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EuxapioTieg

Apxikd, Ba nBeAa va eguxaploTiow TOV KOBNyNt Tou TuAMaTOoG Mnyavikwv H/Y
TnAemikovwviwy Kal AIKTUWV Kal Baoikd emPBAETTOVTA TNG TITUXIOKNG QUTAG €£pyaoiag
K.AnuATpIo Katoapod TTou PJou £DWOE TNV EUKAIPIA VA TTPAYHATOTTOINOW AUTH TNV MEAETN.
H utrooTthpIg Tou, N AuéPIOTN CUPTTAPAOCTACT) TOU, OAAG Kal OI OIOPKEIG Kal EUOTOXEG

uTTOOEIEEIC TOU BorBnoav oTnv £ykKaipn oAOKARPpwWON AUTAG TNG MEAETNG.

EmmpdobeTa, Ba riBeAa va euxapioThow Tov £Tepo TIRAETTOVTA KABNYNTA K.[MavayiwTtn
Mtroddvn kal Tov OIOAKTOPIKO @oITNT) Tou TPAuatog [lMauAo Mtracapd yia Tnv
TTpoyevéaTePn OOUAEIG TOU, TNV MPETAAQUTTAdEUCN TNG YVWONG AUTAG KABWGS Kal Tn

ouvexn Kabodrynor Tou £wg TNG TTEPATWON TNG EPYATIAC.

TéNOG, Ba NBeAa va euxapIOTACW TNV OIKOYEVEIA UOU KAl TOUG QIAOUG POU TTOU HOU

oupTTapacTAdNKav o OAN TNV BIAPKEIQ TNG EKTTOVNONG AUTAS TS EPYATiag.



MepiAnyn

Ta online kolvwvika dikTUa €0PAIWVOUV TNV KUPIAPXia TOUG WOTE va Yivouv TO TTIO
ONUOPINEG PEOW TTANPOPOPNONG KaBWG peyoAwvouv 1600 Ot pEyeBog 600 Kal O€
onuoTikOTNTa. O £€AeyX0G TwV KOKOBOUAWV Oedouévwy (OTTWG @run, dla@nuiceg,
AoyIouIKG, KTA) atraitei dueon Opdcn AOyw Twv TEPACTIWV EMTITWOEWV TOUG O€
TTAYKOOMIA KOIVWVIKI KAIJOKO. Z€ QUTA TNV gpyacia TTpoTeiveTal pia uéBodog yia Tnv
TEPIOTOAN TNG €€ATTAWONG TNG KAKOPBOUANG TTAnpogopiag (TrapatrAnpo@oépnon) Me
aglotroinon TNG TOTTIKNAG TTANPOQYOPIag TOu KABE XproTn-KOPPBOU Kal TwV YEITOVWVY TOU.
Baoiopévn otn peTpikn u-Pci, uttoAoyidetal n iy TG ncPci Tou KABe kduPou, TTou gival
TO MéyeBOC TNG OUPPBOANG Tou KABe vyeitova oTov utmoAoyioud 1m¢ u-Pci. O
TTEIPAPATIONOG JAG TTAVW O€ TTPAYMATIKA oUVOeTa dikTUO OTTOOEIKVUEI OTI N TTPOCEYYION
Mog eival og Béon va amoTpéwel Tnv O1adoon Twv KAKOBoUAwv Oedopévwyv o€
MEYAAUTEPO BaABPOG atr’ T O AvTaywVIOTEG TNG OTA TTAQioIa TOu PovTéAou diadoong SIR

(Susceptible Infected Recovered).



Abstract

Online social networks (OSNs) consolidate their sovereignty in becoming the most
popular medium for information dissemination as they grow in both size and popularity.
Controlling malicious data (rumors, advertisements, software, etc.) traversing through
those networked people, requires immediate action due to its enormous impact in global
social scale. In this article we propose our method for blocking the spread of
misinformation by utilizing local information from node-users environs, in accordance to
its own significance as originally indexed by wu-Pci, namely, neighbor contribution on
Power Community Index, ncPci. Our experimentation in real complex networks shows
that our approach is able to deter malicious propagation at a greater extent than its

competitors under the Susceptible Infected Recovered, SIR, spreading model.
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1 Introduction & Related Work

In the last decade, influence maximization in complex networks has received increased
attention from the research society. In complex-social networks this problem is
interpreted as locating those node-users for the spreading of messages (products,
rumors, etc.) through which the largest possible portion of the network can be
influenced by diverse and specific ways. Quantifying and ultimately restraining the
spreading of false rumors or malicious software among those people networks is a
major and urgent necessity of equivalent importance. This reverse-dual problem is
formulated as follows: find the minimum set of key players or key connections in a social
network whose removal (immunization) will hinder or stop further false (rumor)

propagation to the greatest possible extent.

Fig.1: An example of a complex network.



Most of the so far proposed techniques focus on a specific characteristic of social
networks, community. Social networks are community networks, i.e. dense connections
between nodes within the same community and sparser connections between nodes
residing in different communities. Immunizing the bridge nodes, i.e. nodes which
connect different communities (or nodes-connections which lead to those bridges) are
the primary objective of these studies and thus isolating malicious rumors in the

community of origin.

In [1] the authors illustrate a greedy approach based on shortest paths between the
bridge nodes and rumor originators to stop the false propagation. This article takes
advantage of the community structure of social networks and their primary objective is
to stop the malicious rumors from reaching other communities by immunizing individuals
who are intermediates in these paths. Bridge nodes and bridge hubs (i.e. nodes with
many connections in different communities) are noted as critical components in
information dissemination and thus researchers focus on community detection
techniques for immunization. However identifying community structures in real social
networks (e.g. Facebook, Twitter) is a challenging task due to their size and magnitude.
Random walks for detecting small sized communities and dealing with the lack of global
structural network information are reviewed in [2][3][4], where bridge hubs constitute the

targets for immunization.

Fig.2: Community Structure



[5] reports that local information of nodes surroundings is usually sufficient to
characterize its role in an epidemic, and proves via experimental results under different
spreading models that different immunizations strategies need to be applied in order to
efficiently block the infection. Leaving aside communities, removing the hub nodes (the
highly connected individuals) is a widely used and low cost approach which is proven
efficient in blocking the spreading of malicious contents. Other strategies constitute
those trying to immunize highly influential nodes as identified by centrality measures
such as betweenness or eigenvector [6], however, such measures become impractical

in large-scale networks.

All the aforementioned techniques apply node removal as immunization strategies to
block the infection. However with such a way we isolate the related individuals from the
remaining structure and thus significantly reduce the connectivity of a network,
especially when a large number of nodes must be removed. Recently edge blocking
approaches appeared. As reported in [7] the removal of nodes is equivalent to cutting
off their connections and thus removing a user’s links is a more profound approach.
Here the authors provide a greedy method for selecting edges to block the contagion by
utilizing the Bond Percolation Method [8] to estimate the influence degree of edges. In
[9] the authors quantify the significance of an edge by multiplying the degrees of its
adjacent nodes, and illustrate that their approach is equal or better to node removing
techniques, under the SIS spreading model, while also maintaining the network
integrity. However their experimentation is limited only in artificial networks. [10] is an
interesting approach that considers two problems. First the removal of user connections
to hinder false propagations, and second the addendum of edges to deal with the
opposite issue. This article focuses on the eigenvalue of the graph structure inspired by
the findings in [11][12], to minimize the leading eigenvalue and deter misinformation, or
maximize it and boost the dissemination process by removing or adding edges
respectively, within a specified budget. A similar approach attempting to reduce the

spectrum of the adjacency matrix to slow down an epidemic by removing edges is

investigated in [13].



In [14] the authors illustrate their algorithm for blocking a contagion and study its
performance under threshold progressive and deterministic models. The algorithm
allows the contagion to move step by step and at each "next time step” (step i+1) each
infected node is assigned a cost value determined by the least number of edges needed
to be shut down in the "previous step” (step i) in order to save the node. If the total cost
of salvaging all the next infected nodes is within the constraining budget at step i, then
this edge set is the final immunization set and the algorithms stops. Otherwise the
computation is repeated in subsequent steps were at each step either all next infected
nodes are saved or none. If this condition is never met, then the solution with the

minimum impact of infection is selected as the target edge set.

In [15][16][17] the authors investigate on competitive influence when several opposite
products or opinions coexist and compete over influence propagation. This case can be
formulated as two opposing campaigns of different actors, one spreading delusive
information, for instance about a certain event, and another trying to warn the
community in a social network about the falsity of this particular rumor. As other
examples consider political rivalry or marketing affairs. These techniques focus on
blocking one’s influence potential and thus this problem is similar to our case study.
Some of these issues focus on game theory aspects, others select positive seeds to
bate and subside negative rumor spreading [18][19][20], while others propose variations
in the diffusion models to account for opposing propagations and then solve the

influence maximization problem.

To provide a summary on the aforementioned related works, and portray a general
framework for the formulation of the problems that these studies solve; some of these
tasks are constrained by some maximum available budget (< B), and within this
threshold value they apply either node or edge immunization techniques to minimize the
impact of the contagion, while others try to locate the minimum set, among many sets of
edges or nodes that block the infection to the largest possible extent and address the
problem. The so far algorithms used to identify the target nodes or edges for

immunization vary. Many use traditional centrality measures such as betweenness or



eigenvector, some focus on the highly connected individuals or discount degree
approaches, others utilize community detection techniques to detect the bridge nodes or
edges, while others apply greedy based approaches to select their target set. The
majority of earlier works involves a fixed cost for the removal of any edge or any node of
a network. However can we assume the expenditure of removing a single node or edge
to be of a static amount? What if some nodes or connections due to their nature
(consider army communication networks) cannot be removed or what if when
considering different costs for nodes or edges the bridge connectors cannot be
immunized? Even if we can afford to remove bridges, malicious products originating
from a large social community or maybe the largest community, will still harm the
network environment at a great deal. Undoubtedly there are many unexplored aspects,
key parameters and limitations that need to be further studied in order to provide a

broad formula and solution to the problem.

This project further addresses the problem of blocking the spread of misinformation by
removing node-users, i.e. closing down schools and thus removing all interactions
between children in case of example of a disease outbreak or shutting down routers to
block the spreading of viruses among networked computed. We propose a variation of
well studied measure in the literature of identifying influential users in complex
networks, namely, neighbor contribution on power community index, ncPci, and prove
via experimental results that the proposed measure is able to deter malicious diffusion
at a greater extent than its competitors. Evaluation was performed in several real

complex networks under the Susceptible Infectious Recovered spreading model, SIR.



2 Problem Formulation

In this study we apply the widely used SIR spreading model to simulate the diffusion of

malicious contents (viruses, rumors, etc.). SIR models three possible states:

= The susceptible state S, in which the S nodes are vulnerable to infection.

= The infected state I, in which the | nodes try to infect their susceptible neighbors
and succeed with probability A.

= The recovered state R, in which nodes have recovered from infection and

cannot be reinfected.

Starting the simulation an initial seed set of nodes, I, is elected as the starting point,
comprised of nodes in | state for the dissemination. In our experimentation this initial set
is chosen from either the hub nodes (highly connected individuals) or the core nodes as
identified by the k-shell decomposition algorithm. Our performance metric is the total
number of nodes in the infected state, I;, at the end of the propagation.

Finally to formulate the addressed problem, given a network G = (V,E) of V vertices and
E connections among them, find a set of removable nodes within a minimum budget -8
number of nodes- whose removal will deter the malicious propagation to the largest

possible extent i.e. will minimize I;.

There are two approaches to the problem; the first one is characterized as offline and
the second one as online. In the first approach we start the immunization process
before the infection diffusion starts, meaning that we remove 8 number of nodes before
the first step of the SIR process and after this we let the diffusion propagate without
other blocking moves. The second approach presents a new way to deal with the
problem and no similar work could be found throughout our research. In this approach,

we immunize nodes or edges after each SIR step. The process, in detail, consists of



removing B number of nodes (or edges) after each sir step completes. The infection

directs us to the specific nodes (or edges) that are going to be deleted.

Fig.3: SIR, diffusion process states



3 Offline Methodologies

3.1 Original Power Community Index

Definition 1 (u-Power Community Index, uy-pci). The u-PCl of a node v is equal to Kk,
such that there are up to u * k nodes in the u-hop neighborhood of v with degree
greater than or equal to k, and the rest of the nodes in that neighborhood have a degree
less than or equal to k. The goal is to detect nodes located in dense areas of the

network and thus likely influential spreaders.

u-pci was initially presented in for caching decision in ad-hoc networks and later used
for the identification of influential spreaders in dynamic complex networks. It is a local
index that characterizes nodes according to the density of their vicinities. Due to its
locality it becomes feasible for implementation in real time applications and dynamic

networks.

3.2 Neighbor Contribution on pci, ncPci

In this section we discuss the notion of similarity in connections between node u, and its
one hop vicinity, in order to decide whether or not to include each individual neighbor in
our new ranking method. Through our experimentation we realized that pci values
collected from neighbors that formed their initial pci's from similar environs, as illustrated
in Figure 1, should not be included fully but rather partially. For instance, if an epidemic
starts from node x who shares common vicinity with y, some of y's neighbors will be

influenced from x directly, and thus y's significance on x should drop.



Fig.4: Toy network for building ncPci. Nodes x and y form their initial pci's from almost identical

neighboring nodes thus the contribution of one to the other is minimal.

We also deducted that including neighbors with very low pci values does not improve
our algorithms ranking performance. To account for such occasions we incorporate a
tunable parameter y between 0 and 1 as a threshold value, and include those of u's
neighbors that satisfy: pci (j) / pci (u) > y .When y = 0 all of u's neighbors are included

whereas if y = 1 only those with greater or equal pci are considered.

Based on these observations we built our approach, neighbor contribution on Power

community index, ncPci as follows:
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where Nj is the number of common neighbors between u and j, N, stands for the
number of j's neighbors, N’ for neighbors to which pci (j) / pci (u) > y applies and M’ for

neighbors to which pci (j) / pci (u) < y applies. The distance is the difference of the two

pci’s, abs (pci (u) - pci (j)).

3.3 Centralities

In graph theory and network analysis, centrality of a vertex measures its relative
importance within a graph. Applications include how influential a person is within
a social network, how important a room is within a building (space syntax), and how
well-used a road is within an urban network. There are four main measures of centrality:

degree, betweenness, closeness, and eigenvector.

3.3.1 Degree

In graph theory, the degree of a vertex of a graph is the number of edges incident to the
vertex, ~ with loops counted twice. The degree of a vertexvis deg(v).
denoted The maximum degree of a graph G, denoted by A(G), and the minimum
degree of a graph, denoted by §(G), are the maximum and minimum degree of its

vertices.

Fig.5: The blue node has degree deg (b) =3 and each red node has degree deg (r) =8.



3.3.2 Betweenness

Betweenness centrality is a measure of a node's centrality in a network. It is equal to
the number of shortest paths from all vertices to all others that pass through that node.
Betweenness centrality is a more useful measure (than just connectivity) of both the
load and importance of a node. The former is more global to the network, whereas the

latter is only a local effect.

The betweenness centrality of a node v is given by the expression:

where 0O is the total number of shortest paths from node s to node t and (V) is the

number of those paths that pass through v.

Fig.6: Hue (from red=0 to blue=max) shows the node betweenness. Hue scale representing node

betweenness on a graph.



3.3.3 Closeness

In connected graphs there is a natural distance metric between all pairs of nodes,
defined by the length of their shortest paths. The farness of a node s is defined as the
sum of its distances to all other nodes, and its closeness is defined as the inverse of the
farness. Thus, the more central a node is the lower its total distance to all other nodes.
Closeness can be regarded as a measure of how long it will take to spread information

from s to all other nodes sequentially.

In general directed graphs:

Fig.7: Closeness centrality. V;:di=4 x1+1x2+1x3=9, Cy(1) =6/9. V,accesses 4 nodes (V,, Vs,
Ve, V7) with step 1, 1 node (V3) with step 2 and 1 node (V,) with step 3. 6 nodes can be accessed in total
by Vi. Vo:dy, =2 x1+4 x2=10>d;, Cyo(2) = 6/10. V,accesses 2 nodes (V,, V3) with step 1 and 4
nodes (V4, Vs, Vg, V7) with step 2. 6 nodes can also be accessed in total by V,. As a result, V, is more

central than node V, since d1>d,.



Betweenness and closeness centrality require global knowledge of the network and it is
difficult to compute them for large networks. In our work, we use Gephi, and R-Library in

order to compute centralities for all networks.

Fig.8: Examples of A) Degree centrality, B) Closeness centrality, C) Betweenness centrality D)

Eigenvector centrality



3.4 K-shell Decomposition

In graph theory, a k-degenerate graph is an undirected graph in which every subgraph
has a vertex of degree at most k: that is, some vertex in the subgraph touches k or
fewer of the subgraph's edges. The degeneracy of a graph is the smallest value of k for
which it is k-degenerate. The degeneracy of a graph is a measure of how sparse it is,
and is within a constant factor of other sparsity measures such as the arboricity of a

graph.

K-shell decomposition of a network graph is performed iteratively. The first step involves
removing all degree-1 nodes, along with their link, and indexing these as k = 1. In the
resulting graph, all nodes of degree 1 are also considered to have k = 1 and are again
pruned. The process is repeated until there are no nodes of degree 1. Similarly, all
nodes with i or fewer connections are iteratively removed; these nodes are indexed as
k=i.

Fig.9: Examples of k-shell decomposition.



4 Online Methodologies

In order to deal with the online approach of the problem, apart from node removal we
implement methodologies which face it by removing edges. This approach is new, so no

competitors could be used.

4.1 Node Removal

The first methodology removes one hop neighbor nodes with the highest degree while
the second removes one hop neighbor nodes with the highest ego betweenness. Ego

betweenness is the betweenness centrality measure in an ego network.

4.1.1 Ego Network

Ego networks consist of a focal node ("ego") and the nodes to whom ego is directly
connected to (called "alters") plus the ties, if any, among the alters. Each alter in an ego

network has his/her own ego network.

Fig.10: An example of an ego Network. The red node is the “ego” node and blue nodes are alters.



4.2 Edge Removal

We implement and compare two methods used for edge removal. The first includes
removing edges which drives to nodes with the highest degree and the second

incorporates removing edges which drives to nodes with the highest rdegree.

4.2.1 rDegree

rDegree is a metric we use to describe the number of the one-hop neighbors in state S.

Fig.11: The degree of the v node is deg (v) =4 and the rdegree is rdeg (v) =2.



5 Performance Evaluation

In this section we present the results and the experimentation analysis of the methods

we use. We also provide a description of the Online Social Networks we used.

5.1 Dataset Collection

The networks we use for our experiments are real networks. We use 4 networks with
different sizes and attributes. All of them are collaboration networks from the e-print
arXiv and covers scientific collaborations between authors’ papers. For each network
we use different infection probability which is computed from the infection spread

threshold , T¢, over which infection epidemic exists.

Network Nodes Edges Inf. Prob
CA-CondMat 23133 93497 0.05
CA-AstroPh 18772 198110 |0.02
CA-GrQc 5242 14496 0.07
pap 24316 186936 | 0.06

Network attributes

5.2 Experimental Settings

We performed two different types of experiments for the offline approach. In the first
type we start the infection propagation from one node (single spreader) and in the
second there are five or ten nodes from which the infection begins (multiple spreaders).

There are two kind of initial seed sets, one consists of the nodes with the highest



degree of the network and the other consists of the highest k-core values. Several
amounts of budgets were tried in order to observe the infection propagation. At first we
remove 0.25% of the network’s size, and we continue with 0.5%, 0.75%, 1%, 2%, 3%
and 4% of the network’s size. All of the removals are performed before the infection

propagation begins.

For the online approach we perform experiments using only a single spreader for both
node and edge removal. The initial seed set consist of the top degree node. As we
described before, in this scenario we remove 8 number of nodes (or edges) at each SIR
step. For the node removal case the budget varies from 20% to 60%. As far as the edge

removal case is concerned the budget varies from 10% to 100%.

We simulated 15000 diffusion instances for every scenario and there was a deviation in

results less than 1%.

5.3 Experimental Results

In this section we present the results of our experiments. The first set of results

concerns the offline approach and the second one is about the online approach.

5.3.1 Offline approach

5.3.1.1 Single Spreader

In the experiments below we present the propagation of infection without any blocking.
We can easily observe that betweenness centrality and k-shell metric have the worst
performance. This occurs because nodes with high betweenness centrality have many
connections with leaf nodes and nodes with high k-shell metric have many connections

with nodes near to the core of the network. This means that the nodes we remove have



many one-hop neighbors and no n-hop, (n>1) neighbors and they are not influential
spreaders. Closeness centrality up till 1% of the removed nodes has low-performance;
after this amount of budget it has similar behavior to the degree, pci and ncPci
measures. We observe that this similarity in performance of the last three metrics is
caused by the common removed nodes. Nodes with high degree, has also high pci and
ncPci metrics. Pci gives us the density of the one-hop neighborhood and so does ncPci.
However, ncPci counts the real contribution of each node in contrast to pci which may
count the contribution of a node twice or more. So, from all the above it is clear that
ncPci has the best performance and the results confirm its significance.

Fig.12: CA-GrQc, infection probability 7%, initial seed set : top degree



Fig.13: CA-AstroPh, infection probability 2%, initial seed set : top degree

Fig.14: CA-AstroPh, infection probability 2%, initial seed set : top k-shell



Fig.15: CA-GrQc, infection probability 7%, initial seed set : top k-shell

5.3.1.2 Multiple Spreader

Fig.16: CA-GrQc, infection probability 7%, initial seed set : top 5 degree



Fig.17: CA-CondMat, infection probability 5%, initial seed set : top 5 k-shell

Fig.18: CA-GrQc, infection probability 7%, initial seed set : top 5 k-shell



Fig.19: pgp, infection probability 6%, initial seed set : top 5 k-shell

Fig.20: CA-GrQc, infection probability 7%, initial seed set : top 10 degree



Fig.21: CA-CondMat, infection probability 5%, initial seed set : top 10 k-shell

Fig.22: CA-GrQc, infection probability 7%, initial seed set : top 10 k-shell



5.3.2 Online approach

Here we present the results from the online approach experiments. rDegree looks to
have better performance at first, however after 50% of the removed nodes degree has
the same results. This occurs because the percentage of the removed nodes is large
enough and we have common deleted nodes. As for node removal, degree centrality
has much greater performance from the egoBetweenness and this makes sense as
egoBetweenness takes into account only some of the one-hop neighbors in contrast to

degree centrality which takes into account all of them.

5.3.2.1 Edge Removal

Fig.23: CA-GrQc, infection probability 7%, initial seed set : top degree



5.3.2.2 Node Removal

Fig.24: CA-GrQc, infection probability 7%, initial seed set : top degree

Fig.25: CA-GrQc, infection probability 7%, initial seed set : top degree



6 Conclusion & Future Work

In this work we try to constrain infection propagation in complex networks. We face the
problem with two different approaches, offline and online, and with many
methodologies. The results for the offline case, present the great performance of ncPci,
pci and degree centrality with the first having the less infected nodes at the end of the
propagation. Degree and pci are the most important competitors as in some cases
succeed tiny infection percentage too. The results for the online case, present the great
performance of the degree centrality. However, this case is a new approach and an

unexplored region.

So as a future work, we plan to work on blocking the false rumor by removing edges or
nodes while aiming to a better performance considering the way the aforementioned
rumor is propagated through the complex network. This is going to be achieved by
adjusting methods that have been used in the offline approach to the online one or
implement new greedy algorithms.
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