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In recent years, there has been considerable progress in the area of logistics. The main forc-
es behind this evolution are computer based technologies such as geographic information
systems (GIS), global positioning systems (GPS) and intelligent highway information systems.
All these technologies facilitate better decisions on routing, assignment, distribution as well
as many other logistics-related problems. Most of the research in the last twenty years was
focused on the optimization of networks either static or deterministic. A network can be de-
fined as static when all its parameters are known a priori, it does not change over time, and
is deterministic when all parameters are deterministically known. Models that anticipate
real-time information and can account for parameter uncertainty are called either dynamic
or stochastic. These types of models are receiving increasingly more interest from many re-
searches in the area. This is the case because these models allow for more accurate repre-
sentation of reality, by continually updating their data with new input from the real world.
These models are certainly more difficult to solve. However, given the evolution of infor-
mation technology, we could safely claim that they are the best choice for logistics problem
solving. Researchers tackle these problems, by constructing algorithms, which are typically
problem specific and extensions of the corresponding static algorithms. The traditional de-

sign and analysis of static algorithms assumes that an algorithm has complete knowledge of
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the entire input. However, this assumption is often unrealistic in practical applications. Many
of the practical algorithmic applications, however, are online by nature. For these applica-
tions the input is only partially available because some data becomes available in the course
of operation. Often, this information is unavailable at the time routing decision must be
made. An online algorithm must generate output without knowledge of the entire input.

The problem of concern in this dissertation is the well known “Dial-a-Ride” or “Pickup and
Delivery” Problem and its variation called “Online Dial-a-Ride”. This problem can be consid-
ered as a special case of the general “Vehicle Routing Problem”. The “Dial-a-Ride Problem” is
an important and difficult problem encountered in several contexts. It is becoming increas-
ingly important as the pressure for optimal utilization of the available capacity of an existing
fleet of vehicles intensifies, due to energy and environmental impact concerns. An extension
to the traditional “Dial-a-Ride problem” (DARP) is the “Online Dial-a-Ride problem” which
deals with the continuous flow of trip demands during course of operation. What is required
is to construct online algorithms, capable of adapting to the continuous stream of incoming
information. We can imagine the “Online Dial-a-Ride problem” as a “Dial-a-Ride problem”
that has to be solved by an online algorithm each time a new trip demand occurs dynamical-
ly. We will examine this problem in more detail later in this document. For this dissertation,
six different dial-a-ride algorithms have been implemented. The first four are static dial-a-
ride algorithms while the remaining two can be considered as pure online algorithms. Final-
ly, a methodology concerning the profitability of a proposed Demand Responsive Transpor-

tation System has been developed, as well as the underlying algorithm.
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Chapter 1: Introduction

In recent years, there has been considerable progress in the area of logistics. The main forc-
es behind this evolution are computer based technologies such as Geographic Information
Systems (GIS), Global Positioning Systems (GPS) and Intelligent Highway Information Sys-
tems. All these technologies facilitate better decisions on routing, assignment, distribution
and many other logistics-related problems. Most of the research in the last twenty years has
been focused on optimizing networks that where static and deterministic. A network can be
defined as static when all information concerning its state is known a priori, it does not
change over time, and is deterministic when all parameters are deterministically known.
Models that anticipate real-time information and can account for uncertainty are called dy-
namic or stochastic networks. These types of models are attracting increasingly more inter-
est from many researches in the area. Because the advantage of these models is that they
allow for a more accurate representation of reality, by continually updating their data with
new input from the real world. These models are more difficult to solve. However, given the
evolution of Information Technology, we can safely claim that they are the best choice for a
new era in logistics science. Attempts to deal with these problems typically focus on con-
structing problem specific algorithms. The traditional design and analysis of algorithms as-
sumes that an algorithm, that generates a certain output, has complete knowledge of the
entire input in advance. However, this assumption is often unrealistic in practical applica-
tions. Many of the algorithmic problems that arise in practice are online. For these problems
the input is only partially available because some relevant input data becomes available in
the course of operation. Thus it is not available at the time decisions need to be made. An

online algorithm must generate output without knowledge of the entire input.
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1.1 Motivation

Algorithmic development for online problems is an active field of research for important
practical applications in logistics and transportation. Advances in Information and Com-
munication Technologies have substantially increased the role of online information,
which can be valuable if processed by specially designed algorithms. For all classic prob-
lems in logistics science there is a demand for extending static approaches to online ones.
The majority of these problems belong to what is known as NP-Hard problems, which are
usually intractable. Till now there is little progress in the field of mathematical formula-
tion and algorithm construction for online problems. For some of these problems the
state of the art is limited to heuristics. Given, however, the nature of heuristic algorithms,
it is difficult to define precisely how close their solutions might be to the optimal solution.
For the DARP, which is a special case of the general “Vehicle Routing Problem”, there is no
exact algorithm — at least not one running in acceptable CPU time — for reasonably sized
problems. Instead, there is a lot of work on heuristic approaches that produce solutions
close to the ones considered optimal. The whole research area, though, is fairly open to
new approaches.

The “Online Dial-a-Ride” problem (OLDARP) is more interesting both theoretically and
practically, because the state of the system changes on a real-time basis, due to cancella-

tions and new requests. This situation is common in real world Transportation Systems.

1.2 Dissertation Objectives

This research is focused on Static and Online Algorithms for the DARP and OLDARP prob-
lems. Emphasis is given on applications for DRT systems.

The specific objectives are:

1. To study the “Online Dial-a-Ride” problem (ODARP), though an extensive literature

study. New trends in research are considered, in order to get deep understanding of

Institutional Repository - Library & Information Centre - University of Thessaly
2410512024 07-53:09 EEST - 18711877118



the practical application needs that guide the research on this field. Issues like the
closeness of the proposed solutions to the optimal solutions are considered.

2. To identify the problem properties that can be useful in the overall understanding of
the online problem. This is a challenging objective as we aim to identify specific
problem properties concerning the problem solution space; this in turn will lead to
understanding what the difficulties concerning the solution are. It will also indicate
possible solution paths.

3. To construct the appropriate set of static algorithms. These can be used as sub-
modules to the online algorithms.

4. To construct the appropriate set of online algorithms. With special emphasis on
adapting optimization procedures that are continuously improved as the time pro-
gresses, taking advantage of the time that the system remains idle.

5. To evaluate these algorithms in terms of solution optimality, speed of execution and

correctness of the results.

6. To build a working framework, that utilizes online algorithms within a practically im-

plementable solution for actual applications.

1.3 Dial-a-Ride Services as part of the Demand Responsive

Transportation (DRT) Systems

A DRT system is a public transit service that can provide shared-ride door-to-door service
with flexible routes and schedules. DRT was initially designed for service to the general
public. It provides a higher quality of service (e.g. negligible access time, wait at home
and no transfers). However it increases operating cost due to lower vehicle productivity
(e.g., passenger trips per vehicle hour) than conventional bus services. Due to the re-
quired subsidy, DRT service to the general public is usually limited to suburban areas or

time periods with low demand densities. It is also used as a feeder to line-haul systems,
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in those situations where they operate more cost-effectively. In some cities, DRT is lim-
ited to use by a special group of persons with mobility difficulties (handicapped or elderly
persons), who are not able to access other public transportation services or airport
transport services where there is one major origin or destination. A DRT system is made
up of a control center and a fleet of small vehicles (usually < 20 seats) compared to con-
ventional buses where higher capacity vehicles are used on a fixed route and schedule.
The vehicles, operating with flexible routes and schedules, respond to requests for trans-
portation as they are received by the control center. Each customer will provide infor-
mation about the locations of his/her origin and destination, the desired time of pickup
or delivery, and the number of riders. The dispatcher in the control center will combine
the customer information with information regarding vehicle positions and their tenta-
tive routes, to plan the new routes for vehicle. This may be done using manual or auto-
mated dispatching techniques. The passengers are provided the expected pickup time.
Unlike taxi service, DRT services allow ridesharing and thus reduce the cost per passen-
ger. Early demand-responsive systems used manual dispatching techniques. With techno-
logical advances in computer hardware and software, automatic computer dispatching
algorithms are available to many current services. Furthermore, Advanced Vehicle Loca-
tion (AVL), Global Position Systems (GPS), Geographical Information Systems (GIS) and
other similar systems are making the real-time dispatching more feasible. In the existing
systems or algorithms, two types of service requests are considered: advance requests

and immediate requests.

Advance requests usually refer to those received at least one day before the service is
provided, so that routes and schedules can be planned at the start of the day of service.
Service provided to handicapped persons often requires advance requests. If all the re-

quests are provided in advance (and assuming all other factors, such as traffic conditions,
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are predictable), then the determination of the routes and schedules is a based on a stat-

ic Dial-A-Ride Problem (DARP).

Immediate requests are those asking for service as soon as possible with a designated
desired pickup or delivery time. In practice, a reasonable online service provided to the
general public would allow the service requests, probably with a minimum time in ad-
vance (e.g. 10 minutes) for the efficient route and schedule planning. This kind of service
is considered in this study. Except when serving only previous-day advance requests, the
routing and scheduling of a DRT service is a dynamic problem, in which decisions for re-

quests coming throughout the operating period are made in real time.

DRT services may be classified as many-to-many, many-to-few and many-to-one, depend-
ing on the demand patterns and the targeted service quality. Many-to-many means pas-
sengers can differ in their origins and destinations. If all the passengers are picked up or
delivered at the same location (e.g. a shopping center or an airport), the service is many
to-one. One example of many-to-one service is the feeder service in a local area, in which
all passengers are collected to feed a metro station. Many-to-few lies between those two

extreme conditions, where there are a few common origins and/or destinations.

In the USA and Canada DRT services are used extensively as part of the American with
Disabilities Act (ADA). In many cities in the USA, a DRT taxi-based system exists, mainly
for airport service and other intercity trips offering a cheap alternative to a regular taxi.
While it is not exactly a door-to-door DRT application, a popular transit option in Turkey,
called “dolmus”, is a good application example of a new public transportation mode that
is more flexible than the public bus and still more affordable price compared to taxi/car

option.

Many EU countries such as Italy, Finland, Sweden, Netherlands and Belgium have em-

ployed DRT systems, mainly funded by the European Commission. Experience from Eu-
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rope shows that strategically it is more straightforward to implement DRT systems in
regulated environments, as there is less conflict with other public transportation modes.
In 2000, the UK Government pledged in its Ten Year Plan for transport to remove or (at
least) relax constraints on the development of flexible bus services and to promote a
greater role for community-based services (DETR, 2000a). In addition, research commis-
sioned by the UK Department of the Environment Transport and the Regions (DETR) ar-
gues that flexible public transport services - provided by local authorities and bus opera-
tors in partnerships with employers, stores and leisure centers - would help to break
down social exclusion (DETR, 2000b). Similar initiatives have been reported in Ireland
(ADM, 1999). More recently, in 2001, the UK Rural White Paper proposals for the exten-
sion of Bus Service Operators Grant (BSOG) —formerly Fuel Duty Rebate (FDR) — to com-
munity transport were adopted. Finally, the recent successes of local authorities in win-
ning substantial funding under the Rural and Urban Bus Challenge programs for the im-
plementation of Demand Responsive Transport Services confirms this new interest in

flexible forms of transport.

1.4 Contributions till now

The contribution of the dissertation to the static and online Dial-a-Ride problem may be

defined as follows:

e Construction of a set of algorithms concerning the static Dial-a-Ride problem.
o The InsertionH algorithm and its variations
o The DP Exact algorithm
o The Very Large Search Neighborhood VLSN hybrid algorithm
o The RegretH heuristic algorithm
e Construction of a set of algorithms concerning the online Dial-a-Ride problem.

o The online regret OR-DARP algorithm.
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o The online regret with probabilities OP-DARP algorithm.

e The construction of the “Convergence Process” in order to understand the profitabil-

ity of a DRT system
e The comparison of results (online solutions vs a posteriori solutions)

e Testing of those online algorithms via simulation programs.
1.5 Organization of the Dissertation

Chapter 2 focuses on the review of the literature regarding the existing static and online

DARP problems with emphasis on the online approach.

Chapter 3 focuses on the mathematical formulation of the static DARP. Some results con-

cerning the MILP formulation are presented to indicate the NP nature of the problem.

Chapter 4 focuses on static algorithms for the DARP. In the framework of this dissertation
we have developed four static algorithms: The first one is a simple Insertion heuristic; the
second one is DP implementation of an exact approach; the third is a hybrid algorithm
called VLSN (Very Large Scale Neighborhood) search algorithm; the last one is a heuristic
that uses the regret technique as optimization procedure. This procedure helps us to find

out which of these algorithms can be utilized for the online implementations.

Chapter 5 focuses on the online algorithms. Based on the findings in chapter 4 we devel-
oped two online algorithms. The first one is the online version of the static regret algo-

rithm, while the second one is an online probabilistic regret algorithm.

Chapter 6 focuses on an actual application and on the Convergence Methodology regard-

ing the profitability of a DRT system under consideration.

Chapter 7 presents the conclusions of this dissertation and discusses further research di-

rections.
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Chapter 2 : Critical Evaluation of the Literature

In this section we present a review of the existing literature on online problems. First we
should define the term online. The terms online and dynamic are not sufficiently clear due to

different usage by various authors.

Some of the them, use the term dynamic to refer to problems where the number of de-
mands, network features such as travel times — even the fleet size — are not known a priori
but varies with time. Others use the term to refer to problems where only network features
vary. The term online is used invariably to refer only to problems where demand varies
through the time. In the next sections when we refer to studies for dynamic DARP problems
we mean problems where the number of trip demands is not known a priori while network

and fleet features remain unchanged.

Initially, dynamic problems for the general Dynamic Vehicle Routing problem will be dis-
cussed as well as the Dynamic Vehicle Allocation problem. Then we will focus on the general
DARP problem. Finally we will discuss the DARP problem in much greater detail, with em-

phasis on variations such as single vehicle, multi vehicle, as well as online operation.
2.1 The Dynamic Vehicle Routing Problem

This category of problems includes many vehicle routing problems and various approach-
es have been presented mostly for specific problem applications. Bagchi and Nag [112]
proposed an expert system approach to dynamic vehicle routing. The Gavish system [45]
makes use of a combination of optimization-based heuristics. The Un-capacitated Dynam-
ic Travelling Repairman problem is a classic dynamic assignment problem. A Special ver-

sion of this problem is the capacitated version. In this problem customers must be clus-
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tered into tours which satisfy vehicle capacity constraints. Bertsimas and van Ryzin [14]
examine the case where a specific region is served by a homogeneous fleet of m vehicles,
operating out of m depots whose locations need not be distinct, where each vehicle is re-
stricted to visiting at most g customers before returning to the depot. Fleischmann et al.
[110] proposed a framework that adapts to online traffic information for a specific appli-
cation of the dynamic routing problem, consisting of three strategies (planning by assign-
ment rules, planning by assignment algorithm, planning by insertion algorithm) that can

cover a number of applications.

2.2 The Dynamic Vehicle Allocation problem

The vehicle allocation problem arises when a common carrier must manage a fleet of ve-
hicles to maximize profits over a planning horizon. Demand materializes when shippers
call the carrier requesting a vehicle to be available in a specific location, on specific day
and time, to carry something to a given destination. This request is usually referred to as
load. Each load must be served by a single vehicle and the vehicle is dedicated to that
load. No vehicle can be shared by more than one loads. Time is split into intervals, and on
each day, the operator must either assign each vehicle to a requested demand, or move it
empty to another region to pickup a requested or expected demand, or to keep it inactive

until the next day.

Vehicle allocation problems have many applications in everyday life. Most transport and
logistics applications are based on vehicle allocation approaches. That may partly explain

the popularity of this subject in the general operations research area.

In the case of rail transportation we can refer to Feeney [37], Leddon and Wrathall [72],
Gorenstein et al. [51] and Herren [52],[53] where we can see early examples of efforts to

optimize fleets of rail cars. Misra [79] formulates the problem as a linear program, while
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White [107] presents a dynamic transshipment network over a finite planning horizon.
White and Bomberault [108] use the dynamic structure of the network to develop a spe-
cialized algorithm. Mendiratta [75] and Mendiratta and Turnquist [76] present inventory
models for managing empty cars, taking into account the decentralized nature of the de-
cision-making process. Jordan and Turnquist [63] present the first stochastic model of the
empty car management problem. Ratcliffe et al. [95] use a simulation model of empty
freight cars. Glickman and Sherali [49] address the problem of pooled fleets of empty cars,
recognizing that railroads share fleets of cars. Shan [97] uses a dynamic, multi-commodity
network flow model to handle multiple car types, using resource directive decomposition
to solve the resulting network. Chih [21] extends this model to handle multiple railroad
vehicles. An array of myopic models can be referred to also, such as the transportation
formulations given in Turnquist [104] and Turnquist and Markowicz [105]. Other re-
searchers are going beyond the problem of managing empty cars. Haghani [54] presents a
combined model for train makeup and empty car repositioning, representing one of the
earliest efforts to address the flows of both loaded and empty cars. Chih et al. [22] con-
sider the problem of managing locomotives. Smith and Sheffi [99] present a locomotive
distribution model that accounts for uncertainty in the need for locomotives, using a sim-
ple recourse strategy to handle the effects of uncertainty. Kraay et al. [70] address the
problem of dynamically managing the movement of trains over a rail line, which requires
optimizing the use of sidings to allow for train passing. For trucking truckload applications,
the primary problem addressed in the literature is the dynamic vehicle allocation problem
for managing large fleets of trucks. Powell et al. [91] present a nonlinear dynamic network
model for accounting for uncertainties in forecasted demands. Powell [85] refines this
model to allow for stochastic vehicle inventories. This model extends [91] to allow for the
possibility that trucks that are not needed will remain in inventory, and extends the model

in [63] by tracking both loaded and empty movements. Powell [86] further extends this
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model by providing the most realistic model of future vehicle trajectories. Whereas prior
research makes very restrictive assumptions about how a truck may be used under uncer-
tainty, Powell [86] provides a very general model of truck dispatching under uncertainty.
A more formal mathematical model is provided in Powell [87], where several different
models are formulated for the same problem. Frantzeskakis and Powell [46] introduce a
new heuristic for solving multistage dynamic networks with random arc capacities, moti-
vated by truckload motor carriers. These results have been further extended in Powell
and Cheung [88]. A real application of these results is given in Powell et al. [90]. For sea
transportation, applications of dynamic models come into effect when planning the
movement of ocean vessels and the optimization of fleets of containers over a global lo-
gistics network. Dantzig and Fulkerson [29] provide one of the earliest applications of op-
timization over a dynamic network to minimize the number of tankers required to meet a
given schedule. Other efforts to optimize the movement of vessels include Brown et al.
[18], Psaraftis et al. [93], Fisher and Rosenwein [38], and Perakis and Papadakis [83]. Er-
moliev et al. [35] and Florez [39] consider the optimization of containers. Crainic et al. [26]
considers the dynamic management of containers over land within a region near a port.
Finally, in air transportations the problem is realized as the assignment of aircraft to
routes, crew scheduling, pricing and booking problems, and the dynamic management of
aircraft between airports (known commonly as air traffic control problems). Dantzig and
Ferguson [28] use the fleet assighnment problem as an early example of linear program-
ming under uncertainty. Magnanti and Simpson [216] describe a series of dynamic net-
work models with side constraints to handle fleet assignment. The common approach
used in this area is based on set partitioning problems to choose from among the best set
of possible crew schedules. A different approach is suggested by Ball and Roberts [4]
which uses a matching algorithm to sequentially generate possible crew schedules. An-

other interesting problem is the flow management problem in air traffic control. The main
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concept for these problems is the dynamic management of aircraft moving between air-
ports. An important relevant reference is Andreatta and Romanin-Jacur [1]. Odoni [237]
and Mulvey and Zenios [80] give a nonlinear, dynamic network model for routing aircraft.

Bielli et al. [15] also formulate the flow control problem as a dynamic network.

2.3 The Static Dial and Ride Problem

The Dial-a-Ride problem class has received considerable attention in the literature. Sever-
al versions of the DARP have been studied over the past 30 years. While none is identical
to another, it helps comparatively evaluating them to assess their suitability for online
applications. Since the definition of the DARP varies from one author to the other, we on-
ly consider these cases where time window constraints are imposed. In the absence of
time windows, the problem only addresses precedence relationships on pick-up and drop-
off, which do not fully capture the true nature of the DARP.

The first publications in this area date back to the late 1960s and early 1970s (Wilson and
Weissberg [126]; Wilson and Colvin [127]). Surveys on solution methods can be found in
Cordeau and Laporte (2003b, 2007) [122], [128]

Next, some of the major developments in the Dial-a-Ride Problem are discussed:

(1) Exact algorithms

The single-vehicle problem has been first studied by Psaraftis [129], who developed an
exact dynamic programming algorithm for the case where time windows are imposed on
each pick-up and drop-off. User dissatisfaction is measured and controlled through a Max-
imum Position Shift (MPS) constraint, limiting the difference between the position of a
user in the list of requests and its actual position in the vehicle route. The algorithm de-
fines the MPS constant to control the maximum ride time for each user. Only very small
instances can be handled through this algorithm. It uses the methodology of states to rep-

resent each execution step as the current state and makes use of three arrays called
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FEASBL, V, NEXT - for the full description of feasible states and for the next step - each
one consisting of (2N+1)3" storage locations, where N is the number of requests. The al-
gorithm runs recursively and the time is bounded to (2N+1) * 3" processing steps. A dy-
namic version of the problem has also been defined by the same author. In the dynamic
version when a new request comes up, the algorithm resets the origin time and re-runs
the static version of the problem. Because of that limit (2N+1)3", only small problem in-
stances can be solved even with current computing power. But at least this algorithm
provides an exact solution. Waiting times are not considered in this study.

Desrosiers [124] reformulated the single vehicle DARP as an integer dynamic program.
The formulation includes time windows as well as vehicle capacity and precedence con-
strains. It is solved exactly by dynamic programming. According to the authors, the effec-
tiveness of the proposed algorithm is largely due to the use of efficient elimination criteria
for states which are infeasible, because of the additional constrains on the route. The so-
lution method can be described as follows: Problem is solved using forward dynamic pro-
gramming. The vehicle is initially located at the departure node 0. At the first iteration,
problem states created of routes visiting a single node chosen from the origins. At each
subsequent iteration k (2<= k <=2n), the states are constructed form the states of the pre-
vious iteration and are made up of routes visiting one additional node chosen from the or-
igins and destinations. To implement states elimination procedure, the authors use a set

of 9 criteria concerning the feasibility of each state. Criteria can be categorized as follows:

1. Criteria concerning the visiting sequence
2. Criteria concerning vehicle capacity
3. Criteria concerning time constraints (like earliest and latest visiting times)
4. Criteria concerning the case where several clients are at the same location.
A double labeling system (cost and time) is also used to mark each feasible route. Only a

subset of all possible labels (or routes) is stored. According to the authors memory usage
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for storing feasible states is not an issue, because of their small number. Optimal solu-
tions were obtained for 40 demands (n = 40). Dynamic features were not included at all in
this study. Authors recommended the use of the proposed algorithm as sub-algorithm in
the multi vehicle DARP, However, this algorithm approach was not used extensively by

subsequent studies.

Dumas et al [119] presented an exact algorithm which solves the pickup and delivery
problem when transporting goods. The algorithm uses a column generation specific
scheme with a constrained shortest path as a sub-problem. The presented algorithm
solves only some instances of the (Pickup and Deliver problem with Time Windows)
“PDPTW” and is not designed to handle large-scale problems. The first step of the pro-
posed methodology is to produce admissible paths, by using shortest path with con-
strains. After that, the master problem is solved by a column generation algorithm and a
branch and bound exploration tree. Given a set o columns or admissible paths, the re-
stricted master problem is solved using the simplex algorithm. The authors use a new
branching strategy which is applied directly to the requests, more precisely to the pickup
sequence. This branching strategy has the advantage of eliminating the possible number
of branches by half. Also in order to reduce execution time several strategies have been
used. One is to judiciously impose a cut on the number of vehicles far before the optimal
linear solution of the master problem is reached. Another is to reduce the shortest path
problems to a small part of the network comprising 30% of the best networks arcs. The
problem size ranged between 19 to 55 requests (20 to 112 nodes, including depot nodes).
The proposed solution gives good results only for small instances. There is also too much
customization in order to speed up the execution of the algorithm. The dynamic nature is
not considered in this methodology and maybe hard to implement an addition to this

methodology.
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Kozanidis - Ziliaskopoulos [125] presented a DP exact algorithm for the 1-vehicle and 2-
vehicle DARP problem. The algorithm is based on a data implementation which is an ex-
tension of the one introduced by Psaraftis [114]. Numerical results depict clearly the ex-
ponential behavior of that algorithmic implementation. The largest problem size that the
single vehicle algorithm can solve is limited to nine (N=9) demands. The largest problem
size that the 2-vehicle algorithm can solve is limited to seven (N=7) demands. Of course
the limited number of requests that can be solved restrict the use of this algorithmic im-
plementation to cases where the problem size is very small. What is important in this

study is that there is an approach for the optimal solution for more than one vehicle.

Kikuchi [151] develops a balanced LP transportation problem for the multi vehicle case,
minimizing empty vehicle travel as well as idle times, and thus fleet size. In a prepro-
cessing step the service area is divided into zones, the time horizon into time periods.
Every request is classified according to an origin and a destination zone as well as a depar-

ture and an arrival time period. An example with four zones is presented.

Cordeau [130] proposes a branch and cut algorithm for the static DARP. The algorithm is
based on a 3-index mixed-integer problem formulation. New valid inequalities as well as
previously developed ones for the PDP and the VRP are employed. The largest instance

solved to optimality comprises 36 requests.

Ropke-Cordeau-Laporte [131] introduced two new formulations for the PDPTW and the
closely related dial-a-ride problem (DARP) in which a limit is imposed on the elapsed time
between the pickup and the delivery of a request. Several families of valid inequalities are
introduced to strengthen these two formulations. These inequalities are used within
branch-and-cut algorithms. They have been tested on several instance sets for both the
PDPTW and the DARP. Instances with up to eight vehicles and 96 requests (194 nodes)

have been solved to optimality.
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(ii) Heuristic algorithms

Fisher — Jaikumar [117] presented a variant of the classic vehicle routing problem, in
which a fleet of vehicles delivers products stored at a central depot to satisfy customer
orders. The proposed algorithm is a generalized assignment problem with constraints and
an objective function, that approximates the cost of the traveling salesman problem tours
required for each vehicle to serve its assigned customers. Once this assighment has been
made, a complete solution is obtained by applying any traveling salesman problem heuris-
tic or optimizing algorithm, to obtain the delivery sequence for the customers assigned to
each vebhicle. Firstly, because the problem feasibility constraints are included in the gen-
eralized assignment problem, the heuristic will always find a feasible solution if one exists.
Second, the generalized assignment problem is solved while considering the impact of a
customer assignment to a vehicle on every other possible assignment considering vehicle
capacity constraints. This avoids a problem faced by sequential assighment or limited ad-
justment heuristics, that can "paint themselves into a corner" by unknowingly making ini-
tial assighnments, which lead to very expensive subsequent assignments in order to main-
tain feasibility. The authors’ opinion is that this method can easily be adapted to accom-
modate a number of important problem complexities, including multiple depots, multiple
time periods, the option of not delivering to a customer at a penalty, constraints on the
time duration of a vehicle route, and multiple capacity constraints (e.g., weight and vol-

ume).

The assignment algorithm is based on a special method that makes clusters of customers
based on seeds — produced by a special process — and then a TSP algorithm finds the best
optimized route. This algorithm has been tested with a maximum of 10 vehicles and 100
requests. Time windows and service times are considered in this algorithm, while the clus-

tering method is based on a heuristic.
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Sexton and Bodin [117] proposed a heuristic algorithm for the “Multi Vehicle Static Dial-
and-Ride Problem”. Proposed algorithm is as follows: First, partition the set of customers
into M vehicle clusters. Second, solve the single vehicle for each vehicle cluster. Third:
move customers from one vehicle to another while attempting to reduce total customer
inconvenience. Fourth: for each of the resultant vehicle clusters solve the resultant Single
Vehicle Route Schedule. The algorithm handles two types of inconvenience: “Excess Ride”
— defined as the actual ride time minus the direct ride time and “Time and Delivery” — de-
fined as the desired delivery time minus the actual delivery time - Time Deviation. To
solve the “Single Vehicle Static Ride and Dial problem”, the author uses an approach
based on two different modules. The first module is responsible to identify the optimal
scheduling sequence for a specific route. The second module uses a heuristic approach to
identify a sequence of possible routes. For the scheduling module the authors use Bend-
ers decomposition and they show that the scheduling problem is the dual of network
maximum flow problem, the structure of which allows exact solutions to be found quickly
using a one pass algorithm. For the routing model the authors present a heuristic algo-
rithm for finding an initial solution and after that they present a second heuristic algo-
rithm for the improvement of the initial route. The algorithm finds the initial route based
on a set from the current last task on a route to all other tasks feasible as immediate suc-
cessors. The second heuristic algorithm makes the route improvement motivated by a
langrangean relaxation and searches for feasible positions inside the same route. For eve-
ry feasible route the best scheduling is computed by the scheduling module. Results are
reported on several data sets from Baltimore and Gaithersburgh involving between 7 and
20 users.

Their proposed solution methodology is a combination of a heuristic part (route identifi-

cation) and an exact part (scheduling optimization), that can be used by a superior heuris-
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tic algorithm for multi vehicle dial and ride problem. There is no guarantee the optimum
solution. Also the online nature of the problem isn’t mentioned at all.

Jaw et al. [132] have analyzed a version of the problem where windows are imposed on
the pick-up time of pickup requests and on the drop-off time of delivery requests. The al-
gorithm emphasizes flexibility and user’s convenience. The basic concept of the proposed
algorithm is simple. The algorithm tests the feasible assignment for the current request
(pickup or delivery) for each available vehicle. For each assignment a COST function is cal-
culated. From all available feasible insertions the one with the smaller COST is selected.
After that, there is another procedure where the best position inside the scheduled route
should be found because Active Pickup and Active Deliver Time should be calculated.
Clearly this is the most difficult part of the optimization procedure. However, the same

I/I

author has shown that the problem to find the “optimal” insertion times for Actual Pickup
and Actual Delivery time is equivalent to minimizing a single — variable convex function,
this variable being the amount by which the current time schedule of the schedule-block
in question should be shifted. Furthermore, the disutility is formulated by two factors.
DUy;, which is disutility due to deviation from the most desired time, DU,; which is the dis-
utility due to excess ride time. Those factors also include quadratic terms in order to
model situations where the disutility is non-linear. The total cost is the result of a cost fac-
tor which includes the additional active vehicle time, plus the vehicle slack time, plus a
factor that describes the utilization of the vehicles. This algorithm makes use of 8 con-
stants and tries through that to find a balance. The alteration of those constants is manual
and based mainly on experience. The quality of the solution cannot be estimated precisely
by an automated procedure. Besides that, in the COST formulation (parts concerning cost)
the author is not so sure whether his approach describes the best solution (see quadratic

factors). Computational results are provided on artificial instances involving 250 users and

on a real-life dataset with 2617 users and 28 vehicles.
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loachim [133] presented an optimization based mini-clustering algorithm. It uses column
generation to obtain mini-clusters and an enhanced initialization procedure to decrease
processing times. The operation model presented by this approach can be described by
two phases as follows:

Phasel: Starts with the transportation requests as input, create lists of neighboring re-
guests using proximity features, generate a network and finally solve the restricted multi
vehicle PDPTW by using column generation.

Phase 2: Using vehicle itineraries and the generated mini-clusters generate a network
and solve a multivehicle TSP with time windows problem by column generation.

They also presented some comparison results between the proposed approach and a
parallel insertion mini clustering approach. Results show that their approach outper-
formed the parallel insertion mini clustering approach in terms of the internal travelling
time by an average 9.7% for problems up to 250 trip demands. For large scale problems
consisting of more than 2500 requests, the proposed method obtained a significant 5.9%
improvement in terms of the total travelling time.

Toth and Vigo [120] presented a heuristics for a real life transportation problem in Bolo-
gna, Italy. Users specify requests with a time window on their origin and destination. A
limit proportional to the direct distance is imposed on the time spent by a user in the ve-
hicle. Transportation is supplied by a fleet of capacitated minibuses and by the occasional
use of taxis. The objective is to minimize the total cost of service. The problem is solved
by a heuristic consisting of assigning requests to routes by means of a parallel insertion
procedure. This procedure consists of an initialization procedure and enroute trip inser-
tion procedure. The initialization procedure makes the choice of the initial route by using
only a fraction of requests and some kind of score which is produced by various user de-
fined factors. After that, an insertion procedure follows, using a special cost matrix creat-

ed for that purpose. Optionally a tabu search based heuristic - by using intraroute and in-
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terroute exchanges - is executed to further improve the total solution. Computational re-
sults presented by the authors demonstrated that, the final result is considerably im-
proved compared with the insertion algorithm. CPU time is however considerably greater
(27secs compared to 3706 seconds). Results were reported on instances involving 300
trips. Also there is no reference for the integration of any dynamic feature concerning the
demands such as real time demands.

Cordeau [134] tried to give a solution to that problem, by introducing a tabu search heu-
ristic. In this algorithm users specify transportation requests between origins and destina-
tions. They may provide a time window on their desired departure or arrival time. Trans-
portation is supplied by a fleet of vehicles based at a common depot. The aim is to design
a set of least cost vehicle routes capable of accommodating all requests. Side constraints
related to vehicle capacity, route duration and the maximum ride time of any user. Solu-
tion methodology is based mainly on tabu search technique. According to that technique
the search for feasible solutions can be done through infeasible solutions and a continu-
ous diversification mechanism is put in place in order to reduce the likelihood of being
trapped in a local optimum. To avoid cycling, solutions possessing some attributes of re-
cently visited solutions are declared forbidden, or tabu, for a number of iterations, unless
they produce a new incumbent.

Solutions are evaluated by using a cost function defined as f(s) = c(s) + aq(s) + 8d(s) +
yw(s) + tt(s) where: c(s) defined as the cost function produced by the arc values cost, g(s)
defined as the total violation of load, d(s) defined as the total violation of duration, w(s)
defined as the violation of total time window, t(s) defined as the violation of ride time
constrains. a,8,y,T are self-adjusting positive parameters. By dynamically adjusting the
values of the four parameters during the search, this relaxation mechanism facilitates the
exploration of the solution space and is particularly useful for tightly constrained instanc-

es. A procedure for neighborhood evaluation is also proposed. This adjusts the visit times
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of the vertices on the routes so as to minimize route duration and ride times. The tabu
search algorithm is considered as one of the most optimized algorithms in the DARP prob-
lems area.

Diana-Dessouky [135] presented a parallel regret insertion heuristic to solve a dial-a-ride
problem with time windows. A new route initialization procedure is implemented, that
keeps into account both the spatial and the temporal aspects of the problem. A regret in-
sertion is then performed to serve the remaining requests. The operating scenario is rep-
resentative of a large-scale dial-a-ride program in Los Angeles County. The proposed algo-
rithm was tested on data sets of 500 and 1000 requests built from data of paratransit ser-
vice in this area. The proposed parallel regret insertion can be described as follows: The
basic idea is to find for each un routed request its best insertion (i.e. the one that mini-
mizes the related cost, defined as an increment of the value of the objective function) in
each itinerary. In this manner, they build an incremental cost matrix in which the rows
represent the requests and the columns the routes. If a request has no feasible insertion
in a route, the corresponding incremental cost is set to an arbitrarily large value. After
that, we compute for each request its regret, given by the sum of the differences between
all the elements of the corresponding row and the minimum one. The request with the
largest regret will be inserted in the previously computed position. These steps are iterat-
ed until all the requests are inserted or until all the regret costs are zero. In the latter

case, the corresponding requests cannot be inserted in any of the existing routes.

2.4 The Online Dial and Ride Problem

The traditional design and analysis of algorithms assumes that an algorithm, which gener-
ates output, has complete knowledge of the entire input. However, this assumption is of-
ten unrealistic in practical applications. Many of the algorithmic problems that arise in

practice are online. In these problems the input is only partially available because some
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relevant input becomes available during the course of operation. An online algorithm
must generate output without knowledge of the entire input.

In general the online version of the problem works as follows. A static solution is con-
structed on a basis of the requests known at the start of the planning horizon. When a
new request arrives, the algorithm performs a feasibility check, and then it searches for a
feasible solution to include the new service request. If the new request is accepted, the
algorithm performs post-optimization. Feasibility checks are executed just to initially as-
sess the possibility to accept the new request. Post-Optimization executed later gives the
best position and time limits for the new request. Parallel computing techniques are used
to speed up the process.

The different solution techniques developed are described in the following paragraphs.
Predominantly heuristic methods have been used to solve online versions of the DARP.
Psaraftis [129] presented an exact method for the dynamic DARP as an adaptation of the
static version for the same problem. Although Psaraftis’ version has been limited to very
small problem instances due to the combinatorial nature of the problem, it remains one
of the few exact methods that help gain insight to the problem.

Madsen et al. [163] have presented an algorithm for a real-life multi-vehicle dynamic
DARP consisting of up to 300 daily requests for the transportation of elderly and handi-
capped people in Copenhagen. The problem had many constraints such as time win-
dows,multi-dimensional capacity restrictions, customer priorities and a heterogeneous
vehicle fleet. Many objectives taking into account user satisfaction and service costs were
considered through the use of weight parameters. When a new request arrives, it is in-
serted in a current route using an eficient insertion algorithm based on that of Jaw et
al[132].Computational results on real-life instances with up to 300 requests and 24 vehi-
cles haveshown that the algorithm was fast enough to be used in a dynamic context and

that it is capable of producing good quality solutions.
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Teodorovic and Radivojevic [136] developed a fuzzy logic model for the online Dial-a-Ride
problem. They combine fuzzy logic reasoning in the insertion procedure to make the deci-
sion about which vehicle will accept the new request and to design the new route and
schedule for the vehicle chosen to serve the new request. The model is based in the use
of two algorithms. The first algorithm addresses the approximate reasoning concerning
the selection of the appropriate vehicle which will serve the trip request. The reasoning
process needs the subjective perception of the dispatchers. It is based on a set of nine (9)
rules. The second algorithm proposes an approximate reasoning for inserting the destina-
tion of the new request. The model was tested for a set of 900 trip demands and for a
fleet of 30 vehicles with seemingly reasonable results.

Colorni and Righini [137] proposed an online approach for the DARP problem. Their sys-
tem assumes that a negotiation with users takes place in order to discourage them from
imposing unduly tight time windows. Because the main purpose of the proposed model is
the approximation and not the optimization, the use of an iterative algorithm based on
local search rather the constructive one is proposed. The approximation algorithm is in-
terfaced with a simulator, to tune all necessary parameters off line. They broke down the
dial-a-ride problem into two sub problems: that of clustering customers in a number of
subsets equal to the number of vehicles, and that of routing each vehicle through pickup
and delivery points of the customers in its subset. The two problems are solved alterna-
tively as in many well-known two phase algorithms.

They have tested three different objectives, namely the maximization of serviced re-
quests, the maximization of the perceived level of service by users, and the minimization
of traveled distance. The insertion mechanism alternates between a clustering phase and
a routing phase. The routing algorithm applies branch-and-bound to a set of requests
whose time windows are not too distant in the future. The clustering phase works with

exchanges. The authors report that they have performed experiments with their system
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(called DARIA) in Crema and Verbania, located in northern lItaly, but they do not report
any computational results.

Diana et al [159] proposed a probabilistic model that requires only the knowledge of the
demand distribution over the service area, and the quality of the service. The quality of
service is defined in terms of time windows associated with pickup and delivery nodes.
Given a number of n trip requests in a service area, the objective is to estimate the num-
ber of vehicles needed to serve these requests. Authors propose the exponential distribu-
tion as the probability density function of the time intervals between two successive
pickup times. The probability density function of the distance between two successive
points in a route -served by one vehicle- is defined by using an approximation close to
lognormal distribution. In order to benchmark the model, they compare it to a simulation
approach that requires knowledge of the complete daily schedule. The requests were
scheduled using a parallel regret insertion algorithm (Diana [135]). Computational results
proved that the probabilistic model produced better results concerning the minimum
number of vehicles required to service all trip requests. However for the largest problem
instance, the model gave worse results.

Fu [122] presented an approach on the Dial-a-Ride scheduling problems arising in para-
transit service systems that are subject to tight service constraints and time varying sto-
chastic traffic congestion. Fu does not present a new algorithm, but rather extents con-
ventional heuristics to address the new constraints with only marginal increase of compu-
tational complexity. All the time windows are assumed to be probabilistic while for the
actual time of departure or arrival the probability is set almost in all experiments to 0.9.
The algorithmic structure comprises 4 functions called iteratively: Function 1 is initializa-
tion, 2 find the vehicle to insert, 3 find the best positions to insert, and 4 perform sched-
ule optimization. The author’s opinion is that the probabilistic nature of travel times is

important, because in urban environments, travel times are inherently varying and sto-
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chastic due to temporal and spatial variation of traffic congestion. The dial-a-ride problem
where the real-time information includes vehicle status or traffic congestion conditions or
number of requests has not been considered in this study.

Horn [157] provides a software environment for fleet scheduling and dispatching of de-
mand responsive services. The system can handle advance as well as immediate requests.
New incoming requests are inserted into existing routes according to least cost insertion.
A steepest descent improvement phase is run periodically. Also automated vehicle dis-
patching procedures, to achieve a good combination of efficient vehicle deployment and
customer service, are included. The system was tested in the modeling framework LI-
TRES-2 (Horn [158]), using a 24-hours real life data set of taxi operations with 4282 cus-
tomer requests.

Attanasio [123] presented a modified version of the static tabu search algorithm present-
ed by Cordeau [134] in order to handle the online nature of the DARP. The online algo-
rithm can be described as follows: A static solution is constructed on the basis of the re-
qguests known at the start of the planning horizon. When a new request arrives, the algo-
rithm performs a feasibility check, i.e., it searches for a feasible solution to include the
new service request. If the new request is accepted, the algorithm performs post-
optimization, i.e., it tries to improve the current solution. Different combinations concern-
ing the number of processors and the types of communication (concerning the knowledge
information between the processors) has been presented. One practical problem with this
approach is the difficulty of solving the problem in a shorter time interval than the updat-
ing interval.

Mitrovic-Minic et. al [138] presented a double horizon heuristic algorithm for the online
Dial-a-Ride problem, which solves the problem with a short-term and a long-term goal. It
differs from the rolling horizon heuristic introduced by Psaraftis [92] which operates with

a dynamically redefined short-term horizon. This algorithm has three other algorithms as
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sub modules. The first and the second address the routing problem. The first is a con-
structive heuristic consisting of a cheap insertion procedure as well as a cheap reinsertion
procedure. The second is a similarly heuristic, but contains an improvement procedure.
The cheapest insertion procedure is applied to new requests accumulated over a certain
time period of length d. It is then applied to the reinsertion of all scheduled requests
whose pickup location has not yet been served. Before insertion these requests are sorted
in increasing order of slack time. The improvement procedure is based on tabu search. It
is applied after the reinsertion procedure and it runs while new requests are being accu-
mulated. The tabu search procedure is a simplified version of the method introduced by
Gendreau et al [150] with neighborhoods defined by means of an ejection chains fast in-
sertion algorithm, the second one is the same as the first one with some marginal param-
eter improvements. Once a partial vehicle route is defined, the scheduling sub problem
consists of determining the departure time of each vehicle from each yet unvisited loca-
tion of its planned route. The Drive-First (DF) strategy is used for the scheduling algo-
rithm.
Coslovich et al. [139] presented an algorithm which follows a two-phase strategy for the
insertion of a new request into an existing route. An off-line phase is first used to create a
feasible neighborhood of the current route through a 2-opt solution improvement mech-
anism. An on-line phase is then used to insert the new request with the objective of min-
imizing user dissatisfaction. Each time an unexpected customer is accepted, the current
route of a vehicle is updated and, accordingly, a new neighborhood must be computed.
The main steps of the proposed algorithm can be described as follows:

e |Initialization Phase (Off line). In this phase algorithm generates the current route on

the basis of requests of the customers registered in advance.
e First Phase UPDATE NEIGHBORHOOD (off-line). In this phase route neighborhoods

are determined and within these neighborhoods the best route is selected.
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e Second Phase: INSERT UNXEPECTECD CUSTOMERS (on-line). In this the best inser-
tion of the delivery point is determined, taking into consideration information about
neighborhoods

Xiang [140] presented a flexible scheduling scheme to dynamically cope with different
stochastic events, such as the travelling time fluctuation, new requests, customer absen-
teeism, vehicle breakdowns, cancellations of requests, traffic jams and so on. A fast heu-
ristic is proposed to re-optimize the schedule when a new event occurs. This heuristic
consists of a properly organized local search strategy and uses a secondary objective func-
tion to drive the search out of local optima. Four Rolling Time Horizons of 1, 2, 3 hours are
used, as well as an infinitely long time horizon.

Beaudry et all[154] presented a study on patients’ transportation problem arising in large
hospitals. Transportation requests arrive in a pure online way and the methodology for
solving the problem should therefore aim at the immediate insertion of new requests in-
to the current vehicle routes. Contrary to standard dial-a-ride problems, the certain prob-
lem includes several complicating constraints specific to a hospital context. This study
provides a detailed description of the problem and proposes a two-phase heuristic proce-
dure that deals with many options of the problem. A simple insertion scheme used to
generate a feasible solution in the first phase. In the second phase this is improved with a
tabu search algorithm. In the first phase the insertion algorithm utilizes the concept of
spatial and temporal proximity between the new request and all other requests already
scheduled but not yet serviced. A list of tentative neighbors is created and used as refer-
ence positions for inserting the new request. The second phase is a tabu search algorithm
that takes into account intermediate infeasible solutions during the search process in an
attempt to find a better solution. The authors provided computational results for three
different approaches called P1, P2, and P3 accordingly. For the P1 approach only the in-

sertion phase is executed. For the P2 approach the insertion phase and the tabu search
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are executed with a variant of the inter-route step. For the P3 approach the insertion
phase and the tabu search are executed with inter-route and intra routes steps. As ex-
pected, the P3 approach consumed more time than the P1, P2 approaches. In fact, the P3
approach was 16 times more time consuming on average than the pl approach making it
ineffective in rush hours.

Marco Diana[160] presented a study about the importance of information flow temporal
attributes for a dynamic DRT system. Authors focused on three characteristics of the in-
formation flow. These characteristics were: Percentage of real time requests, interval be-
tween call-in and requested pickup time, and the length of computational time. On the
contrary they considered the duration of the customer’s phone call to the call center and
the time needed to transmit the schedule to the drivers. They finally assumed the time
needed for the customer to be ready to be picked up to be negligible. They handled de-
mands in batch mode. Demands were grouped and processed by algorithms in time slots
of 5 minutes, 1 minute, 10 seconds. Because of this grouping and batch processing, cus-
tomers have to be called back to be notified of the acceptance or rejection of their re-
quest. The authors tested two different algorithms to draw conclusions about the influ-
ence on the solution quality. The first algorithm was the dynamic version of the algorithm
proposed by Jaw[132] and it is based on the best insertion method. The second algorithm
was the dynamic version of an older algorithm proposed by the authors, based on the re-
gret method. In their formulation the quality of the schedule is given by the number of re-
jected requests and by the value of the objective function z. The formulation of z is ex-
pressed by three numbers each one representing a specific quantity. First number is 0.45
and represents total distance, second number is .50 representing the excess ride time and
the third number is 0.05 representing the idle time. Their experiments were based on trip
requests gathered by the transportation service for elderly and disabled people in Los An-

geles County. In order to run specific scenarios authors made some assumptions concern-
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ing: the number of requests known in advance, the expected value of time intervals be-
tween call-in and requested pickup time, the number of vehicles and the cycle time. By
the term cycle time authors define a specific time period where the underlying algorithm
processes trips requests without interruption. Results showed that:
1. When the percentage of requests known in advance is below 40% there is signifi-
cant improvement to the solution
2. The expected value of time intervals between call-in and requested pickup time
was a very significant factor
3. The algorithm that was used was a significant factor
4. The number of vehicles wasn’t a significant factor. In experiments where the fleet
size was 30% more it wasn’t sufficient to satisfy all demands.
The proposed methodology is not effectively applicable to real situations, because they
handle trip requests in specific cycle times where nothing can interrupt the processing. In
real applications where trip requests come continuously and sometimes in burst mode
the need for fast response is critical. The “productivity” of the underlying algorithm - in
terms of real profit- in comparison to rejected trips is not considered, although it is a criti-

cal factor for its effectiveness especially in very large scale problems.

2.5 Competitive Ratios for the Online Dial-A-Ride Problem

The definition of the concept of competitive ratio gives a better understanding of the
online dial-a-ride problem. The competitive ratio measures the impact of the lack of in-
formation on the performance of online algorithms - with unrestricted computational
power available - and the closeness of the generated solution to the optimum offline
one. So far competitive ratios for the online dial-a-ride problem deal with the minimiza-
tion of the makespan i.e. the time when the last server has completed its tour or the

minimization of the sum of completion times.
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Hiiler[156] proved that “No deterministic algorithm for Online Darp can achieve a com-
petitive ratio smaller than % with response to completion time”.

Feuerstein [141] defined competitive ratios for the online single server Dial-a-Ride prob-
lem. More specifically, he defined competitive ratios for the Dial-a-Ride problem where
the server has infinite capacity and the objective is the minimization of the time required
to serve the last destination; he designed an algorithm that has best competitive ratio of
2 independely of the server capacity. He also proposed a simple a 2.5-competitive algo-
rithm called DLT (for Don't Listen while Traveling), for the case of finite capacity. When
the objective is the minimization of the sum of completion times of the rides he proved
that the lower bound on the competitive ratio of any algorithm to be 1 + V2 for a server
with any capacity, and 3 for a server with capacity 1.

Fink, Krumke,Westphal (2009) [142] have presented the latest work on competitive ratios

.They defined that competitive ratio for k-servers as 3 for the lower bound and

2+\/§
In(1++/2)

= 3.8738 for upper bounds. Those lower bounds were calculated for specific
problem conditions:

1. Metric space

2. Server maximum capacity is one

No other restrictions very usual to dial ride problems like time windows or maximum ve-
hicle ride times, are considered.

Ascheuer[161] proposed three online algorithms (REPLAN, IGNORE and SMARTSTART) for
the online DARP in which vehicle capacity is 1 and the objective is to minimize the
makespan. In the algorithm REPLAN, when a new request is received, the server com-
pletes the carried request (if there is one), and then replans an optimal tour considering

all the yet unserved requests. The authors have proved that REPLAN is 2.5-competitive.

The algorithm IGNORE is the same as the Don’t Listen while Traveling presented in the
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previous paragraph and was independently proved to be 2.5-competitive. Finally, the au-
thors have shown that the more sophisticated algorithm SMARTSTART is 2-competitive.
The algorithm SMARTSTART, which was extended to handle a server with any capacity, is
thus optimal since it closes the gap with respect to the lower bound.

Hauptmeier et al[162] have studied the online algorithms REPLAN and IGNORE in a con-
tinuously operating environment, i.e., an environment in which the time horizon is not
bounded and where requests arrive indefinitely. Clearly, the objective of minimizing the
makespan or the latency are inadequate since both will always be infinite. Thus, they
have considered the objectives of maximal and average flow time. The flow time of a re-
quest under a solution s is the diference between its completion time using solution s and
its release time. The authors have then shown that, under a clearly defined reasonable
load restriction, there is a bound for the maximal and average flow time in the algorithm
IGNORE, but no bound exists in the case of the algorithm REPLAN. This result is in
contrast with the property proved by Ascheuer et al[161] that both algorithms have

the same competitive ratio for the online DARP.

Online _cost — Static _cost 100%

Xiang [140] defined a competitive ratio as Static — cost dealing with the total

travel distance. The simulations used were based on data according to the activity-
scanning world view (Banks et al., 2001).

Although for large scale problems it is not possible to find the offline exact solution due
to the combinatorial nature of the problem, we can define some competitive ratios for

the same heuristic or hybrid algorithms for online and static version accordingly.

2.6 Conclusions

Based on the presented literature we can come to the following conclusion:
1. The single vehicle DARP problem is a hard combinatorial problem and only relatively

small instances can be solved to optimality. This is due the fact that sharp lower
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bounds on the objective value are hard to derive. Since exact approaches are in gen-
eral inadequate, heuristics are commonly used in practice.

2. For the multi vehicle Dial and Ride problem none of the proposed solutions solved
the problem optimally for large scale problem instances.

3. Most methodologies are based on combinations of heuristic methods. The online
nature of Dial and Ride problem is a difficult task to be integrated and it is not im-
plemented sufficiently.

4. The most preferred heuristics are combinations of inter-route, intra-route exchang-
es, and clustering methods,because they provide solutions in reasonable execution
time and can be used as working tools in real life situations. On the other hand,
there is no estimation at all, concerning the closeness to the optimal solutions.

5. There is no clear view on how to integrate online features into the solution or even
what the most significant dynamic parameters are, that affect the solution.

6. The optimization procedures for online problems are based on time horizons. No
one has shown so far how we can use the optimization procedure continuously as
the algorithm runs.

7. The response time — a critical feature — for the online DARP problems has not been

studied sufficiently.
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Chapter 3 : Problem Formulation

The typical DARP problem is defined as follows: Given a set of vehicles and a set of trip de-
mands, compute the optimum (for passengers and/or the operator) itinerary, for every vehi-
cle, without violating certain constraints. For every vehicle a depot location is typically de-
fined (“start” and “end” that may not necessarily be the same). In addition a capacity and a
maximum vehicle drive time are also defined. The trip demands are characterized by the
pickup and delivery locations, time windows for pickup and delivery, and maximum trip drive
time. Those features are primary features for a trip request. More features can be taken into
consideration, such as “customer specific constraints”, i.e. for persons with disabilities. In
the current study we stick with the primary features.

The basic notation concerning Vehicles and Trip demands are presented in Table 3-1:

Table 3-1.Basic Notation for the static Dial-a-Ride problem

V={1,23, ,1V|} = Set of Vehicles

Q,={Q; .. Q }Vehicles capacity for all vin V

MVRT, ={ MVRT, .. MVRT ;; } = is the maximum vehicle ride time for everyv € V

N = is the number of trip demands. Each trip request consists of one pickup and one deliver node.
VSD = {0} = Set of “start” depots for all vehicles.

VED ={2N +1} = Set of “end” depots for all vehicles.

VSED ={0, 2N +1}= Set of “start” & “end” depots for all vehicles.

P*={1,2,.. N } = Set of pickup nodes in the network.

P ={N+1, N +2,... 2N} = Set of deliver nodes in the network.

P =P*U P = Set of pickup and deliver nodes in the network.

P all

=P U VED U VSD = Set of total nodes (pickup, deliver, “start” depot, “end” depot) in the network.
P =P U VED = Set of pickup, deliver, “end” depot nodes in the network.

P* =p U VSD = Set of pickup, deliver, “start” depot nodes in the network.

[eil.] =time windows [earlier, late] for each node (pickup, deliver, “start”, “end” depot nodes) i € P ol

Institutional Repository - Library & Information Centre - University of Thessaly 47 -
2410512024 07:53:09 EEST - 18.118.7.118



DRT; = { DRT,, .. DRTy} Set of requests maximum ride time for every trip request, i € P *

T; = travel time from node i to j where i,j € P ar|

¢; = travel cost from node i to j where ij € P ol ,

L . 7
s; = service time at node i € P

d; =load at node (pickup or deliver) i € P, (+1 for pickups, -1 for delivers, 0 for “start”, “end” depots)

’

.. i . .
x; ,1,] € P JAF] =1, ifim request is served by vehicle v. else O.

Vo all ) 3 ) ) . 3 X )
Tl. ,1 € P Is the time variable which describes the time that the service begins at node .

. il
LIV. ,ieP “" Is the load variable which describes the vehicle load on every node.

A commonly used objective function minimizes total travel cost as follows:

IDIPITS

veV  jep all jeP all

With the following set of constraints:

Trip time window constraints ([e; /;])
Maximum vehicle ride time constraints (MVRT )

Maximum trip request ride time constraints (DRT;)

H wnhoRe

Maximum Vehicle load restriction constraints (Q,)

The Mixed Integer Linear Program that can solve the above defined problem is as follows:

minz Z Zx;cl.j (1)

all all

velV jieP™ jeP

ST:
Vo1 +

Z inj—l,leP (2)
vely jEPa”
Zx;—Zx;i:O,ieP,veV (3)
jePall jePalI
dx;=lieVSD,veV (4)
jePt
Y x;=1,jeVED,veV (5)
ieP”
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v v _ . +
Z X, — ij(Nﬂ.)—O,zeP VeV

all jeP all

jepP
v . +

T +58 4T <y i €P ,velV
x;=1=T"+s,+7,<=T1,i,jeP ,veV
v o v _ Voo . +
x;=1=>T +s,+7,<=T/,ieVSD,jeP
x;=1=T"+s,+7,<=T/,jeVED,ie P~
x;=1=L+d,=L),ieP ,jeP ,veV
xp=1=Li-d, y=L,,ieP,jeP ,veV
xj=1=L +d,=L,icVSD,jeP " ,veV
L =0,ieVSD

e, <T"<l,ieP,velV

e, <T"<I,ieVSD ,veV

e, <T"<l,ieVED ,veV

d <L <Q",ieP',veV

v V< g
T(i+N) 7; _DRZZT,ZGP ,velV
T" <MVRT,ie P veV

v . .
x;,binary

The Objective function (1) minimizes the total cost produced by all vehicles.

Constraint (2) guarantees that one vehicle is leaving one pickup location and heading to a

unique deliver location.

Constraint (3) guarantees that, the number of vehicles entering stop location i will leave lo-

cation i.

Constraint (4) guarantees that, there is only one unique pickup location after the “start” de-

pot location for each vehicle.

Constraint (5) guarantees that, there is one unique deliver location before “end” depot loca-

tion for each vehicle.

Constraint (6) is the pairing constraint, meaning that the same vehicle visits node i, i+n.

Constraints (7-10) are precedence constraints ensuring that node i is visited before node i+n

and the compatibility between routes and schedule.

(20)

Constraints (11-14) ensure the consistence of load variables for every trip request.

Constraint (15) ensures that each request time windows is not violated.

Constraints (16-17) ensure that each vehicle time windows constraint is not violated.

Constraint (18) makes sure that each vehicle’s maximum load capacity is not violated.

Constraint (19) maintains each trip maximum ride time.
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Constraint (20) maintains each vehicle maximum drive time.
This mathematical program has been implemented in AMPL (one vehicle)and solved with
CPLEX solver (See Appendix A). Basic goals of this MILP implementation were:
1. Confirmation of the adequacy of the exact DP algorithm, proposed in the next chap-
ter
2. Exploration of solving times by MILP formulation and therefore the utilization of this
formulation - or other exact algorithms - as sub-algorithms by heuristic algorithms
The specific experiment characteristics were:
Vehicles: 1
Demand Requests: 1 to 10. (Each request represented by one pickup and one deliver point)
Network: A two dimensional network (representing a square area with edge length 100
km’s) was created by using random coordinations for each pickup and delivery point. (Mini-
mum value was 0.00, maximum value was 100.00)
Distances between various points (pickup and deliver) are based on the triangular property
of Euclidean networks. The following table shows the average CPU time. Variability is high
and depends mainly of the locations of pickup, delivery, start depot locations, and end depot

locations. Figure 3.1 represents the system behavior (in terms of execution time)

Table 3-2. Experiments Table for MILP implementation of the static Dial-a-Ride exact solution

No of Requests Time (sec’s) Time (sec’s) Max Time (sec’s) Min
On Average

1 0 0 0

2 0,004799 0,008998 0,001

3 0,020997 0,036993 0,002

4 0,136385 0,6589 0,016

5 1,974861 10,2044 0,05

6 3,05396 9,23 0,576

7 196,5368 1096,5 7,26

8 743,976 3173 69,3

9 3250,994 6447 0,95

10 23539 30727 16351
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Figure 3-2.Experiments execution time (1 through 10 requests)

Some Conclusions:

1. The time needed to solve more than 8 requests (8 pickups, 8 delivers) increases “ex-

plosively”, making this implementation inappropriate for real applications, where

more than 10 requests must be handled.

2. Such solution times denote that this implementation cannot be used as sub-solver

to any Online DARP algorithm, which is designed to be used in real life.

3. Itis necessary to reduce the CPU times and to increase the problem size. This can be

achieved if we use some kind of pre-processing that can eliminate as many as possi-

ble of the variables x,; representing infeasible problem states. For example: Trips
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such as (n, +1i,i),i € P or(j,i),jeVSD,ie P, or requests time windows [e; /]
that overlap with each other.
4. If we achieve a significantly smaller execution time, then this formulation can be

used extensively as an exact sub-solver to the online algorithm, proposed later for

the online DARP problem.
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Chapter 4 : Static Dial-a-Ride Algorithms

4.1 The Insertion Algorithm InsertionH

4.1.1 Basic concept

The insertion algorithm we developed, is a variation of the one presented by Jaw [132].
The basic function of this insertion algorithm is to create specific trip to vehicle assign-

ments, as an initial solution which can be refined later by other optimization heuristics.

4.1.2 Nomeclature

V={123,...,[V]}=Set of Vehicles
Rvgy=1,2,,jvj} = is the route schedule for everyv € V
RC =12, v} = is the route cost for the for everyv € V

N = js the number of trip requests. Each trip request is consisted by one pickup and one
deliver node.

TR i=1,2,np = is the sequence of trip demands.

EPTig-1,,n = Earlier pickup time of trip request i

BIP;, = the best insertion position of i-th trip request TR; to Route schedule R,

MinCostBIP;, = is the cost of the best insertion position of the trip request TR; to Route
schedule R,

4.1.3 Algorithm Description

In a preprocessing step the algorithm creates an empty route for every vehicle. Then for
every trip request the algorithm finds the best position -in terms of cost- to insert the
trip by searching all vehicle routes. If such a position is found, then the trip request is in-
serted; otherwise, if it is not possible to find at least one position where the request
could be inserted, the trip request is rejected. At the end of the execution, specific trips

have been assigned to specific vehicles. The main drawback of this algorithm is that it
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always tends to load the first vehicle with more demands. That is why we implemented a
variation where the search for each demand starts with a different vehicle each time. A

pseudo code description of InsertionH algorithm follows:

StepO: for every v in V build an empty R,
Step1: Sort R, in descending order according to RC,
Step2: Sort TR; in ascending order according to demands EPT;
Step3: for every TR; ji-1,2,n;
Step3.1: Sort R, in ascending order according to RC,
Step3.2:for every R, -1,3,, /vy do
find the BIP;,
Calculate MinCostBIP;,
Step3.3: If no BIPy, -1, v} found goto step 3.6
Step3.4: From all MinCostBIP;, select the minimum one
Step3.5: Assign that TR; to the appropriate R, and goto step3
Step3.6: Reject that trip request and repeat step3
end for

4.1.4 Algorithm computational effort

Computational effort of the InsertionH algorithm can be simply calculated by the num-
ber of possible insertions that the algorithm should check in order to find the best posi-
tion in terms of solution cost (given that this is the objective). The worst scenario is the
case that only one vehicle is available. The best scenario is the case that the number of
vehicles is equal to the number of trip requests and each vehicle has one trip request as-

signed.

Given a number of n demands — not including the first demand - and one available vehi-
cle, the total number of possible searches for the insertion algorithm can be calculated

as the following sum:

1+ k (4-1).The closed form of this expression is 1+ %n(17 +15n +4n*) (4-2).
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The following example explains clearly the above mathematical formula.

Example : One Vehicle, Three trip demands (where P1, D1,P2,D2,P3,D3 represent the

pickup, delivery of the respective trip demands. For the first trip there is only one possi-

ble combination defined as:

P1D1

Total Number of combinations is: 1

After the first trip allocation, the number of possible combinations for the assignment of

the second trip is 6:

P2 D2 P1D1
P2 P1D2D1
P2 P1 D1 D2

P1P2D2D1
P1P2D1D2

P1D1P2D2

Total Number of combinations for the assignment for trips one and two is 7 (6+1)
After the second trip allocation, the number of possible combinations for the assignment

of the third trip is 15:

P3D3P2D2P1D1
P3P2D3D2P1D1
P3P2D2D3P1D1
P3P2D2P1D3D1
P3P2D2P1D1D3
P2P3D3D2P1D1
P2P3D2D3P1D1
P2P3D2P1D3D1
P2P3D2P1D1D3

P2 D2 P3 D3 P1D1
P2 D2 P3 P1D3 D1
P2 D2 P3 P1D1D3
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P2 D2 P1P3 D3 D1
P2 D2 P1P3 D1 D3

P2 D2 P1 D1 P3 D3

Total Number of combinations for the assignment for trips one, two and three is 22
(15+6+1)
The algorithm complexity is O(n3) . For a total number of 1000 demands the worst sce-

nario (one vehicle) gives a total number of 669,169,501 possible trip combinations.

Figure 4-1 presents graphically the InsertionH algorithm possible trip combinations. The
x—axis represents the number of trip demands, and the y-axis represents the number of

possible trip combinations during the insertion procedure.

T L L L L L 1
200 400 600 800 1000

Figure 4-1.InsertionH algorithm’s search computational performance
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4.2 The DP Exact algorithm

4.2.1 Basic Concept

The Exact algorithm is a DP implementation. The algorithm examines all possible valid
combinations of vehicles and trip assignments. During the execution the algorithm im-
proves the solution continuously i.e., when a combination of possible demand assign-
ments has higher cost than a previous solution, then further searching based on this

combination is discontinued

4.2.2 Algorithm Description
The proposed DP algorithm can be described as a greedy algorithm. The algorithm

searches for the exact solution in all feasible solution combinations. This kind of search
requires long computational time in order to find the exact solution. Although the intro-
duction of some restrictions can reduce significantly the solution space that algorithm
searches for the optimal solution. The certification of the correctness of the proposed
DP algorithm can be authenticated by comparing the results of this algorithm with the
results to the well known MILP mathematical formulation. In this chapter we present
two implementations. The DP implementation and the MILP implementation with AMPL
and CPLEX. Computational results for both implementations are listed in order to draw

relevant conclusions from the comparison of these two outputs.

As it is depicted in the computational results later, our implementation of the DP seems
to outperform the MILP approach in terms of both computational time and memory re-
quirements. Due to the nature of the problem, if we want to get the exact solution for
the DARP problem it is necessary to evaluate every feasible combination of trip demands
and vehicles that we cannot rule out based on some technique. Given the problem’s

combinatorial nature it is obvious that the number of combinations explodes, making
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any exact approach meaningless for realistically sized problems. If we reduce somehow
that number of combinations, then the solution space is restricted making the effort
more promising. Memory requirements are another issue. We need to reduce memory
requirements in order to execute the algorithm in a realistic memory space. Initial at-
tempts for the exact solution for one vehicle were introduced by Psaraftis[114] . He cal-
culated that the required memory locations in order to keep track of all states are of the

order O(3").

Keeping the above observations in mind, we tried to enrich our exact algorithm with fea-
tures that offer: (a) restriction of the solution space as much as possible, and (b) the in-
dependence of memory resources. For these reasons a DP implementation was devel-
oped by using recursive techniques. Recursive techniques offer tracking of the last exe-
cution point in the algorithm. Every time we have a recursive return we know exactly
what the next point to move to is. It is similar to the Depth First Algorithm, which is well
known in graph theoretical approaches. The algorithm starts with an initial combination.
Based on that combination, it finds the next one, which contains the parent - previously
produced - combination. The process continues that way, until finding the “final” or

“bottom” combination.

The notation ViPjViDj....ViDj (i=1,2,...|v|, j=1,2,....N) is used in order to describe the route
sequence. For example, given two vehicles (denoted as V1,V2) and two trip demands
(denoted as P1,D1 for picking and delivering trip request 1, P2,D2 for picking and deliver-
ing trip request 2), the algorithm starts by using first vehicle V1. It can select the first trip
request (only pickup is possible) “V1P1” or select the second trip request (only pickup is
possible) “V1P2 to be assigned to vehicle V1. Let’s suppose that the first trip request is

selected “V1P1”. At that point the algorithm puts a “backtracking” (+1) point.
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For the “V1P1” combination, the combinations that could follow are: To deliver what
was picked-up form first trip request “V1P1V1D1”, or to pick up the second trip request
“V1P1V1P2” or to let the second vehicle pickup the second trip request “V1P1V2P2".

Another backtracking point (+2) should be placed here.

For the “V1P1V1D1” combination, the combinations that could follow are: The first vehi-
cle picks up the second trip request “V1P1V1D1V1P2” or the second vehicle picks up the
second trip request “V1P1V1D1V2P2"”. Another backtracking point (+3) should be placed

here.

For the “V1P1V1D1V1P2” combination one more combination has been left in order to
construct a full trip. That combination is “V1P1V1D1V1P2V1D2". After the evaluation of
that full trip, the algorithm backtracks to the previous backtracking point in order to
search the next combination that can follow: combination “V1P1V1D1V2P2”. The follow-

ing figure depicts this search procedure. Red dashed arrows show the search sequence.

©

©
@

I N A PIVIDIVIP2----> w1 F'1V1D1V1F'2V1D2
P VAPIVADA
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@
@
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Figure 4-2.DP Exact Algorithm’s recursive Graph

The notation (+1), (+2), (+3) signifies track points that the algorithm puts in order to re-

member where to backtrack, after the recursive return.
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Trip combination V1P1V1D1V1P2V1D2 is a full trip, satisfying all trip demands. Every
combination is checked for feasibility and if feasible, is evaluated by calculating travel
cost. The example above shows how algorithms produce possible trip combinations. By
using track points there is no need to store all combinations because every time we
know exactly where to go. The cost produced from the first full trip solution is used as a
reference point in subsequent searches. If a trip combination is not feasible or the calcu-
lated cost until that time is larger than the previously calculated one, the search using
that combination is discontinued. The term “feasible” means that there is no violation

of:

Time windows concerning trip demands

Time violation concerning maximum trip request ride time

Time violation concerning maximum vehicle ride time

Violation concerning maximum vehicle capacity

As a result, the search is limited in a restricted solution space. Of course the number of
possible combinations is combinatorial, increasing as a function of the trip demands and
vehicles numbers. That technique obviously cannot be used in order to solve actual large
problems. However, knowing an initial feasible solution we could substantially improve
the search process. To achieve an initial feasible solution we run the InsertionH algo-
rithm just to produce an initial solution that can be used as a starting point of our “DP

Exact” algorithm.

In order to describe the recursive nature of the proposed exact algorithm we provide the

necessary information concerning notation and the recursive relationship
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Let

T= {tl byt }: the set of unassigned trips

T, = {tl,tz,...,tk },k < n=the set of assigned demands in a feasible solution. Starting val-

ueof Ty is{}.

STk = the set of feasible solutions resulting from all possible trip — belongs to set 7, -

combinations concerning routing and scheduling.

MinCost =represents the lower cost limit that allows the exact algorithm to reject all

feasible solutions with larger costs.

MinCost Could be:

Initial Arbitrary Large Value

Or

The cost of a feasible solution produced by an InsertionH algorithm in a preprocessing phase

Or

The cost of a feasible solution - containing all demands of set T - produced by the DP Exact algorithm.

PS(STI ,ti,MinCost): returns all feasible solutions by combining each solution contained

in STk ,with the new trip ¢, ,given the MinCost.

The recursive relationship and the STHl = PS(STk ,1k+1,MinC0Sf) problem  reduce

to §; . Inthis case set S contains all demands included in T . After the evaluation

of every feasible solution included in S, the optimal solution is finally found.

A short pseudo-code description of the exact algorithm follows:

Step 0: T, 2{ },k:0
S, = 1)

MinCost = Min (arbitrary large number, Cost of the best feasible solution produced by any InsertionH algorithm)
Step 1: For every demand t; in set T

Step2: S, = PSS, .t,,MinCost )
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Step3 Reject from S r,., @ll feasible solutions with cost more than MinCost
Step4: T, =T, Vt,, T =T Nt
Step 5: If T+ {} recursive call of Stepl
else
MinCost = Min(S; )
Mark solution with cost equal to MinCost

Recursive return to the previous state
End if

A specific example has been constructed in order to evaluate the algorithm’s computa-
tional performance and the results are presented in detail in Appendix B. The example
uses 2 vehicles and 2 trip demands. Each vehicle is denoted as Vi (i=1,2) and each trip

request is denoted as Pj (j=1,2) for pickups and Dj (j=1,2) for deliveries accordingly.

Before executing the exact algorithm, we use the InsertionH algorithm to produce some
initial feasible solution. The heuristic finds a feasible solution with cost of 193.861 dis-
tance units. This cost is used as an upper bound for the DP Exact algorithm. The exact
algorithm produces output — see appendix B - which clarifies how it works. Not all possi-
ble combinations are presented here, because for some cases it is useless to search
more. E.g. consider a combination V1P1V1D1V1P2 where there is no reason to search
for further combinations because already this combination is not feasible. As the algo-
rithm progresses it finally finds the best combination which is V1P2V1D2V1P1V1D1 with

cost 191.941 distance units.

This exact approach — limited only by execution time- can solve any DARP problem. It
may run for unreasonably long CPU times, so clearly it is practically limited to fairly small
and probably not very useful (application-wise) problems; typically for 1 vehicle prob-

lem, it can solve up to 10 trip demands, for 2 vehicles up to 8 trip demands, for 3 vehi-
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cles up to 7 trip demands and for 4 vehicles up to 6 trip demands, which is of no practical
value. Where the value of this approach lies, as discussed in detail later, is using the 2-
vehicle approach to explore a fairly large neighborhood solution as part of a VLSN algo-

rithm search approach.

In order to test the exact algorithm, problem instances were randomly produced. The
test field was a square area of 100X100 Kilometers. Pickup and delivery positions of eve-
ry trip request were selected randomly over that area. Vehicle “Start”, “End” depots
were selected randomly over that area. Time windows for pickup were randomly select-
ed between 0-1440, time windows for delivery were produced from pickup time win-
dows plus the 1.5*Cartesian distance between those points. Maximum vehicle ride time
was defined as 1440. Vehicle speed was assumed to be 1 Km per Minute and vehicle ca-
pacity was limited to 3 seats. The graphic representation of the solution space may give
us some ideas on how we can use specific features of the problem in order to find the
optimal solution. Or may highlight some patterns which exist within the solution space.
For these reasons, we present two graph representations of the solution space and solu-
tion search process using as input the DP Exact algorithm search output. A typical DARP
problem with 3 vehicles and 5 trip demands was prepared and solved for this purpose
(network characteristics and trip features remain the same as those described in the
preceding paragraph). In figure 4-3 x-axis represents the solution cost while y-axis repre-

sents the solution ordering number i.e. 1,2,3...5000
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Figure 4-3.Solution space graph for the static DARP problem (3 Vehicles,5 Trips)

Figure 4-3 presents all feasible solutions produced after the execution of the DP Exact
algorithm. What is interesting in this figure is that we cannot find a pattern that can be
used as guidance to search for the optimal solution. This may be the reason, heuristics
are so easily trapped to local optimums. The following figure 4-4 shows the way the
search process improves the solution cost every time a feasible solution is found with

lower cost than the previous one.

Figure 4-4.DP Exact searching process graph

Every time the exact algorithm finds a feasible solution that has a lower objective than
the previous one, it uses this objective as a reference for the subsequent searches. By

using this technique we substantially limit the number of possible trip schedules. How-
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ever, because of the NP-Hard [155] nature of the Dial-a-Ride problem, it is obvious that

the exact algorithm cannot solve large scale problem instances within reasonable time.

4.2.3 Algorithm computational effort for the DP Exact algorithm.
It has been proven [155] that DARP problem is NP hard. Solution space explodes when

the number of demands increases. For the 1-vehicle problem the number of possible so-

d-1d—x d-1
lutions is given by the following formula: d!(d!+zz (d—2)!) (4-3) where dis the

x=l y=1 z

U

number of trip demands.

The following examples explain clearly the above mathematical formula.

Example 1: One Vehicle, Two trip demands (where P1, D1 represents the pickup, deliv-

ery of the first trip demand, P2, D2 represents the pickup, delivery of the second trip)

Number of valid Pickup, Deliver combinations is 6:

P1P2D1D2

P1P2D2D1

P2P1D1D2

P2P1D2D1

4 combinations
P1D1P2D2

P2D2P1D1

2 combinations
Total: 6 combinations

Example 2: One Vehicle, Three trip demands (where P1, D1 represents the pickup, deliv-

ery of the first trip demand, P2, D2 represents the pickup, delivery of the second trip, P3,

D3 represents the pickup, delivery of the third trip )

Number of valid Pickup, Deliver combinations is 90:

P1P2P3D1D2D3
weeeer...D1D3D2
.......... D2D1D3
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.......... D2D3D1
.......... D3D1D2
.......... D3D2D1
P1P3P2
P2P1P3
P2P3P1
P3P1P2
P3P2P1D1D2D3
...D1D3D2
...D2D1D3
...D2D3D1
...D3D1D2
...D3D2D1
36 (6x6) Combinations
P1P2D1P3D2D3
P1P2D1P3D3D2
P1P2D1D2P3D3
P1P2D2D1P3D3
P1D1P2P3D2D3
P1D1P2P3D3D2
P1P2D2P3D1D3
P1P2D2P3D3D1
P1D1P2D2P3D3
P3P2D3P1D1D2
P3P2D3P1D2D1
P3P2D3D2P1D1
P3P2D2D3P1D1
P3D3P2P1D1D2
P3D3P2P1D2D1
P3P2D2P1D1D3
P3P2D2P1D3D1
P3D3P2D2P1D1
54(6x9) combinations

Total: 90 combinations

Table 4.1 and Figure 4-5 shows clearly the nature of the solution space as a function of

the number of demands.
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Table 4-1: Solution Space size for one vehicle

Demands Combinations
Number
1 1
2 6
3 a0
4 1872
5 54000
6 2170800
7 117799920
8 8301242880
9 735655011840
10 79974705888000
15 14606909087595553048320000
20 65283870481614521328735605042380800000
50 2406028886256382095272697419996694099038914505309534382168413110267368306016711198
8404460384061720374345228032252313600000000000000
3.0 x 102 |
2.5 x 10° ;
2.0 x 10? ;
1.5 x 102 ;
1.0 x10° ;
5.0 x 108 ;
4‘ ; g
1 x 1033 }
3 x 1033 }
) x 1033 |
1 x 1033 }
1; 1; 1g 1% 26

Figure 4-5.DP Exact algorithm searching graph (x-axis = number of trip demands, y-axis = number of pickup
and deliver combinations for all trip demands)
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It is obvious that any exact algorithm that searches in a brutal way for the optimal solu-
tion is not able to provide the optimal solution for large scale problems in affordable ex-

ecution time.

For the m-vehicle problem the number of possible combinations is given by the follow-

d=1d—x d-1

ing formula: d!(d"+ d —2z)!)) (4-4) where v is the num-
s ;;(Vd d)'d' (@ x=1 y=I z:l( "

ber of vehicles and vd is the number of trip demands.
The above relationship is produced as follows:
Given a number of v vehicles and the number of vd demands, the number of all possible

permutations of the trip demands assignments to a specific vehicle is produced by the

vd |

formula ZV— (4-5). For all vehicles this number is produced by the formula
= (vd —d)!d!
v vd Vd'

(4-6). The following example explains clearly the above mathemati-

L=1 d=1 (Vd _d)!d!
cal formula.

Given a number of 2 vehicles V1,V2 and a number of 3 trip demands TD1,TD2,TD3 the

2
number of possible permutations is Z =14. These permutations can

3
I=1d z (Vd d)'d'
be categorized as follows :

All trip demands assigned to one vehicle. (V1 or v2)
V1TD1TD2TD3

V2TD1TD2TD3

Two demands assigned to one vehicle (V1 or v2)
V1TD1TD2

V1TD1TD3

V1TD2TD3

V2TD1TD2

V2TD1TD3

V2TD2TD3

One demand assigned to one vehicle (V1 or V2)
V1TD1

V1TD2

VviTD3
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V2TD1
V2TD2
V2TD3.

On the other hand the number of assignments, for all vehicles, is produced by the for-

mula v"* (4-7). The following example — given the number of two vehicles (V1,V2) and
three (3) trip demands (TD1,TD2,TD3)— explains 4-7.

V1TD1TD2TD3

V2TD1TD2TD3

V1TD1TD2-V2TD3

V1TD1TD3-V2TD2

V1TD2TD3-V2TD1

V2TD1TD2-V1TD3

V2TD1TD3-V1TD2

V2TD2TD3-V1TD1

Total number of combinations equal to eight (8=2°)

The total computational effort is given by combining formula (4-3) and formula (4-6)

which results in the formula

d-1d—x d-1

;;mf d)'d' (22,24 =2).

The following table gives some comparison results concerning the computational effort

expressed as the number of all possible trip combinations produced by formula 4-4.

Table 4-2: comparison for computational effort for 1,2,3,4,5,10 vehicles

Dems 1 Vehicles 2 Vehicles 3 Vehicles 4 Vehicles 5 Vehicles 10 Vehicles
2 6 16 24 32 40 80
3 90 222 333 444 555 1110
4 1872 4544 6816 9088 11360 22720
5 54000 128650 192975 257300 321625 643250
6 2170800 5049552 7574328 10099104 12623880 25247760
7 117799920 268396646 402594969 536793292 670991615 1341983230
8 8301242880 18615169792 27922754688 37230339584 46537924480 93075848960
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4.2.4 Algorithm computational results and correctness of the so-
lution

The Proposed algorithm was implemented in C++ and tested on a Linux machine with a
dual core processor. The exact algorithm has been tested extensively in order to prove
its analytical convergence to the optimum solution. We chose to compare that algorithm
with the Mixed Integer Linear Program (MILP) implementation of the DARP problem.
The mathematical formulation presented in Section 2 has been used to implement the
MILP in AMPL. Both implementations DP and MILP gave always the same results con-
cerning objective function and trips pickup and deliver sequence. The following table

presents the results of the comparison between two implementations.

Table 4-3: Comparison Results between DP and MILP implementation
Vehicle Trip demands CPU Time CPU Time
Number for DP for MILP
(Sec’s)
0.120 0.295
1.030 0.400
22.480 9.124
263.000 267.973
578.964 3527.330
1.150 -
15.450 -
493 -
1559 -
1.260 -
155.910 -
604.653 -
8149 -
2.450 -
17.620 -
3583 -
2.040 -
149.420 -
459.850 -
19592 -

v 1 1 L1 B B A W W W W N N N NRR R R &
N O o OO AN OO DN OO 0O N OO b

Execution times show clearly that the DP implementation is faster than MILP one. For
that reason the DP implementation has been chosen to be used as sub-module in the

heuristic — exact algorithm implementation.
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4.3 The Very Large Scale Neighborhood hybrid algorithm

4.3.1 Basic Concept

The results of the above DP Exact algorithm show that the use of this algorithm is limited
due to its long execution times. The same happens in the case of MILP implementation.
A different approach is to use algorithms that will use the exact algorithm as a sub-
algorithm. The algorithm presented in this chapter, called Very Large Scale Neighbor-
hood (VLSN) is based on the iterative usage of the exact DP algorithm for every pair of
vehicles. The VLSN algorithm can be used in order to solve DARP problems by repetitive-
ly applying the DP Exact algorithm for every m vehicles from a total number of v vehi-
cles, where 2 <= m <= v-1. This technique achieves feasible solutions in a broader neigh-
borhood solution space. The number of vehicles used each time by the exact algorithm
affects the neighborhood size. The following figure 4-6 gives an artistic representation of
VLSN algorithm solution search. The outer ellipse represents the whole range of possible
solutions. Each inner ellipse represents the solution neighborhood explored by m-
vehicles DP Exact algorithm. Larger number of vehicles used by DP exact algorithm re-

sults in larger neighborhood search.

Total Solution Space

Total Sclufion Space

O

Figure 4-6.VLSN Algorithm artistric graph representation for search process

Institutional Repository - Library & Information Centre - University of Thessaly
2410512024 07:53:09 EEST - 18:118:7.118



4.3.2 Nomenclature

V={123,...,[]V]}=Set of Vehicles
ExactDP2 = is the Exact DP algorithm for 2 Vehicles

VP yigvi=1,2,..1v]}, vaivz=1,2,.. v} = is the pair of vehicles that will be used by ExactDP2 algo-
rithm

RT={VP;; VPy5.. VPy,v;,.... VP v.11 v} iS the set for every pair of vehicles permutations

RCyyv-1,2,. v} = is the route cost for vehicle v

14
TRC = Z RC, is the total cost for all routes
1

4.3.3 Algorithm Description

The main idea is to search in a greater solution space neighborhood by using the analyti-
cal 2-vehicle approach which classifies it as Very Large Scale Neighborhood (VLSN) heu-
ristic. (Ahuja[149]). The approach is continuously applying the above presented DP Exact
algorithm for 2 vehicles for every possible combination of vehicle routes. For example, if
we use 4 vehicles (Vi, i=1,2,3,4), all possible 2-vehicle combinations are: V1-V2, V1-V3,
V1-V4, V2-V3, V2-V4, V3-V4. For every combination we process, the “ExactDP2” algo-
rithm is guaranteed to provide the best solution (in terms of cost if that is what the ob-
jective function optimizes), because of the exhaustive search. If the solution provided by
this run is different than the one previously calculated, it is recorded as the new best so-
lution. After all the pairs have been processed the procedure starts over. At some point
the algorithm will go through a complete processing cycle of all pairs, without finding a
better solution for any pair. This indicates that no further improvement is possible, and
the algorithm terminates. For this algorithm to work, an initial solution is required.
Therefore, the InsertionH algorithm is executed first to provide this solution.

A short verbal description of the heuristic-exact algorithm follows:
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First, run the InsertionH algorithm. This produces a feasible solution and the appropriate

vehicle routes (rt,,i = 1,2,3....| V' |), where rt; is the route for vehicle i and |V| is the to-

tal number of vehicles. The next step forms all possible pairs between vehicle routes.
For example, if our system has 4 vehicles, all possible vehicle route pairs are rt; — rt,, rt;
—rt3, rty — rty, rt, —rts, rt, — rty, rt; — rty. The DP Exact2 algorithm executed for every pair
of vehicle routes. After the execution, pair rt, — rt, is changed. The new routes rt’; — rt’,
are different from the original because of inter-route and intra-route interchanges of
trips. They are also guaranteed to constitute a better solution, as mentioned before.
The next pair is between V1 & V3 vehicles. Now the DP Exact2 algorithm processes the
pair rt’; — rts. The process continues until all possible combinations of vehicle routes
have been examined. When this first cycle ends, a new cycle of the same vehicle combi-
nations starts. The whole process continues until one cycle of all route combinations has
been examined and no optimization has been detected.
A description of the VLSN algorithm in pseudo code is as follows:
Step0: Run InsertionH algorithm for the initial solution
Calculate TRC
OIldTRC=TRC
Stepl: foreveryvinV
RT=RT U VP, .1
Step2: While Profit >0
For every VP, in RT
Run ExactDP2
Calculate TRC

Profit = OldRC - TRC
OIdTRC=TRC

4.3.4 Neighborhood Definition and Computational Effort

Neighborhood definition for the proposed algorithm is critical as it affects execution
time and the solution space under investigation by VLSN algorithm. The following math-
ematical formulation could be useful for the understanding of the neighborhood size

calculation. Given vd trip demands, v vehicles, and m-vehicles partition, the number of
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!
neighborhoods for m-vehicles is # (4-7), while the number of trip exchanges
v—m)!m!

between any m-vehicles partition could be at most n (equal the number of total trip de-
mands). The Total Computational effort for achieving the  best solution for the m-

vehicles partition can be produced by combining (4-4), (4-7) resulting to

d-1d—xd-1

(V m)vmv ;;(d a)d! (@(d+ (d-2)!)))(4-8). In our case for 2 -

x=1 y=1 z=l

vehicles partition the size of possible trip assignments for every 2-pairs combination,

given a number of vd trip demands is
vd d-1d—x d-1
Zz d! d'(d'+ (d —2)!)) (4-9). Since the VLSN algorithm

(v— 2)12! Lt £ l(vd d)ld!

x=1 y=1 z=1
has a specific stopping criterion described in section 4.3.2 as “one cycle of all 2-vehicles
permutations without change” we cannot calculate the total computational effort in ad-
vance. Practically computational effort is the computational effort described in (4-9)
multiplied by the number of cycles for which the solution continues to improve.

A major issue concerning the 2-vehicles VLSN algorithm is the study of the size of the
neighborhood area processed by the algorithm in comparison to the size of the entire
solution space.

Given a number of v vehicles and vd trip demands the total number of all possible tip

vd
demands assignments to all vehicles is given by formulaV . The number of all possible

pair combinations for all vehicles is given by the formula (4-7) where m = 2 resulting

!
formula ﬁm 10). For 2 vehicles the number of possible trip demands assign-
v

ments to beZVd . By combining (4-10), 2" the size of neighborhood area is defined as

ﬁ 2" (4-11). The term 4-11 should be corrected in order not to take into account
v—2)12!

those trip assignments - where all trips assigned to one vehicle — more than once. After
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this correction, the final formula that gives the size of neighborhood area is given by the

) vd V!

—2———+v(4-12). The percentage of neighborhood area size
(v=2)12!

V!
formula ———
(v-2)12!

in comparison to total solution area can be calculated by combining (4-12) and (4-7) re-

%! d V!
SR S S R
(v—2)1 (v—2)1!

v vd

sulting (4-13). L.e. for v=4, vd=3 the total solution space is

4* =64 trip combinations, while the solution space investigated by VLSN algorithm is

4 4
(4-2)n! (4-2)n!
4° =64

which means that the 2-vehicle VLSN algorithm looks

at maximum at 62.5% of the total solution space. Following example explains clearly the
above mathematical formula.
Given a number of 4 vehicles called A,B,C,D and a number of 3 trip demands named as

1,2,3 the total number of trip assignment combinations for all vehicles, is produced by

3
formula 4~ = 64 (see section 4.2.3). On the other hand the possible trip assignments

for each pair of vehicles are:

PAIR A,B PAIR A,C PAIR A,D PAIR B,C PAIR B,D PAIR C,D
A123 A123 A123 B123 B123 C123
Al12-B3 Al12-C3 A12-D3 B12-C3 B12-D3 C12-D3
A13-B2 Al13-C2 A13-D2 B13-C2 B13-D2 C13-D2
A23-B1 A23-C1 A23-D1 B23-C1 B23-D1 C23-D1
A1-B23 Al1-C23 A1-D23 B1-C23 B1-D23 C1-D23
A2-B13 A2-C13 A2-D13 B2-C13 B2-D13 C2-D13
A3-B23 A3-C23 A3-D23 B3-C23 B3-D23 C3-D23
B123 C123 D123 Ci23 D123 D123
The total number of assignment trip combinations is ﬁf =48 . Trip combina-

tions A123, B123, C123, D123 appeared 3 times each one. In order to guarantee that
these trip combinations appear once we need to introduce the term

V!

jp R
(v—2)12!

+ v =8 where v=4. Finally the total number of unique combinations is 40
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and the space investigated by VLSN algorithm is gz 0.625. The remaining (unchecked)

combinations are the following 24:

A1B2C3 A2B1C3 A3B1C2 C1D2A3 C2D1A3 C3D1A2
A1B2D3 A2B1D3 A3B1D2 C1D2B3 C2D1B3 C3D1B2
A1B3C2 A2B3C1 A3B2C1 C1D3A2 C2D3A1 C3D2A1
A1B3D2 A2B3D1 A3B2D1 C1D3B2 C2D3B1 C3D2B1

Figure 4-7 indicates clearly the (VLSN Neighborhood area/ Total Solution Space) ratio as

function of demands and vehicles number.

Figure 4-7.VLSN Algorithm (Neighborhood area / Total Solution Space) ratio. x —axis represents
the number of trip demands (3 to 20), y-axis represents the number of vehicles (2 to 10), z — axis represents
the ratio value

4.3.5 Algorithm computational results

The Proposed algorithm was implemented in C++ and tested on a Linux machine with a
dual core processor. A variety of problem configurations where solved in order to test
the performance of the algorithm. As mentioned above, the main algorithm stopping cri-
terion is “one combination cycle without improvement”. But the “ExactDP2” algorithm
which is used as a sub problem suffers in terms of execution time when trip demands
are more than 8. That is why we added an additional stopping criterion: the execution
time for the exact algorithm can be no more than 7200 seconds. Problem instances

were produced randomly. The test field was a square area 100X100 Kilometers. Pickup
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and deliver positions of every trip request were selected randomly over that area. Vehi-

cle “Start”, “End” depots were selected randomly over that area. Time windows for

pickup were randomly selected between 0-1440, time windows for deliveries were pro-

duced from corresponding pickups time windows plus 1.5*(Cartesian distance) between

the two points. Maximum vehicle ride time was 480. Vehicle speed was 1Km per Minute.

Vehicle capacity was 3 seats.

Table 4-4: Computational Results for Small Instances of VLSN implementation

Problem Vehicle Vehicle Trip demands CPU Time Cost(Initial Heuris-
Number Capacity in Sec’s tic)

1 3 4 6 18.28 688.057 (708.166)
2 3 4 7 110.5 539.661 (566.256)
3 3 4 8 3002.22 827.165 (845.014)
4 3 4 9 6108.24 566.066 (578.211)
5 3 4 10 10710.6 843.97 (959.223)

6 5 6 12 567.82 943,145 (1043.34)
7 5 6 14 31139.6 1385.29 (1500.38)
8 5 6 16 76412.8 1588.61 (1774.05)
9 5 8 12 567.82 943,145 (1043.34)
10 5 8 14 3830.84 1321.7 (1425.91)

11 5 8 16 86619.8 1483.95 (1756.4)

12 5 8 20 165650 1692.49 (1988.71)
13 5 8 24 102995 1991.97 (2041.72)
14 5 12 28 144001 2191.74 (2394.34)

Figure 4-8.VLSN Execution times and the cost differences between
the Insertion heuristic and “VLSN” hybrid algorithm
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Travel cost is the objective function optimized by the VLSN algorithm. The cost in paren-
theses is the objective function produced by the InsertionH algorithm. The new heuris-
tic-exact algorithm improves the objective function. For those problem instances that
the execution time is longer than 7200sec, the relevant stopping criterion for the DP Ex-
act2 algorithm was activated.

Closeness to the Optimal Solution

Although, there is no methodology that estimates the closeness of any solution pro-
duced by a heuristic to the optimal solution, we can provide some computational results
that indicate that the solution produced by that algorithm and the solution produced by
the exact algorithm are very similar in terms of cost. The problem size is of course lim-
ited to small instances because of the limited ability of the exact algorithm to solve large

problem sizes. However it is worthwhile to present those results.

Table 4-5: Comparative evaluation of the VLSN with an exact approach

Problem Vehicle Vehicle Trip de- Exact Execu- VLSN Execu-  Objective func-

Number Capacity mands tion Time tion Time tion Difference

1 3 3 5 1587.03 20.55 0
2 3 3 5 1819.85 1.12 0
3 3 3 5 1635.13 1.74 0
4 3 3 5 1779.86 14.59 6.742
5 3 3 5 1183.11 13.29 0
6 3 3 6 2038.55 80.6 0
7 3 3 6 2064.41 4.42 0
8 3 3 6 1336.86 242.57 0
9 3 3 6 3133.78 18.58 0
10 3 3 6 2049.84 245.66 0

4.4 The Static Regret based heuristic algorithm RegretH

4.4.1 Basic Concept

The Regret based Heuristic algorithm aims to reduce the chances to get trapped in a se-
verely suboptimal solution. It does this by considering the opportunity which is defined

as the difference between the cost actually calculated by the algorithm (total distance in

Institutional Repository - Library & Information Centre - University of Thessaly
2410512024 07-53:09 EEST - 18711877118



our case) and the cost calculated for a better position that could be obtained if a “differ-
ent” course of action had been chosen. In our case the term “different” course can be
defined as the calculation of the best position to which an already assigned demand can
be reassigned to produce a better solution in terms of cost. This reassignment could be
intra-route or inter-route. The basic idea is to use a fast algorithm in order to quickly get
a feasible suboptimal solution. Usually this is an insertion algorithm. The insertion algo-
rithm gives us a myopic sub-optimal solution based on the positions of the previously as-
signed demands. Then, based on the existing solution, we try to find a better solution by
reassigning the most expensive demands. The reallocation which provides the largest
gain in the system is chosen. Unlike the tabu-search algorithm, regret algorithm never
explores non-feasible solutions. The advantage of the regret algorithm is that it has
much less computational burden. The disadvantage is that it can be easily trapped in lo-

cal minima.

4.4.2 Nomenclature

V={123,...,[V]}=Set of Vehicles
Rvgy=1,2,,jvj} = is the route schedule for everyv € V

| Ry /= size of route schedule defined as the number of demands included in this route

pons

|
TRC = Z RC, is the total cost for all routes

1
DR iy k=1,2,...rv]}, v=1,2..jvj} = the assigned k demand belongs to route v
DMaxR , -1,.;v;; = the maximum demand cost concerning route v

RCostDMAXxR ym =12, |vi1i=1,2,..|v[} vt = iS the extra cost incurred in route m, if we
move the demand (with the maximum cost) that belongs to route v to the route m

CostMatrix[v,m] jm-1.,. v}}, v=1,2,.. vi3 = is 2-d matrix cost for the Regret Algorithm. Di-
agonal positions CostMatrix[v,v] contains DMaxR , while other positions Cost-
Matrix[v,m] imesv} fm=1,2,... v}}, fv=1,2,.. vj} contains RCostDMaxR ,n,

yeee
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mum value of the difference between the element with the least

pons

4.4.3 Algorithm Description

The main objective is the minimization of the total cost for all vehicles. Our regret algo-
rithm uses the original regret concept where the absolute difference between the “best”
lower cost and the second “best” lower cost alternative is used as a metric for guiding
problem solving.

Our regret algorithm uses a fast heuristic in order to produce an initial solution. The fast
heuristic we use is the InsertionH heuristic mentioned in section 4.1. Then we start the
regret process. We build the regret matrix.

Each row represents the route produced by the initial heuristic.

Each diagonal item in the 2-d matrix represents the cost of the most expensive demand
of the route described by the corresponding row.

Each element of a column (except the one on the diagonal) represents the cost that will
be produced if we insert the aforementioned most expensive demand to the route rep-
resented by the corresponding row.

If the insertion is not feasible, then we set the insertion cost to an arbitrarily large num-
ber.

By using this matrix we define the “profit” we gain if we move demands from one route
to another. This can be done by using the following rule: for every column calculate the
differences of diagonal element minus every other element. If at least one difference is
positive select the greatest one. Then move the corresponding demand to the appropri-

ate row (route in our case)
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The Algorithm pseudo code follows

Step0:Run the InsertionH Algorithm
Calculate TRC
NewTRC= TRC

Step 1:While (TRC- NewTRC>0)
TRC= NewTRC
Step 1.1: for everyvin V

for every DRy, (k-1,2,..1rv}}
find DMaxR ,
CostMatrix[v,v] = DMaxR ,
Step 1.2: for every DMaxR , jy-1,,..v/;
foreveryminV
Find RCostDMaxRy,m (v-1,2,,,1v[}m=1,2,..|V[} ve>m
CostMatrix[v,m]= RCostDMaxR,,,
Stap 1.3: foreveryvin V
RegretCostMatrix[v]= positive Max(DMaxR ,- CostMatrix[v,m])
m=12../v|} the greatest positive difference.
Move demand DMaxR , from route v to route m
Step 1.4: Calcuate new TRC
Computational effort of the RegretH, given n demands, is the sum of the computational
effort of:

1. InsertionH algorithm used in the initial phase. This computational effort has already
been calculated as O(n°).

2. The procedure that gives the most expensive demand of any route. This computa-
tional effort is obviously O(n). This procedure removes temporarily one by one every
demand and then calculates the solution cost produced in the absence of this de-
mand. The difference between the previous solution cost and current solution cost is
the cost of every demand in the solution.

3. The procedure that gives the additional cost that will be produced if we insert the
most expensive demand of a route to another route. Consider a feasible solution
produced by the InsertionH algorithm for n trip demands and m vehicle routes. The
computational effort for this solution is the sum of all possible searches for the best

point to insert the most expensive trip demand of every vehicle route to another ve-

hicle routes. The number of possible searches is given by formula
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2(n—-1)+1
Zk = (2n* —n) (4-14). For all m vehicle routes the number of possible searches —
=1

the worst case- is m(2n2 —n) (4-15). Consequently the computational effort is

O(mn?). Figure 4-8 clearly presents the computational effort as a function of number

of demands.

Figure 4-9.Computational effort of the Regret Procedures. (x-axis describes the number of trip demands(1-
1000), y-axis (1-100) describes the number of vehicle routes, z-axis is the comutational effort(0- 2E-8)

The two aforementioned procedures are executed repetitively while the solution is op-
timized. The number of repetitions is unknown but larger than one. Taking r, the number
of repetitions, the final computational load is O(n*)+rO(mn?) (4-16). The order of r as a
function of m,n wasn’t calculated and is therefore considered unknown. Figure 4-9 pre-
sents the total computational effort as a function of number of repetitions and number
of demands. We see that the main factor affecting the computational effort is the num-

ber of demands.

Figure 4-10.Computational effort of the RegretH algorithm. (x-axis describes the number of trip demands(1-
1000), y-axis (1-100) describes the number of regret repetitions, z-axis is the comutational effort(0- 8E-9)
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4.4.4 Algoritm computational results

The Proposed algorithm was implemented in C++ and tested on a Linux machine with a
dual core processor. We tested our regret algorithm by using two different sets of data.
The first set was produced artificially while the second was compiled from data collected
from a real life application in the municipality of Philippi in northern Greece, where a
DRT system has been established and tested for 45 days.

Artificial Data

Problem instances were produced randomly. The test field was a square area 100X100
Kilometers. Vehicle capacity was 8,12,and 16. The number of passengers for each trip
demand was selected randomly between 4,6 or 8, depending on the maximum vehicle
capacity. Pickup and deliver positions of every trip request were selected randomly over
that area. Vehicle “Start”, “End” depots were selected randomly over that area. Time
windows for pickup were 15 minutes and the earlier pickup time was randomly selected
between 0 and 1440. Time windows for delivers were produced from pickup time win-
dows plus 1.5*(Cartesian distance) between pickup and deliver. Maximum vehicle ride

time was 1440. Vehicle speed was 1Km/minute
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Real data

Problem instances were selected from the data collected during the pilot application in
the municipality of Philippi. Road network consists of 33 nodes. The maximum number
of passengers was 4 persons and the time window 15 minutes. The maximum ride time
was 1.5 times the absolute shortest path time for that specific distance.

The following tables and graphs present the results of the algorithm’s application on real
and artificial data. In addition there is a comparison of the algorithms performance when
applied to artificial data versus its performance when applied to real data. Tables 4-6 to
4-11 have the following structure:

The 1st column represents the number of the experiment

The 2nd column represents the number of requested demands

The 3rd column represents the number of vehicles used to solve the problem.

The 4th column represents the satisfied demands among the requested demands.

The 5th column represents the average number of customers per KM.

The 6th column represents the percentage of distance deviation.

The 7th column represents the percentage of time deviation.

The 8th column represents the solution cost. (In our case, “cost” was the total distance
covered by all vehicles).

The 9th column represents the required time in order to get the solution

The 10th represents the total improvement over the initial solution after the application
of the regret algorithm.

The 11th column represents the required time in order to get the improved solution by
using regret algorithm.

The rest of the tables’ and graphs’ structures are obvious.
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Table 4-6: Static Regret algorithm results for artificial data - 8 Seat Veh.

# of Exper Dem Vehicles  Demands  Avg Pass Avg Dis- Avg Time  Cost(in Time(Sec's)  Impv Pere- Regret
Reques per KM tance Deviation ~ KM) centage % Time
Deviation %
%
1 100 40 88 0.891418 1 23 7078.08 1.01 1.27166 6.36
2 250 48 224 0.916597 4 26 16974.9 8.77 1.63156 92.44
3 500 50 427 0.970287 4 16 23631.6 43.6 0.367968 98.59
4 750 50 628 0.994035 5 32 38891.6 124.53 0.366966 158.21
5 1000 50 700 1.10418 7 33 42371 213.33 0.39065 181.65
6 1250 50 780 1.17288 6 33 43413.8 346.66 0 45.93
7 1500 50 811 1.20192 7 35 44224.4 455.74 0 51.63
8 1750 50 836 1.25347 7 35 44072.6 593.76 0 59.44
9 2000 50 851 1.36185 8 36 43867 706.9 0 61.65
Table 4-7: Static Regret algorithm results for artificial data - 12 Seat Veh.
# of Exper Dem Vehicles  Demands  Avg Pass Avg Dis- Avg Time  Cost(In Time(Sec's)  Impv Pere- Regret
Reques per KM tance Deviation ~ KM) centage % Time
Deviation %
%
1 100 33 82 0.891335 2 24 6167.62 0.94 0.161993 2
2 250 49 225 0.917287 4 27 17171.9 6.92 3.44666 ¢
3 500 50 430 0.945412 4 29 30428.8 41.56 1.47551 185.¢
4 750 50 623 0.949743 4 31 39408.1 120.23 0.469661 1
5 1000 50 727 1.06374 5 33 41560.1 231.86 0 41.:
6 1250 50 743 1.16695 7 34 43190.2 310.26 0 43.:
7 1500 50 803 1.22041 8 35 44236.9 456.5 0 50.¢
8 1750 50 832 1.3179 8 36 44248.9 607.56 0.110481 117.¢
9 2000 50 858 1.3725 8 36 44216.7 921.14 0 58.
Table 4-8: Static Regret algorithm results for artificial data - 16 Seat Veh.
# of Exper Dem Vehicles  Demands  Avg Pass Avg Dis- Avg Time  Cost(in Time(Sec's)  Impv Pere- Regret
Reques per KM tance Deviation  KM) centage % Time
Deviation %
%
1 100 33 89 0.898842 3 23 7233.99 1.12 1.80876 7.
2 250 44 227 0.902318 3 26 16585 8.64 2.32 57
3 500 50 435 0.984404 5 28 31148.1 42.17 1.27272 234
4 750 50 626 1.01759 5 31 39143.4 124.32 0.221305 83.¢
5 1000 50 713 1.15315 7 34 42432.5 232.86 0.28181 135.¢
6 1250 50 769 1.22487 8 35 44222.7 329.54 0.0931177 119.
7 1500 50 816 1.21443 7 34 43935.3 475 0 50.°
8 1750 50 848 1.30354 8 35 44310.5 604.08 0 61.]
9 2000 50 866 1.35842 9 36 44100.4 761.93 0 61.¢
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Table 4-9: Static Regret algorithm results for real data - 8 Seat Veh.

2410512024 07:53:09 EEST - 18711877118

# of Exper Dem Vehicles  Demands  Avg Pass Avg Dis- Avg Time  Cost(In Time(Sec's)  Impv Pere- Regret
Reques per KM tance Deviation — meters) centage % Time
Deviation
%
1 100 7 94 1.4106 1 1 701300 3.57 4.23499 5.
2 250 10 226 1.696 0 1 1.20E+06 40.91 2.35786 50.(
3 500 22 415 2.2156 1 2 1.81E+06 146.9 0.19945 1!
4 750 27 624 24134 1 2 2.51E+06 345.23 0.48138 294.
5 1000 30 803 2.4475 1 2 3.02E+06 633.17 2.28107 794.!
6 1250 35 949 2.4774 1 1 3.58E+06 945.11 1.63027 1047.¢
7 1500 39 1151 2.4338 1 2 4.34E+06 1653.97 3.70754 2722.:
8 1750 44 1370 2.365 2 3 5.28E+06 2170.99 0.82318 2686
9 2000 47 1619 2.4839 2 3 5.93E+06 3137.05 2.18242 3265.
Table 4-10: Static Regret algorithm results for real data - 12 Seat Veh.
# of Exper Dem Vehicles  Demands  Avg Pass Avg Dis- Avg Time  Cost(In Time(Sec's)  Impv Pere- Regret
Reques per KM tance Deviation — meters) centage % Time
Deviation
%
1 100 7 94 1.5387 1 1 662400 5.43 5.14795 6.¢
2 250 8 226 1.846 0 1 1.07E+06 66.64 2.19729 63.
3 500 16 415 2.3952 1 2 1.64E+06 205.22 1.86563 187
4 750 20 624 2.5544 1 3 2.30E+06 752.25 0.89973 375..
5 1000 22 803 2.7643 1 2 2.64E+06 1268.09 0.95018 847.
6 1250 26 949 2.7768 1 2 3.15E+06 1980.49 1.89661 2043.:
7 1500 28 1151 2.8621 1 3 3.64E+06 2894.08 2.4403 3375.¢
8 1750 31 1370 2.8553 2 3 4.27E+06 4228.65 2.08773 4202
9 2000 29 1619 2.9792 2 4 4.78E+06 6912.65 2.54345 4462.¢
Table 4-11: Regret algorithm results for real data - 16 Seat Veh.
# of Exper Dem Vehicles  Demands  Avg Pass Avg Dis- Avg Time  Cost(In Time(Sec's)  Impv Pere- Regret
Reques per KM tance Deviation  meters) centage % Time
Deviation
%
1 100 6 94 1.5708 1 1 634100 6.1 1.82936 4.
2 250 8 226 1.8775 0 1 1.07E+06 87.34 1.49142 39..
3 500 16 415 2.5276 2 3 1.54E+06 304.22 1.89914 408.(
4 750 17 624 2.6921 1 3 2.13E+06 904.19 0.52476 272.
5 1000 19 803 2.8659 1 2 2.52E+06 1700.63 3.17529 1369.:
6 1250 23 949 3.0272 1 2 2.86E+06 2885.84 3.47966 3285.¢
7 1500 23 1151 2.9933 1 2 3.40E+06 4939.14 2.51147 4130
8 1750 26 1370 3.0433 2 3 3.98E+06 6243.56 1.61995 5989.4
9 2000 27 1619 3.2228 2 4 4.42E+06 9817.08 2.59884 7437.(
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Figure 4-11.Comparison graphs concerning the improvement due to regret optimization application
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Table 4-12: Comparison of the improvements after the application of the regret optimization

Capacity 8 Dem Reques
# of Expert Improvement Percentage % Improvement Percentage %
(Artificial Data set) (Real Data set)
1 100 1.27166 4.23499
2 250 1.63156 2.35786
3 500 0.367968 0.199446
4 750 0.366966 0.481381
5 1000 0.39065 2.28107
6 1250 0 1.63027
7 1500 0 3.70754
8 1750 0 0.823177
9 2000 0 2.18242
Capacity 12
1 100 0.161993 5.14795
2 250 3.44666 2.19729
3 500 1.47551 1.86563
4 750 0.469661 0.899725
5 1000 0 0.950181
6 1250 0 1.89661
7 1500 0 2.4403
8 1750 0.110481 2.08773
9 2000 0 2.54345
Capacity 16
1 100 1.80876 1.82936
2 250 2.32 1.49142
3 500 1.27272 1.89914
4 750 0.221305 0.524761
5 1000 0.28181 3.17529
6 1250 0.0931177 3.47966
7 1500 0 2.51147
8 1750 0 1.61995
9 2000 0 2.59884
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Figure 4-12. Comparison graphs concerning the average number of passenger per Km for artificial and real
Data.
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Figure 4-13.Comparison graphs concerning execution times for insertion and regret heuristics for real data
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Figure 4-14.Comparison graphs concerning execution times for insertion and regret heuristics for artificial da-
ta
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4.4.5 RegretH Algorithm analysis and conclusions

The above figures show that the regret algorithm improves the solution more effectively
when it is applied on real data than on random artificial data. The explanation could be
because real data follows a specific pattern in terms of the type of demands (desired
pickup and delivery points, desired travel time etc.) Given table 4-10 we found that :
e The minimum improvement percentage is 0 and it occurs only to those problem
instances regarding artificial data.
e The maximum improvement percentage is 5.14795% and it occurs for a real probem
instance.
e All real problem instances, have an improvement ratio larger than 0.
e There is no recognizeable pattern in the way the regret algorithm improves the
initial solution.
e Execution times (see figure 4-12,4-13) are comparable for the insertion algorithm
and the regret algorithm. That means the regret algorithm is an acceptable option to
improve our solution. The maximum solution time for the regret algorithm for the

largest problem instance was almost 2 hours.

4.4.6 Algorithm applications

The heuristic regret algorithm is used as sub module for the online algorithms. Online al-
gorithms need fast optimization modules to produce good solutions during idle times.
The results in section 4.1.4 indicate that we can use this algorithm because of its short

execution time.
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Chapter 5 : Online Dial-a-Ride Algorithms

5.1 Online Regret Dial-a-Ride Algorithm(OR-DARP)

5.1.1 Basic Concept

Online algorithms by design are used to handle online demands. Online demand is the
demand realized during the course of operation of a system. The proposed online algo-
rithm has been developed to satisfy the following key features.

e Fast response concerning the acceptance or denial of the incoming demand. An
online algorithm is used mainly for real applications. Prompt response is very critical
to such applications. This is the main reason, that the main online algorithms give an
answer as soon as possible. All trip demands are considered as urgent demands in
order to be scheduled immediately

e Continuous improvement of the solution quality. It means that idle intervals at any

time can be used by the optimization process.

5.1.2 Nomenclature

v={123, ,1V[} = Set of Vehicles

EPT;= is the earliest pickup time of the i-th online demand

t. = is the current clock time as the online algorithm runs

InsertionH (t.) = is the online regret sub-algorithm (fast insertion) without optimiza-
tion. The InsertionH (t.) algorithm searches only those positions that belong to as-
signed demands where EPT; > t.

RegretH (t.) = is the one time step online regret sub-algorithm with optimization. The
RegretH (t.) algorithm searches those positions that belong to assigned demands
where EPT; >t

RS(t.) = is the problem solution produced by the online regret algorithm with optimiza-
tion at thetime t,

TR(t.) = is the new trip request that occurred at time t,
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rt = the real clock time

TDem = total number of online trip demands

TdemStamp, = is the timestamp of the d-th online trip demand where (d=1,2,, TDem)
DemQt =is the -online trip demands- queue at real clock time rt

QueuingTime = is the queuing time that an online trip demand is allowed to wait for

processing

5.1.3 Algorithm Description

The online regret algorithm is an online algorithm that handles online demands quickly,
while optimizing continuously the produced solution. To achieve this goal, we developed
two sub modules combined in the general regret online dial-a-ride algorithm. We de-
scribe the online regret sub-algorithm without optimization as an algorithm that uses
the InsertionH algorithm to give an initial fast response for any incoming trip demand.
The regret optimization works in the background to optimize solutions for all served
demands.

A more descriptive section of the online regret algorithm follows:

The algorithm reads an initial input and uses the fast insertion heuristic to produce an
initial solution. Dispatcher (described in section 5.1.4) is continuously monitoring the
system and feeds the online algorithm with events. If there is no event, then the optimi-
zation sub-module performs a one-step optimization. If on completion there are still no
new events, optimization continues for another step. If the optimization is completed
(the regret algorithm produces no more optimization in a full cycle) the system goes to
idle state while the only activity that continues is the dispatcher looking for new events.
In case of a new demand the fast insertion heuristic is called up in order to provide a so-
lution. Fast insertion solution provides a solution within no more than a maximum
threshold time (maxRT). The size of this predetermined threshold time is about the max-

imum acceptable system response time. The algorithm calls the regret module for one
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step optimization and the process continues till no further improvement can be
achieved.
The most important feature of the online regret algorithm is that the algorithm has no
need for time horizons. Instead it uses every single time unit i.e. one second in order to
optimize the solution. The main features of the developed online regret algorithm are:

1. It handles every trip request in time no more than maxRT.

2. It runs the optimization continuously in single steps.
A description of the regret online algorithm in pseudo code is as follows:

Step0: For each vehicle v (v=1,2,3.....[V])
Build an empty route
Step 1: Define maxRT
Step2: For each time t.reading
Step 2.1. Read Dispatcher input (t.)
Step 2.2 If there is a TR(t.)
Call InsertionH (t.)
Else if RS(t.) can be optimized more
Call RegretH(t.)

5.1.4 Dispatcher Module for the OR-DARP Algorithm

In order to test online algorithms there is a need for a dispatcher simulator. The main
task of the dispatcher simulator is to feed online algorithms with the appropriate de-
mands. The dispatcher simulator software should imitate the basic features of a live op-
erator. The operation of the developed software dispatcher can be described as follows:
At the first step the dispatcher loads into memory all online trips demands and sorts
them in ascending order of the time of their appearance

The second step is to initialize the time counter and start feeding the online algorithm
with the online demands when the appearance time of that demand is equal (or nearly
equal) to the current timer.

The main feature of the software dispatcher is the queuing time. By the term queuing

time we mean the maximum time that the online requested trip demand is allowed to
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wait before being processed or rejected. A very tight queuing time decreases the queue
but rejects more trip demands. On the other hand a more relaxed queuing time could af-
fect the users inconvenience due to long waiting times. The dispatcher algorithm works
under three conditions concerning the response of the online algorithm

Condition 1: HARD_WORKING_STATE. When online algorithm signals dispatcher with
this state, it means that the online algorithm executes an insertion of another trip re-
qguest that came earlier. Or it executes a critical step of the optimization procedure, such
as the exchange of demands among the routes. In both cases the running of the algo-
rithm cannot be interrupted

Condition 2: SOFT_WORKING_STATE. When online algorithm signals dispatcher with this
state. It means that the online algorithm executes a non critical step of the optimization
procedure and it can be interrupted at the time a new online trip request shows up.
Condition 3: IDLE_STATE. Idle state means that the online algorithm executes neither in-
sertion nor optimization and just waits for new trip demands.

Those conditions provide critical information to the dispatcher in relation to operational

behavior
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The software dispatcher pseudo code is as follows:

Sort all online demands in ascending order of their timestamp
Initialize rt
Read current time rt
While rt < max (TdemStampy (4-1,3, 7dem)) do
Update DemQt
If online algorithm signals IDLE_STATE or SOFT_WORKING_STATE
If current demand in the DemQt satisfies rt - TdemStamp, < QueuingTime and > 0
a. Send to the online algorithm the current demand of the DemQt
b. Remove current demand from the DemQt
Else
Do Nothing
End if
Else If online algorithm signals HARD_WORKING_STATE
Do nothing
End if
Read rt
End while

5.1.5 Online Algorithm performance

For a specific online algorithm named OLALG - that serves all incoming demands- given:

e The current solution S(n) consists of n already served demands

e The operational time T

e The processing time for a new trip request named PT(S(y+1)) ,where y represents
the number of the already served demands

The maximum number x of demands that can be processed by OALG is given by solving

the equation 7 — XZ_I“PT(S((n +i)+1)) = 0 (4-17).

i=0

5.1.6 Algorithm computational study

The proposed algorithm and the software dispatcher were implemented in C++ and
tested on a Linux machine with a dual core processor. In order to evaluate online regret
algorithm performance we have designed a sequence of experiments based on real data
gathered during a pilot testing in the municipality of Philippi. For every trip demand we
have the basic features such as: “earlier and late pickup time, earlier and late pickup

time, origin and destination, maximum travel time, quantity concerning the number of
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persons, special trip requirements” as well as the timestamp. Timestamp is the time

that the trip request came to the operator for processing.

We made 9 different scenarios each of different size with regard to the number of re-

quested trip demands (94,226,414,624,803,949,1151,1370,1619). Some details about

the environment of the experiments are:

1. Maximum fleet size 50 vehicles.

2. Vehicle Capacity 12 seats.

3. The Maximum time that an online trip request service is allowed to wait until pro-
cessed or rejected, was 60 seconds. After that, the dispatcher proceeds to next de-
mand.

4. Maximum pickup wait time 15 minutes

5. Maximum trip demand ride time 1.5 time the absolute shortest path time

6. The cost per distance units (Km in our case) was 0.32 currency units

7. The charging price per distance unit (Km in our case) was 0.32 currency units

8. Work period was one day (or 86400 seconds)

Tables 5-1 to 5-7 present the basic behavior of the algorithm. A series of comparative
results examine the performance of this online algorithm in comparison with its offline
version.

Table 5.1 presents results concerning the number of served trip demands vs the number
of requested trip demands.

The 2nd column represents the number of vehicles used in order to serve trip demands
The 3rd column represents the number of requested trip demands.

The 4th column represents the number of served trip demands

The 5th column represents the percentage difference between requested and served
trip demands

The 6th column represents the average number of customers per Km.
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The 7th column represents the average percentage of distance deviation

The 8th column represents the average percentage of time deviation

Table 5-1: Online Regret Algorithm test results for 1-day (86440 sec’s) operation period

#of ex- Vehicles Trip de- Online Dems Diff % Avg Avg Distance Avg Time
pert (vehicle mands trip Pass per Deviation % Deviation %
capacity demands KM
12) Assigned

1 7 94 94 0.00%  1.40658 1% 1%

2 9 226 226 0.00% 1.74777 0% 1%

3 16 415 414 -0.24%  2.27061 1% 1%

4 22 624 622 -0.32%  2.43832 1% 2%

5 25 803 735 -8.47%  2.57096 1% 2%

6 24 949 727 -23.39%  2.51445 0% 1%

7 28 1151 873 -24.15%  2.46122 1% 2%

8 27 1370 890 -35.04%  2.40471 1% 3%

9 28 1619 1012 -37.49%  2.59163 2% 5%

Table 5-1 shows that the online regret algorithm reaches a critical limit after experiment
#4 where the number of served demands starts to decrease monotonically in compari-
son with the requested trip demands. In the last experiment we found that the number
of serviced demands is 37.5% less than the requested demands. This behavior is pre-

sented graphically in the figure 5-1.
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Figure 5-1.Comparison graph for Online serviced demands among requested demands

The main reason for this behavior is that during the optimization, some trip demands
cannot get an answer within 60 seconds of the time they arrive at the dispatcher.

Table 5-2 presents results concerning the time required for the simple insertion of all
demands into a solution and the time required for the regret optimization procedure.
The 5th column represents the total time needed by online regret sub-algorithm without
optimization (only fast insertion) in order to satisfy all incoming requests represented by
the 3rd column.

The 6th column represents the total time needed by the online regret sub-algorithm
with optimization in order to optimize routes

The 8th column represents the maximum time required for the online regret sub-

algorithm without optimization to successfully process a trip request
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The 9th column represents the maximum time required for a full step of optimization by

the online regret sub-algorithm with optimization

Table 5-2: Online regret Algorithm test results
1-day (86440 sec’s) work period and for real data from the municipality of Philippi

#of exper Trip de- Trip Cost Ins Regret Time Profit Max Ins Time Max Reg Time
mands Requests Time(Sec's) (Sec's) (euros)
Assigned
1 94 94 705400 12.97 60.41 48.4799 0.410 3.330
2 226 226 1154500 182.69 1266.11 200.9 2.57 39.24
3 415 414 1683200 404.88 7330.59 554.2 2.82 196.83
4 624 622 2385600 730.92 15246.4 886.3 3.51 3433
5 803 735 2630300 1862.51 29432.5 1096.4 7.160 790.9
6 949 727 2652700 2406.16 37519.2 1071.4 11.41 909.
7 1151 873 3172500 2456.50 41219.0 1263.6 9.2 768.0
8 1370 890 3361500 2857.13 44882.7 1225.1 12.37 709.7
9 1619 1012 3516600 3636.53 48463.1 1496.4 14.1 1207

We clearly see that the regret optimization procedure consumes the major part of the

total execution time required by OR-DARP algorithm in order to provide a solution. In

experiment #9 the execution time needed by the regret optimization procedure is al-

most 48463/(48463+3636) = 93% of the total execution time.

Table 5-3 presents some comparative results between the static regret (RegretH) algo-

rithm solution cost and the online (OR-DARP) regret algorithm solution cost.

The 3rd column represents the solution cost produced by the static regret algorithm

The 4th column represents the solution cost produced by the online regret algorithm

The 5th column represents the cost difference percentage between static and online

cost
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Table 5-3: Comparison between the online regret algorithm cost and the static regret algorithm cost

#of exper Online Trip Static Cost Online Cost Differ- Avg Pass Avg Pass per Avg Pass
demands Cost ence % per KM KM (online) Difference
serviced (Static) %

1 94 636900 705400 10.76% 1.556 1.40658 -9.58%
2 226 1088100 1154500 6.10% 1.858 1.74777 -5.91%
3 414 1659900 1683200 1.40% 2.330 2.27061 -2.56%
4 622 2248300 2385600 6.11% 2.595 2.43832 -6.05%
5 735 2562500 2630300 2.65% 2.589 2.57096 -0.68%
6 727 2522500 2652700 5.16% 2.606 2.51445 -3.50%
7 873 3015700 3172500 5.20% 2.577 2.46122 -4.48%
8 890 3162200 3361500 6.30% 2.512 2.40471 -4.26%
9 1012 3301000 3516600 6.53% 2.732 2.59163 -5.13%

Figure 5-2.Comparison graph for the cost difference between Static regret and Online regret for the same da-
ta set

The cost difference between the static regret algorithm and the online regret algorithm
varies from 10.76% to 1.4%. Figure 5-2 clearly presents that there is a mirror symmetry
concerning the cost difference and the average number of passengers per Km. Cost dif-
ference and average passengers per KM difference, describe the same differences in na-
ture between the online regret solution characteristics and the static regret solution.

Another interesting set of experiments is the comparison between the OR-DARP and the
OR-DARP without regret optimization. The rationale of these experiments is to explore
the cost and profits difference in order to determine the usability of the online regret al-
gorithm with regard to the size of cost reduction (or profit increase). This set of experi-

ments is presented in table 5-4, where
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The 5th column represents the cost difference percentage

The 6th column represents the execution time of the OR-DARP algorithm without the

regret optimization procedure

The 7th column represents the execution time of the OR-DARP algorithm.

The 8th column represents the solution profits of the OR-DARP algorithm without the

regret optimization procedure

The 9th column represents the solution profits of the OR-DARP

The 10th column represents the profit difference percentage

Table 5-4: Comparison between online regret sub-algorithm with optimization and the online regret
sub-algorithm without optimization for the same data set

#of expert Serviced Online Online Diff Cost %  Online  Online  Online Online Diff prof %
Demands Regret (no Regret(opt) Regret  Regret Regret Regret
opt) Cost Cost (no ( opt) (no opt) ( opt)
opt) Time profit Profit
Time
1 94 713500 705400 -1.148% 10.11 73.38 46.975 48.4799 3.2%
2 226 1176500 1154500 -1.906% 147.5 1449 193.824 200.864 3.505%
3 414 1745900 1683200 -3.725% 477.8 7735 530.08 554.24 4.359%
4 622 2458900 2385600 -3.073% 1488 15977 858.719 886.271 3.109%
5 735 2716800 2630300 -3.289% 2092 31295 1068.7 1096.38 2.525%
6 727 2670700 2652700 -0.679% 1941 39925 1065.7 1071.36 0.528%
7 873 3185500 3172500 -0.410% 3808 43676 1255 1263.62 0.682%
8 890 3463900 3361500 -3.046% 4226 47740 1184.13 1225.09 3.343%
9 1012 3619200 3516600 -2.918% 6655 52100 1455.39 1496.41 2.741%

Figure 5-3.Comparative graph for the cost and profits difference between Online Insertion and Online regret
for the same data set
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The cost difference between the online regret sub-algorithm with optimization and
online regret algorithm without optimization varies between -3.725% and -0.410%.
Similarly the profit difference varies between 4.36% and 0.53%. For the same data set
the online regret algorithm with optimization always outperforms the one without op-
timization. However, the execution time between these two different versions of the
OR-DARP algorithm differs significantly.

Table 5-6 presents an interesting comparison between OR-DARP algorithm with regret
optimization and OR-DARP algorithm without optimization. Both versions of the online
algorithms have been tested on the initial set — the one presented in table 5-1 - of re-
quested trip demands. The OR-DARP algorithm without regret optimization accepts all
requested trip (see table 5-5) demands while OR-DARP algorithm with optimization ac-

cepts only a part of requested trip demands (see table 5-2).

Table 5-5: Online regret algorithm without optimization test results for
1-day (86440 sec’s) work period

#of Vehicles Trip de- Trips Avg Pass Avg Avg Time Cost Time(Sec's) profit
exper mands Requests per KM Distance  Deviation
Assigned Deviation %
%

1 7 94 94 1.3955 1% 1% 713500 10.1 46.9759
2 9 226 226 1.70881 0% 1% 1176500 148.4 193.824
3 16 415 415 2.21605 1% 3% 1745900 481.61 535.904
4 21 624 624 2.36126 1% 2% 2440300 1508.33 874.6
5 26 803 803 2.54391 1% 2% 2920000 2717.36 1180.61
6 28 949 949 2.75778 1% 2% 3158800 3881.55 1514.56
7 31 1151 1151 2.73839 1% 2% 3810300 7198.61 1794.9
8 33 1370 1370 2.69738 1% 3% 4549400 11249.2 2076.16
9 37 1619 1619 2.85987 2% 5% 5129000 17956.3 2521.28

By combining the 3rd(assigned trip demands), 4th (solution cost), 7th (profit) column in

table 5-2 and the 4th (assigned trip demands),8th (solution cost), 10th (profit) column in

table 5-5 we have table 5-6.

In table 5-6

The 2nd column represents the percentage difference between the 3rd column in table

5-2 and the 4th column in table 5-5.
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The 3rd column represents the difference of solution costs (4th column in table 5-2),
(8th column in table 5-5).

The 4th column represents the difference of solution profits (7th column in table 5-2),
(10th column in table 5-5).

Table 5-6: Comparison between the online regret sub-algorithm without optimization and online re-
gret sub-algorithm with optimization for different data sets

#of exper Trips Diff % Cost Diff% Profit Diff %
1(94) 0.00% -1.14% 3.20%
2(226) 0.00% -1.87% 3.63%
3(415) -0.24% -3.59% 3.42%
4(624) -0.32% -2.24% 1.34%
5(803) -8.47% -9.92% -7.13%
6(949) -23.39% -16.02% -29.26%
7(1151) -24.15% -16.74% -29.60%
8(1370) -35.04% -26.11% -40.99%
9(1619) -37.49% -31.44% -40.65%

The results of Table 5-6 are of special interest: In experiments 1 to 4, when using the
online regret sub-algorithm with optimization instead of the online regret algorithm
without optimization there is a very small (or zero) percentage of requested trips that

cannot be served, while at the same time the profits are bigger (and the cost smaller).

Figure 5-4.Comparison graph for the trips cost, and profits difference between online regret sub-algorithm
without optimization and online regret sub-algorithm with optimization for experiments 1 to 4

In experiments 5 to 9, when using the online regret sub-algorithm with optimization in-
stead of the online regret sub-algorithm without optimization there is a significant loss

of trips demands (not served). It is interesting that the use of online regret algorithm
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with optimization has profit losses greater than cost reduction because of the smaller
number of served demands. In experiment 6 we notice that cost reduction is 16.02%

compared to a profit loss of 29.26%.

Figure 5-5.Comparison graph for the trips cost, and profits difference between online regret algorithm with-
out optimization and online regret algorithm with optimization for different data set for experiments 5 to 9

Figure 5-6.Comparison graph for the trips cost, and profits difference between online regret algorithm with-
out optimization and online regret with optimization for different data set

Table 5-7 presents interesting results on queuing times and the served trip demands. By
the term queuing time we mean the time a trip request is allowed to wait in a queue in
order to get an answer. We used four different queuing times (the shortest time is 10
seconds while the longest is 120 seconds) covering the majority of possible acceptable
response times in real life. The results, shows that short queuing times affect the num-

ber of served demands. Figure 5-9 indicate that the maximum difference between
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served demands with response time of 10 seconds and served demands with response

time of 120 seconds has a the maximum value of 23.60% which is a significant differ-

ence.
Table 5-7: Comparison table between different queuing times for OR-DARP algorithm
#of 10 secs 30 secs 60 secs 90 secs 120 secs Diff Between 120 secs, 10
exper ( Trip de- ( Trip de- ( Trip de- ( Trip demands)  ( Trip demands) Secs queueing time
mands) mands) mands)

1 94 94 94 94 94 0.00%
2 226 226 226 226 226 0.00%
3 408 413 414 415 415 1.72%
4 572 587 622 616 613 7.17%
5 637 678 735 757 759 19.15%
6 682 692 727 792 787 15.40%
7 799 806 873 906 921 15.27%
8 822 870 890 945 1016 23.60%
9 897 914 1012 1011 961 7.13%

Figure 5-7. Comparison graph for the number of serviced trip demands for different
response times

Figure 5-8. Percentage difference concerning serviced trip demands for response times 10secs and 120 secs.
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5.1.7 Analysis of OR-DARP Algorithm

Computational results in Section 5.1.6 demonstrate that the OR-DARP algorithm always
improves the solution produced by OR-DARP without regret optimization when applied.
Although as expected the solution cost is more in comparison with solution cost provid-
ed by the static regret algorithm.

The benefit of the proposed online regret algorithm is the absence of time horizons
which means that all demands are handled as emergency ones getting immediate re-
sponse.

An important result is that, the side effect of the OR-DARP algorithm is the rejection of
some requested trip demands. Table 5-1 clearly shows that, for large scale programs OR-
DARP rejects some demands. The main reason for that behavior is the additional time
required for the optimization procedure even for a single step of optimization.

Another important result is in table 5-6 and the relevant graphs figure 5-5, figure 5-
6,figure 5-7. We made this comparison between different data sets in order to define a
critical point regarding the costs and profits. There is a point that identifies the number
of demands, where the use of OR-DARP algorithm instead of OR-DARP algorithm with-
out optimization becomes unprofitable. The main reason for this, is that cost decrease is
less in comparison with profit loss due to less served demands. This means that beyond
a specific number of requested trip demands it is more profitable to use OR-DARP with-

out optimization in order to serve more requests.

5.1.8 OR-DARP Algorithm Competitive Ratio

It is already mentioned in section 2.5 that the basic feature describing the closeness of

an online algorithm with respect to the optimal algorithm is the competitive ratio.
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Due to the presence of specific restrictions - specific pickup and delivery order and pres-
ence of time windows — it is hard to find a complete mathematical formula for the com-
petitive ratio problem of the dial-a-ride Problem.

Feuerstein [141] defined competitive ratios for the online single server Dial-a-Ride prob-
lem. Fink, Krumke,Westphal (2009) [142] defined that competitive ratio for k-servers has
3 as the lower bound. These lower bounds were calculated under specific conditions
such us the same start end depot location, the absence of time windows, the homogene-
ity of vehicles and they deal with the minimization of the makespan i.e. the time when
the last server has completed its tour or the minimization of the sum of completion
times.

Since it is impossible to find the optimal solution for large-scale problems with the exist-
ing algorithms, competitive ratio can be calculated in a different way. The basic idea is
to use the same algorithm - not necessarily the algorithm that finds the optimal solution
- in two different versions. The first version is the offline algorithm while the second ver-
sion is the online version.

Xiang [140] defined competitive ratio as follows: Online _cost - Static _ Cost
Stati _ Cost

1000 (4-18).

Where online_cost represents the solution cost calculated by the online version of the
algorithm while static_cost represents the solution cost calculated by the static version
of the algorithm. The above formula is not an analytic mathematical formula, which
means that we cannot use it in order to forecast the online cost given the static cost and
vice versa.

Given a set of n online demands OD, ={0D, , ,...OD, , } where OD,, is the online

demand with source s; and destination d;, the competitive ratio can be calculated as

OLALG(OD,)

(4-19) where OLALG(OD,) is any online algorithm which provides a fea-
OPTALG(OD,)

sible solution while OPTALG(OD,) is the optimum offline algorithm for the same set of
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demands if known before. Clearly, OPTALG(OD,) will always be at least as good as any
online algorithm, since any online solution (i. e., sequence of schedules) can be convert-
ed to an offline schedule. Suppose we have a set of static demands called

asSD,, ={SD; ; ,..SD, , }. The OPTALG(SD,) algorithm provides the optimized solu-
tion for this set of static demands. When a new od, , online demand shows-up, the

new solution can be no worse than OPTALG(SD,,) + D(o,s,)+D(s,,d.)+D(d,,0) (4-14) where
o=is the origin of vehicles start, end depot and D(x,y) is the distance between points x,y
located in our space.

According to the above relations the maximum overhead cost for every online demand is
D(o,s;)+D(s,d;)+D(d;, 0) assuming that the vehicle that serves this demands operates as a
taxi.

In case of SD,_, ={} and OD, ={0D;, ,....OD, , } competitive ratio CR cannot be

i(D(OaSi) +D(s;,d;)+ D(d;,0))

larger than = OPTALG(OD ) (4-20). The difficult part in this equation

is the calculation of the solution cost produced by the optimal algorithm. We should give
a special example for this. Our Hypothesis:

1. Fleet consists of one vehicle with infinite capacity.

2. For every online demand od , the showing time is larger than, the time where the

previous served demand is completed and the vehicle that serves this demand re-
turns to its depot again.
3. The source and destination of all online demands is the same
Given these constrains the optimum solution for all demands produced by OPTALG is
D(o,s;)+D(s,d;)+D(d;0) (i=1 or 2 or .. n). In this case the competitive ratio can be no larger

Zn: (D(o0,s)+ D(s,d)+ D(d,0))

than = =n (4-21). The mathematical formula presented
D(o,s)+ D(s,d)+ D(d,o)
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in 4-21 leads to the same results as those presented by the following theorem “There is
no competitive deterministic online algorithm for the Online Darp with response to the
total travel distance” [156].

The most basic measure in a routing context is the number of online requests relative to
the total. We define this ratio as the degree of “onlinenism” of the system considered
and denote it as oratio .

Online _equests (4-22).

This degree defined as oratio =
Total _Requests

To the best of our knowledge, no methodology has examined the competitive ratio as a
function of the oratio. We constructed a series of experiments for the study of this be-
havior. The basic idea of these experiments relies on the fact that — given the total
number of demands (offline and online) included in the solution —the number of online
demands has been gradually increased over the number of offline demands. It is ex-
pected that the quality of the solution will deteriorate, as the proportion of online de-
mands involved in the solution increases compared to the proportion of offline de-
mands. The main aim is to find a mathematical approaching formula which allows us to
predict with some accuracy the quality of the solution given a specific combination of of-
fline and online demands.

It is already mentioned that the maximum overhead - called OC, - due the presence of

an online demand od , is D(0,s,)+D(s,d,)+D(d,0) given the o point as end, start depot.

For a given set of n online demands such as OD, ={0D, ,,..,OD, , }the expected

overhead cost is given by formula E{ZOCI}M-Z?,). A linear approach between the
i=l
cost produced by the OPTALG algorithm and the OLALG algorithm could be approached

by formula ax+b (4-24) where x is the number of online demands. Factor a in (4-24) rep-

resents the extra incurred overhead cost introduced by the online algorithm every time
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a new online demand shows-up, while factor b represents the cost produced by OPTALG

for the SD,, set. The worst case of overhead is produced when every online demand is

handled the in the taxi way. If this is the case, factor a is equal to E{Z OC,}. Although

i=l
our experiments — presented later — showed that this number is significantly smaller.
Our experiments were based on artificial data in order to reduce the presence of hidden
patterns concerning the trips nature.
The testing field was a square area 100X100 Kilometers. Vehicle capacity was 8, 12, 16
seats. The maximum number of passengers for each trip demand was selected random-
ly between 4, 6 or 8 in accordance with vehicle capacity. Pickup and delivery positions of
every trip request were selected randomly over that area. Vehicle “Start”, “End” depots
were selected at the center of this area (50, 50). Time windows for pickup were 15
minutes and the earlier pickup time was randomly selected between 0-1440, time win-
dows for deliveries were produced from pickups time windows plus the 1.5*%(Cartesian
distance) between pickup and delivery. Maximum vehicle ride time was 1440. Vehicle
speed was 1Km/minute.
The number of experiments for each distinctive combination of demands number and
vehicles capacity was set to 20 and the confidence level for this experiment was set to
95%.
The underlying algorithms were the RegretH algorithm for offline demands and the
online OR-DARP algorithm for online demands.
In Table 5-8 we present the results concerning the comparison between the pure offline
version and the pure online version for various instances of our. The columns of table 5-

8 are self-explanatory.
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Table 5-8: Comparison between the online regret sub-algorithm without

Experiment Requested  Capacity Full Full Static(Avg) Percentage
Demands( Online(Avg) Difference
Avg ser-
viced de-
mands)
1 500(425) 8 32290 28368.83 13.82%
2 500(426) 12 32764.67 28739 14.01%
3 500(427) 16 33611.17 29066.17 15.64%
4 750(506) 8 37604.33 33622.67 11.84%
5 750(526) 12 37601.5 33232.5 13.15%
6 750(522) 16 37868.5 33245.67 13.91%

The cost difference between the full online solution and the full static solution is always
larger than 10%. Vehicles capacity affects cost difference as well. It is expected that
larger vehicle capacity provides more opportunities to improve the solution due to the
fact that this restriction is relaxed. Due to fact that the above table presents only the
values of the full offline, the online solution doesn’t provide us with information regard-
ing the intermediate states.
We chose to present an example to show all intermediate states. From each experiment
group we choose the most representative experiment which is closest to the averages
concerning features like full online and static solution costs and the number of serviced
demands. The following charts figure 5-9, 5-10 present all intermediate states.
The structure of the charts is the following.

1. The Y-axis represents the cost of the solution

2. The X- axis represents the number of offline demands

3. The blue points represent the cost of each solution.

4. The black line represents the linear approximation of the solutions set

5. The green line represents the 2™ degree polynomial approximation of the solutions

set

6. The red line represents the 4™ degree polynomial approximation of the solutions set

Institutional Repository - Library & Information Centre - University of Thessaly
2410512024 07-53:09 EEST - 18711877118

113 -



Figure 5-9. Solution cost in relation to number of online and offline demands. Starts with one static demand,
499 online demands and ends to one online demand, 499 static demands
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Figure 5-10. Solution Quality in relation to number of online and offline demands. Starts with one static de-
mand, 749 online demands and ends to one online demand, 749 static demands
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In all cases we observe that the polynomial approximation is much more accurate com-
pared to the linear approach.

In 5 of the 6 experiments we observe that the 2nd degree polynomial approximation is
almost identical to the 4th degree polynomial approximation.

The basic idea of these approaches is that we can use them in order to have a good ap-
proximation for the cost of a full online solution in comparison to the cost of the full of-
fline one. This gives us the opportunity to estimate with reasonable accuracy the cost of
a full online solution without knowing in advance the full number of online demands.
Table 5-9 presents the linear approach in order to describe the overhead cost incurred
due the presence of online demands.

The 4™ column describes the factor a of the linear approximation while the last column
describes the confidence value for 95% confidence level. The 5™ and 6™ columns de-
scribe the minimum and the maximum value of the factor a according to the last col-
umn. Factor a describes the cost incurred by every online demand in the solution. l.e. in
the first experiment the additional overhead cost is 8.313 meaning that each online de-

mand introduces 8.313 cost units

Table 5-9: Approximation functions for oratio

Experiment | Requested  Capacity a- a- a- Confidence
Demands( factor(Avg) factor(Min)  factor(Max) (95% level)
Avg ser-
viced de-
mands)

1 | 500(425) 8 9,2252013 7,870672 10,57973 1,35453
2 | 500(426) 12 9,4376278  8,200871 10,67438 1,236756
3| 500(427) 16 10,652912 9,970224 11,3356 0,682689
4 | 750(506) 8 7,8788124 6,978787 8,778837 0,900025
5 | 750(526) 12 8,3031367 7,300445 9,305829 1,002692
6 | 750(522) 16 8,8669036 8,001019 9,732788 0,865885

We notice that the factor a increases in accordance with the vehicle capacity and the
number of demands. This is quite normal since the offline algorithm takes advantage of

these constraints in order to produce better solutions. By using table (4-23) in order to
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evaluate the parameter a of the linear approximation ax+b and calculate the worst case

solution cost for each experiment we get the table 5-10. The 5th column of table 5-10

describes the value of factor a as the expected value E ZOCi

i=l1

Table 5-10: Comparison between proposed online algorithm and the worst case online algorithm

Experiment | Demands Actual Vehicles  Full Online n Worst Case  Percentage
Serviced  Capacity  (Average) [a[=E Z ocC. Online solu-  Difference
1

Demands ) tion Cost (Average)

(Average) (Average)
1 500 425 8 32290 134.96 57360 77.6%
2 500 426 12 32764 133.47 56859 73.5%
3 500 427 16 33611 135.56 57886 72.2%
4 750 506 8 37604 125.39 63448 68.7%
5 750 526 12 37601 124.97 65737 74.8%
6 750 522 16 37686 128.79 67232 78.4%

The above table presents clearly the way that the proposed OR-DARP algorithm im-

proves the solution in comparison to worst case solution concerning these online de-

mands.
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5.2 Online Regret Algorithm with probabilistic demands (OP-

DARP)

5.2.1 Basic Concept

For the OP-DARP algorithm we follow a different concept than the one presented in sec-
tion 5.1. The basic idea is to use probabilistic demands in order to utilize the knowledge
regarding the incoming demands. This knowledge can be proved valuable to provide
better solutions. The basic assumption is that we have substantial computational power
so that the execution time is of no concern.
The influence of probabilistic demands to the solution quality is an important issue that
deserves to be investigated. However an analytical mathematical model which can de-
scribe this influence is not easily attainable. A widely approved way to study such prob-
lems is the Monte Carlo method. Generally speaking the Monte Carlo method is a tech-
nique that involves the use of random numbers and probability to solve problems. The
general concept of this method is as follows:

1. Define a domain of possible inputs.

2. Generate inputs randomly from the domain by using a specific probability distribu-

tion.

3. Execute a deterministic computation using the inputs.

4. Aggregate the results of the individual computations into the final result.

In our case the sampling has to do with the selection of probabilistic demands from a
domain of possible inputs. Our domain of possible inputs came from real data collected
during a pilot project in the municipality of Philippi. In section 5.2.4 we define in detail
this data source. Each trip demand belonging to this domain of possible inputs is charac-

terized by the probability of it occurring. Random inputs were produced via uniform
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random numbers concerning the showing up probability. These random inputs of prob-
abilistic demands are used by the OP-DARP algorithm in order to provide a solution
when combined with the real demands.
Given the fact of the existence of real trips the data domain input can be created by:
1. A probability distribution that closely fits the collected data for trip demand
occurrence.
2. Asimple empirical distribution, if none of the known probability distributions is
an acceptable fit.
Every time the OP-DARP algorithm has to deal with a new incoming real trip demand, a
sequence of probabilistic demands is generated using random numbers. These probabil-
istic demands are incorporated into the solution search.
The most preferable method to use the generated probabilistic demands is through time
horizons. Time horizon defines the future time period for which the algorithm uses
probabilistic demands. The size of Time horizon is critical because this size practically de-
fines how far in the future, the algorithm search uses probabilistic demands.
Generally speaking, it is expected that sometimes the produced solution could be worse

in the short term, but eventually it becomes better.
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5.2.2 Nomenclature
v={123, ,1V[} = set of vehicles

EPT, LPT; = Earlier and late pickup time of the i-th online trip demand

t. = is the current time as the online algorithm runs

THStep =is the time horizon step, Possible values are 60 minutes, or 120
minutes, or 180 minutes.

k = is the time horizon index. Given the value of THStep, possible values of k are all
integer values between 0 and 1440 with increasing step of THStep. l.e. for THStep

equal to 180 minutes, k takes values between 0,180,360, 1280.

TR(t.) = is the procedure which returns the new trip request that showed up at time t,

TH(TR(t.)) = is the procedure which defines the time horizon index, based on EPT,
LPT, of the TR(t.) demand.

Possible values are : All time steps according to THStep, starting from 00:00 (0
minutes) ending to 24:00 (1440 minutes)

PD = the probabilistic demand

PDem, = set of all probabilistic demands for the k™ time horizon index with occur-
rence probability larger than 0.

SPDem, = set of all randomly selected probabilistic demands from PDem set.
APDem,, = set of assigned probabilistic demands from SPDem, set.

InsertionTH (t) = is a modified version of the simple insertion algorithm InsertionH —
presented in section 4.1 - which finds the solution of least cost only for those assigned
demands where EPT; > t,

InsertionProbH (TH(TR(t.)) ) = is the insertion sub-algorithm which is used to insert
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probabilistic trip demands into vehicle routes. Those probabilistic trip demands select-
ed randomly from those who belong to the same time horizon index as the requested
real demand TR(t.).

InsertionPRH (TR(t.)) = is a modified version of the simple insertion algorithm Inser-
tionH which finds the solution of least cost for the real demand TR(t.). In case of an
unsuccessful assignment, the algorithm removes the less probable assigned probabilis-
tic demand in order to relax the solution space. After each removal this algorithm re-
starts.

RS(t.) = is the procedure which returns the problem solution produced by InsertionPRH
sub-algorithm at the time t,

RegretPH (t.) = is the online regret sub-algorithm that uses regret optimization in or-
der to improve the RS(t.) solution.

WithdrawProbH(.) = Is the procedure that withdraws all probabilistic demands that

belong to set APDem,

5.2.3 Algorithm Description
It is already noted that the crucial element for the OP-DARP algorithm is the probabilistic

nature of the future demands.

In the beginning we define the appropriate horizon time step. The definition of the hori-
zon time step is a very important issue. Wide time steps can overload the algorithm exe-
cution time. Narrow time steps offer little information and make the behavior of the
online algorithm rather myopic. In our case we experimented with three horizon time
steps of 60,120,180 minutes respectively. Probabilistic trip demands have the following
features:

1. Typical Trip Demands features (origin, destination, EPTi, LPTi, Maximum Ride Time))
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2. The occurrence probability — for a specific time horizon - as indicated by the proba-
bility distribution chosen for this particular application.

In the second phase, the OP-DARP algorithm uses the probability distribution as domain
input, the Monte Carlo method for this domain in order to produce probabilistic de-
mands, and the realized demand in order to produce the solution. Probabilistic demands
are included in the solution as long as it is needed for the assignment of the real demand.
After the assignment of the realized demand all probabilistic demands are withdrawn
from the solution.
When a real demand occurs, we define the time horizon — called & - specified by this de-
mand. Based on this time horizon, an initial set — called PDem, - of probabilistic trip de-
mands compliant to this time horizon is produced, by using the selected probability dis-
tribution. From this initial set of probabilistic demands, a second set — called SPDem - of
the selected probabilistic demands is produced by using random numbers. This produc-
tion of the second set is as follows. For each demand belonging to the PDem, set, we
generate a random number. If the produced random number is equal or larger to the oc-
currence probability then this the trip demand is eligible. This SPDem set of probabilistic
demands is taken into account by the algorithm OP-DARP in order to find a feasible solu-
tion for the realized demand. The pure impact of probabilistic demands versus the regret
optimization procedure is another interesting issue. For this problem we have developed
two variations of the original OP-DARP algorithm. The first one is the OP-DARP-NoRegret
algorithm which is the same as the OP-DARP algorithm without the use of regret optimi-
zation. The second one is the above referenced OR-DARP algorithm which is the same as
the OP-DARP algorithm without the use of probabilistic demands.
The OP-DARP algorithm can be considered as a wrap algorithm that calls continuously
other sub-algorithms. The basic task of OP-DARP is to assign the online real demand

while extensively using probabilistic demands.
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A more detailed description of OP-DARP follows:

Step O:

1. Define: Time step horizons that will be used by the OP-DARP algorithm. (The
term "time step horizons" refers to time sub-divisions to which a full operational
period (one day in our case) is split in. The size of these sub-periods practically de-
fines the depth of the time-horizon in which our algorithm will search for proba-
bilistic demands. i.e. 180 minutes time step horizon means that the day is di-
vided into 8 sub periods and our algorithm always looks for probabilistic de-
mands into a period of 180 mins)

2. Build Empty routes for every vehicle

Step 1:

1. Read Current online real demand

2. Build time horizon for this demand. (In this step we define the specific sub-
period where the algorithm looks for probabilistic demands. We use the earlier
and the late pickup time of the real demand to define this specific sub-period.
l.e. if the earlier, late pickup time of the real demand is 680,695 minutes ac-
cordingly, and the time step - defined in stepl- is 60 minutes, then the time
horizon is 660-720 minutes. In this case the OP-DARP algorithm handles proba-
bilistic demands in a sub-period 660-720 minutes)

3. Call the following:

a. Sub-algorithm InsertionProbH in order to assign the probabilistic de-
mands included in the list SPDem, .
b. Sub-algorithm InsertionPRH in order to assign the real demand

4. Run the regret optimization procedure in order to optimize the solution. (in this

step we use the regret optimization procedure for all assigned real demands with earlier pickup

time larger than the start of the current time horizon)
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5. Jumptostepl

The InsertionProbH sub-algorithm works as follows:

Step O:

1. Construct the PDem, ,and SPDem, lists (PDem, list is created by using the specific time

horizon index while SPDemk list, through random numbers)

2. Sort SPDem, list in descending order of occurrence probability (the sorting is
meaningful as we always use the most probable demands for assignment)
Step 1:
Repeat the following until you reach the end of SPDem; list
1. Try to Assign every Probabilistic Demand included in SPDem, set start-
ing by those with the biggest show up probability

2. Update APDem; list with the current assigned probabilistic demand

(APDem, list initially is empty. Every time we add one more probabilistic demand this

demand is added to APDem; list)

The InsertionPRH sub-algorithm works as follows:
Step 0:
Sort APDem, list in descending order of occurrence probability (the sort procedure is

meaningful in that we will always remove the less probable probabilistic demand from the solution)

Step 1:
Repeat the following until Real Demand has been assigned or APDemy, set is empty
1. Tryto Assign the Real Demand
2. If the assignment of real demand is not successful then remove the last
probabilistic demand from the APDem, set (in this step we remove one
by one the probabilistic demands —starting by with the on less probable

to occur - if the real demand cannot be assigned. The purpose of this
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removal is to relax the solution as much as needed in order to assign the
real demand)
A description of the OP-DARP algorithm in pseudo code is as follows:

StepO0: For each vehicle v (v=1,2,3.....[V])
Build an empty route
Step 1: Define THStep
Step2: For each time t.reading
Step 2.1:
call InsertionProbH((TH(TR(t.)))
call InsertionRPH (TR(t.))
WithdrawProbH(.)
Step 2.2:
Call RegretPH(t ) for solution RS(t.)

Sub-algorithm InsertionProbH((TH(TR(t )))

Step 0: Build PDemy set for time horizon defined by TH(TR(t ))
Build SPDem, set from PDem,
Sort SPDem, set in descending order concerning the show-up probability
APDem; =0

Step1: for every PD in SPDemy

Call InsertionTH (TH(TR(t.))) algorithm for PD
if PD is assigned then APDem, = APDem, \” PD

Sub-algorithm InsertionPRH (TR(t.))
Step0: Repeat the following until (TR(t.) is assigned or APDem,, =0)
Step1.1 Call InsertionTH (t.) algorithm to assign TR(t.)
Step 1.2 If real demand TR(t.) can’t be assigned then APDem, = APDem, "
(Probabilistic Demand with the less show-up probability in APDem,)
Step 1: Evaluate solution RS(t.)
Computational effort of OP-DARP, given n demands, is the sum of the computational ef-
fort of:

1. The InsertionProbH and the InsertionPRH sub-algorithms we use in order to
assign probabilistic demands and real demands into the solution. This sub al-
gorithm is called whenever new real demand occurs. Suppose that the whole
number of probabilistic demands during the operation period — one day in our
case — is pn and the number of real demands is n. In the worst case for every
real demand we may use the entire set of probabilistic demands. Because of

this, the total number of possible searches is described by the following for-

mula
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n mp2i+l
ZZZk:é (1 h+152 +47° +34p+2 W p+4’ p+2 np +6n° p* +4np),(

m=l i=m k=1
4-25). Where n is the number of real demands and p is the maximum number
of selected probabilistic demands. The new formula is different from the (4-1)

formula. This is due to the fact that for every real demand algorithm we

nHpi+l
should assign — in the worst case — p probabilistic demands. The term ZZk

i=m k=l
expresses exactly this usage of probabilistic demands. By using 4-25 the com-
plexity of this formula is estimated as O(n*+np*+ n’p’)(4-26).

2. The Procedure RegretH. For this procedure the complexity has been estimated
at section 4.1.2 as rO(mn’) where n is the number of real demands, r is the
number optimization cycles (iterations in order to optimize the solution)

The total complexity is O(n*+np>+ n’p?+)+rO(mn?)(4-27). The number n of trip
demands and the number p of probabilistic demands clearly dominate the

computational load.

Figure 5-11.Computational effort of the OP-DARP. (x-axis describes the number of trip demands (1-100), y-
axis (1-5) describes the number of probabilistic demands, and z-axis is the computational effort (0- 4E-6)

The above figure shows clearly the way that probabilistic demands heavily affect the

computational effort in comparison with real demands.

Institutional Repository - Library & Information Centre - University of Thessaly
2410512024 07-53:09 EEST - 18711877118

-126 -



5.2.4 Algorithm computational analysis

The proposed algorithm was implemented in C++ and tested on a Linux machine with a
dual core processor. To evaluate the OP-DARP algorithm performance, real data were
used, obtained from a pilot project in the municipality of Philippi. Based on these data we
extracted an accurate number of every day real demands. For every real demand there is
the exact time of the users’ phone call. This information is valuable because it can be
used in order to emulate the online operation. Since the pilot project provided data for
30 days of continuous operation, we can use these data to build an appropriate probabil-
ity distribution regarding the occurrence probability for every trip demand presented
during the pilot testing.

To properly conduct our experiments we need at least the following:

1. Real trip demands

2. Probability distribution which describes accurately the occurrence probability for all

probabilistic demands.

Online trip demands: We chose to experiment with the most “loaded” days of the month.

Wednesday was the most loaded day during a week period for all week periods. Based
on these observations we experimented with 5 Wednesdays.

Probability distribution: Data from 30 days were analyzed in order to find the Probability

distribution that describes accurately the occurrence probability for all trip demands that
emerged during the pilot testing. Due to unsatisfactory fit for all known (Poisson
etc.)probability distributions to our data, the empirical distribution was chosen.

Table 5.11 represents the total number of trips emerged in a certain time horizon during
the pilot operation. The use of this table is based on its entries; we can construct the set
PDem, of probabilistic trips by using a specific — empirical in our case - probability distri-
bution.

e The 1% column describes the specific time horizons according to time step horizon
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e The 2™ column describes the number of trip demands for each time fragment

e The3“andthe 5" column are the same as the 1 column, while the 4™ and the 6™
are the same as the 2™ column

Table 5-11: Total Trip Demands Distribution for three time horizons with 60, 120, 180 minutes time
step accordingly

Time Hor. 60 Mins Time Hor. 120 Mins Time Hor. 180 Mins

Time Demands Time Demands Time Demands
60 0 120 0 180 0
120 0 240 5 360 9
180 0 360 4 540 207
240 5 480 80 720 145
300 2 600 179 900 215
360 2 720 93 1080 244

420 1 840 138 1260 111

480 79 960 186 1440 20
540 127 1080 135

600 52 1200 83

660 61 1320 42

720 32 1440 6

780 50

840 88

900 77

960 109

1020 75

1080 60

1140 61

1200 22

1260 28

1320 14

1380

1440
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Figure 5-12. Trips Distribution for time horizons of 60,120,180 time steps minutes accordingly

The evaluation of the OP-DARP performance was made through a series of specific exper-
iments. Data for these experiments — as mentioned before — came through a pilot pro-
gram in the municipality of Philippi. These experiments were designed in order to draw

conclusions about:
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1.

2.

The way that probabilistic demands affect solution quality

The way that regret optimization procedure in combination with probabilistic de-
mands affect solution quality

Some details about the experiments environment are:

1.

7.

Fleet size of 25 vehicles.

Vehicle Capacity 12 seats.

Maximum pickup wait time 15 minutes

Maximum trip demand ride time 1.5 time the absolute shortest path time
Work period was one day (or 1440 minutes)

Three time horizons 60, 120, 180 minutes

Monte Carlo Repetitions for each experiment was 100

Computational results after the application of the OP-DARP algorithm are presented in

the tables 5-12,5-14,5-16,5-18 5-20.

Where:
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Column C1 represents the number of experiment (1 to 5). Each number is associated
with a specific number of real demands emerged in each one of the five Wednes-

days during the pilot testing.

1 =First Wednesday.

2 = Second Wednesday.
3 =Third Wednesday.

4 = Fourth Wednesday.
5 = Fifth Wednesday.

Column C2 represents the number of real demands for the experiment number de-
noted by column C1

Column C3 represents the time step horizon.

Column C4 represents the average cost (the objective) produced by the repetitive
runs of OP-DARP algorithm.
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e Column C5 represents the average vehicles number produced by the repetitive runs
of OP-DARP algorithm.

e Column C6 represents the average passengers number per distance unit produced
by the repetitive runs of the OP-DARP algorithm

e Column C7 represents the standard deviation of all solution costs produced by the
repetitive runs of OP-DARP algorithm.

e Column C8 represents the percentage difference between the cost of OP-DARP
without probabilistic demands (OR-DARP) and the average solution costs of the OP-
DARP algorithm

e Column C9 represents the confidence interval (95% confidence level) for all solution
costs produced by OP-DARP algorithm.

e Column C10 represents the lower mean cost value produced by OP-DARP algorithm
within the column C9 confidence interval

e Column C11 represents the upper mean cost value produced by OP-DARP algorithm
within the column C9 confidence interval

Each grey row represents the solution produced by OR-DARP algorithm.

Every framed cell represents the solution cost which is less than the solution cost pre-
sented by the grey row.
Another variant of OP-DARP algorithm is the OP-DARP NoRegret algorithm that uses
probabilistic demands but without Regret optimization. The basic parameters for those
experiments are described in the tables 5-13,5-14,5-17,5-19,5-21 where:

e Column C21 represents the number of experiment (1 to 5).

e Column C22 represents the number of real demands for the experiment number
denoted by column C1
e Column C23 represents the time step horizon.

e Column C24 represents the average cost (the objective) produced by the repetitive
runs of the OP-DARP NoRegret algorithm.

e Column C25 represents the average vehicles number produced by the repetitive
runs of the OP-DARP NoRegret algorithm.

e Column C26 represents the average passengers number per distance unit produced
by the repetitive runs of OP-DARP NoRegret algorithm

e Column C27 represents the standard deviation of all solution costs produced by the
repetitive runs of the OP-DARP NoRegret algorithm.
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e (28 represents the percentage difference between costs of OR-DARP (grey row)
and the average solution cost of the OP-DARP NoRegret algorithm

e Column C29 represents the confidence interval (95% Confidence Level) of all solu-
tion cost produced by the OP-DARP NoRegret algorithm.

e Column C30 represents the lower mean cost value produced by the OP-DARP
NoRegret algorithm within the column C29 confidence interval

e Column C31 represents the upper mean cost value produced by OP-DARP NoRegret
algorithm within the column C29 confidence interval
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Table 5-12: Algorithm OP-DARP results for experiment #1

C1 c2 c3 4 c5 c6 c7 c8 Cc9 cio0 Cl1
1 76 NO(OR- 627500 6 1.134 0 0 0 0 0
DARP)
76 60 599150 10.5 1.252 2599.679  -4.52%  1611.268 597538.7 600761.3
76 120 613100 11.5 1.238 2902.489 -2.29% 1798.948 611301.1 614898.9
76 180 619090 11.5 1.257 7053.99 -1.34% 4372.028 614718 623462
Table 5-13: Algorithm OP-DARP NoRegret results for experiment #1
c21 c22 c23 c24 Cc25 Cc26 c27 c28 c29 C30 C31
1 76 NO(OR- 627500 6 1.134 0 0 0 0 0
DARP)
76 60 842360 22 1.070 20468.9 34.24% 12686.52 829673.5 924498.8
76 120 902450 21.5 1.014 35575.1 43.82%  22049.27 880400.2 924498.8
76 180 831950 22.5 1.131 6061.032 32.58% 3756.598 828193.4 835706.6
Figure 5-13. Comparison between the OP-DARP AND OP-DARP NoRegret solution costs (exper #1)
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Table 5-14: Algorithm OP-DARP results for experiment #2

C1 c2 c3 4 c5 c6 c7 c8 c9 c10 C11
2 70 NO(OR- 700400 6 1.157 0 0 0 0 0
DARP)
70 60 658300 10 1.325 737.8648  -6.01%  457.3249 657842.7 658757.3
70 120 659300 115 1.320 1475.73 -5.87% 914.6499 658385.4 660214.6
70 180 663900 10.5 1.320 5241.925 -5.21% 3248.919 660651.1 667148.9
Table 5-15: Algorithm OP-DARP NoRegret results for experiment #2
c21 c22 c23 C24 c25 c26 c27 c28 c29 Cc30 Cc31
2 70 NO(OR- 700400 6 1.157 0 0 0 0 0
DARP)
70 60 791400 21 1.206 17563.85 12.99%  10885.99 780514 802286
70 120 829800 23.5 1.262 4427.189 18.48% 2743.95 827056.1 832543.9
70 180 862150 21.5 1.156 2419142  23.09%  14993.72 847156.3 877143.7
Figure 5-14. Comparison graph between the OP-DARP AND OP-DARP NoRegret solution costs (exper #2)
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Table 5-16: Algorithm OP-DARP Details for experiment #3

c1 c2 c3 c4 c5 c6 c7 c8 c9 10 ci1
3 99 NO(OR- 656100 5 1.202 0 0 0 0 0
DARP)
99 60 665600 10.5 1.300  1054.093  1.45%  653.3213 664946.7 666253.3
99 120 675300 12.5 1.325 421637  2.93%  261.3285 675038.7 675561.3
99 180 658550 12.5 1.367  3109.573  0.37%  1927.298 656622.7 660477.3

Table 5-17: Algorithm OP-DARP NoRegret results for experiment #3

c21 c22 c23 c24 c25 Cc26 c27 c28 c29 c30 31
3 99 NO 656100 5 1.202 0 0 0 0 0
99 60 937850 21.5 1.080 7747.58 42.94%  4801.912 933048.1 942651.9
99 120 1006750 24 1.009 20080.46  53.44%  12445.77 994304.2 1019196
99 180 966950 24 1.101 21767.01 47.38%  13491.09 953458.9 980441.1

Figure 5-15. Comparison graph between the OP-DARP AND OP-DARP NoRegret solution costs (exper #3)
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Table 5-18: Algorithm OP-DARP results for experiment #4

C1 c2 c3 4 c5 cé6 c7 c8 c9 Cc10 C11
4 101 NO(OR- 615000 6 1.420 0 0 0 0 0
DARP)
101 60 614390 10.4 1.568 2160.993 -0.10% 1339.372 613050.6 6157294
101 120 611300 11.8 1.675 994.4289 -0.60% 616.3421 610683.7 611916.3
101 180 613790 11.9 1.695 619.0495 -0.20%  383.6838 613406.3 614173.7
Table 5-19: Algorithm OP-DARP NoRegret results for experiment #4
c21 c22 c23 Cc24 Cc25 Cc26 c27 c28 c29 C30 C31
4 101 NO(OR- 615100 6 1.420 0 0 0 0 0
DARP)
101 60 1073900 22.2 0.934 18529.26  74.59%  11484.34 1062416 1085384
101 120 1119800 22.2 0.884 26267.85  82.05% 16280.68 1103519 1136081
101 180 972950 21.9 1.032 6317.744 58.18%  3915.706 969034.3 976865.7
Figure 5-16. Comparison graph between OP-DARP AND OP-DARP NoRegret solution costs (exper #4)
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Table 5-20: Algorithm OP-DARP results for experiment #5

C1 c2 c3 4 c5 cé6 c7 c8 c9 Cc10 C11
5 73 NO(OR- 531500 6 1.280 0 0 0 0 0
DARP)
73 60 555940 9.9 1.303 2416.241 4.60% 1497.574 554442.4 557437.6
73 120 533441 10.4 1.425 4941.944 0.37% 3062.992 530378 536504
73 180 529450 9.2 1.356 1423.025 -0.39%  881.9838 528568 530332
Table 5-21: Algorithm OP-DARP NoRegret results for experiment #5
c21 c22 c23 C24 c25 c26 c27 c28 c29 c30 Cc31
5 73 NO(OR- 531500 6 1.280 0 0 0 0 0
DARP)
73 60 833060 221 0.971 3850.31 56.74%  2386.403 830673.6 835446.4
73 120 811940 22.7 1.067 7148.924  52.76%  4430.867 807509.1 816370.9
73 180 854330 21.1 0.893 5378.155 60.74%  3333.354 850996.6 857663.4
Figure 5-17. Comparison graph between OP-DARP AND OP-DARP NoRegret solution costs (exper #5)
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Table 5-22: Comparison results for average solution costs between OR-DARP, OP-DARP algorithms

Average Average Average Confidence Solution Cost  Solution Cost Imporvment
Number of Solution Solution Interval for produced by produced by Percentage
Trip Demands | Cost pro- Cost pro- OP-DARP Solu- OP-DARP OP-DARP
duced by duced by tions(95% (Lower Limit) (Uper Limit)
OR-DARP OP-DARP confidence
level)
83.80 626100 618040 7423 610617 625463 1.287%

By observing tables 5-12,5-14,5-16,5-18,5-20 we conclude:

1. The OP-DARP algorithm gave better solutions for four out of five experiments in
comparison with the OR-DARP algorithm.

2. The maximum improvement percentage is 6.01%. However in experiment #3 OP-
DARP produced no improvement at all.

By observing tables 5-13,5-15,5-17,5-19,5-21 we conclude:

1. The OP-DARP NoRegret algorithm gave worse solutions for all experiments in com-
parison with the OR-DARP algorithm and always worse solutions in comparison to
OP-DARP algorithm.

2. The best solution obtained by OP-DARP NoRegret is by 12.99% worse in comparison
with the solution obtained by OR-DARP algorithm. While the worst solution ob-
tained by OP-DARP NoRegret is by 82% worse in comparison with the solution ob-
tained by OR-DARP algorithm.

By observing table 5-22 we conclude that:

1. The average solution cost obtained by the OP-DARP algorithm is lower by 1.29% in
comparison with the average solution cost obtained by the OR-DARP algorithm.
2. With 95% confidence level the average solution cost by the OP-DARP algorithm is

always lower than the solution cost obtained by the OR-DARP algorithm.
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A more detailed analysis is provided in table 5-23.

Column C101 represents the experiment number (1 to 5).

Column C102 represents the number of real demands for each experiment denoted by
column C101.

Column C103 represents the cost (the objective) of the produced solution by the OP-
DARP algorithm.

Column C104 represents the solution cost (the objective) produced by the OP-DARP No
Regret algorithm.

Column C105 represents the solution cost (the objective) produced by the OR-DARP algo-
rithm.

Column C106 represents the percentage difference between OR-DARP and OP-DARP al-
gorithms solution costs (Column C103, Column C105).

Column C107 represents the percentage difference between OR-DARP and OP-DARP
NoRegret algorithms solution costs (Column C104, Column C105).

Column C108 represents the percentage difference between OP-DARP and OP-DARP

NoRegret algorithms solution costs (Column C103, Column C104).

Table 5-23: Comparison results between OP-DARP, OP-DARP No Regret, OR-DARP algorithms

Cc101 c102 C103 C104 C105 C106 c107 C108
1 76 610447 858920 627500 -2.72% 36.88% 40.70%
2 70 660500 827783 700400 -5.70% 18.19% 25.33%
3 99 666483 970517 656100 1.58% 47.92% 45.62%
4 101 613160 1055550 615000 -0.30% 71.63% 72.15%
5 73 539610 833110 531500 1.53% 56.75% 54.39%
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Figure 5-18. Comparison graph between OP-DARP , OR-DARP solution costs for all experiments(1 to 5)

Figure 5-19. Comparison graph between OP-DARP No Regret ,OR-DARP solution costs for all experiments

Figure 5-20. Comparison graph between OP-DARP No Regret , OP-DARP solution costs
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By observing table 5-23 we conclude the following:

1. The usage of probabilistic demands combined with regret optimization procedure,
gives better solutions than the usage of regret optimization alone. It is clear that the
regret optimization procedure is critical for the solution quality, but the usage of
probabilistic demands improves the solution further.

2. The usage of probabilistic demands did not provide better solutions than the regret
optimization. Algorithm OP-DARP No Regret gave always worse solutions. We con-
clude that the usage of probabilistic demands without optimization cannot guaran-
tee better solutions.

The number of vehicles used by the OP-DARP algorithm in comparison to the number of
vehicles used by OR-DARP is presented in table 5-24.

Column C201 represents the number of experiment 1 to 5.

Column C202 represents the number of vehicles used by the OR-DARP algorithm.
Column C203 represents the average number of vehicles used by the OP-DARP algo-
rithm.

Column C204 represents the average number of vehicles used by the OP-DARP No Re-

gret algorithm

Table 5-24: Vehicle Number Comparison results between OP-DARP, OR-DARP algorithms

C201 C202 Cc203 C204
1 6 11.2 22.00
2 6 10.7 22.00
3 5 11.8 23.17
4 6 11.4 22.10
5 6 9.8 21.97
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Figure 5-21.Comparison graph between OR-DARP, OP-DARP, OP-DARP No Regret vehicles usage for all ex-
periments

By observing table 5-24 we conclude that the number of vehicles used by the OP-DARP
algorithm is significantly larger than the number used by OR-DARP algorithm. This can be
explained as side effect of the probabilistic demands usage. Algorithm OP-DARP increas-
es the number of vehicles required in order to satisfy all trip demands — stochastic and
real ones. After the withdrawal of stochastic demands the number of vehicles remains
high, although the total solution cost is decreased in comparison with the solution cost
produced by the OR-DARP algorithm.
Table 5-25 presents monthly comparison results between the OR-DARP algorithm and
the OP-DARP algorithm.
First column represents the day of the month
Second column represents the solution cost produced by OR-DARP algorithm
Third column represents the average (for all time step horizons) solution costs produced
by OP-DARP

Fourth column represents the percentage difference between second and third column.
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Table 5-25: One Month Comparison results between OR-DARP , OP-DARP algorithms

Month OR-DARP Cost OP-DARP Average % difference
(Day) solution Cost

Day-02 397400 390800 -2%
Day-03 402700 407433 1%
Day-06 355800 350867 -1%
Day-07 331700 323633 -2%
Day-09 440900 424467 -4%
Day-10 570000 557567 -2%
Day-13 387600 384300 -1%
Day-14 422600 444967 5%
Day-16 552400 550833 0%
Day-17 821300 795467 -3%
Day-20 427100 418700 -2%
Day-21 529800 479017 -10%
Day-23 560100 556533 -1%
Day-24 554000 545000 -2%
Day-27 414000 405000 -2%
All Days 716740 703458 -2%

Figure 5-22. One Month Comparison graph between OR-DARP, OR-DARP

By observing table 5-25 we conclude that for two days (Day-14,Day-03), the OP-DARP al-
gorithm gave worse results than the algorithm OR-DARP, while for all other days algo-
rithm gave better results.

Table 5-25 shows clearly, that for the majority of the test days the solution was im-
proved. The last line of Table 5-25 shows clearly that for the total monthly solution cost,

the performance of the OP-DAR algorithm was better as well.
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5.2.5 Online Regret Algorithm with Probabilistic Demand: Anal-
ysis and Conclusions
The proposed OP-DARP algorithm is expected to produce better solutions than the

online regret algorithm that does not take into account the probability distribution of

the demands. The usage of probabilistic demands offers to any online dial-a-ride algo-

rithm the possibility to reduce the myopic behavior because of the “advanced

knowledge” of the future incoming trip demands. In fact, the complete knowledge of the

future alters the nature of the algorithm from online to static. Three main questions

should be answered prior to the use of an online algorithm that uses historical data. The

first question is how far in the future the algorithm should look. The second one is how

much history for a specific future the algorithm should examine. The third question is

how important is the optimization procedure in comparison with the use of probabilistic

demands.

Our experiments showed a behavior for the OP-DARP algorithm that can be concluded

to the following list:

1. OP-DARP algorithm gave more optimized solutions (on average) than the OR-DARP
Regret algorithm when applied to our problems.

2. OP-DARP algorithm uses always a larger number of vehicles in comparison with the
OR-DARP algorithm.

3. The usage of probabilistic demands improves the solution quality, although the main
improvement factor is always the optimization procedure, in our case being the re-

gret method.
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Chapter 6 : The use of the static heuristic regret to de-
termine profitability of a proposed Demand
Responsive Transportation system

6.1 Introduction

In order to achieve an economically viable DRT system, it is important to assess whether
the proposed transportation system could be profitable. On-demand transportation ser-
vices provided by private enterprises should be profitable so as to be attractive to inves-
tors. In order to investigate if an investment of this kind is profitable or not, a specific
methodology that could provide the appropriate information is necessary. To our
knowledge, no specific studies have been presented addressing this issue. On the other
hand, simulation tools have been used extensively in order to provide some knowledge
concerning the various parameters that affect the operation of on-demand transporta-
tion systems. These tools are very powerful in evaluating system performance and have
been extensively utilized in the literature in a variety of fields, including transportation.
Wilson et al [143] pioneered the use of simulation to compare different heuristics to as-
sess the influence of the service area, the demand density and the service quality on the
fleet size requirements. Ali Haghani et al [144] presented a study about a real problem
concerning bus transit vehicle scheduling for the Mass Transit Administration (MTA) in
Baltimore USA. He showed that the proposed models for Multiple Depot Vehicle schedul-
ing problems (MDVS) and Multiple Depot Vehicle scheduling problems with route time
constrains (MDVSRTC) offer improvement over MTA schedules by decreasing operational
costs 5.77%. In another study, Sinoda [145] focused on the usability of DRT systems in
large towns, especially in comparison with fixed route transportation systems. Luca

Quadrifoglio et al [146][147](Quadrifoglio, Dessouky [146]; Quadrifoglio, Dessouky [147])
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used simulation in order to propose an innovative concept that merges the flexibility of
DRT systems with the low cost operability of fixed-route systems. The same author
(Quadrifoglio, Dessouky, Ordonez )[148] used simulation tools to study the impact specif-
ic operating practices currently used by DRT providers have on productivity. They investi-
gated the effect of using a zoning vs a no-zoning strategy in Los Angeles County and time-
window settings on performance variables such as total trip miles, deadhead miles and
fleet size. Simulation has been used in the above studies in order to present the useful-
ness of the proposed algorithms in terms of cost reduction or solution improvement. In
the above referenced literature we notice that most of the studies use some kind of
simulation techniques in order to prove that the algorithms they propose give better re-
sults in terms of cost. They are based on existing operational transportation systems and
apply DARP algorithms in order to reduce it. None of them provides a methodology of
how we can use the simulation based on Dial-a-ride algorithms in order to determine if a
proposed DRT system is profitable or not.

In this chapter we propose a new methodology for defining and evaluating critical opera-
tional parameters in order to formulate a profitable transportation system, using the
“Convergence Algorithm”. This algorithm utilizes data and conclusions drawn from user
surveys and their subsequent analysis in order to find a critical point where the system
becomes profitable. The algorithm starts from an initial parameter set, drawn from the
survey analysis, and works towards a final set where the system is profitable. User de-
mands are projected using a model where demand is a monotonic cumulative increasing
function as we move towards a specific direction through this projection. The process us-

es the static regret heuristic algorithm presented already.
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6.2 METHODOLOGY AND THE CONVERGENCE PROCCES

6.2.1 Methodology in General

Basic elements of our methodology are: trip data, definition of key service parameters

and the Converge Process. First we gather survey data which we then analyze in order to

infer the population's transportation needs and service-quality related factors. The final

step is the convergence process, where we make a guided search in order to define the

critical point where the system becomes profitable. In more detail:

Step 1: Production of trip demand data. A survey is carried out in order to draw the

population's habits and preferences.

Step 2: Definition of key parameters. The most important factors, - as they are derived

(in our case) by the survey- defining service quality and affecting profitability are:
Charging price. Or ticket price, represents the charging costs that users are
willing to pay for a specific trip. It can either be proportional to the distance
covered, or fixed for each specific trip or fixed for all trips. In our case the
price is proportional to the shortest path distance
Travel time. Travel time represents how much time customers spend in-
vehicle, in comparison with the time the customer would spend by using taxi
if his travel path between pickup and delivery points was the shortest path. It
is quite obvious that if the travel time approximates the SP travel time, it af-
fects heavily the number of required vehicles — and thus the cost - to satisfy
the demand.
Pickup (deliver) time windows. Pickup (deliver) Time windows represent the
typical time windows for the pickup and delivery time. Tighter window times

translate to more vehicles needed
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Step 3: Run the Convergence Process. Static Regret algorithms were used to derive the
exact system state in terms of costs and benefits. A convergence process is used to de-

fine the critical point at which the system reaches profitability.

6.2.2 Data Sources

The most widely used method in order to identify the market potential is to conduct a
survey by questionnaire. The survey can be formatted in many ways. It depends heavily
on the information we like to extract from its analysis. Studies concerning survey for-
mation can be used in order to assist in its construction. In our case, the survey tech-
nique used was stratified sampling where two sample size criteria are used. The first re-
lates to the level of precision (or sampling error) and is set to be approximately 7%. The
second criterion, the confidence level, equal to 95%. In accordance with the above crite-
ria, that are often used to produce surveys concerning public opinion, the sample size in
was 210 questionnaires, which was approximately 2% of the population (25,26,27). We
used the survey to identify:

Daily or weekly trip habits (origin, destination, time of transit) in order to define a trip
number for every week day

The user perception of the most interesting trip features for our model:

Charging Price, in relation to existing means of transport for a specific set of service qual-
ity parameters

Waiting time (pickup or deliver time windows)

Maximum trip travel time in relation to the shortest path distance (taxi time) travel time.

6.2.3 Data Projection

The model we use in order to obtain a visual perspective of the system parameters is a
3-d model where the x-axis represents the charging price range, the y-axis represents
the travel time range (in relation to the absolute shortest path travel time) and the z-axis

represents the pickup time window range. That model was chosen because it allows us
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to study profitability for each of the above mentioned key parameters while keeping the
other two constant. The charging price was the target parameter for us.
Looking at the example in Figure 6-1, we see a number of cubes. Each cube contains a

name (A..D) and a set of three numbers, which correspond to price-per-km, acceptable

ride-time extension and acceptable time window.

Figure 6-1.An example of Data Projection

Cube D represents the trip demands where customers are willing to pay the maximum
price (71 euro-cents per Km), use the widest time window (>25 minutes) and tolerate
the maximum ride time (3.5 times the time for the shortest path). Cube A represents the
trip demands where customers that are willing to pay the minimum price (17 euro-
cents), to use the minimum pickup/deliver window and tolerate a ride time equal to the
minimum ride time (the shortest path time). We can observe that if a transportation sys-

tem satisfies the user demands at B, then that system can satisfy every point inside the
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cube ' ®Bscap . (i.e. Cand D). The total number of demands of every wrapping cube

is the sum of all included sub-cubes. For example, the number of demands of the A

haBECED) | is the sum of cubes (A), (B), (C), (D).

6.2.4 Nomeclature

X; (i=1,2,...M)... represents the distinct points for axis X (charging price)

Y; (j=1,2,3...N)... represents the distinct points for axis Y (max trip time)

2, (k=1,2,3...K)... represents the distinct points for axis Z (time windows)
TNj;..represents the total trips number included inside the wrapping cube X-Y-Z,

TDji... is the total distance covered by all vehicles when all trips inside the wrapping cu-
be X-Yi-Z, are satisfied

TPDj... is the total passengers distance — the sum of all SP trip distances - when all trips
inside the cube X-Y-Z, are satisfied

f(TDjj)... is the function that returns the total cost when all trips inside the wrapping cu-
be X-Y-Z, are satisfied

TSCjj ... is the total cost equal the result of f(TD;;) function

g(TPDj)... is the function that returns total charging fees when all trips inside the wrap-
ping cube X-Y-Z, are satisfied

TCFij... is the total cost charging fees equal to the result of g(TDj;;) function

Pjj ... is the profit/loss equal to TCFj - TSCj when all trips inside the wrapping cube X-
Y-Z, are satisfied

CoDU ... is the real system cost per unit distance.

ChDU ... is the customers charging price per unit distance.
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Note that functions f(TD;) , g(TPD;;) are not always linear, meaning that they do not
always have to follow the form “ax+b”. Many factors affect their linearity, such as the
type(s) of vehicles (whether the fleet is homogeneous or not), the type(s) of trips (ur-
ban, suburban) etc. In our case, the functions f(TD) , g(TPD;i) were considered com-
pletely linear:

1. f(TDy)=TDj - CoDU

6.2.5 The convergence algorithm

In order to reach the desirable point where the system becomes profitable, we conduct
an extensive guided search sequence by running multiple iterations of various dial-a-ride
algorithms. The Convergence algorithm is designed to reach that point while maintaining
the values of the service quality parameters unchanged. The first course of action is to
decide the desired service quality parameter values (in our case: waiting time and maxi-
mum trip travel time). These values can be derived from the survey analysis, or they can
be defined by the system provider. In our scenario, we used the survey data to derive

these values by the use of the following rule:

- Find where the biggest “concentration” (cube with the largest number of trip de-
mands) is, in terms of time window time and maximum travel trip time.

- If there are other points (cubes) with a similar number of trip demands (i.e. at least
80% the number of the “average” number of trip demands), we choose the one that
has the tightest restrictions in terms of time window and maximum travel trip time. Av-
erage is defined as the sum of all trip demands in each cube, divided by the number of
cubes.

The scale of time windows begins at 5 minutes and ends at >25 minutes. The scale of

maximum travel trip time begins at 1 and ends at 3.5, and is based on the taxi SP time.

Institutional Repository - Library & Information Centre - University of Thessaly 151 -
2410512024 07:53:09 EEST - 18.118.7.118



In the next step, we start the search by using the following rule:

We define a wrapping cube (X; - Y; - Z, ) where j=6, k=y represent the values, drawn
from the previous step, of time windows and maximum trip travel time, as the start
point. The initial charging price is the lowest possible (i=1). We run the dial-a-ride algo-
rithms for that point (X,-; - Ys - Z,) for all trips TN included in that wrapping cube,
without any restrictions on the number of vehicles. After the run has been executed,
the algorithm returns the number of vehicles used in order to satisfy all trip demands,
the total vehicles distance (TD;) and the total passengers distance (TPD;) where
(i=a=1, j=6, k=y). By using these results we can easily calculate:

1. TSCji = f(TDji)

2. TCF;=g(TPD;y)

3. Pj=TCFjy - TSCix

If the system produces (financial) loss for that X; (i=a=1), then we recalculate the charg-
ing price per distance unit by using the following formula: ChDU= TSC;y, / TPD;j . After
that, we select a point X;(i=p) (where p > a) such that its value is the first higher than
the current ChD. Subsequently, the value of ChDU is updated to the new X,. By using
this new point X, we have to deal with a new wrapping cube (X, - Y - Z, ). It should be
obvious that at that new point (X, - Y5 - Z, ), the wrapping cube contains less trip de-
mands that the previous one.

On the other hand, if the system produces profit for that X; (i=a) then we follow the
same procedure mentioned above, but in this case we select a point X; (i=p) (where p<
o) with the first value lower than the new calculated ChDU value. It should be obvious
that for that new point (X, - Ys - Z, ), the wrapping cube contains more trip demands
than the initial one.

The next step is to run Dial-a-Ride algorithms again. That process continues until we

find the point where the calculation produces neither profit nor loss. If we identify that
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point, then we know that this point is the systems’ point of equilibrium. Otherwise, if
the algorithm oscillates infinitely between two points on the x-axis (charging prices),
where the first one produces profit and the second one produces loss, then we select
the one that produces profit as the equilibrium point.

The “Convergence algorithm” is presented in pseudo code and a chart as follows:

Step 1: Define service quality indicators (time windows & ride time) & their values either
through data analysis or manually. Define the lowest ChDU value for those quality in-
dicators

Step 2: Calculate the total number (TNj;) of demands included in the appropriate wrap-
ping cube

Step 3: Run Dial-a-Ride algortihms and calculate total operating costs (TSCy), total
charging fees (TCF;) and profit/loss (Py)

Step 3: Calculate the new charge value by using the formula ChDU= TSCj./ TPDj

Step 4: If profits are negative (P;<0) then {

1. Identify the point on axis-x that has the first bigger charging value close to
the previous calculated new charge value, which produces profit if applied
to the current itinerary

2. Update ChDU to that value

} Else (i.e. if there is profit Pyu>0) then {

1. Identify the point on axis-x that has the first lower charging value close to
the previous calculated new charge value, which produces loss if applied to
the current itinerary

2. Update ChDU to that value

} Else if (Pyu==0) {
Goto Step 5

}

If (ChDU has a value that has not been found before at least once) {
Goto Step 2

telse{
Goto Step 5

}
Step 5: Exit
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6.2.6 Test Case - The municipality of Phillipi

The rural Municipality of Philippi, Greece, was chosen for the test case. The Municipali-
ty consists of 19 villages with a total population of 10,827 inhabitants, most of which
are elderly. The purpose of the survey was to investigate the market potential and the
potential acceptance of the system in a rural community in Greece.

The questionnaire was specially designed to capture the potential acceptance of the in-
habitants of the area towards the proposed system. Data was collected through was
face-to-face interviews carried out by trained people that had a good knowledge of the
area, the available modes of transport and the population’s mobility needs. In order to
ensure that the results of the survey would be reliable, stratified sampling of approxi-
mately 2% (220 questionnaires) of the population was used. The questionnaire consist-
ed of two parts:

The first part included general questions for the respondents (such as demographics).
The second part included questions that were meant to derive the basic design parame-
ters of the proposed DRT system that would affect its profitability. In order to make the
questionnaire more understandable to the people, some questions had predefined an-
swers (multiple choices). The most important of these are presented in Appendix C,
along with their answers:

For all possible combinations of charging price, travel time (as a multiple of the SP time)
and pickup time window for those users who wish to use the system we have the cumu-
lative number of projected trips for that wrapping cube that is described by those spe-
cific coordinates, according to the 3-d model.

In the Table 6-1 we present in detail the way in which the data concluded by the survey

are organized.
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Table 6-1: Cumulative number of trips (according to the 3-d model)

Charging Times the SP Time window Wrapping cube (cumulative)
price(cents/km) time (y-Axis) In minutes number of trip demands
(x-Axis) 1. (1) (z-Axis)
1.(17) 1.(0-5)
2.(1.5)
2.(25.5) 2.(6-10)
3.(2)
3.(34) 3.(11-15)
4.(2.33) 4.(16 —20)
4.(53.25) 5.(21-25)
5.(2.8) 6.(>25)
5.(71)
6.(3.5)
1 1 1 1112
1 2 954
1 3 528
1 4 38
1 5 0
1 6 0
2 1 838
[1 2 2 [ 773
2 3 477
2 4 38
2 5 0
2 6 0
[2 2 2 | | 525 |
[3 2 2 | | 185 |
[ 4 2 2 | [ 38 |
5 6 1 0
2 0
3 0
4 0
5 0
6 0

Let us present a short example. When the charging cost is the lowest — (answer 1), the
travel time is lowest (answer 1) and time windows are the narrowest (answer 1), then
the cumulative number of demands (wrapping cube X1 - Y1 - Z1) contains all trip de-
mands. This solution can be explained as follows: If our system provides transportation
service at the lowest cost with a travel time equal to that of taxis and a time window
between 0 and 5 minutes, then every trip request that has at least one parameter more
“relaxed” (i.e. worse for the customer) than the above parameters, that trip can also be
satisfied. The wrapping cube (X1 - Y1 - Z2) contains 954 demands,158 less trip de-

mands than the previous cube. Notice that sub-cube (X1 - Y1 - Z1) contains 158 trip de-
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mands. On the other hand, wrapping cube (X5 - Y6 - Z6) contains no trip demands at all.
This is quite obvious, as no user would want to get that worst service quality at the
highest price.

Computational Results

Using the above statistical analysis, we can design our experiments (see Table 2). Before
we proceed it is necessary to define the real operational cost per km for a DRT trans-
portation system. To the knowledge of the authors, there is no such study that calcu-
lates costs like that in a generally applicable way. This seems quite logical, taking into
consideration the variance of the different factors that affect cost. Due to the lack of
such information, we used as operational cost the operational cost of taxis, since it is
the most expensive (due to the nature of the offered transportation service). We asked
the taxi union of Philippi to provide us their best estimate of cost-per-km, based to their
long experience in the field. This cost has been estimated by taxi drivers as:

0.34 euro for distances above 300 km / day

0.4 euro for distances between 200-300 km / day

0.45 euro for distances below 200 km / day

Our next step was to define the desired service quality parameter values. By data analy-
sis we found that the most desired service quality parameter values were:

Waiting Time Window: 6-10 minutes

Max Ride Time in comparison to SP Travel Time: 1.5

The experiment's design also included the vehicle capacity definition. For our experi-
ments we chose three different potential vehicle capacities:

8-seat Vehicles

12-seat Vehicles

16-seat Vehicles
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The Table 6-2 presents the convergence algorithm's behavior during various tests.
While we consider most table headings easily comprehensible, special notes are given
for:

- Column 13, which is the converge algorithm correction value, concerning the new
charging cost per KM produced by the type ChDU= TSC;y./ TPD

- Column 14, which is the converge algorithm next value (according to 3-d model) which

is the first lower (or higher) value than the new 13th column
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Table 6-2: Experiment Set Results (Vehicle capacity 8, 12, 16 seats)

#of Exper- Number of harging eal Number Total Total Total Total Charging Cost Profit Profit(Loss) Times the Max Converge Algorithm Correction Converge Average Critical
iment accumulated Costin Vehicle of Vehicle Passengers vehicles (Euros) (Euros) percentage to trip Ride Value Algorithm Number of Point
(vehicle (projected) Euros per Cost Vehicles Distance Distance in Cost real vehicle Time(Actual Next Value passengers per for
Capacity) trip de- KM Per KM in KMs KMs (Euros) cost Value) KM “break
mands in even”
euros
1(8- 773 0.17 0.34 13 4997 8539 1498.98 1451.63 -47.35 -3.1% 13 0.19896709 0.255 2.008 No
seat)
vehicle
525 0.255 0.34 9 3407 5933 1158.38 1512.92 354.54 30.61% 1.38 0.19524355 0.17 2.18 Yes
185 0.34 0.4 4 1171 1738 468.40 590.92 122.52  26.16% 14 0.26950518 never 1.83 No
reach
that
point
38 0.5325 0.45 2 369 671 166.05 357.31 191.26 115.18% 1.16 0.24746647 0.17 1.81 No
0.71
2(12- 773 0.17 0.34 10 4477 8539 1522.18 1451.63 -70.55 -4.63% 141 0.17826209 0.255 2.42 No
seat)
vehicle
525 0.255 0.34 9 3281 5933 1115.54 1512.92 397.38 35.62% 1.39 0.18802292 0.17 2.25 Yes
185 0.34 0.4 4 1172 1738 468.80 590.92 122.12  26.05% 14 0.26973533 never 1.83 No
reach
that
point
38 0.5325 0.45 2 369 671 166.05 357.31 191.26  115.18% 1.16 0.24746647 0.17 1.82 No
0.71
3(16- 773 0.17 0.34 10 4403 8539 1497.02  1451.63 -45.39 -3.03% 1.41 0.17531561 0.255 2.45 No
seat
vehicle)
525 0.255 0.34 9 3276 5933 1113.84 1512.92 399.08 35.83% 1.39 0.18773639 0.17 2.26 Yes
185 0.34 0.4 4 1172 1738 468.80 590.92 122.12  26.05% 14 0.26973533 never 1.83 No
reach
that
point
38 0.5325 0.45 2 369 671 166.05 357.31 191.26 115.18% 1.16 0.24746647 0.17 1.82 No
0.71
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From table 6-2 we can derive that when the charging cost is the minimum (17cents), the
system is always unprofitable, while it is profitable for all other charging price levels and
reaches high profits for the highest charging price (53cents). We found that the highest
real profit is found where the charging cost is 25.5 euro cents per km. From table 6-2
we can conclude that increasing the vehicle capacity increases profits and puts a burden
on the average duration of a single trip. However this increase in duration is insignifi-
cant compared to the profit increase. The columns 13 and 14 also show us that regard-
less of the starting point of the algorithm, it always converges at a single point where
the charging cost is 25.5 euro cents. In any case, the system’s charging policy remains a

strategic decision, depending on whether the operator’s goal is high profitability per-

centages or high profitability in absolute figures.

Figure 6-2.An example of convergence process sequence

Figure 6-2 presents the convergence sequence for the case of 8-seat vehicles. We start
from the initial point (X1 - Y2 - Z2)= (17-1.5-10) where the system operates at a loss. The
converge algorithm correction value for the new charging cost-per-km produced by
ChDU= TSCji./ TPDj, is 0.19896709 euro-per-km. The first bigger value — according to
the projection model - is 0.255 euro-per-km. We move to the next point, which is (X2 -
Y2 - Z2)=(25.5-1.5-10). For that point we run the Dial-a-Ride algorithms again and the

system operates at a profit. The converge algorithm correction value for the new charg-
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ing cost per km produced by ChDU= TSC;y./ TPDj is now 0.19524355 euro-per-km. The
first lower value — according to the projection model - is 0.17 euro-per-km. The system
circles again to the same values. At that point the convergence process ends. The first
point that produces profit is (X2 - Y2 - Z2). If we start the converge process from the last

point (X4 - Y6 - Z6)=(53-1.5-10), it finally leads the system to the point (X2 - Y2 -72).
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Chapter 7 : Conclusions and Future Work

7.1 Conclusions

This work contributed to the Dial-a-Ride Problem by offering six algorithms (offline and
online) and in addition , an interesting contribution regards the profitability of a pro-
posed but not yet existing DRT system, presented in chapter 6. For these algorithms the
complexity was studied offering useful information regarding the execution time. For the
VLSN algorithm the size of the neighborhood was identified in comparison with the total
solution space. For the OR-DARP algorithm we also proposed a linear approach to de-

scribe the relationship between full static solutions and full online solution.
For the static Dial-a-Ride problem we developed:

1. The simple insertion InsertionH implementation. This implementation is not new
and innovative since it has been introduced years ago. The main need for the im-
plementation of this algorithmic was the use of the initial solutions it produced for
other optimization algorithms. The computational effort has been calculated in rela-

tion to the number of possible searches in order to assign trip demands. This num-
: 1 2 , :
ber has been estimated asl+gn(17 +15n+4n7), where n is the number of trip

demands.
DP Exact implementation. The proposed algorithm has been compared with the
Mixed Integer Linear Program (MILP) implementation of the DARP problem. The
mathematical formulation presented in Chapter 3 and has been used to implement
the MILP in AMPL. Both implementations DP and MILP gave always the same re-

sults concerning objective function and trips pickup and delivery sequence. Alt-
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hough execution times clearly indicates that the DP implementation is faster than
MILP implementation and this is the main reason that makes this implementation

the best candidate for use as sub-problems. The total computational effort is esti-

d=1d—x d-1

mated by formula d'(d+ d—z)! that clearly
;; (Vd d)'d' ( x=1 y=l1 z:l( ) ))

shows the NP-Nature of this DARP problem.

2. A “hybrid” implementation called VLSN that uses a heuristic part and an exact part in
order to search a much broader area concerning the solution space. For the purpose
of evaluating the VLSN algorithm, table 4-3 presents a comparative evaluation be-
tween the VLSN algorithm and the pure exact algorithm. Although there is no meth-
odology proposed up to now to estimate the closeness of any solution produced by
a heuristic to optimal solution, table 4-3 provides computational results that show
the solution produced by that algorithm and the full solution provided by the exact
algorithm. Problem size is of course limited to small instances because of the limited
ability of the exact algorithm to solve large problem sizes. However, it is worthwhile
to present those results. We see that the algorithm provides solutions close enough
to the optimal solution. The ratio of the space size investigated by VLSN algorithm in
comparison with the total solution space size has been estimated as

V! v V!

SR, |, T
(v—2)1! (v—2)12!

vvd

3. The RegretH heuristic algorithm that uses regret technique as an optimization en-
gine. Tables 4-6 to 4-10 present an extensive testing of the Regret heuristic on real
and artificial data. The main conclusion of these tables is that the proposed Regret
Heuristic improves at much better ratios the solutions for the real data. The execu-
tion times are comparable to the execution times of the simple insertion algorithm

and that makes the regret algorithm attractive for large scale problem instances.
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For the online Dial-a-Ride problem we developed:

1. The online Regret algorithm (“OR-DARP”), that consists of two sub-algorithms. The
first sub-algorithm inserts the trip demand immediately. Time responses for this trip
demand cannot exceed a specific time threshold. The second sub-algorithm focuses
on optimization. We use regret techniques for optimization. The most important fea-
ture of the online regret algorithm is that optimization works continuously. There is
no need for time horizons. The algorithm takes advantage of the small time periods
that the system is in idle state and optimizes the solution. Table 7-1 indicates that the

maximum response time for the insertion of a new trip request is below 15 seconds.

Table 7-1: Max Response Time and Max Optimization
for the Online Regret Algorithm

#of exper Trip Max Ins Time Max Reg Time
Requests
Assigned
1 94 0.410 3.330
2 226 2.57 39.24
3 414 2.82 196.83
4 622 3.51 3433
5 735 7.160 790.9
6 727 11.41 909.
7 873 9.2 768.0
8 890 12.37 709.7
9 1012 14.1 1207

Another important result presented in table 5-6, is the existence of a critical limit
where the regret optimization affects the solution quality negatively in terms of prof-
itability. After that point the usage of the regret optimizations operates in such a way

that the profits we lose are more than the cost reduction.
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Table 7-2: Online Regret without Optimization Vs Online Regret with Optimization

#of exper Trip Demands Trip Demands Cost Diff% Profit Diff %
serviced by online serviced by
regret algorithm online regret
without optimiza- algorithm with
tion optimization
1 94 94 -1.14% 3.20%
2 226 226 -1.87% 3.63%
3 415 414 -3.59% 3.42%
4 624 622 -2.24% 1.34%
6 949 737 -16.02% -29.26%
7 1151 873 -16.74% -29.60%
8 1370 890 -26.11% -40.99%
9 1619 1012 -31.44% -40.65%

The experiments, based on real data, indicate the critical number of trip demands for
which the system starts to produce more losses (because of the denied trip demands)
than profits because of the optimization. This result could be valuable for the setup

of an online DRT system.

2. The Online Regret algorithm with probabilities (OP-DARP) was developed as an ex-
tension of the OR-DARP algorithm in order to anticipate the knowledge we have, for
the selection of the trip assignments in a more intelligent way. The critical factor of
this algorithm is the integration of the historical data. The OP-DARP algorithm utilizes
real historical trip data and gives more optimized solutions than the OR-DARP algo-
rithm, in the majority of cases we have tested. For the handling of probabilistic de-
mands the OP-DARP algorithm requires large amounts of processor power. If our
processing system is powerful enough then the usage of OP-DARP is a necessity in

order to optimize it as much as possible.
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For the Profitability Study of a proposed but not existing DRT system:

A new methodology has been presented regarding the way we define profitability of a
proposed but not yet deployed system. This methodology utilizes data and conclusions
drawn from user surveys and their subsequent analysis to find a critical point where the
system becomes profitable. The convergence algorithm starts from an initial parameter
set, drawn by the survey analysis, and works towards a final set where the system is prof-
itable. This methodology can also be implemented for real time DRT systems, given the

appropriate historical data concerning users’ behavior.

7.2 Future Work

Fixed conventional bus services are more appropriate in areas and time periods with high
demand densities, which can sustain high network densities and service requests, while
flexible route DRT services are suitable for suburban areas or time periods with low de-
mand densities. In this dissertation we have developed four static DARP algorithms, two

online DARP algorithms, and one methodology with a convergence algorithm.

This research can be extended to investigate the performance of other heuristics or even

more exact approaches concerning the static DARP to the online algorithms. Issues like:

1. The queuing time. Response time is a critical factor for the Online DRT systems. Tight
response times make the solution worse. On the other hand long response times may
affect heavily the customer’s satisfaction when they call in a trip demand. The use of

internet adds one more factor concerning the response time.

2. The optimization procedures. The usage of optimization procedures in online algo-

rithms could be an interesting field of study. The way we embed optimization into

online algorithms, the execution times for one step optimization, the usability of op-
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timization in comparison with rejected (if any) of requested trips are some interest-

ing issues concerning the optimization procedures

3. The forecast of the incoming demands. The utilization of historical data regarding
users’ mobility habits and the duration of the forecasting period is an issue concern-
ing the online Dial-a-Ride algorithms. Many parameters concerning forecasting
(time horizons, demand occurrence probabilities, evaluation of probabilistic de-

mands concerning this “importance”) can be a possible research subject.

4. The computing an optimal waiting strategy
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Appendix A

For the formulation mentioned in chapter 3, the following implementation in AMPL lan-

guage was created for one vehicle.

set VEHICLES; # vehicles

param vehicles > 0; # vehicles number

set VSD;  # start depot

param vsd > 0; # start depots number

set VED;  # end depot

param ved > 0; # end depots number

set VSED := VSD union VED; # start and end depots
param Q >0; # vehicle capacity

param MVRT >0; # vehicle ride time

param NtPickup > 0O;

param Nt = NtPickup*2;

param NtVSD = Nt + vsd;

param NtVED = Nt + ved;

param NtVSED = Nt + vsd + ved;

set Pplus;

set Pminus;

set P := Pplus union Pminus;

set PVSD := VSD union P;

set PVED := P union VED;

set PVSDplus := VSD union Pplus;

set PVEDplus := Pminus union VED;

set PVSED := PVSDplus union PVEDplus;

param earlier{PVSED};

param later{j in PVSED}> earlier(j];
param drt{P};

param travel_time{PVSED,PVSED}
param travel_cost{PVSED,PVSED};
param service_time{PVSED},

param load{PVSED}

var xvij{i in PVSED, j in PVSED} binary;
var Tvi{i in PVSED} >= earlier]i];

var Lvi{i in PVSED}>=0, <= (Nt div 2);

minimize total_cost_darp : sum {i in PVSED,j in PVSED} travel_cost[i,j]*xvij[i,j];

#ensure flow constrains

sum {j in PVSED} xvij[j,i+NtPickup] = 0;

subject to network_flow1 {i in Pplus} : sum {j in PVSED} xvij[i,j] = 1;

subject to network_flow11 {i in VSD union P} : sum {j in PVSED} xvij[i,j] = 1;

subject to network_flow12 {j in P union VED} : sum {i in PVSED} xvij[i,j] = 1;

subject to network_flow13 {i in PVSED} : xvij[i,i] = 0;

subject to network_flow14 {j in VSD} : sum {i in P union VED} xvij[i,j] = 0;

subject to network_flow15 {i in VED} : sum {j in P union VSD} xvij[i,j] = O;

subject to network_flow2 {i in P} : sum {j in PVSED} xvij[i,j] - sum {j in PVSED} xvij[j,i] = 0;
subject to network_flow3 {i in VSD} : sum {j in Pplus} xvij[i,j] =1;

subject to network_flow4 {j in VED} : sum {i in PVSED} xvij[i,j] =1;

subject to network_flow5 {i in Pplus} : sum {j in PVSED} xvij[i,j] - sum {j in PVSED} xvij[i+NtPickup,j] = 0;

#ensure time constrains

subject to time_service1 {iin Pplus} : Tvi[i]+service_time[i]+travel_time[i,NtPickup+i] <= Tvi[NtPickup+i];

subject to time_service2 {jin P, i in P} : Tvi[j]-Tvi[i]-service_time[i]-travel_time[i,j] >= (xvij[i,j]-1)*9999999999;
subject to time_service3 {iin VSD, j in Pplus} : Tvi[j]-Tvi[i]-travel_time[i,j] >= (xvij[i,j]-1)*9999999999;

subject to time_service4 {iin Pminus, j in VED} : Tvi[j]-Tvi[i]-service_timeli]-travel_timeli,j] >= (xvij[i,j]-1)*99999999;

# ensure time windows constrains

subject to time_windows1 {i in P} : earlier[i]<= Tvi[i] <= later[i];
subject to time_windows2 {i in VSD} : earlier[i]<= Tvi[i] <= lateri];
subject to time_windows3 {i in VED} : earlier[i]<= Tvi[i] <= lateri];
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#ensure load constrains

subject to load_balance1 {i in Pplus union VSD,j in Pplus} : Lvi[j]-Lvi[i]-load[j]>=(xvij[i,j]-1)*999999999;
subject to load_balance2 {i in Pplus,j in Pminus} : Lvi[j]-load[j]-Lvi[i]>=(xvij[i,j]-1)*999999999; # j to i
subject to load_balance3 {i in Pminus,j in Pminus} : Lvi[j]-load[j]-Lvi[j]>=(xvij[i,j]-1)*99999999;# j to i
subject to load_balance4 {i in Pminus,j in Pplus} : Lvi[j]-Lvi[i]-load[j]>=(xvij[i,j]-1)*99999999;

subject to load_balance5 {iin VSD,j in Pplus} : Lvi[j]-Lvi[i]-load[j]>=(xvij[i,j]-1)*999999999;

#ensure customers max ride time;
subject to max_cust_drive_time {i in P} : Tvi[i] <= drt[i];

#ensure vehicle max ride time;
subject to exceed_vehicle_ride_time {i in PVSED} : Lvi[i]<= MVRT;

#ensure vehicle max load;
subject to max_vehicle_load {i in PVSED} : Lvi[i]<= Q;
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Appendix B

A. DP Exact algorithm Chart

v,

r .
Q.m Exmel_ Combsieurrent ._-.....bmnl-D

Current
Combinatien

best Cost
Update Current Best
trip Combination

=N

s the firsi
rocursive call >

\y[

Call Build_Exact_Combaieurment combination) ‘

B. DP Exact algorithm Pseudocode

Function Build_Exact_Combs(current combination)
If no_more_requests then
Update Current Best Cost
Update Current Best Trip Combination
Return from Build_Exact_Combs (recursive return)
Else
For every Vehicle
For Every Trip Request
Build_current_combination
If not a feasible_combination then
Continue next comb
Else if not produced cost < than current best cost then
Continue next comb
Else
Call Build_Exact_Combs(current combination)// recursive
Return from Build_Exact_Combs (recursive return)
End if
End for
End for
End if
End
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C. DP Exact algorithm Samples Execution Sequence

Combination : V1P1

Combination : V1P1V1D1

Combination : V1IP1V1D1V1P2 Not feasible solution. (further search is discontinued)

Combination : V1P1V1D1V2P2

Combination : V1P1V1D1V2P2V2D?2 Feasible solution but over current best cost (further search is dis-
continued): 193.861

Combination : VIP1V1P2 Not feasible solution. (further search is discontinued)

Combination : V1P1V2P2

Combination : V1P1V2P2V1D1

Combination : V1P1V2P2V1D1V2D2 Feasible solution but over current best cost (further search is dis-
continued): 193.861

Combination : VIP1V2P2V2D2 Feasible solution but over current best cost (further

search is discontinued): 193.861

Combination : V2P1

Combination : V2P1V2D1

Combination : V2P1V2D1V1P2 Feasible solution but over current best cost (further

search is discontinued): 193.861

Combination : V2P1V2D1V2P2 Not feasible solution. (further search is discontinued)

Combination : V2P1V1P2

Combination : V2P1V1P2V2D1 Feasible solution but over current best cost (further

search is discontinued): 193.861

Combination : V2P1V1P2V1D2

Combination : V2P1V1P2V1D2V2D1 Feasible solution but over current best cost (further search is dis-
continued): 193.861

Combination : V2P1V2P2 Not feasible solution. (further search is discontinued)

Combination : V1P2

Combination : V1P2V1P1

Combination : V1P2V1P1V1D1

Combination : VIP2V1P1V1D1V1D2 Not feasible solution. (further search is discontinued)
Combination : VIP2V1P1V1D2 Not feasible solution. (further search is discontinued)

Combination : V1P2V2P1

Combination : V1P2V2P1V2D1 Feasible solution but over current best cost (further

search is discontinued): 193.861

Combination : V1P2V2P1V1D2

Combination : V1P2V2P1V1D2V2D1 Feasible solution but over current best cost (further search is dis-
continued): 193.861

Combination : V1P2V1D2

Combination : V1P2V1D2V1P1

Combination : V1P2V1D2V1P1V1D1

Combination : V1P2V1D2V1P1V1D1 New best cost found :191.941

Combination : V1P2V1D2V2P1

Combination : V1P2V1D2V2P1V2D1 Feasible solution but over current best cost (further search is dis-
continued): 191.941

Combination : V2P2

Combination : V2P2V1P1

Combination : V2P2V1P1V1D1

Combination : V2P2V1P1V1D1V2D2 Feasible solution but over current best cost (further search is dis-
continued): 191.941

Combination : V2P2V1P1V2D2 Feasible solution but over current best cost (further
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search is discontinued): 191.941

Combination : V2P2V2P1

Combination : V2P2V2P1V2D1

Combination : V2P2V2P1V2D1V2D2 Not feasible solution. (further search is discontinued)
Combination : V2P2V2P1V2D2 Not feasible solution. (further search is discontinued)
Combination : V2P2V2D2

Combination : V2P2V2D2V1P1 Feasible solution but over current best cost (further
search is useless): 191.941

Combination : V2P2V2D2V2P1

Combination : V2P2V2D2V2P1V2D1 Feasible solution but over current best cost (futher search is dis-
continued): 191.941

Algorithm Ended : (MIN)V1P2V1D2V1P1V1D1 With Cost : 191.941

Time Elapsed in secs : 0.094

Total Combs : 46 Reject Combs : 21
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D. VLSN algorithm Chart
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E. RegretH Algorithm Chart

Run the
“InsertionH”
Algorithm
Calculate TR
NewTRC=TR

»

YES

TRC= NewTRC

foreveryvinVv

YES

for every DR,

YES
v
find DMaxR ,
CostMatrix[v,
v] = DMaxR,
L]

V\
TRC- NewTRC=0

NO

End
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foreveryvvinv
find RCostDMaxR,,
CostMatrix{v,m]= YES
RCostDMaxR,,, {
I S — NO

RegretCostMatrix[v]= positive Max{(DMaxR , _t-
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4

Calcuate new
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F. OR-DARP Algorithm Pseudocode

For each vehicle v (v=1,2,3.....|V])
Build an empty route

Read current time t.

Define maxRT

Read Dispatcher input (t.)

While Dispatcher input (t.) <> EXIT do

If there is a TR(t.)
Block Dispatcher (signal HARD _WORKING_STATE)

Do InsertionH (t )
UnBlock Dispatcher (signal SOFT_WORKING_STATE)
Update t.

Else if RS(t.) can be optimized more
Block Dispatcher (signal HARD_WORKING_STATE)
Run one step RegretH(t.)
UnBlock Dispatcher (signal SOFT_WORKING_STATE)
Update t.

Else
UnBlock Dispatcher (signal IDLE _STATE)

Update t,

End if
Read Dispatcher input (t.)
End while

Institutional Repository - Library & Information Centre - University of Thessaly 186
24105/202407-53:09 EEST - 18.118.7.118



G. OR-DARP Algorithm Chart

Start

For each vehicle
build an empty
route

}

Read current time t.
Read Dispatcher input (t.)

Dispatcher input (t.) <> EXIT

YES

there is a TR(t.)

Block Dispatcher
Do IS (t.)

Update t.

UnBlock Dispatcher
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J

NO
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Run one step RH(t.)
UnBlock Dispatcher

Block Dispatcher UnBlock Dispatcher
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Update t.

]

A 4

Read Dispatcher input (t.)
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H. OR-DARP Algorithm Dispatcher Module Chart

Start

A

Initialize rt
Read current time rt

Sort all online demands in ascending order of their timestamp

YES

Update
DemQt

YES

IDLE_STATE or SOFT_WORKING_STATE NO

rt- TdemStamp, < QueringTime and >0>—‘
\/ YES
v

rt < max (TdemStampy

(d=1,2, Tdern))

WORKING_HARD_STATE

NO
YES
i No Nothing
Send to the online algorithm the current demand of
the DemQt |
Remove current demand from the DemQt NO
A\
\
v
Read rt END
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I. OP-DARP Algorithm Chart

For each vehicle build an empty route

Define THStep
Read current time t,

is any TR(t;) demand

END
YES

l

call InsertionProbH((TH(TR(t.)))
call InsertionRPH (TR(t.))
WithdrawProbH(.)

y
Call RegretPH(t.) for solution RS(t,)
Read current time t,
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InsertionProbH

1.Build PDemy set for time horizon defined by TH(TR(t.)
2.Build SPDemy, set from PDem,, by random selection
3.Sort SPDemy set in descending order concerning the show-up probability
4.APDem; =0

L

PD’s in SPDem,

YES

|

Call InsertionTH (TH(TR(t.))) algorithm for PD

if PD is assigned
YES

APDem, = APDem, U PD

NO

A
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InsertionPRH

»
>

TR(t.) is assigned or APDemy,
=Empty Set

NO

Call InsertionTH (t.) algorithm to assign TR(t,)

YES

TR(t.) can’t be
assigned

YES
v

APDem, = APDem, Q (Probabilistic Demand
with the less show-up probability in APDem,)
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J. Convergence Algorithm Chart

START

Define service quality indicators values(time windows & ride time)
&
ChDU value

A

Calculate the number of trip demands for that cube (TN)

A

v
Run Dial-a-Ride algortihms & Calculate:
L.total operating costs ((TSCyy)
2.total charging fees (TCFyy)
3.Profit(or loss) (Pjj)
4. ChDU= TSCy./ TPDy,
NO
YES
YES
YES
-Identify the point on x- axis that has the first -Identify the point on x-axis that has the first
BIGGER charging value close to the previous NO LOWER charging value close to the previous
calculated ChDU value Py =0 calculated ChDU value
-Update ChDU to this value -Update ChDU to this value
ChDU has a value that has not been
[found before at least once
NO
END <
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Appendix C

2.
3.
4.
5.

6.

1.

2.

5.

3.

ison of taxi travel time for the same distance.
1.

2.

1. The time they are willing to wait for pick-up on the average

(Possible answers)
1.

0 — 5 minutes

6 — 10 minutes

11 — 15 minutes

16 — 20 minutes

21 — 25 minutes

> 25 minutes

2. The amount of money that they are willing to pay in order to travel faster
(Possible answers)

Bus Price (17 euro cents / per KM)

1.5 more than bus price (25.5 euro cents / per KM)
Twice the bus price (34 euro cents / per KM)

0.75 taxi price (53.25 euro cents / per KM)

Taxi price (71 euro cents / per KM)

The maximum travel time that they are willing to spend travelling in compar-

Same as taxi (1 time the SP travel time)

1.5 the taxi time(1.5 times the SP travel time)

. Twice the taxi time(2 times the SP travel time)

0.5 Bus Time(2.33 times the SP travel time)
0.75 Bus Time (2.8 times the SP travel time)

Bus time (3.5 times the SP travel time)

If they were willing to use the new DRT system.

. Yes

. No
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