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Εςσαπιζηίερ 

 

Αξρηθά, ζα ήζεια λα επραξηζηήζσ ηνλ θαζεγεηή ηνπ ηκήκαηνο Μεραληθώλ Ζ/Τ 

Σειεπηθνηλσληώλ θαη Γηθηύσλ θαη βαζηθό επηβιέπνληα ηεο πηπρηαθήο απηήο εξγαζίαο 

θ.Γεκήηξην Καηζαξό πνπ κνπ έδσζε ηελ επθαηξία λα πξαγκαηνπνηήζσ απηή ηελ κειέηε. 

Ζ ππνζηήξημή ηνπ, ε ακέξηζηε ζπκπαξάζηαζή ηνπ, αιιά θαη νη δηαξθείο θαη εύζηνρεο 

ππνδείμεηο ηνπ βνήζεζαλ ζηελ έγθαηξε νινθιήξσζε απηήο ηεο κειέηεο. 

Δπηπξόζζεηα, ζα ήζεια λα επραξηζηήζσ ηνλ έηεξν επηβιέπνληα θαζεγεηή θ.Παλαγηώηε 

Μπνδάλε θαη ηνλ δηδαθηνξηθό θνηηεηή ηνπ ηκήκαηνο Παύιν Μπαζαξά γηα ηελ 

πξνγελέζηεξε δνπιεηά ηνπ, ηελ κεηαιακπάδεπζε ηεο γλώζεο απηήο θαζώο θαη ηε 

ζπλερή θαζνδήγεζή ηνπ έσο ηεο πεξάησζε ηεο εξγαζίαο.  

Σέινο, ζα ήζεια λα επραξηζηήζσ ηελ νηθνγέλεηά κνπ θαη ηνπο θίινπο κνπ πνπ κνπ 

ζπκπαξαζηάζεθαλ ζε όιε ηελ δηάξθεηα ηεο εθπόλεζεο απηήο ηεο εξγαζίαο. 

 

 

 

 

 

 

 

 

 

 

 

 

 



Πεπίλητη 

 

 

Σα online θνηλσληθά δίθηπα εδξαηώλνπλ ηελ θπξηαξρία ηνπο ώζηε λα γίλνπλ ην πην 

δεκνθηιέο κέζσ πιεξνθόξεζεο θαζώο κεγαιώλνπλ ηόζν ζε κέγεζνο όζν θαη ζε 

δεκνηηθόηεηα. Ο έιεγρνο ησλ θαθόβνπισλ δεδνκέλσλ (όπσο θήκε, δηαθεκίζεηο, 

ινγηζκηθό, θηι) απαηηεί άκεζε δξάζε ιόγσ ησλ ηεξάζηησλ επηπηώζεσλ ηνπο ζε 

παγθόζκηα θνηλσληθή θιίκαθα. ΢ε απηή ηελ εξγαζία πξνηείλεηαη κία κέζνδνο γηα ηελ 

πεξηζηνιή ηεο εμάπισζεο ηεο θαθόβνπιεο πιεξνθνξίαο (παξαπιεξνθόξεζε) κε 

αμηνπνίεζε ηεο ηνπηθήο πιεξνθνξίαο ηνπ θάζε ρξήζηε-θόκβνπ θαη ησλ γεηηόλσλ ηνπ. 

Βαζηζκέλε ζηε κεηξηθή μ-Pci, ππνινγίδεηαη ε ηηκή ηεο ncPci ηνπ θάζε θόκβνπ, πνπ είλαη 

ην κέγεζνο ηεο ζπκβνιήο ηνπ θάζε γείηνλα ζηνλ ππνινγηζκό της μ-Pci. Ο 

πεηξακαηηζκόο καο πάλσ ζε πξαγκαηηθά ζύλζεηα δίθηπα απνδεηθλύεη όηη ε πξνζέγγηζή 

καο είλαη ζε ζέζε λα απνηξέςεη ηελ δηάδνζε ησλ θαθόβνπισλ δεδνκέλσλ ζε 

κεγαιύηεξν βαζκό απ’ όηη νη αληαγσληζηέο ηεο ζηα πιαίζηα ηνπ κνληέινπ δηάδνζεο SIR 

(Susceptible Infected Recovered). 

  
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 



Abstract 

 

 

Online social networks (OSNs) consolidate their sovereignty in becoming the most 

popular medium for information dissemination as they grow in both size and popularity. 

Controlling malicious data (rumors, advertisements, software, etc.) traversing through 

those networked people, requires immediate action due to its enormous impact in global 

social scale. In this article we propose our method for blocking the spread of 

misinformation by utilizing local information from node-users environs, in accordance to 

its own significance as originally indexed by μ-Pci, namely, neighbor contribution on 

Power Community Index, ncPci. Our experimentation in real complex networks shows 

that our approach is able to deter malicious propagation at a greater extent than its 

competitors under the Susceptible Infected Recovered, SIR, spreading model. 
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1 Introduction & Related Work 

 

In the last decade, influence maximization in complex networks has received increased 

attention from the research society. In complex-social networks this problem is 

interpreted as locating those node-users for the spreading of messages (products, 

rumors, etc.) through which the largest possible portion of the network can be 

influenced by diverse and specific ways. Quantifying and ultimately restraining the 

spreading of false rumors or malicious software among those people networks is a 

major and urgent necessity of equivalent importance. This reverse-dual problem is 

formulated as follows: find the minimum set of key players or key connections in a social 

network whose removal (immunization) will hinder or stop further false (rumor) 

propagation to the greatest possible extent.  

 

 

Fig.1: An example of a complex network. 

 



Most of the so far proposed techniques focus on a specific characteristic of social 

networks, community. Social networks are community networks, i.e. dense connections 

between nodes within the same community and sparser connections between nodes 

residing in different communities. Immunizing the bridge nodes, i.e. nodes which 

connect different communities (or nodes-connections which lead to those bridges) are 

the primary objective of these studies and thus isolating malicious rumors in the 

community of origin. 

 

In [1] the authors illustrate a greedy approach based on shortest paths between the 

bridge nodes and rumor originators to stop the false propagation. This article takes 

advantage of the community structure of social networks and their primary objective is 

to stop the malicious rumors from reaching other communities by immunizing individuals 

who are intermediates in these paths. Bridge nodes and bridge hubs (i.e. nodes with 

many connections in different communities) are noted as critical components in 

information dissemination and thus researchers focus on community detection 

techniques for immunization. However identifying community structures in real social 

networks (e.g. Facebook, Twitter) is a challenging task due to their size and magnitude. 

Random walks for detecting small sized communities and dealing with the lack of global 

structural network information are reviewed in [2][3][4], where bridge hubs constitute the 

targets for immunization.  

 

Fig.2: Community Structure 

 



[5] reports that local information of nodes surroundings is usually sufficient to 

characterize its role in an epidemic, and proves via experimental results under different 

spreading models that different immunizations strategies need to be applied in order to 

efficiently block the infection. Leaving aside communities, removing the hub nodes (the 

highly connected individuals) is a widely used and low cost approach which is proven 

efficient in blocking the spreading of malicious contents. Other strategies constitute 

those trying to immunize highly influential nodes as identified by centrality measures 

such as betweenness or eigenvector [6], however, such measures become impractical 

in large-scale networks.  

 

All the aforementioned techniques apply node removal as immunization strategies to 

block the infection. However with such a way we isolate the related individuals from the 

remaining structure and thus significantly reduce the connectivity of a network, 

especially when a large number of nodes must be removed. Recently edge blocking 

approaches appeared. As reported in [7] the removal of nodes is equivalent to cutting 

off their connections and thus removing a user’s links is a more profound approach. 

Here the authors provide a greedy method for selecting edges to block the contagion by 

utilizing the Bond Percolation Method [8] to estimate the influence degree of edges. In 

[9] the authors quantify the significance of an edge by multiplying the degrees of its 

adjacent nodes, and illustrate that their approach is equal or better to node removing 

techniques, under the SIS spreading model, while also maintaining the network 

integrity. However their experimentation is limited only in artificial networks. [10] is an 

interesting approach that considers two problems. First the removal of user connections 

to hinder false propagations, and second the addendum of edges to deal with the 

opposite issue. This article focuses on the eigenvalue of the graph structure inspired by 

the findings in [11][12], to minimize the leading eigenvalue and deter misinformation, or 

maximize it and boost the dissemination process by removing or adding edges 

respectively, within a specified budget. A similar approach attempting to reduce the 

spectrum of the adjacency matrix to slow down an epidemic by removing edges is 

investigated in [13]. 

 



In [14] the authors illustrate their algorithm for blocking a contagion and study its 

performance under threshold progressive and deterministic models. The algorithm 

allows the contagion to move step by step and at each ”next time step” (step i+1) each 

infected node is assigned a cost value determined by the least number of edges needed 

to be shut down in the ”previous step” (step i) in order to save the node. If the total cost 

of salvaging all the next infected nodes is within the constraining budget at step i, then 

this edge set is the final immunization set and the algorithms stops. Otherwise the 

computation is repeated in subsequent steps were at each step either all next infected 

nodes are saved or none. If this condition is never met, then the solution with the 

minimum impact of infection is selected as the target edge set. 

 

In [15][16][17] the authors investigate on competitive influence when several opposite 

products or opinions coexist and compete over influence propagation. This case can be 

formulated as two opposing campaigns of different actors, one spreading delusive 

information, for instance about a certain event, and another trying to warn the 

community in a social network about the falsity of this particular rumor. As other 

examples consider political rivalry or marketing affairs. These techniques focus on 

blocking one’s influence potential and thus this problem is similar to our case study. 

Some of these issues focus on game theory aspects, others select positive seeds to 

bate and subside negative rumor spreading [18][19][20], while others propose variations 

in the diffusion models to account for opposing propagations and then solve the 

influence maximization problem. 

 

To provide a summary on the aforementioned related works, and portray a general 

framework for the formulation of the problems that these studies solve; some of these 

tasks are constrained by some maximum available budget (≤ β), and within this 

threshold value they apply either node or edge immunization techniques to minimize the 

impact of the contagion, while others try to locate the minimum set, among many sets of 

edges or nodes that block the infection to the largest possible extent and address the 

problem. The so far algorithms used to identify the target nodes or edges for 

immunization vary. Many use traditional centrality measures such as betweenness or 



eigenvector, some focus on the highly connected individuals or discount degree 

approaches, others utilize community detection techniques to detect the bridge nodes or 

edges, while others apply greedy based approaches to select their target set. The 

majority of earlier works involves a fixed cost for the removal of any edge or any node of 

a network. However can we assume the expenditure of removing a single node or edge 

to be of a static amount? What if some nodes or connections due to their nature 

(consider army communication networks) cannot be removed or what if when 

considering different costs for nodes or edges the bridge connectors cannot be 

immunized? Even if we can afford to remove bridges, malicious products originating 

from a large social community or maybe the largest community, will still harm the 

network environment at a great deal. Undoubtedly there are many unexplored aspects, 

key parameters and limitations that need to be further studied in order to provide a 

broad formula and solution to the problem. 

 

This project further addresses the problem of blocking the spread of misinformation by 

removing node-users, i.e. closing down schools and thus removing all interactions 

between children in case of example of a disease outbreak or shutting down routers to 

block the spreading of viruses among networked computed. We propose a variation of 

well studied measure in the literature of identifying influential users in complex 

networks, namely, neighbor contribution on power community index, ncPci, and prove 

via experimental results that the proposed measure is able to deter malicious diffusion 

at a greater extent than its competitors. Evaluation was performed in several real 

complex networks under the Susceptible Infectious Recovered spreading model, SIR. 

 

 

 

 

 

 

 



2 Problem Formulation 

 

In this study we apply the widely used SIR spreading model to simulate the diffusion of 

malicious contents (viruses, rumors, etc.). SIR models three possible states: 

 

 The susceptible state S, in which the S nodes are vulnerable to infection. 

 The infected state I, in which the I nodes try to infect their susceptible neighbors 

and succeed with probability λ. 

  The recovered state R, in which nodes have recovered from infection and 

cannot be reinfected. 

 

Starting the simulation an initial seed set of nodes, Is, is elected as the starting point, 

comprised of nodes in I state for the dissemination. In our experimentation this initial set 

is chosen from either the hub nodes (highly connected individuals) or the core nodes as 

identified by the k-shell decomposition algorithm. Our performance metric is the total 

number of nodes in the infected state, If , at the end of the propagation. 

 

Finally to formulate the addressed problem, given a network G = (V,E) of V vertices and 

E connections among them, find a set of removable nodes within a minimum budget -β 

number of nodes- whose removal will deter the malicious propagation to the largest 

possible extent i.e. will minimize If .  

 

There are two approaches to the problem; the first one is characterized as offline and 

the second one as online. In the first approach we start the immunization process 

before the infection diffusion starts, meaning that we remove β number of nodes before 

the first step of the SIR process and after this we let the diffusion propagate without 

other blocking moves. The second approach presents a new way to deal with the 

problem and no similar work could be found throughout our research. In this approach, 

we immunize nodes or edges after each SIR step. The process, in detail, consists of 



removing β number of nodes (or edges) after each sir step completes. The infection 

directs us to the specific nodes (or edges) that are going to be deleted. 

 

 

 

 

Fig.3: SIR, diffusion process states 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



3 Offline Methodologies 

3.1  Original Power Community Index 

 

Definition 1 (μ-Power Community Index, μ-pci). The μ-PCI of a node v is equal to k, 

such that there are up to μ × k nodes in the μ-hop neighborhood of v with degree 

greater than or equal to k, and the rest of the nodes in that neighborhood have a degree 

less than or equal to k. The goal is to detect nodes located in dense areas of the 

network and thus likely influential spreaders. 

 

μ-pci was initially presented in for caching decision in ad-hoc networks and later used 

for the identification of influential spreaders in dynamic complex networks. It is a local 

index that characterizes nodes according to the density of their vicinities. Due to its 

locality it becomes feasible for implementation in real time applications and dynamic 

networks. 

 

 

3.2 Neighbor Contribution on pci, ncPci 

 

In this section we discuss the notion of similarity in connections between node u, and its 

one hop vicinity, in order to decide whether or not to include each individual neighbor in 

our new ranking method. Through our experimentation we realized that pci values 

collected from neighbors that formed their initial pci's from similar environs, as illustrated 

in Figure 1, should not be included fully but rather partially. For instance, if an epidemic 

starts from node x who shares common vicinity with y, some of y's neighbors will be 

influenced from x directly, and thus y's significance on x should drop. 



 

 

 

 

 

 

 

 

 

 

 

Fig.4: Toy network for building ncPci. Nodes x and y form their initial pci's from almost identical 

neighboring nodes thus the contribution of one to the other is minimal. 

 

 

We also deducted that including neighbors with very low pci values does not improve 

our algorithms ranking performance. To account for such occasions we incorporate a 

tunable parameter γ between 0 and 1 as a threshold value, and include those of u's 

neighbors that satisfy: pci (j) / pci (u) > γ .When  γ = 0 all of u's neighbors are included 

whereas if γ = 1 only those with greater or equal pci are considered.  

 

Based on these observations we built our approach, neighbor contribution on Power 

community index, ncPci as follows: 

 

 

 



 

where N1 is the number of common neighbors between u and j, N2 stands for the 

number of j`s neighbors, N’ for neighbors to which pci (j) / pci (u) > γ applies and M’ for 

neighbors to which pci (j) / pci (u) ≤ γ applies. The distance is the difference of the two 

pci’s, abs (pci (u) - pci (j)). 

 

3.3 Centralities 

 

In graph theory and network analysis, centrality of a vertex measures its relative 

importance within a graph. Applications include how influential a person is within 

a social network, how important a room is within a building (space syntax), and how 

well-used a road is within an urban network. There are four main measures of centrality: 

degree, betweenness, closeness, and eigenvector.  

 

3.3.1  Degree 

 

In graph theory, the degree of a vertex of a graph is the number of edges incident to the 

vertex, with loops counted twice. The degree of a vertex  is 

denoted  The maximum degree of a graph G, denoted by Γ(G), and the minimum 

degree of a graph, denoted by δ(G), are the maximum and minimum degree of its 

vertices.  

 

Fig.5: The blue node has degree deg (b) =3 and each red node has degree deg (r) =8. 



3.3.2  Betweenness 

 

Betweenness centrality is a measure of a node's centrality in a network. It is equal to 

the number of shortest paths from all vertices to all others that pass through that node. 

Betweenness centrality is a more useful measure (than just connectivity) of both the 

load and importance of a node. The former is more global to the network, whereas the 

latter is only a local effect. 

 

The betweenness centrality of a node  is given by the expression: 

 

 

 

 

where σst is the total number of shortest paths from node s to node t and σst(v) is the 

number of those paths that pass through v. 

 

Fig.6: Hue (from red=0 to blue=max) shows the node betweenness. Hue scale representing node 

betweenness on a graph. 



3.3.3  Closeness 

 

In connected graphs there is a natural distance metric between all pairs of nodes, 

defined by the length of their shortest paths. The farness of a node s is defined as the 

sum of its distances to all other nodes, and its closeness is defined as the inverse of the 

farness. Thus, the more central a node is the lower its total distance to all other nodes. 

Closeness can be regarded as a measure of how long it will take to spread information 

from s to all other nodes sequentially. 

 

 In general directed graphs: 

 

 

 

 

 

 

Fig.7: Closeness centrality. V1: d1 = 4 × 1 + 1 × 2 + 1 × 3 = 9, Cclo(1) = 6/9. V1 accesses 4 nodes (V2, V5, 

V6, V7) with step 1, 1 node (V3) with step 2 and 1 node (V4) with step 3. 6 nodes can be accessed in total 

by V1. V2: d2 = 2 × 1 + 4 × 2 = 10 > d1, Cclo(2) = 6/10. V2 accesses 2 nodes (V1, V3) with step 1 and 4 

nodes (V4, V5, V6, V7) with step 2. 6 nodes can also be accessed in total by V2. As a result, V1 is more 

central than node V2 since d1>d2. 

 

 

 

 



Betweenness and closeness centrality require global knowledge of the network and it is 

difficult to compute them for large networks. In our work, we use Gephi, and R-Library in 

order to compute centralities for all networks. 

 

 

Fig.8: Examples of A) Degree centrality, B) Closeness centrality, C) Betweenness centrality D) 

Eigenvector centrality 



3.4 K-shell Decomposition 

 

In graph theory, a k-degenerate graph is an undirected graph in which every subgraph 

has a vertex of degree at most k: that is, some vertex in the subgraph touches k or 

fewer of the subgraph's edges. The degeneracy of a graph is the smallest value of k for 

which it is k-degenerate. The degeneracy of a graph is a measure of how sparse it is, 

and is within a constant factor of other sparsity measures such as the arboricity of a 

graph. 

 

K-shell decomposition of a network graph is performed iteratively. The first step involves 

removing all degree-1 nodes, along with their link, and indexing these as k = 1. In the 

resulting graph, all nodes of degree 1 are also considered to have k = 1 and are again 

pruned. The process is repeated until there are no nodes of degree 1. Similarly, all 

nodes with i or fewer connections are iteratively removed; these nodes are indexed as  

k = i. 

 

 

 

 

 

 

 

 

 

Fig.9: Examples of k-shell decomposition. 



4 Online Methodologies 

 

In order to deal with the online approach of the problem, apart from node removal we 

implement methodologies which face it by removing edges. This approach is new, so no 

competitors could be used. 

 

4.1 Node Removal 

 

The first methodology removes one hop neighbor nodes with the highest degree while 

the second removes one hop neighbor nodes with the highest ego betweenness. Ego 

betweenness is the betweenness centrality measure in an ego network.  

 

4.1.1 Ego Network 

 

Ego networks consist of a focal node ("ego") and the nodes to whom ego is directly 

connected to (called "alters") plus the ties, if any, among the alters. Each alter in an ego 

network has his/her own ego network. 

 

Fig.10: An example of an ego Network. The red node is the “ego” node and blue nodes are alters. 



4.2 Edge Removal 

 

We implement and compare two methods used for edge removal. The first includes 

removing edges which drives to nodes with the highest degree and the second 

incorporates removing edges which drives to nodes with the highest rdegree. 

 

4.2.1 rDegree 

 

rDegree is a metric we use to describe the number of the one-hop neighbors in state S. 

 

 

Fig.11: The degree of the v node is deg (v) =4 and the rdegree is rdeg (v) =2. 

 

 



5  Performance Evaluation 

 

In this section we present the results and the experimentation analysis of the methods 

we use. We also provide a description of the Online Social Networks we used.   

 

5.1 Dataset Collection 

 

The networks we use for our experiments are real networks. We use 4 networks with 

different sizes and attributes. All of them are collaboration networks from the e-print 

arXiv and covers scientific collaborations between authors’ papers. For each network 

we use different infection probability which is computed from the infection spread 

threshold ,ΤC, over which infection epidemic exists.  

 

Network Nodes Edges Inf. Prob 

CA-CondMat 23133 93497 0.05 

CA-AstroPh 18772 198110 0.02 

CA-GrQc 5242 14496 0.07 

pgp 24316 186936 0.06 

 Network attributes 

 

5.2 Experimental Settings 

 

We performed two different types of experiments for the offline approach. In the first 

type we start the infection propagation from one node (single spreader) and in the 

second there are five or ten nodes from which the infection begins (multiple spreaders). 

There are two kind of initial seed sets, one consists of the nodes with the highest 



degree of the network and the other consists of the highest k-core values. Several 

amounts of budgets were tried in order to observe the infection propagation. At first we 

remove 0.25% of the network’s size, and we continue with 0.5%, 0.75%, 1%, 2%, 3% 

and 4% of the network’s size. All of the removals are performed before the infection 

propagation begins.  

For the online approach we perform experiments using only a single spreader for both 

node and edge removal. The initial seed set consist of the top degree node. As we 

described before, in this scenario we remove β number of nodes (or edges) at each SIR 

step. For the node removal case the budget varies from 20% to 60%. As far as the edge 

removal case is concerned the budget varies from 10% to 100%.  

We simulated 15000 diffusion instances for every scenario and there was a deviation in 

results less than 1%. 

 

5.3 Experimental Results 

 

In this section we present the results of our experiments. The first set of results 

concerns the offline approach and the second one is about the online approach. 

 

5.3.1 Offline approach 

 

5.3.1.1  Single Spreader 

 

In the experiments below we present the propagation of infection without any blocking. 

We can easily observe that betweenness centrality and k-shell metric have the worst 

performance. This occurs because nodes with high betweenness centrality have many 

connections with leaf nodes and nodes with high k-shell metric have many connections 

with nodes near to the core of the network. This means that the nodes we remove have 



many one-hop neighbors and no n-hop, (n>1) neighbors and they are not influential 

spreaders. Closeness centrality up till 1% of the removed nodes has low-performance; 

after this amount of budget it has similar behavior to the degree, pci and ncPci 

measures. We observe that this similarity in performance of the last three metrics is 

caused by the common removed nodes. Nodes with high degree, has also high pci and 

ncPci metrics. Pci gives us the density of the one-hop neighborhood and so does ncPci. 

However, ncPci counts the real contribution of each node in contrast to pci which may 

count the contribution of a node twice or more. So, from all the above it is clear that 

ncPci has the best performance and the results confirm its significance. 

 

 

 

 

 

Fig.12: CA-GrQc, infection probability 7%, initial seed set : top degree 

 

 



 

Fig.13: CA-AstroPh, infection probability 2%, initial seed set : top degree 

 

 

 

 

Fig.14: CA-AstroPh, infection probability 2%, initial seed set : top k-shell 



 

Fig.15: CA-GrQc, infection probability 7%, initial seed set : top k-shell 

 

5.3.1.2  Multiple Spreader 

 

 

 

Fig.16: CA-GrQc, infection probability 7%, initial seed set : top 5 degree 



 

Fig.17: CA-CondMat, infection probability 5%, initial seed set : top 5 k-shell 

 

 

 

 

Fig.18: CA-GrQc, infection probability 7%, initial seed set : top 5 k-shell 



 

Fig.19: pgp, infection probability 6%, initial seed set : top 5 k-shell 

 

 

 

 

Fig.20: CA-GrQc, infection probability 7%, initial seed set : top 10 degree 



 

Fig.21: CA-CondMat, infection probability 5%, initial seed set : top 10 k-shell 

 

 

 

 

 

Fig.22: CA-GrQc, infection probability 7%, initial seed set : top 10 k-shell 



5.3.2 Online approach 

 

Here we present the results from the online approach experiments. rDegree looks to 

have better performance at first, however after 50% of the removed nodes degree has 

the same results. This occurs because the percentage of the removed nodes is large 

enough and we have common deleted nodes. As for node removal, degree centrality 

has much greater performance from the egoBetweenness and this makes sense as 

egoBetweenness takes into account only some of the one-hop neighbors in contrast to 

degree centrality which takes into account all of them. 

 

5.3.2.1  Edge Removal 

 

 

Fig.23: CA-GrQc, infection probability 7%, initial seed set : top degree 

 

 



5.3.2.2  Node Removal 

 

Fig.24: CA-GrQc, infection probability 7%, initial seed set : top degree 

 

 

Fig.25: CA-GrQc, infection probability 7%, initial seed set : top degree 

 



6 Conclusion & Future Work 

 

In this work we try to constrain infection propagation in complex networks. We face the 

problem with two different approaches, offline and online, and with many 

methodologies. The results for the offline case, present the great performance of ncPci, 

pci and degree centrality with the first having the less infected nodes at the end of the 

propagation. Degree and pci are the most important competitors as in some cases 

succeed tiny infection percentage too. The results for the online case, present the great 

performance of the degree centrality. However, this case is a new approach and an 

unexplored region.  

So as a future work, we plan to work on blocking the false rumor by removing edges or 

nodes while aiming to a better performance considering the way the aforementioned 

rumor is propagated through the complex network. This is going to be achieved by 

adjusting methods that have been used in the offline approach to the online one or 

implement new greedy algorithms. 
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