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ABSTRACT

The present study investigates the structural stability of thin-walled long cylinders subjected to
structural loads (bending and axial compression) and pressure (internal or external). A
numerical technique is employed that uses the *‘tube-element’’, a special-purpose finite
element. Within this framework, two large-strain material models for the description of
isotropic and transversely isotropic cylinders are developed. Bending loading is primarily
considered, where buckling is associated with a highly nonlinear prebuckling state due to cross-
sectional ovalization. Special emphasis is given on thin-walled elastic cylinders, and extensive
numerical results are presented, concerning their buckling and postbuckling response, under
uniform wrinkling conditions. Furthermore, the sensitivity of maximum moment on the
presence of initial imperfections is also examined. The numerical results are compared with
available bifurcation and postbuckling solutions presented elsewhere, and with analytical
expressions developed for the purposes of the current study. The effects of anisotropy on
buckling and postbuckling response are investigated. Finally, the stability of thin-walled
inelastic metal cylinders under bending moments is also examined, using the aforementioned
numerical technique, focusing on the determination of bifurcation moment and the localization

of buckling deformations.
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HNEPIAHYH

H epyacia avtq €xel oav kOplo oTOX0 TNV UEAETN TNG OOMIKNAG €VOTADENG AETTOTOLYOV
KOAWVEPIKAOY KEADQOV, TOV VITOKEWTAL GE SOMKA @optio (Kauyn kot aEovikn cvumigon) Kot
nieon. 'Etor ota mhaicia g Awtpifrig ovamtdyOnke pio apuntikni eV yuo. TNV
TPOGOLOIMOT NG CLUTEPLPOPAS TOV KEAVPDV, GTNV OO0 KOl EVOOUOTOONKAY KOTACTUTIKA
HOVTELD PEYAA®V TOPALOPPDCEDV.

Mo avaivtikd, 6to TP®@TO PEPOC TNG AlatpiPng TapoVGIdleTal 1| VIOAOYIOTIKY| TEYVIKY] TOV
EPOPUOCTNKE Y TNV emilvon Ttov mpoPAnuatog. Xpnowomomonke 7anyoiog KMOKOC
TMEMEPACUEVOV OTOLYEI®MV, 0 OTOoloC apyKDS elxe avamtuybel yio cOANVOTE Sopukd HEAN
LUEYAAOV TTAYOVG, KOl E0(D TPOCUPUOGTIKE Y10 TNV aVA
Avon AemtoTo®V KEALQ®Y. Baoikd otorgion TG VIOAOYIGTIKNG TEXVIKNAG omoTteAovv (o) To
TENEPACUEVO oTOLYEI0 «crwAnvay (tube-element), To omoio &xetl TV duvatdTNTO TEPTYPUPHS TNG
TAPUUOPOOONG EVOG ETUNKOVG COANVAOTOV LEAOVG GUVOLALOVTOG TNV SOLUNKT] TOPOLOPPOOT)
TOTOV S0KOD LE TNV TOPAUOPP®CT TNG SATOUNG TOL HEAOVG Kat (B) 1 xpNnoonoinon 8IK®V
KOTOOTOTIKAOV HOVTEA®DV Y10 TNV TPOCOUOIMGT TG CUUTEPIPOPAS TOV DAIKOV UE EUPACT] OTA
avicotpoma eAaoTIKG VAKA. To aveotépm evoopatdbnkay oe pio pebBodoroyia un ypOpUIKIG
avélvong katackevwv, 1 omoia Pacileton o pio  Aoykpavilovi  TEPLYpOEn  TOL
TOPALOPPDOCIUOD OTEPEOD UE KEVOOUOTOUEVEG» GUVTETOYUEVEG KOl U0l TPOTOTOLNUEVN
Newton-Raphson ernilvon tov dakprrotomuévev eéicdoemv 1oopportiag pe ™ péBodo
pnkovc-toéov. Idaitepn éupaon divetor emiong 6Tov TPOodopiopd dakAadmong g Avong
OTNV EAAGTOTANCTIKY TEPLOYT], LE TNV TPOcaproYT g Bempiag povadikodtrag Avong tov Hill
GTNV TOPOVGA UPLOUNTIKY TEXVIKY KOl S10KPLTOTOINGT).

H amotelecpatikdTNTa TG VTOAOYIGTIKNG TEXVIKNG EETALETAL OTNV EMIAVOT TOV KTPOTOTOV
(benchmark) mpofinudtov gvotdbeloc. To mpoPfAnuata avtd givor 1 gVOTAOEI KUKMK®OY
EMOTIKOV KVAIVOpmV o€ afovikny cvumieon vrd aOVOUETPIKES OPYIKEG OTEAEIEG, KOl M
€VOTABED KO LETAAVYIGUIKT] CUUITEPLPOPE UN-KUKMK®DV EAACTIKAOV KVAVOpmV vtd afovikn
ovumieon. Kot oto 600 mpoPAnuota, to apfuntikd amoteléopata ¢ Awatping givol oe
eEAIPETIKN GLUEOVIO, [E MU-OVOAVTIKEG ADGEL;, TOGO GTO KPIoWO (@OpTio 0CO KoL OTNV
UETUAVYICUIKY] GUUTEPLPOPE KL TV ELOICONGIN GE APYIKEG ATEAELEC.

H gvotdbeia kolvopikdv coinvotov pel®mv arotedel 10 Pacikd mpdfinua g AatpiPnig.
Y10 mloiclo, €mOpEVOG OVTNG TNG UEAETNG €EeTAOTNKE 1 KAUWYT AENTOTOY®V EAACTIKMV

106TponOV KVAIVOp@V vd micon (ecwtepikn M e€mtepikn), Eva TPOPANUA LE OTUOVTIKY UI-
4
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YPOUUIKOTNTO TNG TPOAVYICUIKNG KATAOTAONS, AOY® TNnG «oPaAomoinong» Tng KLAMVOPIKNIG
dwatopng. Ipoadiopilovrtal ta @optio AVYIGHOD Kol Ol AVTICTOLYEG KIOIOHOPPES», KOOMG Kot M
LETUAVYIOUIKY] CUUTEPLPOPA Kol 1 vototncio og apyikés atéieleg. Baoikd yapoakinploTiko
Mg SwKAGO®oNG eivol M ovoyETion TG pe pio kot povov poper] Avywspod. Emiong,
mopoaTnpeiton pio peydAn evocOnoia Tov arotelecpdtov. Ta aplBuntikd oanotedécpato ival
o€ TANPN CLUPOVIO LE ACVUTTOTIKEG AVGELS YO TNV OPYIKYT LETAAVYIGUIKT] CUUTEPLPOPE, Kot
emmpocheta Tpoodiopilovv TANPOS TOV HETAAVYIoHIKO dpdpo woppomiag. Emiong, efetdleton
N evactnoio og apyIKés aTEAEIEG, KOl To oplOUNTIKA OTOTELECUATA EXAANOEVOVY TNV YEVIKT
Oewpio. tov Koiter kot v exBetiky oyéon «2/3». Téhog, mpoteivetar pio avoAvTiKn
puebodoroyio LVTOAOYIGHOD TOV GNUEiOD SOKAAdMONGC, 1| OTOlo KATOANYEL GE GYEGEIS KAEIGTNG
LOPONG Kot vt o€ TOAD KOAN GCUUPOVIL [E TO, AplOUNTIKA OTOTEAECUATA.

Ymv ovvéyewo e€etaletar 0 AVYIGHOG KO 1) HETOADYIOWIKY GUUTEPIPOPE OVIGOTPOTOV
EMIOTIKOV KOUMVOPIKOV KEALQPOV VTO KAUyT. XPNOUYOTO0UVTOL KATAGTATIKG LOVTEAL V1o
EYKOPGIMG 1G0TPOTIKA VAIKA KOt TO 0ptOuMTIKG amoTEAEGHOTO SELYVOVY Hiol GTILOVTIKT ETPPON
NG avicoTpomiog 6to onueio dakAddmong, kabde Kot 6Ty avtictoyn Hopen Avyleuov. Xtnv
TEPIMTOON UEYAANG OvIcOoTPOTiog KaTh Tnv afovikh doevbuven Tov KLAIVOpov, M HOPEN
AVYIOHOD €l €VIOVO KULUOTOEWN YOPOKTNPO KATd TNV gykdpoio oevbuvvon, kot otnv
MEPIMTMOOTN  ALTH, TMPOGEYYIOTIKN OVOALTIKN] AOON KAEWGTAG HOpeNG Ogv  divel Kald
omoteAéopata. Eetaletor emiong oapOuntikd 1 evoicbnoic o apykés  atéAELES,
emaAnOevoviag v yevikn Oswpio tov Koiter kot v ekOetikh oyéon «2/3» yio tov apyikod
UETOAVYIOUIKSO SPOLO 1GOPPOTTIUC.

TéAOG, avaADETAL TO PAIVOLEVO TNG OOTOYI0G AETTOTOLY MV KUAVOPIK®OV UETOAAMKODV KEAVOOV
VIO KOUTTIKN évtaor. Apykd egetdletal n dakAddworn Avyiouov pe Baorn v oplOuntiky
epappoyn g Bempiag tov Hill, oe pio xopatogd pLope1], OUOOHOPEN KOTE HAKOC TOV
KLALVOpov, kaBmg kot 1 evactnocio oe apyikéc atéreleg. Emiong, amodeikvietor apuntikd n
petémerta. dnuovpyios «TomKNAG» CMVNG NG UETOAVYIGUIKNG KLUATOEWO0VS TOPAUOPPDCTG
(buckling localization), n omoio. cuvterel otV amdToun AGTOYIOL TOV SOUKOD KLAVIPLKOD

UEAOVG LE TN HOPOT TOTIKNG KOPTMOONG 1 VP®OTNC.
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Chapter 1
INTRODUCTION

Equation Chapter 1 Section 1

The structural analysis of cylindrical shells constitutes a classical problem of mechanics, with
numerous applications in civil, aerospace, mechanical and marine structures. In particular, the
nonlinear response and the loss of structural stability of thin-walled structures, as well as, their
postbuckling behavior is a topic of both fundamental and applied research. In the past, this
problem has caused significant controversy due to the unreasonably high analytical predictions
of buckling loads, compared with the low buckling loads obtained from relevant experiments.
This controversy remained a major issue of concern and dispute among structural engineers and
researchers, until the early 40’s. The works of von Karman et al. [1], [2] were a first major step
towards understanding these discrepancies, pinpointing the sensitivity of the structure to
deviations from the assumed initial ‘‘perfect’” shape. The first rigorous confirmation of the
influence of initial imperfections on the buckling load was given by Koiter [3], [4], [5]. In
particular, Koiter was the first to relate the unstable postbuckling equilibrium path of a structure
with its imperfection sensitivity. It is important to note that this imperfection sensitivity stems
from the fact that the buckling (bifurcation) load is often associated with an infinite number of
buckling modes. Other notable contributions on this subject were published by Kempner [6],
[7], Kempner and Chen [8], Amazigo et al [9] and Budiansky and Hutchinson [10]. All the
above works, underlined the important role of imperfection sensitivity, which was recognized
as the major reason for the significant differences between analytical buckling predictions and
experimental results. It was shown that, even small deviations from the perfect circular
cylindrical geometry, result in a significant reduction of the theoretical buckling load.

The problem of circular cylinder under uniform axial compression, due to the above
controversy, as well as because of its wide range of applications in structural engineering and
mechanics, still remains a popular research topic. Therefore, a great number of relevant
published works exists on this subject. For a concise presentation of those works related to
imperfection sensitivity of cylindrical shells, the reader is referred to the books of Brush and
Almroth [11] and Wempner and Talaslides [12]. Furthermore, the study of Teng [13] offers an
extensive list of references for investigations of more practical problems. Finally, the recent
book of Singer [14] contains an excellent literature review on this subject, with focus on

experimental works.
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On the other hand, the problem of non-circular cylinders under uniform axial compression has
received less attention over the years. Non-circular cylinders are used to aerospace and
mechanical engineering applications, due to either special external shapes or (internal) storage
requirements. The response of these non-circular geometries has several similarities with the
corresponding problem of circular cylinders. However, there are several stricking differences,
which allow its separate investigation. More specifically, the shell has a variation of curvature
in the hoop direction and the buckling load is associated with a singe mode, which makes these
shells less sensitive on initial imperfections.

Bending of cylinders is another problem of particular engineering importance. Most of the
work on this subject was motivated by the structural design of pipelines and was mainly
focused on relatively thick cylinders. In recent years, the problem of buckling of cylinders has
gain significant attention due to its applications in composite-material structures, as well as, in
biomechanics and carbon nanotubes.

The present study is motivated by the need for an accurate prediction of the response of thin-
walled cylinders subjected to axial compression, bending and pressure, using advanced
numerical tools. Special emphasis is given on circular cylinders under structural loads (bending
moments and uniform axial load) whereas issues of stability of non-circular cylinders are also
examined. The analysis is numerical, using a special-purpose finite element technique.
Analytical solutions for elastic cylinders are also reported.

Within this framework, the development of a rigorous numerical technique in order to
investigate the stability of cylinders under structural loads and pressure, which uses the so-
called *‘tube-element’’, is considered, as described in Chapter 2. The development of two
material models for the description of large-strain transverse-isotropy and isotropy is presented.
These constitutive models are incorporated in the finite element technique.

Using the above mentioned numerical techniques nonlinear equilibrium paths, bifurcation and
limit points are calculated, whereas issues of postbuckling response and imperfection sensitivity
are considered, as well. Chapters 3 to 7 cover applications of classical stability theory for
cylinders subjected to axial compression, bending and pressure. In particular, Chapters 3 and 4
consider the case of uniform axial compression in both circular and non-circular cylinders.
These problems are revisited for the purposes of this study and their numerical investigation
constitutes a benchmark for the capabilities of the ““tube-element’’, offering a verification of its
accuracy and computational efficiency. The problem of elastic bending is examined in Chapters
5 and 6 for isotropic and anisotropic cylinders, respectively. In these Chapters a hnumber of
parameters that affect the bending response and stability are discussed. In addition, an attempt
to develop an approximate solution for bifurcation is also described in both Chapters. The
bending response of inelastic cylinders is examined in Chapter 7. Bifurcation in the inelastic

range in the form of wrinkled buckling patterns is detected using a numerical implementation of
9
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the so-called “comparison solid” concept. Post-buckling response is calculated and
imperfection sensitivity is examined. Special emphasis on buckling localization is also given.

Finally, some important conclusions are summarized in Chapter 8.

10
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Chapter 2

NUMERICAL FORMULATION
Equation Chapter 2 Section 2

In the present Chapter, a finite element technique is briefly presented, which simulates the
nonlinear structural behavior of elastic and inelastic cylinders. It is a continuum-based
formulation with finite-element discretization, through a special-purpose element, the so-called
“‘tube-element’’. The technique is based on the large-strain formulation of Needleman [15] and
was employed in [16] for the analysis of inelastic thick-walled cylinders, mainly motivated by
the study of offshore pipelines and tubular members. Herein, this element formulation is further
elaborated and enhanced for the stability analysis (buckling and postbuckling) of thin-walled
cylinders. Emphasis is given on modelling of the anisotropic elastic material behavior, through
the development of two large-strain constitutive models, which consider both the cases of
hypoelasticity and hyperelasticity. Issues of the stability analysis of inelastic metal cylinders are
also discussed, within the context of Hill’s comparison solid. For the development of this
numerical technique, some basic concepts of continuum mechanics that are necessary are

shortly illustrated in the following.

2.1 Governing Equations

A Lagrangian formulation of the cylinder is adopted, as described in detail in [15]. Therefore,

a net of coordinate lines embedded in and deforming with the continuum (curvilinear
coordinate system) is employed. These coordinates are denoted by &' (i =1,2,3) , so that:

x=x(£"¢&% &%) (2.1)
is the position vector of a material point (&*,£%,£°) in the deformed configuration at time t. In
particular, the position of the material point (&', &%,£%) at t=0 serves as a reference
configuration, which is denoted by:

X=X(&'¢%,¢%) (2.2)
In the sequel, X and X are the position vectors in the current (deformed) and the reference

(undeformed) configuration, respectively.

At any material point, the covariant base vectors in the reference configuration are:

11
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oX

G =— 2.3
I a§| ( )
and in the current configuration are:
OX
9i=—4 (2.4)
05

Furthermore, G* and g* denote the contravariant (reciprocal) base vectors in the reference and
current configuration, respectively.
Deformation is described by the rate-of-deformation (stretch) tensor d, which is the

symmetric part of the velocity gradient. Therefore,

ox
Loy
d:E(L+L ) (2.6)
1
d, =E(vp,q+vq,p) 2.7

whereas v;,; are the components of the covariant derivative of the velocity vector in the current

configuration, and can be written in the corresponding components in the reference

configuration V, ,, . More specifically,

Vp/qzvvq'gng'gp (28)
ov

P/q:Vvq.GP:%. p (29)

and from (2.8) and (2.9) one obtains
Voo =Visg(G*-0,) (2.10)

Therefore,

1

dpq :E(Vk/q (Gk 'gp)+vk/p(Gk 'gq)) (2.11)

It is noted that the anti-symmetric part of L is the continuum spin @, which expresses the
average rotation of the material fibers at a specific material point.

Equilibrium is expressed through the principle of virtual work, considering an admissible
displacement field ou. For a continuum occupying the region V, and V in the reference and
the deformed configuration, correspondingly, and with boundary B in the current

configuration, the principle of virtual work is expressed as:
IdUk,j(Gk-gi)rijdvozjﬁu-tqu+M50 (2.12)
Vo B
12
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where t is the surface traction, M is the bending moment at the cylinder end, 66 is a
variation of the end rotation, z" are the contravariant components of the Kirchhoff stress tensor

1=7(g, ® g;), Which is parallel to the Cauchy stress tensor ¢ (t=Jo, J=det(F))and

_9(8u)

8U,,, =8 G, (2.13)

The contravariant components 7" of the Kirchhoff stress tensor with respect to the current
deformed configuration, can be correlated to the contravariant components S” of the second
Piola-Kirchhoff stress tensor with respect to the initial undeformed configuration. From
continuum mechanics,
t=FSF' (2.14)

therefore,

(g9, ®9,) =F[S"(G, ® G )JF" (2.15)
and taking into account that for convected coordinates g, = FG, one results in 7/ =S". Using

this result, the principle of virtual work can also be expressed with respect to the components of

the second Piola-Kirchhoff stress tensor as follows:

[0U,,,(G* g, SUdV, = [5u-tdB +Mse (2.16)
Vo B

Furthermore, on the same basis one can show, that applying the expression
E=F'dF (2.17)
for the case of the convected coordinates, the rate of the covariant components E'ij of the

Lagrange-Green strain tensor E, expressed in the initial configuration, are equal to the

covariant components d; of the rate-of-deformation tensor d, expressed in the deformed

configuration:

E =d. (2.18)

Regarding the constitutive relations to be used in the present formulation, hypoelastic and
hyperelastic relationships are considered. In the case of hypoelasticity the rate of the
contravariant components of Kirchhoff stress t are related to the covariant components of the
rate-of-deformation tensor d as follows:

1 =R™Md,, (2.19)

where R™ are the components of R, a fourth order tensor, with respect to the current base
vectors.

Alternatively, in the framework of a hyperelastic constitutive model that employs a quadratic

free energy function, the components S" of the second Piola-Kirchhoff stress tensor S, with

13
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respect to the reference base, are related to the components of Lagrange-Green strain tensor E
(also expressed with respect to the reference base) as follows:
s’ =DME, (2.20)

e

where D, is a fourth order rigidity tensor that depends exclusively on the material properties
and it is independent of the deformation, when a quadratic function for the free energy is
considered. Differentiation of (2.20) results in the following rate equation:

S’ =DME, (2.21)

These two constitutive models will be discussed in the subsequent sections.

2.2 Elastic Material Behavior

A major part of this study concerns the stability of elastic cylinders. In the following,
constitutive models employed to describe elastic material response are presented for both
isotropic and anisotropic elastic response with special emphasis on transversely isotropic
material behavior. An isotropic material possesses no preferred directions, and its properties are
the same in all directions. Furthermore, in the present study a particular anisotropic case, the
transverse isotropy is considered, where the material possesses at every point a single preferred
direction. The anisotropy axis in the undeformed and deformed configurations is demonstrated
in Fig. 1. The anisotropy axis in the initial configuration is aligned in the axial direction of the

undeformed cylinder, which is the direction of the covariant base vector G,. Therefore, the

corresponding direction unit vector is expressed as follows:

1
2

In the deformed (current) configuration, the direction of anisotropy axis is assumed in the
direction of the local covariant base vector g,, so that the corresponding direction unit vector
is:

n ig2 (2.23)

ool
where |G,| and |g,|| are the magnitudes of vectors G, and g, , respectively.

An example of such a material is a composite material, which consists of a matrix reinforced by
fibers arranged in parallel straight lines. These materials are employed in a variety of industrial

applications and recently for the description of biomechanical materials (e.g. soft tissues).
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Fig. 1 Axis of transverse isotropy in the reference and current configuration

2.2.1 Hypoelastic Constitutive Model

A material is characterized as hypoelastic if an objective stress rate tensor is related to the
rate-of-deformation tensor. Constitutive equations which model transversely isotropic
materials, for finite elastic strains are presented in this section. Furthermore, the appropriate
simplifications that lead to the case of isotropy are indicated.

From continuum mechanics, the rate of change of the unit vector n in a deformable body is
given by the following expression,

nN=o,n (2.24)
where the second order tensor ®, is given by the following expression
o,=0+d(n®n)-(n®n)d (2.25)
and o is the continuum spin.

Thus the following hypoelastic constitutive equation is considered
t=D,d (2.26)

where ‘r is a rate of Kirchhoff stress, which is co-rotational with the anisotropy direction vector
n, defined by (2.23),

o

T=1T+10, - O,T (2.27)

and D, is the fourth-order elastic rigidity tensor. The components D! of tensor D, in a

Cartesian system, defined by the following orthonormal vectors,

15
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e = ilgl (2.28)
o]
e, =N (2.29)
e, =€, xe, (2.30)
are given in the following matrix form [17], [18]:
11 22 33 12 13 23
11 _Au A4 0 0 0]
22l | A A, A 0 0 0
3[4, A A, 0 0 0 (2.31)
12| | O 0 0 u 0 0
13/ O 0 0 0 @/2)(A;-4) O
23| 0 0 0 0 0 4|

and n is given by equation (2.23). It can be readily shown that tensor “:- is objective.
The five constants A, A,,, 4, 4,, u designate the five independent effective properties of the
media. These properties can be related to the engineering properties of the material through the

following identities [18], [19]:

A=K+ 4,
A, =E,+ 4M3V221
A=2K, vy (2.32)
Ay =Kz - 14,
H= L
where
pma—— (2.33)
21-vi3-2v,vy,
1 E,
——_ 2.34
S PYI (2:34)

It is noted that, in the above equations E,,,E,,are the uniaxial moduli and they are directly
measurable from a tensile test, , is a shear modulus and v,,,v,, are Poisson’s ratios. In the
notation v; a convention is employed so that the first index i refers to the coordinate of the
imposed stress or strain and the second index j refers to the response direction. Therefore,
transverse isotropy can be described by five independent material constants, namely
E, E,, 14,,v, and v, .

Tensor D,, in this local Cartesian system defined in the deformed configuration, is expressed
as follows

D, =D/ (e, ®¢, ®e, @e,) (2.35)
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Subsequently, the components D of tensor D, can be written in terms of the embedded

coordinates &', through the standard tensor transformation

DM =D (g'-e, ) (g’ e, )(9" - )(¢' -e.)

Using the definition of Jaumann stress rate

v .
T=T-OT+TO

(2.36)

(2.37)

[a] A%
the stress rate T, co-rotational with the anisotropy direction vector n, can be related to t as

follows

v o

t=t+17(0-0,)-(0-0,)T
where

o -0,=(n®n)d-d(n®n)
Equivalently,

1= D.d+t[(n®n)d—d(n®n)|-[(n®n)d—d(n®n)]z

Using simple tensor algebra, one can write

(n®@n)d=—d,5 (g, ®q")

7 Y9
o]

and

1
d(n ® n): ||g "2 dk| §2I (gk ®g2)
2

(2.38)

(2.39)

(2.40)

(2.41)

(2.42)

where 5 is Kronecker’s delta. Furthermore, using equations (2.41) and (2.42), one readily

obtains

1 ‘ .
T(n®n)d= w5§ 7" 9,,9" (9, ®g; )dy
2

d(n ®n)t=——7"5} g,,0" (9, ®, )d,

1
lo.f
1
o,
1
o,

Therefore, equation (2.40) can be written as follows

(n®n)dr = 's5 5,(9, ®g; )d,

wd(n®n)=

Tik52| é‘2j (gi ®gj)dkl

T= (D, + 4)d
where the components of fourth-order order tensor 2, using (2.43)-(2.46), are
17
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1
oI

From continuum mechanics, the convected stress rate, defined as:

g =

{%Jgrmmhuiﬁww-@"£$+¢*gg» (2.48)

=7(g00)) (2.49)

is related to the Jaumann stress rate through the following expression:

o \4

T=1-Ld (2.50)

where £ is the geometric rigidity fourth-order tensor, with components:

Using (2.50) and (2.47), one finds:

o

t=(D, + A-L£)d=Rd (2.52)
where R is a fourth order tensor, with components equal to:
Rijkl _ Dijkl + ﬂijkl _Lijkl (2_53)
In component form, equation (2.52) is written as follows:
z;ij - (Deijkl + ﬂijkl _Eijkl)dkl (2.54)
The rigidity tensor components in equation (2.53) will be used in the linearized equilibrium
equation (2.12), to be discussed in a subsequent section. At this point it is pointed out, that the

main advantage of this hypoelastic model is that the stress rate 1: is always expressed co-
rotationally with the anisotropy direction vector n at the current configuration. In other words,
the constitutive equation ““follows’’ the current orientation of the anisotropy axis.

The hypoelastic material model has a simpler form when the elastic material response is
isotropic. In such a case, the continuum spin ® , expressing the average rotation of the material

fibers at a specific material point, can be used in equation (2.27) instead of ®_, and in this case

o v
the co-rotational rate T becomes the Jaumann stress rate = :

I=T-0T+ 10 (2.55)

and
t=D.d (2.56)

where the rigidity tensor D, in equation (2.56) now depends on two material constants, namely

the Young’s modulus E and the Poisson’s ratio v . It is noted that this simplification is

obtained if the following assumptions are adopted in (2.31):

A=A, (2.57)
A=2,, (2.58)
18
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=5 (A= 2) @59)

With respect to the current basis, the components D™ of the rigidity tensor D, have the

following form:
DM — agir L glagir 4 ij y Pa 2.60
e 2(1+V)[g 9" +9"g" +—-0"g"] (2.60)
whereas matrix £ is given by equation (2.51), as well. Therefore, equation (2.54) for elastic
isotropic response is reformed as:

# = (DM - L")d, =R™d, (2.61)

2.2.2 Hyperelastic Constitutive Model

The main assumption in hyperelasticity is the existence of a Helmholtz free-energy function
W, also referred to as strain-energy function, which is defined per unit reference volume.
Herein, the Helmholtz free-energy function W is considered a function of the Lagrange-Green
strain tensor E, and the general form of a constitutive equation in hyperelasticity can be
expressed by:

where S is the second Piola-Kirchhoff stress tensor, E is the Lagrange-Green strain tensor

(2.62)

(2E=F'F—1) and p,is the mass density in the initial configuration. The rate form of this

hyperelastic constitutive model is obtained by differentiation of (2.62), so that:

S=D,E (2.63)
with D, given by:
O*¥(E)
D, = 2.64
e pO aEaE ( )

In this study the free energy W(E) is expressed through a quadratic function of the
components of E ([19], [20], [21]), as follows:

p(E) =) E (2.65)

so that a linear constitutive equation between S(E) and E and their rates will be obtained. It is
mentioned that in this way tensor D, depends on the material constants only, and may include

any type of material anisotropy.

In the special case of transversely isotropic materials, tensor D, can be expressed in a

Cartesian system in the undeformed configuration as follows:
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D, =D/" (€, ®€, ®F ®F,) (2.66)

where the components Iﬁe"qrS are given by (2.31)-(2.33) with respect to the Cartesian system,

defined in the reference configuration by the following orthonormal vectors:

1

g =— G (2.67)
<5

g =N (2.68)

€, =8 (2.69)

Subsequently, the components of D of tensor D, can be written in terms of the embedded
coordinates, defined in the initial configuration, through the tensor transformation
D =D/ (G'-&,)(G' &, )(G* & )(G' &) (2.70)
It is mentioned that, in the case of transversely isotropy, D, can be expressed in a general
tensor notation as follows [19], [20], [21]:
D, =2al ® 1 +2bJ+2cCA®A+dP +e(I®A+A®]) (2.71)

where | is the second-order identity tensor, J is the fourth-order identity tensor, the
orientation tensor A is defined as:
A=N®N (2.72)

the components of tensor P are defined as:
1
Pi ZE(Aﬂjn + A0y + 0 A+, AK) (2.73)

with respect to a Cartesian system,

and a,b,c,d,e are related to the five independent elastic constants of the transversely isotropic

material E, ,E,,, 14,,v,, and v, as follows [19]:

azé(KB-MQ (2.74)

b=, (2.75)

c:%(E22 -ty - 24, + (1-2v,, )7 Ky,) (2.76)
d = 2(u, - 145) (2.77)

€=, - (1-2v,)K (2.78)

with K3, 24, given by (2.33) and (2.34), respectively.

One should note that this hyperelastic material modeling refers always to the initial
configuration and, therefore, it does not “‘follow’” the local anisotropy axis throughout the

deformation history. However, it is applicable to the more general cases of anisotropy (e.g.
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orthotropy), where the anisotropy axes and their orientation in the deformed (current)
configuration can not be defined through a hypoelastic model.

In the framework of hyperelasticity with quadratic free energy functions, the special case of
isotropy can be described in the same basis as above. In such a case, the fourth-order tensor D,
obtains a more simple form as:

D, =1 ®1+2u) (2.79)

where the so-called Lame constants A, are given in terms of the physical parameters E,v as

follows:
A :LZ
1'V'2V (280)
_1E
Yy
Note

In the present work, and for the purposes of conducting an extensive parametric study, the
local components D of tensor D, (2.31) are reformed in a more convenient manner. It is

reminded that the axis of anisotropy is directed along axis 2, which corresponds to the
longitudinal direction of the cylinder (Fig. 1). More specifically, the following equations are

assumed for the five independent material constants (A,, A,,, 4,, 4 and u).

H(Ar=4) = (2.81)
A=A (2.82)
In such a case, from expressions (2.81) and (2.82), one trivially obtains:
A, =1+2u (2.83)
It is further assumed that:
Ay, =SA, (2.84)

where S is a parameter that indicates the level of anisotropy. Therefore, the components D

of tensor D, in a local Cartesian system are now given by:

11 22 33 12 13 23
11| [A+2u A A 0 0 O]
22 A S(A+2u) A 0 0 O
33 A A A+2u 0 0 O (2.85)
12/ 0 0 0 u 0 0
13 0 0 0 0 u O
23| 0 0 0 0 0 uj
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Clearly, if S =1, the material is isotropic elastic, and 4 and x become the well-known Lamé

constants.

Using the above three independent material constants A,z,S and assuming uniaxial stress
states in the direction of axes 1 and 2, one obtains the uniaxial moduli E,, E,, and the

corresponding Poisson’s ratios vy,,Vys, Vo, Vas -

Y7 7
4(1-5)-4s £ 2+32
@-3) /1( /1)

E, =4 (2.86)
A (1-5)-as0+ 4y
7 A
S(3+2/;)-)“(1-S)
E, =2 / (2.87)
1+—
7
2
v, = - (2.88)
4s@1+4)-2@-s)
A u
A 1-8)-28
Vi = 4 T (2.89)
2 1-5)-4s1+4)
Y7, A
1
Va1 = =V (2.90)
2(1+§)

Using (2.86) and (2.87) a dependent variable @ can be introduced, that expresses the ratio of

the longitudinal uniaxial moduli E,, over the hoop moduli E;, .

A
—(1-9)
=2 _E_z H

-S—

I (2.91)
Ey a1+t
P

From (2.91), one concludes that the E,,/E,; ratio depends on the level of anisotropy S and the

Al u ratio. Employing (2.91) the corresponding values of ° =E,,/E,, are shown graphically

in Fig. 2 interms of S for three different values of A/ ratio.

22

Institutional Repository - Library & Information Centre - University of Thessaly
09/06/2024 05:09:14 EEST - 18.191.111.134



18
]
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S anisotropy parameter

Fig. 2 Values of E,,/E,, intermsof S

2.3 Inelastic Constitutive Model

10

To model inelastic material behavior, J, flow theory of plasticity with isotropic hardening is

adopted. The hypoelastic constitutive equations relate the Jaumann rate of Kirchhoff stress to

the rate-of-deformation. The deviatoric Kirchhoff stress is defined as:

1
s=1—=(t-1)I
3( )
with contravariant components (on the current basis vectors)
1
S” =Z'” Ll Tkl
39 9w
The von Mises (effective) stress is defined as:
Y =43J, Z\/%S-S :\/ggikgjlsijskl

where J, is the second invariant of s.

Yielding occurs when

Y=Y_ and Y>0

max

(2.92)

(2.93)

(2.94)

(2.95)

where Y, is equal to the maximum value of Y throughout the deformation history but not

less than Y

max,0 !

which is the initial yielding value for the case of uniaxial tension. If at least one

of the conditions of (2.95) is violated elastic behavior occurs and the constitutive equations are

the ones described in section 2.2.1 (isotropic material behavior). Furthermore, it is assumed that
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the rate-of-deformation tensor d is decomposed in an additive manner to an elastic and a
plastic part

d=d*+d°” (2.96)
Furthermore, it is assumed that the material obeys the normality rule imposed by the Drucker’s

stability postulate. Upon yielding the plastic part d” of the rate-of-deformation tensor is:

d
ar =35 (2.97)
2y

where it can be easily shown that the equivalent plastic strain d , Isequal to

d =

p

%d" -dPdt (2.98)

S S——

The above equation indicates that d is a monotonically increasing parameter that offers a

measure of the total plastic deformation. Based on this observation, it is assumed that Y, is

also a monotonically increasing function of d,, where d =0 and Y, =Y,,, at initial

p L
yielding. The function can be found from a standard calibration procedure using a uniaxial

stress-strain curve, as outlined at the end of this section. During elastoplastic loading, Y =Y,

and therefore:
Vv, and V=g (2.99)
dd,

It can be shown that the differentiation of (2.94) gives:

. 3 v
V= lsi (2.100)

The hypoelastic constitutive equation relates the Jaumann rate of Kirchhoff stress to the elastic

part of rate-of-deformation tensor d®* =d —d" as follows:
t=D,d° (2.101)

where D° is the elastic rigidity matrix and for the case of isotropic elasticity is given by (2.60).
Using (2.101) and (2.97)-(2.100), and after some manipulations the following equation is
obtained:

v

t=Dd (2.102)
where D is the fourth-order elastic-plastic rigidity tensor whose contravariant components with
respect to the current basis are:

i _ ikl _ 3G 1 giighl

D M= -
Y? 1+(H/3G)

(2.103)
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where D™ components are given by (2.60) and H =d;$. Consequently, the convected rate
p

of Kirchhoff stress 1: is found to be:

t=(D-L£)d=Rd (2.104)
where the contravariant components of tensor £ are computed from (2.51).

It can be easily checked that the components of tensor R exhibit the symmetries

R = RI" = Ri* (due to symmetry of = and d) and the nontrivial symmetry R™ = R4

To complete the development of the constitutive equations, the function Y, (d ) must be

max
appropriately defined from the uniaxial tension stress-strain curve. It is assumed that the
uniaxial curve & versus & is known, where & is the nominal strain and & is the nominal
strain. If P is the applied load, L ,,L are the initial and current bar lengths, respectively, so
thatAL=L-L, and A,, A are the initial and current cross-sectional areas, respectively, the

following are obtained:

axial nominal stress

o= L (2.105)
A
axial nominal strain
;=4 (2.106)
L,
axial Cauchy stress
aziz&i (2.107)
A A
axial Kirchhoff stress
T:i0=£&2(1+§)6 (2.108)
Vo L
deviatoric Kirchhoff stress components
2
S = §T
1
S,, =Sy = _ET (2.109)
s; =0, i j
plastic rate-of-deformation stress components
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dj =dg = —%dﬁ (2.110)
di =0, i#]j
total rate-of-deformation in the axial direction
dL/L
=— 2.111
1= g (2.111)
elastic part of rate-of-deformation in the axial direction
e T
d; =% (2.112)
plastic deformation parameter
d, =d} (2.113)
furthermore, the von Mises stress is
Y=r=(1+&)s (2.114)
from
dj =dy, —dj (2.115)
and therefore,
L | O R
d =—=-— 2.116
P dtL E ( )
Integration of this quantity gives:
R O
d,= In(1+e)-(1+e)E (2.117)

Expressions (2.105)-(2.108), (2.114) and (2.117) provide Y,, and d, in terms of the

“‘engineering’” values of stress & and strain ¢ .

2.4 Linearization of Equilibrium Equations

The numerical solution of the nonlinear equilibrium equations is based on the linearization of
principle of virtual work (2.12) and (2.16). For this purpose, the principle of virtual work is
considered at a “‘nearby’” configuration X' :

[8Uy,,G* gpr'idv, = [ ou-tdB; + M50 (2.118)
i K¢

q

This configuration corresponds to stress tensor t', boundary traction t" and bending moment
M'. The increment of displacement Au, is defined as:

t,:
AU=X —Xx= j xdt (2.119)

t

X
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The covariant base vectors at the nearby configuration are expressed as:
N S N 0(Au) a4+ 0(Au)

gi _8§i_6§i 85' i 8§I

(2.120)

te
Moreover, =7l jr‘”dt (2.121)

&
Assuming a hypoelastic material behavior in the form of expression (2.104), which includes the

case of plasticity, expression (2.121) is written as follows:
te
o'l =+ [Rd dt (2.122)
tX

where the values of t,,t, express the ““time-like’” parameter t in the two configurations, x and
X' respectively.
After some straightforward calculations the principle of virtual work (2.12) can be written

linearized in the following linearized form

[8U,,,0™AU,,dV, = [su-(t+At)dB, +(M +AM )50~ [8U,,,o"dv,  (2.123)
Vo B Vo

In the above equation, At and AM are the increments of the surface traction and bending
moment, respectively. Furthermore, o6U , is defined by (2.13), and similarly:

_oy) o (2.124)

AU p/q aéq p

. . ~ij i
where Au are the incremental displacements, whereas o are the components of the nominal

stress tensor defined as follows:

odV, =FledV

K (2.125)
6=JF'c
where F is the deformation gradient and J = det(F) , and finally:
o =7i(g, -G (2.126)
In addition, the fourth-order tensor components ®" are equal to:
L (Gi -gk)Rkjmq (gm .G p) +rlagi (2,127)

where tensor R is defined by (2.104).

Equation (2.123) is the linearized form of the principle of virtual work, based on hypoelastic
material behavior, which includes plasticity effects. In the case of hypoelasticity, the linearized
principle of virtual work is given by the same expression (2.123), where in equation (2.127)
ijkl

tensor components R™ are replaced by tensor components D given by (2.70).
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2.5 Galerkin Discretization

The numerical solution is based on the finite element discretization of linearized equilibrium
equations described in the previous section. Using appropriate shape functions, the incremental

displacement field can be written as:
Au =[N]AD (2.128)
in which [N] is the interpolation matrix that contains shape functions and AU contains the

increments of nodal degrees of freedom. Using the same functions for the virtual displacements,

Ssu=[N]s0 (2.129)
Covariant differentiation of equations (2.128) and (2.129), and using the following equations
AU, = o(Au)
oct °
o5 (2.130)
oU,1q = (gé;:l) G,
one results in:
grad(Au) ={AU,, } =[B]AU (2.131)
grad(u) ={sU,, } =[B]sU (2.132)

where [B] contains the derivatives of the elements of the interpolation matrix.
Furthermore, the traction component normal to any shell lamina is imposed to be zero at any
stage of deformation 7* =0, following classical shell theory.

On account of the symmetry of the Kirchhoff stress, and because 7* =0, the five-component

column vector of stress components T is written as:

T
T
T=| 2 (2.133)
T
T

Applying the condition that 33=0 (since 7** =0 at all times) the constitutive equation in terms

of the convected rate of Kirchhoff stress (hypoelasticity) can be written in matrix form as:
t=[R]d (2.134)

in which

7 d
7 d
T=| 2 d=|d, (2.135)
T d
7 d
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and [R] is a 5x5 matrix, containing the components of the appropriate rigidity tensor.
On the basis of the symmetries of the components R", it can be shown that matrix [R] is
symmetric. Another auxiliary matrix [C] (9x9) is defined so that:

CU = 1) GiMeO) (2136)

with the relations between the indices given by:

I,LJ iorp jorq
1 1 1
2 2 1 (2.137)
3 3 1
4 1 2
5 2 2
6 3 2
7 1 3
8 2 3
9 3 3
This arrangement is consistent with that of gradient components in (2.131).
_AUlll ]
AU2I1
AU3/1
ALJ1/2
{AU, o} =] AU, (2.138)
AU3/2
AU1/3
AU2/3
_AU3/3_

It can be readily verified that [C] is symmetric (because 7*G" =79G").

Recalling that the mixed components of the deformation gradient with respect to the reference

base vectors are written as follows,
F,}zF-(G'@Gj):(FGj)-G':G'-gj (2.139)

a 5x9 matrix [W] containing these components is introduced:

Fj Ff Ff 0O 0 0 0 0 O
0 0 0 F; F22 Fj 0O 0 O
[W]=|F, F; F; F F; F; 0 0 0 (2.140)
0 0 0 F, F} F} F, F; F}
F;, F2 F5 0 0 0 F; F{ F}

Moreover, another 5x5 matrix [@] is introduced,
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[D]=[W] [R][W]+[C] (2.141)
Using the matrices and column vectors defined above, the linearized form of the principal of

virtual work (2.123) can be written as:

suT {I[B]T [@][B]dvoJAO = 50TU[N]T tdB, - [[B] [W] wdv, |  (2.142)

By

Requiring that (2.142) holds for arbitrary virtual displacements SU, the following set of

equations is obtained:
[K]AU=F,, -F, (2.143)

where [K] is the incremental stiffness matrix

[K]=[[B]'[][B]dv, (2.144)
Vo
and F,,F, arethe external and internal load vectors respectively.
F.. = [[N]' tdB, (2.145)
Bq
Fo = [[B] [W] dV, (2.146)
Vo

After assembling the stiffness matrices and load vectors of all elements, using the above
relations, the system of equations for the displacement increment is solved. Upon computing
the displacement increment, the corresponding increments of strains and stresses are calculated
and thus an estimate for the nearby state of equilibrium is obtained. The iterative procedure is
continued until equilibrium is achieved (F,, =F,, ).

Xt

2.6 “‘“Tube-Element’’-Description

In the past, several attempts have been reported to apply “‘pipe’” or “‘elbow’’ elements for
modelling of elongated cylinders, as alternatives to shell elements. These elements combine
longitudinal (beam-type) deformation of the cylinder’s axis with cross-sectional deformation of
the cylinder wall, and have been employed for the analysis of tubes and pipelines. Such
elements been shown to be quite effective for the modelling of tubular members, pipelines,
elbows and piping systems. Among other advantages of those elements over shell elements, one
should underline the more convenient application of boundary conditions and kinematic
constraints, as well as the clearest interpretation of numerical results.

The first attempt to combine the longitudinal deformation of the tube axis with cross-sectional
ovalization was described in the studies of Bathe and Almeida [22], [23] for linear analysis and
in a subsequent work of Bathe et al [24], where some nonlinear capabilities were investigated.

30

Institutional Repository - Library & Information Centre - University of Thessaly
09/06/2024 05:09:14 EEST - 18.191.111.134



Militello and Huespe [25] proposed a further improvement of the above element including
warping deformation, but keeping the inextentionality condition, which implies that the
circumference length of the cylinder does not change during deformation. Hermite polynomials
were used to ensure inter-element continuity. In a more recent paper, Yan et al [26] have
proposed an enhanced ‘‘pipe-elbow element’’, which further improves the above concepts and
capabilities. Their element included warping deformation, and accounted for a certain degree of
cross-sectional extentionality and for non-symmetric cross-sectional deformation. Moreover,
the contribution of pressure on the stiffness matrix (i.e. the “*pressure stiffness’” effects) was
considered. This element was used for the numerical calculation of limit plastic response of
tubes.

Hibbit et al [27] have developed an elbow element for the elastic and elastic-plastic analysis of
initially straight and bent tubes under pressure and structural loads. The element is incorporated
in the Finite Element program ABAQUS. It is based on the Koiter-Sanders linear shell
kinematics and on a discrete Kirchhoff concept, imposed through a penalty formulation. Cross-
sectional warping is included and the corresponding deformation parameters are discretized
through the use of trigonometric functions up to the 6" degree. Finally, the element accounts for
pressure effects rigorously.

A nonlinear “‘tube-element’’ is presented in this section, which is employed for the purposes
of this study in simulating the behavior of cylinders (initially straight or bent) subjected to
bending within the plane of the cylinder. This *‘tube-element’” combines longitudinal (beam-
type) with cross-sectional deformation. Isoparametric beam finite element concept is used to
describe longitudinal deformation and three nodes are defined along the cylinder’s axis (Fig. 3).
Geometry and displacements are interpolated using quadratic polynomials. Bending is applied

about axis x, (i.e. x, —X, is the plane of bending) and each node possesses three degrees of

freedom (two translational and one rotational), which define its position and orientation.

A reference line is chosen within the cross-section at node (k) and a local Cartesian

coordinate system is defined, so that the X,y axes define the cross-sectional plane. The

orientation of node (k) is defined by the position of three orthonormal vectors el el and

el. For in-plane (ovalization) deformation, fibers initially normal to the reference line remain

normal to the reference line. Furthermore, those fibers may rotate in the out-of-plane direction

by angle y(6). Using quadratic interpolation in the longitudinal direction, the position vector

X(0,<, p) of an arbitrary point at the deformed configuration is:

KO£ =3[ (0 + 1 @)+ @)+ @ INV Q)] (2147
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where x® is the position vector of node (k), r* (@) is the position of the reference line at a
certain cross-section relative to the corresponding node (k), n® () is the **in-plane’” outward

normal of the reference line at the deformed configuration and N™® () is the corresponding

Lagrangian quadratic polynomial.

reference line

of tube section

.. corresponding
. to node (k)

Fig. 3 Tube element and deformation parameters; X, — X, is the plane of bending

The position of the reference line r* () at the deformed cross-section corresponding to node
(k) is
r@) =x(0)e¥ +y,(0)e +z,(6)el (2.148)

where

X, (0) =[r +w(6)]cos@-v(O)sin o

Y, (0) =[r +w(6)]sin @ +v(6) cos @ (2.149)

z,(0)=u(0)
are the components of r® (@) with respect to the cross-section vector triplet (Fig. 3). In the
above expressions, w(8),v(6) and u(@) are displacements of the reference line in the radial,
tangential and out-of-plane (axial) direction, respectively, whereas, angle rotation y(8)

corresponds to the material out-of-plane fiber rotation (Fig. 3). For an extensive presentation of
ring analysis, the reader is referred to the book by Brush and Almroth [11].

The deformation functions w(&),v(6),u(@) and y(0) are discretized as follows:
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w(0)=a,+asind+ > acosnd+ » asinng

n=2,4,6,.. n=35,7,..
v(0)=—a;sind+ > bsinnd+ > b cosnd
n=2,46,.. n=3,5,7,....

2.150
u@= >, c,cosnd+ > ¢ sinng ( )

n=2,46,.. n=3,5,7,...

y@= > y,cosnf+ >y sinnd

n=0,2,4,6,... n=1,3,5,7,....
Coefficients «,,b, refer to in-plane cross-sectional deformation (“‘ovalization’” parameters)
and c,,y, refer to out-of-plane cross-sectional deformation (*‘warping’’ parameters). In the
above expressions, symmetry with respect to the x, —x, plane is considered because of in-
plane bending and only half of the tube is analyzed (-7 /2<8<x/2).

The outward unit vector n®(8) , normal to the reference line can be written as:

n®“ (@) =nel” +nel (2.151)
where
0 _(dy,/do)
" (ds, /d6
(ds, /d9) (2.152)
 (dx./d6)
Y (ds, /d6)
and

% =—[r + W(0) +V'(§)]sin &+ [w'(6) —v(6)]cos &

dxé =—]r+w(d) +Vv'(@)]cosd —[w'(d) —v(H)]sing (2.153)

% = \/rz +2r[v'(8) + w()]+[Vv'(8) + W(A)] +[w'(8) —v(O)]
The position vector expressed through (2.147) can be written alternatively as follows
3
X(0,£,p) = D[ (X +(x + pn el + (y, + pn, el + (z, + p)e? )N©() | (2.154)
k=1

and differentiating this expression with respect to the time variable and omitting higher order

terms the following for the velocity vector is obtained:

3
X=v(0.£,p) = D [X + (% + pit, el + (, + o, el +(Z, + py)el +
= (2.155)

(Y, + N, )EY +(z, + pr)EY N ()]

Equation (2.155) can be rewritten in terms of incremental displacements:
3
AU(9,&, p) = D [(AU" + (A, + pAn, )ef + (A, + pAn, el +
k=1 (2.156)
+(Az, + pAy)ey +(y, + pn, ) A IN ()]
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Considering vector AU, which contains the increments of nodal degrees of freedom of the

““tube-element’” as follows:

AU
AUl
A91<k)
Aa)
Aa

Ab®
AB®

A

Ay

Ac
Act

(2.157)

the incremental displacements in equation (2.156) can be written in the form of equation

(2.128), so that matrix [N] is defined.
The covariant base vectors, tangential to the coordinate lines (6,¢, o), can by calculated by

differentiation with respect to the local coordinates of the position vector as follows:

g.=0, = 2_2 _ 23:|:[dr:9(9) ip dn®(6) i p dy(0) eik’]N (®) (4)} (2.158)

k=1 déo déo
ox ¢ N® ()
9:=9. = o ;[(th) +1r9(0) + pn® (8) + py(0)e¥ )?} (2.159)
9:=0, = 2—; = kﬂ[(n‘k) (0)+ 7(@)eP )N ()] (2.160)

Considering the covariant base vectors in the reference configuration G,,G,,G,, appropriate

differentiation of (2.156) and the definition of vector AU , matrix [B] is formed to be used in

equation (2.131).

In this study, the numerical results are obtained through the implementation of the described
nonlinear “‘tube-element’’, exploring issues of stability, post-buckling response and
imperfection sensitivity, considering a number of parameters that affect the structural response

of thin-walled cylinders.
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2.7 Tracing of Unstable Equilibrium Paths

The nonlinear governing equations are solved through an incremental Newton-Raphson
numerical procedure, enhanced to enable the tracing of unstable equilibrium paths. For the
purposes of the present study an “‘arc-length’” path follower technique is implemented. Path
follower techniques in structural mechanics were originally introduced by Riks [28], [29], and
Wempner [30], and modified by Crisfield [31] in a more efficient form. These methods enable
Newton-Raphson step-by-step solution algorithms to overcome limit points (maximum
loads/moments), which may be characterized by *‘snap-through’” or *‘snap-back’’ behavior in
the load-deflection equilibrium path (Fig. 4).

To illustrate the above “‘continuation techniques’’, the set of discretized equilibrium equations
can be written as:

g(u,A)=q,(u)-1q, =0 (2.161)
where vector g, (u) expresses the internal forces, which are functions of the displacements u,,

vector g, is a fixed external loading vector, which is kept fixed, and the scalar A is a “*load-

level’” parameter that multiplies q., .

load load

limit point limit point

“snap-through”

“snap-back”

_<r

displacement displacement
(@) (b)

Fig. 4 ““‘Snap-through’ and “‘snap-back’’ behavior in load/displacement curves.

The major limitation of employing a load-control marching scheme that specifies the value of
A is that at or beyond a limit point, there is no intersection between the equilibrium path of
(2.161) and the line A =constant. Furthermore, the adoption of a displacement-control marching
scheme would allow tracing of a path in the form of Fig. 4a, but may fail to follow the path
shown in Fig. 4b. Various forms of arc-length methods have stemmed from [28], [29], [30],
aiming at the determination of the equilibrium path through the intersection of (2.161) with a

““hyper-plane’” in the space of incremental load and displacements. In this methodology, the
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load increment AA is considered as an extra unknown. Towards this purpose, an additional
equation is introduced, prescribing the “radius” of the “hyper-plane” to be used, for the
intersection with the equilibrium path. More specifically, if Al is a prescribed constant which
expresses the fixed “‘radius’’ of the desired intersection, then the following constrain equation

is employed

Al = J(Au+ 5u)" (AU +6U) + (AL + 3A) wald, (2.162)

where Su is the correction to the incremental displacements Au, o4 is the correction of the
load increment A4 and w is a scaling parameter that varies between 0 and 1.

In Fig. 5, starting form point (1) on the path, the method provides point (2) as the intersection
of the path with an “‘arc’” of radius Al about point (1) (Fig. 5). It is noted that vector Au and
the scalar quantity AA are incremental (not iterative) quantities from the last converged
equilibrium state [point(1)].

The main essence of the arc-length methods is that the load parameter 4 becomes now an
extra variable. Hence, together with the n displacement variables Au, there is an additional
unknown AA, so that a total of n+1 variables exist, and n+1 equations, namely n
equilibrium equations of (2.161) and one constraint equation from (2.162) are to be solved. An
efficient method to solve those equations within a Newton-Raphson methodology has been
proposed by Crisfield [31].

The present nonlinear study is based on the implementation of the above arc-length method in
the Newton-Raphson step-by-step numerical solution. When bending is examined, the

marching scheme is controlled by the non-dimensional arc-length parameter Al defined as:

T 2
Al =\/A” Au +y/£ AM j (2.163)

AulAu, AM,
which comes from (2.162) and is a combination of bending moment increment AM with the
increment of some “‘selected’” degrees of freedom Au, where AM, is a normalization
moment, and Au, are normalization displacements, both obtained from a preliminary load-

control small step. In proportion, when axial compression is examined expression (2.163) is

AU'AU AP Y
Al = +y| — 2.164
JAuIAur "”(APJ (2159

reformed as:

where AP is the load increment and AP, is a normalization load parameter. It has been

recognized that the success of the method depends in the appropriate selection of degrees of
freedom in vector Au. In general, convergence near and beyond the limit point is facilitated

when monotonically increasing degrees of freedom are included in vector Au.
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In this work, for cases where buckling instability is due to bending loads, the incremental
values the two translational degrees of freedom at each node (k) of the ““tube-element’” Auf",
Au¥are employed to form the vectors of incremental displacements Au and reference
displacements Au, in (2.163) and the value of y is taken equal to 1 (spherical arc-length).

When axial compression of cylinders is examined, all the degrees of freedom are considered

(translational, rotational, ovalization and warping) in forming the incremental displacement

vector Au and the reference displacement vector Au,, to trace post-buckling equilibrium paths.
In these cases the implementation of cylindrical arc-length procedure (- =0) has been found to

facilitate convergence near the bifurcation point.

Finally, to enable the incremental analysis to follow the post-buckling path at the bifurcation
point, a very small initial imperfection of the tube is imposed, in both cases (bending and axial
compression). The initial imperfection is considered in the shape of the first instability mode,
obtained by an appropriate eigenvalue analysis at the bifurcation stage. The imperfection is a
small fraction (e.g. 10°®) of the shell thickness, but it is yet sufficient to improve convergence

near the buckling point and ““trigger’” bifurcation.

1 Al = \/(Au +0u)' (Au +8u) + (AL +0A)*walq,
?\/
|/
/ / Final point (2)
s R
A, [KTl]
A,
Ay Al
Af“ 1 \[KTO]
A V'
/ié‘)uo du, du, du;
Initial point (1 !
nitial point (1) )
Au, A
i—> u2
UO AUS
Au,

Fig. 5 Schematic representation of arc-length procedure
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2.8 Bifurcation in the Inelastic Range

Detection of bifurcation in the inelastic regime is described in this section based on the so-
called ““comparison solid’” concept, introduced in the work of Hill [32].
For the case of hypoelastic constitutive modeling the general form of an elastic-plastic

material model with smooth yield surface is considered, as follows:

¢ =R™d,, (2.165)
which, using (2.18), can be written as:
1 =RME, (2.166)
When the material response is elastic (including elastic unloading) components R™ are equal
to:
RM=DM - ¥  for miE, <0 (2.167)
whereas for plastic loading
R — pid _ i Limt for E, >0 (2.168)

g

where g depends on the deformation history and the current state of stress and tensor m is
normal to the yield surface.

Bifurcation is associated with loss of uniqueness of incremental solution. It is supposed that at
the current state of stress and deformation, a load increment is imposed. Loss of uniqueness
means that at least two incremental solutions exist, namely u, and u,. The corresponding
increments of Green-Lagrange tensor are E, and E,, and the corresponding increments of
Kirchhoff stress are t, and t,. Form the equilibrium equations (2.12) one can readily show
that loss of uniqueness is equivalent to the following condition

H = [ ('€, +7"}q,,,)dV, =0 (2.169)
Vo

where functional H depends on the current stress state z” and

(=u,-u, (2.170)
E=E, -E, (2.171)
t=1,-1, (2.172)

The question on whether plastic loading or elastic unloading occurs for stress points on the
yield surface causes a difficulty in evaluating functional H in equation (2.169). To overcome
this difficulty, Hill [32] introduced the so-called “‘comparison solid’’, a fictitious solid with
moduli L equal to the elastic moduli (2.167) when the current stress is within the yield
surface and equal to the elastic-plastic moduli (2.168) when the current state is on the yield

surface.
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It can be shown [33], that in any case,

LME,E, <7E, (2.173)
Therefore, introducing the quadratic functional
F = [(LE,E, +7"G},d,, )dV, (2.174)
Vo
and using (2.169) and (2.173) one may readily conclude that in any case
F<H (2.175)
Therefore, the condition
F>0 (2.176)

is a sufficient condition for uniqueness of solution. Furthermore, the non-positive definiteness
of F (i.e. F=0) constitutes an approximate condition for loss of uniqueness and provides
upper-bound estimates of the buckling load.

In the present work, an implementation of the above concept is incorporated in the finite

element technique, considering the following quadratic functional:

F= j (LY AE,AE, +7"AU AU, )AV (2.177)
\Y
where
"AUSAU,, =7'G™ AU, AU, (2.178)
1
AE,, =§[(Gk :g,)AU, , +(G* g )AU, , | (2.179)

Subsequently, following the discretization described in detail in section 2.5, the quadratic
functional F can be written in the following discretized form
1

F =§A0T [K.]AU (2.180)

where
[K:]=[[B] [@.][B]aV, (2.181)
(@, ]=[W]'[Lc J[W]+[C] (2.182)

and [LC] is the constitutive matrix with moduli LY as defined above. Therefore, the positive

definiteness of functional F is equivalent to the positive definiteness of matrix [K_ ].

Using J, flow theory of plasticity, matrix [Kc] can be evaluated using the corresponding
elastic and inelastic moduli. More specifically, if the stress state is within the yield surface then
R™ are equal to the elastic moduli

R = piM _ £k (2.183)
where
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ik il ik il -k

E 2
D —_— ———g"g" 2.184
e 2(1+V)(9 g +97g" +7 070 j (2.184)

and
o =%[g"‘r" +giet 4 gk 4 girk ] (2.185)
On the other hand, if the stress state is on the yield surface R™ are equal to
R™ =(D — ) —%s”sk' (2.186)
where
Y? H
Fg(“g) (2.187)

is defined by (2.188).

and Y is the effective von Mises stress and H :d;(%' dp

p

It has been recognized that in order to obtain accurate predictions of bifurcation in the inelastic
range, a material model more elaborate than the J, flow plasticity model. This observation was
denoted in early works on axially compressed cylinders [34], [35] where analytical works based
on J, flow plasticity provided buckling load predictions, which were quite high compared with
available experimental data. On the other hand, it has been demonstrated that bifurcation
predictions that employ the moduli of J, deformation theory of plasticity are much closer to
experimental data. A recent series of experiments on axially-loaded very-thick cylindrical shells
that buckle well into the plastic range, together with analytical predictions using J, flow and J,
deformation theory moduli, have been reported by Bardi and Kyriakides [36]. The reason for
the good agreement of deformation theory predictions with test data, as opposed to the poor
predictions of flow theory, is that plastic strain increments based on deformation theory are not
normal to the von Mises yield surface and this makes the material behaviour significantly

““softer’” when abrupt changes in the direction of the stress path occurs at the buckling stage.

To evaluate matrix [KC] in the framework of a J, deformation theory of plasticity, the

corresponding elastic and inelastic moduli should be considered. More specifically, the elastic

moduli are those indicated by equations (2.183), and the inelastic moduli are

R™ =(DM - ™) _ L gigu (2.189)
where
Dukl — S jI 41k + il o jk + ij Kl 2190
h —2(1+V5)(9 g +gigT + 1 00 J (2.190)
and
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h, 2
=(1+v)=+=Y?
A =(+v) o+

S

Yy it 1 (2.191)
E. E 2\ E E

1

hS

In the above expressions E,, E, are the tangent modulus and the secant modulus, respectively,

and Y is the effective von Mises stress.

In the framework of the present step-by-step Newton-Raphson solution procedure, at the end
of each loading step (i.e. after convergence is achieved), matrix [KC] is formed using J,
deformation theory moduli and its positive definiteness is examined through its eigenvalues.
Bifurcation occurs when the smallest eigenvalue of [K.] becomes equal to zero. The

eigenmode that corresponds to the first zero eigenvalue is the buckling mode. This instability
mode is imposed subsequently as an initial imperfection for the analysis of the imperfect

cylinder, as described in Chapter 7.
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Chapter 3
THIN-WALLED ELASTIC CYLINDERS UNDER AXIAL
COMPRESSION — EFFECTS OF AXISYMMETRIC INITIAL
IMPERFECTIONS

In the earlier Chapter the numerical technique employed for the purposes of this study were
briefly discussed with special emphasis on the ‘‘tube-element’ and constitutive modeling
issues. In the following, this technique is employed for the buckling strength of elastic circular
cylinders under axial compression, in the presence of axisymmetric initial imperfections. This
problem can be considered as a benchmark for the capabilities of the “‘tube-element’’, offering
a verification of its accuracy and computational efficiency, as the obtained numerical results are
in very good agreement with semi-analytical results reported elsewhere.

Equation Chapter 3 Section 3

3.1 Introduction

The circular cylindrical shell under axial compression constitutes one of the most classical and
challenging problems in structural mechanics. This problem has caused significant controversy
in the 40’s and 50’s, as great discrepancies between theoretically predicted and experimentally
observed buckling loads were reported. It is now generally accepted that the poor correlation
between theory and tests is due, to a large extent, to the significant imperfection sensitivity of
the cylinder buckling load. Imperfection sensitivity expresses a measure of the effect of small
deviations from the assumed shape on the buckling load and for elastic structures it is directly
related to the initial postbuckling behavior.

A major contribution towards understanding of the role of initial imperfections on buckling
strength of circular cylinders was given by von Karman and Tsien [37]. In this landmark study,
it was shown that the postbuckling structural capacity drops sharply, immediately after the
bifurcation point. Using simple models to simulate the shell behavior, it was suggested that for
these structures in the presence of initial imperfections buckling would occur at remarkably
lower load values compared to the critical loads of the corresponding perfect structures.

Another rigorous confirmation of the dominant role of initial imperfections on the buckling
load, was given by Kaoiter [3]. The initial postbuckling behavior was examined in an asymptotic
sense and a perturbation technique, which relies on the principle of stationary potential energy,
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was adopted. Similar results were derived by Budiansky and Hutchinson [10] and Budiansky
[38], writing the field equations in variational form through the principle of virtual work.
Subsequent studies that correlated the reductions in the buckling strength of shells (cylindrical
and spherical) with assumed initial imperfections were reported by Cohen [39], Fitch [40] and
Fabian [41]. It is mentioned that an overview of imperfection sensitivity in isotropic shells was
given in a review paper by Hutchinson and Koiter [42].

Furthermore, special mention should be made in another study of Koiter [4], where upper
bounds to the loads at which non-axisymmetric bifurcation from axisymmetric state occurs,
were determermined. Axisymmetric imperfection amplitudes of just one shell thickness were
found to reduce the bifurcation load to a fifth of the classical load. In contradiction to the
general theory [3], this particular study [4] was not based on the restrictive assumption that the
amplitude of the initial imperfection is small.

In the present Chapter, infinitely long cylindrical shells with axisymmetric initial
imperfections are analyzed. Non-axisymmetric modes and bifurcations along the equilibrium
path are identified by the implementation of the ‘‘tube-element’’. The body of this Chapter
includes a summary of the numerical results and their interpretation, whereas a direct
comparison of the obtained results with the corresponding given by Kaoiter [4] is offered for the
case of isotropic cylinders. Finally, results for transversely isotropic cylinders are also reported,

illustrating the effects of the anisotropy level on the buckling strength of imperfect cylinders.

3.2 Axisymmetric Buckling of Perfect Elastic Cylinders

The circular cylindrical shell under uniform compression has served as a reference in many
studies of shell buckling. In this section a brief presentation of the analytical expressions that
describe the axisymmetric bucking of cylinders is given. When a cylindrical shell is uniformly
compressed buckling (axisymmetric or asymmetric) occurs at a critical stress, which is
determined by the following expression [11], [43]:

o - 1t 3.1)
r

31—

where E is the Young’s modulus, v is the Poisson’s ratio, t is the shell thickness and r is the
cylinder radius. It is important to note that this buckling load corresponds to an infinite number
of instability modes (axisymmetric or not). Specializing in the case of axisymmetric buckling,

where no dependence of deformation with respect to hoop coordinate exists, the length L, of

the half-waves into which the shell buckles is equal to:

r’t?
LhW :72'{4 mj (32)
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It is noted that for metals Poisson’s ratio v is equal to 0.3 and therefore L, =1.73/rt

For orthotropic cylindrical shells the critical load that corresponds to axisymmetric buckling

can also be determined for a perfect cylinder [11]:

1t
Oy = ﬁ?\/ C.Cy, - C221 (3.3)

whereas, the corresponding buckling wavelength is determined by:

2
o =4 C11C44r > (34)
Cnczz - C21

with the parameters C;; given by:

C,= By (3.5
1-vpvy
E
C, = 2z (3.6)
1-vpvy
C,= VaEap (3.7)
1-vpvy
t8
C,=C,— 3.8
= s (3.8)

3.3 Non-Axisymmetric Bifurcation of Imperfect Cylinders - Semi-Analytical Solution

In this section the study of Koiter [4] is rewritten in a systematic manner, for the sake of
completeness. Buckling behavior can be readily studied through the quasi-shallow equations
suggested by Donnell [44], [45], which give accurate results for cylindrical shells, whose
deformation components in the deformed configuration are rapidly varying functions of the
circumferential coordinate.

The nonlinear set of equations for quasi-shallow shells as originally introduced by Donnell
[44], [45], is given above:

N, +N =0
Nyx+N; =0 (3.9

DV4W+£N5 _(NxWxx +2Nxswxs + Nswss) =0
r ; \ ,

where
V4W = VV,XXXX + VV,XXSS + W,SSSS (310)
3
12(1-v?)

and s is a circumferential coordinate (s =ré).
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Considering a small axisymmetric initial imperfection denoted by w"(x) and assuming that the

unloaded shell, which includes w’, is stress-free, the following strain-displacements relations

for the imperfect shell are obtained:

*

£=U, +%[(W+w*),x]2 (W) =

852V5+ﬂ+£ 2 (3.12)
’ r 2 )
yxs = u,s +V,x +\N,><\N,S +W;WS
and the third equation in (3.9) can be replaced by:
DV W+ N, =[N, (w+w) . +2N_w_ +N.w_]=0 (3.13)
r : : :

which is in accordance with the expressed equilibrium for a slightly crooked column.
Linearization of the equilibrium equations is performed by introducing the following

displacements u,v,w

u—u, +Uu,

V—V,+V, (3.14)

W— W, +W,
where {u,,v,,W,} correspond to equilibrium configuration (prebuckling) and {u,,v;,w,}is an
infinitesimally small increment of displacements in addition to the prebuckling displacements.
For axisymmetric configurations on the primary path, u, =u,(x), v, =0, w, =w,(X).
Introduction of these terms into the equilibrium equations and simplification by neglecting

higher order terms, results in the following linearized expression of equilibrium:

le,x + Nxsl,s = O
Nxsl,x + Nsl,s = 0 (315)
DV4W1 +l Ng _(Nxowl w T NggWy g +WoN,, +w*’ le) =0
r , ,
where:
le = C (exxl + Vessl)
N, =C(ey +Vey,) (3.16)
1-v
Nxsl =C (Tj xs1
and

! !
exxl = ul,x + W0W1,x +w Wl,x
1
€1 = Vi le (317)

! >
€1 Uy HU g T WoW o +W W
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(") prime denotes differentiation with respect to x.

Expressions (3.15)-(3.17) can be reduced to three linear homogeneous equations with variable
coefficients N, N, N, and w". The three equations can now be further reduced to two by

introducing a stress function f(x,s) for which:

le = f,ss
Ny =f, (3.18)
Nxsl __f,xs

For geometric compatibility, from (3.17) the following is imposed

€tss + Costx — Ereiys = %wm —WoW, o —W W (3.19)
and using (3.16) an expression in terms of f and w; is obtained:
V*f —Et EWW —WoW, ¢ — W*"WLSS} =0 (3.20)
Finally, the third equation in (3.15) becomes
DVAw, +% o= N N g w1, ]=0 (3.21)

The last two expressions form two equations in the unknown functions f and w,, and
constitute an eigenvalue problem, the solution of which determines the critical load. Due to
axisymmetric initial configuration, u, =u,(x) ,v, =0 ,w, =w,(x)and N,, =0, there is no
dependence of the hoop variable s (9(.)/0s=0). Therefore, the non-linear equations (3.9) and
(3.21) are now written:

N/, =0 (3.22)

Dw + 1N, - Nxo(wg+w*")=0 (3.23)
r

and represent a system of non-linear equations in terms of u,,w,.From (3.22), N,is

independent of x and considering end conditions, one obtains:

P
N =— =g, -t 3.24
X 2xr - ( )

Furthermore, the constitutive relations are given by:

Ny, =C (& +Véy)

3.25
Ny, =C( &, +VEy) (3.29)
and the non-linear kinematics (3.12) are:
Eo=Ugx T _Wg,x
(3.26)
e =M
s0 r
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Combining (3.25) and (3.26) one obtains:

NX
_ Nyo
Exo = C —Véy

N Etw (3.27)
N, =C[gSO +V£TX°—V550H= p ¢ —vo,t
and substituting into (3.22) leads to the expression:
Dw") + (o t)wy + [Eztjwo =ot (X —-w" j (3.28)
r r

Expression (3.28) determines the nonlinear prebuckling equilibrium configuration.

In the following, we assume that axisymmetric initial imperfection w"(x) has the form:

W (x)= —ftcosZ—TX (3.29)

where m is a wavelength parameter, & denotes the amplitude of the deviation of the middle

surface as a fraction of the shell thickness, r is the cylinder radius. The minus sign in (3.29)

signifies that the imperfect shell bulges inward at x=0. Introduction of (3.29) into (3.28)

gives:
Dwy! + (o, t)wy + E—tho :aLL v—dm?¢ Leos 22X (3.30)
r r r a
A solution of the following form is assumed
wo(x):vra—L+ Bcosm (3.31)
E r
where B is a constant expressed by:
2
B¢ M9 (3.32)

< 4g* +1— 4.9
and 4 and g are non-dimensional load and wavelength parameters, respectively, defined by

the expressions

1= (3.33)
O-L,cr
m? t
L. 3.34
° 3(1—v2)(fj (339
E t
Ler — - 335
o 3(1_V2)(rj .

Quantity o, is the classical value of the critical stress for the corresponding perfect cylinder.

Therefore,
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N,=—0ot

2
1] Boos X
r

N,=E
s0 [ r

(3.36)
W, (X)=v r—TEL + Beos 2™
;

W (x)= —ftcos@
r

and introducing constant k and function @

B 4p* +1

4pt+1-42p

poTITRAL (3.37)
47p°
K-l=-a——
4p" +1-44p

3@—vﬂf
b=""7—= 3.38
Et® (3.38)

equations (3.20) and (3.21) may be written

Ve + r(t:—zl—ww + 4cékg’® cos@wm} =0 (3.39)
Viw, +4—rc @, —4ctkg? [COS@]Q’,SS +%lexx +Ct—5(k —1)005@%55] =0 (3.40)

These equations constitute the linearized stability problem. Non-trivial solutions of the
homogeneous equations exist only for discrete values of the load parameter A. The resulting
minimum eigenvalue represents an upper bound for the actual critical load. These variable-
coefficient equations can be solved numerically. It is noted that only even-ordered derivatives
appear in (3.39) and (3.40), and that the coefficients are functions of the axial coordinate x
alone. Therefore, as indicated by Koiter [3] it is reasonable to assume the existence of solutions

which are functions of s through a factor cos(ns), where n is an integer. Koiter followed a
numerical procedure and employed a Galerkin method, introducing a solution of the form:
W, (X,s) =W (x)cos(ns) (3.41)
The displacement W (x) employed by Koiter [3] was in the form:
W (x)=>_C,cos[(2j -Dmx/r] (3.42)
=i

so the existence of an asymmetric buckling pattern with nodal lines where the circumferential
tensile stresses attain their maximum is possible. The axial period of such a mode is thus twice
the period of the axisymmetric equilibrium configuration.

Furthermore, the imperfection wavelength parameter g was taken equal to:

1
-7 (3.43)
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so that the axisymmetric deviation (3.29) coincides with the axisymmetric buckling mode of a
perfect cylindrical shell. Indeed, for the axisymmetric buckling of axially compressed cylinders

the buckling half-wavelength [43] is

.V
T
=|——| it 3.44
-l 9
and from (3.29) one results in
T m
A (3.45)
r
L (1)
whereas the definition of constant g in (3.33) leads to
m? = [3(1—? ﬁ] 2 3.46
i )[t g (3.46)

Combing (3.44)-(3.46) one obtains that g is equal to 142,

Koiter [4] presented results of the critical value of the applied load for an imperfect cylinder
over the classical critical load of the corresponding perfect cylinder for various values of the
imperfection amplitude £. For initially imperfect cylindrical shells, the critical loads were
found to be markedly reduced, for example for imperfection amplitude that is only half of the

cylinder wall thickness, the critical load P, is reduced to less than 30% of the corresponding
value of the perfect shell P, ,. Despite the fact that from the engineering point-of-view this

problem concerns the idealized case of axisymmetric imperfections, this study [3] provides a
rigorous demonstration of the fact that small initial imperfections can substantially reduce the
load carrying capacity of cylindrical shells. In the following, the above problem is revisited

using our numerical tools.

3.4 Numerical Results

For the purposes of this study, an elastic thin-walled cylinder (r/t=100) is examined under
axial compression with axisymmetric imperfections. The axisymmetric imperfection shape is
obtained from an appropriate bifurcation analysis. In such a case, the hoop dependence of
cross-sectional deformations functions w(é),v(6),u(d) and »(€) is omitted in equations
(2.150). The “‘tube-element’” allows a convenient application of this axisymmetry; the only
non-zero coefficients that are employed in the numerical analysis are a,and y, . In the context
of an initial numerical analysis, an axisymmetric buckling mode is obtained (Fig. 6), and it is
imposed as an imperfection in a subsequent analysis. The imperfection amplitude &=W,/t is

defined as the total wave height W, , normalized by the cylinder thickness t (Fig. 7). Following
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the study of Koiter [4], only a tube portion corresponding to twice the period of the
axisymmetric equilibrium configuration is examined, applying the appropriate boundary

conditions.

Fig. 6 Axisymmetric buckling mode

-———
e -~

Fig. 7 Amplitude of the initial imperfection (£ =W, /t)

In the context of the present study a comparison between hypoelastic and hyperelastic material

modeling is also conducted. Therefore, for the same specific imperfection amplitudes (£ = 0.1,

0.5 and 1.0) and for a 16" degree expansion in (2.150), numerical results are reported for
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various anisotropy levels in Fig. 8-Fig. 10. The numerical results indicate insignificant

differences between the two material models.

0.60
£€=0.1

0.55 & T

-o-hypoelastic

- hyperelastic

0.50

0.45

0.40 \\‘\
0.35 \-

0 2 4 6 8 10
anisotropy level (S)

load reduction (Pmax/Pcr)

Fig. 8 Comparison of hypoelastic and hyperelastic material models with respect to anisotropy level
for £=0.1 (r/t=100)
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a —-e-hypoelastic
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5 0.20
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0 2 4 6 8 10
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Fig. 9 Comparison of hypoelastic and hyperelastic material models with respect to anisotropy level
for £=0.5 (r/t=100)
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Fig. 10 Comparison of hypoelastic and hyperelastic material models with respect to anisotropy
level for £=1.0 (r/t=100)

In the following, parametric study is conducted to determine the number of Fourier

coefficients for the ovalization a,,b, and warping c,,y, parameters that are necessary for this

analysis. The convergence of the results is verified by increasing the number of terms in the
trigonometric series (2.150) until the required accuracy was achieved, as it is depicted in Fig.

11. The results show that a 10" degree expansion for w(#),v(6),c(8) and »(6) is found to be

adequate to provide satisfactory convergence for the load reduction factor (P, /P, ), and this

is verified by a direct comparison of the obtained numerical results and the results reported in
[3]. Moreover, for the purposes of this study a cylindrical arc-length algorithm (i =0) is
adopted, which monitors the increments of all the degrees of freedom of the ‘‘tube-element’’,

and 23 equally spaced integration points around the half-circumference are employed.
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Fig. 11 Convergence study for the expansion of the Fourier coefficients, comparison with the
results reported in [3] (r/t=100)

Transversely isotropic cylinders are also considered, adopting the parameterization of
anisotropy through the anisotropy parameter S. Therefore, in the following figures (Fig. 12-
Fig. 14) the asymmetric buckling modes obtained for a transversely isotropic cylinder (S =5)
are depicted with respect to the amplitude of the initial imperfection &, together with the
number of n waves along the hoop direction. It is noted that in those Figures for visualization

purposes the buckling patterns are properly magnified.

Fig. 12 Non-axisymmetric buckling mode (S =5, £=0.1, n=9, r/t=100)
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Fig. 13 Non-axisymmetric buckling mode (S =5, £=0.5, n=8, r/t=100)

ah
L/

Fig. 14 Non-axisymmetric buckling mode (S =5, £=1.0, n=6, r/t=100)
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Fig. 15 Load reduction factors for various levels of anisotropy; formation of nwaves along the

circumference (hypoelastic model, r /t=100)
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In Fig. 15 the load reduction factor is given with respect to the imperfection amplitude & for

various levels of anisotropy. The load reduction is more drastic as the anisotropy level

increases. Moreover, for the particular cases with imperfection amplitudes &= 0.1, 0.5, 1.0 the

number of waves n along the circumferential direction is given. It is noted that this number is
independent of the level of anisotropy S but it is affected by the initial imperfection amplitude

&. It was also found that the value of buckling wavelength is affected by the presence of

anisotropy, and it increases with increasing level of anisotropy.
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Chapter 4
THIN-WALLED NON-CIRCULAR ELASTIC CYLINDERS UNDER
AXIAL COMPRESSION

Non-circular cylinders of small or large eccentricities are used to aerospace and mechanical
engineering applications, due to either special external shapes or (internal) storage
requirements. The problem of non-circular cylinders under axial compression has several
similarities with the corresponding problem of circular cylinders under axial compression.
However, there are several stricking differences, which refer to imperfection sensitivity and
postbuckling response and allow its separate investigation.

In the following, buckling and postbuckling response of non-circular elastic cylinders under
uniform axial compression is examined numerically, using large-strain hypoelastic and
hyperelastic constitutive models, and the numerical results are compared with a semi-analytical
asymptotic solution. Imperfection sensitivity issues are also discussed, and the influence of the
level of anisotropy on the buckling characteristics is investigated. It is mentioned, that non-
circular cylinders under uniform axial compression, due to the variation of hoop curvature
around the cylinder, can serve as a reference problem for the stability of bent cylinders, to be
examined extensively in the subsequent Chapters.

Equation Chapter (Next) Section 4

4.1 Introduction

In this section, a brief review of the relevant literature for the axial compression of non-
circular elastic cylinders is presented focusing mainly on the studies of isotropic cylinders.
Important contributions on buckling of anisotropic cylinders are reported, as well. It should be
noted that although the number of studies dealing with the behavior of non-circular cylinders is
constantly increasing over the years, this number is rather limited compared to the vast
literature in the topic of circular cylinders under axial compression.

The elastic stability of non-circular cylinders under axial compression constituted a structural
mechanics problem for which a specific discrepancy between theoretical and experimental
results was observed. In contrast to the circular cylinder case and despite the fact that initial
postbuckling response was calculated to be unstable [46], [47], ultimate loads higher than initial

buckling load have been observed in experiments for non-circular cylinders with moderate-to-
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large eccentricities. Circular cylinders under axial compression exhibit buckling, which is
associated with an infinite number of modes, occurs instantaneously over the entire
circumference of the shell and it is accompanied by a very pronounced drop in the load-bearing
capability of the shell. Thus, for the circular shell, the initial buckling results immediately in
collapse. On the other hand, in the case of non-circular cylinders, experiments have shown that
initial buckling occurs in the region of the minimum curvature of the circumference and is
accompanied by a relatively little initial drop in the load-bearing capability. Subsequently,
buckling patterns gradually propagate outside the regions of maximum curvature in the
circumference and this allows the non-circular cylinder to use some reserved strength. This
behavior is more noticeable, as the eccentricity of the non-circular cross-section is increasing.
For highly-eccentric cross-sections, the initial postbuckling path was found less sensitive to
imperfections. This behavior is reasonable, constituting a smooth transition from the significant
imperfection sensitivity of the circular cylinder to the flat plate buckling behavior.

Numerical studies [47]-[52] for non-circular cylinders under uniform axial compression have
confirmed the experimental observations regarding the strong buckling stress dependence on
the amount of cross-sectional eccentricity. From these experimental observations it was
assumed that a reasonable estimate of this critical stress for thin-walled shells of moderate
eccentricities can be obtained from the corresponding buckling stress of an axially compressed

circular cylinder, which has a radius equal to the maximum radius r_, of hoop curvature of the
non-circular cylinder. Therefore, the critical stress o, can be obtained by the following

expression:
o, = BI-v?) L (4.1)

max

For the particular case of non-circular cylinders of elliptic shape r,,, is the radius of curvature

X

at the ends of the minor axis of the ellipse, defined by:
.=A/B (A>B) 4.2)

where A is used for the length of the semi-major axis of the non-circular cross-section and B
for the length of the semi-minor axis (Fig. 16). Buckling initiates in the region of minimum
curvature at the ends of the minor axis, which was also confirmed by numerical results [47]-
[52]. It is noted that from expressions (4.1) and (4.2) it can be readily concluded that the
buckling load of a non-circular cylinder is lower than that of an equivalent circular cylinder
with the same perimeter. Furthermore, for a given value of cylinder perimeter, the buckling

load decreases, as cross-sectional eccentricity increases.
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A y Circular
oval cross-section | reference

\' T line

Fig. 16 Non-circular elliptic geometry

The early numerical results of the initial postbuckling behavior presented by Kempner and
Chen in their early studies [7], [48], [49] indicated a significant and sharp drop in the load
displacement path when the buckling load was attained similar to the one appeared in circular
cylinders. However, this was not verified by experiments [46], [47] and subsequent theoretical
studies [50], [51], [52]. Initial postbuckling behavior of infinitely long oval cylinders was
examined by Hutchinson [50] within the context of Koiter’s postbuckling theory [3].
Hutchinson [50] reported negative values for the Koiter’s initial postbuckling coefficient b
(Appendix-(11)), and concluded that non-circular cylinders are imperfection sensitive for all
but the most highly eccentric cross-sections. In the subsequent studies of Kempner and Chen
[51], [52] a more accurate formulation was adopted as proposed in [50], and the results showed
that the postbuckling curve of an oval cylinder is characterized by a less drastic drop in the
load-displacement path compared with circular cylinders, especially for highly-eccentric shells.
Analogous conclusions for the buckling and postbuckling response were drawn in the study of
Almroth et al [53]. Other theoretical studies were reported by Bushnell [54] and Semenyuk
[55], which aimed at the calculation of the buckling load of simply supported elliptical
cylinders, considering edge effects.

Sun [56] and Firer and Sheinman [57], [58] investigated the anisotropic response of non-
circular cylinders under axial compression based on Donnell type kinematic relations. In these
studies, buckling and postbuckling behavior of non-circular shells was examined with emphasis
on the effect of fiber orientation in angle-ply laminated shell configurations. Sun [56] extended
Hutchinson’s asymptotic analysis [50] to include oval cylinders made of anisotropic composite
laminates, and concluded that the buckling load and the initial postbuckling behavior, as
expressed through the value of coefficient b, are significantly affected by the wall laminate

structure.
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The significant effect of the fiber orientation in angle-ply laminated cylinders has also been
verified in the works of Firer and Sheinman [57], [58]. In these works non-circular cylinders
were studied and edge conditions were considered. Isotropic cylinders were also considered as
a special case, and previous results in isotropic cylinders [50] were verified.

Soldatos [59], [60] dealt with the buckling of axially compressed laminated oval cylinders
subjected to simply supported boundary conditions, and pointed out the significant effect of the
laminate configuration on the buckling and postbuckling behavior. For an up-to-date extensive
review on the subject of mechanics of non-circular cylinders the reader is referred to the review
paper of Soldatos [61].

In the current study, numerical results are presented for non-circular (elliptic) cylinders with
moderate values of eccentricity (B/A>0.9), focusing on buckling, postbuckling and
imperfection sensitivity. These results are obtained through an appropriate implementation of

the “‘tube-element’” in the numerical technique, as described in the next section.

4.2 Modeling of Non-Circular Geometries

In this section, modelling of non-circular cross-sections is described in the framework of the
““tube-element’” formulation. Non-circular cross-sections can be expressed through an
appropriate definition of the radial and tangential initial deviations from a circular reference

line of radius r_ , denoted as w(&#) and V(6)

ref ?
The elliptic cross-section obeys the following parametric equation (Fig. 16):
(x/ A)? +(y/B)?* =1 (4.3)
where A and B denote the semi-major axis and the semi-minor axis, respectively (A>B).

This equation can be rewritten in a simple parametric form, as follows:

X = Acosd (4.4)
y=Bsing '

where @ is a parameter, which can be interpreted as a hoop angular coordinate (-7 <6< 7).
Considering elliptic cross-sections at which the horizontal and the vertical deviations of the

circular reference geometry of radius r., , o, and ¢, , respectively, are equal,

0,=6,=6 (4.5)
one obtains:

A=ry+6 (4.6)\

B=r, -0 4.7

Next, equation (4.6) is replaced in equation (4.4):
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X=(ry +0)coséd

Y=ty —6)sing “9

and after some straight forward calculations, it can be shown that (4.8) can be reformed as:

X=(Iy +0C0s26)cosd + 5sin20sin &

4.9
y =(r, +0c0s26)sinf—-osin26sino (49

From simple circular ring kinematics [11], the coordinates of a point on the undeformed elliptic
cross-section are given by
X=[ry +W(#)]cosd—-V(H)sing

y=[r., +W(O)]sin@+7(8)sind (4.10)

Therefore, combining (4.9) and (4.10) the in-plane initial deviations from circular geometry

W(6),v(0) are found equal to:
W(0) =06 cos20

_ (4.11)
V(0)=-5cos20
and from equations (2.150) one readily obtains
a,=-h,=5 (4.12)

where 6 is a parameter that defines the ellipse eccentricity ratio B/A

(B/A=(r, —0)/(r, +0)). In conclusion, imposing initial values of a,,b, according to (4.12)

ef ef

while all the other coefficients’s initial values are equal to zero, the elliptic geometric is
accurately described.
Another type of non-circular geometry is the consideration of a cylinder with an “‘oval”’

cross-section. Again, deviations w(¢) and V(&) from a reference circular cross-section should
be defined. In this case, deviations W(&) and V(&) are assumed as follows:

W(d) =0 cos26
(4.13)

v(0) = —écos 20
2
so the following expression is adopted, which satisfies the first-order inextentionality condition:
a,=-2b,=6 (4.14)

The above inextentionality condition means that the circumference length of the oval cylinder is

equal to the corresponding length of the equivalent circular cylinder, within a first order
approximation.

Therefore, ““tube-element’” formulation allows the examination of non-circular geometries, in

general. For the purposes of this study both elliptic and oval cross-sections were examined and

the differences between these non-circular cross-sections were found negligible, especially for

cylinders of moderate eccentricities.
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4.3 Numerical Results

Numerical results for non-circular elliptic cylinders of various eccentricities are presented,
with special emphasis on cylinders of moderate eccentricities ( B/ A >0.9). For consistency with
previous studies in isotropic cylinders, the values of stresses are normalized by the following

stress oy, .

JE E,t
o, =2 3(1-v,,V,) (4.15)

max

where E;, and E,, refer to hoop and longitudinal elastic modulus, respectively, v,, and v,, are

Poisson’s ratios (section 2.2) and r_, is the radius of curvature at the ends of the minor axis. In

X

isotropic cylinders, this normalization stress o results in the critical stress of an elliptic
cylinder.

The shortening of the cylinder is expressed by the dimensionless parameter £ = Kg, where ¢
is the axial strain of the cylinder and K is a geometric parameter proportional to the radius of

curvature at the ends of minor axis r___, defined as:

max !

r
K= SA=vivy) (4.16)

Furthermore, the value of the axial half-wavelength L, is normalized by (r,,.t)"*. Based on

the equivalent radius r;, which is defined as the radius of the circle with exactly the same
perimeter as the elliptic cross-section, another non-dimensional parameter q, is introduced,
denoted by:
q =20 vy, )V It (4.17)

Calculations were conducted with both hypoelastic and hyperelastic constitutive models
resulting in identical buckling and postbuckling response. Equilibrium paths were traced
through the cylindrical arc-length algorithm (y =0), which monitors the increments of all the
degrees of freedom of the “*tube-element’”, as described in section 2.7. To trace the secondary
postbuckling path a slight initial imperfection is imposed, with amplitude W, equal to 10
times the cylinder thickness t (& =W, /t). The imperfection shape is considered in the form of

the buckling mode, obtained by an eigenvalue analysis just prior to bifurcation, as described in
section 3.4 for circular cylinders.

A parametric study is conducted to determine the number of Fourier coefficients for the
ovalization a,,b, and warping c,,», parameters that are necessary for this analysis, as in the
previous Chapter. The convergence of the results is verified by increasing the number of terms
in the trigonometric series (2.150) until the required accuracy was achieved. The results show

that a 8" degree expansion for relatively thick cylinders (Fig. 17) and a 16™ degree expansion
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for thinner shells (Fig. 18) are adequate to provide satisfactory convergence not so much for
ther the load reduction factor (P, /P, ) but for the postbuckling equilibrium path. This feature
can be correlated with the abrupt changes in the shell configuration that take place in thin-
walled structures. Furthermore, for the purposes of this study 23 equally spaced integration

points around the half-circumference are employed.
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Fig. 17 Effect of the degree of trigonometric expansion used in equation (2.150) ( B/ A=0.907,

r /t=30, S=1)
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Fig. 18 Effect of the degree of trigonometric expansion used in equation (2.150) ( B/ A=0.907,
r,/t=190, S =1)
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NI

Fig. 19 Buckling mode for an elliptic isotropic cylinder ( B/ A=0.907, r, /t =190, S =1)

g

s

'
NI

W s

Fig. 20 Buckling mode for a transversely isotropic elliptic cylinder ( B/ A=0.907, r, /t =190, S =5)

The buckling modes of a thin-walled elliptic cylinder with small eccentricity are shown in
Fig. 19 and Fig. 18, considering two values of the anisotropy parameter S . It is noted that the
buckling load of a non-circular cylinder subjected to axial compression is associated with only
one instability mode as opposed to the case of circular shells, where buckling load is
characterized by an infinite number of modes. This difference relies on the ovalized initial
configuration and the variation of the hoop curvature along the cross-section. This is also
responsible for the ““local’’ character of buckling in the circumferential direction, especially for

the case of isotropic cylinders. When anisotropy effects are negligible, a smooth buckle at each
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end of the minor axis is developed (Fig. 19). On the other hand, the buckling shape of
anisotropic cylinders is characterized by multiple short-length waves within the hoop direction,
which are located in more extended part of the circumference (Fig. 20). These multiple wave
configurations in the hoop direction explain the significant variation of the buckling
wavelengths with respect to the level of anisotropy. For the case of isotropic cylinders the axial
wavelength of the buckling mode of an elliptic cylinder is very close to the wavelength of the

axisymmetric ~ buckling mode of a circular cylinder with radius T

max

(L, = 7[12@-v*)™M*(r t)*), and approaches this value for thinner cylinders. The numerical

results verify these observations; for an elliptic with r /t=190 and S=1 and 5 the

corresponding half wavelengths are calculated equal to 1.74 /.t , and 5.80/r,t , respectively.

The efficiency and the capabilities of the ‘‘tube-element’” are investigated through the
comparison of the present numerical results with observations presented elsewhere [50]. These
results (Fig. 21-Fig. 26) illustrate that a non-circular isotropic cylinder under axial compression
undergoes snap-back bifurcation, but not a complete collapse. The buckling response of perfect
and imperfect elliptical cross-sections with relatively large minor-to-major axis ratio
B/ A=0.907 (i.e. small eccentricity) is depicted in Fig. 21-Fig. 24 for two different values of
the g parameter. The results show that imperfect cylinders buckle at load level below the
critical load of a perfect elliptical cylinder, in the form of a snap-back buckling, but can still
sustain further load increase. More specifically, the buckling response of a relatively thick

cylinder is depicted in Fig. 21 and Fig. 22, where q is equal to 10 (r,/t=30), and the case of a
thinner cylinder is examined in Fig. 23 and Fig. 24, with q =25 (r,/t=190). For comparison
purposes the geometric parameters B/A and g are similar to the ones considered by

Hutchinson [50], although in that study only initial postbuckling was examined and no

numerical results of the full non-linear equilibrium path were presented.
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Fig. 21 Numerical results of the load-deflection path of an isotropic elliptic cylinder
(B/A=0.907, g=10, S =1)
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Fig. 22 Detail of the bifurcation point for an isotropic elliptic cylinder; arrows () indicate
maximum load points (B/ A=0.907, q =10, S =1)
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Fig. 23 Numerical results of the stress-deformation curve of an isotropic elliptic cylinder
(B/A=0.907, g=25, S =1)
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Fig. 24 Detail of the bifurcation point for an elliptic cylinder, arrows () indicate maximum load
points (B/ A=0.907, q =25, S =1)
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Fig. 25 Numerical results of the stress-deformation curve of an elliptic cylinder ( B/ A =0.746,

r,/t=30, S =1)
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Fig. 26 Numerical results of the stress-deformation curve of an elliptic cylinder ( B/ A =0.746,

r, /=190, S =1)

Results for two values of the q parameter (q =10 and 25) are also presented in Fig. 25 and

Fig. 26, for a more eccentric cross-section (B/ A =0.746). In these Figures, a similar response is
obtained, which verifies that the postbuckling structural capacity of non-circular geometries

exceeds the initial bifurcation load.

67

Institutional Repository - Library & Information Centre - University of Thessaly
09/06/2024 05:09:14 EEST - 18.191.111.134



Based on the numerical results, one may observe that for thinner cylinders (e.g. g =25), in

addition to the first sharp load reduction the postbuckling curve has a ““wavy’’ form, with local
limit points, which correspond to a kind of secondary buckling, as reported in [53].
In the following, the response of transversely isotropic imperfect cylinders is illustrated for

different values of the imperfection amplitude &. The numerical results show that an increase

of the imperfection amplitude & results in a reduction of the maximum load carrying capacity.
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Fig. 27 Load-displacement path for an imperfect elliptic cylinder; arrows (]) indicate maximum

load points (B/ A=0.907, r,/t =190, S =3)
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Fig. 28 Detail of the bifurcation point for an imperfect elliptic cylinder; arrows (1) indicate

maximum load points (B/ A=0.746, r,/t =190, S =3)

68

Institutional Repository - Library & Information Centre - University of Thessaly
09/06/2024 05:09:14 EEST - 18.191.111.134



Numerical results for imperfection sensitivity numerical are also presented for both isotropic
and transversely isotropic cylinders. The case of isotropic cylinders is considered first, to allow
for a direct comparison of the present numerical results with results reported in [50]. Applying
Koiter’s postbuckling theory [3] (Appendix), Hutchinson [50] examined the character of the
postbuckling behavior in the initial stages after bifurcation for isotropic shell structures.
Assuming a sinusoidal variation of the buckling mode in the axial direction of the cylinder,
Hutchinson calculated the value of coefficient b in equation (11) of the Appendix for

characteristic values of B/ A ratios and different values of the geometric parameter q. It is
noted that for axial compression loading the parameter p in this expression, which indicates

the non-linearity of the pre-buckling state, is equal to unity.

Numerical results for the maximum load parameter A=P, /P,, in terms of initial

imperfection amplitude &, are compared with the asymptotic expression (11) (Appendix),
using the values of coefficient b directly from [50]. This comparison is shown in Fig. 29 and
Fig. 30 for g =10 and 25, respectively, and for B/ A=0.907. The comparison indicates a very
good agreement of the present numerical technique and the asymptotic expression of [50], and
offers a verification of the efficiency of the numerical formulation in describing accurately the

nonlinear response of non-circular axially-loaded cylinders
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3}
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3 \
£
o
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0.0000 0.0005 0.0010 0.0015 0.0020 0.0025 0.0030
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Fig. 29 P, /P, vsimperfection amplitude for B/ A=0.907 and q =10; direct comparison of the

present numerical results and the asymptotic solution [50]
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Fig. 30 P, /P, vs imperfection amplitude for B/ A=0.907 and q =25; direct comparison of the

present numerical results and the asymptotic solution [50]

In the case of transverse isotropy, an analogous comparison is not available due to the lack of
asymptotic solutions for the value of b. However, numerical results have been obtained and are

depicted in Fig. 31 for B/ A=0.907 and g =25. These results clearly show the load reduction,

as expressed by the ratio P, /P, , with respect to imperfection amplitude for different levels of

.
anisotropy; even small geometrical imperfections may cause a considerable reduction of the
buckling load. This reduction is affected by the presence of anisotropy, and it is found less
drastic, when anisotropy is more pronounced. Finally, it is noted that using a standard curve
fitting procedure in the results of Fig. 31, an exponential expression of the following form

Foae _p_cgon (4.18)
= :

cr

is obtained, which follows the ““2/3’” exponential rule and fits the numerical results.
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Fig. 31 P/P, vs imperfection amplitude for different values of anisotropy parameter

S (B/A=0.907, q=25)
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Chapter 5
THIN-WALLED ELASTIC ISOTROPIC CYLINDERS UNDER
BENDING AND PRESSURE

In the previous Chapter, structural stability of thin-walled non-circular elastic cylinders under
axial compression was examined, considering both isotropic and transversely isotropic
cylinders. In the present Chapter the stability of thin-walled isotropic cylinders subjected to
bending moments is investigated, mainly numerically. In addition, using a simplified
formulation, closed-form expressions are developed for ovalization and bifurcation instabilities,
which are compared with the numerical results. Furthermore, aspects of uniform wrinkling-
bifurcation are illustrated using a simple mechanical model, which considers the ovalized
prebuckling state and the effects of pressure. Special emphasis is given on the effects of a slight
initial curvature along the cylinder. Finally, using the nonlinear numerical tools, the stability of
the secondary equilibrium path in the vicinity of the bifurcation point and the role of initial
imperfections in the reduction of the critical load are examined.

Equation Chapter 5 Section 5

5.1 Ovalization Instability

The main characteristic of cylinder response under bending is the distortion (ovalization) of its
cross-section due to the inward stress components o, of the longitudinal bending stresses (Fig.
32). The ovalization mechanism results in loss of stiffness in the form of limit point instability,
referred to as ‘‘ovalization instability’” or Brazier effect [62].

Next, a brief presentation of previous publications is given, which adopts closed-form
expressions for the moment-curvature and ovalization-curvature relationships. The validity of

those expressions is examined through rigorous finite element results.
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Fig. 32 Ovalization mechanism

5.1.1 Introduction

According to classical beam theory solution of the cylinder flexure problem, neglecting

nonlinear geometry effects, a linear relation between bending moment and curvature is

obtained:

M = Elk (5.1)
which can be written in a non-dimensional form as follows:

m=xr (5.2)

where the values of moment M and curvature k are normalized by M, and k, respectively,

where:
2
M= = (5:3)
1-v° r’y1-v?
so that
mzﬂ, K=L (5.4)
Me kN
A

v (0) tangential

y
/ w (0) radial
0 >

Fig. 33 Cross-sectional displacements

Brazier [62] enhanced solution (5.2) including nonlinear kinematic terms, responsible for the

ovalization of the cross-section, which were assumed to be inextentional. In [62] a doubly
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symmetric trigonometric solution for the cross-sectional ovalization displacements (Fig. 33)

was obtained, which is described by:

2,50 2 2
v(d) = —Msin 20 = —KTrsin 260

) (5.5)
w(6) = —Zvcos 20 = k’rcos 20

resulting in the closed-form nonlinear expressions for the moment-curvature in terms of applied

curvature.
3
mzmc(l—zlc ) (5.6)

Furthermore, expressing ovalization in terms of the non-dimensional parameter ¢, defined as

follows:

¢= (5.7)

and from Fig. 32 one obtains:
(5.8)

where D, and D, are the cylinder diameters normal and parallel to the plane of bending and a

is the ovalization amplitude, a closed-form expression for the ovalization-curvature relationship

is obtained:

¢ =K’ (5.9
Imposing stationary value of equation (5.6), one can calculate the value of limit moment, its
corresponding curvature, and the cylinder flattening (ovalization). Ovalization at the limit point
is found equal to about 22% of the radius (Fig. 34) and the corresponding values of moment

and curvature are my, =0.987 and x,, =0.471, respectively.

Fig. 34 Flattening of the cross-section at ovalization limit point according to Brazier solution
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Wood [63] examined the flexure of a uniformly pressurized, long, circular and initially
straight cylinder under bending, using an energy formulation. According to this study, the
ovalization displacements were considered as additional (small perturbation) to the initial
displacements due to pressure and the bending solution. The additional displacements were
assumed to be inextentional, as in Brazier’s work. Employing a Rayleigh-Ritz technique and
minimizing the total potential energy, the resulting displacements for the cross-section were
obtained, as follows:

v(0) =—A, sin(260) + A, sin(30)
w(0) = 2A, cos(26) + 3A, cos(36)

2, _ & [, 2-v £ (tY
ro 1-f 2 1-v\r

%_ K v t

r 8-3f1-vir

(5.10)

where

(5.11)

In the above equations, the pressure level is normalized by p,, which is the elastic buckling

pressure:
E (tY
=— = 5.12
pe 4(1'V2) ( rj ( )
so that the normalized pressure is:
f=P (5.13)
Pe

The cross-sectional displacements (5.10) include higher-order terms compared to (5.5). For
small values of t/r, it is possible to neglect those higher-order terms and the following

equations are obtained:

mzrm(l—gicziJ (5.14)

s = (5.15)

The ovalization limit moment and the corresponding curvature can be calculated from (5.14) as

follows:
am_g (5.16)
dx
so that
K, =0.471/1- f (5.17)
and from (5.14)
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m,, =0.987,/1- f (5.18)

Setting f =0 in the above relations for «

ov!

m,, the corresponding values of Brazier [15] are
obtained (mjg, =0.987 and x,, =0.471).

Reissner [64] investigated ovalization instability of initially straight and curved cylinders.
Until that publication, motivated by the stress analysis of pipe elbows, initially curved cylinders
have been examined for linear response only, in order to determine elastic flexibility and stress
intensity factors, extending the classical von Karman linear solution [65]. In that work, Reissner
[64] presented for the first time a unified treatment of the two problems (i.e. nonlinear bending
of straight and curved cylinders), which, until then, have been considered separately. Based on
a vectorial consideration of equilibrium in a cylinder cross-section, Reissner [64] examined the
nonlinear problem of bending of initially straight and curved tubes, considering the effects of
pressure. In the first part of this work, Reissner demonstrated that the results of Brazier [62] and
Wood [63] for initially straight cylindrical shells may be considered as a first approximation of
the cylinder bending problem. Higher order terms were included for the moment-curvature
path, improving the third degree equations (5.6) and (5.14). Retaining terms up to the fifth
power of curvature x, Reissner resulted in the following relation for the moment-curvature

path:

m= xx 1—§K2L—§K‘4 ! 5 (5.19)
2 1-f 2 (@1-f)
Keeping only two terms on the right hand side of equation (5.19), one readily results in (5.14).

According to (5.19) limit moment m,, and the corresponding curvature x,, are calculated as

ov

follows:

dm

— -0 5.20
i (5.20)

which results in,

K, =0415/1— f (5.21)
and from (5.19), one obtains:
m,, =0.909,/1— f (5.22)
which are somewhat different from the values of equations (5.17) and (5.18).
Moreover, Reissner [64] presented a simple expression for the analysis of cylinders with slight

initial curvature. Assuming that the order of magnitude of initial curvature «;, (x;, =k, /Ky ) is
the same as the ovalization curvature «,, for the corresponding initially straight cylinders, the

following simple expressions for the cross-section displacements w(#), v(&) were obtained:
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Kr(x+x,,)

w(d) = 7 cos26

) (5.23)
v(0) = - EH K i o

2(1- 1)

It can be readily verified that these displacements satisfy the first-order ‘‘inextentionality’’

condition (w(@)+v'(@)=0). This inextentionality condition means that the circumference

length of the cylinder does not change along the deformation path, within a first order
approximation. Those equations resulted in closed-form moment-curvature and ovalization-

curvature expressions that account for pressurized cylinders of slight initial curvature:

m:Kﬂ_(l_:g(K'-i-K'in)(ZK'-}-K‘m)j (5.24)
4(1- 1)
K, K+K

Negative and positive values of x;, corresponds to opening and closing moments, respectively
(Fig. 35). The ovalization curvature x,, can be found by imposing:

dm

am _y 5.26
T (5.26)

and it is equal to:
K, =%( 8(L- )+ 3«2 -3Kin) (5.27)

In the case of initially straight cylinders (x;, =0), the above equations (5.24) and (5.25) result in
equations (5.14) and (5.15), correspondingly.

(Qj\

Closing moments
“Positive” bending

S

pening moments
“Negative” bending

Fig. 35 Loading conditions in initially curved cylinders

Following those notable publications, several researchers have addressed the problem of
nonlinear ovalization using more advanced analytical tools. Reissner [66] examined in detail

the ovalization instability of initially straight tubes, considering two independent variables,
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namely the rotation of the cross-section reference line £(€), and a stress function (8) , where

6 is the hoop coordinate. For circular cross-section, the formulation resulted in a system of two

nonlinear differential equations in terms of # and w . The moment-curvature path (m—x),

included terms up to the fifth power of the curvature x, which constitutes an enhanced form of
the third-degree m—x expression of Brazier [62]. In a subsequent paper, Reissner and
Weinitschke [67] presented an integral formulation for the ovalization instability of circular
initial straight cylinders and an iterative numerical solution method. Results for deformation
and stress beyond the limit point were also reported.

Axelrad [68], [69] presented a nonlinear formulation for the ovalization instability of
cylindrical members under bending based on a nonlinear flexible shell theory. Results were
reported for initially straight and bent cylindrical shells, including the effects of pressure. For
initially straight cylinders, the formulation was identical to the one developed by Reissner [66].
A description of this formulation and some characteristic results can be found in the works of
Axelrad [70], [71] and in the work of Axelral and Emmerling [72].

Thurston [73] used a modified Newton’s method to solve the governing equations proposed by
Reissner [66] and calculated the ultimate moment and the corresponding curvature for initially
straight cylinders. Those values correlated very well with the analytical results presented by
Axelrad [69], [70]. Boyle [74] re-examined the instability of initially bent cylinders,
considering a similar nonlinear shell theory. The solution was compared with simplified closed-
form moment-curvature expressions, and was in very good agreement with the results of
Axelrad [69]. In a more recent work, Karamanos [75] investigated ovalization instability of
long thin-walled initially straight and bent cylinders. Using a nonlinear finite element
formulation, results over a wide range of initial curvature values were presented. The efficiency
and accuracy of analytical expressions introduced elsewhere with respect to the numerical

results were discussed.

5.1.2 Analytical Energy Solution

The case of pressurized initially straight or bent circular cylinders is briefly examined for the
sake of completeness from a unified yet simple formulation, using a variational approach. The
energy formulation includes the effects of pressure and initial curvature in ovalization
instability. The total potential energy, in the case of pressurized bending, is the sum of the
above quantities:

M=U, +U; +V, -W, -MKk (5.28)
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where, U, is the longitudinal bending strain energy, U. is the cross-sectional (hoop)

deformation strain energy, V, is the pressure potential and W is the second-order of hoop
pressure stress o, = pr/t.

From beam theory, the longitudinal part U, is expressed in terms of stress o, and the strain

¢, in the direction of tube axis as follows.

X

1 _E o, EUT,
UL_Ejaxgdi_Ejgdi_T £2do (5.29)

A A 0

The strain ¢, in the direction of the cylinder axis is given by the following expression directly

from ring theory:
& = ky+uE”= K[(r +w)sin 9+vcos€]+%[vcos€+ wsin 4] (5.30)

where 1/R =k, is the initial curvature of the cylindrical shell, k is the applied curvature, r
and t are the radius and the thickness of the cylinder cross-section respectively, y is the
distance from the neutral axis, u, is the displacement in the direction of the plane of bending
and k is the longitudinal applied curvature. In the above expressions w(8) and v(#) are the

displacements of the reference line in the radial and tangential direction respectively (Fig. 36).

L Plane
1 of bending
1

! deformed
y A reference line

undeformed
reference line

Fig. 36 Cross-sectional ovalization (in-plane) deformation parameters

The total curvature 1/R" of the cylinder at the deformed configuration is:

ER (5.31)
R' R
Referring to the hoop strain energy U, a ring-theory formulation is adopted, based on the

Bernoulli assumption (i.e. plane sections remain plane and normal to the deformed cross-
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sectional mid-thickness reference line) as described in Brush and Almroth [11]). Every point

has an axial hoop strain equal to:
1 L} 1 1 "w
89=890+k0p=[F(V+W)}+[r—2(V—W)}p (5.32)

where ()’ denotes differentiation with respect to &, p is the material coordinate in the radial
direction (through the thickness). Assuming inextentionality of in-plane displacements, &, is
set equal to zero, which results in:

w(f)+Vv'(0)=0 (5.33)
Therefore the hoop strain energy U. can be expressed as follows:

Et3

1 1 Er 2
U. == rdddp=——— 2ddp=—-—— | (v'+v™)do 5.34
c 2‘.‘;\[0889 P 2(1_1/2)_[;\[89 P 24(1—1/2)!‘3 ‘([( ) ( )

To express the work due to pressure a ring is considered in plane-strain conditions that
correspond to a cross-section of the cylinder. For pressure loading, the pressure at each point on
the ring surface remains normal to the surface as the ring deforms. Therefore, a ring subjected
to uniform internal or external pressure constitutes a conservative system. It is a closed system

and the potential energy of the applied pressure is the product of the pressure p times the

change of the area enclosed by the surface of the ring. It is readily shown that the potential

energy due to pressure is:

press

27
U .. =pAA= p%j (2rw+Vv2 —vw'+Vv'w+w?)do (5.35)
0

In the following, external pressure corresponds to positive values of p and internal pressure is
expressed by negative values of p.

The work of stress o, due to pressure is expressed as follows:

[oreav =[] £l rd@dp:zfﬂg rtdo=x pT(v—W')de (5.36)
\% " " t " 0 t " 2 0

r . _ .
where o, :pT (from elementary strength of materials and &, is the second order hoop normal

strain.

1(v—-w' 2
%7( - ] (5.37)

Subsequently, a simple Ritz discretization with trigonometric functions is considered to obtain
analytical closed-form solution for the ovalization-curvature relationship and the moment-
curvature equilibrium path. For simplicity, only one trigonometric doubly symmetric term is

assumed for w(@) and v(6):
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w(6) =acos26 and v(0)=—%sin 20 (5.38)

where a is ovalization amplitude (Fig. 32).

It is noted that assumption (5.38) satisfies the condition of inextentionality. Inserting all the
above equations in the expression of potential energy (5.28) one results in the following
equation:

2 3,2
H:ﬂ(k2r2n+ 5a2 E-EEE)+§—ﬂEt2a 3 -§a2 pz - Mk (5.39)
2 8R' 2 R 8(1-v ) 2

The above expression refers to both initially straight and curved cylinders.

Neglecting quadratic terms in the expression of U , one results in a simpler expression for the

potential energy. The total curvature 1/R" is expressed as:
L k+k (5.40)
R' " '

and equation (5.39) results in:

Etr

Etr 3 nEta® 3,
2

3
I1(a,k)= Kr’zr-=k(k+k rar) +———-"a Mk 5.41
(k)= - (r'm - Skik+ ky)ram) + 5o = 5 -2 a%pr (5.41)
Solutions for the ovalization parameter a in terms of the applied curvature k yield directly
from the minimization of IT in terms of a. Consideration of equilibrium (oI1/0a=0) leads to

the ovalization-curvature relationship:

_ —’“(1"_ +fKin) (5.42)
so that:
é,:g: k(K +K;,) (5.43)

r 1-f
Inserting the value of ovalization amplitude «, as described in (5.42), in the expression of
potential energy and enforcing equilibrium (oIT/ck =0), an expression for the bending
moment is obtained:

3(K + Km)(ZK + Kin)

m=xr(l—
4(1-f)

) (5.44)

From expression (5.44) the ovalization curvature is obtained and it is found equal to:

K, = %(./8(1- £)+ 3,7 - 3Kin) (5.45)

In addition, the ovalization moment m,, is obtained from equation (5.44) for x = x, .

The moment-curvature relation (5.44) is identical with the one presented by Reissner [64]. In
that work, this expression was obtained through an analytical formulation based on nonlinear

kinematics and assuming a small initial curvature of the cylinder, whereas in the present study
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it is obtained through an energy formulation. Furthermore, setting x,, =0 in expression (5.44),

the closed-form expression (5.14) of Wood [63] is obtained. Specialization of (5.44) to the case
of non-pressurized initially straight cylinders results in equation (5.6), which was first presented
in Brazier [15] .

It is also possible to obtain closed-form expressions for the longitudinal stress o, . Inserting

the value of ovalization amplitude from (5.43) in the inextentional discretization of the

displacements w(¢) and v(&) one obtains:

KK+ Kn) 0520 and v() = —r <EFKn) i 0g (5.46)

W) =r—— 21— 1)

and using the expression (5.30) for the longitudinal strain ¢ , a closed-form expression is

X !

obtained for the longitudinal stress o, = E¢,, as follows.

2 2
T el @3 K0) Ty g+ KK Goag (5.47)
o, 4(1-f) 4(1- 1)
where o, = ﬁ(?j is a “‘reference’” stress used for normalization purposes only.
1-v

Expression (5.47) is identical with the one presented by Reissner [64].

Furthermore, employing the above simplified formulation, it is possible to obtain analytical
expressions for the radii of curvature at the deformed cross-section. Using the following
expression for the hoop curvature:

1.1 (5.48)
I r

where r, r, are the radiis of curvature before and after the deformation, respectively, and k,, is

the change of curvature in the hoop direction, and applying ring-theory [11], the following

expressions are obtained:

11 v(O)-w'©)

5.49
G r r’ (549
and using (5.43), (5.46) and (5.49) one readily obtains:
2
1 1 3x°c0s260+3xk K, C0s20 (5.50)

0@ r ra-1)

Summarizing, the above described energy formulation results in the following closed-form

expressions in terms of the applied curvature x, considering the effects of initial curvature
K;,and pressure f .
Radial displacement

Kr(x +K,,)
—f
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Tangential displacement

Kr(k+x,) .

v(0) = sin 26 5.52
O=-=0h (5.52)
Ovalization-curvature
k(k+x,)
=\ inJ 5.53
(== (5.53)
Moment-curvature
m:K,ﬂ_(l_S(K-i-Kin)(ZK_'-Kin)) (554)
4(1-f)
Longitudinal stresses
2 2
O e @3RG ) G sy (5.55)
o, 41— 1) 4(1-f)
Curvature in the hoop direction at the deformed configuration
L _ 1 3x(k+50) o500 (5.56)

L@ r  rl-f)

The presented energy formulation considers the case of circular cylinders, and the majority of
the cases examined in this study concern this case. However, it is possible to include a stress-
free initial ovality of the cylinder cross section in the above formulas. The initial ovality of the
cross-section is assumed inextentional, in accordance with (5.38) and is expressed in the

following form:
w, () =a,c0s20 and v,(0) = —%sin 20 (5.57)

where a, is the initial ovalization amplitude additional to ovalization amplitude a and the
initial ovalization parameter &, is defined by ¢, =, /r

Reconsideration of (5.41) and similar minimization of IT results in the following formulas:

Radial displacement

w(0) = &f + KT+ ) cos 26 (5.58)
1-f 1-f
Tangential displacement
V() =—| 2ot KT+ K0) 1 0p (5.59)
20-f) 2@1-f)
Ovalization-curvature
& k(x+x,)
- + in 5.60
¢ 1-f 1-f (5.60)

Moment-curvature
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M= ¢, SRt Kin) 32k + k) el 1o 3(x+x,)2k+K,) (5.61)
41— f) 4(1-f)
Longitudinal stresses
_ 2 2
Tx = —40%(35m 6—sin30) +x (1—M)sin 0 +msin 30
o, 41— f) 41— f) 41— f)
(5.62)
Curvature in the hoop direction at the deformed configuration
L _1,3600=20) hoop KAL) cocp (5.63)
@) r r(l-f) r(l-f)

which correspond to (5.51)-(5.56) for £,=0

5.1.3 Numerical Results

In this section the analytical closed-form expressions obtained by the energy formulation
(5.58)-(5.63) are compared with numerical results from the nonlinear finite element formulation
of Chapter 2, as well as results from previous researchers. The numerical results corresponding
to ovalization instability are obtained under the assumption that bifurcation (buckling) into a
wrinkled state does not occur. In all cases, pressure-if present-is applied first and then keeping
the pressure level constant, bending load is gradually increased. For the purposes of such an
analysis a cross-sectional analysis that employs only one *‘tube-element’ is required,
considering only in-plane cross-sectional deformation (displacements w(8) and v(8)) and
neglecting warping (displacement c(¢) and rotation y(9) ).

The cylinder material is isotropic elastic and its behavior is described by the large-strain
hypoelastic constitutive model, incorporated in the nonlinear finite element technique as
described in Chapter 2. Results obtained from the hyperelastic model have been found to be
very similar. For consistency purposes (with the bifurcation analysis, as it is going to be
discussed in a following paragraph) a 16" degree expansion is used for the number of cross-
sectional parameters although convergence can be easily obtained by using less terms, due to
the absence of bifurcation. Furthermore, 19 equally spaced integration points around the half-
circumference are employed, and five and two Gauss points are used in the radial direction
(through the thickness) and in the longitudinal direction, respectively. Values of moment,

curvature and pressure are normalized by M_,k,, p,, respectively, as described before (5.3),

(5.12). Results are presented for tubes with r/t equal to 120. However, it was found that using

the described normalization the numerical results are independent of the r/t ratio.
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First, the case of initially straight cylinders («,,=0) is examined. The accuracy of the above

closed-form expressions [(5.58)-(5.63)] is examined through their comparison with numerical
results, as it is depicted in Fig. 37 and Fig. 38. In Fig. 39 the influence of pressure on the m—x

path is demonstrated. It can be seen that the presence of external pressure ( f >0) reduces the
moment capacity, whereas there is a beneficial effect of internal pressure ( f <0). The ¢ —«

relationship for different values of pressure is shown in Fig. 40. The numerical results indicate
that the presence of internal pressure reduces cross-sectional ovalization.

The closed-form expression (5.55) for the longitudinal stresses of initially straight cylinders in
terms of curvature and pressure compares well with the numerical results, as shown in Fig. 41
and Fig. 42. It has to be pointed out that stress distribution is no longer linear with respect to the
distance with the neutral axis. Three cases are depicted referring to internal, external and no
pressure, respectively. The comparison of stress distributions is conducted at the point on the
primary path that corresponds to the maximum value of moment (the ovalization limit point

stage), as calculated through the finite element analysis.
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Fig. 37 m—x paths for cross-sectional analysis with respect to pressure f (r/t=120,«,
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The case of initially bent cylinders is examined next. The analytical expressions are compared
with numerical results. The moment-curvature path from equation (5.54) is quite close to the
numerical results in the cases of closing moments. For comparison purposes, some results of
the two-dimensional analysis of non-pressurized initially bent cylinders are also included in the
following diagrams

The moment-curvature of unpressurized initially bent cylinders is shown in Fig. 43. The initial
curvature is small compared to the critical curvature. It is reminded that negative and positive

values of «,, correspond to opening and closing moments, respectively (Fig. 35). For these

values of initial curvature analytical results compare fairly well with the numerical results,
especially for closing moments, whereas, for higher values of initial curvature, numerical and
analytical results compare qualitatively, as it is depicted in Fig. 44.

The analytical expression (5.19) for the moment-curvature path included higher order terms
than expressions (5.6), (5.14). Nevertheless, equation (5.19) describes ovalization less
accurately, as compared with numerical results. This observation confirms Calladine’s [76]
remark that Brazier [62] was ‘‘lucky in being able to obtain good results for the maximum
bending moment by using a power series, which was so crudely truncated’’. A comparison
between the aforementioned moment-curvature relations (5.6), (5.14) and (5.19) for an initially
straight unpressurized cylinder is given in Fig. 45. This comparison results in the observation
that including higher order terms in the ovalization analysis (e.g. [64]) the ovalization mode is

described less accurately than neglecting these terms [62].
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Fig. 41 Longitudinal stress distributions at the ovalization limit point (r/t =120, «;, =0, f =0)
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Apart from the simplified analytical closed-form expression (5.54) and the numerical results,
the comparison to a semi-analytical solution, presented by Axelrad [69], [70], is also depicted.
In Fig. 46 the solution of Axelrad [69], [70] is compared with the numerical results and a very
good agreement is found.

Using the above analytical and numerical results, the ovalization phenomenon is illustrated in
a clear and elegant manner, and some observations can be drawn as follows:

Due to the nonlinear effects of ovalization, the cylinder becomes more flexible; the “*lever-arm’
between total tension and total compression decreases so that bending resistance is reduced.

At a certain point, the above mechanism becomes dominant, and causes moment reduction,
despite the fact that stresses continue to increase due to increasing curvature; at this point, the
moment-curvature diagram exhibits a limit point and the corresponding limit moment is called
““ovalization moment’’ or “*limit moment’’; the corresponding curvature is called ovalization or
limit curvature, respectively.

Using the normalization described by (5.3), (5.12), the normalized results are independent of

the radius-to-thickness ratio r/t value.

5.2 Bifurcation Instability

Thin-walled elastic cylinders subjected to bending, apart from ovalization, fail because of
buckling, a bifurcation-type of instability in the form of wrinkles (Fig. 47). In the present study,
bifurcation on the ovalized primary path into a uniformly wrinkled state is described. It is
important to note that buckling problem is associated with a highly nonlinear pre-buckling
state, where the compression zone of the cylindrical shell wall has a double and opposite

curvature in the longitudinal and in the hoop direction.

wrinkles at the
compression side

O

Fig. 47 Development of buckles at the compression side
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5.2.1 Introduction

In an early publication, Seide and Weingarten [77] investigated bifurcation of initially straight
circular cylinders under bending, assuming a linear (non-deformed) pre-buckling state, and a
Ritz-type bifurcation solution in terms of trigonometric functions. Their numerical results

indicated that the critical (buckling) moment M_ of a cylinder corresponds to a nominal
bending stress o, =M, (ﬂl’zt), which is quite close to the buckling stress of the cylinder

under uniform compression, thus the following equations may offer a good approximation for

the buckling moment and the corresponding bending stress:

2
M, =1.813— 0 (5.64)
J@-v?)
o = LG) (5.65)
3(1-1/2) r
Applying the normalization adopted in this study, equation (5.64) is written as:
m, =1.831 (5.66)

Kempner and Chen [52], considering the DMV shell equations and assuming a linear pre-
buckling state, examined bifurcation instability of circular and oval cylinders under bending, in
the presence of axial force. Furthermore, Koiter-Budiansky initial post-buckling theory was
employed to investigate post-buckling behavior, in terms of trigonometric functions in the
longitudinal direction, and an asymptotic approximation of the secondary path was obtained.
The initial post-buckling analysis of [52] indicated a symmetric bifurcation point, and an
initially unstable secondary equilibrium path.

However, it was shown in the previous sections that the maximum moment may not exceed
the ovalization limit moment. Therefore, critical moment given by (5.66) is unreasonably high

compared to my, =0.987. This significant discrepancy is due to the fact that the bifurcation

solutions in [52], [77] neglect cross-sectional ovalization on the pre-buckling state and,
therefore, they predict an unrealistic value of buckling moment. The nonlinear effects of the
ovalized pre-buckling configuration on bifurcation instability were considered by Axelrad [78].
Axelrad assumed that bifurcation occurs when the maximum compressive bending stress value
reaches the critical stress value for a uniformly compressed circular tube of radius equal to the
local radius of the ovalized shell at the “critical” point. By consequence, expression (5.65) may
be applicable in a local sense, replacing the initial hoop curvature 1/r with the current
circumferential curvature at the location where buckling initiates. Using the same concept,
Emmerling [79] computed the bifurcation bending moment and curvature of initially oval

cylinders under bending and pressure.
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Stephens et al [80], using a finite-difference discretization of shell stability equations,
investigated bifurcation of finite-length, initially-straight cylinders under bending, considering
pre-buckling ovalization, as well as end-effects, and calculated bifurcation moments for
different levels of pressure. The buckling moment of long cylinders was calculated close to

Brazier ovalization limit moment (m,, =0.987). Fabian [41] examined buckling of thin elastic

initially straight cylinders under bending and pressure (internal or external), through a
perturbation of the nonlinear DMV shallow-shell equations. Results from the linearized (first-
order) stability problem indicated that bifurcation occurs on the primary path before the
ovalization limit point, regardless the level of pressure. Subsequently, using Koiter-Budiansky
initial post-buckling theory, as adopted in [40] for nonlinear pre-buckling state, and assuming a
trigonometric variation of stresses and displacements in the longitudinal direction, an
asymptotic approximation of the post-buckling path was obtained.

Ju and Kyriakides [81] reported few numerical results for bending buckling of initially straight
non-pressurized elastic cylinders ( D/t =200) using the nonlinear Sander’s shell equations and
discretization in terms of trigonometric functions. The results verified that bifurcation occurs
before ovalization point and it is attained on the primary path. In addition, an unstable post-
buckling path was observed. In a recent paper Karamanos [75] examined instabilities of non-
pressurized elastic cylindrical shells with r/t=120, with emphasis on the effects initial
curvature. Furthermore, it was concluded that, depending on the initial curvature value and the
direction of bending load, buckling may occur before or after the limit point of the primary
ovalization path. It was also found that depending on the hoop curvature and longitudinal stress
variation, buckling may occur at various locations around the cross-section. The investigation
described in [75] is further enhanced herein, where imperfection sensitivity and initial post-
buckling behavior issues are examined. In addition, aspects of bifurcation are illustrated using a
simple mechanical model, which considers the ovalized pre-buckling configuration and
pressure effects.

It is worth mentioning that in the recent years, this problem of elastic stability has received
significant attention due to its applications in nanomechanics, more specifically, several
attempts have been reported to apply shell stability concepts in order to simulate the structural
stiffness and explain the buckling and post-buckling response of carbon nanotubes subjected to
bending loads [82], [83], [84].

5.2.2 Numerical Results

The majority of the numerical results refer to initially circular cylinders, but some results of

initially ovalized cylinders are depicted, as well. The values of moment, curvature, ovalization
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and pressure are normalized as described by equations (5.3) and (5.12). Furthermore, the value

of half-wave length L, is normalized by L, = Jﬁ[g“/lZ(l—vz)]ll4, sothat s=L,,/L,, where

L, is the half-wavelength of an axisymmetrically-deformed elastic cylinder subjected to

uniform axial compression [43].

The results are obtained mainly by the implementation of the hypoelastic model (section
2.2.1). Some cases have also been re-examined using the hyperelastic model (section 2.2.2).
The comparison resulted in the conclusion that for the case of bending there is negligible
difference between the two constitutive models regarding buckling and post-buckling response.

A preliminary parametric study is conducted, to determine the number of cross-sectional
parameters to be used. This investigation leads to the conclusion that a 16" degree expansion is
adequate for the cases of interest, and determines the “*earliest’” bifurcation point upon primary
ovalization path. Therefore, in Fig. 48 the effects of the degree of trigonometric expansion are
illustrated. Regarding the number of integration points in the circumferential direction, 19
equally spaced integration points around the half-circumference are employed. Five and two
Gauss points are used in the radial direction (through the thickness) and in the longitudinal
direction, respectively.

In Fig. 49 the bending response of two non-pressurized initial straight cylinders with r/t=20

and 720 is illustrated, where bifurcation occurs before limit point (x,, < x,, ). The path denoted

as “‘uniform ovalization’” corresponds to a cross-sectional bending analysis (two-dimensional

analysis), as described in paragraph 5.3.
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Fig. 48 Numerical results for the degree of trigonometric expansion used in equation (2.150)
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Fig. 49 Numerical results of initially straight cylinders in the absence of pressure; arrows (|)

denote bifurcation points, arrow (1) denotes the limit point on the primary path

Fig. 50 shows the dependence of the buckling point on the r/t ratio. Thin-walled cylinders
(i.e. cylinders with large values of r/t ratio) buckle at lower values of curvature and moment
(x, and m,). In all cases, the initial post-buckling behavior is unstable, characterized by a

‘‘snap-back’’ immediately after bifurcation, which is reminiscent of the initial post-buckling
path of circular or oval cylinders under uniform axial compression. The “*snap-back’” of the
post-bifurcation path is sharper for thinner cylindrical shells (Fig. 50).

The pre-buckling (just prior to bifurcation) and post-buckling configurations of deformed
cylinders for zero pressure (r/t=120) are depicted in Fig. 51. Note that for visualization
purposes, the post-buckling displacements are magnified. Upon bifurcation, the compressed
part of the tube surface exhibits a periodic wavy pattern. Another important observation
concerns the ““local’’ character of buckling in the circumferential direction. More specifically,
buckling occurs within a zone around the critical point, referred to as buckling zone. In the

present case (x;,=0, f =0, £;,=0), the buckling zone is located in the vicinity of §=7/2 and

its size depends on the cylinder’s r/t ratio. Numerical calculations have shown that the size of
the buckling zone decreases with increasing values of r/t ratio. In Fig. 51 the size of the
buckling zone, defined as the distance between the two “‘nodal points A and B is equal to
0.69r for a cylinder with r/t=120. Note that for cylinders with r/t=20 and r/t=720, the
corresponding size is calculated equal to 1.22r and 0.52r respectively.

The shape of Fig. 51 also indicates that post-buckling configuration is associated with an

inward post-buckling displacement of the “*buckling zone’’, which is uniform along the
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cylinder, and this is in agreement with experimental observations from uniformly compressed

circular and oval cylinders.
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Fig. 50 Numerical results of m—x« paths ( f =0, «, =0); effect of r/t ratio on the bifurcation point
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Fig. 51 Pre-buckling and post-buckling shapes of a cylinder cross-section ( f =0, x;, =0, r/t=120)
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The response of initial

ly straight cylinders with r/t=120, for different pressure levels is

shown in Fig. 52 and Fig. 53, where the thick lines corresponds to paths with buckling and the

thin lines represent uniform ovalization response. In all cases, bifurcation occurs before a limit

point is reached on the

primary path, whereas the initial post-buckling path is unstable,

exhibiting a ““snap-back’” immediately after bifurcation.
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Fig. 52 Numerical results of m—x paths with respect to the level of pressure («;,, =0, r/t=120)
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Fig. 53 Numerical results of ¢ —x paths with respect to the level of pressure; points (¢) define

bifurcation points numerically calculated (x;,=0, r/t=120)
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The presence of external pressure results in a significant increase of cross-sectional

ovalization (flattening) and causes a significant reduction of the buckling moment m_ and the
corresponding critical curvature x, . On the other hand, internal pressure alleviates cross-
sectional ovalization and increases both the m, and x, values. For high levels of internal
pressure (e.g. f =-10), ovalization is negligible, the pre-buckling m—x« path is quasi-linear
and the m_, value approaches the buckling moment computed from (5.64) under the assumption
of undeformed cylinder cross-section (m, =1.813), as shown in Fig. 52. Moreover, Fig. 54

shows the variation of ovalization limit moment m,, and critical moment m_ with respect to

the pressure level f .
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Fig. 54 Numerical results for the variation of critical and ovalization moments with respect to the

pressure level f (x;,=0, r/t=120)
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Fig. 55 Numerical results for the variation of critical and ovalization curvatures with respect to the

pressure level f (x;,=0, r/t=120)
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Fig. 56 Numerical results of the dependence of buckling half-wavelength on pressure level f

(x,, =0, /t=120)
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Furthermore, the dependence of the corresponding normalized curvature values (x,, and x,, )
on the pressure level f is depicted in Fig. 55, and indicates that, with increasing external
pressure, the bifurcation point approaches the ovalization limit point.

The dependence of buckling half-wavelength on the level of pressure is plotted in Fig. 56. The
value of s for large values of internal pressure ( f — —oo) approaches unity (s —1), which
means that for high internal pressure the buckling wavelength becomes equal to the
axisymmetric-buckling wavelength of a similar elastic cylinder subjected to uniform axial
compression. On the other hand, for external pressure values close to p, (f —1) the half
wavelength value approaches infinity (s— —o). In this case, the ovalization mechanism,
accentuated by the presence of high external pressure, governs cylinder’s response.

In Fig. 57, the elastic deformation energy of the cylinder per unit length is plotted in terms of
curvature for an initially non-pressurized straight cylinder ( f =0, x,,=0). The energy is
normalized by the product of M, and k. The diagram is initially monotonically increasing
and exhibits a negative ‘jump’ at the bifurcation curvature. This discontinuity is more
pronounced for a thin-walled cylinder (r/t=720), shown in the detail of Fig. 57. Beyond this
point, it continues to increase monotonically. The reason for this discontinuity is the “‘snap-
back’ of the initial post-bifurcation path immediately after buckling. It is noted that
experimental measurements, as well as molecular dynamics simulations in elastic carbon
nanotubes, have shown a similar ““kink’” on the elastic deformation energy diagram [84].

The bending response of circular initially slightly bent cylinders (x;,=%0.20) in terms of the
pressure level ( f ) is shown in Fig. 58-Fig. 61. Negative and positive values of x, correspond

to opening and closing bending moments respectively (Fig. 35). For these values of initial
curvature, buckling occurs before the ovalization limit moment, regardless the level of pressure,
and the post-buckling path is also characterized by a ‘‘shap-back’’. The numerical calculations
also show that the “*buckling zone’ is located around @ =/2 for both closing and opening
moments. In Fig. 58 and Fig. 60 it is indicated that the presence of external pressure accentuates

cross-sectional ovalization and therefore, reduces the moment capacity m, and the
corresponding critical curvature x, . On the other hand, there is a beneficial effect of internal
pressure on the m, and x, Vvalues, due to the significant reduction of cross-sectional

ovalization, as shown in Fig. 59 and Fig. 61.
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Fig. 57 Numerical results of the normalized strain energy curve in terms of applied curvature;

point on the curve (¢) denotes bifurcation (r/t=720, «, =0, f =0)
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Fig. 58 Response of an initially bent cylinder for closing moments for three different levels of

pressure (r/t=120, x,,=0.2); thick lines corresponds to paths with buckling and thin lines to

uniform ovalization paths respectively (numerical results)
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Fig. 59 Ovalization of an initially bent cylinder for closing moments for three different levels of

pressure (r/t=120, x,,=0.2); thick lines correspond to paths with buckling and thin lines to

uniform ovalization paths respectively and points (¢) denote bifurcation (numerical results)
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Fig. 60 Response of an initially bent cylinder under opening moments for three different levels of

pressure (r/t=120, x, =-0.2); thick lines correspond to paths with buckling and thin lines to
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Fig. 61 Ovalization of an initially bent cylinder for opening moments for three different levels of

pressure (r/t=120, x,, =-0.2); thick lines correspond to paths with buckling and thin lines to

uniform ovalization paths, respectively, whereas points (#) denote bifurcation (numerical results)

It is noted that, in the case of opening moments (Fig. 60), the cylinder initially exhibits reverse
ovalization (negative values of £ '), so that the diameter on the plane of bending lengthens and
the other principal diameter shortens (‘bulging’ ovalization) until the total curvature of the

cylinder becomes about half the initial curvature value (x; =-

/2). Subsequently,

Kin
““bulging’” ovalization decreases and, beyond the curvature where the cylinder becomes
straight (x, = x +x,, =0), cross-sectional *‘flattening’” occurs until buckling. The fact that all
x—¢ curves pass through the origin (x, =¢ = 0) can be verified from the simplified
ovalization-curvature expression (5.43).

The response of circular cylinders with more pronounced initial curvature (x;, =1.030) under

closing bending moments is shown in Fig. 62 and Fig. 63. The numerical results indicate that
bifurcation occurs well beyond limit point instability, for three different pressure levels, so that
ovalization instability governs cylinder’s response. In addition, the secondary path under

external pressure ( f =0.65) follows closely the primary equilibrium path. A closer view of the
secondary path for f =0.65 around bifurcation is shown in the detail of Fig. 62. The ovalization
response of these pressurized cylinders (x;,=1.030), plotted in Fig. 63, indicates that bucking
occurs at large values of cross-sectional flattening (¢, >0.35). The *“flattened’” cross-sectional

shapes of the buckled cylinder configurations (Fig. 64), show that the periodic wavy pattern
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also occurs within a small portion of the cylinder circumference, verifying the “‘local’
character of buckling also observed in Fig. 51. Nevertheless, the 8 =7/2 location may not be
critical in all cases. In the absence of pressure ( f =0) the critical point is located at about
0~ /3 (Fig. 64a and Fig. 64b). In the presence of external pressure ( f =0.65) the numerical
results indicated that the buckling zone is located at the “‘extrados’” of the cross-section
(6 =-x12), as shown in Fig. 64c. This is explained by the compressive longitudinal stresses at
0 =-r/2, depicted in the detail of Fig. 65, in conjunction with the flat shape of the ovalized

cross-section at this location.
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Fig. 62 Numerical results of the response of an initially bent cylinder under closing moments
(x,,=1.030) for three different levels of pressure f (r/t=120); thick lines correspond to paths

with buckling and thin lines to uniform ovalization paths respectively whereas arrows (|) denote

bifurcation
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Fig. 65 Finite element results of the variation of longitudinal stresses at cross-section of an initially
curved cylinder (r/t =120, x,, =1.030, f =0.65).

The response of an initially curved cylinder subjected to opening bending moments (x;, =-

1.374) is shown in Fig. 66 for different pressure levels. In all three cases buckling occurs before
a limit point is reached. Furthermore, buckling occurs before the cylinder becomes straight

(x; <0), as also shown in Fig. 67, and the corresponding post-buckling cylinder response

exhibits a very sharp ‘‘snap-back’’. The buckled cylinder cross-sections within a half-
wavelength are depicted in Fig. 68, and show that for the three different pressure levels
considered, the buckling zone is no longer in the vicinity of 8=z/2. Also note that the externally
pressurized case corresponds to the most pronounced bulging ovalization.

Finally, the effects of initial cross-sectional ovality on the buckling moment are examined,
considering a relatively small stress-free doubly-symmetric out-of-roundness of the cylinder
cross-section, which is assumed constant along the cylinder. Expressions (5.57) correspond to a

““first-order inextentional’” ovalization deformation (w,(8)+Vv,(¢)=0) and the ovalization
parameter has an initial value ¢, equal to a,/r. The effects of such an imperfection on the
bending response of an initially straight cylinder ( x,, =0) are shown in Fig. 69 for zero pressure
(f =0), and for relatively small initial ovality |§0|£O.1. Positive values of initial ovalization

correspond to “‘“initial flattening’” of the cylinder cross-section, whereas negative values refer to
““initial bulging’’. The results of Fig. 70a demonstrate that the orientation of the initial out-of-

roundness may be quite important, especially in the presence of external pressure ( f >0). In

particular, reverse initial ovality, combined with external pressure, results in a post-buckling
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path that follows closely the primary equilibrium path (Fig. 70b). In Fig. 70, all the m—x«

curves, regardless the pressure level, pass through a common point A (m,=0.945 and
x,=0.306) located before the bifurcation point. Furthermore, at this value of curvature the
corresponding cross-sectional ovalization is zero (point A in Fig. 71). The above values of m,

and x, can be also be verified by the simplified analytical ovalization solution presented

above; requiring ¢ +¢, =0 and x,, =0 in (5.60) and (5.61), one readily obtains /@:|(0 and

|1/2

m= 7r|C0|l/2, and that for ¢, =—0.1 those values are very close to m, and x,.
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Fig. 66 Finite element results of the response of initially curved cylinders ( x;, =-1.374) for reverse

bending and for three different pressure levels f in which arrows (]) denote bifurcation;

(@) f =0.5, (b) f =0, (c) f =-0.5 (r/t=120)
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Fig. 67 Finite element results of ovalization analysis for an initially bent cylinder («, =-1.374);

thick lines correspond to paths with buckling and thin lines to uniform ovalization paths

respectively (r/t=120).
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Fig. 68 Pre-buckling and post-buckling shapes; (a) and (b) f =0, critical pointat &~z /6, (¢)

f =0.5, critical pointat & ~ /6, (d) f =-0.5, critical point at 8 ~ 40°; (x,, =-1.374, r/t=120).

14

initially straight tube
f=0

=
N
I
|

=
o
I

o
(o]
I

o
o

normalized moment (m)
o
n
|

o
N
I

©
o

0.1 0.2

©
o

0.3 0.4

normalized curvature (K)

05 0.6
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Fig. 70 Numerical results of initially **bulged’” cylinders (£, =-0.1); thick lines correspond to

buckling paths and thin lines to uniform ovalization paths, arrows (|) denote bifurcation(r/t =120)
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Fig. 71 Numerical results of initially **bulged’” cylinders (£, =-0.1); thick lines correspond to

buckling paths and thin lines to uniform ovalization paths (r/t =120, «;, =0).

5.2.3 Simplified Analytical Solution

Simplified bifurcation analysis for shells have been proposed in previous works (e.g. [78],
[79]), based on the assumption that buckling is fully determined by the stress and deformation
inside the zone of the initial buckle, and that stresses and curvatures inside that zone are
constant. Under this assumption, an expression similar to (5.65) can be obtained, which governs
shell instability at each point around the circumference. The local character of buckling around
the cross-section, shown in Fig. 51, Fig. 64 and Fig. 68, provides good evidence for the validity
of the above assumption. In the present work, this concept is outlined, and it is further enhanced

to obtain closed-form analytical expressions for the bifurcation curvature x,, and moment m,,

as well as for the corresponding buckling wavelength (s=L,, /L,).

Linearized Shell Equations

Local coordinates X and Y are defined on the buckling zone area, denoting the distances from
the center of the buckling zone, in the longitudinal and the hoop direction respectively (Fig.

72). Starting from the nonlinear DMV equations

3 2
E—tZVW—iNX—iNy+2NXyﬂ=p(X,Y) (5.67)
12(1-v*) R, Ry oXoY

2 2 2 2 2
Ly L[OW) L(EW) WO (W
Et R, \ oY Ry oX oX*° oY oXoY
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where W and F are the displacement and stress functions respectively, N,, Ny, ny are the
membrane stress resultants (equal to the second derivatives of the stress function F), 1/R,
1/R, are the local curvatures of the deformed cylinder, and following the linearization

procedure described in [85], the linearized form of Equations (5.67) and (5.68) is obtained as

follows

1
No>+N,o2>-2N, 0.0,)0.7+0,°%)
Etho( X x y“y Xy x y)( X y) (569)

+(kd,? +k, 0,2 — 2k, 1,00,0,)* ] W=0

[@,2+0,%)" +

where W(X,y) is a small deviation of the radial displacement from the pre-buckling state, x and

y are dimensionless local coordinates, so that

x=X/c, y=Y/c, c=\lrt/{120-v?) (5.70)

0,,0, denote partial derivatives with respectto x and vy,

AL S P . (5.71)

o 120-v?) R, R

k, is the *‘torsion’” of the deformed cylinder surface and r,, is the deformed cross-sectional

radius at the middle of the buckling zone (x=y=0).

critical point

deformed

undeformed

Fig. 72 Local coordinates X and Y are defined on the buckling zone area

Assuming constant deformation and stress within the buckling zone, as well as symmetry of the

pre-buckling state with respect to the plane of bending, N,,N , k, are constant, k =1, N, =0
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and k, =0. In addition, a wave-type solution of (5.69) is considered, with no variation in the
hoop direction:

W = W(x) = Acosmx (5.72)
where A is an arbitrary constant and m is a dimensionless wavelength parameter. Substituting
expression (5.72) into (5.69), the requirement of non-trivial solution dictates that the following

expression should hold at the bifurcation stage within the buckling zone,

Et? { ) 1}
N = S 5.73
" ney12(1?) " &7

It is noted that a more general form of (5.73), considering trigonometric variation in both

directions x and vy, is reported in [85]. Minimization of N, in (5.73) with respect to m gives

m =1, or equivalently,

7C T
L =2~ =——~ __Jrt 5.74
hw [12(1_ V2 )]1/4 00 ( )

and (5.73) becomes:

E t
0= ——| — 5.75
‘ 3(1—V2)(rooj ( )

where o,, is the longitudinal buckling stress within the buckling zone. Equation (5.75)
resembles (5.65), and implies that the cylinder buckles at the location where stress o,

becomes equal to the buckling stress of a uniformly compressed circular cylinder, with radius

equal to the current hoop radius r,, at the critical location.

Closed-form Bifurcation Solution

In the present study, (5.75) is further elaborated to obtain a closed-form expression for the
bifurcation curvature. The analysis is limited to cylinders with relatively small initial curvature
and initial ovality, so that buckling occurs at @ =z/2. The key step in the development of the
closed-form solution is consideration of the simplified ovalization solution presented in a
previous paragraph, to describe the prebuckling state. In particular, the local hoop curvature

1/r,,and the longitudinal stress o, at @ =7x/2 at the ovalized prebuckling configuration can

be approximated from (5.55) and (5.56) as follows:

i: 1 _ -3¢, +1-f -3x(x+x,) (5.76)
o Tp(7/2) r(l—f)
_ _E t) . x+ fx, _(K'-f-l('in)z
O, =0(712)= > [rjl: C:O—l—f +K‘[1 T H (5.77)
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Substituting the above expressions for 1/r,,and o, in (5.75), a third-order algebraic equation

is obtained in terms of the critical curvature ., :

_(K +Kn) 1 _3Kcr(K +Kn) Kcr+fKin 4/0 —
(1 1-f ] ﬁ[l 1-f Jg" 1-f +\/§1—f_0 .78)

which has the following closed-form solution
1

2K, 2
Kx:Ug——g——ngBBQ—f)—J@%+K%—3Q]x

(7[ 1
x COS| —+—=arccos
3 3

5.79
1343k — 2«2 +63(L-6¢,) + 9k, (3— 24, + F (3-24,)) (5.79)
2 abs[3(2 - f)_\/§,{in +Ki%1 _3§0]3/2

where abs] ] is the absolute value of [ ]. Subsequently, the bifurcation moment m, is obtained

from (5.54) as follows:

m, = —Egm(—z’” e, ]mm(l— 3(0er ) (28 ’“")] (5.80)
A1- 1)

Expressions (5.79) and (5.80) define the bifurcation point on the primary m—« path of (5.54).
Furthermore, (5.74) and (5.76) lead to the following expression for the normalized half

wavelength:

_J (1-f) (5.81)
_34/0 + (1_ f ) - 3Kcr (Kcr +Kin)

For the particular case of initially straight pressurized cylinders without initial ovality («;,, =0

1 1 3,
(1—HKJ ﬁ(l_ﬁ’(ﬂj_o (582)

and its solution is written in closed form as follows:

1 2 1 33
K, —ﬁ—?/abs[3(2— f)] cos(§+§arcco{ TP D (5.83)

abs[3(2

and ¢,=0), (5.78) becomes:

Furthermore, the expression for the corresponding normalized half-wave length becomes:

=1 5 8
1-f -3k (.84)
If no pressure is applied ( f =0) the above expressions are reformed as:
1

K (1-x2)———(1-3x2)=0 5.85
cr( cr) \/é( cr) ( )

1 2\/_ ( 1 [ sD
K, = +=arccos| (v2) | |=0.381122 (5.86)

NN )
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st [T _ | 1533108 (5.87)
L, r 1-3x;

The accuracy of x,, and m_ values, obtained from the above analytical equations, are shown
in Fig. 73-Fig. 75 for circular initially straight cylinders, considering pressure effects, together
with numerical results, indicating a remarkable accuracy. The agreement is better in the case of
thin-walled cylinders (large values of r/t ratio), because those cylinders exhibit a smaller size
of buckling zone, as discussed in the previous section. The comparison between the numerical
results with the analytical solution shows that the above closed-form expressions are quite
accurate for relatively small values of x;, and ¢, as shown in Fig. 76 and Fig. 77. In those
figures, (5.54) is used to express the prebuckling analytical solution, and the bifurcation point,
(denoted by the arrows | 1) as it is obtained from (5.79) and (5.80). For the particular case of

zero initial ovality (£,=0) the obtained numerical results result in the observation that these

analytical expressions provide very good accuracy when —0.4 <x,, <0.2.

1.0
= 05 - analytical
o
>
% 0.0 -
o
(o
3
N-0.5 -
< -
£ ——r/t=120
o
c-1.0 | -B-r/t=480

> rt=720 \
'1.5 : T T T
0.3 0.5 0.7 0.9 11 13

normalized critical moment (mer)

Fig. 73 Variation of m_, with respect to pressure level f ; comparison of numerical and analytical

results (5.80)
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1.0

—
—0.5 \
o analytical
>
0.0 -
g0
o
©
R.0.5 4
T ——r/t=120
£
o —
S10 1l —=r/t=480

- r/t=720 \X
'15 l T T T T T
0.15 0.20 0.25 0.30 0.35 0.40 0.45 0.50

normalized curvature (Kcr)

Fig. 74 Variation of «, with respect to pressure level f ; comparison of numerical and analytical

results(5.83)

1.0
o« 0.5
Q
=]
? 0.0
g0
o
©
()
N.05 -
3
g ——r/t=120
(@]
.10 -=r/t=480

=%~ r/t=720
'1.5 T T T T T l
1.0 1.2 1.4 1.6 1.8 2.0 2.2 2.4

normalized half wavelength (s)

Fig. 75 Variation of s with respect to pressure level f ; comparison of numerical and analytical

results (5.84)
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Fig. 76 Comparison of numerical results and analytical solutions for non-pressurized cylinders

(r/t=120) and for three different values of initial curvature (x,, =0, «,, =+0.2); arrows (| 1) denote

the critical points obtained from the analytical solution.

18 [ [

16 — 3D analysis |
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Fig. 77 Comparison of numerical results and analytical solutions for non-pressurized cylinders

(r/t=120) and for two different values of initial curvature ( x;, =£0.343); arrows (| 1) denote the

critical points obtained from the analytical solution

120

Institutional Repository - Library & Information Centre - University of Thessaly
09/06/2024 05:09:14 EEST - 18.191.111.134



5.2.4 Mechanical Model

A simple model, depicted in Fig. 78a, provides a physical explanation of the numerical and

analytical results, reported in the previous paragraphs. The model was proposed in an early
publication [1] for cylindrical shells under uniform, axial compression. According to this
model, the cylinder is considered as a ‘‘bundle’” of compressed longitudinal strips in the
longitudinal direction, each one supported by a series of springs, so that the problem under
consideration is similar to the buckling problem of a beam on elastic foundation. The
““foundation springs’’ are elastic arches, representing the stiffness provided by the hoop
deformation of the shell.

In the present study, the model is used to illustrate some bifurcation aspects of pressurized
cylinders under bending. More specifically, the compressed strip is considered in the middle of
the buckling zone, and the arch may be ovalized, representing the shape of the cylindrical cross-
section just prior to buckling. Arch stiffness plays a key role on the buckling stress and the
corresponding wavelength, and depends on the amount of ovalization. In Fig. 78b, the response
of such elastic arches under concentrated load on its crest is plotted. Three cases are considered,
corresponding to initially non-ovalized (circular), initially “*flattened’” and initially “‘bulged”’
cylinders denoted as cases A, B and C, respectively. The results are obtained numerically, using
a non-linear degenerated shell finite element analysis [86]. In those results, the “‘flattening’”’
direction of the load is considered positive. In all three cases, the response is nonlinear
““softening/hardening’’, resulting in an unstable post-buckling path for the compressed strip, as
discussed in [1]. Fig. 78b also shows that the support-arch stiffness is significantly reduced in
the initially “*flattened’” arch (case B), but it is quite higher in the initially *“bulged’” arch (case
C).

The above model can illustrate some aspects of cylinder bifurcation under the combined action
of bending and pressure. In the case of closing bending moments, the cross-section flattens
around the critical location, reduces the stiffness of the supporting arches, and results in a
decrease of the critical moment, as shown in Fig. 58 and Fig. 62. The reduction of support
stiffness is accentuated in the presence of external pressure, whereas internal pressure reduces
flattening, increasing the stiffness of the supports and the corresponding critical longitudinal
stress. Similarly, the presence of initial curvature opposite to the direction of bending (opening
moments), increases the local hoop curvature, resulting in larger support stiffness, and
therefore, it corresponds to a shorter wavelength and a higher critical moment, also depicted in
Fig. 60 and Fig. 66.
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Fig. 78 (a) Simple mechanical model, simulating buckling of cylindrical shells under axial
compression [1] (b) Response of circular and initially oval arches under a concentrated load on the

crest; results from shell finite element analysis [86]. Negative values of ¢, indicate initial ovality

opposite to the one shown in the sketches.

5.3 Imperfection Sensitivity

Buckling of shells is generally characterized by significant sensitivity with respect to initial
imperfections. This was originally investigated in the early works by von Karman et al [1] and
Koiter [3] for axially loaded cylinders. Both works were aimed at “bridging the gap” between
the high values of analytical predictions and the low values from experimental data. Koiter’s
general theory of elastic stability is shortly presented in Appendix. The main issue clarified by
Koiter was that imperfection sensitivity of a structure is directly related to its initial post-
buckling behavior.

Herein, imperfection sensitivity of elastic circular cylinders under bending loads is examined
numerically, and the results are compared with asymptotic solutions reported elsewhere.
Towards this purpose, an initial periodic imperfection is assumed in the shape of the first
instability mode corresponding to the buckling (bifurcation) moment. This buckling mode is
obtained through an eigenvalue analysis of the deformed (ovalized) cylinder’s configuration.
More specifically, at the end of each increment of the step-by-step Newton-Raphson procedure,
the tangent stiffness is calculated and its eigenvalues are computed. Bifurcation occurs at the
stage where the tangent stiffness becomes singular. This eigenvalue analysis provides the
buckling mode (Fig. 79), which is the one corresponding to the zero eigenvalue. It is
emphasized that bifurcation of a cylinder under bending loads is characterized by a single
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buckling mode similar to the case of non-circular cylinders under axial compression. This is a
significant differentiation with the infinite number of buckling modes that characterize circular
cylinders axially compressed. This single instability mode is imposed in the initial

configuration as an imperfection. Furthermore, the imperfection parameter & is introduced,
defined as the total wave height W, normalized by the cylinder thickness t (£ =W, /t), and it

is similar to the imperfection parameter introduced in the cases of axial compression examined
in the previous two Chapters.

Results for the imperfection sensitivity of initially straight isotropic elastic cylinders with
r/t=100 under bending are obtained considering the “‘imperfect’” geometry of the cylinder.
The numerical results in Fig. 80 show that the ultimate bending load of the elastic cylinder is
reduced with increasing imperfection amplitude and this drop is shown in detail in Fig. 80b. It
is interesting to note that as the imperfection amplitude increases, the response becomes
smoother, as indicated in Fig. 80.

Pressure effects are also considered. The numerical results reveal a similar response regarding
initial post-buckling equilibrium. As external pressure is increased a significant reduction of the
moment capacity of the cylinder is observed (Fig. 81 and Fig. 82). This effect can be readily
interpreted as external pressure increases cross-sectional ovalization.

Imperfection sensitivity of elastic cylinders with the r/t=100 has also been investigated by
Fabian [41]. In that study, Fabian applied Koiter’s initial post-buckling theory, enhanced by
Fitch’s [40] considerations to account for a non-linear pre-buckling state. The resulting first-
order and second-order boundary-values problems were solved through a finite difference

technique, choosing 7 as the perturbation parameter, as described in Appendix, the following
asymptotic expression for the post-buckling path was obtained

LI P I (5.88)

cr

where b is a negative constant, that depends on the r/t ratio and the level of pressure. The
negative value of b indicates an unstable post-buckling behaviour, which is verified by the
present numerical results. Furthermore, assuming an initial imperfection in the form of the first
buckling mode, Fabian [41] obtained a relation of the following form for the maximum moment
m._... in terms of the imperfection amplitude ¢ :

My
m

cr

=1-Cg23 (5.89)

where C is a constant that depends on r/t ratio and the level of pressure f . The present

numerical results are found to agree very well with the exponential relation (5.89), as shown in
Fig. 83.
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Both numerical and asymptotic results confirm that even small geometrical imperfections may
reduce the maximum moment that the cylinder can sustain. Moreover, the presence of external
pressure results in an increase of m_ /m, ratio for the same imperfection amplitude (Fig. 83),
whereas internal pressure has the opposite effects, which is in accordance with Fabian’s
asymptotic results [41]. This means that imperfection sensitivity is more severe as the level of
internal pressure increases.

Numerical results for the imperfection sensitivity of very thin cylinders (r/t=720) are also
obtained. It is found that the variation of maximum moment m_, with respect to the
imperfection amplitude & follows an exponential expression similar to (5.89), where the value

213" for the exponent is verified (Appendix). Finally, Fig. 84 indicates that the m_, /m,

curve for the thinner cylinders (r/t=720) lies below the one obtained for the thicker ones
(r/t=100), which leads to the conclusion that thinner cylinders are more sensitive to initial

imperfections.

Fig. 79 Buckling mode of elastic cylinder under bending moments
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Fig. 80 Imperfection sensitivity of an unpressurized elastic cylinder; (a) entire m —x path and (b)

detail at bifurcation (numerical results)
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Fig. 81 Imperfection sensitivity for a pressurized cylinder under bending (numerical results)
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Fig. 82 Imperfection sensitivity for a pressurized cylinder under bending (numerical results)
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Chapter 6
THIN-WALLED TRANSVERSELY-ISOTROPIC ELASTIC
CYLINDERS UNDER BENDING AND PRESSURE

The present Chapter investigates the stability of long thin-walled transversely-isotropic elastic
cylinders subjected to bending and uniform pressure, extending the work presented in the
previous Chapter for isotropic cylinders. This subject of anisotropic materials has received
significant attention in the last three decades due to its applications in analysis and design of
composite-material structures. Issues of bifurcation, postbuckling response and imperfection
sensitivity of circular cylinders with respect to the level of anisotropy are discussed.
Furthermore, an extension of the simplified analytical formulation for isotropic cylinders in the
case of anisotropic cylinders is presented, to describe the gradual progress of ovalization of the
cross-section and predict the uniform wrinkling bifurcation on the primary path.

Equation Chapter 6 Section 6

6.1 Introduction

Similar to the case of isotropy, the bending response of anisotropic cylinders is initially
characterized by cross-sectional ovalization followed by bifurcation into a wrinkled state.
Kedward [87] reported a first attempt to enhance Brazier’s solution [62] considering a different
modulus for the longitudinal and the hoop direction, and resulted in a closed-form expression
for the ovalization and the primary moment-curvature path. Spence and Toh [88] extended
Reissner’s formulation [64] to account for orthotropic material behavior, using nonlinear finite
deflection thin shell theory. The numerical results were compared with experimental test data
from steel and “*melenex’” cylinders. Stockwell and Cooper [89] presented a direct extension of
Reissner’s [64] isotropic cylinder formulation to obtain a closed-form expression for the
moment-curvature relationship, and the analytical results were compared with numerical results
from a commercial finite element program. Libai and Bert [90] used thin-shell theory and a
mixed variational principle to investigate the nonlinear ovalization behavior of anisotropic
cylinders, and reported solutions for long, medium-length and short cylinders, including the
effects of end boundary conditions. Furthermore, a closed-form expression for the moment-
curvature ovalization path was derived for infinitely long cylinders. Corona and Rodrigues [91]

presented numerical results for orthotropic cylinders with cross-ply layers. Using nonlinear ring
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theory, the prebuckling ovalization solution was determined. Uniform wrinkling was also
examined in [91] through a perturbation technique, based on non-shallow cylindrical shell
kinematics. Tatting et al [92] analyzed long anisotropic cylinders with symmetric lay-ups
through a finite-difference solution of semi-membrane shell equations. The final moment-
curvature expression was identical to the one reported by Reissner [64] for isotropic cylinders,
and its solution was found to compare well with the simplified Kedward solution [87]. In this
study [92], local buckling was examined, using the Kedward solution for the pre-buckling
equilibrium path, and considering the simplified engineering hypothesis, as proposed by
Axelrad [78]. Furthermore, the effects of pressure and the influence of laminate stacking
sequence were examined. It was found that bifurcation occurs before a limit point is reached on
the ovalization path. Harursmapath and Hodges [93] developed an enhanced beam model
accounting for cross-sectional deformation, in terms of trigonometric series expansion, to
analyze long, thin-walled cylinders of anisotropic materials. Employing one term of series
expansion, they provided closed form expressions for the ovalization path and the
corresponding stresses. Using this simplified solution, limit-moment instability, local buckling
and material ply failure were examined. Recently, Wadee et al [94], using an analytical
formulation and a second-degree trigonometric series solution in the hoop direction obtained
results for anisotropic cylinders, in terms of the ultimate moment and buckling wavelength.
Furthermore, it is mentioned that several attempts (e.g. [82], [83]) have been reported to apply

shell stability concepts to simulate the bending response of carbon nanotubes.

6.2 Ovalization Instability

A simplified ovalization solution for transversely-isotropic cylinders under bending and
pressure can be obtained, employing an energy formulation similar to the one presented in

section 5.2.3. This time, the values of pressure p, bending moment M and longitudinal stress

o are normalized by P, , M, and &, respectively:

3

Per =43El—1t (6.1)
r(-vyv,)

- E,,rt?

M, =—2—— (6.2)
q\ll_V12V21

5o Eat (6.3)

’ rq\/]-_ VoV

where E,, and E,,are the elastic uniaxial modulus for the hoop and longitudinal direction, v,,

and v,, are Poisson’s ratio and @ =./E,,/E,, (Note in section 2.2.2). Curvature k, which is
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expressed as the ratio of the relative rotation between the two end sections of the cylinder
segment over their initial distance, is normalized by:

P S (6.4)

I‘Zqﬁll—vlzv21
It is noted that, when @ =./E,, /E,, =1 (isotropic material) the values of p,, M,, k, and &,

are equal to the normalization values p,, M., k, and o, used in Chapter 5 for isotropic

cylinders, respectively.

Following the energy formulation, presented in section 5.1.2, and including the effects of
pressure in ovalization instability, the potential energy, in the case of pressurized bending, can
be described as:

Mm=U,+U; +V, -W, -MKk (6.5)
where, U, is the longitudinal bending strain energy, U. is the cross-sectional (hoop)

deformation strain energy, V,is the pressure potential and W, is the second-order of hoop
pressure stress o, = pr/t.

Enforcing minimization of IT in terms of a (dI1/6a=0) and employing the normalization

values P, , M_, k, and &, , the following ovalization-curvature relationship is obtained:

K°r
a= 6.6
11 (6.6)
a x°
=—= 6.7
g =1 (6.7)

Inserting the value of ovalization amplitude «, as described in (5.42), in the expression of
potential energy and enforcing equilibrium (oIT/ck =0), an expression for the bending

moment is obtained:

m:/m(l— 3" J (6.8)
21— 1)

Furthermore, closed-form expressions for the longitudinal stress o, as well as the radii of

curvature at the deformed configuration 1/r,(@) are obtained:

o 3K . K2
% a- O+—__sin30 6.9
5, K‘(( 4(1_f))5|n +4(1_f)sm j (6.9)
2
! =1[1+ 3« coszej (6.10)
r,0) r 1-f

The dimensionless expressions (6.6)-(6.10) are identical to the ones obtained in Chapter 5 for

isotropic cylinders.
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In the sequence, the analytical expressions for the ovalization path presented in earlier studies
can now be written, using the present normalization, which allows their direct comparison with
(6.8). These expressions are:

m Kedward [87]:

2
m= m{l—%j (6.11)
m Stockwell and Cooper [89]:
m=K7r(1—§K2—§K4J (6.12)
2 2
m Libai and Bert [90]:
mzkﬂ(l—§K2+§K4j (6.13)
2 8
m Harursampath and Hodges [93]:
m=K7Z(1—§K2+EK4) (6.14)
2 8

In Fig. 85 the ovalization path obtained from the present finite element technique is compared
with expressions (6.11)-(6.14) for the case of unpressurized bending. The comparison shows
that despite its simplicity, Kedward’s expression (6.11), which is basically the Brazier solution
[62], provides a better prediction than the more elaborate formulae proposed in [89], [90], [93].
The fact that this simple expression (6.11) provides very good predictions has also been noted

in previous studies [76].
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Fig. 85 Ovalization pre-buckling path; numerical results compared to analytical expressions ([87],
[93], [90], [89])
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6.3 Bifurcation Instability

In this section uniform wrinkling instability of transversely-isotropic cylinders is examined
numerically. Regarding numerical implementation issues, a 16™ degree expansion in equations
(2.150) is found adequate for the cases of interest as it is illustrated in Fig. 86, and a spherical
arc-length procedure that monitors selected degrees of freedom of the “‘tube-element’” was
employed (section 2.7). Furthermore, an initial series of numerical results with both hypoelastic
and hyperelastic constitutive modeling was conducted and no difference in terms of the
calculated buckling and post-buckling response was found. It is mentioned that, for the majority

of the results the A/ ratio is considered equal to 3/2, unless mentioned otherwise, whereas

the anisotropy parameter S value ranges between 1 and 10.

1.00 ‘
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0.95 1 NFR=12 ]
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0.90 +H —NFR=8 7
NFR=6 // /

normalized moment(m)

\
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0.75 \ T !

0.30 0.32 0.34 0.36 0.38 0.40 0.42 0.44
normalized curvature(k)

Fig. 86 Effect of the degree of trigopnometric expansion used in equation (2.150) (r/t=100, S =3)

A comparison between results from the present numerical formulation and numerical results
reported in [91], is offered in Fig. 87 for a cylinder with AS3501 material, 0° layers and
diameter-to-thickness ratio D/t equal to 100, in terms of buckling moment and curvature. The
comparison of these two numerical procedures, as shown in Fig. 87, is very good and validates
the efficiency of the present formulation. It is noted that according to the analysis conducted in

[91], ovalization instability occurs at curvature x,,=0.486 and moment m_,=0.976, whereas
buckling occurs at lower values of curvature and moment (x, =0.369 and m,=0.915), as

indicated by the symbol ‘1’ in Fig. 87. The present numerical results indicate similar behavior

with ovalization limit point at x,,=0.480, m,=0.954, and bifurcation at x, =0.354,
m,, =0.882, denoted by the symbol “|".
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Fig. 87 Comparison of numerical results, arrows (1) denote the critical and ovalization points

obtained from [91] and arrows (|) denote the corresponding points calculated herein

Subsequently, the bifurcation and post-buckling response of transversely-isotropic cylinders
with radius-to-thickness ratio between r/t 10 and 720 is examined for different levels of
anisotropy. The response of thin-walled cylinders with r/t equal to 100 and 720 with emphasis
on the bifurcation point is depicted in Fig. 88 and Fig. 89, respectively, for different values of
the anisotropy parameter S. In all cases, bifurcation occurs before a limit point is reached and
the initial post-buckling behavior is unstable, characterized by a “‘snap-back’ of the m—-«
path. Furthermore, the results show that the location of bifurcation on the m—x« primary path,
as well as the post-buckling behavior depend on the level of anisotropy S. More specifically,
increasing the level of anisotropy, bifurcation occurs earlier on the normalized prebuckling

path. For the case of thin-walled cylinder (r/t =720) the buckling curvature «, ranges from
0.390 for the isotropic case (S =1, E,,/ E;;=1), t0 0.343 for S=10 (E,, / E;; =12.03).

Subsequently, the bifurcation and post-buckling response of transversely-isotropic cylinders
with radius-to-thickness ratio between r/t 10 and 720 is examined for different levels of
anisotropy. The response of thin-walled cylinders with r/t equal to 100 and 720 with emphasis
on the bifurcation point is depicted in Fig. 88 and Fig. 89, respectively, for different values of
the anisotropy parameter S. In all cases, bifurcation occurs before a limit point is reached and
the initial post-buckling behavior is unstable, characterized by a *‘snap-back’” of the m—-«
path. Furthermore, the results show that the location of bifurcation on the m—x primary path,
as well as the post-buckling behavior depend on the level of anisotropy S. More specifically,

increasing the level of anisotropy, bifurcation occurs earlier on the normalized prebuckling
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path. For the case of thin-walled cylinder (r/t =720) the buckling curvature x, ranges from
0.390 for the isotropic case (S =1, E,,/E;;=1), t0 0.343 for S=10 (E,,/E,;;=12.03).

Numerical results from a thick cylinder (r/t=10) are shown in Fig. 90 and Fig. 91. A
significant shift of the location of the bifurcation point is observed, as the anisotropy parameter
S increases. It is noted that the material properties of the cylinder in Fig. 91 are obtained from

the paper of Wang et al [95], and are the properties of single-walled carbon nanotubes,
calculated from molecular dynamics.
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Fig. 88 Numerical results for different values of anisotropy parameter S (r/t=100)
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Fig. 89 Numerical results for different values of anisotropy parameter S (r/t=720)
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Fig. 92 Buckling analysis for three different 1/ u values keeping the G° = E,, / E,, parameter

constant

Fig. 85 shows the dependence of the buckling (bifurcation) point on the value of the A/ u
ratio, keeping the E,,/E,, ratio constant (constant parameter G°). These results indicate that
the A/ u ratio has no effect on the bending response of isotropic cylinders. However, when the

longitudinal direction is reinforced with respect to the hoop direction, buckling occurs at lower

values of «, as the value of the A/ ratio increases. It is worth mentioning that the A/ x ratio
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is controlled by the Poisson’s ratio v,,, as shown by equation (2.90), and can be expressed as

follows:

A2 (6.15)

u 1-2v,

Next, a simple analytical formulation, as in Chapter 5, is employed, adopting the “*equivalent
cylinder’” concept, initially proposed in [96]. This analytical methodology is extended herein to
analyze uniform wrinkling bifurcation of transversely isotropic cylinders. The prebuckling state
of stress and deformation are expressed by (6.9)-(6.10). Furthermore, the buckling zone
location is assumed in the vicinity of &=x/2. Following the same procedure adopted for
isotropic cylinders, one readily obtains the same third-order algebraic equation for the critical

curvature x,, :

1 1 3
1_ _ 2 - 1—_ 2 :0 616
KCF( 1_ f KCI'J ‘\/5( 1_ f KCF} ( )

which has the following closed-form solution:

K, = % - % Jabs[3(2 - f)] cos (%Jr%arccos {LD (6.17)

abs[3(2 — )2

It is noted that the critical value of the normalized curvature «x, predicted by (6.17) is
independent of the level of anisotropy S . Fig. 88 and Fig. 89 show that this critical curvature is
a good prediction of the corresponding critical value calculated from the nonlinear finite
element technique for isotropic or nearly isotropic cylinders. The prediction is particularly good
for thin-walled cylinders. These figures indicate that, in the absence of pressure f =0, the
value x, =0.3811 obtained from analytical formula (6.17) is a reasonable estimate for relatively
low levels of anisotropy (S <3) and thin-walled cylinders. On the other hand, for higher levels
of anisotropy and for thick cylinders (Fig. 90) x, =0.3811 provides a rather poor prediction of
the critical curvature.

These observations lead to the conclusion that for high values of anisotropy the concept of
““local buckling’” hypothesis, which assumes no variation of stresses and strains in the hoop
direction within the buckling zone, loses its applicability. Fig. 93 and Fig. 94 provide good
evidence for this argument, showing the buckling modes of an isotropic cylinder (S =1) and
two cases of anisotropy (S =3 and 10) for two r/t ratios (r/t=10 and 720). The mode for the
isotropic case is characterized by a smooth buckle in the hoop direction located around
6 =12 location, that ““dies out’’ rather quickly (especially for thin-walled cylinders). On the
other hand, the buckling modes for the anisotropic cases have the form of multiple waves

within the compression zone. Those waves become more pronounced when the value of the
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anisotropy parameter S increases and therefore the variation in the hoop direction is more

significant.

N

an
\_/

(s =3, r/t=10)

dh

(s =10, r/t =10)

Fig. 93 Buckling modes for a thick cylinder (r/t =10); higher values of anisotropy parameter

S result in greater variation in the hoop direction
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Fig. 94 Buckling modes for a thin cylinder r/t =10, higher values of anisotropy parameter S result

in greater variation in the hoop direction
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Furthermore, the variation of the buckling wavelengths, with respect to the level of anisotropy,
is shown in Fig. 95. A significant dependence of the value of L, in terms of anisotropy level is
observed. This variation is more significant for thicker cylinders and especially when
anisotropy effects are more pronounce. In these cases the “‘local-buckling’’ hypothesis is longer
applicable, as it can be confirmed by Fig. 93 and Fig. 94. It is noted that the buckling half-

wavelength L, is normalized by the cylinder diameter D .

0.4

-o-r/t=100 r/t=120

0.3 71 =-r/t=480 —-r/t=720 —

0.2

0.1 1

normalized half wacelength (Lhw/D)

0.0

0 1 2 3 4 5 6 7 8 9 10
anisotropy parameter (S)

Fig. 95 Numerical results of the buckling half-wavelengths with respect to anisotropy level S

6.4 Imperfection Sensitivity

The influence of initial imperfections is examined on the bending response of initially straight
transversely-isotropic cylinders. The initial imperfections are assumed periodic, in the form of
the buckling mode, obtained from an eigenvalue analysis on the pre-buckling path at the stage
where bifurcation occurs. These instability modes were presented in Fig. 93 and Fig. 94. The

imperfection amplitude & is defined as previously by the ratio of the total wave height W, over
the cylinder thickness t (& =W, /t).

As shown in an earlier section, the post-buckling behavior of perfect transversely-isotropic
cylinders is analogous to the behavior of isotropic cylinders, which exhibit a snap-back
behavior and this indicates a sensitivity of the behavior in the presence of initial imperfections.
Therefore, a sensitivity of the behavior is expected in the presence of initial imperfections.

Numerical results on transversely isotropic cylinders subjected to bending show that the value
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of the ultimate bending moment m_,, is reduced as the imperfection amplitude increases and

X

the buckling response becomes smoother.

The bending behavior of cylinders with r/t equal to 100 and 720 is shown in Fig. 96 and Fig.
97, respectively, in the presence of initial imperfections. It is numerically confirmed that very
small geometric imperfections (i.e. imperfections with amplitude equal to a small fraction of the
cylinder wall thickness) may influence the maximum bending capacity.

The maximum moment reduction in these cases is depicted in Fig. 98 and Fig. 99, in terms of
initial imperfection amplitude. Assuming that the variation of the m__ /m_ ratio in terms of &
follows an exponential expression of the form:

Mo /M, =1-C¢&" (6.18)
it can be easily shown that the value of the exponent n that fits the numerical results is equal to
2/3, whereas the value of C depends on the r/t ratio and the value of anisotropy level S. The
value of the exponent n=2/3 is in complete accordance with the corresponding value from the

asymptotic theory [41].
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Fig. 96 Imperfection sensitivity of a transversely-isotropic cylinder; (a) entire m—x path and (b)

detail at bifurcation
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Fig. 97 Detail of the imperfection sensitivity of a transversely-isotropic cylinder (r/t =720, S =3)
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Chapter 7
BENDING OF THIN-WALLED CYLINDERS IN THE INELASTIC
RANGE

Bending instabilities in long metal thin-walled cylinders, bent beyond the elastic regime, are
examined in the present Chapter, extending the results of Chapters 5 and 6 for elastic cylinders.
This constitutes a problem with significant applications for the structural integrity of chimneys,
tubular towers and low-pressure water pipelines. The bending response is analyzed numerically,
using the ‘“‘tube-element’” technique and appropriate constitutive models to account for
inelastic material behavior. The numerical results, initially, refer to the prediction of plastic
bifurcation loads into a uniform wrinkling state, and the corresponding post-buckling response.
Subsequently, the phenomenon of buckling localization in metal cylinders is examined.

Equation Section 7

7.1 Introduction

The problem of inelastic bending involves both material and geometric nonlinearities.
Material nonlinearities are due to the elastic-plastic behavior of the material, whereas geometric
nonlinearity arises since the early loading steps from the distortion of the cross-section along
the cylinder (ovalization-Brazier effect [62]). As bending proceeds, the geometric nonlinearity
becomes stronger with the appearance and growth of ripples on the compression zone.
Eventually, the combination of material inelastic behavior and wrinkle formulation leads to the
catastrophic collapse of the cylinder in the form of localized buckling deformation. The present
work focuses on the simulation of the mechanical behavior of thin-walled cylinders, accounting
for the above phenomena.

Previous experimental works have confirmed that upon buckling, thinner cylinders develop
short wavelength periodic wrinkles on the compressed side of the shell, which very soon result
in local buckling and sudden collapse of the shell [97], [98], [99]. In thin-walled cylinders, this
buckling collapse mechanism usually takes place before a limit moment is reached on the
ovalization path and, therefore, bifurcation instability is considered to be the critical failure
mode, as opposed to relatively thick cylinders, such as those employed in marine pipelines,
where an ovalization limit point is reached before cylinder wall wrinkles and ovalization

constitutes the governing instability type [97], [100].
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A numerical methodology for analyzing the ovalization process in the plastic range was first
introduced by Ades [101]. In this study the limit (ovalization) moment of an elastic-plastic long
cylinder was obtained, assuming that the cross-section ovalizes into an elliptical shape, and
considering the J, deformation theory of plasticity to describe inelastic material behavior. This
study can be considered as a simple and approximate extension of Brazier’s [62] solution in the
inelastic range. The limit point obtained in [101] was found to occur at lower levels compared
to the corresponding values of limit moment and curvature in the elastic case. Gellin [102]
considered J, deformation theory of plasticity to determine the limit moment and the
corresponding curvature. The basic model was related to a uniform ovalization along the
cylinder axis, where nonlinear kinematic relations from ring deformation theory were
employed, enforcing the condition of inextentionality. Analogous formulations for ovalization
instability were considered by Fabian [103], with the J, flow theory to be incorporated in the
solution methodology. Motivated by the mechanical behavior of offshore pipelines, ovalization
instability in relatively thick cylinders (7.5<r/t <40) was extensively examined by Shaw and
Kyriakides [104], considering extentional ring kinematics and incremental (flow) plasticity
models. The results obtained in [104] were presented in the form of interaction diagrams of
pressure versus curvature. This work was further extended by Corona and Kyriakides [105] and
the interaction diagrams presented in [105] were supported by experimental data (r/t=12.3 and
17.4). Analogous interaction curves and conclusions were drawn in the finite-element
investigation of Karamanos and Tassoulas [106]. The numerical results of this study were
found to be in very good agreement with the experimental data reported in [105]. Theoretical
models for the ovalization mechanism in circular cylinders under bending were also depicted by
Elchalakani et al. [99], where the validity of these models was confirmed with experiments
(10<r/t<20). These studies have shown that the instability of ovalization in the inelastic
region has a nonlinear behavior, which can not be described by closed-form analytical
expressions.

This bifurcation from the ovalization primary path occurs either before or beyond reaching a
maximum (ovalization) load, depending on cylinder thickness. This results in the development
of axial ripples in the compression zone, and expresses another governing instability mode,
referred to as buckling. Due to the presence of material and geometric nonlinearities this
instability requires a numerical investigation. A tool for detecting bifurcation and uniqueness of
solution in the plastic range is offered by the theory of Hill [32], [107], which employs the
concept of the so-called “*‘comparison solid’’ as described in section 2.8. However, it has been
shown that, in general, buckling predictions based on this theory are sensitive to the choice of
plasticity constitutive equation. Generally, bifurcation loads in thin-walled structures calculated
using flow theories of plasticity consistently overestimated buckling loads obtained in tests. On

the other hand, buckling predictions based on deformation theories have been shown consistent
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with test results for a range of loading paths in the vicinity of proportional loading. In the early
studies of Batdorf [35] and Sanders [108] it was suggested that this difficulty could overcome if
the smooth yield surface was discarded, and a sharp corner was developed in the yield surface
at the loading point. A more sophisticated flow theory that permits corner formation, namely
the slip theory, was suggested by Batdorf and Budiansky [109]. Furthermore, Christoffersen
and Hutchinson [110] proposed a new “‘corner yield surface’’ theory, which has been applied
for shell bifurcation calculations, post-buckling response and imperfection sensitivity (e.g.
[111], [112]).

Numerical studies on the uniform wrinkling of bent cylinders were reported by Gellin [102],
where bifurcation in the inelastic range was detected at loads lower than the limit point
(30<r/t<100). Bifurcation was investigated in a way similar to the elastic study of Fabian [41]
but no further details on the numerical technigue were given in [102]. The numerical model was
based on the implementation of J, flow theory for the moment-curvature path, while J,
deformation theory was adopted for bifurcation calculations. A more detailed study for the
inelastic cylinder stability under the combined action of bending and pressure was presented in
a subsequent study of Fabian [103], based on an asymptotic analysis for smooth yield surfaces
and following a J, flow theory

Experiments on plastic buckling of thick steel and aluminium cylinders (30<D/t <80) were
presented by Reddy [113] to elucidate the buckling process for the case of monotonic pure
bending. It was found that for this range buckling takes place well into the inelastic range. In
those tests, a considerable scatter was observed in terms of critical strains. An attempt was
made to compare the corresponding wavelengths with Batterman’s [34] analytical expressions
for axially loaded inelastic tubes under uniform compression, using both J, deformation and J,
flow theories of plasticity.

An extensive experimental investigation on uniform wrinkling of thick-walled metal cylinders
was reported by Kyriakides and Ju [97]. Carefully controlled and monitored bending
experiments were conducted with aluminium cylinders of r/t ratios ranging between 9.8 and
30, bent up to failure. Bifurcation instability was found to occur in the plastic regime before or
after the ovalization limit point, dependent on the D/t ratio, and confirming Reddy’s [113]
observations regarding the values of buckling wavelengths. In a subsequent work of Ju and
Kyriakides [81], a semi-numerical technique was presented and the results were compared
directly with the experimental results reported in [97]. It is interesting to note that, in that study,
the inelastic material behavior was modelled through the J, flow plasticity theory with isotropic
hardening, whereas the detection of bifurcation was examined using the J, deformation
plasticity moduli. The overprediction of the calculated wrinkle wavelengths reported in [81]

was recently re-examined in the work of Corona et al. [114], and was attributed to the effects of
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anisotropy. The book of Kyriakides and Corona [115] constitutes a notable publication that
addresses the problem of buckling and collapse of inelastic cylinders, and summarises the
above experimental and semi-numerical studies.

Karamanos and Tassoulas [116], [117] also investigated the inelastic buckling response of
cylindrical shells (r/t=9 and 17.4) introducing a nonlinear finite element, referred to as *‘tube-
element’’, in its original form. The “‘tube-element’” is also employed and further enhanced for
the purposes of the present study. To verify the validity of this numerical formulation,
computational results were compared with experimental data from both long and stub tubular
beam-column tests [118], [119], [120]. The study was motivated by the structural integrity of
relatively thick deep offshore tubular members. It was shown that, beyond the limit point, the
tube response was characterized by a localization of ovalization, which upon formation grows
rapidly, reducing the moment capacity of the member and resulting in its failure.

In addition to limit load and uniform wrinkling instabilities, experiments have demonstrated
that shell bending failure is ultimately characterized by another mode; distinct localization of
deformations has been observed in a number of experiments [97], [98], [99] especially for thin-
walled cylinders, where the final collapse configuration involves one main buckle, rather than
periodic wavy-type buckle patterns. This collapse mechanism can be considered as an abrupt
deviation from the periodic buckling patterns. Upon localization, cylinder deformation
concentrates in one small region, resulting in the structural failure of the shell. Several
approaches to analyze the development of localization can be found in [112] for the case of
inelastic cylinders under uniform axial compression and in [111], [121] for cylindrical panels.
Moreover, in [121] simple models have been presented in an attempt to associate load
maximum and the localization of buckling patterns.

To determine initial post-bifurcation behavior of structures undergoing inelastic deformations
an extension of Koiter’s theory [3] is a rather complicated task because of elastic-plastic
material behavior. An attempt to develop such an asymptotic theory in the plastic range has
been proposed by Hutchinson [33] for the particular case of smooth yield surfaces and for a
single-mode buckling. In particular, Hutchinson presented an asymptotic expression for the

load parameter A in terms of the amplitude 7 is a perturbation parameter of the eigenmode,

associated with the lowest bifurcation load A_ , as follows:

cr !
A=A, +An+An"" +... (7.1)
In this relation, written in the framework of Koiter’s theory (Appendix), 4, has been shown to
be a positive constant in general, showing that bifurcation takes place under increasing load,

whereas 4, is found to be a negative constant. The term containing coefficient 4, and exponent
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£ makes a contribution only within the elastically unloaded zone. Coefficients 4,4, and
exponent S are to be determined for each specific problem.

In the framework of the present study, the problem of inelastic tube bending is examined using
the numerical technique presented in Chapter 2. Various aspects of bent cylinder response are
discussed including buckling moment, post-buckling behavior, imperfection sensitivity and
buckling localization. The ‘‘tube-element’” is employed so that this problem and the
mechanisms that govern it become more accessible. In particular, the numerical approach is
based on a large-strain hypoelastic J, flow plasticity model; whereas bifurcation on the primary
m—x path to a uniform wrinkling deformation pattern is detected using the comparison solid
concept and employing the J, deformation theory moduli (section 2.8). Furthermore, uniform

wrinkle growth and localization of buckling patterns are investigated numerically.

7.2 Ovalization Instability

The first problem examined in this study concnerns a long thin-walled cylinder (r/t=120)
bent in the inelastic range with no variation of deformation along the length, so that end effects
are neglected.. Under this assumption the cylinder exhibits ovalization and limit-moment
instability, whereas wrinkling bifurcation is not possible. Therefore, a two-dimensional analysis
is conducted, restraining the out-of-plane (warping) cross-sectional deformation parameters
c,.7, (defined in section 2.6). The ovalized pre-buckling equilibrium path is calculated using
the J, flow theory to account for inelastic effects.

Normalization values similar to the ones used in the analysis of elastic cylinders are employed

for moment, curvature and stress. The values of moment M , curvature k and stress o are

normalized by M_=Ert’/«1-v® | k, =t/(r’v1-v*) and o,=Et/(rv1-v*) respectively.
Using the closed-form expressions obtained in Chapter 5 for elastic cylinders, it is possible to

estimate the curvature «, at which first yield occurs, considering ovalization and pressure

effects. In particular, longitudinal and hoop stresses in the absence of pressure are described by
(7.2) and (7.3) (given in section 5.1.2):

O-x(e):K|:(l_§K2jSin9+£K23in3(9:| (7.2)
o, 4 4
,(0.£) __3 (ﬁj k20526 (7.3)
O 1-v2\t

Taking into account that the maximum stresses o, (0) and o,(6,p) are located at 6 =7/2

and p=+t/2, the above expressions can be written as:
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o, = Uel((l— K’ ) (7.4)

1 3«°
o, =%0, 7.5
0 e \/]? 2 ( )

Assuming a von Mises yield criterion, as described below:
cl+o.-0,0, =0'§ (7.6)

and inserting (7.4)-(7.5) into (7.6) one results in an algebraic equation in terms of the first-yield

curvature x, can be calculated in terms of the value of yield stress o, . In Fig. 100 the first-

yield curvature «x is shown graphically for an unpressurized cylinder, in terms of the

geometric/material parameter S =(o-yr/Et)\/1—v2 . The dotted line corresponds to the yield
curvature x, calculated from (7.6), accounting for ovalization, whereas the continuous red line

represents the yield curvature when ovalization is neglected. In the latter case, employing

simple strength of materials formulae (o =Mr /I, M =EIlk) one readily obtains x, =S . For a
yield stress o, equal to 300 MPa the values of S considered in the horizontal axis of Fig. 100

correspond to r/t ratios ranging between 50 and 300. Therefore, in the absence of a closed
formula describing first yield curvature considering ovalization effects, expressions (7.4)-(7.6)

can be conservatively used to give an estimate of «, .

sl S :
/
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©
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(@)]

0.05 ‘ ‘ ‘

0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40
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Fig. 100 Variation of yield curvature x, with respect to the geometric/material parameter

S=(o,rl/ Et)v1-v? , considering or not ovalization effects, represented by dotted and continuous

lines respectively
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In Fig. 101, the ovalizationm —x path for thin-walled long inelastic cylinders is shown in
terms of the applied curvature, for three different values of the S parameter. These results
show that beyond vyielding the moment ovalization capacity of the cylinders is decreased,

resulting in a limit moment, which is lower than the limit moment of the corresponding elastic

cylinder.
1.0 (0355) __ elastic
== -_-I - _-\- --
(0.276) /i/: T
—0.8 A ¢ T
S
= (0.197) -
: P —
€ 0.6 T
o
S
D
NO0.4
T
£
o
<0.2
0.0
0.0 0.1 04 0.5

0.2 0.3
normalized curvature (K)

Fig. 101 Ovalization primary path of inelastic cylinders for different values of parameter S under
bending loads and comparison with elastic cylinder solution; arrows (|) denote the first yielding

points and arrows (1) denote limit points, both obtained by the finite elements technique (r/t =120)

7.3 Uniform Wrinkling

In this section the possibility of bifurcation on the ovalization prebuckling m—x path is

investigated for thin-walled cylinders. In this analysis, only one half-wavelength L, of the
cylinder is considered, discretized with four ‘‘tube-elements’”, and appropriate periodic

boundary conditions are imposed. The half-wavelength L, value is not known a priori and,

therefore, a sequence of analyses is conducted for each case so that the actual wavelength
corresponds to the “earliest’ bifurcation point on the primary path.

As discussed in section 2.8 the detection of bifurcation from the uniform-ovalized pre-
buckling state to a uniform wrinkling state is based on the consideration of the positive
definiteness of the quadratic functional F given by (2.177), and discretized as described in
section 2.5. Previous studies have demonstrated the predicament of flow theory compared to the

deformation theory in predicting reasonable bifurcation loads for various buckling problems.
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Therefore, material moduli based in J, deformation theory are employed for the purposes of the

present study.

The eigenmode associated with the zero eigenvalue of the discretized functional referred to as

““buckling mode’” (Fig. 102a) can be imposed as an initial geometric imperfection. The

imperfection amplitude & is defined, similar to the previous Chapters, by the total wave height

W, normalized by the cylinder thickness t, so that & =W, /t (Fig. 102b). In the sequence, the

initially imperfect cylinder can be analyzed, using a nonlinear step-by-step analysis that

employs an arc-length algorithm. Regarding the numerical implementation of this procedure, a

spherical arc-length algorithm is employed that monitors the increments of translational degrees

of freedom Au{®,Au{ at each node. Moreover, a 16" degree expansion for the discretized in-

plane and out-of-plane displacements of the reference line w(#),v(8),u(d) and y(8), with 23

equally spaced integration points around the half-circumference, is adopted.
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Fig. 102 Buckling mode of an elastic-perfectly plastic cylinder; (a) buckling mode that corresponds

to uniform wrinkling, (b) amplitude of the initial imperfection (r/t=120, o, /E =0.0023)

In Fig. 103 the primary ovalization path is plotted with dashed lines, and the bifurcation point

on this path is denoted. Uniform wrinkling bifurcation precedes ovalization limit point and

governs the structural behavior and this is in accordance with previous results (e.g. [81]) in

thin-walled cylinders. The effect of initial geometric imperfections on the bending response is

also given in Fig. 103. A first important observation is that the presence of very small initial

wrinkling imperfections (i.e. imperfections of magnitude that corresponds to a small fraction of

the wall thickness t) cause a significant decrease of bending stiffness of the cylinder.
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Imperfection sensitivity in the inelastic range for a specific case is also examined, and the

numerical results are shown in Fig. 104 (r/t=120 and o,/E =0.0023). The results indicate a

reduction of the maximum moment for the case considered.
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Fig. 103 Bending response of an elastic-perfectly plastic cylinder; (a) complete m—x path (b)
detail at bifurcation point (r/t=120, o, / E =0.0023)
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Fig. 104 Variation of m_, /m, vs imperfection amplitude & (r/t=120, o, /E =0.0023)

7.4 Localization of Buckling Patterns
In the previous results, bifurcation from a uniform ovalized configuration into a state of

uniform axial wrinkling has been investigated. It was shown that thin-walled cylinders of high
r/t ratios initially ovalize and, subsequently, short wavelength wrinkles are developed in the
compression zone. However, these thin-walled cylinders soon after uniform wrinkles appear,
exhibit localization of the buckling patterns and buckle locally in the form of a kink at a
suddenly dropping moment.

In previous studies, localization of buckling deformation has been investigated for thick-
walled tubular members under bending [114] and curved panels under axial compression [121].
In those studies a longer cylinder segment has been considered, which is m times multiple of
the half wavelengths, and appropriate periodic end conditions are applied. In this initial
configuration, an additional imperfection is imposed in the shape of the uniform wrinkling
buckling mode, as described in the previous section, multiplied by the following factor that

expresses localization:

f=1+¢& cos(mzz ] (7.7)

hw
where z is the coordinate along the cylinder axis of the three-wavelength cylinder, m is the
number of half wavelengths considered within the segment and & is the imperfection

parameter associated with localization mechanism, affecting the amplitude of the waves.
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Clearly, if & =0, uniform wrinkling conditions are imposed. It is noted, that the above approach

is also adopted in the present work.
In Fig. 105 the non-uniform initial shape of the buckling mode, as expressed by (7.7), is
illustrated. In this Figure, the cross-sectional displacements are magnified for visualization

purposes. In Fig. 106 the m—x equilibrium curve for a steel cylinder with r/t=120 and

o,/ E =0.0023 are shown. A uniform initial imperfection with amplitude &=0.072 in the form
of the uniform wrinkling buckling mode is considered with two values of the localized
imperfection parameter & (&, =10" and 10). The numerical results indicate that buckling
patterns do localize. The presence of small amplitudes of the localization factor & affect
significantly the bending response of the cylinder, and verify the experimental observations that
localization of deformation is responsible for the sudden and catastrophic failure of the
cylinder. The deformed configuration of the cylinder, at the development of localization, is
given in Fig. 107 for & =107. The cylinder shape shows that a wrinkle, which is initially
slightly larger than the other wrinkles, grows significantly more than the others, resulting in

localization of the buckling pattern and sudden reduction of moment capacity.
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Fig. 105 The localized buckling mode for & =1, where a magnification of the buckling patterns is

applied for visualization purposes (r/t=120, o,/ E =0.0023)
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and localized (& =0.07, & =10" and £, =107 initial imperfections; (a) entire m—x paths and (b)

detail at bifurcation point. (r/t=120, o, /E =0.0023)
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Chapter 8
CONCLUSIONS

The present study concerns the stability analysis of long thin-walled cylinders, under structural
loads and pressure. Bending loading was mainly investigated, whereas uniform axial
compression was also analyzed. The work was motivated by the need for a better understanding
and more accurate prediction of bifurcation and postbuckling response of thin-walled
structures.

A numerical investigation of the problem was adopted, using a nonlinear finite element
formulation, and adopting a modified Newton-Raphson solution scheme, in the framework of
an “arc-length” continuation algorithm, as presented in Chapter 2. The main feature of the
numerical technique is the use of a special-purpose finite element, called “tube-element”, which
combines longitudinal (beam-type) deformation with cross-sectional (shell-type) deformation in
an efficient manner. This element has been employed elsewhere for the analysis of relatively
thick tubes; in the present work it was properly enhanced for the buckling and postbuckling
response of thin-walled cylinders.

Elastic cylinders have been modelled through both hypoelastic and hyperelastic large-strain
material models, which include the effects of transversely anisotropic material behavior. The
hypoelastic model, developed for the purposes of the present study, relates a stress rate, co-
rotational with the local anisotropy axis, with the rate-of-deformation tensor. The hyperelastic
constitutive equation, based on a quadratic free energy function, allows a straightforward
representation of anisotropy. Both models were numerically implemented and incorporated in
the finite element technique. Inelastic material behavior was considered through a large-strain
J, flow plasticity model, whereas bifurcation on the primary equilibrium path is detected
through Hill’s comparison solid concept and using the J, deformation plasticity instantaneous
moduli.

Favorable conclusions, as to the accuracy and efficiency of the numerical technique, to
simulate the nonlinear response and buckling of thin-walled cylinders were drawn in Chapter 3,
where excellent agreement with available results from a semi-analytical solution was found for
the case of an uniformly compressed circular cylinder in the presence of initial axisymmetric
imperfections. Furthermore, in Chapter 4, uniformly compressed oval cylinders were analyzed.

The numerical results compare very well with existing semi-analytical asymptotic results on the
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initial postbuckling response and the initial imperfection sensitivity. Furthermore, the present
numerical results indicated a “snap-back” postbuckling path, and verified rigorously
experimental observations on the load carrying capacity reserves of an oval cylinder, beyond
the bifurcation point. It was also shown that hypoelastic and hyperelastic models provided very
similar results.

The bending response of elastic isotropic cylinders was excessively examined in Chapter 5.
This constitutes a challenging problem that combines ovalization and bifurcation instability,
and is characterized by a highly nonlinear prebuckling state. The effects of pressure, initial
curvature and initial ovality, as well as the influence of the radius-to-thickness ratio were
investigated. The results showed that the response is governed by the strong interaction of
cross-sectional prebuckling ovalization, and bifurcation instability, in the form of uniform
periodic wrinkles along the cylinder. On the other hand, buckling was found to occur within a
limited region around the cross-section, called “buckling zone”. It was demonstrated that the
presence of relatively small initial longitudinal curvature may have significant influence on the
buckling behavior and the location of the buckling zone.

Assuming a constant state of stress and deformation within the buckling zone (referred to as
“local buckling hypothesis”), a simplified analytical bifurcation solution was also developed,
which resulted in closed-form expressions for the critical curvature, the critical moment and the
corresponding buckling wavelength of thin-walled elastic isotropic cylinders subjected to
pressurized bending, including the effects of initial longitudinal curvature and initial ovality.
The closed-form analytical expressions provide results of remarkable accuracy with respect to
the finite elements results, for relatively small values of initial curvature. Furthermore, the
analytical predictions were found closer to the numerical results for thin-walled cylinders.
Finally, the post-buckling behavior of elastic cylinders was illustrated in an elegant manner,
using a simple mechanical model, pinpointing the effects of ovalization and pressure (internal
or external).

The bending results of Chapter 5 were extended in Chapter 6, to investigate the nonlinear
response of transversely isotropic cylinders, with special emphasis on the influence of
anisotropy level. The response is governed by the interaction of ovalization and bifurcation
instabilities. Using the “local buckling hypothesis”, analogous analytical bifurcation
expressions are derived. However, as the anisotropy level increases, buckling did no longer
occur in a limited region, and the above hypothesis is no longer valid. By consequence, in such
cases, the analytical expressions do not always compare well with numerical results. Finally,
issues of imperfection sensitivity were examined numerically and the initial post buckling path
was found unstable, verifying the sensitivity of maximum moment on the presence of initial

imperfections.
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Finally, in Chapter 7 numerical results were obtained for long metal cylinders, which buckle
in the inelastic range. The present study refers to thin-walled cylinders, which may be used as
chimneys or water transmission pipelines, and is aimed at determining bifurcation in the plastic
range as well as simulating the formation of periodic buckling patterns along the cylinder axis,
and the development of localized buckling deformations (local buckling mechanism). Using the
numerical technique, which implements the comparison solid concept, discretized through the
“‘tube-element’’, the buckling moment and the corresponding uniform buckling mode were
obtained. Moreover, using this numerical formulation the transition of uniform to localized
wrinkling was demonstrated resulting in the sudden collapse of thin-walled cylinders.
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APPENDIX

Initial Post-Buckling Theory of Elastic Structures

Equation Chapter 9 Section 9

The initial post-buckling theory was initially introduced by Koiter [3], [4] and Budiansky [38].
In this initial form, the theory was limited to structures with linear pre-buckling behavior. This
is a quite usual case in structural mechanics, such as the cylinder under axial compression or the
sphere under uniform pressure. On the other hand, cylinder bending is characterized by a non-
linear pre-buckling state. An enhancement of the general theory to account for nonlinear
prebuckling behavior has been presented in the works of Cohen [39] and Fitch [40]. This theory
is briefly presented in this Appendix. The concepts of initial post-buckling and imperfection
sensitivity are summarized. It is noted that discussion is restricted to the case of a single
buckling mode.

It is supposed that under the loading q the elastic structure acquires displacements u, strains

¢ and stresses o . These field variables are required to satisfy the strain-displacement relation:
1
=L (u)+2 L, () 1)

where L, and L, are linear and quadratic functionals respectively.
The stress-strain relation is given by:

6 =H(e) 2)
where H is a linear functional.

The variational equation of equilibrium is:

[o-5£dv =[q-sudB ©)
\Y B

Expression (3) is a statement of the principle of virtual work and should hold for any admissible
variation displacement function ou. Furthermore, the strain variation 6¢ follows from (1). The
principle of virtual work guarantees equilibrium of the stress ¢ and loads q .
The occurrence of buckling can be detected considering a perturbation in the pre-buckling
solution u,, g, and o,:

u=A4,u,+nu,

e=1,8, +n¢g, (@)

0= A‘crco + 7761
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where 77 is a perturbation parameter. Substitution into the field equations, and keeping terms
linear with respect to 7 results in an eigenvalue problem. Solution of the eigenvalue problem
provides the buckling load 4, (lowest eigenvalue) and the corresponding buckling mode. It is
assumed that there is a single mode associated with the buckling load.
In order to investigate the behavior of the structure beyond bifurcation, the following relations
for the displacement, strain and stress are written:
U= AU, +7u, +n°u, + U, +....
e=Ag, +ne, +1n°e, + 178, +.... (5)
6 =16, +16, +1°6, +1°0, +....
Furthermore, the following asymptotic expression relating the load in the post-buckling regime
with the value of 7 with A is assumed:

/li=1+a77+b772+.... (6)

Substituting equations (5) into the principle of virtual work (3), and considering expression (6),
the values of a and b can be determined. The variation of A/A, with respect to 7
immediately after bifurcation is shown by the solid curves in Fig. 108 for three cases, a=0,
a=0,b>0and a=0,b<0.

A
\ 1
Path of imperfect e
system (n,<0)

Initial post-buckling path

rl max fp----

Asymmetric Path of imperfect
bifurcation system (n,>0)
?
Ny Moy n @)
A Initial
post-buckling
path
1
Initial
post-buckling Path of imperfect Symmetric
path system (insensitive unstable
to imperfections) bifurcation
T )
£ T () 0 ©
Fig. 108 Load-deflection curves for the post-buckling path (a) a=0, (b) a=0, b >0 and (c)
a=0b<0.
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Quite often, the case where a=0 occurs. In such a case, “symmetric” buckling is examined, so

that equation (6) is rewritten as follows:

A
= =1+bp? 7
2 7 (7)

In equation (7), b is the known Kaoiter’s initial post-buckling coefficient (sometimes referred to
as b-coefficient). If b>0 then the initial post-buckling path is stable (Fig. 108b) whereas the
case where b <0 corresponds to unstable initial post-buckling path (Fig. 108c).

To study the influence of initial imperfections, an initial displacement U is supposed to
characterize the unloaded, stress-free structure. It is assumed that the initial imperfection is in
the form of the first buckling mode

u=nu, (8
Using this imperfection, it is possible to obtain the following asymptotic expression between
the load A, the imperfection amplitude &, and the value of 7 :
[l—/%r}n+a772+b773+....=/%r§ 9)
In the case of a =0, there exists a maximum on the load-displacement path. Differentiation of

the above expression provides the maximum load A, as a function of the imperfection

2
A A
1 — Zmax +4a max_ | _ () 10
( A J ép[ A j (10)

where p is a parameter that depends on the nonlinearity of the prebuckling state. For linear

amplitude &:

pre-buckling state o is equal to unity. When « =0 the existence of local maximum on the

load—displacement path depends on the value of b. If b<0 a maximum load exists, and it is
given by the following asymptotic expression

7 NPT 7 I
e el w

or
On the other hand, no maximum exists when a=0 and b <0. In that case, the response of the
imperfect structure is monotonically increasing.
It is convenient, to refer to *‘quadratic structures’” and *‘cubic structures’” as those governed
by the cases a=0 and a=0, b<0, respectively. It is also noted that for *‘‘quadratic

structures’’

(1_ ﬂ's /ﬂ’cr) = 0{]§|l/2} (12)

whereas in imperfection ““cubic structures’’
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@A,/ 2,) = o[y (13)
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