing importance of within-die process

variations, the total number of process parameters that exhibit

significant variation has also increased [1]. Hence, even the

modeling of only die-to-die variations in STA now requires an

unsustainable number of corner files, which could lead to

20

increase the effective runtime of STA by one order of magnitude

or more.

1.1. Problem Description and Challenges

Problem Description

Traditional STA methods extract a timing graph from a circuit,

as shown in Figure 2. The nodes of the graph represent primary

inputs/outputs of the circuit as well as input/output pins of the

circuit’s gates. Its edges represent timing elements of the circuit

such as the gate input-pin-output-pin delay and wire delay from

one node to the ones adjacent in the timing graph. Device

parameters, like metal thickness and gate length must be treated

as random variables (RVs) as a result of process variation. Thus,

the delay of each edge, since it is a function of these parameters,

turns out to be an RV too. This induction grants the

transformation of the traditional STA timing graph into a

statistical timing graph which is described as follows:

Definition: A timing graph 𝐺 = {𝑁, 𝐸} is a directed acyclic graph

(DAG), where 𝑁 is a set of nodes and 𝐸 is a set of edges. The

weight associated with an edge reciprocates to either the gate or

the interconnect delay. The timing graph is said to be a

statistical timing graph if the 𝑖 − 𝑡ℎ edge weight 𝑑𝑖 is an RV.

Figure 2: Example circuit (a) and its timing graph (b)

21

The arrival times at the source nodes of the timing graph

(primary inputs of the circuit), typically have a deterministic

zero value. In STA, the fundamental goal of the analysis is to

locate the critical path (path with the maximum delay between a

primary input node and a primary output node in the graph).

When modelling process-induced delay variations, the sample

space is set of all manufactured dies, in which case the device

parameters will have different values across the specific sample

space and as a result the critical path (and its delay) will vary

from one die to another. Consequently, the delay of the circuit is

also an RV, and the primary task of Statistical Static Timing
Analysis is to estimate the characteristics of this RV. This is

achieved by computing its probability-distribution function

(PDF) or cumulative-distribution function (CDF) (Figure 3). At

this point, we should remind that the CDF and the PDF can be

derived from each other through differentiation and integration

[2].

Definition: Let a path 𝑝𝑖 be a set of ordered edges from the

primary input nodes to the primary output nodes in 𝐺, and let 𝐷𝑖

be the path-length distribution of 𝑝𝑖, computed as the 𝑠𝑢𝑚 of the

weights 𝑑 for all edges 𝑘 on the path. Finding the distribution of

𝐷𝑚𝑎𝑥 = max (𝐷1, 𝐷2, … , 𝐷𝑖 , 𝐷𝑛−𝑝𝑎𝑡ℎ𝑠) among all paths (indexed from 1 to

𝑛 paths) in the graph 𝐺 is referred to as the statistical static
timing analysis (SSTA) problem of a given circuit.

Figure 3: PDF and CDF

Similar again to traditional STA, the SSTA problem can be

formulated as the procedure of finding the latest arrival-time

distribution at any of the primary output nodes in 𝐺. The latest

𝑎𝑡 distribution at the primary output nodes can be calculated by

propagating the 𝑎𝑡 from the primary input nodes through the

timing edges of the graph, while at the same time we compute

the latest arrival time at every node in topological order. As a

result of this process, the latest arrival-time distribution at any

of the primary output nodes symbolizes the circuit-delay

distribution.

22

Despite the problem of finding the delay of the circuit, which we

have suggested as the primary SSTA problem, statistical

approach in timing analysis is also an answer to the problem of

improving the delay in the event that timing requirements are

not met.

Conventional STA approaches usually report the slack at each

node in the graph, besides the circuit delay and critical paths.

As a reminder to what we already mentioned during the

introduction, the slack associated with each node, is the

difference between the latest a signal can arrive at the specific

node, such that the timing constraints of the circuit are satisfied.

Hence, correspondingly to the circuit delay, the slack of a node

is formulated as an RV in SSTA methodology.

Challenges in SSTA

While SSTA has proven to be quite useful in the task of

handling properly and effectively process variation parameters in

comparison to traditional STA, the statistical formulation of

timing analysis introduced various novel modeling and

algorithmic issues that make SSTA a complex as well as durable

topic for research. In this subsection, we present some of these

issues along with some related terminology.

1) Topological Correlation

Paths that start with one or more shared edges after which

paths separate and join at a later node are called reconvergent
paths. The node at which these paths reconverge is called the

reconvergent node. For example, in Figure 2, the two paths 𝑃1

and 𝑃2 share the same first edge and reconverge at the output of

gate 𝑔3. In a case like that, the arrival times at the reconvergent

node become dependent on each other because of the common’s

edge delay. This specific dependence leads to so-called

topological correlation between the arrival times and complicates

the maximum operation at the reconvergent node. The challenge

here for SSTA methods is to capture and propagate this

correlation in order to be properly accounted for during the

computation of the 𝑚𝑎𝑥 function.

2) Spatial Correlation

Within-die variation of the physical device parameters usually

exposes spatial correlation, triggering correlation between the

gate delays. Therefore, if the gates that involve two paths have

spatially correlated device parameters they will consequently

have correlated path delays. Thus, correlation is possible to be

introduced amongst paths that do not share timing edges. For

instance, again in Figure 3, the paths 𝑃1 and 𝑃3 do not share any

common delay edges, nevertheless if gates 𝑔1 and 𝑔2 are within

close proximity on the die, their spatially correlated delays can

arise correlation between the two path delays. Hence, spatial

23

correlation (as topological) of the arrival times must be captured

and propagated during SSTA so that it is correctly calculated for

the 𝑚𝑎𝑥 function.

While topological correlation impacts solely the 𝑚𝑎𝑥𝑖𝑚𝑢𝑚

operation, spatial correlation influences both the 𝑠𝑢𝑚 operation

as well as the 𝑚𝑎𝑥𝑖𝑚𝑢𝑚 operation. This brings up two

fundamental issues for SSTA approaches:

 How to form gate delays and arrival times so that

spatial correlation of the underlying device parameters

can be formulated

 Granted a model of the spatial correlation, how to

propagate and keep the correlation information at the

same time that performing the 𝑠𝑢𝑚 and 𝑚𝑎𝑥𝑖𝑚𝑢𝑚

operations.

3) Non-Normal Process Parameters & Nonlinear Delay
Models

Normal or Gaussian are undoubtedly the most broadly observed

distributions for random variables and numerous elegant

analytical results are presented in the statistics literature. As a

consequence, most of the primary works published in the field of

SSTA adopted normal distributions to model physical device

parameters, electrical device parameters, gate delays as well as

arrival times. Nevertheless, some physical device parameters

may present significantly non-normal distributions.

Even if the parameters are indeed normally distributed, the

dependence between the electrical device parameters and the

gate delay on these physical parameters may as well be non-

linear, causing non-normal gate delays to rise. Original work in

modeling spatial correlations in [3] – [5], presented a delay model

that assumed a linear dependence of the gate delay on physical

device parameters. In case the variations are insignificant, this

linear approximation is proven right, as the error introduced by

overlooking higher order terms is negligible. Nevertheless, with

reduction of geometries, process variation is becoming more

notable and the linear approximation may not be precise for

some parameters.

Both non-normal delay and arrival time distributions set forth

vital challenges for efficient SSTA. While this may be considered

as a novel area of research, several members of SSTA research

community have suggested approaches to address this issue [6],

[7] and [8]. At this point, we should note that besides the

difficulty of modeling, the non-normality of an individual RV,

the dependence between two non-normal RVs is no longer

expressed through a sole correlation factor. This complicates

24

even more the proper handling of both topological and spatial

correlations.

4) Skewness as a result of Maximum Operation

Even supposing that gate delays are normal, SSTA has to deal

with the fact that 𝑚𝑎𝑥𝑖𝑚𝑢𝑚 operation is an inherently nonlinear

function. The maximum of two normal arrival times will result

in a non-normal arrival time that is typically positively skewed.

Moreover, the non-normal arrival time distribution generated at

one node is the input to the 𝑚𝑎𝑥𝑖𝑚𝑢𝑚 computation at

downstream nodes. Hence, we need a 𝑚𝑎𝑥𝑖𝑚𝑢𝑚 operation that is

able to operate even in non-normal arrival times.

In probability theory, skewness is a measure of the asymmetry of

the probability distribution of a real-valued RV about its mean.

The skewness value can be positive, negative, zero or even

undefined. For further insight, the reader is encouraged to go

through [9].

The majority of existing works overlook the skewness introduced

by the 𝑚𝑎𝑥𝑖𝑚𝑢𝑚 operation and calculate the arrival times with

normal distributions. The fault in this approximation grows

larger in case the input arrival times have comparable means

and dissimilar variances [10]. Namely, the error is more distinct

when two converging paths have formally balanced path delays,

but one of them has a tighter delay distribution in comparison to

the other. This is possible to happen in a circuit when two paths

with equal nominal delay consist of a different number of gates,

or when the correlation among their gates varies. Another

example, is when one path is dominated by interconnect delay

while the other is dominated by gate delay.

To conclude, it is safe to say that the aforementioned problems

shape four basic challenges in SSTA, which have received

massive attention in the literature. Despite that, numerous other

crucial challenges to reach the development of a mature SSTA

tool remain standing.

1.2. Previous Work

To provide an insight of previous attempts in the field of SSTA,

we demonstrate a few examples both from earlier approaches as

well as some state-of-the-art research works. As it is pointed out

in [1], there have been noted original works related to SSTA that

date back to the 1960s [11], the period of introduction of timing

analysis itself, but also later, in the early 1990s, [12] – [14].

In [14], the authors proposed a method for performing statistical

timing analysis which involves structural Boolean properties of a

combinational circuit. The approach suggested the use of a PDF

25

and encoded the delay as well as the logic behavior of the circuit

into a Boolean expression that was afterwards simplified using a

binary decision diagram (BDD) representation. Despite the fact

that the results of this technique were only shown in small

circuits, a remarkable observation was related to the

computation of the signal probability (i.e., the probability that

the signal is at logic 1) at the output of a gate.

The approach in [12] suggested a symbolic simulation procedure

for statistical timing analysis. A particularly notable contribution

that has since been used in other work is the idea of using

interval analysis to generate trimming strategies in order to

remove paths that can never be (or exhibit a very low possibility

of being) critical. Unlike [14], this method demonstrated results

on large benchmark circuits, although under interval-based delay

models.

Since these premature efforts were published, SSTA approaches

have evolved and from early 2000s the community of SSTA

researchers has grown immensely. Most of the research work

related to SSTA date from the last decade, with well over a

hundred papers published in this research field from 2001 to

2008. This becomes more obvious when the numbers are

invoked: the vast majority of research work on SSTA date from

the last decade, with well over a hundred papers published since

2001 [1]. Some representative examples of state–of–the–art

approaches that solve the SSTA problem include [3] – [5] and

[15] – [20]. The methods used in these works can be classified

according to the categorization that is provided in Chapter 2.
Authors in [16], [17] and [20] suggest techniques to bound the

delay distributions rather than calculate the exact distributions

using path–based and block–based methods. In [18] an

approximation approach is proposed, which is based on a generic

path analysis rather than evaluating every path statistically.

26

1.3. Outline

In this thesis project, we provide a general idea about SSTA and

exhibit some representative works from various approaches.

Furthermore, we unfold its role in today’s design flow process,

and consequently we focus more on Variation Aware Timing
Analysis by giving a description of our own approach to SSTA

and the challenges we coped with.

In Chapter 3, we give an explanation of the models used in the

context of the development of our tool, as well as a rough image

of the representation.

In Chapter 4, we break down the stages of the implementation

and give a brief description of the procedures taking place

during each step.

Finally, in Chapter 5, we present the experimental results

coupled with a short evaluation and also some statistical metrics

that we based our conclusion on. Moreover, we try to conceive

the progress that might take place in the field of SSTA and the

directions that the research community might head towards.

27

2. Timing Analysis

2.1. STA in Design Flow

As we mentioned numerous times throughout the introductive

chapter, STA is the predecessor of any SSTA research effort.

Modern approaches that involve statistical methods are simply

attempting to ameliorate the precision of timing analysis through

the design flow stages that it is required.

Timing analysis in general, and STA more specifically, plays a

crucial part in modern design–closure flow. In addition to

determining the longest and shortest timing propagation paths,

STA (and as a result SSTA) can be used to compute arrival

times, required arrival times and slacks at all the points of the

circuit. Hence, every design stage (Figure 4), from floorplaning,

logical synthesis to placement and routing, employs timing

analysis in order to assess circuit performance, and afterwards

modify the design accordingly.

Figure 4: Timing analysis in the design flow

Most modern–day companies specialized in EDA, develop

engines, such as Prime Time of Synopsys™ [21] and Encounter

Timing System of Cadence™ [22]. These timing engines are

utilized throughout the synthesis/place–and–route flow.

With that being said, it becomes crystal clear that an efficient

timing analysis method is the key to a successful design process.

Widely used STA approaches, provide limited accuracy as a

28

result of the use of simplified delay models. The lack of attention

regarding the function of the circuit, establishes STA as an error

prone approach. For instance, the inclusion of false paths (paths

that are not logically existing in the circuit) jeopardize the

optimization process which follows the timing analysis, as it

might illogically focus on false paths and neglect the real critical

path. Another known issue with traditional STA methods, is

their conservative nature, which naturally leads to over-design

and thus to an increase in the product cost. Taking into

consideration all the facts that we mentioned above, the

improvement of the accuracy of the timing analysis stage was

accomplished by turning to SSTA methods. Despite that, it is

now the research community's responsibility not to let the

efficiency deteriorate for the sake of accuracy.

2.2. Variation Aware Timing Analysis

In accordance to the aforementioned, with the technology of

semiconductors shrinking under 65 nanometers, the need for an

efficient modeling of process variations throughout a VLSI chip

manufacturing process, has led to extensive research in Variation
Aware Timing Analysis. Manufacturing sources of variability

include device front-end variability (e.g. variations in channel

length, oxide thickness etc.) and back-end-of-line variability

(such as metal variability). Moreover, environmental sources of

variation like voltage and temperature strongly impact circuit

timing. Variability may be classified into different categories like

intra-chip variability and inter-chip variability. Each of these

can be further sub-classified as systematic and random

variability (Figure 7). In general, sources of variation that

impact circuit timing are termed parameters. An easy way to

understand previous work done in the field of statistical timing

analysis is to try to classify roughly the techniques proposed so

far in recent works:

I. Numerical Integration Methods

The most straightforward SSTA approach results immediately

from the problem definition we provided in the previous section.

Basically, a numerical integration over the process parameter

space is applied to estimate the yield of the circuit for a specific

delay. Usually, we express the delay of a set of critical paths as a

linear function of the physical device parameters. As a result, an

attainable region in parameter space is specified from the desired

delay of the circuit. Later, this region we specified is numerically

integrated, examining any possible permutations of physical

device parameter values located in the specified region. Efficient

numerical-integration methods were proposed in [23]. The key

advantage of this approach is that it is entirely generic and as a

29

result process variation with any type of distribution and

correlation can be represented. Nevertheless, there is a

possibility that this type of approaches can be quite costly in

run-time and especially for more balanced circuits that consist of

multiple critical paths.

II. Monte Carlo Methods

The second general approach, which is also the one used on this

study, performs a statistical sampling of the sample space using

Monte Carlo simulation. The basic idea is to determine the

regions with significant probability and to sample adequately

these regions. By using the PDF of each physical device

parameter, it is possible to extract a sufficient number of

samples. Utilizing traditional STA methods makes it possible to

calculate the circuit delay by employing the PDF of the physical

device parameters. From there on, an estimation of timing yield

is acquired, by evaluating a portion of samples that meet the

timing constraint. If an acceptable number of samples is drawn,

then the prediction error is small. After that, it is feasible to

determine the delay distribution for the entire circuit by

sweeping the timing constraint and determining the yield for

each value. Moreover, it has been observed that the performance

of Monte Carlo techniques can be improved using methods like

importance sampling [24], [25].

Similarly to numerical integration methods, the Monte Carlo

approach holds the advantage of being totally generic. Moreover,

while based on existing STA traditional methods, Monte Carlo

methods perform notably better than the numerical integration-

based approaches. At the same time, it has been noted that

Monte Carlo methods handle expertly the complexities of

variations.

III. Probabilistic Analysis Methods

Both aforementioned approaches are based on sample-space

enumeration, while probabilistic methods specifically model both

gate delay and arrival times with random variables. These

approaches, usually propagate arrival times through the timing

graph, by performing statistical 𝑠𝑢𝑚 and 𝑚𝑎𝑥/𝑚𝑖𝑛 operations. It is

viable to categorize this type of approaches in two wide-ranging

groups:

1) Path-based approaches: In path based algorithms, a group of

circuit paths most likely to eventually be critical is

determined and a statistical analysis is carried out over this

set of paths to approximate the circuit delay distribution.

Initially, we determine the delay distribution of each path by

summing the delay of the path’s edges. If assumed normal

gate delays, the path-delay distribution can be analytically

calculated, as presented in [19], [26] and [27]. Finally, a

30

statistical 𝑚𝑎𝑥𝑖𝑚𝑢𝑚 operation is performed over all the path

delays in order to find the overall circuit delay distribution.

The basic advantage of this approach is the fact that the

analysis is distinctly divided into two parts – the computation

of path delays coupled with the statistical 𝑚𝑎𝑥 operation over

these path delays. Thus, it is clear why many of the initial

research attempts in SSTA were focused on path-based

approaches [13], [19], [20], [26], [28] and [29]. However, the

obvious obstruction with this approach is how to precisely

determine the subset of candidate paths in a way that no path

that displays a notable probability of being critical will be

omitted. Moreover, when it comes to balanced circuits, the

number of candidate paths under consideration can be very

high. Hence, based on what we mentioned above, it is clear

why most of the later research works have focused on block-

based approach.

2) Block-based approaches: Block-based methods tend to follow

more strictly the deterministic STA algorithm and traverse

the circuit graph in a topological way. Arrival times at each

node is then calculated based on two fundamental operations:

i. For all fan-in edges of a specific node, the edge delay is

added to the arrival-time at the source node of the edge

using the 𝑠𝑢𝑚 operation, and

ii. given the resulting arrival times, the concluding arrival

time at the node is computed using the 𝑚𝑎𝑥𝑖𝑚𝑢𝑚

operation.

Thus, block–based methods propagate exactly two arrival

times (a rise and a fall arrival time) at each circuit node,

resulting in a runtime that is linear with the circuit size. The

computation of the 𝑠𝑢𝑚 function is usually a straightforward

process. Yet, determining the statistical maximum of two

associated arrival times is not insignificant.

As a result of its runtime advantage, many modern research

and commercial works have chosen the block-based over other

approaches.

2.3. Sources of Variation and Sensitivity

In this section we explore the main sources of variation through

the process of timing prediction that makes timing analysis a

demanding task when it comes to nanoscale digital circuits. We

will refer firstly to the different types of uncertainties that rise

as a design goes from specification to implementation and final

field operation. Nevertheless, we will focus on process variations

and specifically on the distinction between die-to-die and within-

31

die variations. Lastly, we will address the impact that different

types of process variations have on the timing quantities of a

circuit.

Figure 5: Steps of the design procedure and the resulting timing uncertainties

The unpredictability in the timing estimation of a design lies

into three main categories:

I. modeling and analysis errors - inaccuracy in device models

in extraction and reduction of interconnect parasitics as

well as in timing analysis algorithms,

II. manufacturing variations - uncertainty in the parameters of

fabricated devices and interconnects from die-to-die and

within-die, and

III. operating-related variations - uncertainty in the operating

environment of a particular device during its lifetime

(temperature, supply voltage, mode of operation etc.).

All these three steps that produce potentially timing

uncertainties, are illustrated in Figure 5. Since each of the three

variabilities represents orthogonal sample spaces, it is an uphill

situation to perform a unified analysis. Environmental

uncertainty and uncertainty due to modeling and analysis error

are usually modeled utilizing worst-case margins, while

uncertainty in process is commonly handled statistically. Thus,

most variation aware timing analysis works, this thesis project

included, focus only on modeling process variations.

32

Figure 6: Parameter variations domino effect

The semiconductor manufacturing process has become more

complicated while simultaneously process control precision is

striving to stay relatively accurate with continued process

scaling. This leads to many steps throughout the manufacturing

process to become prone to variations. The main physical

parameters affected are the gate length, the interconnect

thickness and height, as illustrated in Figure 6 and extendedly

explained in [1].

Variations in these physical parameters result in variations in

electrical device characteristics, like threshold voltage, resistance

and capacitance of interconnects. Ultimately, the variations in

electrical characteristics of circuit elements affect the delay

variations of the timing characteristics of the circuit.

It is notable to mention that more than one electrical parameter

may have a dependence on a specific physical parameter. For

instance, both resistance and capacitance of an interconnect

network are influenced by variation in wire width. In Figure 7, a

general taxonomy of process variations is provided in order to

classify them and give a notion of the spatial scale over which

each one operates.

For the sake of simplicity, in our research work we take into

consideration the following global inter-chip sources of variability

and assume that each timing quantity may be sensitive to them:

o environmental: voltage (V), temperature (T)

o front end of line process: channel length (L), device width

(W), voltage threshold (H)

o back end of line: metal (M)

33

Figure 7: Taxonomy of process variations

For homogeneity, we suggest only a single parameter M for all

metal layers. These parameters indicate systematic chip-to-chip

(or inter-chip) sources of variation. To provide an example,

variations in parameter temperature suggest that the chips

would be dependent to different environmental temperature

conditions. This parametric variation does not imply intra-chip

systematic temperature differences. For the sake of simplicity,

we ignore systematic intra-chip variations in all parameters.

Besides the global inter-chip parameters we mentioned above,

each one of the timing quantities might enclose an independent

random source of variability (𝑅) that symbolizes both random

inter-chip as well as random intra-chip variation. Any timing

quantity may therefore be expressed in the following notation:

𝜇 + 𝛼𝑣𝛥𝑉 + 𝛼𝑡𝛥𝛵 + 𝛼𝑙𝛥𝐿 + 𝛼𝑤𝛥𝑊 + 𝛼ℎ𝛥𝛨 + 𝛼𝑚𝛥𝛭 + 𝛼𝑟𝛥𝑅 (9),

where 𝜇 signifies the nominal value of the quantity (in other

words, its value in the absence of variability).

Each parameter may diverge from −3 to +3 sigmas. Parameter

sensitivities are expressed as time units per sigma values (e.g.

𝛼𝑣 = 5 picoseconds per sigma), and are captured either as

asserted values, or via finite differencing. In the former case, the

sensitivity of a timing quantity to a parameter is attainable

directly as an input (e.g. voltage sensitivity for cells are available

as warranted values in the cell library). Finite differencing in

context of any parameter 𝑋 suggests that the value of the timing

34

quantity 𝑄 is feasible (or can be computed) for at least two

sigma corners of 𝑋.

Assuming that two sigma corners of 𝑋 as +3 and −3 sigma, the

finite differenced sensitivity 𝛼𝛸 is computed as:

𝛼𝑋 =
𝑄|𝑋=+3𝜎− 𝑄|𝑋=−3𝜎

3−(−3)
 (10).

For the purposes of this thesis project, we assume all parameters

(except metal (𝑀) to be finite differenced (if required) between

+3 and −3 sigma values. The metal parameter should be finite

differenced between +3 and 0 sigma values, as it benefits faster

analysis (as we will exhibit in the following chapter). All timing

quantities mentioned in this section are assumed to be a function

of variational parameters.

35

3. Models and Representation

For the purposes of this thesis project, we assume that for each

benchmark circuit we have two files available: a netlist file and a

library file1, which are presented in Appendix A.1. The former,

includes circuit information, topology and other circuit-related

data, that will be modeled in accordance to what will be

explained in the following sections. The netlist, consists of a set

of interconnected elements, particularly cell instances as well as

interconnecting circuitry. The latter, on the other hand, contains

timing information in relation to the cell elements as well as

variability information.

3.1. Interconnect

The primary ingredient of interconnection is a net, which

assumingly has an input pin, called port and one or many output

pins, called taps (Figure 8). For each net, the netlist of its

parasitic 𝑅𝐶 tree is given in the netlist file. Parasitic 𝑅𝐶 trees

only include grounded capacitors and resistors located between

nodes in the tree (there are no coupling capacitors or grounded

resistors).

Figure 8: Interconnection representation

The calculation of the delays from port to each potential tap is

performed using a very straightforward delay model, the Elmore
delay model [1], according to which the delay is estimated by the

value of the first moment of the impulse response. For 𝑅𝐶 tree

networks, we utilize the method described in [31], as summarized

below.

1 The files are formatted according to the TAU Variation Aware Timing
Analysis Contest (2013) [32] standards.

36

Consider any two given nodes 𝑒 and 𝑘 , where the lumped

capacitance in node 𝑘 is 𝐶𝑘. The resistance 𝑅𝑘𝑒 is the resistance of

the common sub-path between the paths from the port to 𝑘 and

𝑒 respectively. Furthermore, 𝑅𝑒𝑒 is the resistance between the

port and node 𝑒 . For the example net tree demonstrated in

Figure 8 (right), we have 𝑅15 = 𝑅𝐴, since the common sub-path

between nodes 1 and 5 includes solely resistor 𝑅𝐴. The Elmore

delay, for a given node 𝑒, is given by the sum:

𝑑𝑒 = ∑ 𝑅𝑘𝑒𝐶𝑘𝑘 (11)

where the summation extends over all nodes in the network. We

can easily calculate this value by properly traversing the netlist

of the parasitic RC tree. Once more, considering the example

given in Figure 8, we have:

𝑑5 = 𝑅𝐴(𝐶1 + 𝐶3 + 𝐶4) + (𝑅𝐴 + 𝑅𝐵)𝐶2 + (𝑅𝐴 + 𝑅𝐵 + 𝑅𝐸)𝐶5 (12)

This value calculated above, provides the nominal or mean wire

delay between the port and the tap. For variation aware

parametric delay computation, we perform finite differencing to

compute the sensitivity of delay to the metal parameter M.

Provided corner specific metal resistance 𝑚𝐶
𝜎 scalar values (from

the cell library) are used to acquire the updated resistance and

capacitance values of the interconnect network when the metal

parameter is set to a given corner (𝛥𝛭 = 𝜎). Each interconnect

resistance and capacitance is scaled by the provided scalar and

another deterministic delay computation is performed to

compute the delay when 𝛥𝛭 is at the 𝜎 corner.

For the example we examined above, considering that the tap

capacitance 𝐶5 comes partly from the cell pin capacitance 𝐶𝑝,5

connected to node 5, the remaining capacitance (𝐶5 − 𝐶𝑝,5) is part

of the interconnect network. Adopting similar notation for tap

capacitance 𝐶4 , the delay at this corner can be calculated as

follows:

𝑑5|𝛥𝛭=𝜎 = 𝑚𝑅
𝜎𝑅𝐴(𝑚𝐶

𝜎[𝐶1 + 𝐶3 + 𝐶4 − 𝐶𝑝,4] + 𝐶𝑝,4)

+ (𝑚𝑅
𝜎[𝑅𝐴 + 𝑅𝐵])𝑚𝐶

𝜎𝐶2

+ (𝑚𝑅
𝜎[𝑅𝐴 + 𝑅𝐵 + 𝑅𝐸]) (𝐶𝑝,5 + 𝑚𝐶

𝜎(𝐶5 − 𝐶𝑝,5)) (13)

We perform the above calculation using the provided sigma

corner of the metal parameter (usually +3 sigma). We then

compute the sensitivity parameter 𝛥𝛭 utilizing finite differencing

method between this corner and the nominal corner:

37

𝑎𝑚,5
𝐷 =

𝑑5|𝛥𝛭=𝜎−𝑑5|𝛥𝛭=0

𝜎−0
=

𝑑5|𝛥𝛭=𝜎−𝑑5

𝜎
 (14)

Hence, the parametric delay model of the interconnection

between the port and the tap node 5 includes two deterministic

delay calculations and finally approximates to a linear model as

demonstrated below:

𝑑5 + 𝑎𝑚,5
𝐷 𝛥𝛭 .

As a result, wire delays will not involve any sensitivity to other

parameters (including random variation).

The nominal value of output slew on any given tap node 𝑜, can

be approximated by a two-step procedure, which is illustrated

below. First we calculate the nominal output slew of the impulse

response on 𝑜 , which can be approximated by the following

formula, as noted in [30], [35]:

�̂�0 ≈ √2𝛽0 − 𝑑0
2 (15)

Where 𝛽𝑜 is the second moment of the impulse response at node

𝑜 and 𝑑𝑜 is the equivalent Elmore delay computed from (11) for

node 𝑜. The value of 𝛽𝑜 is computed by replacing all capacitance

values 𝐶𝑘 by 𝐶𝑘𝑑𝑘, where 𝑑𝑘 is the Elmore delay computed from

(11). In Figure 9, the modified parasitic 𝑅𝐶 tree is demonstrated

for the example of Figure 8.

Figure 9: Modified RC tree for computing the second moment of impulse response

We followed the same procedure in order to calculate 𝛽𝑒:

𝛽𝑒 = ∑ 𝑅𝑘𝑒𝐶𝑘𝑑𝑘𝑘 (16)

38

Consequently, for the parasitic RC tree illustrated in figure 3 we

get:

𝛽5 = 𝑅𝐴(𝐶1𝑑1 + 𝐶3𝑑3 + 𝐶4𝑑4) + (𝑅𝐴 + 𝑅𝐵)𝐶2𝑑2 + (𝑅𝐴 + 𝑅𝐵 + 𝑅𝐸)𝐶5𝑑5 (17)

Since we already computed �̂�𝑜, we go on to calculate the mean

slew of the response to the input ramp, 𝑠𝑜 , for which a valid

approximation is reached by the expression:

𝑠𝑜 ≈ √𝑠𝑖
2 + �̂�𝑜

2 (18),

where 𝑠𝑖 is the nominal or mean input slew.

Parametric output slew calculation comprises a bit of

complicated finite differencing. Considering metal variability, �̂�𝑜

is a function of parameter 𝛥𝛭 only since both 𝛽𝑜 and 𝑑𝑜 are

dependent on metal scalars. For a specific metal sigma corner 𝜎:

�̂�𝑜|𝛥𝛭=𝜎 ≈ √2𝛽𝑜|𝛥𝛭=𝜎 − 𝑑𝑜|𝛥𝛭=𝜎
2

 (19),

where 𝑑𝑜|𝛥𝛭=𝜎 is the Elmore delay value of the tap at node 𝑜 at

the specified metal corner, and 𝛽𝑜|𝛥𝛭=𝜎 can be calculated by

scaling the interconnect resistance and capacitance values similar

values similar to the way we described earlier as in (13). The

sensitivity to the metal parameter may now be computed via

finite differencing the value of �̂�0 between the two sigma corners

for 𝛥𝛭:

𝑎𝑚
�̂�0 =

�̂�0|𝛥𝛭=𝜎−�̂�0|𝛥𝛭=0

𝜎−0
=

�̂�𝑜|𝛥𝛭=𝜎−�̂�𝑜

𝜎
 (20).

We assume that to compute 𝛽𝑜 at the metal corner 𝜎 an

additional computation is required to calculate the parametric

output slew �̂�𝑜 to an impulse response. Hence, we conclude to:

�̂�𝑜 = �̂�𝑜 + 𝑎𝑚
�̂�0𝛥𝛭 (21).

3.2. Combinational Cells

Now we presume that cell delay, 𝐷, and output slew, 𝑆𝑜, can be

approximated for a given combinational cell input/output pin

pair by the following equations:

𝐷 = 𝑎(1 + 𝑘𝑑,𝑣𝛥𝑉 + 𝑘𝑑,𝑙𝛥𝐿 + 𝑘𝑑,𝑤𝛥𝑊 + 𝑘𝑑,ℎ𝛥𝐻 + 𝑘𝑑,𝑟𝛥𝑅) + 𝑏𝐶𝐿 + 𝑐𝑆𝑖 (22)

39

𝑆𝑜 = 𝑥(1 + 𝑘𝑠,𝑣𝛥𝑉 + 𝑘𝑠,𝑡𝛥𝑇 + 𝑘𝑠,𝑙𝛥𝐿 + 𝑘𝑠,𝑤𝛥𝑊 + 𝑘𝑠,ℎ𝛥𝛨 + 𝑘𝑠,𝑟𝛥𝑅) + 𝑦𝐶𝐿 + 𝑧𝑆𝑖 (23),

where a, b, c, x, y, z and each 𝑘𝑖 term are cell-dependent

constants; 𝐶𝐿 and 𝑆𝑖 are the parametric output load and

parametric input slew, respectively. The constants for each cell

are provided in the cell library file, for both rise and fall

transition. It should be noted that the 𝑘𝑖 terms are a

representation of the sensitivity to front end parameters as a

fraction of 𝑎 or 𝑥.

As demonstrated in Figure 10, 𝐶𝐿 refers to the downstream

capacitance seen from the output of the cell. Quite a few

complicated models have been suggested in order to compute 𝐶𝐿.

Figure 10: Combinational cell illustration

For the sake of simplicity, we adopted a rather straightforward

model for that purpose. Thus, 𝐶𝐿 is assumed to be the

summation of all the capacitances in the 𝑅𝐶 parasitic tree,

including cell pin capacitances at the taps of the interconnection:

𝐶𝐿 = ∑ 𝐶𝑘𝑘 (24).

For the example presented in Figure 8, we have:

𝐶𝐿|𝛥𝛭=0 = 𝐶1 + 𝐶2 + 𝐶3 + 𝐶4 + 𝐶5 (25).

Due to the fact that the interconnect capacitances are depending

on 𝛥𝛭 , consequently 𝐶𝐿 is also a function of 𝛥𝛭 . In the above

example we have:

𝐶𝐿|𝛥𝛭=𝜎 = 𝑚𝐶
𝜎[𝐶1 + 𝐶2 + 𝐶3 + (𝐶4 − 𝐶𝑝,4) + (𝐶5 − 𝐶𝑝,5)] + 𝐶𝑝,4 + 𝐶𝑝,5 (26),

where 𝐶𝑝,4 and 𝐶𝑝,5 symbolize the cell pin capacitance

contributions in the tap capacitances 𝐶4 and 𝐶5 respectively, and

𝑚𝐶
𝜎 denotes the interconnect capacitance scalar value acquired

from the cell library and it represents the impact of the metal

variation at corner 𝜎. Cell input pin capacitances are provided

40

also in the cell library file, as fixed values for each pin and each

transition state (rise or fall).

Finally, we compute the effective load’s sensitivity to 𝛥𝛭 using

finite differencing:

𝑙𝑚 =
𝐶𝐿|𝛥𝛭=𝜎−𝐶𝐿|𝛥𝛭=0

𝜎−0
=

𝐶𝐿|𝛥𝛭=𝜎−𝐶𝐿|𝛥𝛭=0

𝜎
 (27).

We can then express the effective load 𝐶𝐿 in a linear parametric

form as follows:

𝐶𝐿|𝛥𝛭=0 + 𝑙𝑚𝛥𝛭 (28),

and afterwards replace it into delay and slew models in

equations (22), (23).

3.3. Flip-Flops

Sequential circuits are composed of combinational logic blocks

interrupted by registers, most commonly implemented with flip-
flops. Normally, they consist of several stages, where a register

attains data from the outputs of a combinational block and

infuses it into the inputs of the combinational block that follows

as the next stage of combinational logic. Register operation is

adjusted by clock signals generated by one or multiple clock

sources. Clock signals that reach different flip-flops (represented

by sinks in the clock tree), are delayed from the clock source by

a known clock latency that will be symbolized as 𝑙.

Figure 11: Flip-flop description

A flip-flop (and especially a D flip-flop) is a storage element that

captivates a given logic value at its input data pin 𝐷, when a

given clock edge is identified at its clock pin 𝐶𝐾 , and thus

propagates the captured value and its complement at the output

41

pins 𝑄 and �̅�. The flip-flop is also capable to enable asynchronous

preset (set) and clear (reset) of the output pins, utilizing the 𝑆

and 𝑅 input pins.

Conventional operation of flip-flop demands the logic value of

the input data pin to be stable for a specific period of time

before the capturing clock edge. This specific period of time is

denoted as setup time and will be represented by 𝑡𝑠𝑒𝑡𝑢𝑝 .

Moreover, the logic value of the input data pin must be

simultaneously available and stable for a specified period of time

after the capturing clock edge. The specific period of time is

denoted as hold time and we designate it as 𝑡ℎ𝑜𝑙𝑑 . We should

point out that both setup and hold times are two of the usual

performance figures provided in cell specification libraries for

storage elements such as flip-flops. Other conventional figures

include delay from clock to output, 𝑑𝐶𝐾→𝑄/𝑑𝐶𝐾→�̅� and asynchronous

preset and clear delays, 𝑑𝑝𝑟𝑒𝑠𝑒𝑡 and 𝑑𝑐𝑙𝑒𝑎𝑟. A visualization of the

standard performance metrics we just mentioned is provided in

Figure 11.

Observe now that setup as well as hold time are modeled as

functions of the input slews at both the clock pin, 𝐶𝐾, and the

input pin, 𝐷, respectively:

𝑡𝑠𝑒𝑡𝑢𝑝 = 𝑔 + ℎ 𝑆𝑖
𝐶𝐾 + 𝑗 𝑆𝑖

𝐷
 (29)

𝑡ℎ𝑜𝑙𝑑 = 𝑚 + 𝑛 𝑆𝑖
𝐶𝐾 + 𝑝 𝑆𝑖

𝐷
 (30)

Notice that in the above equations the input slews are

parametric and, as a result, so are the setup and hold times.

Figure 12: Signal propagation between two flip-flops

42

Let us consider now the standard case of signal propagation

between two flip-flops as it is presented in Figure 12. Taking for

granted that the clock edge is generated in the clock source at

time 0, then it will reach the injecting flip-flop at time 𝑙𝑖 ,

enabling the data at the input of the combinational block 𝑑𝐶𝐾→𝑄

time later. If the propagation delay in the combinational block is

𝑑𝑐𝑜𝑚𝑏 , then the data will be available at the input of the

capturing flip-flop at time 𝑙𝑖 + 𝑑𝐶𝐾→𝑄 + 𝑑𝑐𝑜𝑚𝑏 . Presuming that the

clock period is a deterministic constant 𝑇, the next clock edge

will reach the capturing flip-flop at time 𝑇 + 𝑙𝑜. To achieve proper

operational conditions, the data must be available at the input of

the flip-flop 𝑡𝑠𝑒𝑡𝑢𝑝 earlier than the next clock edge. Consequently,

at the data input pin, 𝐷:

𝑎𝑡𝐷
𝑙𝑎𝑡𝑒 = 𝑙𝑖

𝑙𝑎𝑡𝑒 + 𝑑𝐶𝐾→𝑄 + 𝑑𝑐𝑜𝑚𝑏
𝑙𝑎𝑡𝑒

 (31)

𝑟𝑎𝑡𝑠𝑒𝑡𝑢𝑝 = 𝑟𝑎𝑡𝐷
𝑙𝑎𝑡𝑒 = 𝑇 + 𝑙𝑜

𝑙𝑎𝑡𝑒 − 𝑡𝑠𝑒𝑡𝑢𝑝 (32)

An analogous condition can be extracted from the necessity to

ensure that the hold time is respected. Thus, the data input of

the capturing flip-flop must remain stable for at least 𝑡ℎ𝑜𝑙𝑑 after

the clock edge reaches the corresponding 𝐶𝐾 pin. Hence, at the

data input pin, 𝐷, we have:

𝑎𝑡𝐷
𝑒𝑎𝑟𝑙𝑦

= 𝑙𝑖
𝑒𝑎𝑟𝑙𝑦

+ 𝑑𝐶𝐾→𝑄 + 𝑑𝑐𝑜𝑚𝑏
𝑒𝑎𝑟𝑙𝑦

 (33)

𝑟𝑎𝑡ℎ𝑜𝑙𝑑 = 𝑟𝑎𝑡𝐷
𝑒𝑎𝑟𝑙𝑦

= 𝑙𝑜
𝑒𝑎𝑟𝑙𝑦

+ 𝑡ℎ𝑜𝑙𝑑 (34)

We should note that the arrival and required arrival times

included in the equations above, can be computed from

equations (5) and (6) in Chapter 1.

43

4. Stages of Implementation

In this chapter, we give a clear image of the technique we

proposed for this thesis project and of the stages involved in the

process. After providing a thorough description of the models

and the input files used we will proceed by breaking down each

stage of the procedure and explaining the diverging parts which

distinct our work from previous approaches already presented.

To begin with, we provide a flowchart in Figure 13 with the

path that was followed during the process.

Figure 13: Flowchart including the steps we followed during the approach proposed

44

4.1. Netlist and Cell Library Parsing

Our first goal was to extract all the necessary data from the

input files and form it accordingly into the desirable data

representation. This primary objective was achieved through the

parsing of the netlist and the cell library files. For the netlist

file, we parsed all the available information, stored it

appropriately and formed the timing graph we described earlier,

by modeling primary inputs, primary outputs and cell pins as

nodes and nets and intra-cell circuitry as edges. A rough sketch

of the netlist parser is provided below:

BEGIN
 while(!empty(netlist))
 parse next line L
 parse next token

 switch (token)
 case "input":
 insert in primary inputs hash table
 initialize slew and at for current node

 case "output":
 insert in primary inputs hash table

 case "instance":
 while(!L.empty)
 if(output pin)
 type = "outPin"
 if(internal node)
 insert in internal nodes hash table
 else
 insert in primary outputs hash table
 else
 type = "inPin"
 if(internal node)
 insert in internal nodes hash table
 else
 insert in primary inputs hash table

45

 case "slew":
 find node in primary inputs hash table
 assign fall and rise slews to node

 case "at":
 find node in primary inputs hash table
 assign early/late fall, early/late rise arrival times to node

 case "clock":
 find node in primary inputs hash table
 assign clock period to node

 case "wire":
 find node in primary inputs OR internal nodes hash tables
 makeUpNet(node)

 case "cap":
 assign capacitance to node

 case "res":
 determine starting and ending point of resistance
 assign resistance value to starting node

 case "rat":
 find node in primary outputs OR internal nodes hash tables
 assign operation mode to node

 if(opMode == "late")
 assing late fall/rise values to node
 else
 assing early fall/rise values to node
END

Algorithm 1: Netlist parser main function

As far as the cell library parser is concerned, besides the main

parsing function, which basically operates as the netlist parsing

function we illustrated thoroughly. We utilized some functions

which we describe hereinafter:

 classifyCell: Classifies the parsed cell <key> into the cell

library dictionary and returns the correct position of the

dictionary that the cell structure should be stored.

 readSlewDelay: Collects the fall/rise slew values and fall/rise

delay values.

 readFallRiseConst: Correspondingly to the previous

function, parses the fall/rise constraints information

contained in the line we examine.

46

 findCell: As its name states clearly, used to search through

the parsed cell-types and locate the cell with the

corresponding <key>.

4.2. Interconnect Delay Calculation

As aforementioned in Chapter 3, where we described the models,

the basic instance of interconnect wire is a net, which basically

consists of an input pin, namely port, and one or multiple output

pins, namely taps and we illustrate it appropriately in Figure 8.

INPUT: pin -> start of a net

OUTPUT: delay/slew info @ the taps -> end nodes of a net

BEGIN

MAIN STEPS:

-> Compute delay

-> Compute slew

-> Write delay/slew info to the corresponding nodes

Elmore Delay Calculation using DFS algorithm:

 Apply DFS to reach the taps

 Store path in FIFO

 for every FIFO(i)

 if(branch root)

 SUM(capacitances of the other branches)

 dequeue()

 SUM(cap*TOTAL(res))

 END for

END

SUM is a controlled addition using a stack, in order to sum up the
correct resistances and capacitances (include only the on-path
resistances)

Algorithm 2: Main algorithm of interconnect delay calculation

The computation of port-to-tap delays can be accurately

performed through electrical simulation using a similar software

like Synopsys™ HSpice simulator. Nevertheless, as we mentioned

before we used a much simpler and adequately accurate model,

the Elmore delay model. To provide you with an insight of our

47

approach, we demonstrate above the main steps of the algorithm

we implemented.

Besides the mathematical operations that are performed and are

modeled in equations (11) – (20), we employed the DFS

algorithm in order to reach the potential taps of a net wire and

avoid multiple traversals of the same net to discover all the

potential taps. As illustrated in Algorithm 3, we utilized a FiFo

stack structure in order to store temporarily the discovered

paths and then, recursively, proceed with the application of the

mathematical operations on each path.

4.3. Delay information propagation

During this stage, we describe the process of propagating the

delay information both forward (from primary inputs to the

primary outputs) propagating arrival times as well as backwards

(from primary outputs to the primary inputs) propagating

required arrival time throughout the circuit. The procedure is

based on the following steps:

Step 1: Assign delay information to all timing arcs,

while ignoring wire delays at the moment.

 Step 2: Perform forward arrival time propagation.

Step 3: Perform backwards required arrival time
propagation.

All of the above steps are based on an algorithm created on top

of breadth-first-search (BFS) algorithm, which is a mainstream

strategy in graph theory for searching in a graph. The BFS

begins at a root node and inspects all of its adjacent nodes.

Thereafter, for each of these adjacent nodes, it inspects in turn

their neighbor nodes which are unvisited, and so on. The

characteristics of this method provide an obvious explanation for

the suitability on the task that we utilize a BFS-like algorithm.

Providing as input a graph 𝐺 and a root 𝑣 of 𝐺 , the following

algorithm implements the BFS algorithm:

48

procedure BFS(G,v) is
 create a queue Q
 create a set V
 enqueue v onto Q
 add v to V
 while Q is not empty loop
 t ← Q.dequeue()
 if t is what we are looking for then
 return t
 end if
 for all edges e in G.adjacentEdges(t) loop
 u ← G.adjacentVertex(t,e)
 if u is not in V then
 add u to V
 enqueue u onto Q
 end if
 end loop
 end loop
 return none
end BFS

Algorithm 3: Breadth-first search algorithm

49

4.4. Monte Carlo Simulations

Following the steps we described above, intervenes the statistical

aspect of our approach, through the Monte Carlo simulations.

After calculating and propagating all the delay information

throughout the timing graph we apply the Monte Carlo

simulations procedure in order to model the variation on the

deterministic values we estimated previously.

Monte Carlo implies the utilization of random numbers in

scientific computing. To be more specific, it implies the

utilization of random numbers to compute something that is not

random. For example, let 𝑋 be a random variable and denote its

expected value as 𝐴 = 𝐸[𝑋] . Provided that we can generate

𝑋1, … , 𝑋𝑛 , 𝑛 independent random variables with the same

distribution, then we can make the approximation:

𝐴 ≈ �̂�𝑛 =
1

𝑛
∑ 𝑋𝑘

𝑛

𝑘=1

The strong law of large numbers [33] states that �̂�𝑛 → 𝐴 as → ∞ .

The 𝑋𝑘 and �̂�𝑛 are random and (depending on the random

number generator that is utilized) could be different every time

we run the program. Nevertheless, the target number, 𝐴, is not

random.

We will emphasize at this point to the distinction between

Monte Carlo and simulation. Simulation implies producing

random variables with a certain distribution just to examine

them. The reason for this distinction is that there may be other

ways to define 𝐴 that make it easier to estimate. This process, is

called variance reduction, since most of the error in �̂� is

statistical. By reducing the variance of �̂� we achieve also the

reduction of the statistical error.

We often have a choice between Monte Carlo and deterministic

methods. Although this sounds appealing, the general rule is

that deterministic are better than Monte Carlo in any situation

where the deterministic method is a viable option.

This leads to the conclusion that quite often, we are driven to

resort to Monte Carlo due to the “curse of dimensionality”. This

curse, insinuates that the work to solve a multi-dimensional

problem may grow exponentially with the dimension. Suppose,

for example, that we want to compute an integral over ten

variables, an integration in ten dimensional space. Supposing

that we attempt to approximate the integral using twenty points

in each coordinate direction, the total number of integration

50

points would be 2010 ≈ 1013 , which is on the edge of what a

computer is able to calculate in a whole day. For the same

example, Monte Carlo could reach the same accuracy with

approximately, say, 106 points.

One beneficial feature of Monte Carlo is that it is possible to

estimate the order of magnitude of statistical error, which is the

dominant error in most Monte Carlo computations. Another

advantageous characteristic of Monte Carlo is that simple but

clever ideas can lead to immense practical improvements in

efficiency and accuracy. Hence, to rephrase what we stated

earlier, while 𝐴 is given, the algorithm for estimating it is not.

Therefore, the quest for more accurate alternative algorithms is

often called “variance reduction”, with the most common

variance reduction technique being importance sampling [34].

4.5. Output Handling

For the sake of simplicity, we encourage the more thorough

reader to address the Appendix A.3. for more insight on the

output files format, as it is beyond the purposes of this work to

go to deep with technical details.

51

5. Evaluation and Conclusion

5.1. Computational Infrastructure

The variation aware timing analysis tool of this thesis project

was developed and evaluated on a machine with the following

specifications:

 Intel® Core™ i7-3770 CPU @ 3.40GHz, 8MB cache

memory and integrated graphics processor Intel® HD

Graphics 4000

 8GB of RAM

The installed software that was utilized:

 Kubuntu 14.04 LTS (Trusty Tahr), 64-bit

 Gcc 4.9.0 20140422

 Eclipse CDT (C/C++ Development Tooling) 8.4.0, 64-bit

5.2. Evaluation

In this section, we present the features of the tool we developed

in this master thesis project, by initially outlining the test cases

we utilized and afterwards provide some experimental results in

order to demonstrate the basic uses of our tool. As an important

remark, we should point out that in any variation-aware

approach, the runtime of the process is not the key metric and

this is the reason we neglect it during the evaluation.

We selected various benchmarks amongst the ISCAS

benchmarks, like the c499 and the s400. We picked specific

primary output nodes from the c499 benchmark, to perform

yield estimation (by calculating the 𝑎𝑡 and 𝑠𝑙𝑒𝑤 at the specified

node) and random internal nodes from s400, s27 and other

suitable benchmarks to examine slack violations.

We set the yield percentage at 95%. The function that is

illustrated as the label for the y-axis in Figure 14, is the formula

for the normal distribution, parametrized in terms of the mean

and the variance:

𝑓(𝑥; 𝜇, 𝜎2) =
1

𝜎√2𝜋
𝑒−

1

2
(

𝑥−𝜇

𝜎
)2

52

Benchmark Node Op. Mode Transition Metric

c499 nod23 late fall at

Figure 14: Yield estimation for nod23 of c499 (at)

Figure 15: Yield estimation for nod23 of c499 using the CDF

In the same manner as illustrated above, we estimate yield in

another node of the c499 benchmark:

53

Benchmark Node Op. Mode Transition Metric

c499 nod30 late fall at/slew

Figure 16: Yield estimation for nod30 of c499 (at)

Figure 17: Yield Estimation for nod30 of c499 using CDF

54

For nod30, we will demonstrate that it is possible to also use

slew in order to estimate the yield:

Figure 18: Yield Estimation for nod30 of 499 (slew)

Figure 19: Yield Estimation for nod30 of c499 using CDF (slew)

55

At this point we should note that we can easily estimate the

total yield from both at and slew metrics by selecting the

minimum yield as the total. Generally, for all the metrics we

could possible take into consideration for yield estimation we can

say that:

𝑇𝑜𝑡𝑎𝑙𝑦𝑖𝑒𝑙𝑑 = 𝑚𝑖𝑛(𝑜𝑓 𝑎𝑙𝑙 𝑚𝑒𝑡𝑟𝑖𝑐𝑠)

We now proceed to examine slack violations, or also known as

setup/hold time violations (as we described in Chapter 1),

depending on the operation mode, late or early respectively. We

examined some of the ISCAS that include filp-flops in order to

check the slacks, such as s400, s27 and others.

Benchmark Node Op. Mode Transition Metric

s400, s27 Various early/late Fall/rise slack

It is accustomed for designers to set a “blind” guardband in order

to ensure that no setup or hold time violations will occur. This

may be the safest path, nevertheless it is not always optimal, as

it may be quite pessimistic.

After evaluating the slack information we obtained at many

different nodes of various benchmarks, for both early and late

operational mode, we came to the conclusion that there is no

need for us to set a “blind” guardband as the worst-case

hypothesis we used in the evaluation:

𝑊𝑂𝑅𝑆𝑇𝐶𝐴𝑆𝐸 = (𝑀𝐸𝐴𝑁 + 3 ∗ 𝑆𝐼𝐺𝑀𝐴)

is a realistic hypothesis. We came to this conclusion after

converging to the same probability, resulting from the CDF

application on our hypothesis for every particular node (namely

99,9% or more precisely 99,87%) using the slack information we

acquired through the examination of every benchmark netlist.

5.3. Future Work

Deterministic STA has developed enormously over the last two

decades and handles several technology-scaling-related issues,

like resistive and inductive shielding, crosstalk noise, clock skew

and many more. However most researchers have, up to now,

concentrated on the basic statistical timing analysis operations,

the 𝑠𝑢𝑚 and 𝑚𝑎𝑥/𝑚𝑖𝑛 operations required for propagating the

delay information through the timing graph.

As far as our own research plan is to innovate and expand the

current approach. Our primary goal will not differ from the

56

current trend, which as we mentioned is to improve the accuracy

and execution runtime of our tool. This will be pursued by

parallelizing the most demanding operations, which are, as

described earlier, the 𝑠𝑢𝑚 and the 𝑚𝑖𝑛/𝑚𝑎𝑥 operations that take

place during the delay information propagation both forward and

backwards through the timing graph. This can be achieved by

implementing our algorithm using state-of-the-art parallel

programming techniques such as CUDA and hence utilizing

GPU cores for these fundamental operations.

Another goal that will be pursued and that potentially would

widen the horizons for our work, is the adaptation of our

approach with the view to process industrial standard cell

libraries. An expansion like this would mean eventually that we

will be able to statistically approximate even better to real

conditions by completing the following two individual tasks:

I. Build empirical models for performance functions based on

the insight gained from data analysis of cell performance

functions for several standard industrial cell libraries. This

will help to determine the optimal polynomial order for

each variation parameter to find the general form of a

compact performance function.

II. Formally classify transition waveforms based on the

statistical analysis of switching transitions for several

standard industrial cell libraries. The anticipated results

can be used to speed up vastly our timing analysis engine

considering real waveform shapes based on lookup tables.

This research aspect could potentially change the way

timing analysis is performed by enabling simulation at a

higher level of abstraction, with the accuracy of circuit-

level simulation. The main applications could be statistical

performance simulation as well as variation-aware

placement and routing.

 In general, we could say that the fundamental challenge that

SSTA research community has to face, is to prove itself worthy

of the trust of both the designers as well as of the EDA-tools

major companies. In other words, it is the duty of the research

community to bring variation aware timing analysis to maturity.

5.4. Conclusion

Statistical timing analysis has gained extensive interest in recent

years. Various research findings have been published and at the

same time commercial efforts are underway. Nevertheless, the

obstructions to widespread adoption of statistical approaches in

industry remain challenging. The main issue is that even the

current state-of-the-art variation-aware timing analysis methods

57

still do not address many of the issues that are taken for granted

in traditional deterministic static timing analysis.

In this diploma thesis project, we focused on the process

variations that impact the procedure of timing analysis, we

classified and then review some previous approaches in variation

aware timing analysis. Later, we described the models and the

implementation stages of the tool we developed for timing

analysis under process variations. The novel element of our

method is the extensive use of a BFS-based algorithm during the

stage of arc-delay-information propagation as well as the use of

DFS algorithm through the interconnect delay calculation phase,

in order to minimize the iterations that were necessary so as to

discover all the paths included in the specific net. Finally, we

evaluated the results of our approach, by estimating the yield on

certain nodes of the benchmark netlists. Another evaluation

metric we used to verify the validity of our implementation, was

the examination of slack constraints violations by applying a

worst-case slack estimation based on the slack information we

gathered. We came to the conclusion thanks to the experimental

results, that our approach to determine the worst case at 𝑚𝑒𝑎𝑛 +

3 ∗ 𝑠𝑖𝑔𝑚𝑎 was a successful choice by estimating nearly the optimal

worst case.

58

References

[1] David Blaauw, Kaviraj Chopra, Ashish Srivastava and Lou

Scheffer, “Statistical Timing Analysis: From Basic

Principles to State of the Art”, IEEE Transactions on

Computer-Aided Design of Integrated Circuits and
Systems, pp. 589-607, April 2008.

[2] S. Bernd, ”Cumulative Distribution Functions”, College of

Engineering and Science, Louisiana Tech. University,

http://www2.latech.edu/~schroder/slides/stat/cdf.pdf.

[3] C. Visweswariah, K. Ravindran, K. Kalafala, S. Walker

and S. Narayan, ”First-Order incremental block-based

statistical timing analysis”, DAC, 2004.

[4] A. Agarwal, D. Blaauw and V. Zolotov, ”Statistical timing

analysis for intra-die process variations with spacial

correlations”, ICCAD, 2003.

[5] H. Chang, S. Sapatnekar, ”Statistical timing analysis considering

spatial correlations using a single PERT-like traversal”, ICCAD,

2003.

[6] H. Chang, V. Zolotov, S. Narayan and C. Visweswariah,

”Parametererized block-based statistical timing analysis with

non-Gaussian parameters, nonlinear delay functions”, DAC,

2005.

[7] Y. Zhan, A. Strojwas, X. Li, T. Pileggi, D. Newmark and M.

Sharma, ”Correlation-aware statistical timing analysis with non-

Gaussian delay distributions”, DAC, 2005.

[8] V. Khandelwal and A. Srivastava, ”A general framework for

accurate statistical timing analysis considering correlations”,
DAC, 2005.

[9] Lai, N. Balakrishnan and Chin-Diew, ”Continuous Bivariate

Distributions”, Springer, 2009.

[10] C. Clark, ”The greatest of a finite set of random variables”, J.

Oper. Res., vol. 9, no. 2, pp. 145-162, March/April 1961.

[11] T. Kirkpatrick and N. Clark, ”PERT as an aid to logic design”,
IBM J. Res. Develop., vol. 10, no. 2, pp. 135-141, March 1966.

http://www2.latech.edu/~schroder/slides/stat/cdf.pdf

59

[12] H. Jyu, S. Malik, S. Devdas and K. Keutzer, ”Statistical timing

analysis of combinational logic circuits”, IEEE Trans. Very Large

Scale Integr. (VLSI) Syst., vol. 1, no. 2, pp. 126-137, June 1993.

[13] R. Brashear, N. Menezes, C. Oh, L. Pillage and M. Mercer,

”Predicting circuit performance using circuit-level statistical

timing analysis”, DATE, 1994.

[14] Y. Deguchi‚ N. Ishiura‚ and S. Yajima, ”Probabilistic ctss:

Analysis of timing error probability in asynchronous logic

circuits”, ACM/IEEE Design Automation Conference, 1991.

[15] J. A. G. Jess et al., ”Statistical timing for parametric yield

prediction of digital integrated circuits”, DAC, 2003.

[16] M. Orshansky and A. Bandyopadhyay, ”Fast statistical timing

analysis handling arbitrary delay correlations”, DAC, 2004.

[17] A. Agarwal, V. Zolotov and D. Blaauw, ”Statistical timing

analysis using bounds and selective enumeration”, IEEE Trans.

on CAD, vol. 22, no. 9, pp. 1243-1260, September 2003.

[18] F. N. Najm and N. Menezes, ”Statistical timing analysis based

on a timing yield model”, DAC, 2004.

[19] A. Gattiker, S. Nassif, R. Dinakar and C. Long, ”Timing yield

estimation from static timing analysis”, ISQED, 2001

[20] M. Orshansky and K. Keutzer, ”A general probabilistic

framework for worst case timing analysis”, DAC, 2002.

[21] Synopsys, Synopsys PrimeTime™,

http://www.synopsys.com/Tools/Implementation/SignOff/Pages

/PrimeTime.aspx.

[22] Cadence, Cadence Encounter Timing System™,

http://www.cadence.com/products/di/edi_system/pages/default.

aspx .

[24] L. Scheffer, ”The count of Monte Carlo”, TAU Int. Workshop

Timing, 2004.

[25] R. Kanj, R. Joshi and S. Nassif, ”Mixture importance sampling

and its application to the analysis of SRAM designs in the

presence of rare failure events”, DAC, 2006.

[26] A. Agarwal, et al., ”Statistical delay computation considering

spatial correlations”, ASP-DAC, 2003.

http://www.synopsys.com/Tools/Implementation/SignOff/Pages/PrimeTime.aspx
http://www.synopsys.com/Tools/Implementation/SignOff/Pages/PrimeTime.aspx
http://www.cadence.com/products/di/edi_system/pages/default.aspx
http://www.cadence.com/products/di/edi_system/pages/default.aspx

60

[27] C. Amin, ”Statistical static timing analysis: How simple can we

get? ”, DAC, 2005.

[28] R. Lin, M. Wu, ”A new statistical approach to timing analysis of

VLSI circuits”, Int. Conf. VLSI Design, 1998.

[29] B. Choi and D. Walker, ”Timing analysis of combinational

circuits including capacitive coupling and statistical process

variation”, Symp. VLSI Test, 2000.

[30] W. C. Elmore, ”The transient response of damped linear

networks with particular regard to wideband amplifiers”, 11

April 1947.

[31] P. Penfield Jr. and J. Rubinstein, ”Signal delay in RC tree

netwroks”, Design Automation Conference, 1981.

[32] D. Sinha et al., ”TAU 2013 Variation Aware Timing Analysis

Contest”, 2013.

[33] Snell, Charles M. Grinstead and J. Laurie, ”Introduction to

Probability”, American Mathematical Society (AMS), 2006.

[34] Peter W. Glynn and Donald L. Iglehart, ”Importance Sampling

for Stochastic Simulations”, Management Science, Vol. 35, No.

11, pp. 1367-1392, November 1989.

[35] R. Gupta, B. Tutuianu and L. T. Pileggi, ”The Elmore Delay as

a Bound for RC Trees with Generalized Input Signals”, IEEE

Transactions on Computer-Aided Design for Integrated Circuits
and Systems, Vol. 16, No. 1, pp. 95-104, January1997.

61

Appendix

A.1. Input Files Formats

Netlist File

In this appendix, we introduce to the reader some more practical

issues concerning the tool developed for this diploma thesis

project. As an introduction to this process, we provide you an

insight to the input files’ structure.

Firstly, we will break down the netlist file, which as we

mentioned before, encloses the description of the circuit

topology:

input <node>
output <node>
instance <cell name> <pin name>:<node> ... <pin name>:<node>
wire <post node> <tap node> ... <tap node>
 res <node> <node> <resistance>
 ...
 cap <node> <capacitance>
 ...
slew <node> <slew fall> <slew rise>
clock <node><period>
at <node> <at fall early> <at fall late> <at rise early> <at rise late>
rat <node> <mode of operation> <rat fall> <rat rise>

The keywords included in this netlist type files are the following:

 input, primary input node;

 output, primary output node;

 instance, cell instance;

 wire, interconnect net;

 res, cap, resistor and capacitor of a parasitic 𝑅𝐶 tree

(possible to appear in any order);

 slew, input slew at the primary inputs;

 clock, clock input constraint (only used for primary input

nodes);

 at, arrival time constraint (only used for primary input

nodes);

62

 rat, required arrival time constraint.

The corresponding variable fields denoted in the above generic

netlist file are presented below:

 <node>, <port node> and <tap node> are node names, of

up to 64 characters, which can contain alphanumeric

characters, the underscore or the dash (the first character

must be a letter);

 <cell name> is the name of the library cell (exactly as it

will appear in the cell library file), of up to 32

alphanumeric characters (the first character must be a

letter);

 <pin name> is the name of a pin of the cell (exactly as it

will appear in the cell library file), of up to 32

alphanumeric characters;

 <resistance> is the value of the resistance in Ohm,

represented in scientific notation;

 <capacitance> is the value of the capacitance in Farad,

represented in scientific notation;

 <slew fall> and <slew rise> are the fall and rise of the

corresponding primary input, in seconds, represented in

scientific notation. Early and late slews at the inputs are

assumed to be identical;

 <period> is the clock period in seconds, denoted in

scientific notation;

 <at fall early>, <at fall late>, <at rise early> and

<at rise late> are real numbers, represented in scientific

notation, which represent arrival time constraints for

fall/rise transitions in early/late mode, at the primary

inputs (in seconds);

 <mode of operation> is the mode of operation and can be

either early or late;

 <rat fall> and <rat rise> are real numbers, represented

in scientific notation, which represent required arrival time

constraints for fall/rise transitions and early/late mode in

seconds.

It should be noted that if no input slew is defined for any

primary input, we assumed 1𝑒 − 12 , for both fall and rise

transitions. The designs described in any netlist of this form, will

have only one clock input pin (one clock domain) at most.

63

Cell Library File

Alongside the netlist file we present the format of the cell library

file, which includes the timing information of any cell used and is

formatted as described as follows:

metal <sigma corner> <resistance scale factor> <capacitance scale factor>
 ...
cell <cell name>
 pin <pin name> input <fall capacitance> <rise capacitance>
 pin <pin name> output
 pin <pin name> clock <fall capacitance> <rise capacitance>
 ...
 timing <input pin name> <output pin name> <timing sense> \
 <fall slew> <rise slew> <fall delay> <rise delay>
 setup <clock pin name> <input pin name> <edge type> \
 <fall constraint> <rise constraint>
 hold <clock pin name> <input pin name> <edge type> \
 <fall constraint> <rise constraint>
 preset <input pin name> <output pin name> <edge type> <slew> <delay>
 clear <input pin name> <output pin name> <edge type> <slew> <delay>

In accordance to the presentation we provided for the netlist file,

we describe below the keywords and the variable fields utilized

in the cell library files. Firstly, the keywords:

 metal, metal parameters scalars at specific sigma corners;

 cell, start of cell definition;

 pin, start of pin definition;

 input, output and clock, pin type;

 timing, delay;

 setup, setup time;

 hold, hold time;

 preset, preset time (output node is set to high);

 clear, clear time (output node is set to low).

Similarly to the netlist file presentation, we exemplify the

variables presented in the above generic cell library file:

 <sigma corner> is the sigma corner value (𝜎) of metal

parameter 𝛥𝛭 for which resistance and capacitance scale

factors are provided;

64

 <resistance scale factor> is the value (𝑚𝑅
𝜎) by which the

nominal interconnect resistance provided in the netlist

should be scaled at the given metal sigma corner;

 <capacitance scale factor> is the value (𝑚𝐶
𝜎) by which

the nominal interconnect capacitance provided in the

netlist should be scaled at the given metal sigma corner;

 <cell name> is the name of the cell, of up to 32 characters

in length, which can contain solely alphanumeric

characters;

 <pin name> is the name of a pin of the cell, of up to 32

characters in length, which can contain exclusively

alphanumeric characters, also;

 <fall capacitance> and <rise capacitance> are values of

the pin’s input capacitances in Farad, for rise/fall

transitions, represented in scientific notation;

 <input pin name>, <output pin name> and <clock pin

name> are the names of the input, output and clock pins

respectively, of a given delay or constraint specification, of

up to 32 characters in length, which is allowed to contain

(once more) only alphanumeric characters;

 <timing sense>, can be any of:

o positive_unate, transition direction is preserved

from input to output (rise → rise, fall → fall);

o negative_unate, transition direction is reversed from

input to output (rise → fall, fall → rise);

o non_unate, transition direction cannot be presumed

from a single input (take the worst, among rise/fall);

 <slew>, <fall slew>, <rise slew>, are each given by 9 real

numbers separated by white spaces, which match the

parameters 𝑥, 𝑦, 𝑧, 𝑘𝑠,𝑣, 𝑘𝑠,𝑡, 𝑘𝑠,𝑙, 𝑘𝑠,𝑤, 𝑘𝑠,ℎ, and 𝑘𝑠,𝑟 of equation

calculating 𝑆𝑜 (fall/rise refers to the transition direction in

the output pin);

 <delay>, <fall delay> and <rise delay>, are each given

by 9 real numbers separated by white spaces, which

correspond to the parameters 𝑎, 𝑏, 𝑐, 𝑘𝑑,𝑣, 𝑘𝑑,𝑡, 𝑘𝑑,𝑙, 𝑘𝑑,𝑤, 𝑘𝑑,ℎ,

and 𝑘𝑑,𝑟 of equation computing 𝐷;

 <edge type>, can be one of:

o falling, constraint that applies to the falling clock

edge;

o rising, constraint applying to the rising clock edge;

65

 <fall constraint> and <rise constraint> are each given

by three real numbers separated by white spaces, which

correspond accordingly to the parameters 𝑔 , ℎ and 𝑗 of

equation for the 𝑡𝑠𝑒𝑡𝑢𝑝 or 𝑚, 𝑛 and 𝑝 of the equation for the

𝑡ℎ𝑜𝑙𝑑 , depending whether we are dealing with setup

constraints or hold constraints, respectively;

We should note that both preset and clear values are

represented for entirety and are ignored for the timing analysis

approach we propose.

66

A.2. Example Input Files

The netlist file which includes the circuit topology is formatted

as follows:

input in_1
input in_2
input in_3
input in_4
output out
instance AND2X1 A:in_1 B:in_2 Y:w
instance XOR2X1 A:u B:in_4 Y:v
instance NOR2X1 A:k B:h Y:out
wire w k
 res w r 0.355
 cap r 1.23423e-13
 res r k 0.7884
 cap h 0.8e-14
wire v h
 res v h 0.5
 cap h 1.37e-13
wire in_3 u
 res in_3 h 0.75
 cap u 1.44e-13
at in_1 0 0 0 0
at in_2 0 0 0 0
at in_3 0 0 0 0
at in_4 0 0 0 0
rat k late 1e-13 2e-13

In the next figure (Figure 14), we illustrate the example circuit

that is described in the above netlist.

Figure 20: Example circuit

67

And the cell library file:

metal 0 1.0 1.0
metal 3 0.85 1.24
cell AND2X1
 pin A input 5.14e-16 5.34e-16
 pin B input 5.35e-16 5.7e-16
 pin Y output
 timing A Y positive_unate 4.78193e-12 4807.29 0.000196751 -0.00602524

0.00585616 0.00021047 -0.0000985957 0.000195775 0.00019961 6.88656e-12
11138.6 0.0000843378 -0.012127 0.037587 0.000227912 -0.0000493878
0.0000838057 0.00019257 6.25087e-11 6032.36 0.00247343 -0.0026644
0.00159043 0.0000694437 -0.00371931 0.0000911961 0.000157218 5.56981e-11
11789 -0.000183877 -0.003468 0.00371931 0.0000911961 -0.00012835
0.00023857 0.00022949

timing B Y positive_unate 5.98666e-12 4868.63 0.000112529 -0.0055235
0.00511724 0.000158928 -0.000179324 0.0000354006 0.000151742 6.69766e-12
11142.7 0.0000819104 -1.23305 0.03842 0.0000047514 -0.0000607217
0.0000343079 0.00020144 7.51493e-11 6005.01 0.00261237 -0.00222054
0.00135711 0.0000391698 -0.000100236 0.0000324476 0.0000272022
5.93502e-11 11798.7 -0.000224446 -0.0039269 0.00354033 0.000249731
-0.0000545642 0.000128233 0.000209778

cell XOR2X1
 pin A input 4.15e-16 4.35e-16
 pin B input 4.34e-16 4.7e-16
 pin Y output
 timing A Y non_unate 5.78193e-12 5807.29 0.000196741 -0.00602425 0.00484616

0.00021057 -0.0000984947 0.000194774 0.00019961 6.88646e-12 11138.6
0.0000853378 -0.012127 0.0374874 0.000227912 -0.0000593878 0.0000838047
0.00019247 6.24087e-11 6032.36 0.00257353 -0.0026655 0.00149053
0.0000695537 -0.000138592 0.000119359 0.000147218 4.46981e-11 11789

 -0.000183877 -0.003568 0.00371931 0.0000911961 -0.00012834 0.00023847
0.00022959

 timing B Y non_unate 4.98666e-12 5868.63 0.000112429 -0.0044234 0.00411725
0.000148928 -0.000179325 0.0000345006 0.000141752 6.69766e-12 11152.7
0.0000819105 -0.0123304 0.03852 0.0000057415 -0.0000607217 0.0000353079
0.00020155 7.41593e-11 6004.01 0.00261237 -0.00222045 0.00134711
0.0000391698 -0.000100236 0.0000325576 0.0000272022 4.93402e-11 11798.7
-0.000225556 -0.0039269 0.00345033 0.000259731 -0.0000454652 0.000128233
0.000209778

cell NOR2X1
 pin A input 5.13e-16 5.33e-16
 pin B input 5.35e-16 5.7e-16
 pin Y output
 timing A Y negative_unate 3.78193e-12 3807.29 0.000196761 -0.00602623

0.00686616 0.00021037 -0.0000986967 0.000196776 0.00019961 6.88666e-12
11138.6 0.0000833378 -0.012127 0.0376876 0.000227912 -0.0000393878
0.0000838067 0.00019267 6.26087e-11 6032.36 0.00237333 -0.0026633
0.00169033 0.0000693337 -0.000138392 0.000119339 0.000167218 6.66981e-11
11789 -0.000183877 -0.003368 0.00371931 0.0000911961 -0.00012836
0.00023867 0.00022939

timing B Y negative_unate 6.98666e-12 3868.63 0.000112629 -0.0066236
0.00611723 0.000168928 -0.000179323 0.0000363006 0.000161732 6.69766e-12
11132.7 0.0000819103 -0.012330 0.03832 0.0000037613 -0.0000607217
0.0000333079 0.00020133 7.61393e-11 6006.01 0.00261237 -0.00222063
0.00136711 0.0000391698 -0.000100236 0.0000323376 0.0000272022
6.93602e-11 11798.7 -0.000223336 -0.0039269 0.00363033 0.000239731
-0.0000636632 0.000128233 0.000209778

68

A.3. Output File Format

at <node> <at early fall> <at early rise> <at late fall>
<at late rise> <slew early fall> <slew early rise>
<slew late fall> s<slew late rise>

...
slack <node> early <slack early fall> <slack early rise>
slack <node> late <slack late fall> <slack late rise>
...

All numerical results will be given in seconds and printed

scientific notation, with 5 decimal places (eg. 1.23456𝑒 − 10).

	a4koltsi
	Thesis

