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Abstract 

The present work presents of a nonlinear finite element modeling analysis of 20 

specimens used in several experiments. It summarizes the results of hydrostatic 

pressure in the stability of unstiffened and ring-stiffened steel cylinders. Initial 

imperfections and plasticity are taken into account. Finally, a study of various 

parameters which affect the pressure capacity is contacted and the comparison with 

available experimental data is presented. 

 

 

Περίληψη 

Η παρούσα εργασία παρουσιάζει μια μη γραμμική ανάλυση μοντελοποίησης με 

πεπερασμένα στοιχεία 20 δοκιμίων που έχουν χρησιμοποιηθεί σε διάφορα πειράματα. 

Συνοψίζει τα αποτελέσματα της υδροστατικής πίεσης στην ευστάθεια των 

μεταλλικών σωλήνων με και χωρίς νευρώσεις. Οι αρχικές ατέλειες και η 

πλαστιμότητα λαμβάνονται υπόψη. Τέλος, γίνεται μελέτη ποικίλων παραμέτρων που 

επηρεάζουν την αντοχή σε πίεση και παρουσιάζεται η σύγκριση με τα υπάρχοντα 

πειραματικά δεδομένα. 

  

Institutional Repository - Library & Information Centre - University of Thessaly
16/06/2024 16:47:02 EEST - 3.146.107.117



University of Thessaly                                Department of Mechanical Engineering 

 

Βόλος 2013  13 

 

1. INTRODUCTION  

During the last decades, the increasing demand for oil and apparently limited inland 

resources have prompted the industry to extend exploration and production in deep 

water. Nowadays, offshore oil and gas production represents a large amount of the 

total production. Different types of offshore production systems have been developed 

(compliant towers, concrete gravity platforms and floating production systems) to be 

discussed below. 

In 1979 Shell Oil Company completed the design and installation of a drilling and 

production platform in the Gulf of Mexico in 1025 feet of water. The Cognac platform 

is a two-rig, self-contained, 62-well drilling and production platform recently installed 

in the Gulf of Mexico at a site near the northeast corner of Mississippi Canyon Block 

194. Based on comparative studies a fixed platform was chosen to develop the 

Cognac prospect (Figure 1). This fixed platform would have to be fabricated and 

installed in a different, unconventional manner because of its size. Thus, techniques 

for fabrication and installation were generated prior to, and concurrent with structural 

and foundation design. New waves of concessions opened up fields at ever larger 

distance from the shore and in deep water. This led to structures that could only be 

used profitably when they produced vast quantities of oil or gas. The trend of 

increasing steel platforms ended with Shell’s Bullwinkle, installed in the Gulf of 

Mexico in a water depth of 412 meters in 1988. Bullwinkle is a 519 m tall, pile-

supported fixed steel oil platform (Figure 2). The Petronius Platform is a compliant 

tower in the Gulf of Mexico modeled after the Hess Baldpate platform, which stands 

2,000 feet (610 m) above the ocean floor. It is one of the world's tallest structures. 

This increased activity has exposed the need to investigate the problems associated 

with structures and operations in deep water. One of the most important 

considerations is the design of tubular members which are used in pipelines and as 

members of offshore platforms. 

Offshore compliant towers are used in moderately deep water (600-1000 m) and make 

use of tubular members, which are subjected to a combination of axial and bending 

loads and external pressure. Under such loading conditions, tubular members can 

buckle, with catastrophic consequences for the structure.  
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This present work is motivated by the need of investigating the buckling behavior of 

unstiffened and ring-stiffened tubular members under external pressure and to 

compare the results of a nonlinear finite element analysis with available experimental 

data.  

 

Figure 1 The Cognac platform in the Gulf of Mexico with its remarkable two derricks 
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Figure 2 Bullwinkle platform decks in the Gulf of Mexico- Bullwinkle’s substructure 
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1.1 Literature review 

The stability of such members is a challenging problem and there have been 

conducted many analytical and experimental investigations over the last decades due 

to their significance in Offshore Structural engineering. 

1.1.1 Unstiffened tubes 

Recognizing a need for further research into the collapse behavior of pipe, the 

Pipeline Research Committee (PRC) of the American Gas Association (AGA) 

undertook in 1984 a three phase program to develop deeper understanding of basic 

pipe collapse phenomena. Phase I of this program focused on the effects of 

imperfections on pipe collapse. This work was done in laboratory by Professor Stelios 

Kyriakides at the University of Austin Texas and involved the testing of numerous 

small scale steel and aluminum tubes. The tubes were tested against external pressure 

for small D/t ratios. 

Murphy C.E. and Langner C.G. in 1985 presented experimental data on pipe collapse 

due to external pressure and compared the results to the existing design formulas. 

In 1990, Fowler J.R. performed large scale tests to verify previous works on the 

matter.  The objective of the research was to understand quantitatively the failure 

mechanisms of the offshore pipelines. The specimens tested were thick wall tubes 

with D/t ratios that varied from 10 to 40. The experiments tested the effects of 

imperfections and residual stresses on collapse due to external pressure. 

Experimental work concerning the stability of unstiffened tubes under external 

hydrostatic pressure was conducted  by Chicago Bridge and Iron Institute in 1989 and 

in Southwest Research Institute in 1988. The Southwest Research Institute performed 

nine tests on tubing having a nominal D/t ratios of 42.5 and L/ r ratios of 55 and 72. 

Specimens were loaded with combinations of axial compressive load, bending 

moment and external pressure, though only two were tested with external hydrostatic 

pressure only. Chicago Bridge and Iron Institute started the tests in stub column 

specimens in 1985 but continued testing twenty seven tubular beam column 

specimens under compression, bending moment and external pressure in 1989. Those 

specimens used D/t ratios of 42 and 60 and slenderness ratios of 50 and 72. 
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1.1.2 Stiffened tubes 

External pressure is one of the prime causes of instability of cylindrical shells, and 

buckling under external pressure has been the motivation for the early development of 

strengthening by ring-stiffening of tubular members in deep-water towers. Buckling 

can occur in the form of flattening of the cross-section due to external pressure. After 

initial collapse of the pipe, the collapse failure generally will propagate along the 

pipeline, leaving in its wake a severely flattened section of pipe. Stiffeners are in the 

form of rings, they can be internal or external, and their main purpose is the increase 

of member capacity under external pressure. 

The research work on stiffened tubes has been mostly experimental. More 

specifically, stiffened tubes that were used for deep-water applications have been 

tested by CBI and SwRI. The tubes had a D/t ratio varying from 31 to 96 and were 

subjected to a combination of external pressure and axial load. These experiments 

were used to develop the API formulas for stiffened tubes under external pressure and 

axial load.  

The available experimental data are based on externally stiffened tubes. On the other 

hand, tubes used for deep-water applications are quite often internally stiffened. 

Apparently, internal stiffeners are stiffer than external stiffeners of the same radial 

dimension because they correspond to a smaller average diameter. Therefore, they are 

expected to have a more beneficial effect on the member ultimate capacity than 

external stiffeners. 

1.2 Scope of present work 

The present work is aimed at investigating the response and buckling behavior of 

unstiffened and ring-stiffened tubular members subjected to external pressure, 

modeling of the tubular member which display cross-sectional ovalization, with finite 

elements. This work also compares the results of finite element modeling with 

available analytical solutions and experimental data. 

A point of particular interest is the study on the effects of the stiffener’s dimensions 

and spacing on the buckling behavior of stiffened tubular members, through a 

parametric study. 
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2 BEHAVIOR OF UNSTIFFENED TUBES 

In order to examine the effects of external pressure on unstiffened tubular members, 

some theoretical background is necessary. The buckling of thin elastic tubes can be 

found in classical text books, such as the one by Timoshenko (1961). For long perfect 

tubes, free of boundary conditions at the two ends, the critical bifurcation external 

pressure is equal to: 

    
  

    
 
 

 
 
 

 

This pressure controls instability in the absence of initial imperfections and residual 

stresses provided that stresses remain within the elastic range. 

 The minimum external pressure that causes inelastic effects depends on the constraint 

imposed in the longitudinal direction. More specifically, using the von Mises yield 

criterion, 

    
 

 
                                       

     
     

    

One obtains: 

 for longitudinally free tube (σ1=σ, σ2=σ3=0), 

       
 

 
  

 for longitudinally restrained tube (plain strain), (σ12=σ23=σ31=0) 

   
 

      
   

 

 
  

 for tube with capped-end compressive force (σ2=σ3=0, σ12=σ23=σ31=0) 

   
 

  
   

 

 
  

In order for the nonlinear theory for stability to have effect the critical pressure pcr has 

to be higher or equal to py i.e. 
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For smaller values of D/t ratio yielding pressure is the critical one. 

It is worth to point out that for elastic buckling, the post buckling path is stable. 

However, soon after buckling it becomes unstable. 

To rings with initial ovalization it is assumed an initial out-of-roundness of the form 

          

   
  
 
      

then, the critical pressure in which the ring buckles is considered to be due to the fact 

that in a planar ring there are plain stress conditions 

       
 

 
 
 

 

And, the radial and tangential displacements become 

     
  

  
 
   

      

      
  
 
 

 

  
 
   

       

The maximum radial displacement can be computed for θ =0 and it is 

     
  

  
 
   

 

 Therefore, the p-wmax curve is non-linear.  

The maximum circumferential stress of the ring is  

        
  

 
 

    

   
 
   
 

 

 
  

 
 
 

Considering a maximum allowable stress e.g. the yield stress σy, one may obtain a 2
nd

 

degree equation for the corresponding pressure. 

Note that according to the API rules, imperfections are measured in terms of the out-

of-roundness parameter e:   
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3 NUMERICAL MODELING OF UNSTIFFENED TUBES 

For the purposes of modeling of the unstiffened tubes there were used three 

unstiffened tubular specimens for the tests that were performed to the SwRI 

(Southwest Research Institute) in 1988, the CBI (Chicago Bridge and Iron Technical 

Services Company) in 1989 and by Miller et al. in 1982. Those specimens are S1 (B4) 

from SwRI, specimen C6J5 from CBI tests and specimen 9A from the tests performed 

by Miller et al. The finite element analysis program used is ABAQUS/ Standard. 

More details on the finite element model are given below. 

3.1 Material properties 

Based on tensile tests in coupons obtained from the specimens, the following 

properties have been measured and reported in Southwest Research Institute in 1988, 

CBI in 1989 and by Miller et al. in 1982. 

Specimen S1 was made from X-42 steel with static yield stress of 321.7 MPa (46.66 

ksi) and modulus of elasticity E= 163130 MPa (23660 ksi). The ultimate stress was 

roughly 438.4 MPa (63.59 ksi) and the strain hardening modulus was about 100 time 

smaller than the modulus of elasticity. 

Specimen C6J5 was made form A513 steel with static yield stress 285.6 MPa (41.42 

ksi) and modulus of elasticity E = 211393.3 MPa (30660 ksi). Furthermore, the 

ultimate stress of the material is 411.8 MPa (59.72 ksi) and the strain hardening 

modulus about 70 times less than the modulus of elasticity. 

Specimen 9A was made from A633 steel with static yield stress 386.796 MPa (56.1 

ksi) and modulus of elasticity E= 213048MPa (30900ksi). The ultimate stress of the 

material is 588.1 MPa (85.3 ksi) and the strain hardening modulus of elasticity about 

500 times less than the modulus of elasticity. 

Despite the measured values of Young’s modulus, a modulus of elasticity of 

206843MPa (30000 ksi) was used because it the measured values are considered non 

realistic. 

The stress-strain curves for specimens S1 and C6J5 are given below (Figures 3 and 4). 

A corresponding curve for specimen 9A is not provided by the experimental report. 
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Figure 3 Stress- Strain curve for X-42 steel (specimen S1) 

 

Figure 4 Stress- Strain curve for A513 steel (specimen C6J5) 
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3.2 Description of the specimens 

The specimens are not considered perfectly round but they are modeled with an initial 

out-of-roundness in the form of an oval shape. Additionally, to be consistent with the 

test specimens, they were capped at the two ends using welded plates, so that the 

boundary conditions for the three specimens were considered fully fixed and, in 

addition to the external hydrostatic pressure on the lateral surface of the tubular 

member, they were subjected to hydrostatic end loads in the longitudinal direction 

(capped force).  

A detailed presentation of the geometric characteristic of the specimens is given 

below. 

Specimen 
D 

(mm) 

t 

(mm) 

D/t L 

(mm) 

emax 

(mm) 

e (%) Dmax 

(mm) 

Dmin 

(mm) 

Basic 

applied 

pressure 

p (MPa) 

Corresponding 

capped-end 

force F (kN) 

S1 
168.5 3.96 42.5 4191 1.22 0.37 168.85 168.2 1 22.364 

C6J5 
168.3 2.69 62.5 4191 0.25 0.402 168.62 167.9 1 22.239 

9A 
455.4 9.75 45.7 3657.6 0.20 3.122 462.53 448.3 4.6 749.334 

 

Table 1 Dimensions of the specimens 

 

3.3 Finite element discretization 

For the modeling of the specimen in the ABAQUS/ standard environment 4-node, 

quadrilateral, strain/displacement, shell elements (S4R) have been used. The geometry 

of the model has been according to the one measured before. The material of the tube 

is elastoplastic, with homogenous shell section, the loads are external hydrostatic 

pressure and hydrostatic end loads and the models are capped at the end. Moreover, 

the procedure used for advancing the solution is a Static Riks analysis in which the 

load/ deformation system increases gradually through time following an arc-length 

parameter procedure.  
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4 NUMERICAL RESULTS FOR UNSTIFFENED TUBES 

4.1 Results for SwRI specimen 1 

The basic pressure applied in this specimen is equal to 1 MPa. The corresponding 

capped end loads are also imposed. It is increased through each step of time for the 

first steps. At a certain stage, it reaches a maximum value which is 5.14 MPa and 

subsequently it decreases gradually to a point where the tube collapses. The model is 

totally symmetrical due to its uniform section and the same boundary conditions to the 

ends, and therefore it buckles in the middle of its length (see Figure 5).  

 

Figure 5 Buckling occurs in the middle of the specimen length 

 

The middle section is the most deformed one and at the ends of its axis four plastic 

hinges are created (see Figure 6). In the test, the maximum pressure sustained by the 

tube is 5.24 MPa which is 1.84% higher than the pressure calculated in the finite 

element simulation. 
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Figure 6 Deformation of section in the middle length of the specimen 

 

Figure 7 shows the equilibrium path expressed as a diagram between the hydrostatic 

pressure applied on the specimen and the ovalization of the specimen. Ovalization e is 

assumed to be the difference of diameters over the nominal diameter of the section, 

 
         

    
 . Figure 8 shows the progressive buckling of tube section. 
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Figure 7 Pressure-ovalization equilibrium path 

 

Figure 8 Deformation of section to the corresponding steps 

 

4.2 Model for CBI specimen C6J5 

The initial pressure that is applied once again in the model is 1 MPa (with a 

corresponding 22.24 kN end load). Thus, the maximum pressure after the nonlinear 

Riks analysis procedure is 1.667 MPa, which compares quite well with the pressure 

from the test 1.556 MPa. This results to a 7.14% higher pressure in the numerical 
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model. Following the maximum pressure the external pressure reduces with increased 

deformation and the specimen collapses in the middle cross-section in an oval form. 

Figure 9 shows the relation between the applied external pressure and the ovalization 

of the middle section throughout the deformation history.  

 

Figure 9 Curve of pressure-ovalization  

 

 

Figure 10 Gradual deformation of the cross-section 
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4.3 Specimen 9A 

The basic hydrostatic pressure that is applied in the beginning of the analysis is 4.6 

MPa with the corresponding capped end loads. The obtained maximum pressure after 

the nonlinear Riks analysis is 3.692 MPa, which is 6.056% less than the one reported 

in the experiment. The section that collapses in this specimen is the one in the middle 

of the tube length due to the complete symmetry in the model, similar to the previous 

specimens.  

 

Figure 11 Buckling in the middle length of specimen 9A 

 

Figure 12 Distribution of plastic deformations 
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Figure 13 Post-buckling shape of a section 

 

Figure 14 Post-buckling shape of specimen 9A 
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5 DESCRIPTION OF TESTS 

5.1 Miller and Kinra 1981 Tests  

For the examination of the effects of external pressure in ring-stiffened fabricated 

cylinders a total of 20 hydrostatic pressure tests were performed by CBI in 1981. 

Seventeen cylinders were fabricated from A36 material and three cylinders from 

ASTM A572 CL 1 material. Two tensile coupon tests per specimen were performed 

in accordance with ASTM A370 specification to determine the material yield strength 

and stress-strain properties. The test coupons were taken from the plate material 

before rolling, in the direction corresponding to the hoop direction of the test 

specimens. The average values of the mechanical properties of the test coupons are 

given in Table 2. 

Specimen  ASTM 
Specification 

Thickness t 
(in.) 

Static Yield 
Stress Fys 
(ksi) 

Dynamic 
Yield Stress 
Fy (ksi) 

Modulus of 
Elasticity E 
(ksi) 

1 A36 0.495 39.5 43.7 29600 

2 A572 CL 1 0.515 59.2 62.9 29700 

3 A36 0.517 35.2 39.3 28200 

4 A36 0.517 35.2 39.3 28200 

5 A36 0.434 37.8 42.3 28500 

6 A36 0.384 41.9 46.1 29400 

7 A36 0.378 33.7 38.3 29000 

8 A36 0.326 41.7 46.5 29200 

9 A36 0.260 40.3 45.3 28200 

10 A572 CL 1 0.269 53.8 56.6 29900 

11 A572 CL 1 0.269 53.8 56.6 29900 

12 A36 0.254 40.1 45.6 28600 

13 A36 0.379 37.6 41.4 27600 

14 A36 0.196 39.7 45.1 27500 

15 A36 0.495 39.5 43.7 29600 

16 A36 0.311 41.0 45.7 28800 

17 A36 0.260 40.3 45.3 28200 

18 A36 0.261 39.1 44.6 29000 

19 A36 0.196 39.7 45.1 27500 

20 A36 0.196 39.7 45.1 27500 

Table 2 Mechanical properties of test materials 

The tested specimens were monitored for two failure modes due to external pressure: 

“local buckling” and “general instability”. The term “local buckling” is referred to the 

form of collapse where a tube buckles in a specific bay. While the term: “general 

instability” refers to that form of collapse where the tube buckles distorting the 
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stiffener. For the purposes of the present work eleven specimens were modeled, 

namely specimens 1, 2, 5, 7, 8 and that are subjected to local buckling and specimens 

15, 16, 17, 18 and 19 that are likely to exhibit overall buckling. The dimensions of the 

specimens are reported in the next paragraphs. 

Out-of-roundness measurements were taken at the middle of each bay and adjacent to 

each ring before testing. Special devices were used to determine the maximum and 

minimum diameters and a three-point gauge was used to measure emax, which is the 

maximum deviation from a true circular arc over a distance of one-half of a wave 

length. 

 The loading procedures have also been reported. The specimens of the external 

pressure tests were subjected to hydrostatic pressure which resulted in capped-end 

loads at the end sections, due to capped ends with welded plates.  The specimens were 

placed into a pressure vessel in which the pressure was increased to each load step. 

Axial shortening transducers were used in each of two planes 90 degrees apart to 

determine evidence of possible column buckling. 

5.2 Miller et al. 1982 Tests  

A total of 42 test cylinders were fabricated from two different yield strength materials. 

Twenty four cylinders were made from A36 material which has a minimum specified 

yield stress of 248.2 MPa and eighteen cylinders were made from A633 GR C and 

A572 GR 50 materials which have minimum specified yield stresses of 344.74 MPa. 

A minimum of two tensile coupon tests per plate were performed in accordance with 

ASTM A370 to determine the material yield strength and stress-strain properties. The 

test coupons were taken from the plates prior to rolling and in the direction 

corresponding to the axial and hoop directions of the test cylinders. The average 

values of the mechanical properties of the test coupons are given in Table 3. 

Specimen  ASTM 
Specification 

Thickness t (in.) Static Yield 
Stress Fys 

(ksi) 

Dynamic 
Yield Stress 
Fy (ksi) 

Modulus of 
Elasticity E 
(ksi) 

1A, 1B A36 0.524 34.9 38.9 28000 

1C, 1D A36 0.518 35.6 39.1 29200 

1E A36 0.528 35.1 38.8 29800 

2A, 2B, 2C A36 0.504 33.2 37.8 29300 

2D A36 0.496 31.4 35.8 30600 

3A,3B, 3C A36 0.376 38.0 42.2 29800 
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3D A36 0.382 35.0 40.1 29700 

4A, 4B A36 0.246 34.8 39.5 29200 

4C, 4D A36 0.252 38.9 43.3 29600 

5A, 5B A36 0.374 42.1 46.4 29000 

5C, 5D A36 0.379 42.2 46.3 30600 

6A, 6B A633 0.534 54.8 58.9 30800 

6C A633 0.533 55.4 58.9 29500 

1F A36 0.526 41.8 45.7 30200 

2E A36 0.512 34.0 38.3 29600 

3E, 3F A36 0.377 35.7 39.5 30800 

4E, 4F A36 0.248 35.5 39.9 30300 

6D, 6E A633 0.526 53.7 57.1 29000 

7A, 7B, 7C A572 0.510, 0.516, 
0.515 

52.0 54.8 30200 

7D A572 0.506 51.7 55.2 30200 

8A A633 0.377 54.8 58.6 30700 

8B A633 0.382 54.3 58.0 30300 

8C A633 0.384 56.1 60.1 29600 

9A A633 0.384 56.1 60.0 29900 

9B* A633 0.385 56.1 59.8 30500 

9C A633 0.387 56.0 59.7 31100 

Table 3 Mechanical properties of model materials 

 

All testing were performed by Southwest Research Institute with the exception of 

material testing and metallurgical examinations, which were carried out by Chicago 

Bridge and Iron Company. 

Out-of-roundness measurements were taken at the middle of each test bay and at one 

or more rings for the ring stiffened cylinders and at three cross sections on the 

unstiffened cylinders. Special devices were used to determine the maximum and 

minimum diameters and a three point gage was used to measure the deviation from a 

true circular arc over a distance of one-half wave length. 

An axial load frame with 1570 kips- tension capacity and 1250 kips –compression 

capacity was designed and fabricated for the test program. The pressure vessel can 

accommodate 144 in. long models, which are attached by full penetration welds to 

load bearing plates at both ends. 

In the Miller and Kinra (1981) test program, the axial load was applied first and held 

constant during the application of the external pressure. The 1982 models were tested 

using two loading sequences. Specimens from groups 7-9 were tested using the same 

procedure as 1981, the axial load was applied first and held constant during the 
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application of external pressure. Specimens from groups 1-6, however, were tested by 

first applying external pressure equal to 80% of the predicted collapse pressure then 

applying the axial load and holding it constant while the external pressure was 

increased. 

For the purposes of the present study, specimens 1C, 3A, 7B and 8A were modeled, 

due to the fact that they were subjected only to hydrostatic pressure or to a 

combination of hydrostatic pressure and small axial tension. 

The models of group 1 were subjected to hydrostatic pressure and were designed to 

fail at a specific stress ratio. Model 1C was tested to yielding under axial tension only. 

Nonetheless, the butt welds in the rings of models 1A, 1C and 1D failed, probably 

after local buckling. Some ovalization of rings was observed on models 1E and 1F. 

The models of group 3 were designed to fail at a ratio of hoop stress over nominal 

yield stress equal to 0.5. The required jack pressures were slightly in error for tests 

3A, 3B and 3C resulting in lower than specified axial loads. It was reported that all 

rings remained circular. 

The models of group 7 were identical to those of group 2 in which an ovalization of 

the center ring was observed. The models of group 8 were similar to the ones of group 

3 except that 50 ksi yield stress material was used. 
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6 NUMERICAL SIMULATION OF STIFFENED TUBES 

6.1 Finite element modeling of tests 

6.1.1 Modeling of the 1981 tests 

Eleven specimens have been modeled with different D/t ratios.  

The initial shape of all the specimens and their rings is considered to be oval as a 

result of initial out-of roundness. For the purposes of the present modeling, a three 

dimensional model was used, with shell elements for the body of the tube (S4R) and 

planar shell elements for the rings. The loading procedure followed in the analysis 

was once again Static, Riks and the boundary conditions fully fixed at the two ends 

because of the capped ends. The initial “basic” pressure varied to each specimen. 

Due to the complete symmetry in the models, with respect to the middle section, the 

model specimens that fail in the form of overall buckling were difficult to model due 

to the distortion of the stiffener. For this reason, two additional steps were used in the 

loading procedure. These two steps were in the form of Static, General. In the first 

step, a pair of concentrated forces is applied to the maximum diameter of the middle 

ring at the direction normal to the ring (longitudinal to the tube), and a pair of forces 

equal concentrated forces is applied to the minimum diameter of the middle ring at the 

opposite direction, in order to create an initial distortion of the rings. Subsequently, in 

the second step those forces are removed from the ring causing some permanent 

distortion of the rings. In the third step the hydrostatic pressure is applied. 

The dimensions of each specimen and its rings appear in the tables below. 

Tube 

Specimen Outside 

diameter 

Do (mm) 

Thickness 

t (mm) 

Maximum 

diameter 

Dmax 

(mm) 

Minimum 

diameter 

Dmin 

(mm) 

Overall 

Length 

LB 

(mm) 

Do/t  

 
         

      
 

L/Do 

1 406.9 12.6 411.6 397.5 4876.8 32.4 2.32 1.97 

2 405.4 13.1 409.9 400.9 4876.8 31 2.21 1.97 

5 405.6 11.02 409.03 402.25 4876.8 36.8 1.67 3.79 

7 407.2 9.6 411.1 403.2 4876.78 42.4 1.03 3.97 

8 404.6 8.3 407.5 401.8 4876.8 48.9 1.41 4.00 

12 406.1 6.45 412.2 400.1 4876.78 63 2.99 3.56 

15 404.6 12.57 408.9 400.3 4876.8 32.2 2.16 2.96 

16 404.9 7.9 408.1 401.7 4876.8 51.3 1.58 1.99 

17 406.1 6.6 411.3 401 4876.8 61.5 2.54 1.96 
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18 405.6 6.6 410.4 400.9 4876.78 61.2 2.36 3.03 

19 608.1 4.98 612.3 603.8 4876.8 122.1 1.40 1.99 

Table 4 Dimensions of tubes 

Rings 

Specimen Number of 
rings 

Bay Length L 
(mm) 

Ring size hs x ts 
(mm) 

Maximum 
outside Radius 

(mm) 

Minimum 
outside Radius 

(mm) 

1 5 800.1 78.74 x 13.2842 284.554 279.834 

2 5 797.052 78.486 x 13.132 283.418 278.908 

5 2 1538.224 78.232 x 11.125 282.745 279.357 

7 2 1614.424 79.502 x 9.779 285.064 281.102 

8 2 1617.726 80.01 x 8.1788 283.7475 200.885 

12 2 1447.8 63.246 x 6.6802 269.355 263.283 

15 3 1197.102 42.672 x 12.827 247.168 242.798 

16 5 804.926 35.56 x 6.985 239.5975 236.399 

17 5 795.274 33.02 x 9.779 238.672 233.514 

18 3 1229.36 36.83 x 6.9088 205.2125 200.425 

19 3 1210.564 33.528 x 5.03 339.694 335.438 

Table 5 Dimensions of rings 

As mentioned in the previous sections, an important target of the present study is the 

comparison between the modeling results and the experimental data. This comparison 

is shown below for each specimen separately.  

Specimen 1 

Specimen 1 is a 5-ring tubular member that is symmetric with respect to the middle 

section and symmetric in its boundary conditions. The D/t ratio is 32.4 and it is 

considered a “stub” cylindrical member. The tests performed by Miller and Kinra 

indicated a 15.168 MPa (2200 psi) maximum pressure that caused a local buckling in 

the second bay. The modeling analysis resulted in a maximum pressure of 14.321 

MPa (2077 psi) which is 5.58% less than the experimental pressure and the specimen 

failed locally between the two bays next to the middle ring. The buckled shape shown 
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in Figures 15 and 16, as well as in Figure 17 was the buckled section in the third bay 

is displayed. 

 

Figure 15 Buckling of bays 2 and 3 of specimen 1 

 

 

Figure 16 Longitudinal view of the buckled specimen 
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Figure 17 Buckling of a section in the third bay 

 

Specimen 2 

Specimen 2 has a D/t ratio of 31 and is thicker than the first specimen. Due to this 

fact, the maximum buckling capacity of the tube as reported in the tests is 18.616 MPa 

(2700 psi). The analysis showed a 20.122 MPa (2918 psi) buckling capacity which is 

8.09% higher than the one computed from the test. The model buckled locally in the 

second bay, between rings 2 and 3. 

 

Figure 18 Local buckling in the second bay 
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Specimen 5  

This specimen is a 2-ring (3-bay) tube with D/t ratio equal to 36.8 which is considered 

as thick-walled. The maximum pressure that was reported in the 1981 tests was 9.308 

MPa (1350 psi) which is rather close to the 9.18 MPa (1331.46 psi) pressure 

computed by the analysis. The difference between the two results is in the neighbor of 

1.375%. The middle section of the tube buckles locally (see Figures 19, 20). 

 

Figure 19 Buckling of specimen 5 

 

Figure 20 Ovalization of middle section in the minimum diameter direction 
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Specimen 7 

This specimen is a 2-ring (3-bay) with D/t ratio equal to 42.4. The test performed on 

specimen 7 resulted in a 7.45 MPa (1080 psi) maximum pressure that causes the 

specimen to buckle in the second bay between the two rings. The present analysis 

resulted in a maximum pressure of 7.925 MPa which is 6.38% higher than the 

reported test pressure. The specimen fails in the middle bay and the middle section is 

the most deformed section of the model. This is demonstrated in Figure 21, as well as 

in Figure 22 in y-z plane. Finally, Figure 23 shows the diagram of pressure with 

respect to ovalization of the middle section. 

 

 

Figure 21 Buckling in the middle of the length 
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Figure 22 Form of buckling in the middle section 

 

 

Figure 23 Pressure-ovalization curve of specimen 7 
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Figure 24 Progression of buckling in the middle section of the tube 

 

Specimen 8 

The D/t ratio of this 2-ring (3-bay) specimen is equal to 48.9 thicker than the previous, 

which indicates that it is likely to buckle in a lower amount of hydrostatic pressure. 

Indeed, the maximum level of pressure obtained in test is equal to 5.998 MPa (870 

psi) whereas in the present analysis is 5.63% higher, 6.336 MPa (919 psi). in this 

specimen, similar to the other specimens, the middle section buckles locally and the 

collapse shape has the same form observed in the specimens mentioned in the 

previous sections. 

Specimen 12 

This specimen is a 2-ring (3-bay) specimen with D/t ratio equal to 63. The results of 

the test reported that specimen 12 reaches a maximum pressure of 3.103 MPa before it 

buckles. On the other hand, the finite element analysis results in a 2.477 MPa 

hydrostatic pressure which is 20% lower than the pressure measured.  

Similar to the previous experiments the specimen fails locally in the second bay as 

shown in Figure 19. Upon reaching the buckling pressure the middle section collapses 

(Figure 24). 
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Figure 25 Buckling shape of specimen 12 

 

Figure 26 Buckling in the middle section 

 

Specimen 15 

Specimen 15 is a 3-ring specimen with D/t = 32.2. The tests performed by Miller and 

Kinra (1981) showed that it buckled in the middle section of its length distorting the 

second ring.  
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The finite element model that was created is completely symmetrical and it was not 

possible (computationally) to buckle only with hydrostatic pressure and the 

compressive end loads. To overcome this numerical difficulty, two pair of forces were 

applied in the maximum and minimum diameter of the ring and later were removed. 

These pairs of forces created plastic deformation and distortion at the four locations of 

the ring, imposing a significant imperfection (see Figure 27). 

Then, hydrostatic pressure is applied and this imperfection enables the specimen to 

buckle in the middle part (Figure 28). 

The pressure capacity in the specific model is computed 8.47 MPa (1228 psi), which 

is 25.5% less than the pressure reported in the test data. 

For better understanding of this behavior a sketch is shown in Figure 29. 

 

 

 

Figure 27 Plastic stresses due to concentrated forces 
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Figure 28 General instability of specimen 15 

 

Figure 29 Elastoplastic behavior of tube 

 

Specimen 16 

Similar to the previous specimen, specimen 16 is likely to fail under general 

instability and buckles in the middle of its longitudinal direction. The experimental 

pressure is measured at 5.378 MPa (780 psi). This is a lower pressure than in 
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specimen 15, because the specimen under consideration has a D/t ratio of 51.3, which 

is considered thin-walled, and is stiffened with five stiffeners along its length. In 

conducting the numerical analysis, the numerical issues that arose were the same as 

previously. Buckling occurred after reaching a pressure level of 3.466 MPa (502.7 

psi). The percentage of difference in the calculations is 35.51% and is quite 

substantial. No explanation for this significant difference is given at this stage. 

Specimen 17 

Specimen 17 is a tube with 5 rings and with D/t ratio equal to 61.5. It is considered to 

be a thin-walled tube and buckles at a lower pressure level. Experiments showed that 

it reached a maximum pressure of 3.758 MPa (545 psi) and it buckled in the third 

(middle) ring. The present nonlinear analysis resulted in a 2.276 MPa (330.1 psi) 

pressure which is 38.47% lower than the experimental value. 

Specimen 18 

Specimen 18 is an example of general instability of ring-stiffened tubular members 

due to external pressure. Buckling occurs at the second ring at 2.77 MPa. The 

nonlinear analysis was particularly difficult to provide a maximum pressure because 

of the absence of imperfections.  

For this reason, two steps were added again, and two pairs of concentrated forces 

were applied in the middle ring. These forces created plastic deformations and 

distortion at each side of the ring. Then, hydrostatic pressure was applied and reaches 

a value of 2.036 MPa (295.3 psi) the tube started to buckle in the middle, as shown in 

Figure 30. 

Because of the hydrostatic pressure and the plastic deformations, the ring is 

significantly distorted and the results are evident in Figures 31 and 32. 
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Figure 30 Buckling of ring along with the tube 

 

Figure 31 Deformation of the ring due to the buckling of the tube 
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Figure 32 Out-of-plane deformation of buckled ring 

 

Figure 33 Deformed shape of tube 

 

Specimen 19 

The last of the 1981 test specimens is a very thin-walled tube with a D/t ratio of 122.1 

and it is stiffened with three stiffeners along its length. The experimental pressure is 

0.683 MPa (99 psi) and is smaller than the pressure in which a free tube buckles. The 

numerical analysis resulted in a pressure of 0.697 MPa (101.09 psi), 2.05% higher 

than the test. 
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The tube reaches a maximum level of pressure which reduces gradually after its 

maximum value. Subsequently, the first bay, between rings one and two, buckles 

(Figure 34). 

Afterwards, buckling continues. The tube collapses in the middle of its length and the 

ring deforms significantly as shown in Figures 35 and 36. 

 

Figure 34 Initial buckling of first bay 

 

Figure 35 Buckling of second bay 
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Figure 36 Post-buckling shape of specimen 19 

 

Figure 37 Effects of general instability in the ring 

 

6.1.2 Modeling of the 1982 tests 

The geometry of test specimens is given in Figure 34 and the detailed dimensions are 

listed in Tables 5 and 6. 
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Figure 38 Geometry of test specimens (nominal dimensions) 
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Tube 

Specimen Outside 

diameter 

Do (mm) 

Thickness 

t (mm) 

Maximum 

diameter 

Dmax 

(mm) 

Minimum 

diameter 

Dmin 

(mm) 

Overall 

Length 

LB 

(mm) 

Do/t  

 
         

      
 

L/Do 

1C* 457.962 13.157 459.59 456.334 3571.24 33.8 0.711 1.51 

3A 609.092 9.55 613.584 604.599 3657.6 62.8 1.475 2.97 

7B 610.362 13.1064 610.859 609.865 3657.6 45.6 0.163 2.32 

8A 609.346 9.576 611.214 607.475 3657.6 62.6 0.613 2.94 

Table 6 Dimensions of the 1982 specimens 

Rings 

Specimen Number of 

rings 

Bay Length 

L (mm) 

Ring size hs x ts 

(mm) 

Maximum 

outside 

Radius 

(mm) 

Minimum 

outside 

Radius (mm) 

1C* 5 673.1 62.89x13.157 292.685 291.057 

3A 2 1752.6 57.048x9.55 363.84 359.348 

7B 3 1385.824 74.397x12.954 379.827 379.33 

8A 2 1761.49 70.231x9.60 375.838 373.97 

Table 7 Dimensions of rings in the 1982 tests 

The analytical results of the modeling of each specimen and the comparison with the 

experimental data are presented below for each specimen separately. 

Specimen 1C* 

Model 1C was tested to yielding under axial tension only. A hydrostatic pressure load 

was then applied to the model and the test point is designated 1C*. Subsequently, 

model 1C* buckles locally at a pressure of 17.1 MPa (2480 psi) at bays 2 and 3. The 

numerical analysis resulted in 13.97 MPa (2026.9 psi) which is 18.27% lower than the 

one obtained in the experiments. Figures 38, 39 and 40 demonstrate the form of 

buckling of the particular model. 
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Figure 39 Local buckling of specimen 1C* at bays 2 and 3. 

 

Figure 40 Longitudinal direction of buckled shape 
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Figure 41 Post-buckling shape of a deformed section 

 

Specimen 3A 

Due to the fact that for test 3A the loading procedures during the experiment were 

slightly in error, the model failed at pressure value significantly lower than predicted. 

The value of maximum pressure is 4.14 MPa (600 psi). The finite element analysis 

resulted in a pressure of 3.8484 MPa (558.16 psi), which is 6.97% less than the 

experimental value.  

  

Institutional Repository - Library & Information Centre - University of Thessaly
16/06/2024 16:47:02 EEST - 3.146.107.117



University of Thessaly                                Department of Mechanical Engineering 

 

Βόλος 2013  53 

 

Specimen 7B 

The specimens of this group were identical to those of group 2. Nevertheless, the shell 

separated from ring 2 in specimen 2B due to poor welding. Specimen 7B reached a 

maximum pressure of 10.342 MPa (1500 psi). In the analysis, the maximum pressure 

level reached 13.34 MPa (1934.5 psi), a value that is 28.97% higher than the test 

value. No evidence of ring detachment from the shell was reported in specimen 7B. In 

Figure 41, the distribution of plastic deformations in the model at the post buckling 

stage is presented. 

 

Figure 42 Distribution of plastic deformations in post-buckling stage 

 

Specimen 8A 

Similar to model 3A, during testing of model 8A, the value of pressure was less than 

predicted. It reached 5.17 MPa (750psi). The present analysis result has been14.47% 

higher which corresponds to a pressure of 5.92 MPa (858.5 psi). The model is a 2-ring 

tube and it buckles in the middle section after its buckling capacity is reached. Figures 

42 and 43 show the post-buckling shape of the specimen and the corresponding 

distribution of von-Mises stresses. 

Institutional Repository - Library & Information Centre - University of Thessaly
16/06/2024 16:47:02 EEST - 3.146.107.117



University of Thessaly                                Department of Mechanical Engineering 

 

Βόλος 2013  54 

 

 

Figure 43 Post-buckling shape of model 8A 

 

Figure 44 Form of middle section 

6.1.3 API formula for hoop buckling and comparison of results 

6.1.3.1 Hoop buckling 

For cylindrical members satisfying API Spec 2B out-of-roundness tolerances, the 

critical nominal stress Fhc should be determined from the following formulas provided 

in Section D of API RP2A- LRFD: 

Elastic buckling: 
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Inelastic buckling: 

           
   
  
 

   

    

               

The elastic hoop buckling stress, Fhe, is determined from the following equation: 

    
     

 
 

where the critical hoop buckling coefficient Ch includes the effect of initial geometric 

imperfections within API Spec 2B tolerance limits and depends on the D/t ratio and 

the ring spacing as follows: 

        
 

 
                                                                                                                  

 

 
 

       
     

 
 
     

 
  

 

  
                                                                  

      

 
   

    

 
 

       
     

       
                                                                                              

 

 
 

                                                                                                                                     

In the above equation, the geometric parameter, M, is defined as: 

  
 

 
 
  

 
 ,  

where, 

L is the length of cylinder between stiffening rings, diaphragms, or end connections 

and 

Fhc is the nominal critical hoop buckling strength, in stress units 

6.1.4 Comparison of results with experimental data 

In order to build confidence in the present analytical procedure, computational results 

obtained in the previous sections are compared with experimental data reported by 
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Chicago Bridge and Iron (1985), Southwest Research Institute (1988), Miller and 

Kinra (1981) and Miller et al. (1982) and the API formula present above. These tubes 

have D/t values between 30 and 122. 

For the specimens reported in Miller and Kinra (1981) and Miller et al. (1982) tests, 

the stress-strain curve was not available, the material curve is assumed to be bilinear 

with a post-yielding modulus equal to E/500 and the measured initial imperfection is 

assumed for every specimen. 

The experimental and analytical results are reported in Table 8 and, in graphical form, 

in Figure 45. The ultimate pressure is plotted in terms of the buckling parameter 

      where    is the “elastic” collapse hoop stress given by the API (1993) 

specification, and depends on      ,     , and E. Low values of        represent 

unstiffened tubes, whereas high values of this parameter correspond to heavily 

stiffened tubes. Computational and experimental results are compared with API 

(1993) formula. 

Specimen D/t Pexp 

(MPa) 

Pcomp 

(MPa) 

Difference 

(%) 

M σhe 

(MPa) 

σy  (MPa) 

1 32.4 15.168 14.3214 -5.5815 16.1 598.196 272.343 

2 31 18.616 20.122 8.089 15.7 643.918 408.17 

5 36.8 9.308 9.18 -1.375 33 221.932 260.622 

7 42.4 7.45 7.925 6.376 37 178.429 232.353 

8 48.9 5.998 6.336 5.635 39.9 154.336 287.511 

12 63 3.103 2.477 -20.174 40.3 116.151 276.48 

15 32.2 11.376 8.47316 -25.517 24.1 530.683 272.343 

16 51.3 5.378 3.466 -35.552 20.3 289.31 282.685 

17 61.5 3.758 2.312 -38.478 21.9 218.566 277.859 

18 61.2 2.7717 2.0356 -26.558 33.8 144.96 269.585 
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19 122.1 0.683 0.697 2.0498 31.2 74.75 273.722 

1C* 34.8 17.099 13.975 -18.27 12.5 695.734 245.453 

3A 63.77 4.137 3.8484 -6.976 32.8 142.431 262 

7B 45.6 10.342 13.3384 28.973 22.2 313.364 358.527 

8A 62.6 5.171 5.9194 14.473 32.9 148.679 377.833 

9A 45.7 3.93 3.692 -6.056 78.5 89.769 386.796 

C6J5 60 1.556 1.66713 7.142 272.88 6.9 285.58 

S1 (B-4) 42.5 5.24 5.14357 -1.84 229.29 14.14 321.71 

Table 8 Comparison of present computational results with experimental data 

 

Figure 45 Comparison of computational results with experimental data with estimates 

of the pressure capacity on the basis of API RP 2A-LRPD Eq. D.2.5-2 (API 1993). 
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6.2 Parametric study 

6.2.1 Effect of element’s dimensions 

From the nonlinear analysis performed in the previous sections it is evident that in 

unstiffened tubular members, it is even more definite that D/t ratio affects the level of 

pressure capacity. This is shown in Table 9.  

 

Table 9 Comparison of D/t ratios and pressure level 

 

As mentioned before, stiffeners are used in order to increase the ultimate capacity if 

the tube is subjected to high external pressure. Ring stiffeners may be internal or 

external and are spaced at a distance Ls ranging between one and four tube diameters 

D in actual offshore members. Clearly, ultimate pressure depends on stiffener spacing 

as well as the D/t ratio of the unstiffened tube. It was mentioned above that 

unstiffened tubular members exhibit an ovalization type of deformation at buckling. 

The use of stiffeners is aimed at preventing cross-sectional ovalization, thereby 

increasing the collapse pressure. The D/t ratio is a critical aspect to the stability of a 

tube. Thin elements with larger ratios tend to buckle more easily to a lower external 

pressure.  

It is evident from the above analysis that tubes with higher D/t ratios tend to buckle at 

lower levels of pressure. For example, specimens 7 and 12 have the same length and 

nearly the same yielding stress but different D/t ratios. Specimen 7 with D/t equal to 

42.4 can withstand a pressure of 7.925 MPa according to analysis, which is 

significantly higher than the 2.48 MPa which is the pressure in which specimen 12 

with D/t of 63 buckles. 

Specimen D/t pexp (MPa) pcomp (MPa) 

S1 (B-4) 42.5 5.24 5.14 

9A 45.7 3.93 3.69 

C6J5 60 1.56 1.67 
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6.2.2 Effect of imperfections 

Theoretical methods have been developed by several authors to account for the effect 

of imperfections. All of these methods are based on the assumption that the initial out-

of-roundness is similar in form to the assumed buckling mode shape. The bending 

stresses resulting from the initial out-of-roundness are combined with the membrane 

stresses. The buckling pressure is determined by equating the hoop stress to the yield 

stress or by the Hencky-von Mises theory.  

6.2.3 Effect of the bay length 

It is important to point out that the presence of stiffeners causes non-uniform cross-

sectional ovalization along the tube. In order to account for the efficiency of the 

stiffeners, the stiffener spacing is examined. More specifically, the effect of the bay 

length of the tube, which is measured by the number M, where,   
 

 
 
  

 
, over 

the ultimate pressure capacity of the tube. 

API 2A-LRPD recommendations dictate that for                  (i.e.   

      ), the elastic buckling stress is approximately equal to that of a long 

unstiffened cylinder. 

For this purpose three tubular members are examined, with D/t ratios 36.8, 63 and 

122.1, denoted as tube I, II, III, which are similar to specimens 5, 12 and 19, 

respectively. 

Tube I 

Tube I has a D/t ratio equal to 36.8 and is considered thick-walled. In order to study 

the effect of stiffener spacing, the length of specimen is also changed accordingly. A 

variety of spacing is examined without changing the D/t ratio and the material 

properties. The maximum pressure is normalized by yielding pressure which is: 

       
 

 
              

Figure 46 demonstrates the effects of stiffener spacing in the ultimate pressure 

capacity pmax of the tube. 
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Figure 46 Effect of stiffener spacing in ultimate capacity of specimen 5 

 

The gradient of the curve is not steep and it is evident that for values of M greater 

than 58.88 MPa, the pressure capacity of specimen does not change. 

Tube II 

 Tube II is examined next, which is a relatively thin-walled with D/t ratio of 63. The 

dimensions of the tube change proportionally to the change in Ls/D ratio, but the size 

of the stiffeners does not change; only the spacing of the stiffeners varies. 

The maximum pressure pmax is normalized by the yielding pressure 

        
 

 
            

Figure 40 shows the effects of stiffener spacing in the ultimate pressure capacity of 

the tube. 
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Figure 47 Ultimate pressure capacity-geometric parameter M curve 

 

Figure 47 implies that some benefit in ultimate capacity is achieved even for larger 

values of spacing. 

Tube III 

Tube III is a thin-walled tube with D/t ratio equal to 122.1. As the previous tubes, the 

length of the tube changes proportionally to the value of spacing of the rings. 

It has to be mentioned that the original ring height was 33.5 mm but it was changed to 

65 mm due to the fact that this dimension is not allowable by API rules as it is 

mentioned in the section below. 

The effects of ring spacing in Tube III are shown in Figure 48. 

The maximum pressure is normalized by the yielding pressure 
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Figure 48 Effect of ring spacing in specimen 19 

It is apparent that pressure capacity decreases rapidly when the spacing between the 

stiffeners increases. The pressure capacity at 1.6D/t = 195.43 is equal to 0.23 MPa 

which is close to the one of the unstiffened case. 

6.2.4 Effect of stiffener’s dimensions 

The ultimate pressure capacity of a tube for different stiffener sizes is investigated in 

this section. It is expected that for small stiffener dimensions the ultimate capacity 

will be close to the pressure capacity of the unstiffened tube. On the other hand, for 

large stiffener dimensions, failure is expected due to yielding of the entire cross-

section. The tubes considered for this study are Tubes I, II, III with D/t equal to 36.8, 

63 and 122.4 and L/D equal to 3.79, 3.56 and 1.99 respectively. They are all loaded 

under hydrostatic pressure. 

As a measure of ring size, the moment of inertia of the active part of the ring is 

considered. API recommendations specify that stiffening rings, if required, should be 

spaced such that 

                                                                                       (i.e.         ) 

The circumferential stiffening ring size may be selected on the following approximate 

basis: 
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where 

Ic = required moment of inertia for ring composite section 

For external rings, D should be taken to the centroid of the composite ring and it is 

further assumed that the cylinder and stiffening rings have the same yield strength. 

In the present work, the moment of inertia of the effective ring is determined using 

classic theory of Strength of Materials. The moment of inertia in composite T-sections 

is calculated and it is compared with API formula for each ring height hs. 

 

Figure 49 Geometry of test cylinders 

 

Figure 50 Composite effective section of ring 
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Tube I 

The effect of ring height in the ultimate capacity of the tube is shown in Figure 51. It 

is evident that ultimate pressure capacity increases with increasing values of M and 

reaches a maximum value at M= 58.88. After that it does not change and remains 

constant. 

 

Figure 51 Effect of ring height in ultimate pressure capacity for specimen 5 

 

Tube II 

The variation of ultimate pressure with increasing stiffener height is shown in Figure 

52. For increasing stiffener size, the ultimate pressure capacity is increased to a 

maximum level at M=100.72 and then it remains constant.    
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Figure 52 Effect of stiffener size on the ultimate pressure capacity of specimen 12 

 

Tube III 

Tube III is a thin-walled tube and as shown in Figure 53. The stiffener size does not 

affect the ultimate pressure capacity beyond a value of M equal to 195.43.  

 

 

Figure 53 Effect of stiffener size in ultimate capacity of specimen 19 
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It can be seen that in the two first specimens the ultimate pressure capacity is reached 

quite smoothly while in Tube III the curve at the maximum pressure has an abrupt 

change of slope.  

For small values of stiffener sizes, ovalization type of collapse occurs with significant 

deformation. On the other hand, for the cases where the size exceeds a certain value, 

the unstiffened cross-section will be in the plastic range and yielding failure occurs. 

A result of this parametric study is the existence of a certain stiffener size above 

which there is almost no significant increase in ultimate capacity. This characteristic 

value of stiffener size clearly depends on the geometric parameters as well as the 

material behavior. 
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7 CONCLUSIONS 

The present work is motivated by the need for accurate analytical prediction of the 

ultimate capacity of ring-stiffened tubes as well as for the comparison of such results 

to available experimental data. 

For the purposes of this research a non-linear finite element has been developed, 

which accounts for large deformations and plasticity effects. Modeling of ring 

stiffeners were accounted through a “shell element”, which is a planar case of the 

above shell element considered in the tube.  

Results were obtained for the response of unstiffened tubes under external pressure 

using shell elements. The results were successfully compared with experimental data 

reported by CBI and SwRI. 

Interesting results were obtained for ring-stiffened tubes under external pressure. It is 

evident that for tubes with relatively small D/t ratios the experimental data are in very 

good agreement with the analytical data, but for thin walled cylinders there is a certain 

difference between numerical results and experimental data. 

Furthermore, the influence of two parameters on the pressure capacity has been 

examined: stiffener spacing and stiffener size. As expected, the ultimate pressure 

increases for increasing stiffener size and decreasing ring spacing.  
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