

University of Thessaly

Pattern–Oriented Software
Architecture for Concurrent and
Networked Applications

Master thesis

Papacharisiou Konstantinos

Supervisor:

Dimitrios Katsaros, Lecturer

Committee members:

Panayiotis Bozanis, Associate Professor

Catherine Housti, Professor

Institutional Repository - Library & Information Centre - University of Thessaly
18/09/2024 23:19:05 EEST - 3.137.218.30

Πανεπιστήμιο Θεσσαλίας

Αρχιτεκτονική Λογισμικού με
Επαναχρησιμοποιήσιμο Κώδικα
στην Ανάπτυξη Δικτυακής
Εφαρμογής

Μεταπτυχιακή Διατριβή

Παπαχαρισίου Κωνσταντίνος

Επιβλέπων:

Δημήτριος Κατσαρός, Λέκτορας

Μέλη επιτροπής:

Παναγιώτης Μποζάνης, Αναπληρωτής Καθηγητής

Αικατερίνη Χούστη, Καθηγήτρια

Institutional Repository - Library & Information Centre - University of Thessaly
18/09/2024 23:19:05 EEST - 3.137.218.30

Institutional Repository - Library & Information Centre - University of Thessaly
18/09/2024 23:19:05 EEST - 3.137.218.30

4

Contents

Abstract 7

Περίληψη 8

Chapter 1 Introduction 11

1.1. Definition and pattern categories 11

1.2. Importance of Concurrent and Networked patterns 11

Chapter 2 Proxy pattern 13

2.1. Motivation 13

2.2. Solution 13

2.2.1. An example in C++ 14

Chapter 3 The Active Object pattern 16

3.1. Motivation 16

3.2. Problem 16

3.3. Solution 16

3.3.1. Dynamics 18

3.4. Using object-oriented C++ features 20

3.4.1. Using runtime binding 21

3.4.2. Polymorphic future 22

3.5. Benefits and limitations 23

Chapter 4 Scoped Locking pattern 24

4.1. Motivation 24

4.2. Problem 24

4.3. Solution 25

4.4. Benefits and limitations 26

Chapter 5 Half sync – Half async pattern 27

5.1. Motivation 27

5.2. Problem 27

5.3. Solution 28

5.3.1. Dynamics 29

5.4. Benefits and limitations 31

Chapter 6 Leader/Followers 33

6.1. Motivation 33

6.2. Problem 33

Institutional Repository - Library & Information Centre - University of Thessaly
18/09/2024 23:19:05 EEST - 3.137.218.30

5

6.3. Solution 34

6.3.1. Dynamics 34

6.4. Benefits and limitations 36

Chapter 7 Developing a real server environment using patterns 38

7.1. Functionality 38

7.2. UML Design diagram 40

7.3. UML Class components diagrams 41

7.3.1. Communication interface 41

7.3.2. Invocation – execution method decoupling 42

7.3.3. Sync/async management & parallelism escalation 43

7.4. Concurrency management 45

Chapter 8 Conclusion and future work 46

8.1. About the patterns 46

8.2. About the application 46

Appendix 47

Scheduler 47

Client 49

Servant 51

Method Request 53

Proxy 55

Activation Queue 57

PUT & GET 59

References 60

Institutional Repository - Library & Information Centre - University of Thessaly
18/09/2024 23:19:05 EEST - 3.137.218.30

6

Dedicated to my family and my friends

Institutional Repository - Library & Information Centre - University of Thessaly
18/09/2024 23:19:05 EEST - 3.137.218.30

7

Abstract

Object Oriented (OO) programming generally incorporates some exciting features able to

give not only flexible and effective but also structured and reusable solutions. The discipline

of Distributed and Networked applications can reveal the power of such OO languages

applied in an effective manner to a variety of problems.

Using this exciting tool (OO languages) of software engineering patterns we are going to

examine how applying C++ can solve some of the most common algorithmic problems in

distributed and networked systems. Such solutions have appeared, applied and generalized

in Distributed and Networked systems since 1990. As a result some patterns have emerged

and optimized regarding the most common of the challenges that programmers have

struggled with.

The intention of this thesis is to represent, study and evaluate the features of the most

common patterns appeared in Distributed and Networked applications.

Institutional Repository - Library & Information Centre - University of Thessaly
18/09/2024 23:19:05 EEST - 3.137.218.30

8

Περίληψη

Ο Αντικειμενοστραφής Προγραμματισμός (ΑΠ) ενσωματώνει ορισμένα εκπληκτικά

χαρακτηριστικά που μπορούν να δώσουν αποτελεσματικές, ευέλικτες καθώς επίσης σωστά

δομημένες και επαναχρησιμοποιήσιμες λύσεις. Ο τομέας των Κατανεμημένων και

Διαδικτυακών εφαρμογών μπορεί να αποκαλύψει την δύναμη μίας τέτοιας γλώσσας που

χρησιμοποιείται αποδοτικά για τη λύση μίας πληθώρας προβλημάτων.

Χρησιμοποιώντας αυτό το εκπληκτικό εργαλείο (ΑΠ) της επιστήμης των υπολογιστών θα

εξετάσουμε πως εφαρμόζοντας τη C++ μπορούμε να λύσουμε μερικά από το πιο κοινά

προβλήματα που προκύπτουν στα Κατανεμημένα και Διαδικτυακά συστήματα

χρησιμοποιώντας πρότυπα. Τέτοιες λύσεις εφαρμόζονται, επεκτείνονται, γενικεύονται και

βελτιστοποιούνται σε Κατανεμημένες και Διαδικτυακές εφαρμογές από το 1990. Σαν

αποτέλεσμα έχουν προκύψει κάποια πρότυπα λύσεων στις πιο κοινές προκλήσεις που

έχουν αντιμετωπίσει οι προγραμματιστές.

Σκοπός της παρούσας εργασίας είναι η μελέτη, η παρουσίαση και η αξιολόγηση των πιο

κοινών προτύπων που εμφανίζονται στις Κατανεμημένες και Διαδικτυακές εφαρμογές.

Institutional Repository - Library & Information Centre - University of Thessaly
18/09/2024 23:19:05 EEST - 3.137.218.30

9

List of Figures

Picture 1 Proxy pattern example ... 13

Picture 2 Simple Proxy Algorithm .. 14

Picture 3 Output of Proxy Pattern Example .. 15

Picture 4 Active Object Pattern Structure ... 17

Picture 5 Active Object Operations ... 18

Picture 6 Active Object UML ... 20

Picture 7 Active Object Dispatch function Implementation .. 21

Picture 8 Active Object Future function Implementation ... 22

Picture 9 Locking Problem Scenario .. 24

Picture 10 Scoped Locking function .. 25

Picture 11 Scoped Locking Implementation .. 25

Picture 12 Scoped Locking use .. 26

Picture 13 Half sync – Half async necessity ... 28

Picture 14 Half sync – Half async Structure ... 28

Picture 15 Half sync – Half async Dynamics .. 30

Picture 16 Half sync – Half async utilization in ACE framework .. 31

Picture 17 Half sync-Half async weaknesses ... 33

Picture 18 Leader/Followers UML ... 34

Picture 19 Leader/Followers Dynamics ... 35

Picture 20 The Server Environment .. 38

Picture 21 Server Features .. 39

Picture 22 Server Design Diagram ... 40

Picture 23 Communication Interface Class Diagram ... 41

Picture 24 Method Decoupling Class Diagram .. 42

Picture 25 Sync/Async Management & Parallelism Class Diagram ... 43

Picture 26 Running Instance .. 44

Picture 27 Concurrency Management Dynamics .. 45

Institutional Repository - Library & Information Centre - University of Thessaly
18/09/2024 23:19:05 EEST - 3.137.218.30

file:///C:/Users/kopapaha/Dropbox/MSc/pattern_oriented/pattern_oriented_final.docx%23_Toc380767662
file:///C:/Users/kopapaha/Dropbox/MSc/pattern_oriented/pattern_oriented_final.docx%23_Toc380767663
file:///C:/Users/kopapaha/Dropbox/MSc/pattern_oriented/pattern_oriented_final.docx%23_Toc380767664

10

List of Tables

Table 1 Active Object context ... 16

Table 2 Scoped Locking Context .. 24

Table 3 Half sync – Half async context .. 27

Table 4 Leader/Followers Context .. 33

Institutional Repository - Library & Information Centre - University of Thessaly
18/09/2024 23:19:05 EEST - 3.137.218.30

11

Chapter 1
Introduction

1.1. Definition and pattern categories

In software engineering, a design pattern [9] is a general reusable solution to a commonly

occurring problem within a given context in software design. A pattern is not a finished

design that can be transformed directly into source or machine code. It is a description or

template for how to solve a problem that can be used in many different situations.

Patterns are formalized best practices that the programmer must implement in the

application. Object-oriented design patterns typically show relationships and interactions

between classes or objects, without specifying the final application classes or objects that

are involved. Patterns that imply object-orientation or more generally mutable state are not

as applicable in functional programming languages.

Design patterns reside in the domain of modules and interconnections. There are many

types of design patterns, for instance:

 Algorithm strategy patterns addressing concerns related to high-level strategies

describing how to exploit application characteristics on a computing platform.

 Computational design patterns addressing concerns related to key computation

identification

 Execution patterns that address concerns related to supporting application

execution, including strategies in executing streams of tasks and building blocks to

support task synchronization

 Implementation strategy patterns addressing concerns related to implementing

source code

 Structural design patterns addressing concerns related to high-level structures of

applications being developed

1.2. Importance of Concurrent and Networked patterns

When objects are distributed, the various entities that constitute these objects must

communicate and coordinate with each other effectively. Moreover, they must continue to

do so as applications change over their lifetimes. The placement of objects, the available

networking infrastructure, and platform concurrency options allow for a level of freedom

that is powerful, yet challenging.

When designed properly, concurrent object-oriented network programming capabilities can

add a great deal of flexibility to your application options. For instance, in accordance with

the requirements and resources available to your projects, you can use

 Real-time, embedded, or handheld systems

 Smartphones, personal or laptop computers

Institutional Repository - Library & Information Centre - University of Thessaly
18/09/2024 23:19:05 EEST - 3.137.218.30

Chapter 1
Introduction

12

 and even supercomputers

These are the fields that patterns have contributed the most as reusable solutions and have

boosted programming effectiveness. Concurrent patterns are a family of interrelated

patterns that define a process for systematically resolving problems that arise when

developing software for distributed systems.

Institutional Repository - Library & Information Centre - University of Thessaly
18/09/2024 23:19:05 EEST - 3.137.218.30

13

Chapter 2
Proxy pattern

2.1. Motivation

Software systems consist of cooperating components: client components access and use the

services provided by other components. It is often impractical, or even impossible, to access

the services of a component directly, for example because we must first check the access

rights of its clients, or because its implementation resides on a remote server. If clients are

to access a remote component directly, they become dependent on the component’s

location, as well as on the networking protocols that are used to access its functionality,

which should be transparent to a component’s clients.

2.2. Solution

So a solution could be the encapsulation of the components functionality in a separate

surrogate of the component- the proxy- and let the clients to communicate only through the

proxy rather than the component itself.

Picture 1 Proxy pattern example

A proxy frees both the client and the component from implementing component-specific

housekeeping functionality. It is also transparent to clients whether they are connected with

the component or its proxy, because both publish an identical interface. The primary

liabilities of a proxy are the hidden costs it can introduce for clients, although for many uses

these costs are negligible compared to the execution time of the component’s services.

Some common types of proxy patterns are:

 Client Proxy shields the clients of a remote component from network addresses and

IPC protocols to enable location independence within a distributed system: clients

can use the client proxy as if it were a local component.

 Business delegate goes one step further: it shields clients from all IPC, as well as

locating remote components, load balancing when multiple component instances

are available in a distributed application, and handling of specific networking errors.

 Threadsafe interface is a proxy that serializes access to concurrent components

transparently for both the client and the components.

Institutional Repository - Library & Information Centre - University of Thessaly
18/09/2024 23:19:05 EEST - 3.137.218.30

Chapter 2
Proxy pattern

14

 Counting handle is normally expressed as a proxy that helps to access the

functionality of shared heap objects whose lifetime must be managed explicitly by

an application, to avoid memory leaks when the object is no longer used.

2.2.1. An example in C++

In the following example a proxy pattern version is presented. Not only does this illustration

of the proxy pattern give an abstract access method to clients but also it prevents from

multiple loadings leading to a memory overflow as we can see in output.

#include <iostream> 1
 2
using namespace std; 3
 4
//on System A 5
class server{ 6
private: 7
 int type; 8
public: 9
 server(int tp):type(tp){} 10
 11
 void downloadImage(){ 12
 cout << "downloading..." << "type: " << type << endl; 13
 } 14
}; 15
 16
//on System B 17
class proxy{ 18
private: 19
 server *s; 20
 int type; 21
 22
public: 23
 proxy(int tp): type(tp), s(NULL) {} 24
 25
 void displayImage(){ 26
 if (s==NULL){ 27
 s = new server(type); 28
 s->downloadImage(); 29
 } 30
 else 31
 cout << "omitting call..." << endl; 32
 } 33
}; 34
 35
int main(){ 36
 37
 cout << "Proxy Pattern" << endl; 38
 39
 proxy p1(1); 40
 proxy p2(2); 41
 42
 p1.displayImage(); 43
 p1.displayImage(); 44
 p2.displayImage(); 45
 p1.displayImage(); 46
 p2.displayImage(); 47
 system("PAUSE"); 48
 return 0; 49
} 50

Picture 2 Simple Proxy Algorithm

Institutional Repository - Library & Information Centre - University of Thessaly
18/09/2024 23:19:05 EEST - 3.137.218.30

Chapter 2
Proxy pattern

15

Picture 3 Output of Proxy Pattern Example

Institutional Repository - Library & Information Centre - University of Thessaly
18/09/2024 23:19:05 EEST - 3.137.218.30

16

Chapter 3
The Active Object pattern

3.1. Motivation

If we have hundreds or thousands of users in a big crowd with their smart phones, or

laptops, or other computing devices, all pounding away at our server, then we're simply not

going to be able to get any kind of response time if there's one thread of control. So we

clearly need a way to leverage the available hardware and software much more effectively.

3.2. Problem

Table 1 Active Object context

To do that, we're going to apply the active object pattern. And we're going to use this active

object pattern to scale up the service performance by processing the various requests, in

separate threads of control. In particular we're going to have a separate thread of control

for each connection that comes in from a client.

In general the active object pattern defines the units of concurrency to be service requests

that are run on a component. And it arranges to have these requests for service work in a

manner where the method that requests the service is decoupled from the method that

executes the service so those can run concurrently.

3.3. Solution

The Active Object Pattern decouples the method execution from method invocation in

order to simplify synchronized access to an object that resides to its own thread of control.

The pattern allows one or more independent threads of execution to interleave their access

to data modeled as a single object. A broad class of producer- consumer and reader/writer

Institutional Repository - Library & Information Centre - University of Thessaly
18/09/2024 23:19:05 EEST - 3.137.218.30

Chapter 3
The Active Object pattern

17

applications are relevant to this model of concurrency. As Douglas C. Schmidt [5] mentions

this pattern is commonly used in distributed systems requiring multi-threaded servers.

We're going to start by analyzing the structural dimensions at first. One part of the structure

involves the client that runs in a thread of control and invokes a method on the active

object. This method is actually invoked on a proxy, and what happens is that proxy converts

that method call into a message called a method request.

Picture 4 Active Object Pattern Structure

That method request is passed over to the active object where it's in queued in an activation

list (activation queue) that the active objects scheduler manages. At some later point in time

that scheduler, running in a separate thread of control from the client, we'll DQ the message

and execute the task it describes.

Institutional Repository - Library & Information Centre - University of Thessaly
18/09/2024 23:19:05 EEST - 3.137.218.30

Chapter 3
The Active Object pattern

18

3.3.1. Dynamics

Here's a dynamic view that gives you a little bit more perspective of what's happening as

these various interactions take place between the various roles in the pattern.

Picture 5 Active Object Operations

We start out by having a client invoke a method call on a proxy (we can use the proxy

pattern). In our particular case, the proxy will convert the method call into a message called

a method request and this method request basically contains message fields it corresponds

to the data, it keeps track of the name of the method. They also have some return

information as well, and it gets bundled up into an object that you can use to pass from the

proxy back into the active object portion. The proxy part also creates the future, which is

going to be used to pass back to the client later, so it can subsequently retrieve the results, if

any that occur when the active object invokes this request.

Afterwards the method request is then passed to the scheduler. The scheduler enqueue this

method request on an activation list and it gives back the future to the client. In later time,

which is depended from a variety of different factors, depends on scheduling constraints

that the scheduler may know about or on certain guard conditions that the method request

knows about, scheduler may simply run things in FIFO order, depending on how everything

Institutional Repository - Library & Information Centre - University of Thessaly
18/09/2024 23:19:05 EEST - 3.137.218.30

Chapter 3
The Active Object pattern

19

is implemented. The schedule will then queue the request and then later pull it off, convert

it back into a method call on to the servant that actually carries out the request. And after

the servant is done, the servant will end up, as a side effect, updating the future so the

client can then get the result.

There's a couple of ways in which clients can get results from futures. One way they can do

it, is they can periodically poll the future and ask if the result is ready. Or they might do a

timed poll where they'll say, I'll wait up to a couple seconds for the result, and then I'll go off

and do some other things. An alternative model, which is probably more scalable in many

ways, is to use callbacks. So what happens here is, when the future's value is updated, when

the server has finished its processing, then a callback takes place to deliver those results

back to the client.

Institutional Repository - Library & Information Centre - University of Thessaly
18/09/2024 23:19:05 EEST - 3.137.218.30

Chapter 3
The Active Object pattern

20

3.4. Using object-oriented C++ features

Implementing the active object pattern some key features of C++ are emerging.

Picture 6 Active Object UML

Each method of a Proxy transforms its invocation into a Method Request and passes the

request to its Scheduler, which enqueues it for subsequent activation. A Method Request

base class defines virtual guard and call methods that are used by its Scheduler to determine

if a Method Request can be executed and to execute the Method Request on its Servant.

The methods in this class must be defined by subclasses, one subclass for each method

defined in the Proxy. The rationale for defining these two methods is to provide Schedulers

with a uniform interface to evaluate and execute concrete Method Requests. Thus,

Schedulers can be decoupled from specific knowledge of how to evaluate the

synchronization constraints or trigger the execution of concrete Method Request. For

instance, when a client invokes the put method on the Proxy in our example, this method is

transformed into an instance of the Put subclass, which inherits from Method Request and

contains a pointer to the Servant.

Institutional Repository - Library & Information Centre - University of Thessaly
18/09/2024 23:19:05 EEST - 3.137.218.30

Chapter 3
The Active Object pattern

21

3.4.1. Using runtime binding

The next code fragment presents the dispatch() method of scheduler. We can understand

the importance of virtual methods guard() and call() of class Method_Request. Since guard()

and call() are virtual methods we have dynamic binding (dereference at runtime) in each

invocation of them. Consequently, the correct Servant method is called in order to fulfill the

request.

In further details, the implementation of dispatch method is kind of abstract as the guard

and call methods must implementing different restriction policies regarding the type of

method request residing in the queue(PUT or GET). So this differentiation in the code

structure enhances the maintenance effort and programming development.

virtual void

MQ_Scheduler::dispatch (void)

{

 // Iterate continuously in a

 // separate thread.

 for (;;) {

 Activation_Queue::iterator i;

 // The iterator’s <begin> call blocks

 // when the <Activation_Queue> is empty.

 for (i = act_queue_->begin (); i != act_queue_->end (); i++) {

 // Select a Method Request ‘mr’

 // whose guard evaluates to true.

 Method_Request *mr = *i;

 if (mr->guard ()) {

 // Remove <mr> from the queue first

 // in case <call> throws an exception.

 act_queue_->dequeue (mr);

 mr->call ();

 delete mr;

 }

 }

 }

}

Picture 7 Active Object Dispatch function Implementation

Institutional Repository - Library & Information Centre - University of Thessaly
18/09/2024 23:19:05 EEST - 3.137.218.30

Chapter 3
The Active Object pattern

22

3.4.2. Polymorphic future

Likewise the use of operators overload enhances the implementation of message future

requests. As Schmidt mentions [1] future requests can be evaluated in two ways. Immediate

evaluation blocks the calling thread until result is ready. Otherwise in deferred evaluation

we can obtain a future object without thread blocking and evaluate result in future.

template <class T>

class Future

{

 // This class implements a ‘single write, multiple

 // read’ pattern that can be used to return results

 // from asynchronous method invocations.

 public:

 // Constructor.

 Future (void);

 // Copy constructor that binds <this> and <r> to

 // the same <Future> representation

 Future (const Future<T> &r);

 // Destructor.

 ˜Future (void);

 // Assignment operator that binds <this> and

 // <r> to the same <Future>.

 void operator = (const Future<T> &r);

 // Cancel a <Future>. Put the future into its

 // initial state. Returns 0 on success and -1

 // on failure.

 int cancel (void);

 // Type conversion, which obtains the result

 // of the asynchronous method invocation.

 // Will block forever until the result is

 // obtained.

 operator T ();

 // Check if the result is available.

 int ready (void);

 private:

 Future_Rep<T> *future_rep_;

 // Future representation implemented using

 // the Counted Pointer idiom.

};

Picture 8 Active Object Future function Implementation

Institutional Repository - Library & Information Centre - University of Thessaly
18/09/2024 23:19:05 EEST - 3.137.218.30

Chapter 3
The Active Object pattern

23

3.5. Benefits and limitations

Some benefits of this pattern are:

 Enhances concurrency & simplifies synchronized complexity: Client threads and

asynchronous method executions can run concurrently. A scheduler can evaluate

synchronization constraints to serialize access to servants.

 Transparent leveraging of available parallelism: Multiple active object methods can

execute in parallel if supported by the OS/hardware

 Method execution order can differ from method invocation order: Methods

invoked asynchronous can be executed according to synchronization constraints

defines by guards and scheduling policies

Some limitations this pattern may have:

 Higher overhead: Depending on how an active object is implemented, context

switching, synchronization, & data movement/ copying overhead may occur when

invoking, scheduling, & executing active object method calls

 Complicated debugging: It is harder to debug programs that use concurrency due to

non-determinism of the various schedulers.

Institutional Repository - Library & Information Centre - University of Thessaly
18/09/2024 23:19:05 EEST - 3.137.218.30

24

Chapter 4
Scoped Locking pattern

4.1. Motivation

Another dimension of synchronization is to ensure that locks are released properly. In

single-threaded code, releasing locks is not an issue. When you begin to write multi

threaded code, of course, releasing locks is a big deal. If locks not be released properly, you

could end up with dead lock, or other kinds of inefficiencies in your solution.

This is a particularly tricky thing because it's not always clear whether we're locking things

for real or not. We might have null locks or recursive locks or non-recursive locks. But in any

case, we have to write the code that acquires a lock on the entry to a critical section and

releases it on the way out. If we're not careful and we don’t release the lock, likely we will

end up to a critical section problem.

4.2. Problem

Table 2 Scoped Locking Context

Here is an example from a message queue class implementation, where a lock that has been

acquired is not released properly due to its runtime execution path:

Picture 9 Locking Problem Scenario

Institutional Repository - Library & Information Centre - University of Thessaly
18/09/2024 23:19:05 EEST - 3.137.218.30

Chapter 4
Scoped Locking pattern

25

4.3. Solution

We're going to apply the Scoped Locking pattern. This pattern will make it possible to use

some features of object oriented languages, where constructors acquire resources, and

destructors release them, to ensure that the scope over which things are applied, will always

properly acquire and release the locks automatically.

Picture 10 Scoped Locking function

For example let's see how we might apply scope blocking to the ACE [9] Message Queue

implementation. What we're going to do is we're going to define a guard class. This guard

class, which is a template class, follows a very simple protocol. Its constructor is going to

acquire a lock that corresponds to the parameter that's passed into the template. And its

destructor is going to release that lock. So when we come in, the constructor acquires a lock

and the destructor releases the lock. Thereby ensuring that we always are going to release

the lock, whether or not we have an exception or a return or a goto or anything else that will

allow that scope to be exited. The ACE guard which here act as a helper class also illustrates

another reason why wrapper facades are so powerful. So, all we have to be able to do to use

all these different mechanisms is to create a parameterized guard class which is a helper

class that implements the scoped locking pattern. Then we can parameterize it with a

particular type of the wrapper facade.

Picture 11 Scoped Locking Implementation

Institutional Repository - Library & Information Centre - University of Thessaly
18/09/2024 23:19:05 EEST - 3.137.218.30

Chapter 4
Scoped Locking pattern

26

The next thing we do is we let the critical sections correspond to the scope and lifetime of

these guard objects. Here's an illustration using the dequeue head method that we had in

the message queue from before. Now what we do when we come in is we use the scope

locking pattern in order to be able to automatically acquire the lock in its constructor. And

then no-matter how we leave the scope, short of crashing the program, that lock is going to

automatically be released, which is much more powerful and much more fool proof. The

mistakes are going to be eliminated because it automatically cleans things up.

Picture 12 Scoped Locking use

4.4. Benefits and limitations

There are a number of benefits of course to using this particular pattern:

 Increased robustness: This pattern increases the robustness of concurrent

applications by eliminating common programming errors related to synchronization

& multi-threading. It makes things more robust because the programmer can

eliminate this common source of overheads where you have the mistake of

forgetting to release the locks or jumping out of this scope too quickly and having

problems. This of course is really an embodiment of a broader C++ idiom called

resource acquisition is initialization or RAII.

There are some limitations using this particular pattern:

 Potential for deadlock when used recursively: One of the problems is that you can

end up with dead lock if you use this recursively.

 Limitations with language-specific semantics: There is also some language

semantics issues. We're using C++ programming language features. And while that

will work for certain things, it doesn't know about low level features that are

available in the operating system to do things like exit threads by thread exit calls.

Institutional Repository - Library & Information Centre - University of Thessaly
18/09/2024 23:19:05 EEST - 3.137.218.30

27

Chapter 5
Half sync – Half async pattern

5.1. Motivation

Let's introduce more reasons about the motivation for why we want to improve upon thread

per-connection. Thread-per-connection is certainly an improvement from a performance

point of view, on a purely reactive solution that we had before. And it's also going to have

lighter weight, less overhead characteristics relative to the, the activator based process per

request or process per connection model.

But there are some downsides. If you have an environment where you've got large numbers

of clients, and you may have very bursty data traffic, you can end up in situations where

you've got hundreds or thousands of threads being spawned to handle the various

connections. And if you only have a limited number of cores at your disposal, four, eight,

twelve, having thousands of threads running around really doesn't give you much of a boost.

In fact, it's probably going to take a lot of extra memory. It's going to end up requiring a lot

of extra work by the operating system to manage. All those internal thread queues and keep

track of all the resources.

5.2. Problem

Table 3 Half sync – Half async context

So what we'd like to do is find a way to be able to get concurrency but perhaps without

paying quite so much overhead, especially in ways that really doesn't help advance the

performance of our system. So to do this, we're going to apply the Half-Sync/Half-Async

pattern.

For example we can use this pattern in order to be able run our HTTP get request processing

in separate threads of the control and to bound the number of threads that we allocate to

keep them closer to the number of cores that we may have at our disposal.

Institutional Repository - Library & Information Centre - University of Thessaly
18/09/2024 23:19:05 EEST - 3.137.218.30

Chapter 5
Half sync – Half async pattern

28

In general, the Half-Sync/Half-Async pattern helps to decouple asynchronous and

synchronous service processing in current systems.

Picture 13 Half sync – Half async necessity

This pattern is often applied historically in operating systems. People often implement

operating system kernels using this pattern. The kernel processing is typically driven by

asynchronous callbacks, at which don't block. There's often not more than one or a handful

of threads of control in the OS kernel to keep things efficient. In application process level

those are able to block. You can block on read calls, you can block on write calls, and so on.

In between those things, there's a queuing layer that's used to mediate interactions

between the interrupt driven asynchronous kernel, and the more synchronous process in

the user space. The sockets layer is a good example of such a queuing layer.

This pattern is also used in many modern user interface toolkits. For example, in Android,

you typically do your user interface processing in the main thread, in one thread of control,

and you can't afford to block that thread for more than a very short period of time. So if you

want to do longer running operations you spawn threads and you run those as background

processing and then you have the main thread coordinate with those other threads. These

examples illustrate the core structural elements of this pattern.

5.3. Solution

Picture 14 Half sync – Half async Structure

Institutional Repository - Library & Information Centre - University of Thessaly
18/09/2024 23:19:05 EEST - 3.137.218.30

Chapter 5
Half sync – Half async pattern

29

Describing the structural fundamentals, at the bottom of this is the Async service layer. This

is driven by incoming events. It could be driven by call backs, it could be driven by signal

responses, it could be driven by interrupts, etcetera. The characteristic of this layer is that

there's only one thread of control, one stack and so you can't afford to block for any length

of time or you'll starve out all the other sources of events that happen to reside at this layer.

On top of the, the Async approach but beneath the next layer up is the queuing layer. When

the Async layer is done processing the incoming events to the point where it might have to

block to do anything further, it sticks the request onto a queue in the queuing layer.

That queuing layer is then used to service the various threads or processes that run in the

synchronous service layer. And this is the layer where you can have multiple blocking

threads or processes that sit there waiting for work on the queue. When the work comes in,

then they can go ahead and do their own thing without worrying about perturbing or

interfering with other things taking place in other threads or other processes. So that's the

basic structure relationships between the various layers in this pattern.

5.3.1. Dynamics

The dynamics of this pattern will help to explain some of the interactions between the

different layers. So in this approach, the Synchronous services can run concurrently in

multiple threads of control or processes that can block as well as to the processing that's

taking place in the Async layer. So, typically you might do the event handling logic down in

the Async layer and that won't block for any length of time.

When that is done processing an incoming request, it will typical enqueue that onto the

message queue in the queuing layer. Afterwards one or more threads or processes will wait

on that queue, pull the request off and then run to completion at their leisure without

concern for weather they're stealing or starving.

Anybody else out because they have their own threads, they have their own independent

instruction streams and their own resources and stacks and so on.

In an example about how we can apply the pattern let's first assume we have some

bounded number of cores at our disposal. So, we would allocate some bounded number of

threads that would be maybe a factor of two larger than the number of cores. Maybe having

some extra threads is a good approach because if one thread is blocked on I/O, other

threads can continue to run. What we're trying to avoid here is an unbounded number of

threads. A thread per request or a thread per connection, could get unwieldy in a very

dynamic environment.

Institutional Repository - Library & Information Centre - University of Thessaly
18/09/2024 23:19:05 EEST - 3.137.218.30

Chapter 5
Half sync – Half async pattern

30

Each thread in the Synchronous layer is now able to block, either because of flow control or

it's doing some kind of long running right operation, where it has to read from some data or

it's grabbed a lock or whatever it is that causes it to block, without having to worry about

interfering with the quality of service and performance of the other threads at the

Synchronous layer.

Picture 15 Half sync – Half async Dynamics

We can then use the Half-Sync/Half-Async pattern to implement a web server by combining

the proxy pattern with the active object pattern. Here's the way we could do this. We could

have a proxy at the bottom in the Async layer that's waiting for work to show up on multiple

sources of input, multiple sources of socket events. When that work comes in, it will be

processed by one of our (e.g. HTTP) service handlers, which will read the requests out of the

buffer. When we finally got all the pieces in a get request we can then turn around and stick

them onto a queue. That queue will then be used to service the various threads that are

running in the active object layer. So you can think of the queue and the threads as being

part of an active object, and the proxy as being used to feed that particular queue.

Then the threads that are running the object layer can dequeue the get-request, do the

processing, and afford to block. The synchronized request queue, of course, is what

mediates the interaction between the proxy portion and the active portion. So we have one

thread in the proxy part, multiple threads in the active object part, and the queue is part of

the active object that's used to feed those threads in that pool.

If for some reason, flow control occurs in one of the threads, we're able to keep making

progress and other threads will not be blocked unduly. So this gives us a nice way to scale up

our performance without using an unrealistic and unreasonable amount of resources to do

so, most of which would be wasted.

Institutional Repository - Library & Information Centre - University of Thessaly
18/09/2024 23:19:05 EEST - 3.137.218.30

Chapter 5
Half sync – Half async pattern

31

5.4. Benefits and limitations

Picture 16 Half sync – Half async utilization in ACE framework

Here are some of the benefits of this particular pattern:

 Simplification & performance: You can simplify some parts of your design quite

nicely, it's easy to block in these threads that are spawned. But at the same time, we

don't have to have a completely multi-threaded solution that would have too many

threads running around without actually improving anything.

 Separation of concerns: Synchronization policies in each layer are decoupled so that

each layer need not use the same concurrency strategies. This helps to be able to

work effectively between those different realms.

 Centralization of intern-layer communication: Inter-layer communication is

centralized at a single access point, because all interaction is mediated by the

queuing layer. We can do all kinds of clever things such as reorder the events, get

requests so that they may be able to be run In priority order rather than running in

arrival order, to that queue. That could give preference to certain clients that are

perhaps higher-paying customers or gold card customers as, as opposed to bronze

card customers and so on. So we have a lot of flexibility by the fact that there's this

extra queue that's used to mediate between the async part and the sync part that's

on top.

Naturally, there are some limitations someone has to be aware of:

 May incur a boundary-crossing penalty: There can be boundary crossing penalties

that are incurred when somebody goes from the proxy, or Async portion, up to the

synchronous portion. They'll be additional context switching to do between threads,

additional synchronization, data movement costs, if you go between different

threads that are running on different cores. There will also typically be dynamic

memory allocation and dynamic memory release. So these are things that start to

add up if someone is not careful. Of course, if you do long running operations, it's

not a big deal, but if you do short running operations, this could be prohibitively

expensive from an overhead point of view.

Institutional Repository - Library & Information Centre - University of Thessaly
18/09/2024 23:19:05 EEST - 3.137.218.30

Chapter 5
Half sync – Half async pattern

32

 Higher-level app services may not benefit from async I/O: Another downside with

this pattern is that the higher level services may not be able to benefit from some

efficient asynchronous I/O support that's built into certain operating systems.

 Complexity and debugging testing: The problem which we always have whenever

we deal with concurrency there's lots of stuff going on. There's multiple threads of

control running, and If the async layer is driven by callbacks that itself can be

complicated, or interrupts, even more complicated because you have timing

properties that are difficult to emulate, debug and test. So when someone use any

kind of concurrency pattern, it really pays to think carefully about the different

pieces, what the various constraints are, what the various responsibilities are, and

use that to help shape the way in which you set up your debugging environment and

the way which you think about the various states and interactions in the program.

Institutional Repository - Library & Information Centre - University of Thessaly
18/09/2024 23:19:05 EEST - 3.137.218.30

33

Chapter 6
Leader/Followers

6.1. Motivation

One of the problems other patterns - such as Half Sync/Half Async - have is that because the

thread that receives the incoming request is not the same thread that will process it, we

have to end up using dynamic memory allocation, which incurred synchronization overhead

and deals with memory fragmentation, free lists and all related issues.

6.2. Problem

Table 4 Leader/Followers Context

Likewise, when we try to go ahead and enqueue and dequeue things onto our thread safe

synchronized request queue, we're going to have to do synchronization operations. So, we'll

have to grab a lock and that'll have some overhead. Also, when we try to move things

between these threads, that will typically incur a context switch, which can take many low-

level instruction operations in order to be run. We have to deal with caches and other low-

level hardware overheads.

Picture 17 Half sync-Half async weaknesses

Another issue, speaking of low-level hardware overheads, has to do with the overhead of

moving data such as these request messages between caches, between cores, between

CPUs, on a multi-CPU platform, and that all starts to add up as well. So even though Half-

Sync/Half-Async has many positive qualities for certain types of request, it may be too much

overhead.

Institutional Repository - Library & Information Centre - University of Thessaly
18/09/2024 23:19:05 EEST - 3.137.218.30

Chapter 6
Leader/Followers

34

6.3. Solution

What we're going to describe here is how to apply the Leader/Followers pattern in order to

be able to address this issue. Leader/followers is a pattern that allows a pool of threads, to

efficiently and predictably take turns accessing a lower level set of event endpoints.

Leader/Follower pattern provides an efficient and predictable concurrency model where

multiple threads take turn sharing event sources to process service requests that occur on

them.

This particular pattern is structured in the couple of ways. There is a set of handles that

you're going to walk and manage, to interact with, and monitor for different kinds and

sources of events. Also there is a number of event handlers that you can use to dispatch

when things happen on those sets of handles. Furthermore a set of concrete event handlers

that you can inherit from the abstract event handlers to do application or server specific

processing logic. We can actually have a pool of threads, the handle set in order to take

turns, accessing the source of events that handle set encapsulates.

Picture 18 Leader/Followers UML

6.3.1. Dynamics

The dynamics here look a little daunting, but when we break it down, it's actually pretty

straightforward. So here is what happens. You end up spawning a pool of threads and they

all attempt to become the Leader thread. Only one thread at a time can become the Leader

which will sit there and wait for something to happen on the source of events using select

and the other threads will then wait on synchronizer or queue as Follower threads.

When an event occurs, when an event arrives, the Leader thread will take that request and

go ahead and deal with it. It will read it, It will process it and so on, but before it does that, it

goes ahead and first promotes one of the Follower threads to become a Leader.

Institutional Repository - Library & Information Centre - University of Thessaly
18/09/2024 23:19:05 EEST - 3.137.218.30

Chapter 6
Leader/Followers

35

When the Follower thread becomes a new leader, it will of course, wait for the next set of

events. While the original Leader thread becomes into a so called processing thread to

handle the request. It is important to notice that the thread now that handles the request is

the same thread that received the request.

So we don't have those issues of Dynamic memory allocation and not as much issues of

synchronization and context switching and data movement. When the processing thread,

that was a leader thread, finishes, it then typically turns around and goes back to being new

Follower thread to wait for its turn to become the leader.

That's a way of trying to enhance cache affinity and thread affinity so you can keep things

warmer and moving faster. We can do a LIFO style model with the leader/followers pattern

and things work quite fine because threads don't care the order in which they wait to do

their work, they can all process things one at a time.

Picture 19 Leader/Followers Dynamics

A way that will make the processing a little bit lower overhead, especially for small, short

duration requests, is still the use of Half-Sync/Half-Async for some environments. In

particular, Half-Sync/Half-Async does a few things in a little different way than

Leader/Followers, which may be beneficial. One thing that Half-Sync/Half-Async does is it

allows you to be able to reorder and reprioritize incoming requests, because they sit on a

separate synchronized request queue. So you can deal with the requests by the importance

of the clients for example, as opposed to the order in which they arrive. Another benefit you

get with Half-Sync/Half-Async is the ability to be able to dedicate user level virtual memory

to queue up the requests. You can allocate megabytes and gigabytes and so on of internal

memory to queue these things up.

Institutional Repository - Library & Information Centre - University of Thessaly
18/09/2024 23:19:05 EEST - 3.137.218.30

Chapter 6
Leader/Followers

36

According to Schmidt [1], in contrast with Leader/Followers, the queuing is typically done in

the operating system protocol stack layer. And there is not nearly as much memory available

there on a per connection basis. It's usually more like a 100K bytes or so before you end up

filling up your Window size.

6.4. Benefits and limitations

Some benefits of Leader/Followers pattern are:

 Performance enhancements: We end up getting tremendous performance

enhancements in certain areas. For example:

 Improves CPU cache affinity & removes need for dynamic memory allocation &

data buffer sharing between threads: Having the one thread of control wait for

work to do, and then making sure that, that thread is where the work is done can

improve cache affinity for the thread, which means that you don't need to move

things between the caches. It also means you don't have to even allocate memory

dynamically oftentimes if you have a big enough buffer in the stack frame in which

the request comes in. So that will improve and reduce certain sources of overhead

that Half sync - half async has to incur.

 Minimizes locking overhead by not exchanging data between threads, thus

reducing thread synchronization: When the data comes, stays with the thread that

originally detected it and is going to read it and process it in some subsequent way

when it morphs from being a leader thread. So that can reduce the need for

synchronization overhead.

 Does not require a context switch to handle each event: because we are not

moving things around between the threads as much.

 Programming simplicity: Simplifies programming of concurrency models where

multiple threads receive requests, process responses, & demultiplex connections

using a shared handle set.

Some limitations of Leader/Followers pattern are:

 Implementation complexity: As Schmint mentions [1] this particular pattern is very

complicated to Implement because there's subtleties, there's different variance of

Leader/Followers, that are described in the various papers and it's important to

understand these different variations to implement it effectively.

 Lack of flexibility: It is hard to discard or reorder events because there is no explicit

queue

 Network I/O bottlenecks: You can't easily discard the messages, you can't easily

reprioritize them, because there's no extra queue, there's no extra thread in which

to do that. So that can be a little tricky, and of course, because we have one thread

of control that's waiting at a time for incoming requests on a set of handles that

itself could become a bottleneck in highly scalable systems.

So as a general rule, It is better to use Leader/Followers in situations where we have got

more real-time responsiveness, where predictability is more important than scalability and

Institutional Repository - Library & Information Centre - University of Thessaly
18/09/2024 23:19:05 EEST - 3.137.218.30

Chapter 6
Leader/Followers

37

we could use Half-Sync/Half-Async situations with the reverse properties where scalability is

very important and predictability is a little bit less important.

Institutional Repository - Library & Information Centre - University of Thessaly
18/09/2024 23:19:05 EEST - 3.137.218.30

38

Chapter 7
Developing a real server environment using patterns

This chapter is going to describe the development process followed in order to create a real

world application using patterns. Also we assess the final features, the restrictions and the

software technologies that taking place. The goal is to develop a server environment which:

1. will be able to accept, process and reply the client requests effectively

2. provide the communication and synchronization mechanisms as well as all the

important components to be used as a basic layer to further improvements

Picture 20 The Server Environment

7.1. Functionality

In real world application the challenging task is to decide which of the patterns you are going

to use and why. The patterns are the techniques that the application should incorporate, so

their use will define the final functionality the applications’ architect aims to achieve.

The following are the design features that our server application will have (and that will

define the combination of patterns to be used):

 Client service escalation: Every client request has to be served in a separate thread

or not if the proxy decides that the workload and the requested type is suitable.

 Synchronous internal service: The internal implementation must provide the

mechanisms for sync operations.

 Asynchronous client requests: The acceptance of client requests is asynchronous.

 New service features development facilitation: Basic extensible components able to

be developed into new features.

Institutional Repository - Library & Information Centre - University of Thessaly
18/09/2024 23:19:05 EEST - 3.137.218.30

Chapter 7
Developing a real server environment using patterns

39

 Concurrency management: Mutual exclusion of critical sections assurance.

The rest of the chapter describe the way that we achieve this features and build the server.

Picture 21 Server Features

Institutional Repository - Library & Information Centre - University of Thessaly
18/09/2024 23:19:05 EEST - 3.137.218.30

Chapter 7
Developing a real server environment using patterns

40

7.2. UML Design diagram

The entire server design diagram that follows, shows the connection type and the relations between the parts. Each parts\ is described in the next section

“UML class components diagrams”.

Picture 22 Server Design Diagram

Institutional Repository - Library & Information Centre - University of Thessaly
18/09/2024 23:19:05 EEST - 3.137.218.30

Chapter 7
Developing a real server environment using patterns

41

7.3. UML Class components diagrams

7.3.1. Communication interface

The common communication

interface feature is provided from

interfaceClientServer class. The

intention of this class is to provide

a common communication

interface between the clients and

the server so that requested

services from the one side have

been implemented from the other.

This is achieved through pure

virtual functions in the base class

so that the derived classes will be

forced to override and implement

these methods.

The next picture depicts the UML

class diagram. Here the client and

proxy override the base methods

get() and put() (the others are for

debugging purposes) and are

forced to use a common

communication interface.

See Client p.49

See Proxy p.55

Picture 23 Communication Interface Class Diagram

Institutional Repository - Library & Information Centre - University of Thessaly
18/09/2024 23:19:05 EEST - 3.137.218.30

Chapter 7
Developing a real server environment using patterns

42

7.3.2. Invocation – execution method decoupling

Using the feature of decupling the

method invocation from method

execution we implemented the

methodRequest class. This

characteristic that was described in

Chapter 3 and the Active Object

Pattern facilitates the programming

and development of the different

services from different teams. So,

referring to a base class

methodRequest object, we choose

the right service at runtime splitting

the development processes of the

different server components. The

next picture depicts this class

management.

See Method Request p.53

See PUT & GET p.59

Picture 24 Method Decoupling Class Diagram

Institutional Repository - Library & Information Centre - University of Thessaly
18/09/2024 23:19:05 EEST - 3.137.218.30

Chapter 7
Developing a real server environment using patterns

43

7.3.3. Sync/async management & parallelism escalation

The part of performance escalation

and the sync/async management are

interrelated. The concurrency that

creation of threads imposes and the

asynchronous operations resulting

from clients requests are managed

through the servant and

activationQueue components

respectively. The queue provides the

access methods that are thread safe

and synchronize the demanding

services. On the other hand the

separate thread creation per

demanding service is provided by

the servant component leading to

performance boosting.

The next UML diagram depicts the

format of these classes.

See Scheduler p.47

See Servant p.51

See Activation Queue p.57

Picture 25 Sync/Async Management & Parallelism Class
Diagram

Institutional Repository - Library & Information Centre - University of Thessaly
18/09/2024 23:19:05 EEST - 3.137.218.30

Chapter 7
Developing a real server environment using patterns

44

The following scheme shows an instance of the server in case of servicing two requests m1,

m3:

Picture 26 Running Instance

Institutional Repository - Library & Information Centre - University of Thessaly
18/09/2024 23:19:05 EEST - 3.137.218.30

Chapter 7
Developing a real server environment using patterns

45

7.4. Concurrency management

The concurrency management is crucial for the stability and the performance of the server.

The operations need to be atomic are:

 Every queue management operation like enqueue, dequeue or examining queue

 Every operation between the servants that defined as atomic by the implementation

(i.e. from the service developers)

In the following example some concurrency management scenarios are being presented:

Picture 27 Concurrency Management Dynamics

Institutional Repository - Library & Information Centre - University of Thessaly
18/09/2024 23:19:05 EEST - 3.137.218.30

46

Chapter 8
Conclusion and future work

8.1. About the patterns

I can wholeheartedly conclude that studying patterns makes you a better programmer. It is

the content of general accepted solutions and improvements that surely will extend the

problem solving strategy someone uses.

Although many patterns are already available, mining new patterns will remain an important

activity for the future. Taking into consideration the rapid growth of software engineering

industry we can safely assume that in the next decades the software lines required for the

systems that are produced will escalate exponentially.

That huge amount of software solutions will demand more reusable and better structured

source code. Also, let’s not forget that the developing effort (resulting to developing time) is

another important factor a programmer must optimize. Using patterns not only could

eliminate dramatically this effort but also provide an assurance for the solution correctness.

Moreover, a connection to the web is essential for the upcoming smart phone devices and

wireless sensors. For the distributed patterns that means more clients and new areas of

research for emerging patterns. Consequently an improvement of the existing solutions and

the invention of new ones will be demanded.

8.2. About the application

The application encapsulates some powerful fundamental design features. It facilitates the

basic characteristics able to be developed into a dedicated, specific purpose server.

Someone or even a team of programmers will be able to implement their scheduling

policies, their resource management, their dedicated service fulfillment as simple as building

upon the existing software blocs and extending them. The latter is truly important. Giving a

connected services layer is the key fact that pattern programming struggles to achieve and

the one that the application has managed to provide.

Institutional Repository - Library & Information Centre - University of Thessaly
18/09/2024 23:19:05 EEST - 3.137.218.30

47

Appendix

Scheduler

#ifndef G_SCH
#define G_SCH

 /*
 * sheduler.h
 */

namespace server{

 class activationQueue;

 class scheduler{
 public:
 scheduler(activationQueue *aq);
 void do_scheduling();
 private:

 activationQueue *_actq;
 };
}

#endif

Institutional Repository - Library & Information Centre - University of Thessaly
18/09/2024 23:19:05 EEST - 3.137.218.30

Appendix

48

#include <thread>
#include <fstream>
#include <iostream>

#include "scheduler.h"
#include "servant.h"
#include "activationQueue.h"
#include "methodRequest.h"

 /*
 * scheduler.cpp
 */
 #define SCHED_TICK_SEC 1

 namespace server{

 scheduler::scheduler(activationQueue *aq){
 _actq = aq;

 }

 void scheduler::do_scheduling(){

 activationQueue::iterator it; //std::list<methodRequest *>::iterator it;

 std::ofstream myfile;
 myfile.open ("schedulerLog.txt");
 std::cout << "\nFILE scheduler OK\n"<< std::flush;

 std::cout << "\nSTART scheduler\n"<< std::flush;

 while(1){

 _actq->enterQcs();
 if (_actq->empty()){
 myfile << "scheduler found empty activationQ => goto sleep\n";
myfile.flush();
 }
 else{
 for(it = _actq->begin(); it != _actq->end(); ++it){

 if (!((*it)->isServed())){
 myfile << "method to be served has been choosed\n"; myfile.flush();
 (*it)->setServed();

 servant *sr = new servant(_actq, it);
 std::thread(&servant::serve, sr).detach();

 }
 else{
 myfile << "scheduler found empty activationQ => goto sleep\n";
myfile.flush();
 }
 }
 }

Institutional Repository - Library & Information Centre - University of Thessaly
18/09/2024 23:19:05 EEST - 3.137.218.30

Appendix

49

Client

#ifndef G_CLIENT
#define G_CLIENT

#include "interface.h"

//forward declaration
namespace server{
 class proxy;
}

class client: public interfaceClientServer{
public:
 client(void);
 void get(int type);
 void put(int type);
 void printActQueue(void);
 void removeOneRequestOf(int type);

 void periodicSend();
private:
 server::proxy *_proxy; //connection with server proxy
};

#endif

Institutional Repository - Library & Information Centre - University of Thessaly
18/09/2024 23:19:05 EEST - 3.137.218.30

Appendix

50

#include <iostream>

#include "client.h"
#include "proxy.h"

 /*
 * client.cpp
 */

namespace server{
 extern proxy *proxyConnection;
}

client::client(void){
 //CS (caution) in case of multiple thread clients init concurrent
 std::cout << "init client " << this << std::endl<< std::flush;
 //initialize server connection per machine/IP
 if (server::proxyConnection == NULL){
 new server::proxy(); //if the first time talking to server
 }
 _proxy = server::proxyConnection; //every client of the same machine connects to
ONE proxy

 //CS
 return;
}

void client::removeOneRequestOf(int type){
 _proxy->removeOneRequestOf(type);
}

void client::printActQueue(void){
 _proxy->printActQueue();
}

void client::get(int type){
 _proxy->get(type);

}

void client::put(int type){
 _proxy->put(type);

}

Institutional Repository - Library & Information Centre - University of Thessaly
18/09/2024 23:19:05 EEST - 3.137.218.30

Appendix

51

Servant

#ifndef G_SRVNT
#define G_SRVNT

#include <list>

 /*
 * servant.h
 */

 namespace server{
 class methodRequest;
 class activationQueue;

 class servant{
 public:
 servant(activationQueue *actq, std::list<methodRequest *>::iterator it);
//create a servant for it methodRequest in act activationQueue
 void serve(void);
 private:
 activationQueue *_actq;
 methodRequest *_mr;
 std::list<methodRequest *>::iterator _it; //provide access to methodRequest
element of activationQueue
 };

 }

#endif

Institutional Repository - Library & Information Centre - University of Thessaly
18/09/2024 23:19:05 EEST - 3.137.218.30

Appendix

52

#include <iostream>
#include <fstream>
#include <thread>

#include "servant.h"
#include "methodRequest.h"
#include "activationQueue.h"

 /*
 * servant.cpp
 */

 namespace server{

 std::ofstream servingFile; //for demonstration serving msgs

 servant::servant(activationQueue *actq, std::list<methodRequest *>::iterator
it){
 _mr = *it;
 _it = it;
 _actq = actq;

 }

 void servant::serve(void){

 int rt;
 //simulate workload delay
 srand (time(NULL));
 rt = rand() % 4 + 1;

 servingFile << "\nserving...\n"; servingFile.flush();

 std::this_thread::sleep_for(std::chrono::seconds(rt));

 _mr->guard();
 _mr->call();
 servingFile << "method workload was... " << rt << "sec\n";
servingFile.flush();
 _actq->deQ(_it);
 delete this;
 }

 }

Institutional Repository - Library & Information Centre - University of Thessaly
18/09/2024 23:19:05 EEST - 3.137.218.30

Appendix

53

Method Request

#ifndef G_MTHR
#define G_MTHR

 /*
 * methodRequest.h
 */

namespace server{

 class methodRequest{
 public:
 methodRequest(int delay);

 virtual void guard(void);
 virtual void call(void);

 int getWorkLoad(void);
 bool isServed(void);
 void setServed(void);
 private:
 int _delay;
 bool _isServed;
 };

}

#endif

Institutional Repository - Library & Information Centre - University of Thessaly
18/09/2024 23:19:05 EEST - 3.137.218.30

Appendix

54

#include <iostream>

#include "methodRequest.h"

 /*
 * methodRequest.cpp
 */

namespace server{

 methodRequest::methodRequest(int delay){
 std::cout << "create method request\n"<< std::flush;
 _delay = delay;
 _isServed = false;
 }

 bool methodRequest::isServed(void){
 return _isServed;
 }

 void methodRequest::setServed(void){
 _isServed = true;
 }

 int methodRequest::getWorkLoad(void){
 return _delay;
 }

 void methodRequest::guard(void){
 return;
 }

 void methodRequest::call(void){
 return;
 }

}

Institutional Repository - Library & Information Centre - University of Thessaly
18/09/2024 23:19:05 EEST - 3.137.218.30

Appendix

55

Proxy

#ifndef G_PROXY
#define G_PROXY

#include "interface.h"

 /*
 * proxy.h
 */

namespace server{

 class activationQueue;

 class proxy: public ::interfaceClientServer{
 public:
 proxy(void);
 void get(int type);
 void put(int type);

 void printActQueue(void);

 void removeOneRequestOf(int type);

 private:
 activationQueue * _actq;
 };

}

#endif

Institutional Repository - Library & Information Centre - University of Thessaly
18/09/2024 23:19:05 EEST - 3.137.218.30

Appendix

56

#include <iostream>
#include <list>

#include "proxy.h"
#include "activationQueue.h"
#include "PUT.h"
#include "GET.h"

 /*
 * proxy.cpp
 */

namespace server{

 proxy *proxyConnection = NULL; //connection interface to clients

 proxy::proxy(void){
 std::cout << "init proxy\n"<< std::flush;
 proxyConnection = this; //init client connection
 _actq = new server::activationQueue(); //init activation queue

 }

 void proxy::printActQueue(void){

 std::list<methodRequest *>::iterator it;

 std::cout << "\nprint activation queue\n"<< std::flush;

 for(it = _actq->begin(); it!=_actq->end(); ++it){
 std::cout << "mrL element workload: " << (*it)->getWorkLoad() << " isServed:
" << (*it)->isServed() << std::endl<< std::flush;

 }
 }

 void proxy::removeOneRequestOf(int type){

 std::list<methodRequest *>::iterator it;

 std::cout << "\nremove request\n"<< std::flush;

 for(it = _actq->begin(); it!=_actq->end(); ++it){
 if((*it)->getWorkLoad()==type){
 _actq->deQ(it);
 std::cout << "mrL element workload: " << (*it)->getWorkLoad() << "
removed!" << std::endl<< std::flush;
 break;
 }
 }

 }

 void proxy::get(int type){
 std::cout << "\nserver::proxy::get\n"<< std::flush;

 int delay = type; //estimate service delay on proxy

Institutional Repository - Library & Information Centre - University of Thessaly
18/09/2024 23:19:05 EEST - 3.137.218.30

Appendix

57

Activation Queue

#ifndef G_ACTQ
#define G_ACTQ

#include <list>
#include <thread>

 /*
 * activationQueue.h
 */

namespace server{

 class methodRequest;

 class activationQueue{
 public:
 activationQueue();

 //modifiers
 void enQ(methodRequest *mr);
 void deQ(std::list<methodRequest *>::iterator it);

 //iterators
 std::list<methodRequest *>::iterator begin(void);
 std::list<methodRequest *>::iterator end(void);
 typedef std::list<methodRequest *>::iterator iterator;

 //capacity
 bool empty(void);

 //concurrency
 void enterQcs(void);
 void exitQcs(void);

 private:
 std::mutex q_mutex; //provide sync among threads
 bool _enableScheduler;
 std::list<methodRequest *> *_mrL; //shows the list of methodRequest *
 };

}

#endif

Institutional Repository - Library & Information Centre - University of Thessaly
18/09/2024 23:19:05 EEST - 3.137.218.30

Appendix

58

#include <iostream>

#include "activationQueue.h"
#include "scheduler.h"
#include "methodRequest.h"

 /*
 * activationQueue.cpp
 */

 namespace server{

 activationQueue::activationQueue(){
 std::cout << "init activation queue\n"<< std::flush;

 _mrL = new std::list<methodRequest *>; //empty list of methodRequest *

 scheduler *_sched = new scheduler(this); //create a scheduler for this
activationQueue

 std::thread(&scheduler::do_scheduling, _sched).detach();
 }

 void activationQueue::enQ(methodRequest *mr){
 q_mutex.lock();

 std::cout << "enQ method request\n"<< std::flush;
 _mrL->push_back(mr);

 q_mutex.unlock();
 }

 void activationQueue::deQ(std::list<methodRequest *>::iterator it){
 q_mutex.lock();
 std::cout << "deQ method request\n"<< std::flush;
 _mrL->erase(it);
 q_mutex.unlock();
 }

 void activationQueue::enterQcs(){
 q_mutex.lock();
 }

 void activationQueue::exitQcs(){
 q_mutex.unlock();
 }

 std::list<methodRequest *>::iterator activationQueue::begin(){
 return _mrL->begin();
 }

 std::list<methodRequest *>::iterator activationQueue::end(){
 return _mrL->end();
 }

 bool activationQueue::empty(){
 return _mrL->empty();
 }

Institutional Repository - Library & Information Centre - University of Thessaly
18/09/2024 23:19:05 EEST - 3.137.218.30

Appendix

59

PUT & GET

#ifndef G_PUT
#define G_PUT

#include "methodRequest.h"

 /*
 * put.h
 */

namespace server{

 class PUT: public methodRequest{
 public:
 PUT(int delay);
 void guard(void);
 void call(void);

 };

}

#endif

#include <fstream>
#include <iostream>

#include "PUT.h"

 /*
 * put.cpp
 */

namespace server{

 extern std::ofstream servingFile;

 PUT::PUT(int delay):methodRequest(delay){}

 void PUT::guard(void){
 servingFile << "PUT::guard\n"; servingFile.flush();
 }

 void PUT::call(void){
 servingFile << "PUT::call\n"; servingFile.flush();
 }

 }

#ifndef G_GET
#define G_GET

#include "methodRequest.h"

 /*
 * get.h
 */

namespace server{

 class GET: public methodRequest{
 public:
 GET(int delay);
 void guard(void);
 void call(void);

 };

}

#endif

#include <fstream>
#include <iostream>

#include "GET.h"

 /*
 * get.cpp
 */

namespace server{

 extern std::ofstream servingFile;

 GET::GET(int delay):methodRequest(delay){}

 void GET::guard(void){
 servingFile << "GET::guard\n"; servingFile.flush();
 }

 void GET::call(void){
 servingFile << "GET::call\n"; servingFile.flush();
 }

}

Institutional Repository - Library & Information Centre - University of Thessaly
18/09/2024 23:19:05 EEST - 3.137.218.30

60

References

[1] Frank Buschmann, Kevlin Henney, Douglas C. Schmidt-Pattern-Oriented Software

Architecture_ A Pattern Language for Distributed Computing (Vol. 4)-Wiley (2007)

[2] C++ Network Programming, Volume I: Mastering Complexity with ACE and Patterns

[3] Gamma, E., Helm, R., Johnson, R., Vlissides, J., Design Patterns: Elements of Reusable

Object-Oriented Software, Reading, Mass.: Addison-Wesley, 1995

[4] GoF Design Patterns - with examples using Java and UML2

[5] Pattern-Oriented Software Architecture, Patterns for Concurrent and Networked

Objects, Volume 2, Douglas Schmidt, Michael Stal, Hans Rohnert and Frank

Buschmann

[6] StackOverflow: http://stackoverflow.com/

[7] Boost Libraries http://www.boost.org/

[8] The Adaptive Communication Environment (ACE)

http://www.cs.wustl.edu/~schmidt/ACE.html

[9] Distributed Object Computing (DOC) Group for Distributed Real-time and Embedded

(DRE) Systems http://www.dre.vanderbilt.edu/

[10] Wikipedia http://en.wikipedia.org

Institutional Repository - Library & Information Centre - University of Thessaly
18/09/2024 23:19:05 EEST - 3.137.218.30

http://stackoverflow.com/
http://www.boost.org/
http://www.cs.wustl.edu/~schmidt/ACE.html
http://www.dre.vanderbilt.edu/
http://en.wikipedia.org/

