
ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΙΑΣ 

ΠΟΛΥΤΕΧΝΙΚΗ ΣΧΟΛΗ 

ΤΜΗΜΑ ΜΗΧΑΝΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ ΒΙΟΜΗΧΑΝΙΑΣ 

 

Μεταπτυχιακή Εργασία 

ΧΡΟΝΟΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ ΒΑΡΔΙΩΝ ΔΥΝΑΜΟΛΟΓΙΟΥ 

ΟΔΗΓΩΝ ΑΜΑΞΟΣΤΟΙΧΕΙΩΝ ΜΕ ΧΡΗΣΗ ΓΡΑΜΜΙΚΟΥ ΑΚΕΡΑΙΟΥ 

ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΥ 

 

υπό 

 

ΣΚΙΑΔΟΠΟΥΛΟΣ ΕΥΑΓΓΕΛΟΣ 

Διπλωματούχου Μηχανολόγου Μηχανικού Πολυτεχνικής Σχολής ΑΠΘ, 2009  

 

 

Υπεβλήθη για την εκπλήρωση μέρους των 

απαιτήσεων για την απόκτηση του  

Μεταπτυχιακού Διπλώματος Ειδίκευσης 

2013 

 

Institutional Repository - Library & Information Centre - University of Thessaly
13/06/2024 07:08:42 EEST - 3.149.254.165



ii 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

© 2013 Ευάγγελος Σκιαδόπουλος 

 

 

Η έγκριση της μεταπτυχιακής εργασίας από το Τμήμα Μηχανολόγων Μηχανικών 

Βιομηχανίας της Πολυτεχνικής Σχολής του Πανεπιστημίου Θεσσαλίας δεν υποδηλώνει 

αποδοχή των απόψεων του συγγραφέα (Ν. 5343/32 αρ. 202 παρ. 2). 

Institutional Repository - Library & Information Centre - University of Thessaly
13/06/2024 07:08:42 EEST - 3.149.254.165



iii 

Εγκρίθηκε από τα Μέλη της Τριμελούς Εξεταστικής Επιτροπής: 

 

 

Πρώτος Εξεταστής Δρ. Αθανάσιος Ζηλιασκόπουλος 

(Επιβλέπων)                Καθηγητής, Τμήμα Μηχανολόγων Μηχανικών, 

                                    Πανεπιστήμιο Θεσσαλίας 

 

 

Δεύτερος Εξεταστής Δρ. Δημήτρης Παντελής 

                                    Καθηγητής, Τμήμα Μηχανολόγων Μηχανικών, 

                                    Πανεπιστήμιο Θεσσαλίας 

 

 

Τρίτος Εξεταστής Δρ. Γεώργιος Σαχαρίδης 

              Λέκτορας, Τμήμα Μηχανολόγων Μηχανικών, 

                                    Πανεπιστήμιο Θεσσαλίας 

 

Institutional Repository - Library & Information Centre - University of Thessaly
13/06/2024 07:08:42 EEST - 3.149.254.165



iv 

Ευχαριστίες 

Η παρούσα διπλωματική εργασία εκπονήθηκε στο τομέα Βελτιστοποίησης Συστημάτων 

Παραγωγής / Μεταφορών της σχολής Μηχανολόγων Μηχανικών του Πανεπιστημίου 

Θεσσαλίας στο πλαίσιο εμβάθυνσης του μεταπτυχιακού μαθήματος «Βελτιστοποίηση και 

Ροές σε δίκτυα με εφαρμογές σε συστήματα Logistics» υπό την επίβλεψη του Καθηγητή Δρ. 

Ζηλιασκόπουλου Αθανάσιου. 

Με την ολοκλήρωση της διπλωματικής μου εργασίας, απέκτησα Μεταπτυχιακό Δίπλωμα 

Ειδίκευσης στις «Σύγχρονες Μεθόδους Σχεδιασμού και Ανάλυσης στη Βιομηχανία». Κρίνω 

λοιπόν απαραίτητο να ευχαριστήσω θερμά τους ανθρώπους που με στήριξαν και με 

βοήθησαν για την ολοκλήρωση των σπουδών μου. 

Αρχικά θα ήθελα να ευχαριστήσω τον επιβλέποντα καθηγητή μου Δρ. Ζηλιασκόπουλο 

Αθανάσιο για την εμπιστοσύνη που μου έδειξε, όσον αφορά την ανάθεση του συγκεκριμένου 

θέματος.  Θα ήθελα επίσης να ευχαριστήσω θερμά το κ. Λόη Αθάνασιο - επιστημονικό 

συνεργάτη το εργαστηρίου βελτιστοποίησης συστημάτων του ΤΜΜ για το ενδιαφέρον και τη 

συνεχή στήριξη και βοήθεια σε κάθε βήμα αυτής μου της προσπάθειας. Επίσης, είμαι 

ευγνώμων στα υπόλοιπα μέλη της εξεταστικής επιτροπής της μεταπτυχιακής εργασίας μου,  

Δρ. Σαχαρίδης Γεώργιος, Δρ. Παντελής Δημήτριος, για την προσεκτική ανάγνωση της 

εργασίας μου και για τις πολύτιμες υποδείξεις τους. 

Τέλος θα ήθελα να ευχαριστήσω τους συμφοιτητές και φίλους μου Μπεσλεμέ Αντώνη, 

Παπαευσταθίου Χαράλαμπο και Δημήτρη Διαμαντή για τη πολύτιμη βοήθεια τους κατά τη 

διάρκεια των σπουδών μου, μα πάνω από όλα ευχαριστώ τους γονείς μου Κωνσταντίνο και 

Παρασκευή για όλα τα εφόδια που μου προσέφεραν και τους αφιερώνω τη διπλωματική μου 

εργασία. 

Σκιαδόπουλος Ευάγγελος 

Institutional Repository - Library & Information Centre - University of Thessaly
13/06/2024 07:08:42 EEST - 3.149.254.165



v 

ΧΡΟΝΟΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ ΒΑΡΔΙΩΝ ΔΥΝΑΜΟΛΟΓΙΟΥ 

ΟΔΗΓΩΝ ΑΜΑΞΟΣΤΟΙΧΕΙΩΝ ΜΕ ΧΡΗΣΗ ΓΡΑΜΜΙΚΟΥ ΑΚΕΡΑΙΟΥ 

ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΥ 

 

 

ΣΚΙΑΔΟΠΟΥΛΟΣ ΕΥΑΓΓΕΛΟΣ 

Πανεπιστήμιο Θεσσαλίας, Τμήμα Μηχανολόγων Μηχανικών Βιομηχανίας, 2013 

 

   Επιβλέπων Καθηγητής: Δρ. Ζηλιασκόπουλος Αθανάσιος, Καθηγητής Βελτιστοποίησης 

Συστημάτων Παραγωγής / Μεταφορών 

Περίληψη 

Η παρούσα μελέτη αφορά το χρονοπρογραμματισμό (rostering) μηχανοδηγών από ένα 

συγκεκριμένο μηχανοστάσιο σε βάρδιες. Η επίλυση του προβλήματος έγινε με τη χρήση ενός 

καινούργιου αλγόριθμου βελτιστοποίησης γραμμικού ακέραιου προγραμματισμού. Σκοπός 

μας ήταν η δημιουργία ενός ισορροπημένου, επταήμερου κυκλικού προγράμματος 

ικανοποιώντας τους εργασιακούς κανονισμούς και τις πολιτικές της Τραινοσε Α.Ε. 

Αρχικά περιγράφουμε το πρόβλημα και όλες της παραμέτρους που το απαρτίζουν. 

Στη συνέχεια γίνεται εκτενής αναφορά στη βιβλιογραφία και πως αντιμετώπισαν, σε 

διάφορες χώρες, το συγκεκριμένο πρόβλημα στη πράξη. 

Αναλύουμε κάποια σημαντικά μοντέλα βελτιστοποίησης και τις αδυναμίες τους και 

παρουσιάζουμε μία μαθηματική προσέγγιση του προβλήματος. Παράλληλα παρουσιάζονται 

και εξηγούνται, η αντικειμενική συνάρτηση και οι περιορισμοί του προβλήματος και 

επιλύονται αριθμητικά παραδείγματα. 

Institutional Repository - Library & Information Centre - University of Thessaly
13/06/2024 07:08:42 EEST - 3.149.254.165



vi 

Ο κώδικας που χρησιμοποιήθηκε για την υλοποίηση του αλγόριθμου, γράφτηκε σε 

γλώσσα προγραμματισμού C++ με τη βοήθεια του λογισμικού IBM ILOG, και τα απαραίτητα 

αριθμητικά πειράματα εκτελέστηκαν σε έναν από τους server του πανεπιστημίου. 

Η μελέτη ολοκληρώνεται με τη συγγραφή των συμπερασμάτων και αξιολογήσεων και 

γίνεται αναφορά σε προτάσεις για μελλοντικές προσεγγίσεις του συγκεκριμένου 

προβλήματος και βελτιώσεις στο συγκεκριμένο αλγόριθμο. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Institutional Repository - Library & Information Centre - University of Thessaly
13/06/2024 07:08:42 EEST - 3.149.254.165



vii 

                                 UNIVERSITY OF THESSALY 

SCHOOL OF ENGINEERING 

DEPARTMENT OF MECHANICAL & INDUSTRIAL ENGINEERING 

 

Postgraduate Work 

 

TRAIN DRIVER ROSTERING WITH LINEAR INTEGER 

PROGRAMMING  

by 

SKIADOPOULOS EVANGELOS 

MECHANICAL ENGINEERING, ARISTOTLE UNIVERSITY OF THESSALONIKI, 2009  

 

 

 

Submitted in partial fulfillment 

requirements for 

Postgraduate Specialization Diploma  

2013 

 

 

Institutional Repository - Library & Information Centre - University of Thessaly
13/06/2024 07:08:42 EEST - 3.149.254.165



viii 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

© 2013 EVANGELOS SKIADOPOULOS 

 

 

The approval of this postgraduate work by the Department of Mechanical and Industrial 

Engineering of the School of Engineering of the University of Thessaly does not imply 

acceptance of the writer’s opinions (Law 5343/32 article 202 par.2). 

 

Institutional Repository - Library & Information Centre - University of Thessaly
13/06/2024 07:08:42 EEST - 3.149.254.165



ix 

Approved by: 

 

First Examiner            Dr. Athanasios Ziliaskopoulos                              

(Supervisor)                Professor, Department of Mechanical Engineering     

   University of Thessaly                                                       

 

 

Second Examiner Dr. Dimitrios Pantelis 

                                    Professor, Department of Mechanical Engineering 

                                    University of Thessaly 

 

 

Third Examiner           Dr. George Saharidis  

Lecturer, Department of Mechanical Engineering, 

                                    University of Thessaly 

 

 

 

 

 

 

 

 

 

 

Institutional Repository - Library & Information Centre - University of Thessaly
13/06/2024 07:08:42 EEST - 3.149.254.165



x 

 

                                        Acknowledgements 

This thesis is the end of my studies in obtaining my Master degree in MSc “State-of-the-Art 

Design and Analysis Methods in Industry", Industrial Management, so I would like to 

thank all those people who made my studies and this thesis possible.  

At this moment of accomplishment, first of all, I would like to thank Dr. Ziliaskopoulos 

Athanasios for his trust on that thesis and his support. I would really like to thank Dr. 

Athanasios Lois for his valuable help and guidance throughout this work. 

I am also grateful to the other members of the examining committee of my postgraduate work, 

Dr. Dimitrios Pantelis, Dr George Saharidis, for the close examination of my work and for the 

valuable knowledge I was given during my post-graduate studies. 

I am thankful to my colleagues and friends Antonis Beslemes, Charalampos Papaeustathiou 

and Dimitrios Diamantis for the help and support during my studies. 

Finally, I take this opportunity to express the profound gratitude from my deep heart to my 

beloved parents, Konstantinos and Paraskeui for their love and their continuous support, 

which I dedicate this postgraduate work. 

Skiadopoulos Evangelos 

 

  

. 

 

.  

Institutional Repository - Library & Information Centre - University of Thessaly
13/06/2024 07:08:42 EEST - 3.149.254.165

http://www.linkedin.com/search?search=&keywords=Industrial+Management&sortCriteria=R&keepFacets=true&trk=prof-edu-field_of_study


xi 

 

TRAIN DRIVER ROSTERING WITH LINEAR INTEGER 

PROGRAMMING  

by 

SKIADOPOULOS EVANGELOS 

MECHANICAL ENGINEERING, ARISTOTLE UNIVERSITY OF THESSALONIKI, 2009  

 

Supervising Professor: Dr. Ziliaskopoulos Athanasios, Professor in Optimization Methods of 

Production/ Service Systems 

 

Abstract 

This study presents the experience of the approach in solving driver-rostering problem 

for a depot at Greek Railway Administration (Trainose). We built a brand new optimization 

algorithm and we managed to create a balanced timetable of shifts, according to labor rules 

and Greek Railway Administration’s policies by using integer programming techniques. 

At the beginning we gave a fully detailed problem description, discussing all the 

difficulties of that approach. Next we made a literature review of existing computerised 

systems. We also developed the theoretical background required for the solution of such 

problems, with a brief description of train driver’s crew scheduling. 

In the following chapters, we presented our model, describing the objective of that 

model and its constraints. The code that was used for the implementation of the algorithm was 

Institutional Repository - Library & Information Centre - University of Thessaly
13/06/2024 07:08:42 EEST - 3.149.254.165



xii 

written in C++ programming language, using IBM ILOG software to obtain our results. The 

necessary computational experiments were performed on one of the university’s servers. 

Finally we presented our results by using some mathematical examples and we 

summarized our conclusions and suggestions for future problem improvements. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Institutional Repository - Library & Information Centre - University of Thessaly
13/06/2024 07:08:42 EEST - 3.149.254.165



xiii 

Contents  

CHAPTER 1 INTRODUCTION ................................................................................................................ 1 

1.1 INTRODUCTION ......................................................................................................................... 1 

1.2 STRUCTURE OF POSTGRADUATE WORK ............................................................................................ 2 

CHAPTER 2 PROBLEM DESCRIPTION ................................................................................................... 3 

CHAPTER 3 LITERATURE REVIEW ........................................................................................................ 6 

CHAPTER 4 MODEL DEVELOPMENT ...................................................................................................14 

CHAPTER 5 SOLUTION METHODOLOGY .............................................................................................30 

CHAPTER 6 COMPUTATIONAL IMPLEMENTATION .............................................................................32 

6.1 Numerical example 1 .......................................................................................................32 

6.2 Numerical example 2 .......................................................................................................35 

6.3 Numerical example 3 .......................................................................................................38 

6.4 Numerical example 4 .......................................................................................................42 

CHAPTER 7 CASE STUDY ....................................................................................................................45 

CHAPTER 8 CONCLUSIONS - FUTURE RESEARCH ................................................................................53 

APPENDIX A    C++ IMPLEMENTATION OF MAIN ALGORITHM – IBM ILOG (CPLEX) ............................55 

REFERENCES ......................................................................................................................................67 

 

 

 

 

 

 

 

Institutional Repository - Library & Information Centre - University of Thessaly
13/06/2024 07:08:42 EEST - 3.149.254.165



xiv 

List of Tables 

Table 4-1: Cost per day ......................................................................................................................26 

Table 4-2: Example 0 Duty’s type and duration ...................................................................................28 

Table 6-1: Numerical Example 1 - Duty’s type and duration ................................................................32 

Table 6-2: Numerical Example 1 – Cost per day ..................................................................................32 

Table 6-3: Numerical Example 1 – WHWmin and WHWmax ...............................................................33 

Table 6-4: Numerical Example 1 – Train Driver’s Rostering Timetable .................................................33 

Table 6-5: Numerical Example 2 - Duty’s type and duration ................................................................35 

Table 6-6: Numerical Example 2 – Cost per day ..................................................................................35 

Table 6-7: Numerical Example 2 – WHWmin and WHWmax ...............................................................36 

Table 6-7: Numerical Example 2 – Train Driver’s Rostering Timetable .................................................36 

Table 6-8: Numerical Example 3 - Duty’s type and duration ................................................................38 

Table 6-9: Numerical Example 3 – Cost per day ..................................................................................38 

Table 6-10: Numerical Example 3 – WHWmin and WHWmax .............................................................39 

Table 6-13: Numerical Example 4 – Cost per day ................................................................................42 

Table 7-1: Case Study – Trainose’s feasible Duties ..............................................................................46 

Table 7-2: Case Study – Trainose’s duty types .....................................................................................47 

Table 7-3: Case Study – Train Driver’s WHW in Trainose’s timetable ...................................................48 

Table 7-5: Case Study – Train Driver’s WHW in Algorithms’s timetable ...............................................51 

Graph 7-6: Case Study – Dispersion of WHW among crew – Algorithm’s Case .....................................52 

Institutional Repository - Library & Information Centre - University of Thessaly
13/06/2024 07:08:42 EEST - 3.149.254.165



xv 

List of Figures 

  Figure 3-1: Generation of feasible duties that cover all trips……………......................................................9 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Institutional Repository - Library & Information Centre - University of Thessaly
13/06/2024 07:08:42 EEST - 3.149.254.165



xvi 

List of Graphs 

Graph 6-1: Numerical Example 1 – Dispersion of WHW among crew ..................................................34 

Graph 6-2: Numerical Example 2 – Dispersion of WHW among crew ..................................................37 

Graph 6-3: Numerical Example 3 – Dispersion of WHW among crew ..................................................41 

Graph 6-4: Numerical Example 4 – Dispersion of WHW among crew ..................................................44 

Graph 7-1: Case Study – Dispersion of WHW among crew – Trainose Case .........................................49 

Graph 7-2: Case Study – Proportion of Days off among Drivers – Trainose Case ..................................50 

Graph 7-6: Case Study – Dispersion of WHW among crew – Algorithm’s Results .................................52 

Institutional Repository - Library & Information Centre - University of Thessaly
13/06/2024 07:08:42 EEST - 3.149.254.165



1 

Chapter 1 INTRODUCTION 

 

1.1 Introduction 

Trainose S.A was established in December of 2005. Its main goal is to provide railway 

passenger and freight transport services in Greece. Trainose is trying to supply high quality 

transport services with social sensitiveness and respect for the Greek citizens.  

With over 300 daily itineraries, the company's trains cover a railway network of more 

than 1.500 kilometers. TRAINOSE S.A. annually carries 15 million passengers and 4.5 

million tons of freight. The main goal of the company is to deal with operational issues and 

make the railway transport cheaper and financially sustainable.  

We focus on a crew rostering problem that Greek Railway Administration (Trainose) 

is facing. Crew rostering is a very common problem in Operations Research. The objective is 

to find an assignment of the crew to cover a planned time table such that we minimize cost, 

yet satisfy all constraints. Even though that is an easy to understand problem, creating an 

applicable timetable is proving to be quite complex, due to many operational rules and 

companies’ policies.  

In this thesis we present an integer linear programming algorithm in crew rostering 

while our main objective is to balance the working hours and days among the crew as evenly 

as possible and create an applicable time table of duties.  

 

 

Institutional Repository - Library & Information Centre - University of Thessaly
13/06/2024 07:08:42 EEST - 3.149.254.165



2 

1.2 Structure of Postgraduate work 

The remaining of this postgraduate work is structured as follows: 

Chapter 2 reviews related works that have been published in the past about Crew 

Rostering and Crew Scheduling. 

Chapter 3 presents the description of our problem. We perform a detailed analysis of 

its parameters and we have a close investigation of its difficulties. 

Chapter 4 introduces the mathematical model that we develop in this thesis and we 

elaborate on its objective and constraints.  

Chapter 5 provides some insight into our problem and we develop a methodology that 

can be used for its solution.  

Chapter 6 generates the computational results of 4 numerical examples. 

Chapter 7 provides the computational results of a real case in a Trainose’s depot. 

Chapter 8 presents the conclusions that we derived from the analysis of our results and 

points to some promising directions for future research.  

Appendix A contains the C++ Programming Language source  

Institutional Repository - Library & Information Centre - University of Thessaly
13/06/2024 07:08:42 EEST - 3.149.254.165



3 

Chapter 2 PROBLEM DESCRIPTION 

In 1990’s railway administrations started to investigate more thoroughly those issues 

by decomposing the main problem into two sub problems, crew rostering and crew 

scheduling. 

Crew scheduling is actually the construction of a feasible set of duties, covering all 

trips in a given day. Crew rostering on the other hand is the creation of a cycle schedule, 

taking into consideration the labor legislation and many operational rules, which will be 

further discussed in the following paragraphs.  

A main objective of crew management is the minimization of the number of train 

drivers needed to cover all feasible duties, generated in phase one (crew scheduling). This 

problem’s constraint is rather weak, because the number of train drivers had already been 

determined by Trainose, so our main objective now is to balance the working hours and days 

among the crew as evenly as possible.  

We have a lot of reasons to decompose that problem. First we have to generate 

feasible duties that start and end in the same depot. So this constrain imposes that each crew, 

within L days given by railway administration’s policy, must return to its home depot and 

overlap very few consecutive days. In this problem we consider that a generated roster cannot 

include duties associated with different crew home locations. 

Depots are not only the places where the trains may be loaded and unloaded, but also 

the places where a feasible duty starts and ends. They are located in big cities or towns, where 

crew is usually staying, resting and definitely changing shifts. If a member of the crew 

overnights at a depot, different from its home depot then this is called barracking. 

Institutional Repository - Library & Information Centre - University of Thessaly
13/06/2024 07:08:42 EEST - 3.149.254.165



4 

A trip is starting and ending from one depot to another and it is characterized by its 

start and end time and its origin and destination depot. Roster is a sequence of trips. In the 

most common approaches it is a separate problem and deals with the generation of feasible 

duties, according to industrial and business regulation and must be covered in specific 

planning horizon.  

Shift is the time period, during which a train driver is working. Train drivers will 

generally perform a sequence of individual train journeys with intermediate barracking stops 

before returning to their home base where they have a longer break before their next journey. 

Crew rostering in Railway application is originally difficult, because of the many operational 

constraints and a lot of possible feasible solutions. Adding constraints to a problem will 

usually make the space of feasible solutions smaller. However, algorithms that rely on 

iterative improvement, and in particular local search algorithms, might find it harder to 

generate feasible solutions in the neighborhood of the current solution. 

Getting started with the generation of feasible duties we first have to know all the 

operational constraints and sequencing rules. The most important constraint is that we have to 

take care that every train driver cannot be assigned to cover more than a shift in a same day. 

Secondly, we have to take care that every shift is assigned to only one driver in a specific day, 

alternatively if the shift demands 2 train drivers, then those drivers are considered as a single 

unit. 

A complete day is called a time interval of 24 hours starting at 00:00. A simple rest is 

called a day where no duty is performed. For each roster the number of double rests must be 

at least 40% of the total number of rest. So in 30 consecutive days, a single crew must have 

no more than 7 consecutive duties and his total working hours cannot exceed 170 hours. 

Institutional Repository - Library & Information Centre - University of Thessaly
13/06/2024 07:08:42 EEST - 3.149.254.165



5 

As for the sequencing rules, the break between the end of a duty and the start of the 

duty in the following day lasts at least 18 hours. If both duties are overnight and one of them 

is a heavy overnight duty, then the break must last 22 hours. Naturally, in case of two 

consecutive heavy overnight duties, the break between them lasts at least 24 hours. Taking 

into consideration the labour rules the maximum working time per week is 45 hours.  

Institutional Repository - Library & Information Centre - University of Thessaly
13/06/2024 07:08:42 EEST - 3.149.254.165



6 

Chapter 3 LITERATURE REVIEW 

In this chapter, we will see some works that have been published in the past, which 

refer to various types of problems related to the crew scheduling and crew rostering problem.  

The assignment of work to individual crew members is a complex task for each public 

transport company. Traditionally, this process is split into two steps. In the first step, duties 

are constructed where a duty is the work for one crew member on a single day. These duties 

have to fulfill a lot of requirements. For instance, there is an upper bound on the length of 

each duty and there should be a break in each duty. This process is called crew scheduling. In 

the next step, rosters are created where sequences of duties are constructed. These sequences 

are assigned to the individual crew members. This problem is called crew rostering. 

Crew scheduling is a very well-known problem which has been historically associated 

with airlines and mass transit companies; recently also railway applications have come on the 

scene. This now happens especially in Europe, where deregulation and privatization issues are 

forcing a re-organization of the rail industry and better productivity and efficient services are 

strongly required by the market and the public ownership. Therefore, this sector is showing an 

increasing interest in Operation Research and Management Science. Railway crew planning 

represents a hard problem due to both the dimensions and the operational constraints 

involved.     

 

 

 

Institutional Repository - Library & Information Centre - University of Thessaly
13/06/2024 07:08:42 EEST - 3.149.254.165



7 

Considerable research has been carried out in scheduling public transport drivers since 

the late 1960’s, limited in Bus and light railway applications. Train crew management 

involves the development of a duty timetable for each of the drivers (crew) to cover a given 

train timetable in a rail transport organization. This duty timetable is spread over a certain 

period, known as the roster planning horizon. Train crew management may arise either from 

the planning stage, when the total number of crew and crew distributions are to be 

determined, or from the operating stage when the number of crew at each depot is known as 

input data.  

A natural formulation of Crew Scheduling problem, in terms of graphs, connects a 

node with each train station and directed arcs which indicate the planned train trip from one 

station to another. More specifically, one can define a directed graph  G (V,A)  having a note 

J V  for each train station and an arc  ,i j A   if and only if train station j can appear after 

train station i according to planned trips time table. So at this point the goal is the 

minimization of the feasible paths of G covering each node once. 

There are two alternatives to model that problem in terms of integer linear 

programming. Let   
 and   

 represent the set of arcs that entering and leaving a 

specific train station V . So we are creating a decision binary variable ijx  with each arc 

 ,i j A , where 1ijx   if we use arc  ,i j A  for our optimal solution and 0ijx  otherwise. 

We create a cost parameter ijC  for each arc  ,i j A . 

 

 

Institutional Repository - Library & Information Centre - University of Thessaly
13/06/2024 07:08:42 EEST - 3.149.254.165



8 

 ,

min (1)ij ij

i j A

C x



 

       , ,

1 / (2)ij ij

i j i j

x x V D
   


  

   
 

       , ,

(3)ij ij

i j i j

x x D
   


  

  
 

 ,

1 (4)ij

i j P

x P P


  
 

   0,1 , , (5)ijx i j A 
 

Where family P  is a subset of P which cannot be part of any feasible solution. 

Constraints (2)-(3) keep the balance of incomes and outcomes arcs in a specific node 

and each node V  can be covered only once. Constraint (4) is a typical crew base 

constraint. At this point we determine a set of arcs that cannot be chosen because of 

operational constraints.  

The problem with this model is that the cost of the optimum solution can be expressed 

as the sum of the cost associated with the arcs. We cannot use this model, when the cost of a 

circuit depends on the overall nodes (station) sequence or when we want to introduce cost per 

day parameter (e.g extra cost on Weekends). Second, we have to be very careful with the 

operational constraint (4), if it is so tight, then the linear programming relaxation of the model 

can be very week.   

A variant of this model has a binary variable 
ij

kx  associated with arc  ,i j A  but also 

contains an index k assigned with crew type. So the cost parameter 
ij

kC   is the cost of 

Institutional Repository - Library & Information Centre - University of Thessaly
13/06/2024 07:08:42 EEST - 3.149.254.165



9 

 ,i j A  performed by a crew of type k, where 
ij

kC    when the arc  ,i j A  is assigned 

to inappropriate crew type k, let K be the set of crew types. So: 

 ,

min (6)
ij ij

k k

k K i j A

C x
 

 
 

       , ,

, (7)
ij ij

k k

i j i j

x x V k K
   


  

   
 

 ,

1 , (8)
ij

k k

i j P

x P P k K


   
 

   ,

1 / , (9)
ij

k

k K i j

x V D
 


 

  
 

   0,1 , , , (10)
ij

kx i j A k K  
 

The only difference is that 
k is a subset of P and it cannot be part of any feasible 

solution for type k crews. Constraint (8) leads to tighter linear programming relaxation when 

the crew number is predetermined by the railway administrator. An obvious problem of this 

model is the increased number of variables and constraints.  

 

 

 

 

 

Institutional Repository - Library & Information Centre - University of Thessaly
13/06/2024 07:08:42 EEST - 3.149.254.165



10 

Another approach to this problem is, let  1,..., nC C C  donate the collection of the 

simple circuits of G corresponding to a feasible duty for a crew. We assign a cost jc  to every 

circuit jC  that covers the node set jI . So we create a binary decision variable 1jy   if jC  is 

part of the optimal solution, and 0 otherwise.  

 ,

min (11)j j

i j A

c y



 

Subject to 

:

1 \ (12)
j

j

j I

y V D





 
 

1 (13)j

j S

y S s S


  
 

 0,1 , 1,..., (14)jy j n 
 

 

 

 

 

 

 

 

 

 

Institutional Repository - Library & Information Centre - University of Thessaly
13/06/2024 07:08:42 EEST - 3.149.254.165



11 

British Approach 

In the early 90’s, British Rail had a very interested approach to this problem, using 

interactive techniques. They decomposed their problem into three types of schedules: Long 

distance, local services and ancillary work. For long distance schedules, British Rail tried to 

specify certain relief points, in order to retrieve the timetables of trains between these points 

and derive a solution using an assignment technique.  

For the ancillary work schedules, conventional batch processing approaches were 

used. The ancillary work pieces were matched with the spare capacity of the driver’s schedule 

and in case of infeasibility; extra drivers were logged in the system.   

The local service schedule was by far more complex. In this case, trains work in much 

shorter distances within a small area. So they approached this problem using color graphics to 

represent trains on a VDU. Shifts were built up, one at a time and they were checked by the 

system. If the work was covered, it was removed from the display.    

An attempt had been made to use mathematical programming methods by British Rail 

for the train driver scheduling problem, but this approach was later abandoned. By the time 

when British Rail was privatised in the early 1990’s, there was still no known automatic 

driver scheduling system being used by British Rail. 

 

Figure 3-1: Generation of feasible duties that cover all trips 

Institutional Repository - Library & Information Centre - University of Thessaly
13/06/2024 07:08:42 EEST - 3.149.254.165



12 

 

The New Jersey Railway Approach 

 

The scheduling system that was developed in 1980 was to enable the management in 

order to analyze quickly the implication of work rule changes on labour costs for union 

negotiations. There was no mention of the size of the problem or the number of crew depots 

involved. This approach helped to the introduction of the “deadheading trips” well known as 

“drivers travel as passengers”. Similar to route knowledge restriction, crew members could 

only be assigned to a single line or group of lines according to the crew’s depots. 

The problem was solved in three steps. First, by solving a set covering problem using 

a mathematical programming method, they managed to generate feasible duties that cover all 

vehicle work (trips).  Next they created cost parameters per duty and then, using mathematical 

programming approaches they determined the schedule. 

The fact that there is a high percentage of deadhead loops suggests that the shift 

generation process seems to be very restrictive and very few alternatives are available for the 

mathematical programming stage. 

 

 

 

 

 

 

Institutional Repository - Library & Information Centre - University of Thessaly
13/06/2024 07:08:42 EEST - 3.149.254.165



13 

The Italian State Railways Approach 

 

The Italian State Railways operates a vast network with a crew workforce of about 

25,000 drivers and 15,000 conductors located in about 50 depots. The system described is a 

planning system for locomotive scheduling, crew scheduling and rostering. For crew 

scheduling, a traditional approach was used, which involves two phases based on a set 

covering model.  

The first phase focuses on generating a very large number of feasible shifts while the 

second phase selects the best subset of all the generated shifts to cover all the 'trips' at 

minimum cost. The shift generation phase sequences a number of ‘trips’ to form a shift which 

must start and end at the same depot. A ‘trip’ is defined as segments of train journey which 

must be serviced by the same crew without rest. However, it is not mentioned whether there 

are any more relief opportunities on each trip. 

The simplifications on the problem would have prevented some crucial shifts from 

being generated. It is likely that the shifts generated are very restrictive in order to reduce the 

possible number of combinations and as a result the schedules produced would not be 

anywhere near the optimum, if some of the crucial shifts were missing. 

Institutional Repository - Library & Information Centre - University of Thessaly
13/06/2024 07:08:42 EEST - 3.149.254.165



14 

Chapter 4 MODEL DEVELOPMENT 

               In this section, we present the integer programming model that was developed for 

the problem under consideration. We use the following mathematical notation:   

 

Index: 

i : Is the index for train drivers, every driver is assigned with a number, driver’s ID and i I . 

I is the group of the Drivers from a specific depot 

 

j : Is the index for feasible duties, generated in phase one (Crew scheduling) and j J . J is 

the set of feasible duties, that are starting and ending in the same depot. 

 

d : Is the index for days, d D . D is the time horizon for the creation of an applicable time 

table. Train drivers are assigned in a cyclic schedule. 

 

m : Is an artificial index for days, m M . We use it to create subsets for 2 consecutive days 

 

Decision Variable: 

 

ijdD : Is a binary decision variable and indicates if the i  train driver is assigned to j  duty at 

d day with i I , j J , d D . 

 

1,

0,
ijd

if driver i assigned to duty j on day d
D

if driver i has not assigned to duty j on day d




 


 

Institutional Repository - Library & Information Centre - University of Thessaly
13/06/2024 07:08:42 EEST - 3.149.254.165



15 

Parameters: 

I : It is the group of the train drivers of a depot 

 

J : It is the set of feasible duties of a depot 

 

D : It is the set of days - our planning horizon 

 

WHW : Is the maximum working hours per week for every train driver taking in 

consideration the weights for overtime, working on Weekends, medium and late duties 

 

dT : It is a cost parameter per day d .  

 

jK : It is a cost parameter per duty j .  

 

jL : It is the set of late duties. Late duties start from 22.00 – 05.59  

 

jE : It is the set of early duties. Early duties start from 06.00 – 13.59  

 

jM : It is the set of medium duties. Medium duties start from 14.00 – 21.59  

 

jKL : It is the set of the extra cost per late duty j 

 

jKM : It is the set of the extra cost per medium duty j 

Institutional Repository - Library & Information Centre - University of Thessaly
13/06/2024 07:08:42 EEST - 3.149.254.165



16 

Then, the referenced problem can be formulated as follows:  

min * * * * , , (1)ijd d j j j

i j d

z D T K KL KM j J i I d D     

Code Implementation: 

 

 

IloExpr expr1(env); 

for (i=0;i<imax;i++){ 

  for (j=0;j<jmax;j++){ 

   for (d=0;d<dmax;d++){ 

   expr1+=Dijd[i][j][d]*T[d]*KL[j]*K[j]*KM[j]; 

   } 

  } 

} 

  

model.add(IloMinimize(env, expr1)); 

expr1.end();  

 

 

 

The objective function (1) minimizes the global cost of all drivers. The first summation is 

associated with the total number of train drivers from a specific depot. The second summation 

is associated with the set of feasible duties that start and end in the same depot and the third 

summation is associated with the days of our planning horizon. 

 

 

 

 

Institutional Repository - Library & Information Centre - University of Thessaly
13/06/2024 07:08:42 EEST - 3.149.254.165



17 

Constraints 

1 , , , (2)ijd

i

D j d j J i I d D      

 

Code Implementation: 

 

//-------------------(2) Set of constraints: Only one Duty per Driver ----------- 

 

IloRangeMatrix2x2 SumDjd(env,0); 

 for (j=0;j<jmax;j++){ 

  IloRangeArray SumDd(env,0); 

   for (d=0;d<dmax;d++){ 

    IloExpr expr(env,0); 

     for (i=0;i<imax;i++){ 

      expr+=Dijd[i][j][d]; 

      } 

    char Ipir_MIX[60]; 

    sprintf(Ipir_MIX,"SumDijd(j%d,d%d)",j,d); 

    float LB=1,UB=1; 

    IloRange SumD(env,LB,expr,UB,Ipir_MIX); 

    model.add(SumD); 

    SumDd.add(SumD); 

    expr.end(); 

    } 

   SumDjd.add(SumDd); 

   } 

 

 

 

 

 

The first set of constraints (2) is used to make sure that every driver i, every day d is assigned 

to one and only one feasible duty. 

 

 

 

 

Institutional Repository - Library & Information Centre - University of Thessaly
13/06/2024 07:08:42 EEST - 3.149.254.165



18 

 

1 , , , (3)ijd

j

D i d j J i I d D      

 

Code Implementation: 

 

//------------ (2) Set of constraints: Only one Driver per Duty------------------------------- 

 

 

IloRangeMatrix2x2 Sum2Did(env,0); 

 for (i=0;i<imax;i++){ 

  IloRangeArray Sum2Dd(env,0); 

   for (d=0;d<dmax;d++){ 

    IloExpr expr(env,0); 

     for (j=0;j<jmax;j++){ 

     expr+=Dijd[i][j][d]; 

     } 

    char Ipir_MIX2[60]; 

    sprintf(Ipir_MIX2,"Sum2Dijd(j%d,d%d)",j,d); 

    float LB=-IloInfinity,UB=1; 

    IloRange Sum2D(env,LB,expr,UB,Ipir_MIX2); 

    model.add(Sum2D); 

    Sum2Dd.add(Sum2D); 

    expr.end(); 

    } 

   Sum2Did.add(Sum2Dd); 

   } 

 

 

The second set of constraints (3) is used to forbid a duty j, every day d, to be served by 

more than one train drivers. At this point we consider that every duty is covered by only one 

driver. If a duty needs to be covered by more than one driver, we generate an extra driver at 

the end of our feasible timetable. 

 

Institutional Repository - Library & Information Centre - University of Thessaly
13/06/2024 07:08:42 EEST - 3.149.254.165



19 

 

* * * * , , (4)ijd d j j j

j d

D T K KL KM WHW i j J i I d D      

 

Code Implementation: 

 

 

 

//----------------------------------------------------------------------------- 

//-----------(3) Set of constraints: Maximum WHW for every driver------------- 

 

 

  

 IloRangeArray Sum3Di(env,0); 

  for (i=0;i<imax;i++){ 

   IloExpr expr(env,0); 

   for (j=0;j<jmax;j++){ 

    for (d=0;d<dmax;d++){ 

     expr+=Dijd[i][j][d]*T[d]*KL[j]*K[j]*KM[j]; 

     } 

    } 

    char Ipir_MIX3[60]; 

    sprintf(Ipir_MIX3,"Sum3Dijd(j%d,d%d)",j,d); 

    float LB=-IloInfinity,UB=77; 

    IloRange Sum3D(env,LB,expr,UB,Ipir_MIX3); 

    model.add(Sum3D); 

    Sum3Di.add(Sum3D); 

    expr.end(); 

   } 

 

 

 

 

 

 

Constraint set (4) is determining the upper bound of working hours per week, for every 

train driver i. We will describe this parameter in more detail in the following paragraphs. 

 

Institutional Repository - Library & Information Centre - University of Thessaly
13/06/2024 07:08:42 EEST - 3.149.254.165



20 

 

1

1* * 1 , , , (5)
m

ijd j ijd j

j d m

D E D E i j J i I d D m M






        

 

Code Implementation: 

 

 

//-----------(4) Set of constraints: No early duty, after early duty------------- 

 

 IloRangeMatrix2x2 Sum4Dmi (env,0); 

  for (m=0;m<mmax;m++){ 

   IloRangeArray Sum4Di(env,0); 

    for (i=0;i<imax;i++){ 

     IloExpr expr(env,0); 

      for (j=0;j<jmax;j++){ 

       for (d=m;d<m+1;d++){ 

     expr+=Dijd[i][j][d]*E[j]+Dijd[i][j][d+1]*E[j]; 

     } 

    } 

    

    char Ipir_MIX4[60]; 

    sprintf(Ipir_MIX4,"Sum4Dijd(i%d)",i); 

    float LB=-IloInfinity,UB=1; 

    IloRange Sum4D(env,LB,expr,UB,Ipir_MIX4); 

    model.add(Sum4D); 

    Sum4Di.add(Sum4D); 

    expr.end(); 

    } 

   Sum4Dmi.add(Sum4Di); 

   } 

 

 

Constraint set (5) ensures that for every two consecutive days, a driver cannot have an 

early duty, after an early duty.  

Institutional Repository - Library & Information Centre - University of Thessaly
13/06/2024 07:08:42 EEST - 3.149.254.165



21 

1

1 1* * * 1 , , , (6)
m

ijd j ijd j ijd j

j d m

D M D M D E i j J i I d D m M


 



         

 

 

Code Implementation: 

 

//----------------------------------------------------------------------------- 

//-----------(5) Set of constraints: No early or medium duty, after medium duty------------- 

 

 IloRangeMatrix2x2 Sum5Dmi (env,0); 

  for (m=0;m<mmax;m++){ 

   IloRangeArray Sum5Di(env,0); 

    for (i=0;i<imax;i++){ 

     IloExpr expr(env,0); 

      for (j=0;j<jmax;j++){ 

       for (d=m;d<m+1;d++){ 

 expr+=Dijd[i][j][d]*M[j]+Dijd[i][j][d+1]*M[j]+Dijd[i][j][d+1]*E[j]; 

      } 

     } 

    

     char Ipir_MIX5[60]; 

     sprintf(Ipir_MIX5,"Sum5Dijd(i%d)",i); 

     float LB=-IloInfinity,UB=1; 

     IloRange Sum5D(env,LB,expr,UB,Ipir_MIX5); 

     model.add(Sum5D); 

     Sum5Di.add(Sum5D); 

     expr.end(); 

     } 

    Sum5Dmi.add(Sum5Di); 

    } 

 

 

 

Constraint set (6) ensures that for every two consecutive days, a driver cannot have an 

early or a medium duty, after a medium duty. 

Institutional Repository - Library & Information Centre - University of Thessaly
13/06/2024 07:08:42 EEST - 3.149.254.165



22 

1

1 1 1* * * * 1 , , , (7)
m

ijd j ijd j ijd j ijd j

j d m

D L D L D M D E i j J i I d D m M


  



        

 

 

Code Implementation: 

 

//----------------------------------------------------------------------------- 

//-----------(6) Set of constraints: Day off after late duty------------- 

 

 

 IloRangeMatrix2x2 Sum6Dmi (env,0); 

  for (m=0;m<mmax;m++){ 

   IloRangeArray Sum6Di(env,0); 

    for (i=0;i<imax;i++){ 

     IloExpr expr(env,0); 

      for (j=0;j<jmax;j++){ 

       for (d=m;d<m+1;d++){ 

  

expr+=Dijd[i][j][d]*L[j]+Dijd[i][j][d+1]*L[j]+Dijd[i][j][d+1]*M[j]+Dijd[i][j][d+1]*E[j

]; 

      } 

     } 

    

     char Ipir_MIX6[60]; 

     sprintf(Ipir_MIX6,"Sum6Dijd(i%d)",i); 

     float LB=-IloInfinity,UB=1; 

     IloRange Sum6D(env,LB,expr,UB,Ipir_MIX6); 

     model.add(Sum6D); 

     Sum6Di.add(Sum6D); 

     expr.end(); 

     } 

    Sum6Dmi.add(Sum6Di); 

   } 

 

 

Constraint set (7) ensures that for every two consecutive days, a driver must have a 

day off, after a late duty. 

Institutional Repository - Library & Information Centre - University of Thessaly
13/06/2024 07:08:42 EEST - 3.149.254.165



23 

7 1* * 1 , (8)ij j ij j

j

D E D E i j J i I      

 

Code Implementation: 

//----------------------------------------------------------------------------- 

//-----------(7) Set of constraints: No early duty, after early duty for D=7 and D=0------ 

 

 IloRangeArray Sum7Di(env,0); 

  for (i=0;i<imax;i++){ 

   IloExpr expr(env,0); 

    for (j=0;j<jmax;j++){ 

     for (d=dmax-1;d<dmax;d++){ 

    expr+=Dijd[i][j][dmax-1]*E[j]+Dijd[i][j][0]*E[j]; 

    } 

   } 

    

   char Ipir_MIX7[60]; 

   sprintf(Ipir_MIX7,"Sum7Dijd(i%d)",i); 

   float LB=-IloInfinity,UB=1; 

   IloRange Sum7D(env,LB,expr,UB,Ipir_MIX7); 

   model.add(Sum7D); 

   Sum7Di.add(Sum7D); 

   expr.end(); 

   } 

 

 

 

 

 

 

 

 

 

 

Institutional Repository - Library & Information Centre - University of Thessaly
13/06/2024 07:08:42 EEST - 3.149.254.165



24 

7 1 1* * * 1 , (9)ij j ij j ij j

j

D M D M D E i j J i I       

 

Code Implementation: 

 

//----------------------------------------------------------------------------- 

//------(8) Set of constraints: No early or medium duty, after medium duty for D=7 and D=0--- 

 

 IloRangeArray Sum8Di(env,0); 

  for (i=0;i<imax;i++){ 

   IloExpr expr(env,0); 

    for (j=0;j<jmax;j++){ 

     for (d=dmax-1;d<dmax;d++){ 

 expr+=Dijd[i][j][dmax-1]*M[j]+Dijd[i][j][0]*M[j]+Dijd[i][j][0]*E[j]; 

     } 

    } 

    

    char Ipir_MIX8[60]; 

    sprintf(Ipir_MIX8,"Sum8Dijd(i%d)",i); 

    float LB=-IloInfinity,UB=1; 

    IloRange Sum8D(env,LB,expr,UB,Ipir_MIX8); 

    model.add(Sum8D); 

    Sum8Di.add(Sum8D); 

    expr.end(); 

    } 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Institutional Repository - Library & Information Centre - University of Thessaly
13/06/2024 07:08:42 EEST - 3.149.254.165



25 

7 1 1 1* * * * 1 , (10)ij j ij j ij j ij j

j

D L D L D M D E i j J i I        

 

Code Implementation: 

//----------------------------------------------------------------------------- 

//------(9) Set of constraints: Day off after Late duty for D=7 and D=0--- 

 

 

 IloRangeArray Sum9Di(env,0); 

  for (i=0;i<imax;i++){ 

   IloExpr expr(env,0); 

    for (j=0;j<jmax;j++){ 

     for (d=dmax-1;d<dmax;d++){ 

 

expr+=Dijd[i][j][dmax-1]*L[j]+Dijd[i][j][0]*L[j]+Dijd[i][j][0]*M[j]+Dijd[i][j][0]*E[j]; 

    } 

   } 

    

   char Ipir_MIX9[60]; 

   sprintf(Ipir_MIX9,"Sum9Dijd(i%d)",i); 

   float LB=-IloInfinity,UB=1; 

   IloRange Sum9D(env,LB,expr,UB,Ipir_MIX9); 

   model.add(Sum9D); 

   Sum9Di.add(Sum9D); 

   expr.end(); 

   } 

 

 

 

                                           

Constraint sets (8) - (9) - (10) are crucial for the construction of a cyclic schedule. We 

consider, days d=7 and d=0 as consecutive. 

 

 

 

Institutional Repository - Library & Information Centre - University of Thessaly
13/06/2024 07:08:42 EEST - 3.149.254.165



26 

We are going to describe our cost parameters in more detail. First we have the cost per 

day parameter for a single week. 

Days 1 2 3 4 5 6 7 

Cost 1 1 1 1 1 1.5 2 

Table 4-1: Cost per day 

Then we are going to describe cost parameters that are associated with feasible duties 

that generated in phase one. We assume that Medium duties (start at 14.00) have an extra cost. 

This cost is the product of working hours multiplied by 1.2 factor and Late duties (start at 

22.00) have an extra cost, which is the product of working hours multiplied by 1.5 factor. 

Now, we have to determine the input of the train drivers and WHW (working hours 

per week).  Our goal is the extraction of empirical values that first reduce the number of train 

drivers needed in every case and then balance the working hours among crew. 

Our solution approach is the following: We are using the same algorithm without (2) 

constraint set and we are using as an input imax=1. With this procedure, we calculate the 

minimum minWHW  of a driver. Then we create a maximization problem and we calculate the 

maximum maxWHW .  WHW parameter is very important for the balance of the working hours 

among the crews.  We also take care of the computational time, which is very important for 

those applications. 

 

 

 

 

 

Institutional Repository - Library & Information Centre - University of Thessaly
13/06/2024 07:08:42 EEST - 3.149.254.165



27 

1

min/ max * * * * , 1, (1)ijd d j j j

j d

z D T K KL KM j J i d D     

s.t 

1 , , , (3)ijd

j

D i d j J i I d D      

 

5 , , (4)ijd

j d

D i j J i I d D      

 

1

1* * 1 (5)
m

ijd j ijd j

j d m

D E D E i






    

 

1

1 1* * * 1 (6)
m

ijd j ijd j ijd j

j d m

D M D M D E i


 



     

 

1

1 1 1* * * * 1 (7)
m

ijd j ijd j ijd j ijd j

j d m

D L D L D M D E i


  



      

 

7 1* * 1 (8)ij j ij j

j

D E D E i    

 

7 1 1* * * 1 (9)ij j ij j ij

j

D M D M D E i     

 

7 1 1 1* * * * 1 (10)ij j ij j ij j ij j

j

D L D L D M D E i      

Institutional Repository - Library & Information Centre - University of Thessaly
13/06/2024 07:08:42 EEST - 3.149.254.165



28 

Constraint set (4) does not allow drivers to have more than 5 duties per week.  

Let’s give an example to make this clear. We have a problem of 5 feasible duties and we 

are giving the cost parameters: 

 

Duties 1 2 3 4 5 

Type E L M M E 

Duration 8 8 10 9 8 

   Table 4-2: Example 0 Duty’s type and duration 

E: Early Duty 

M: Medium Duty 

L: Late duty 

 

We know that weekends have an extra cost 

Days 1 2 3 4 5 6 7 

Cost 1 1 1 1 1 1.5 2 

Table 4-3: Example 0 Cost per day 

Late and medium duties have a weight 1.5 and 1.2 respectfully.  

We use our maximization and minimization algorithm to create an upper and lower bound in 

WHW.  

Min 5(E) 4(M) 2(L)   1 (E) 4(M)   55 

Max   5(E) 3(M) 2(L)   3(M) 2(L) 74 

Table 4-4: Example 0 WHWmin and WHWmax 

 

 

We can balance the working hours among crews efficiently by using this formula 

Institutional Repository - Library & Information Centre - University of Thessaly
13/06/2024 07:08:42 EEST - 3.149.254.165



29 

min max

2

WHW WHW
WHW


 . 

Next we have to determine the number of drivers. We introduce another binary decision 

variable 
iDI  which: 

1,

0, '
i

if we use driver i in our timetable
DI

if we don t use driver i in our timetable




 


 

And we create a cost parameter iIN  for every extra driver to our schedule. So, by changing 

the objective function, we minimize the number of drivers needed in every case. 

1

min * * * * * , , (1)ijd d j j j i i

j d

z D T K KL KM DI IN j J i I d D      

Using a random number of drivers as an input, the algorithm had to determine the 

minimum number of drivers needed to cover all shifts every day. However, we decided not to 

use this parameter and this decision variable, because it would increase the computational 

time needed. So by executing several numerical examples we managed to extract empirical 

experimental formula to determine the minimum number of drivers needed in any case. 

So we found out that, the relation between train drivers and shifts for the creation of a 

feasible time table, is  

. . *1.4No Drivers No Shifts  

 

Institutional Repository - Library & Information Centre - University of Thessaly
13/06/2024 07:08:42 EEST - 3.149.254.165



30 

Chapter 5 SOLUTION METHODOLOGY 

In this chapter, we develop our solution methodology. Our duties have 3 main 

characteristics: 

1) Origin Depot: It is the depot where the train drivers start and end their duties. In 

our case all duties start and end in the same depot. 

2) Starting time: By this time, train drivers must be in their position in a specific 

depot. 

3) Ending time: By this time, train drivers must be back in their origin depot. 

First we have to categorize our shifts according to their starting time. We have three 

main categories: 

1) Early Duties (E) start between 06.00 and 13.59. This situation is considered as a 

“normal operation”. 

2) Medium Duties (M) start between 14.00 till 21.59. The working hours of this 

category are multiplied by a weight equal to 1.2. 

3) Late Duties (L) that start from 22.00 till 05.59. The working hours of this 

category are multiplied by a weight equal to 1.5. 

Next we have to determine the number of the train drivers using this formula. 

. . *1.4No Drivers No Shifts  

 

 

Institutional Repository - Library & Information Centre - University of Thessaly
13/06/2024 07:08:42 EEST - 3.149.254.165



31 

Then we calculate 
min/maxWHW  and we create an upper and lower bound for every train 

driver for his working hours per week.  

We consider that a normal operation condition is 5 duties per week. So the algorithm 

is searching for the maximum working hours duties to assign them to the worst days of the 

week creating a maximum working hour time table for every driver.  

By solving the exact opposite problem we create a minimum working hour time table 

for every driver. So in order to balance the working hours among the crew, we should choose 

the value of WHW between these bounds  

min maxWHW WHW WHW   

Solving the algorithm, we create a cyclic week timetable according to our needs. Then 

we begin to generate extra train drivers for: 

1) Covering duties that need more than one driver 

2) Train drivers that ask days off for vacation 

3)  Train drivers that ask days off for medical reasons 

 

Institutional Repository - Library & Information Centre - University of Thessaly
13/06/2024 07:08:42 EEST - 3.149.254.165



32 

Chapter 6 COMPUTATIONAL IMPLEMENTATION 

6.1 Numerical example 1 

Inputs 

7I   Drivers needed to cover all duties 

5J   Feasible duties to cover all trips 

7D   Time horizon for the construction of a cyclic schedule  

Parameter values: 

Duties 1 and 5 are early duties that start between 06.00 and 13.59 

Duties 3 and 4 are medium duties that start between 14.00 and 21.59 

Duty 2 is late duty that starts between 22.00 and 05.59 

Duties 1 2 3 4 5 

Type E L M M E 

Duration 8 8 10 9 8 

Cost 8 12 12 10.8 8 

   Table 6-1: Numerical Example 1 - Duty’s type and duration 

Cost per day 

A duty on Saturday is multiplied by 1.5 and a duty on Sunday is multiplied by 2 

Days 1 2 3 4 5 6 7 

Cost 1 1 1 1 1 1.5 2 

Table 6-2: Numerical Example 1 – Cost per day 

 

Institutional Repository - Library & Information Centre - University of Thessaly
13/06/2024 07:08:42 EEST - 3.149.254.165



33 

First, as an input we choose 7 drivers because, considering our solution algorithm, it is 

the minimum number of drivers for the construction of a feasible time table. Next, we 

calculate the WHWmin and WHWmax as follows. WHWmin is the minimum feasible 

working hours per week, it is actually the minimum combination between days and duties, 

according to labour rules for a single driver. WHWmax on the other hand is the maximum 

feasible working hours per week for a single driver. 

 

Days M T W T F S S Total 

WHW Min  5(E) 4(M) 2(L)   1 (E) 4(M)   
 Min Cost  8 9*1.2 8*1.5 

 
8 9*1.2*1.5 

 
55 

WHW  Max   5(E) 3(M) 2(L)   3(M) 2(L) 
 Max Cost 

 
8 10*1.2 8*1.5 

 
10*1.2 8*1.5*2 74 

Table 6-3: Numerical Example 1 – WHWmin and WHWmax 

min max 74 55
64.5

2 2

WHW WHW
WHW

 
    We create a feasible time table 

WHW=67  

 

 

 

 

 

Table 6-4: Numerical Example 1 – Train Driver’s Rostering Timetable 

 

  Days   

Drivers 1 2 3 4 5 6 7 Σύνολο 

1 3(M)   5(E) 3(M) 2(L)   1 (E) 60 

2 1 (E) 4(M) 2(L)   5(E) 3(M)   56,8 

3 4(M) 2(L)   1 (E) 4(M)   5(E) 57,6 

4   1 (E) 4(M)   1 (E) 4(M) 2(L) 67 

5 2(L)   1 (E) 4(M)   5(E) 3(M) 66,8 

6   5(E) 3(M) 2(L)   1 (E) 4(M) 65,6 

7 5(E) 3(M)   5(E) 3(M) 2(L)   58 

Institutional Repository - Library & Information Centre - University of Thessaly
13/06/2024 07:08:42 EEST - 3.149.254.165



34 

We managed to create a feasible timetable with maximum variance between crew 

17.96%. CPU time=0.05 sec. (Intel® Core ™ i5-2430M CPU @ 2.4GHz – RAM 6,00 GB) 

 

 

 

 

 

 

 

 

 

Graph 6-1: Numerical Example 1 – Dispersion of WHW among crew 

 

 

 

 

 

 

 

Institutional Repository - Library & Information Centre - University of Thessaly
13/06/2024 07:08:42 EEST - 3.149.254.165



35 

6.2 Numerical example 2 

Inputs 

10I   Drivers needed to cover all duties 

7J   Feasible duties to cover all trips 

7D   Time horizon for the construction of a cyclic schedule  

Parameter values: 

Duties 1, 4 and 7 are early duties that start between 06.00 and 13.59 

Duties 3 and 5 are medium duties that start between 14.00 and 21.59 

Duties 2 and 6 are late duty that start between 22.00 and 05.59 

Duties 1 2 3 4 5 6 7 

Type E L M E M L E 

Duration 8 8 10 9 8 8 10 

Cost 8 12 12 9 9.6 12 10 

Table 6-5: Numerical Example 2 - Duty’s type and duration 

Cost per day 

A duty on Saturday, is multiplied by 1.5 and a duty on Sunday is multiplied by 2 

Days 1 2 3 4 5 6 7 

Cost 1 1 1 1 1 1.5 2 

Table 6-6: Numerical Example 2 – Cost per day 

 

 

 

Institutional Repository - Library & Information Centre - University of Thessaly
13/06/2024 07:08:42 EEST - 3.149.254.165



36 

First, as an input we choose 10 drivers. Considering our solution algorithm, it is the 

minimum number of drivers for the construction of a feasible time table. Next we calculate 

the WHWmin and WHWmax as follows. WHWmin is the minimum feasible working hours 

per week, it is actually the minimum combination of days and duties, according to labour 

rules for a single driver. WHWmax on the other hand is the maximum feasible working hours 

per week for a single driver. 

Days M T W T F S S Total 

WHW Max    7(E) 3(M) 6(L)   3(M) 2(L) 
 Max Cost  

 
10 12 12 

 
12*1.5 12*2 76 

WHW  Min 1(E) 5(M) 2(L)   1(E) 5(M)   
 Min Cost 8 9.6 12 

 
8 9.6*1.5 

 
52 

Table 6-7: Numerical Example 2 – WHWmin and WHWmax 

min max 76 52
64

2 2

WHW WHW
WHW

 
    

 We create a feasible time table WHW=67  

  Days   

Drivers 1 2 3 4 5 6 7 Σύνολο 

1 1(E) 6(L)   4(E) 5(M) 6(L)   56,6 

2 3(M)   7(E) 5(M) 6(L)   7(E) 63,6 

3 2(L)   4(E) 3(M) 2(L)   1(E) 61 

4 5(M) 2(L)   7(E) 3(M)   4(E) 61,6 

5 7(E) 3(M) 6(L)   7(E) 3(M)   60 

6 4(E) 5(M) 2(L)   4(E) 2(L)   57,84 

7 6(L)   1(E) 6(L)   7(E) 5(M) 66,2 

8   7(E)   1(E)   4(E) 2(L) 55,5 

9   1(E) 3(M)   1(E) 5(M) 6(L) 66,4 

10   4(E) 5(M) 2(L)   1(E) 3(M) 66,6 

  Table 6-7: Numerical Example 2 – Train Driver’s Rostering Timetable 

 

Institutional Repository - Library & Information Centre - University of Thessaly
13/06/2024 07:08:42 EEST - 3.149.254.165



37 

 

We managed to create a feasible timetable with 20% maximum variance between crew  

CPU time= 0.58 sec. (Intel® Core ™ i5-2430M CPU @ 2.4GHz – RAM 6,00 GB) 

 

 

 

 

 

 

 

 

 

 

Graph 6-2: Numerical Example 2 – Dispersion of WHW among crew 

 

 

 

 

Institutional Repository - Library & Information Centre - University of Thessaly
13/06/2024 07:08:42 EEST - 3.149.254.165



38 

6.3 Numerical example 3 

Inputs 

21I   Drivers needed to cover all duties 

15J   Feasible duties to cover all trips 

7D   Time horizon for the construction of a cyclic schedule  

Parameter values: 

Duties 1, 4, 7, 10, 11 and 15 are early duties that start between 06.00 and 13.59 

Duties 2, 3, 5, 9 and 14 are medium duties that start between 14.00 and 21.59 

Duties 6, 8, 12 and 13 are late duty that start between 22.00 and 05.59 

Duties 1 2 3 4 5 6 7 8 

Type E M M E M L E L 

Duration 8 8 10 9 8 8 10 10 

Duties 9 10 11 12 13 14 15 
 

Type M E E L L M E 
 

Duration 9 8 9 8 9,5 8,5 8 
 

    Table 6-8: Numerical Example 3 - Duty’s type and duration 

Cost per day 

A duty on Saturday is multiplied by 1.5 and a duty on Sunday is multiplied by 2 

Days 1 2 3 4 5 6 7 

Cost 1 1 1 1 1 1.5 2 

Table 6-9: Numerical Example 3 – Cost per day 

 

Institutional Repository - Library & Information Centre - University of Thessaly
13/06/2024 07:08:42 EEST - 3.149.254.165



39 

First, as an input we choose 21 drivers. Considering our solution algorithm, it is the 

minimum number of drivers for the construction of a feasible time table. Next we calculate 

the WHWmin and WHWmax as follows. WHWmin is the minimum feasible working hours 

per week, it is actually the minimum combination of days and duties, according to labour 

rules for a single driver. WHWmax on the other hand is the maximum feasible working hours 

per week for a single driver. 

 

Days M T W T F S S 
 

WHWmax 
 

7(E) 3(M) 8(L) 
 

3(M) 8(L) 
 

Max Cost 
 

10 12 15 
 

12*1.5 15*2 85 

WHWmin 15(E) 5(M) 6(L) 
 

1(E) 2(M) 
  

Min Cost 8 9.6 12 
 

8 9.6*1.5 
 

52 

  Table 6-10: Numerical Example 3 – WHWmin and WHWmax 

 

min max 85 52
68.5

2 2

WHW WHW
WHW

 
      

 

We create a feasible time table WHW=70 

 

 

 

 

 

Institutional Repository - Library & Information Centre - University of Thessaly
13/06/2024 07:08:42 EEST - 3.149.254.165



40 

  Days   

Drivers 1 2 3 4 5 6 7 Σύνολο 

1 12(L)   7(E) 9(M)   4(E) 14(M) 69,05 

2 6(L)   1(E) 14(M)   1(E) 3(M) 68,1 

3   1(E) 2(M) 6(L)   15(E) 8(L) 70 

4 14(M) 13(L)   10(E) 6(L)   4(E) 56,8 

5 15(E) 14(M)   1(E) 3(M) 6(L)   68,5 

6 2(M)   4(E) 5(M) 8(L)   11(E) 68,3 

7 11(E) 6(L)   11(E) 14(M) 12(L)   62,8 

8 10(E) 3(M) 13(L)   15(E) 3(M)   66,6 

9   4(E) 9(M) 8(L)   10(E) 5(M) 69,65 

10 1(E) 9(M) 8(L)   4(E) 13(L)   61,25 

11 9(M)   15(E) 2(M) 13(L)   1(E) 58,2 

12 3(M) 12(L)   4(E) 2(M)   7(E) 54,4 

13   15(E) 5(M)   10(E) 2(M) 13(L) 62,6 

14 4(E) 5(M)   15(E) 5(M) 8(L)   67,6 

15   10(E) 14(M) 12(L)   7(E) 9(M) 62,825 

16 13(L)   10(E) 13(L)   11(E) 2(M) 55,2 

17 5(M) 8(L)   7(E) 9(M)   10(E) 58,05 

18   7(E) 3(M)   1(E) 5(M) 6(L) 63,3 

19   11(E) 12(L)   11(E) 14(M) 12(L) 57,8 

20 7(E) 2(M) 6(L)   7(E) 9(M)   68,2 

21 8(L)   11(E) 3(M) 12(L)   15(E) 69,1 

Table 6-11: Numerical Example 3 – Train Driver’s Rostering Timetable 

 

 

 

 

 

 

 

Institutional Repository - Library & Information Centre - University of Thessaly
13/06/2024 07:08:42 EEST - 3.149.254.165



41 

We managed to create a feasible timetable with 22.28% maximum variance between 

crew  

CPU time= 3.52 sec. (Intel® Core ™ i5-2430M CPU @ 2.4GHz – RAM 6,00 GB) 

 

 

 

 

 

 

 

 

 

 

 

Graph 6-3: Numerical Example 3 – Dispersion of WHW among crew 

 

  

 

 

 

Institutional Repository - Library & Information Centre - University of Thessaly
13/06/2024 07:08:42 EEST - 3.149.254.165



42 

6.4 Numerical example 4 

Inputs 

43I   Drivers needed to cover all duties 

30J   Feasible duties to cover all trips 

7D   Time horizon for the construction of a cyclic schedule  

Parameter values: 

Duties (E) are early duties that start between 06.00 and 13.59 

Duties (M) are medium duties that start between 14.00 and 21.59 

Duties (L) are late duty start that between 22.00 and 05.59 

Duties 1 2 3 4 5 6 7 8 9 10 

Type E L M E M L E M L E 

Duration 8 8 10 9 8 8 10 10 9 8 

Duties 11 12 13 14 15 16 17 18 19 20 

Type E M E M L L M E M E 

Duration 9 8 9,5 8,5 8 9 8 9 8 9,5 

Duties 21 22 23 24 25 26 27 28 29 30 

Type E L E E M E L M M E 

Duration 8,5 8 10 9 8,5 9 10 8 8,2 8 

Table 6-12: Numerical Example 4 - Duty’s type and duration 

Cost per day 

A duty on Saturday is multiplied by 1.5 and a duty on Sunday is multiplied by 2 

Days 1 2 3 4 5 6 7 

Cost 1 1 1 1 1 1.5 2 

Table 6-13: Numerical Example 4 – Cost per day 

Institutional Repository - Library & Information Centre - University of Thessaly
13/06/2024 07:08:42 EEST - 3.149.254.165



43 

First, as an input we choose 43 drivers. Considering our solution algorithm, it is the 

minimum number of drivers for the construction of a feasible time table. Next we calculate 

the WHWmin and WHWmax as follows. WHWmin is the minimum feasible working hours 

per week, it is actually the minimum combination of days and duties, according to labour 

rules for a single driver. WHWmax on the other hand is the maximum feasible working hours 

per week for a single driver. 

Days M T W T F S S Total 

WHWmax   7(E) 3(M) 27(L)   8(M) 27(L)   

Max Cost   10 12 15   12*1,5 15*2 85 

WHWmin 1(E) 12(M) 2(L)   30(E) 12(M)     

Min Cost 8 9,6 12   8 9,6*1,5   52 

Table 6-14: Numerical Example 4 – WHWmin and WHWmax 

min max 85 52
68.5

2 2

WHW WHW
WHW

 
     We create a feasible time table WHW=70 

Drivers (WHW) 
1 61,6 16 45,75 31 66,1 

2 60,5 17 67 32 64,75 

3 63,25 18 66,5 33 65,9 

4 65,9 19 54,8 34 66,1 

5 60 20 55 35 58,44 

6 56,84 21 59,2 36 65,5 

7 66,68 22 46 37 62,6 

8 61,85 23 64,9 38 64,4 

9 62,2 24 63,8 39 59,7 

10 59,7 25 58,1 40 56,9 

11 58,04 26 66,2 41 66,86 

12 61,6 27 60,2 42 67 

13 58,8 28 60,44 43 56 

14 54 29 59,2     

15 60,45 30 65,54     

Table 6-15: Numerical Example 4 – Train Driver’s WHW 

 

Institutional Repository - Library & Information Centre - University of Thessaly
13/06/2024 07:08:42 EEST - 3.149.254.165



44 

We managed to create a feasible timetable with 31.7% maximum variance between 

crew.  CPU time= 17.29 sec. (Intel® Core ™ i5-2430M CPU @ 2.4GHz – RAM 6,00 GB) 

 

 

 

 

 

 

 

 

 

 

 

Graph 6-4: Numerical Example 4 – Dispersion of WHW among crew 

 

Institutional Repository - Library & Information Centre - University of Thessaly
13/06/2024 07:08:42 EEST - 3.149.254.165



45 

Chapter 7 CASE STUDY 

We focus on crew rostering problem that Greek Railway Administration (Trainose) is 

facing. Our starting and ending depot is in Athens and we will balance the working hours 

among the crew. This problem consists of 71 feasible duties that start and end in Athens and 

Trainose cover those duties with 163 Train drivers. We are going to compare algorithm’s 

results with Trainose’s results in August. We are going to simulate this problem by taking into 

consideration the proportion of days off in August.  

At first we created a table of all feasible duties that were generated by trainose in 

phase one. All duties cover all trips in a specific time period and all duties must be covered by 

train drivers every day.  

Institutional Repository - Library & Information Centre - University of Thessaly
13/06/2024 07:08:42 EEST - 3.149.254.165



46 

Table 7-1: Case Study – Trainose’s feasible Duties 

First column represents the train driver’s ID. Second column represents the sequence 

of the trips for every duty, starting from Athens and ending in Athens. Third and fourth 

columns represent the starting and ending time and at the last two columns we see the 

duration of every duty and the crew number needed to cover every duty.  

 

 

 

Institutional Repository - Library & Information Centre - University of Thessaly
13/06/2024 07:08:42 EEST - 3.149.254.165



47 

Our second step is to categorize our duties into 3 main categories. 

4) Early Duties (E) start between 06.00 till 13.59. We consider that situation, as 

normal operation. 

5) Medium Duties (M) that start from 14.00 till 21.59. The working hours of that 

category are multiplied by a weight 1.2. 

6) Late Duties (L) that start from 22.00 till 05.59. The working hours of that 

category are multiplied by a weight 1.5. 

 

Table 7-2: Case Study – Trainose’s duty types 

Taking into consideration the duties described in table 7-1 we categorized them 

depending their starting time and we created a table of Trainose’s duty types (Table 7-2) 

We assumed that every medium duty’s working hours are multiplied by 1.2 and every 

late duty’s working hours are multiplied by 1.5. Also every duty’s working hours are 

multiplied by 1.5 on Saturday and by 2 on Sunday. 

 

 

Institutional Repository - Library & Information Centre - University of Thessaly
13/06/2024 07:08:42 EEST - 3.149.254.165



48 

 

Table 7-3 presents Trainose’s results 

Table 7-3: Case Study – Train Driver’s WHW in Trainose’s timetable 

We calculate the WHWmin and WHWmax as follow. WHWmin is the minimum 

feasible working hours per week, it is actually the minimum combination of days and duties, 

according to labour rules for a single driver. WHWmax on the other hand is the maximum 

feasible working hours per week for a single driver. 

 

 

Institutional Repository - Library & Information Centre - University of Thessaly
13/06/2024 07:08:42 EEST - 3.149.254.165



49 

 

Days M T W T F S S Total 

WHWmax   68(E) 4(M) 65(L)   62(M) 65(L)   

Max Cost   10 12 15   12*1,5 15*2 85 

WHWmin 32(E) 43(M) 56(L)   38(E) 19(M)     

Min Cost 8 9,6 12   8 9,6*1,5   52 

Table 7-4: Case Study – WHWmin and WHWmax  

We create a graph to visualize the dispersion of working hours among drivers 

 

Graph 7-1: Case Study – Dispersion of WHW among crew – Trainose Case 

Institutional Repository - Library & Information Centre - University of Thessaly
13/06/2024 07:08:42 EEST - 3.149.254.165



50 

 

As we can see from the graph, due to the empirical method of rostering taking into 

consideration days off of train drivers, trainose distributes the working hours unevenly among 

drivers.   

Now we will calculate the number of train drivers by using this formula. 

. . *1.4No Drivers No Shifts  

 And then we are going to generate new drivers to cover duties that need more than 

one driver and days off that were requested from the existing drivers. We created a graph of 

the proportion of days off vs drivers and we added drivers, to cover the remaining duties, with 

a simple procedure. 

  

 

 

 

 

 

 

 

 

 

Graph 7-2: Case Study – Proportion of Days off among Drivers – Trainose Case 

Institutional Repository - Library & Information Centre - University of Thessaly
13/06/2024 07:08:42 EEST - 3.149.254.165



51 

We assumed that every medium duty’s working hours are multiplied by 1.2 and every 

late duty’s working hours are multiplied by 1.5. In addition, every duty’s working hours are 

multiplied by 1.5 on Saturdays and by 2 on Sundays. 

Table 7-5 presents Algorithm’s Results 

Table 7-5: Case Study – Train Driver’s WHW in Algorithms’s timetable 

All in all, as an input, we used imax=100 (The maximum number of train drivers) and 

we created a feasible time table that covers all duties every day. Then we started generating 

extra drivers by using a very simple method to cover shifts that need more than one driver, 

Institutional Repository - Library & Information Centre - University of Thessaly
13/06/2024 07:08:42 EEST - 3.149.254.165



52 

respectfully to their demands for days off. The extra drivers in Table 7-1 are depicted with 

green color. At is point we have to say that the generation of extra drivers can be investigated 

as a separate problem. We can just use the spare capacity of the driver’s schedule and 

generate extra drivers, only in case of infeasibility. 

We created a graph to visualize the dispersion of working hours among drivers 

 

Graph 7-6: Case Study – Dispersion of WHW among crew – Algorithm’s Results 

We can see that our algorithm distributes working hours among crew more evenly 

while we used for the same problem 12.3% less drivers. 

Institutional Repository - Library & Information Centre - University of Thessaly
13/06/2024 07:08:42 EEST - 3.149.254.165



53 

Chapter 8 CONCLUSIONS - FUTURE RESEARCH 

In this thesis, we studied an integer programming problem for train driver’s rostering 

and we developed an analytical methodology that balance the working hours among the crew. 

This methodology is based on the fact that the crew management problem, the generation of 

feasible duties that cover all trips, was predetermined by trainose.  

The proposed algorithm was coded in C++ programming language using libraries 

from IBM ILOG software and we use CPLEX as a solver. We had a close investigation of 

some parameters. 

We decomposed the duties into three main categories taking into consideration their 

starting time. So by not allowing drivers to be assigned to duties of the same or lower 

category for two consecutive days, we secured that every driver has at least 12 hours rest 

between his duties. 

We used weights for Medium and Late duties and by using them as cost parameters in 

our constraints, we did not only balance the working hours among drivers, but we also created 

a fair time table for every train driver.  

We used Working Hours per Week (WHW) parameter. This parameter is crucial for 

the construction of a balanced time table of duties and by using empirical values, we managed 

to reduce computational time.  

Institutional Repository - Library & Information Centre - University of Thessaly
13/06/2024 07:08:42 EEST - 3.149.254.165



54 

This algorithm is very flexible because, by determining the appropriate WHW value 

we can come up with a result that can be implemented in any case.  

The algorithm is independent of the number of train drivers and enables us to easily 

calculate the minimum number of drivers, in any case and build a schedule according to our 

needs. 

Unfortunately that algorithm assumes that all train drivers can be assigned in any duty, 

which is not applicable to a real world’s problem. Furthermore, days off for every driver can 

only be transferred manually in another week. 

Future research should be directed towards the improvement of the existing algorithm. 

We could possibly use real data as an input and introduce parameter tables that forbid 

inappropriate drivers to be assigned to inappropriate duties. 

Another possible direction is the improvement of that algorithm to create a feasible 

time table taking into consideration days off (vacation or medical reason) and duties that need 

to be covered by more than one driver. 

Finally we believe that, the creation of another algorithm, that generates feasible 

duties that cover all trips, is going to minimize the number of duties, hence the global cost. So 

the closer examination of trainose’s crew scheduling problem is considered to be crucial. 

At last we reviewed crew scheduling methods in Airline companies. We believe that 

the Column Generation approach in Rail crew scheduling is very promising. The Train Driver 

Recovery Problem (TDRP) can be formulated as a set partitioning problem and the LP 

relaxation of the TDRP can be solved with a column generation approach. 

Institutional Repository - Library & Information Centre - University of Thessaly
13/06/2024 07:08:42 EEST - 3.149.254.165



55 

Appendix A    C++ Implementation of main Algorithm – IBM 

ILOG (CPLEX) 

#include <ilcplex/ilocplex.h> // IBM Cplex Library 

#include <stdio.h>  // C++ library writes our result in a .txt file 

ILOSTLBEGIN 

 

int i,j,d,m; 

 

const int mmax=6; // Artificial Index – Subset of two consecutive days 

const int imax=100; // Train Drivers 

const int jmax=71; // Feasible Duties 

const int dmax=7; // Planning Horizon 

 

 

int 

main (int argc, char **argv) 

{ 

 

FILE *myfile; 

 

myfile=fopen("teliko_apotelesma.txt","w"); // Results 

 

 

 

double T[dmax]; // Cost per day parameter 

 

for (d=0;d<dmax;d++){ 

 T[d]=1; 

 } 

 

T[5]=1.5; 

T[6]=2; 

 

 

double K[jmax]; // Cost per duty parameter 

 

for (j=0;j<jmax;j++){ 

 K[j]=8; 

 } 

 

K[0]=9; 

K[3]=10; 

K[5]=9.1; 

K[7]=9.1; 

K[10]=8.3; 

Institutional Repository - Library & Information Centre - University of Thessaly
13/06/2024 07:08:42 EEST - 3.149.254.165



56 

K[12]=9.15; 

K[13]=9.3; 

K[14]=8.1; 

K[17]=9.3; 

K[21]=8.1; 

K[22]=8.3; 

K[24]=9.3; 

K[25]=8.15; 

K[27]=9; 

K[32]=9.1; 

K[33]=8.3; 

K[34]=9.3; 

K[36]=8.3; 

K[38]=9.1; 

K[43]=9.3; 

K[52]=9.2; 

K[57]=9; 

K[61]=10; 

K[62]=10; 

K[63]=10; 

K[64]=10; 

K[67]=10; 

K[68]=10; 

K[70]=10; 

 

 

double L[jmax]; // Late duties 

 

for (j=0;j<jmax;j++){ 

 L[j]=0; 

 } 

 

L[0]=1; 

L[17]=1; 

L[26]=1; 

L[16]=1; 

L[69]=1; 

L[70]=1; 

L[14]=1; 

L[32]=1; 

L[40]=1; 

L[41]=1; 

L[44]=1; 

L[45]=1; 

L[46]=1; 

L[50]=1; 

L[54]=1; 

L[56]=1; 

Institutional Repository - Library & Information Centre - University of Thessaly
13/06/2024 07:08:42 EEST - 3.149.254.165



57 

L[57]=1; 

L[59]=1; 

L[64]=1; 

L[12]=1; 

L[13]=1; 

L[55]=1; 

L[58]=1; 

 

double KL[jmax]; // Extra cost for late duties 

 

for (j=0;j<jmax;j++){ 

 KL[j]=1; 

 } 

 

KL[0]=1.5; 

KL[17]=1.5; 

KL[26]=1.5; 

KL[16]=1.5; 

KL[69]=1.5; 

KL[70]=1.5; 

KL[14]=1.5; 

KL[32]=1.5; 

KL[40]=1.5; 

KL[41]=1.5; 

KL[44]=1.5; 

KL[45]=1.5; 

KL[46]=1.5; 

KL[50]=1.5; 

KL[54]=1.5; 

KL[56]=1.5; 

KL[57]=1.5; 

KL[59]=1.5; 

KL[64]=1.5; 

KL[12]=1.5; 

KL[13]=1.5; 

KL[55]=1.5; 

KL[58]=1.5; 

 

 

double E[jmax]; // Early Duties 

 

for (j=0;j<jmax;j++){ 

 E[j]=0; 

 } 

 

E[15]=1; 

E[39]=1; 

E[43]=1; 

Institutional Repository - Library & Information Centre - University of Thessaly
13/06/2024 07:08:42 EEST - 3.149.254.165



58 

E[65]=1; 

E[31]=1; 

E[11]=1; 

E[66]=1; 

E[67]=1; 

E[68]=1; 

E[49]=1; 

E[53]=1; 

E[9]=1; 

E[35]=1; 

E[52]=1; 

E[25]=1; 

E[48]=1; 

E[51]=1; 

E[20]=1; 

E[7]=1; 

E[8]=1; 

E[37]=1; 

E[24]=1; 

E[38]=1; 

E[4]=1; 

 

double M[jmax]; //Medium Duties 

 

for (j=0;j<jmax;j++){ 

 M[j]=0; 

 } 

 

M[47]=1; 

M[3]=1; 

M[6]=1; 

M[23]=1; 

M[28]=1; 

M[29]=1; 

M[30]=1; 

M[21]=1; 

M[19]=1; 

M[10]=1; 

M[34]=1; 

M[36]=1; 

M[22]=1; 

M[2]=1; 

M[5]=1; 

M[18]=1; 

M[61]=1; 

M[63]=1; 

M[60]=1; 

M[62]=1; 

Institutional Repository - Library & Information Centre - University of Thessaly
13/06/2024 07:08:42 EEST - 3.149.254.165



59 

M[27]=1; 

M[1]=1; 

M[33]=1; 

M[42]=1; 

 

 

double KM[jmax]; //Extra cost for Medium duties 

 

for (j=0;j<jmax;j++){ 

 KM[j]=1; 

 } 

 

 

KM[47]=1.2; 

KM[3]=1.2; 

KM[6]=1.2; 

KM[23]=1.2; 

KM[28]=1.2; 

KM[29]=1.2; 

KM[30]=1.2; 

KM[21]=1.2; 

KM[19]=1.2; 

KM[10]=1.2; 

KM[34]=1.2; 

KM[36]=1.2; 

KM[22]=1.2; 

KM[2]=1.2; 

KM[5]=1.2; 

KM[18]=1.2; 

KM[61]=1.2; 

KM[63]=1.2; 

KM[60]=1.2; 

KM[62]=1.2; 

KM[27]=1.2; 

KM[1]=1.2; 

KM[33]=1.2; 

KM[42]=1.2; 

 

 

 

 

 

 

 

 

 

 

 

Institutional Repository - Library & Information Centre - University of Thessaly
13/06/2024 07:08:42 EEST - 3.149.254.165



60 

IloEnv env; 

 

 try { 

 

  IloModel model (env); 

 

typedef IloArray<IloNumArray> IloNumMatrix2x2; 

typedef IloArray<IloNumMatrix2x2> IloNumMatrix3x3; 

 

typedef IloArray<IloNumVarArray> IloNumVarMatrix2x2; 

typedef IloArray<IloNumVarMatrix2x2> IloNumVarMatrix3x3; 

typedef IloArray<IloNumVarMatrix3x3> IloNumVarMatrix4x4; 

 

typedef IloArray<IloRangeArray> IloRangeMatrix2x2; 

typedef IloArray<IloRangeMatrix2x2> IloRangeMatrix3x3; 

 

 

 

 

IloCplex cplex(env); 

 

 

 

 

 

//-------------- Decision Variable D for Train Drivers--------------------------------------- 

 

IloNumVarMatrix3x3 Dijd(env,0); 

 for (i=0;i<imax;i++){ 

  IloNumVarMatrix2x2 Djd(env,0); 

  for (j=0;j<jmax;j++){ 

   IloNumVarArray Dd(env,0); 

   for (d=0;d<dmax;d++){ 

    char Ipiresies[70];   

    sprintf(Ipiresies,"Dijd(i%d,j%d,d%d)",i,j,d);  

                IloNumVar D(env,0,1,ILOINT,Ipiresies);  

                Dd.add(D); 

    

   } 

   Djd.add(Dd); 

  } 

  Dijd.add(Djd); 

 } 

 

 

 

   

 

Institutional Repository - Library & Information Centre - University of Thessaly
13/06/2024 07:08:42 EEST - 3.149.254.165



61 

//----------------------------------------------------------------------------- 

//-------------------------CONTRAINTS----------------------------------------- 

  

//----------------------------------------------------------------------------- 

//-------------------(1) Set of constraints: Only one Duty per Driver ----------- 

 

IloRangeMatrix2x2 SumDjd(env,0); 

 for (j=0;j<jmax;j++){ 

  IloRangeArray SumDd(env,0); 

   for (d=0;d<dmax;d++){ 

    IloExpr expr(env,0); 

     for (i=0;i<imax;i++){ 

      expr+=Dijd[i][j][d]; 

      } 

    char Ipir_MIX[60]; 

    sprintf(Ipir_MIX,"SumDijd(j%d,d%d)",j,d); 

    float LB=1,UB=1; 

    IloRange SumD(env,LB,expr,UB,Ipir_MIX); 

    model.add(SumD); 

    SumDd.add(SumD); 

    expr.end(); 

    } 

   SumDjd.add(SumDd); 

   } 

  

//----------------------------------------------------------------------------- 

//------------ (2) Set of constraints: Only one Driver per Duty------------------------------- 

 

 

 IloRangeMatrix2x2 Sum2Did(env,0); 

 for (i=0;i<imax;i++){ 

  IloRangeArray Sum2Dd(env,0); 

  for (d=0;d<dmax;d++){ 

   IloExpr expr(env,0); 

   for (j=0;j<jmax;j++){ 

    expr+=Dijd[i][j][d]; 

    } 

   char Ipir_MIX2[60]; 

   sprintf(Ipir_MIX2,"Sum2Dijd(j%d,d%d)",j,d); 

   float LB=-IloInfinity,UB=1; 

   IloRange Sum2D(env,LB,expr,UB,Ipir_MIX2); 

   model.add(Sum2D); 

   Sum2Dd.add(Sum2D); 

   expr.end(); 

   } 

  

   Sum2Did.add(Sum2Dd); 

  } 

Institutional Repository - Library & Information Centre - University of Thessaly
13/06/2024 07:08:42 EEST - 3.149.254.165



62 

//----------------------------------------------------------------------------- 

//-----------(3) Set of constraints: Maximum WHW for every driver------------- 

 

 

  

  IloRangeArray Sum3Di(env,0); 

  for (i=0;i<imax;i++){ 

   IloExpr expr(env,0); 

   for (j=0;j<jmax;j++){ 

    for (d=0;d<dmax;d++){ 

    expr+=Dijd[i][j][d]*T[d]*KL[j]*K[j]*KM[j]; 

    } 

   } 

   char Ipir_MIX3[60]; 

   sprintf(Ipir_MIX3,"Sum3Dijd(j%d,d%d)",j,d); 

   float LB=-IloInfinity,UB=77; 

   IloRange Sum3D(env,LB,expr,UB,Ipir_MIX3); 

   model.add(Sum3D); 

   Sum3Di.add(Sum3D); 

   expr.end(); 

  } 

   

//-----------(4) Set of constraints: No early duty, after early duty------------- 

 

  IloRangeMatrix2x2 Sum4Dmi (env,0); 

  for (m=0;m<mmax;m++){ 

   IloRangeArray Sum4Di(env,0); 

   for (i=0;i<imax;i++){ 

    IloExpr expr(env,0); 

    for (j=0;j<jmax;j++){ 

     for (d=m;d<m+1;d++){ 

    expr+=Dijd[i][j][d]*E[j]+Dijd[i][j][d+1]*E[j]; 

    } 

   } 

    

   char Ipir_MIX4[60]; 

   sprintf(Ipir_MIX4,"Sum4Dijd(i%d)",i); 

   float LB=-IloInfinity,UB=1; 

   IloRange Sum4D(env,LB,expr,UB,Ipir_MIX4); 

   model.add(Sum4D); 

   Sum4Di.add(Sum4D); 

   expr.end(); 

   } 

  Sum4Dmi.add(Sum4Di); 

  } 

 

 

 

Institutional Repository - Library & Information Centre - University of Thessaly
13/06/2024 07:08:42 EEST - 3.149.254.165



63 

//----------------------------------------------------------------------------- 

//-----------(5) Set of constraints: No early or medium duty, after medium duty------------- 

 

  IloRangeMatrix2x2 Sum5Dmi (env,0); 

  for (m=0;m<mmax;m++){ 

  IloRangeArray Sum5Di(env,0); 

   for (i=0;i<imax;i++){ 

   IloExpr expr(env,0); 

    for (j=0;j<jmax;j++){ 

     for (d=m;d<m+1;d++){ 

 expr+=Dijd[i][j][d]*M[j]+Dijd[i][j][d+1]*M[j]+Dijd[i][j][d+1]*E[j]; 

    } 

   } 

    

   char Ipir_MIX5[60]; 

   sprintf(Ipir_MIX5,"Sum5Dijd(i%d)",i); 

   float LB=-IloInfinity,UB=1; 

   IloRange Sum5D(env,LB,expr,UB,Ipir_MIX5); 

   model.add(Sum5D); 

   Sum5Di.add(Sum5D); 

   expr.end(); 

   } 

  Sum5Dmi.add(Sum5Di); 

  } 

 

//----------------------------------------------------------------------------- 

//-----------(6) Set of constraints: Day off after late duty------------- 

 

 

  IloRangeMatrix2x2 Sum6Dmi (env,0); 

  for (m=0;m<mmax;m++){ 

  IloRangeArray Sum6Di(env,0); 

   for (i=0;i<imax;i++){ 

   IloExpr expr(env,0); 

    for (j=0;j<jmax;j++){ 

     for (d=m;d<m+1;d++){ 

  

expr+=Dijd[i][j][d]*L[j]+Dijd[i][j][d+1]*L[j]+Dijd[i][j][d+1]*M[j]+Dijd[i][j][d+1]*E[j]; 

    } 

   } 

    

   char Ipir_MIX6[60]; 

   sprintf(Ipir_MIX6,"Sum6Dijd(i%d)",i); 

   float LB=-IloInfinity,UB=1; 

   IloRange Sum6D(env,LB,expr,UB,Ipir_MIX6); 

   model.add(Sum6D); 

   Sum6Di.add(Sum6D); 

   expr.end(); 

Institutional Repository - Library & Information Centre - University of Thessaly
13/06/2024 07:08:42 EEST - 3.149.254.165



64 

   } 

  Sum6Dmi.add(Sum6Di); 

 } 

 

//----------------------------------------------------------------------------- 

//-----------(7) Set of constraints: No early duty, after early duty for D=7 and D=0------ 

 

  IloRangeArray Sum7Di(env,0); 

   for (i=0;i<imax;i++){ 

   IloExpr expr(env,0); 

    for (j=0;j<jmax;j++){ 

     for (d=dmax-1;d<dmax;d++){ 

    expr+=Dijd[i][j][dmax-1]*E[j]+Dijd[i][j][0]*E[j]; 

    } 

   } 

    

   char Ipir_MIX7[60]; 

   sprintf(Ipir_MIX7,"Sum7Dijd(i%d)",i); 

   float LB=-IloInfinity,UB=1; 

   IloRange Sum7D(env,LB,expr,UB,Ipir_MIX7); 

   model.add(Sum7D); 

   Sum7Di.add(Sum7D); 

   expr.end(); 

   } 

//----------------------------------------------------------------------------- 

//------(8) Set of constraints: No early or medium duty, after medium duty for D=7 and D=0--- 

 

  IloRangeArray Sum8Di(env,0); 

   for (i=0;i<imax;i++){ 

   IloExpr expr(env,0); 

    for (j=0;j<jmax;j++){ 

     for (d=dmax-1;d<dmax;d++){ 

    expr+=Dijd[i][j][dmax-

1]*M[j]+Dijd[i][j][0]*M[j]+Dijd[i][j][0]*E[j]; 

    } 

   } 

    

   char Ipir_MIX8[60]; 

   sprintf(Ipir_MIX8,"Sum8Dijd(i%d)",i); 

   float LB=-IloInfinity,UB=1; 

   IloRange Sum8D(env,LB,expr,UB,Ipir_MIX8); 

   model.add(Sum8D); 

   Sum8Di.add(Sum8D); 

   expr.end(); 

   } 

 

 

 

Institutional Repository - Library & Information Centre - University of Thessaly
13/06/2024 07:08:42 EEST - 3.149.254.165



65 

//----------------------------------------------------------------------------- 

//------(9) Set of constraints: Day off after Late duty for D=7 and D=0--- 

 

 

  IloRangeArray Sum9Di(env,0); 

   for (i=0;i<imax;i++){ 

   IloExpr expr(env,0); 

    for (j=0;j<jmax;j++){ 

     for (d=dmax-1;d<dmax;d++){ 

 

expr+=Dijd[i][j][dmax-1]*L[j]+Dijd[i][j][0]*L[j]+Dijd[i][j][0]*M[j]+Dijd[i][j][0]*E[j]; 

    } 

   } 

    

   char Ipir_MIX9[60]; 

   sprintf(Ipir_MIX9,"Sum9Dijd(i%d)",i); 

   float LB=-IloInfinity,UB=1; 

   IloRange Sum9D(env,LB,expr,UB,Ipir_MIX9); 

   model.add(Sum9D); 

   Sum9Di.add(Sum9D); 

   expr.end(); 

   } 

 

   

 

 

 

//------------------------------------------------------------------------------ 

//------------------------------------------------------------------------------ 

//---------------------------------Objective Function -------------------------- 

//------------------------------------------------------------------------------ 

 

 

 IloExpr expr1(env); 

for (i=0;i<imax;i++){ 

 for (j=0;j<jmax;j++){ 

  for (d=0;d<dmax;d++){ 

   expr1+=Dijd[i][j][d]*T[d]*KL[j]*K[j]*KM[j]; 

  } 

 } 

} 

  

 

model.add(IloMinimize(env, expr1)); 

expr1.end();  

 

 

 

Institutional Repository - Library & Information Centre - University of Thessaly
13/06/2024 07:08:42 EEST - 3.149.254.165



66 

cplex.extract(model); 

cplex.exportModel("onoma.lp"); //All Contraint’s equation in .lp file 

 

 

 

 

cplex.solve(); 

 

 

 

  if (!cplex.solve ()){ 

   env.error()<<"Faild to optimize LP."<<endl; 

   throw(-1); 

  } 

 

 

  env.out()<<"Solution status = " <<cplex.getStatus()<<endl; 

  env.out()<<"Solution value = " <<cplex.getObjValue()<<endl; 

   

 

 

 

for (i=0;i<imax;i++){ 

  for (j=0;j<jmax;j++){ 

   for (d=0;d<dmax;d++){ 

    float g = cplex.getValue(Dijd[i][j][d]); 

   if(g!=0) // All none zero values 

cout<<"Dijd"<<"("<<i<<","<<j<<","<<d<<")"<<"="<<g<<endl;  

   if(g!=0) fprintf(myfile, "Dijd[%d][%d][%d]=%.0lf\n",i,j,d,g);  

//Write the results in .txt file 

   } 

  } 

 } 

 

 

  

 } 

 catch ( IloException& e){ 

  cerr << "concert exception caught:"<<e<<endl; 

 } 

 catch (...){ 

  cerr<<"Unknown exception caught" <<endl; 

 } 

fclose(myfile); 

 env.end(); 

 return 0; 

} //End main 

Institutional Repository - Library & Information Centre - University of Thessaly
13/06/2024 07:08:42 EEST - 3.149.254.165



67 

References 

[1] Alberto Caprara, Mateo Fischetti, Paolo Toth, Daniele Vigo, Pier Luigi Guida, 

“Algorithms for Railway Crew Management” Mathematical Programming 79 (1997) 

125-141 

[2] A.T. ERNST, H. JIANG, M. KRISHNAMOORTHY, H. NOTT and D. SIER “An 

Integrated Optimization Model for Train Crew Management”, Annals of Operations 

Research 108, 211–224, 2001. 

[3] Raymond S K Kwan. “Case studies of successful train crew scheduling optimization” 

Theory and Applications (MISTA 2009) 10-12 August 2009, Dublin, Ireland. 

[4] Alberto Caprara, Mateo Fischetti, Paolo Toth, Daniele Vigo, Pier Luigi Guida , 

“Solution of Large – Scale Railway Crew Planning Problems: The Italian Experience”. 

[5] M Lezaun, G P´erez and E S´ainz de la Maza, “Staff rostering for the station personnel 

of a railway company” Journal of the Operational Research Society (2010) 61, 1104 –

1111 

[6] “Personalized Crew Rostering at Netherlands Railways” Geert de Pont, University of 

Tilburg 

[7] Ann Sau King Kwan “Train Driver Scheduling”, for the degree of Doctor of Philosophy, 

The University of Leeds, August 1999. 

[8] Anneke Hartog1, Dennis Huisman2,3, Erwin J.W. Abbink2, and Leo G, Kroon, 

“Decision Support for Crew Rostering at NS” Econometric Institute Report EI2006-04 

Institutional Repository - Library & Information Centre - University of Thessaly
13/06/2024 07:08:42 EEST - 3.149.254.165



68 

[9] Chi-Kang LEE Chao-Hui CHEN, “SCHEDULING OF TRAIN DRIVER FOR 

TAIWAN RAILWAY ADMINISTRATION”, National Cheng Kung University 

[10] Natalia J. Rezanova, David M. Ryan, “Solving the Train Driver Recovery Problem”, 

Extended Abstract 

[11] RAMON M. LENTINK, MICHIEL A. ODIJK & ERWIN VAN RIJN ERIM “CREW 

ROSTERING FOR THE HIGH SPEED TRAIN” ERS-2002-07-LIS, February 2002 

[12] Ignacio Eduardo Laplagne, “Train Driver Scheduling with Windows of Relief 

Opportunities”, ”, for the degree of Doctor of Philosophy, The University of Leeds, 

January 2008. 

[13] Leo Kroon, Matteo Fischetti “Scheduling Train Drivers and Guards: the Dutch “Noord-

Oost” Case”, Proceedings of the 33rd Hawaii International Conference on System 

Sciences – 2000 

[14] RALF BORNDORFER, UWE SCHELTEN, THOMAS SCHLECHTE, STEFFEN 

WEIDER, “A Column Generation Approach to Airline Crew Scheduling” ZIB-Report 

05-37 (August 2005) 

Institutional Repository - Library & Information Centre - University of Thessaly
13/06/2024 07:08:42 EEST - 3.149.254.165


	Chapter 1 INTRODUCTION
	Κεφάλαιο 1
	1.1 Introduction
	1.2 Structure of Postgraduate work

	Chapter 2 PROBLEM DESCRIPTION
	Chapter 3 LITERATURE REVIEW
	Chapter 4 MODEL DEVELOPMENT
	Chapter 5 SOLUTION METHODOLOGY
	Κεφάλαιο 2
	Chapter 6 COMPUTATIONAL IMPLEMENTATION
	Κεφάλαιο 3
	6.1 Numerical example 1
	6.2 Numerical example 2
	6.3 Numerical example 3
	6.4 Numerical example 4

	Chapter 7 CASE STUDY
	Chapter 8 CONCLUSIONS - FUTURE RESEARCH
	Appendix A    C++ Implementation of main Algorithm – IBM ILOG (CPLEX)
	References

