ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΙΑΣ ΠΟΛΥΤΕΧΝΙΚΗ ΣΧΟΛΗ ΤΜΗΜΑ ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ ΚΑΙ ΜΗΧΑΝΙΚΩΝ ΥΠΟΛΟΓΙΣΤΩΝ

«Χωροθέτηση ολοκληρωμένων κυκλωμάτων με παραμέτρους θερμοκρασίας» «Thermally driven Placement»

Διπλωματική εργασία Νικολοπούλου Λουίζα

Επιβλέποντες Καθηγητές:

Σταμούλης Γεώργιος Ευμορφόπουλος Νέστορας

ΒΟΛΟΣ 2013

Διπλωματική εργασία για την απόκτηση του διπλώματος του Μηχανικού Ηλεκτρονικών Υπολογιστών, Τηλεπικοινωνιών και Δικτύων του Πανεπιστημίου Θεσσαλίας, στα πλαίσια του προγράμματος προπτυχιακών σπουδών του τμήματος Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών της Πολυτεχνικής Σχολής του Πανεπιστημίου Θεσσαλίας

.....

Νικολοπούλου Λουίζα

Διπλωματούχος Μηχανικός Ηλεκτρονικών Υπολογιστών, Τηλεπικοινωνιών και

Δικτύων Πανεπιστημίου Θεσσαλίας

Copyright © Nikolopoulou Louiza, 2013

Με επιφύλαξη κάθε δικαιώματος. All rights reserved Απαγορεύεται η αντιγραφή, αποθήκευση και διανομή της παρούσας εργασίας, εξολοκλήρου ή τμήματος αυτής, για εμπορικό σκοπό. Επιτρέπεται η ανατύπωση, αποθήκευση και διανομή για σκοπό μη κερδοσκοπικό, εκπαιδευτικής ή ερευνητικής φύσης, υπό την προϋπόθεση να αναφέρεται η πηγή προέλευσης και να διατηρείται το παρόν μήνυμα. Ερωτήματα που αφορούν τη χρήση της εργασίας για κερδοσκοπικό σκοπό πρέπει να απευθύνονται προς τον συγγραφέα. Χωροθέτηση ολοκληρωμένων κυκλωμάτων με παραμέτρους θερμοκρασίας

Πίνακας περιεχομένων

Εισαγ	γωγŕ]	7			
КΕΦ	ΑΛΑ	AIO 1	8			
ΕΡΓΑ	4ЛE	ΙΑ ΗΛΕΚΡΟΝΙΚΗΣ ΑΥΤΟΜΑΤΟΠΟΙΗΜΕΝΗΣ ΣΧΕΔΙΑΣΗΣ	8			
1.1	1	Βασικές έννοιες				
1.2	2	Εργαλεία EDA	9			
1.3	3	Ιστορία του EDA	10			
1.4	1	Τομείς εφαρμογής του EDA	11			
КΕΦ	ΑΛΑ	AIO 2	13			
РОН	Ι ΣΧ	ΈΔΙΑΣΗΣ ΟΛΟΚΛΗΡΩΜΕΝΩΝ ΚΥΚΛΩΜΑΤΩΝ	13			
2.1	1	Ροή σχεδίασης ολοκληρωμένων κυκλωμάτων	13			
2.2	2	Χωροθέτηση – Placement	16			
	2.2.1	L Εισαγωγή	18			
	2.2.2	2 Η σημασία της χωροθέτησης/placement	19			
	2.2.3	8 Ροή χωροθέτησης/placement	19			
	2.2.4	Αντικείμενο της χωροθέτησης/placement	20			
2.3	3	Χωροθέτηση κελιών με παραμέτρους θερμοκρασίας	21			
	2.3.1	L Εξέλιξη των τρανζίστορς	21			
	2.3.2	2 Προβλήματα χωροθέτησης για standard cells και gate arrays	22			
	2.3.3	3 Ανάγκη για χαμηλή κατανάλωση	23			
	2.3.4	Σχεδίαση χαμηλής κατανάλωσης Ισχύος	25			
	2.3.5	δ Βασικές αρχές σχεδίασης	26			
	2.3.6	5 Σχεδίαση Σημαντικότητας	27			
КЕΦА	ΑΛΑΙ	0 3	29			
γλοι	ТОІН	ΣH	29			
3.1	1	Διατύπωση του προβλήματος	29			
	3.1.1	L Κατανάλωση Ισχυός	30			
	3.2.2	2 Μια διαφορετική προσέγγιση του προβλήματος σύνθεσης πινάκων	31			
3.2	2	Προτεινόμενος αλγόριθμος	34			
3.3	3	Πειραματικά Αποτελέσματα	35			
	3.3.1	Benchmarks Circuits	35			
	3.3.2	2 Πειραματικά αποτελέσματα	37			
3.4	1	Συγκριτικά αποτελέσματα	50			
3.5	5	Μελλοντικές επεκτάσεις	56			

3ІВЛІОГРАФІА

ΠΙΝΑΚΑΣ ΕΙΚΟΝΩΝ

Κεφάλαιο 1

1.1	Εταιρείες που κατασκευάζουν εργαλεία EDA5
1.2	EDA Tool: Max 3-D tool
1.3	Εργαλεία CAD8

Κεφάλαιο 2

2.1	EDA Tools improve Low Power Design	10
2.2	Physical Design Flow	13
2.3	Moore's Law/Transistor Count	17
2.4	a. Gate array	18
2.5	b. Sea of gates	18
2.6	e. General cell	18
2.7	c. Standard cell	19
2.8	d. Mixed cell	19
2.9	The temperature profile of an industrial chip	20
2.10	Τεχνικές Low-Power Σχεδίασης	22
2.11	Κέρδη-Κόστη Τεχνικών Low-Power Σχεδίασης	23
2.12	Οι συντελεστές του DCT	24
2.13	Η ενέργεια των συντελεστών	24

Κεφάλαιο 3

3.1	Temperature profiles with (left) random placement and (right) thermal placement	nt-
		.25
3.2	Σχήμα (α): Αρχική κατάσταση	28
3.3	Σχήμα (β) Βέλτιστη τοποθέτηση	.29
3.4	Πίνακας κυκλωμάτων	.32
3.5	Στιγμιότυπα τρεξίματος για το Circuits Name: S27	.34
3.6	Στιγμιότυπα τρεξίματος για το Circuits Name: S208	.35
3.7	Στιγμιότυπα τρεξίματος για το Circuits Name: S298	.35
3.8	Στιγμιότυπα τρεξίματος για το Circuits Name: S344	.36
<i>3.9</i>	Στιγμιότυπα τρεξίματος για το Circuits Name: \$349	.36
3.10	Στιγμιότυπα τρεξίματος για το Circuits Name: S382	.37
3.11	Στιγμιότυπα τρεξίματος για το Circuits Name: S386	.37
3.12	Στιγμιότυπα τρεξίματος για το Circuits Name: S400	.38
3.13	Στιγμιότυπα τρεξίματος για το Circuits Name: S420	.38
3.14	Στιγμιότυπα τρεξίματος για το Circuits Name: S444	.39
3.15	Στιγμιότυπα τρεξίματος για το Circuits Name: S510	.39
3.16	Στιγμιότυπα τρεξίματος για το Circuits Name: S526	40
3.17	Στιγμιότυπα τρεξίματος για το Circuits Name: S641	40
3.18	Στιγμιότυπα τρεξίματος για το Circuits Name: S713	41
3.19	Στιγμιότυπα τρεξίματος για το Circuits Name: S820	41

•

3.20	Στιγμιότυπα τρεξίματος για το Circuits Name: S832	42
3.21	Στιγμιότυπα τρεξίματος για το Circuits Name: S838	42
3.22	Στιγμιότυπα τρεξίματος για το Circuits Name: S953	43
3.23	Στιγμιότυπα τρεξίματος για το Circuits Name: S1196	43
3.24	Στιγμιότυπα τρεξίματος για το Circuits Name: S1238	44
3.25	Στιγμιότυπα τρεξίματος για το Circuits Name: S1423	44
3.26	Στιγμιότυπα τρεξίματος για το Circuits Name: S1488	45
3.27	Στιγμιότυπα τρεξίματος για το Circuits Name: S1494	45
3.28	Στιγμιότυπα τρεξίματος για το Circuits Name: S5378	46
3.29	Στιγμιότυπα τρεξίματος για το Circuits Name: S5378	46

Ευχαριστίες

Με την περάτωση της παρούσας εργασίας θα ήθελα να ευχαριστήσω μια σειρά ανθρώπων που με βοήθησαν και με υποστήριξαν καθ' όλη τη διάρκεια της εκπόνησης της.

Αρχικά, θα ήθελα να ευχαριστήσω τους επιβλέποντες της διπλωματικής εργασίας κ. Γεώργιο Σταμούλη και κ. Νέστορα Ευμορφόπουλο για την εμπιστοσύνη που έδειξαν στο πρόσωπό μου, την άριστη συνεργασία και τη συνεχή καθοδήγηση.

Ιδιαίτερα θα ήθελα να ευχαριστήσω τον διδάκτορα του τμήματος Αντώνιο Δαδαλιάρη, που μου εμπιστεύτηκε το υλικό της διατριβής του και μου έδωσε την ευκαιρία να συμβάλλω στην ερευνητική του μελέτη. Χωρίς την πολύτιμη βοήθεια του, η περάτωση της παρούσας εργασίας θα ήταν σχεδόν αδύνατη.

Επίσης, πολλά ευχαριστώ θα ήθελα να δώσω και στους συνεργάτες του Εργαστηρίου Ε5 για την υποστήριξή τους και τις παρεμβάσεις τους.

Τέλος, οφείλω ένα μεγάλο ευχαριστώ στην οικογένειά μου και τους φίλους μου για την αμέριστη υποστήριξη και την ανεκτίμητη βοήθεια που μου παρείχαν τόσο κατά τη διάρκεια των σπουδών, όσο και κατά την εκπόνηση της διπλωματικής μου εργασίας.

> Νικολοπούλου Λουίζα Βόλος, 2013

Εισαγωγή

Καθώς οι διαστάσεις των τρανζίστορς μειώνονται συνεχώς, γίνονται όλο και πιο ευάλωτα σε παραμετρικές μεταβολές, που απειλούν την «ορθή» λειτουργία του συστήματος. Είναι φανερό πως η σχεδίαση ολοκληρωμένων κυκλωμάτων οφείλει να διαμορφωθεί ανάλογα. Μία από τις πιο σημαντικές παραμέτρους είναι η πυκνότητα θερμότητας πάνω σε ένα κύκλωμα. Η ενέργεια που καταναλώνουν τα κυκλωματικά στοιχειά μετατρέπεται σε εκλυόμενη θερμότητα, με αποτέλεσμα οι μεγάλες θερμοκρασίες που δημιουργούνται και η άνιση κατανομή τους να επηρεάζει την απόδοση και την αξιοπιστία του ολοκληρωμένου κυκλώματος. Ως εκ τούτου γίνεται αναγκαίος ο επαναπροσδιορισμός χωροθέτησης (placement) των κυκλωματικών στοιχείων πάνω σε ένα κύκλωμα.

Σε αυτή την εργασία, που βασίζεται στην ιδέα που αναφέρεται στη δημοσίευση των Ghosal, P. Tuhina Samantam Rahaman, H. Dasgupta, P., *"Thermal-Aware Placement of Standard Cells and Gate Arrays: Studies and Observations"*, θα επικεντρωθούμε στην χωροθέτηση πυλών σε ένα chip, με τέτοιο τρόπο που να ελαχιστοποιεί την εμφάνιση περιοχών με πολύ υψηλή θερμοκρασία (hot spot), προτείνοντας ένα αλγόριθμο χωροθέτησης βάσει της ισχύος. Για λόγους ευκολίας θα ταυτίσουμε τις έννοιες θερμοκρασία/θερμότητα. Τέλος, θα παρουσιάσουμε κάποια πειραματικά αποτελέσματα που αποδεικνύουν την αποτελεσματικότητα του αλγορίθμου.

Λέξεις κλειδιά: σχεδίαση ολοκληρωμένων κυκλωμάτων, Εργαλεία EDA, Χωροθέτηση Ψηφιακών Κυκλωμάτων,

ΚΕΦΑΛΑΙΟ 1

<u>ΕΡΓΑΛΕΙΑ ΗΛΕΚΡΟΝΙΚΗΣ ΑΥΤΟΜΑΤΟΠΟΙΗΜΕΝΗΣ</u> <u>ΣΧΕΔΙΑΣΗΣ</u>

Στο κεφάλαιο αυτό θα ασχοληθούμε με τα εργαλεία που χρησιμοποιούνται για αυτοματοποιημένη σχεδίαση, γνωστά ως EDA (Electronic design automation).

1.1 Βασικές έννοιες

Η σχεδίαση ολοκληρωμένων κυκλωμάτων (Integrated Circuit) – ή όπως είναι ευρέως γνωστή IC Design - αποτελεί ένα υποσύνολο του γνωστικού αντικειμένου των Ηλεκτρολόγων Μηχανικών. Αντικείμενο της, η λογική (logic) και κυκλωματική (circuit) τεχνική σχεδίασης που χρησιμοποιείται για IC Design και παράγει κυκλωματικά στοιχεία όπως μικροεπεξεργαστές (microprocessors), FPGAs (Field Programmable Gate Arrays), μνήμες (RAM/ROM memories, flash memories) και ASICs (Application Specific Integrated Circuits).

Είναι σημαντικό να αναφερθεί, ότι ήδη από το 2009 ένα chip μεγάλου μεγέθους αποτελείται από σχεδόν ένα δισεκατομμύριο τρανζίστορ, στοιχείο που τονίζει την πολυπλοκότητα των σύγχρονων ολοκληρωμένων κυκλωμάτων. Η πίεση της αγοράς για παραγωγή ολοκληρωμένων κυκλωμάτων με ταχείς ρυθμούς έχει οδηγήσει στην εκτεταμένη χρήση εργαλείων αυτοματοποιημένης σχεδίασης (Automated Design Tools), που επιταχύνουν τη διαδικασίας. Η χρησιμοποίηση τέτοιων εργαλείων έχει γίνει πλέον απαραίτητη για την πλειοψηφία των βημάτων που ακολουθούνται κατά τη σχεδίαση ενός κυκλώματος.

Η αυτοματοποιημένη ηλεκτρονική σχεδίαση EDA είναι η υλοποίηση ενός κυκλώματος με παράλληλη χρήση ειδικών λογισμικών, τα οποία έχουν δημιουργηθεί κατά περίσταση για την υποβοήθηση της διαδικασίας.

1.2 Εργαλεία EDA

Τα εργαλεία αυτοματοποιημένης ηλεκτρονικής σχεδίασης, γνωστά και ως EDA Tools (Electronic Design Automation) αποτελούν μια κατηγορία εργαλείων λογισμικού τα οποία έχουν δημιουργηθεί για τη σχεδίαση ηλεκτρονικών συστημάτων.

1.1 Εταιρείες που κατασκευάζουν εργαλεία EDA

1.3 Ιστορία του EDA

Πριν την ανάπτυξη των EDA Tools, ο σχεδιασμός ολοκληρωμένων κυκλωμάτων γινόταν δια χειρός. Ο σχεδιασμός βασιζόταν στην γραφική απεικόνιση του κυκλώματος και πιο συγκεκριμένα στην τροποποίηση της ηλεκτρονικής περιγραφής του κυκλώματος στη γραφική αναπαράστασή του. Μια από τις πιο γνωστές εταιρείες της πρώιμης αυτής περιόδου, ήταν η Calma η οποία δημιούργησε το format GDSII το οποίο χρησιμοποιείται έως και σήμερα.

Η δεκαετία του '70 σηματοδοτεί την αρχή της ανάπτυξης των πρώτων εργαλείων για κατάλληλη χωροθέτηση ενός κυκλώματος, καθώς από τα μέσα της δεκαετίας οι προγραμματιστές ξεκίνησαν να αυτοματοποιούν όχι μόνο τη σύνταξη αλλά και τη σχεδίαση. Οι καινοτομίες που εισήχθησαν τότε, αποτέλεσαν τη βάση για την έρευνα στον τομέα τα χρόνια που ακολούθησαν.

Αρχικά, τα πρώτα ολοκληρωμένα εργαλεία EDA εμφανίστηκαν εντός ακαδημαϊκού περιβάλλοντος. Το VLSI Tools Tarball, ένα από τα δημοφιλέστερα εργαλεία της εποχής, αναπτύχθηκε στο πανεπιστήμιο του Berkley και ήταν μια συλλογή εφαρμογών σε περιβάλλον UNIX για το σχεδιασμό VLSI συστημάτων.

Μέχρι τις αρχές της δεκαετίας του '80, οι μεγαλύτερες εταιρείες του κλάδου ανέπτυσσαν εργαλεία αυτής της κατηγορίας προς ιδίαν χρήση, χωρίς να παρέχεται η δυνατότητα απόκτησής τους από άλλους φορείς. Αναγνωρίζοντας, πολλοί σχεδιαστές, το τεχνολογικό και οικονομικό ενδιαφέρον που παρουσίαζε ο τομέας, αποφάσισαν τη βιομηχανική παραγωγή εργαλείων EDA. Την προκείμενη περίοδο ιδρύθηκαν σημαντικές εταιρείες όπως η Mentor Graphics και Valid Logic Systems. Παραμένοντας στην δεκαετία και συγκεκριμένα στις χρονιές 1986 και 1987, έχουμε την ανάπτυξη δύο υψηλού επιπέδου γλωσσών των Verilog και VHDL αντίστοιχα. Η χρήση τους άνοιξε το δρόμο για τη δημιουργία των πρώτων εργαλείων λογικής σύνθεσης.

Οι σύγχρονες ροές σχεδίασης ολοκληρωμένων κυκλωμάτων αποτελούνται πλέον από πολλαπλά βήματα, σε κάθε ένα από τα οποία γίνεται χρήση του κατάλληλου εργαλείου. Στην αρχή της διαδικασίας έχουμε κατά κανόνα τη δημιουργία μιας περιγραφής του κυκλώματος βάσει κάποιας HDL γλώσσας σε επίπεδο κελιών, τα οποία είναι τεχνολογικά ανεξάρτητα. Ακολούθως, ο σχεδιαστής παρέχει τις κατάλληλες τεχνολογικές βιβλιοθήκες οι οποίες συνδράμουν στην επιτυχή και λεπτομερή προσομοίωση της λειτουργίας του κυκλώματος, ενώ κατά το τελευταίο στάδιο παρέχονται στον σχεδιαστή οι τελικές προδιαγραφές για τις συνθήκες λειτουργίας του.

1.2 EDA Tool: Max 3-D tool

1.4 Τομείς εφαρμογής του EDA

Οι σημαντικότεροι τομείς των εργαλείων EDA για τη σχεδίαση ενός ολοκληρωμένου κυκλώματος παραθέτονται παρακάτω:

- ΣΧΕΔΙΑΣΜΟΣ (DESIGN)
 - ✓ High Level Synthesis
 - ✓ Logic Synthesis
 - ✓ Schematic Capture
 - ✓ Layout
- ΠΡΟΣΟΜΟΙΩΣΗ (SIMULATION)
 - ✓ Logic Simulation
 - ✓ Behavioral Simulation
 - ✓ Hardware Emulation

➤ ΑΝΑΛΥΣΗ ΚΑΙ ΕΠΑΛΗΘΕΥΣΗ (ANALYSIS & VERIFICATION)

- ✓ Functional Verification
- ✓ Formal Verification
- ✓ Equivalence Checking
- ✓ Static Timing Analysis
- ✓ Physical Verification
- KATAΣKEYH (MANUFACTURING)
 - ✓ Mask Data Preparation

Εργαλεία CDA

Τελειώνοντας θα κάνουμε μια μικρή αναφορά στα εργαλεία CAD (Computer-Aided Design). Ουσιαστικά είναι η χρήση της τεχνολογίας των υπολογιστών για τη διευκόλυνση της διαδικασίας σχεδιασμού ενός αντικειμένου.

Αναπτυχτήκαν και αυτά κατά τη δεκαετία του '80 και βοήθησαν σε μεγάλο βαθμό την ανάπτυξη πολλών κλάδων της μηχανικής, μέσω της χρήσης τους στον προσωπικό υπολογιστή και της απόκτησής τους σε προσιτές τιμές. Σήμερα διατίθεται μεγάλη ποικιλία εργαλείων CAD, οι οποίες εκτείνονται από αυτές που βοηθούν την σχεδίαση επιμέρους τμημάτων έως και αυτές που επιτρέπουν την παράσταση ολόκληρης της δομής του προϊόντος στον υπολογιστή.

1.3 Εργαλεία CAD

ΚΕΦΑΛΑΙΟ 2

<u>ΡΟΗ ΣΧΕΔΙΑΣΗΣ ΟΛΟΚΛΗΡΩΜΕΝΩΝ ΚΥΚΛΩΜΑΤΩΝ</u>

Στο κεφάλαιο αυτό θα μελετήσουμε τη ροή που ακολουθείται για τη σχεδίαση ολοκληρωμένων κυκλωμάτων.

2.1 Ροή σχεδίασης ολοκληρωμένων κυκλωμάτων

Η Ροή Σχεδίασης προϋποθέτει το ρητό συνδυασμό ενός πλήθους από EDAs για την ορθή ολοκλήρωση του σχεδιασμού ενός ολοκληρωμένου κυκλώματος.

Μια ΙC σχεδίαση χονδρικά περιλαμβάνει 3 βασικά επίπεδα:

- 1) System Level Design ορισμός των λειτουργικών προδιαγραφών.
- 2) RTL Design μετατροπή προδιαγραφών χρήστη σε επίπεδο RTL. Το RTL περιγράφει την ακριβή συμπεριφορά των ψηφιακών κυκλωμάτων, καθώς και τις διασυνδέσεις εισόδων, εξόδων.
- 3) Physical Design συνδυασμός ενός RTL με μια βιβλιοθήκη που συμπεριλαμβάνει τις διαθέσιμες πύλες για τη σχεδίαση ενός chip. Για την επίτευξη αυτού, πρέπει να καθοριστούν ποιες πύλες θα χρησιμοποιηθούν, σε ποιο σημείο θα τοποθετηθούν πάνω στο chip και ποια θα είναι η καλωδίωση μεταξύ τους. Σε αυτό το στάδιο, οι κυκλωματικές αναπαραστάσεις των στοιχείων (συστήματα και διασυνδέσεις) της σχεδίασης μετατρέπονται σε γεωμετρικές αναπαραστάσεις σχημάτων, που όταν κατασκευαστούν με τα κατάλληλα στρώματα από υλικά, θα εξασφαλίσουν την απαιτούμενη λειτουργία.

2.1 EDA Tools improve Low Power Design

Θα αναφέρουμε τα βασικότερα βήματα που περιλαμβάνονται στα παραπάνω επίπεδα.¹

- Feasibility Study: Ανάλυση του απώτερου στόχου, εκτίμηση των προβλημάτων που είναι πιθανό να παρουσιαστούν και των πόρων που έχουμε στη διάθεσή μας.
- 2. Die Size Estimation: Εκτίμηση του χώρου που απαιτείται για την υλοποίηση του κυκλώματος.
- Functional Verification: Επαλήθευση της λογικής της σχεδίασης. Η σχεδίασή μας πρέπει να πληρεί τις λειτουργικές προδιαγραφές που έχουν τεθεί.

¹ Δαδαλιάρης Αντώνιος ,"Χωροθέτηση Ολοκληρωμένων Κυκλωμάτων με Παραμέτρους Αξιοπιστίας" , ΔΙΔΑΚΤΟΡΙΚΗ ΔΙΑΤΡΙΒΗ, , Βόλος, 2012

- 4. *RTL Design*: Περιγραφή της λειτουργίας του κυκλώματος σε επίπεδο καταχωρητών (register-transfer level).
- 5. *RTL Simulation*: Προσομοίωση της λειτουργίας του κυκλώματος βάσει της περιγραφής που έχει δοθεί στο προηγούμενο βήμα.
- 6. *Logic Simulation*: Προσομοίωση της λειτουργίας της σχεδίασης με χρήση κατάλληλων λογισμικών.
- 7. Floor Planning: Σχηματική αναπαράσταση μιας «πρώιμης» τοπολογίας όλων των λειτουργικών τμημάτων της σχεδίασης.
- Layout: Αναπαράσταση του ολοκληρωμένου κυκλώματος με μια σειρά γεωμετρικών σχημάτων τα οποία αντιστοιχούν στο σύνολο των στρωμάτων ημιαγωγού, μετάλλου και οξειδίου που απαρτίζουν τη σχεδίαση.
- 9. Static Timing Analysis: Μελέτη του χρονισμού του ολοκληρωμένου κυκλώματος, η οποία δεν απαιτεί την εκ νέου προσομοίωση της λειτουργικότητάς του.
- 10. Layout Review: Επανεξέταση του layout που έχουμε σχεδιάσει. Η προκείμενη διαδικασία μπορεί να οδηγήσει στον επανασχεδιασμό του ολοκληρωμένου, έχει τη δυνατότητα δηλαδή να λειτουργήσει αναδρομικά και να επανατροφοδοτήσει με επιπλέον πληροφορίες προηγούμενα βήματα της διαδικασίας που έχουν παρέλθει χρονικά.
- Design For Test: Χρήση συγκεκριμένων τεχνικών σχεδίασης, οι οποίες προσδίδουν ιδιαίτερα χαρακτηριστικά στο κύκλωμα έτσι ώστε να γίνεται πιο εύκολη η διαδικασία ελέγχου της ορθότητάς του.
- 12. Automatic Test Pattern Generation: Εύρεση της κατάλληλης αλληλουχίας εισόδων, η οποία όταν εφαρμοσθεί βοηθάει στον εντοπισμό τυχόν λαθών που μπορεί να υπάρχουν στη συμπεριφορά του κυκλώματος.
- Design For Manufacturability: Εφαρμογή μιας σειράς τεχνικών οι οποίες τροποποιούν κατάλληλα το κύκλωμα έτσι ώστε η υλοποίηση του σε βιομηχανικό περιβάλλον να καθίσταται ευκολότερη.

- 14. Mask Data Preparation: Το βήμα αυτό κατά το οποίο η layout περιγραφή του κυκλώματος «μεταφράζεται» σε κάποια καταλληλότερη μορφή η οποία μπορεί να χρησιμοποιηθεί από έναν photomask writer.
- 15. Wafer Fabrication: Η διαδικασία κατά την οποία δημιουργείται το ολοκληρωμένο κύκλωμα, αποκτώντας τη μορφή που γνωρίζουμε μελετώντας μια οποιαδήποτε ηλεκτρονική συσκευή.
- 16. Packaging: Το τελευταίο, πρακτικά, στάδιο της κατασκευής. Το κύκλωμα «συσκευάζεται» σε κάποιο κεραμικό ή πλαστικό υλικό προκειμένου να αποφευχθεί η φθορά του, αλλά και να διευκολυνθεί η ηλεκτρική σύνδεσή του και η ενσωμάτωσή του σε ένα ολοκληρωμένο σύστημα.
- 17. Device Characterization: Η διαδικασία κατά την οποία μέσω μιας σειράς μετρήσεων, με τη βοήθεια των κατάλληλων οργάνων, συγκεντρώνουμε και παρουσιάζουμε τα ιδιαίτερα χαρακτηριστικά της τελικής υλοποίησης, βάσει ευρέως αποδεκτών μετρικών.
- 18. Yield Analysis: Συλλογή και ανάλυση των κατάλληλων δεδομένων που απαιτούνται για τον εντοπισμό και τη διόρθωση αστοχιών που προκύπτουν κατά τη λειτουργία του ολοκληρωμένου.

2.2 Χωροθέτηση – Placement

Στη συγκεκριμένη διπλωματική θα μας απασχολήσει το κομμάτι της Φυσικής Σχεδίασης (Physical Design) και συγκεκριμένα το στάδιο που αναφέρεται στο Placement.

2.2 Physical Design Flow

Η παραπάνω εικόνα απεικονίζει τα βήματα της Φυσικής σχεδίασης. Αναλυτικά, τα βήματα της Φυσικής Σχεδίασης (Physical Design) ενός ολοκληρωμένου κυκλώματος είναι τα εξής:

- Design Netlist Ουσιαστικά είναι το αποτέλεσμα της διαδικασίας της σύνθεσης ενός ψηφιακού κυκλώματος.
- Floor Planning Στο βήμα αυτό, γίνεται μια πρώτη εκτίμηση του συνολικού χώρου που απαιτείται για τις δομικές μονάδες του και καθορίζονται οι θέσεις τους πάνω στο chip. Η

διαδικασία αυτή είναι απαραίτητη για να ελέγξουμε αν όντως χωράει η σχεδίαση εντός του προκαθορισμένου χώρου.

- Partitioning Διαίρεση της περιοχής της σχεδίασης με τον καταλληλότερο τρόπο.
- Placement Στόχος είναι η βέλτιστη χωροθέτηση των κελιών της σχεδίασης στον προκαθορισμένο χώρο, προκειμένου να ελαχιστοποιηθεί η τιμή μιας αντικειμενικής συνάρτησης. (Αποτελεί το αντικείμενο αυτής της εργασίας)
- Clock Tree Synthesis Η διαδικασία του Clock Tree Synthesis επιχειρεί να ελαχιστοποιήσει το skew και το insertion delay.
- Routing Υπάρχουν δύο τύποι routing, το global routing και το detailed routing. Το πρώτο τοποθετεί τα routing resources τα οποία χρησιμοποιούνται για τις συνδέσεις μεταξύ των κελιών, ενώ το δεύτερο αναθέτει συγκεκριμένα μονοπάτια (routes) σε συγκεκριμένα επίπεδα μετάλλου.
- Physical Verification Είναι το τελευταίο στάδιο της φυσικής σχεδίασης όπου γίνεται ο έλεγχος της ορθότητας του layout.

Η παραπάνω περιγραφή είναι η βασική περιγραφή σχεδίασης. Πιο αναλυτικές ροές σχεδίασης μπορούν να προκύψουν ανάλογα με τα λογισμικά που χρησιμοποιούνται και την επιλογή των κατάλληλων μεθοδολογιών.

2.2.1 Εισαγωγή

Η χωροθέτηση (Placement) είναι βασικό βήμα της φυσικής σχεδίασης και έχει ως στόχο τη βέλτιστη τοποθέτηση των κυκλωματικών στοιχείων (πύλες/gates στην «ιδανική» περίπτωση με την οποία θα ασχοληθούμε και στην παρούσα διπλωματική) της σχεδίασης πάνω σε προκαθορισμένο χώρο. Όπως έχει ήδη αναφερθεί, η χωροθέτηση εφαρμόζεται μετά το partitioning.

Από την έλευση της τεχνολογίας η καθυστέρηση διασύνδεσης των στοιχείων, η οποία καθορίζεται σε μεγάλο βαθμό από την τοποθέτηση τους πάνω στο chip, αποτελεί κυρίαρχη συνιστώσα της συνολικής καθυστέρησης του κυκλώματος. Ως αποτέλεσμα, η πληροφορία που παρέχει η χωροθέτηση είναι απαραίτητη για να επιτευχθεί, ακόμη και από τα αρχικά στάδια της σχεδίασης, καλύτερη απόδοση.

Η σημασία του βήματος αυτού έγκειται στο γεγονός ότι επηρεάζει την επίδοση, την έκλυση θερμότητας και σε ένα ποσοστό και την κατανάλωση ισχύος.

Εν ολίγοις, όσο πιο βέλτιστο το Placement, τόσο πιο αποδοτικό είναι και το κύκλωμα.

2.2.2 Η σημασία της χωροθέτησης/placement

Η σημασία της χωροθέτησης τονίζεται κυρίως από τέσσερις λόγους.

- Αποτελεί τον κύριο παράγοντα που επηρεάζει την αποδοτικότητα του κυκλώματος, καθώς καθορίζει το μήκος της διασύνδεσης μεταξύ των πυλών και κατ' επέκταση την καθυστέρηση.
- 2. Μια καλή χωροθέτηση σημαίνει καλύτερο routing, ελαχιστοποιώντας συνωστισμένες περιοχές.
- 3. Καθορίζει την κατανομή θερμότητας στην επιφάνεια.
- 4. Η κατανάλωση ισχύος επηρεάζεται και αυτή από τη χωροθέτηση, έχοντας μικρότερα μήκη καλωδίων και μεγαλύτερο διαχωρισμό γειτονικών καλωδίων.

2.2.3 Ροή χωροθέτησης/placement

Γενικά, το πρόβλημα της χωροθέτησης δεν είναι απλό να διαχειρισθεί. Ένας τρόπος να ξεπεραστεί η πολυπλοκότητα του θέματος είναι να χωριστούν τα βήματα χωροθέτησης.

Η συνηθισμένη ροή του Placement περιγράφεται, σύμφωνα με την διεθνή βιβλιογραφία, συνοπτικά στα παρακάτω 5 βήματα:

- Global placement: To global placement παράγει ένα αρχικό placement στο οποίο υπάρχει αλληλοεπικάλυψη (overlap) μεταξύ των κελιών. Η διαδικασία μπορεί να εκτελεστεί επαναληπτικά, προκειμένου να παραχθεί κάποιο καλύτερο αποτέλεσμα.
- Final Placement: Βελτιστοποιεί τις θέσεις των κελιών που έχουν προκύψει από το παραπάνω βήμα. Η διαδικασία είναι πάντοτε επαναληπτική και τα αποτελέσματα που δίνει κινούνται εντός συγκεκριμένου συνόλου λύσεων.
- Area Minimization: Αναφέρεται στην ελαχιστοποίηση της καταλαμβανόμενης από κελιά περιοχής. Είναι δισδιάστατο πρόβλημα και ανήκει στα NP-hard προβλήματα.

- Legalization: Εάν το τελικό κύκλωμα εξακολουθεί να παρουσιάζει αλληλοεπικάλυψη μεταξύ των κελιών, πρέπει εκ νέου να εφαρμοστούν τεχνικές «νομιμοποίησης» των θέσεών τους.
- Detailed placement: Περαιτέρω βελτίωση του προβλήματος με τεχνικές οι οποίες αναδιατάσσουν μια μικρή ομάδα κελιών αφήνοντας ανέπαφη την πλειοψηφία των κελιών.

2.2.4 Αντικείμενο της χωροθέτησης/placement

Ένα κατώτερο Placement εκτός από την αρνητική επιρροή πάνω στην επίδοση, μπορεί να καταστήσει και το chip μη κατασκευάσιμο. Κατά συνέπεια, για να εξασφαλιστεί ότι η σχεδίαση ενός κυκλώματος ικανοποιεί τις προδιαγραφές πρέπει να βελτιστοποιηθούν κάποιοι στόχοι.

- I. Total wirelength Άθροισμα του μήκους όλων των καλωδίων των κυκλωματικών στοιχείων (στη συγκεκριμένη εργασία τα κυκλωματικά στοιχεία είναι πύλες (gates)). Είναι το πιο δημοφιλές αντικείμενο έρευνας. Στόχος είναι να ελαχιστοποιηθεί το άθροισμα αυτό, εφόσον βοηθάει όχι μόνο στη μείωση του μεγέθους του chip και κατ' επέκταση στη μείωση του κόστους του, αλλά ελαχιστοποιεί την ισχύ και την καθυστέρηση, παράγοντες άμεσα συνδεδεμένοι με το wirelength.
- II. Timing Χρονισμός: το μονοπάτι με τη μεγαλύτερη καθυστέρηση ονομάζεται κρίσιμο μονοπάτι και πρέπει να διασφαλιστεί ότι δεν υπάρχει διαδρομή με καθυστέρηση που να υπερβαίνει το ανώτατο όριο προβλέπεται από το κρίσιμο μονοπάτι. Επειδή η καθυστέρηση εξαρτάται από πολλούς παράγοντες όπως το routing, το μέγεθος του δίσκου, το πάχος των καλωδίων είναι υπολογιστικά ακριβό να διενεργηθούν μετρήσεις για όλα και αυτό που γίνεται στην πράξη είναι να ελέγχεται ευρετικά.
- III. Congestion Συμφόρηση: ενώ είναι απαραίτητο να ελαχιστοποιηθεί το wirelength, είναι επίσης απαραίτητο να αποφευχθεί μια συνωστισμένη περιοχή πάνω στο chip που μπορεί να οδηγήσει σε παρακάμψεις διαδρομών ή μπορεί να αποκλείσει τη διαδρομή τελείως. Εξαιτίας ωστόσο του μεγάλου υπολογιστικού κόστους σπάνια χρησιμοποιείται ως πρωταρχικός στόχος σε σχεδίαση ενός placement στην πράξη.

IV. Power / Heat – Ισχύς / Θερμότητα: στόχος είναι η ισοκατανομή της πάνω στο chip. Κατορθώνεται με την τοποθέτηση των στοιχείων με τέτοιο τρόπο ώστε να μειωθεί η συνολική κατανάλωση ενέργειας, να απαλλαχθεί το chip από «καυτές» περιοχές (hotspots) και να ομαλοποιηθούν οι αποκλίσεις θερμοκρασίας.

2.3 Χωροθέτηση κελιών με παραμέτρους θερμοκρασίας

2.3.1 Εξέλιξη των τρανζίστορς

Το διάγραμμα που ακολουθεί παρουσιάζει τη ραγδαία αύξηση του αριθμού των τρανζίστορ σε κάποιες από τις σημαντικότερες μονάδες επεξεργαστών σε συνάρτηση με το νόμο του Moore. Ο νόμος του Moore υποστηρίζει πως κάθε δύο χρόνια επιτυγχάνεται ο διπλασιασμός του αριθμού των τρανζίστορ που συνθέτουν ένα επεξεργαστή.

2.3 Moore's Law/Transistor Count

Η εξέλιξη αυτή, στη μικροηλεκτρονική ορίζει τα τρανζίστορς να σχεδιάζονται κοντά το ένα στο άλλο προκειμένου να ελαχιστοποιηθούν οι καθυστερήσεις διάδοσης και ο όγκος, ωστόσο αυτό δεν έχει γίνει χωρίς την εμφάνιση σοβαρών προβλημάτων. Παρόλα αυτά, δεν είναι μόνο ο αριθμός των τρανζίστορ αυτός που έχει μεγαλώσει. Με την αύξηση του μεγέθους των chip επέρχεται και η αύξηση του μήκους των καλωδίων που ενώνουν τα στοιχεία αυτά, καθώς η χωρητικότητα του οποίου σε κυκλωματικά στοιχεία έχει πολλαπλασιαστεί. Ως αποτέλεσμα των παραπάνω είναι η μεγαλύτερη κατανάλωση ενέργειας.

2.3.2 Προβλήματα χωροθέτησης για standard cells και gate arrays

Το στάδιο της χωροθέτησης έχει προσελκύσει το ερευνητικό ενδιαφέρον σε μεγάλο βαθμό, προσπαθώντας να επιλύσει τα θέματα που παρουσιάζονται εξαιτίας όλων όσων αναφέρθηκαν στην παράγραφο 2.2.4. Βαρύτητα έχει δοθεί στη χωροθέτηση με παραμέτρους θερμοκρασίας/θερμότητας. Καλούμαστε να τοποθετήσουμε τα κυκλωματικά στοιχεία πάνω στο chip, προκειμένου να ελαχιστοποιηθεί η τιμή μιας συνάρτησης. Υπάρχουν πέντε μορφές απεικόνισης του αποτελέσματος του placement :

- I. Gate Array
- II. Sea of Gates
- III. Standard Cell
- IV. Mixed Cell
- V. General Cell (Macros)

2.5 b.Sea of gates

2.6 e.general cell

Οι 2 πιο διαδεδομένες αναπαραστάσεις είναι το standard cells και gate arrays. Η αναπαράσταση του standard cell περιλαμβάνει μια σειρά από κελιά (cells) καθένα από τα οποία αναπαριστά ένα ολοκληρωμένο κύκλωμα, όπως flip-flop, logic gate. Εν αντιθέσει, στη μορφή του gate array κάθε στοιχείο, δηλαδή όλα τα κελιά (cells), είναι ίδια. Εφόσον δεν υπολογίζεται η διάσταση του στοιχείου υπάρχει περίπτωση να δημιουργηθεί επικάλυψη, με όλους τους κινδύνους που μπορεί να επιφέρει αυτή η εξέλιξη.

Στην παρούσα διπλωματική θεωρούμε ότι τα κελιά είναι πύλες και έχουν το ίδιο μήκος και ύψος.

2.3.3 Ανάγκη για χαμηλή κατανάλωση

Η ολοένα μεγαλύτερη συρρίκνωση των τρανζίστορ δημιούργησε και προβλήματα που δεν επηρέαζαν παλαιότερες γενιές. Η πρόοδος της τεχνολογίας των τρανζίστορς έχει οδηγήσει στην ανάπτυξη πολυπλοκότερων συστημάτων αυξάνοντας έτσι την πιθανότητα εμφάνισης σφαλμάτων σε κάποιο από αυτά. Ως βλάβη, ορίζεται η απόκλιση από την τήρηση των προδιαγραφών, η οποία μπορεί να οφείλεται από σχεδιαστικά προβλήματα μέχρι κατασκευαστικά σφάλματα και εσωτερικές διαταραχές.

Πιο συγκεκριμένα, αυτή η τάση συρρίκνωσης έχει ως αποτέλεσμα την υψηλότερη ροή θερμότητας στο υπόστρωμα. Η διακύμανση που παρουσιάζεται στις παραμέτρους του κυκλώματος σε συνδυασμό με διακυμάνσεις στη τάση λειτουργίας, στη θερμοκρασία και τις τιμές εισόδου (PVTI Parameters/Voltage/Temperature/Input), κάνουν τα κυκλωματικά στοιχεία να συμπεριφέρονται πλέον περισσότερο σαν τυχαίες μεταβλητές αχρηστεύοντας έτσι τις σύγχρονες τεχνικές ανάλυσης του χείριστου χρονισμού του κυκλώματος. Επιπρόσθετα, ακόμα υψηλότερες θερμοκρασίες μπορεί να προκύψουν, αν η θερμότητα που διαχέεται δεν εξαλειφθεί σωστά.

Μια υψηλότερη θερμοκρασία, δεν επηρεάζει μόνο την απόδοση του κυκλώματος, αλλά μειώνει και την αξιοπιστία του. Αν η ενέργεια διανεμηθεί άνισα, προκύπτουν τα λεγόμενα "hot spots" τα οποία μπορεί να επιφέρουν θερμικές εντάσεις. Αν αυτές οι εντάσεις είναι σοβαρές και συνεχιστούν για αρκετούς κύκλους, τότε μπορεί να οδηγήσουν σε καταστροφή του chip.

Η θερμική διαχείριση είναι ο πιο σημαντικός παράγοντας αξιοπιστίας και θα πρέπει να λαμβάνεται όσο πιο νωρίς γίνεται υπόψη στην διαδικασία σχεδιασμού. Το καλύτερο στάδιο, για να γίνει αυτό, είναι αυτό της τοποθέτησης των κελιών, καθώς η κατανομή της θερμοκρασίας εξαρτάται άμεσα από τα αποτελέσματα της χωροθέτησης. Ένα εργαλείο χωροθέτησης, που δεν έχει λάβει υπόψη τη θερμοκρασία, θα μπορούσε να τοποθετήσει κάποια chips με υψηλή θερμοκρασία πολύ κοντά το ένα στο άλλο και αυτό θα δημιουργούσε ένα "hot spot" στο υπόστρωμα, ακόμα και αν η συνολική κατανάλωση ενέργειας ήταν περιορισμένη.

Τέλος, μια σοβαρή ανάγκη για χαμηλής κατανάλωσης συστήματα πηγάζει από περιβαλλοντικούς λόγους. Η παραγωγή ηλεκτρικής ενέργειας είναι η βασική πηγή ρύπανσης της ατμόσφαιρας και ο ραγδαία αυξανόμενος κλάδος των υπολογιστικών συσκευών συμβάλλει δραματικά στη ρύπανση του περιβάλλοντος

2.9 The temperature prole of an industrial chip.

2.3.4 Σχεδίαση χαμηλής κατανάλωσης Ισχύος

Ιστορικά, οι τεχνικές χωροταξικής τοποθέτησης κελιών, έχουν αναπτυχθεί κυρίως με βάση τη δρομολόγηση. Οι αλγόριθμοι αυτοί, συνήθως, επικεντρώνονται στην ελαχιστοποίηση του συνολικού καθαρού μήκους, ενώ άλλοι εστιάζουν στην ελαχιστοποίηση καλωδίων. Ωστόσο, με την αυξημένη ζήτηση για υψηλής ποιότητας και μακροπρόθεσμη αξιόπιστη απόδοση, έχουν αναπτυχθεί πολλές νέες τεχνικές.

Η τεχνική στην οποία θα επικεντρωθούμε, που αφορά στο κομμάτι της χωροθέτησης με παραμέτρους θερμοκρασίας ή αλλιώς thermally driven placement, είναι η ανάλυση και βελτιστοποίηση των ολοκληρωμένων κυκλωμάτων ως προς την κατανάλωση ισχύος.

Ισχύς είναι ο ρυθμός με τον οποίο καταναλώνεται η ενέργεια. Σε ένα ολοκληρωμένο κύκλωμα η ηλεκτρική ενέργεια μετατρέπεται σε θερμότητα, η οποία πρέπει να απαχθεί προς αποφυγήν ανόδου της θερμοκρασίας του κυκλώματος, η οποία με τη σειρά της μπορεί να οδηγήσει σε βλάβες.

Η ανάλυση και βελτιστοποίηση των ολοκληρωμένων κυκλωμάτων ως προς τη κατανάλωση ισχύος ξεκίνησε σαν ένας περιορισμένος σε έκταση κλάδος της σχεδίασης αναλογικών κυκλωμάτων. Σήμερα αποτελεί μέρος του βασικού κορμού της σχεδίασης των ψηφιακών κυκλωμάτων και επηρεάζει όλα τα στάδια σχεδίασης ενός συστήματος, καθώς η ανάγκη για χαμηλότερη κατανάλωση καθοδηγείται από τη βιομηχανία με νέες εφαρμογές αλλά και από την εξέλιξη της τεχνολογίας.

Οι δύο διαδικασίες που σχετίζονται με την κατανάλωση ισχύος είναι η ανάλυση και η βελτιστοποίηση. Στόχος της ανάλυσης είναι η ακριβής εκτίμηση της κατανάλωσης ενέργειας. Η ανάλυση πρέπει να πραγματοποιείται σε κάθε φάση της σχεδίασης, ώστε να εξασφαλίζεται ότι οι προδιαγραφές κατανάλωσης ισχύος δεν παραβιάζονται και ότι ο σχεδιασμός είναι αξιόπιστος. Υπάρχουν πολλές διαφορετικές τεχνικές ανάλυσης, κάθε μία από τις οποίες δίνει αποτελέσματα διαφορετικής ακρίβειας και έχει διαφορετικές απαιτήσεις υπολογιστικής ισχύος. Πρέπει να τονιστεί ότι η ανάλυση ισχύος αποτελεί βάση για τη βελτιστοποίηση του σχεδίου. Βελτιστοποίηση δεν είναι τίποτα άλλο παρά η διαδικασία της δημιουργίας του καλύτερου σχεδίου με βάση ένα στόχο, χωρίς να παραβιάζονται οι προδιαγραφές που έχουν τεθεί. Υπάρχουν διάφορες τεχνικές που μπορούν να εφαρμοστούν τόσο αυτόματα όσο και από τον σχεδιαστή, οι οποίες φέρουν διαφορετικά αποτελέσματα ανάλογα με την περίπτωση.

2.3.5 Βασικές αρχές σχεδίασης

Κατά το σχεδιασμό χαμηλής ισχύος υπάρχει διαχωρισμός μεταξύ δύο τεχνικών, της συντηρητικής και συμβιβαστική τεχνική. Σύμφωνα με τη συντηρητική τεχνική, στόχος είναι η μείωση της ισχύος που καταναλώνεται χωρίς σοβαρό λόγο. Το κατορθώνει με την ανάλυση και ελαχιστοποίηση των απωλειών κατά τη διάρκεια της σχεδίασης. Από την άλλη πλευρά, η συμβιβαστική τεχνική εξετάζει εναλλακτικούς τρόπους λογικής σχεδίασης που μειώνουν την κατανάλωση.

Είναι σημαντικό να υπογραμμίσουμε ότι δεν υπάρχει μια τεχνική που να προσαρμόζεται αποτελεσματικά σε όλες τις εφαρμογές. Κάθε σχεδίαση έχει τις δικές της προδιαγραφές και περιορισμούς που μας αναγκάζουν να διαφοροποιούμε τη προσέγγιση μας κάθε φορά.

Μερικές από τις τεχνικές με έμφαση στη Χαμηλή Κατανάλωση Ισχύος αναφέρονται στην παρακάτω εικόνα.

Traditional Techniques	Dynamic Power Reduction	Leakage Power Reduction	Other Power Reduction Techniques
Clock Gating	Clock Gating	Minimize Usage of low Vt cells	Multi oxide devices
Power Gating	Power Efficient Circuits	Power Gating	Minimize capacitance by custom design
Variable Frequency	Variable Frequency	Back Biasing	Power Efficient Circuits
Variable Voltage Supply	Variable Voltage Supply	Reduce Oxide Thickness	
Variable Device Threshold	Voltage Islands	Use FinFET	

2.10 Τεχνικές Low-Power Σχεδίασης

Όπως σε κάθε υλοποίηση, κάθε τεχνική βελτίωσης έχει και το αντίστοιχο «κόστος» που επιβαρύνει κάποιες άλλες παραμέτρους του κυκλώματος όπως για παράδειγμα το χρονισμό του. Γίνεται γνωστό πως πρέπει να δώσουμε μεγάλη προσοχή στο τι μπορούμε να θυσιάσουμε και τι μπορούμε να κερδίσουμε χρησιμοποιώντας την εκάστοτε τεχνική. Τα κέρδη-κόστη μερικών από τις τεχνικές που αναφέρθηκαν στην παραπάνω εικόνα περιγράφονται συνοπτικά στην εικόνα που ακολουθεί.

2.11 Κέρδη-Κόστη Τεχνικών Low-Power Σχεδίασης

2.3.6 Σχεδίαση Σημαντικότητας

Όπως ήδη έχουμε αναφέρει στις προηγούμενες παραγράφους, η ζήτηση για συστήματα επεξεργασίας σήματος που προσφέρουν υψηλά επίπεδα ποιότητας και επιδόσεων με χαμηλή κατανάλωση ισχύος έχει αυξηθεί τρομακτικά. Μια διαφορετική μεθοδολογία από αυτές που έχουν ήδη προταθεί είναι αυτή που βασίζεται στο γεγονός ότι στα DSP συστήματα, όλοι οι υπολογισμοί δεν είναι εξίσου σημαντικοί στη διαμόρφωση της εξόδου.

Για τα συστήματα αυτά, μπορεί να υπάρξει αποτελεσματική ανταλλαγή μεταξύ της κλιμάκωσης της τάσης, της μεταβλητότητας και της ποιότητας εξόδου του συστήματος. Βασικό βήμα σε αυτή την προσέγγιση αποτελεί ο προσδιορισμός των σημαντικών υπολογισμών ενός συστήματος οι οποίοι συνεισφέρουν περισσότερο στη διαμόρφωση της ποιότητας της εξόδου. Μόλις καθοριστούν αυτοί, γίνεται προσπάθεια να δοθεί μεγαλύτερη προτεραιότητα σε αυτούς μέσω αλγοριθμικών, αρχιτεκτονικών και κυκλωματικών μετασχηματισμών. Με τη χρήση αυτής της μεθοδολογίας μπορούμε να αυξήσουμε την ανεκτικότητα του συστήματος σε οποιαδήποτε είδους μεταβλητότητα και ως εκ τούτου στην αύξηση της αξιοπιστίας του. Παρ' όλα αυτά, η χρήση αυτής της μεθοδολογίας σε διαφορετικά συστήματα απαιτεί διαφορετική προσέγγιση κάθε φορά λόγω της διαφορετικής φύσης κάθε αλγορίθμου και αρχιτεκτονικής.

Ένα αντιπροσωπευτικό παράδειγμα είναι ο αλγόριθμος Discrete Cosine Transform (DCT). Όπως είναι γνωστό σε έναν DCT μετασχηματισμό σε ένα μπλοκ εικόνας διαστάσεων 8x8 δεν έχουν όλοι οι συντελεστές την ίδια συνεισφορά στην ποιότητα της εξόδου. Το μεγαλύτερο μέρος της ενέργειας της εικόνας εισόδου (περίπου 85% ή περισσότερο) περιέχεται στους πρώτους 20 συντελεστές του πίνακα DCT μετά τον 2D-DCT μετασχηματισμό. Οι συντελεστές πέρα από αυτόν (21-64) δεν συμβάλλουν σημαντικά στη βελτίωση της ποιότητας της εικόνας, και ως εκ τούτου, του Peak signal-to-noise Ratio (PSNR).

2.12 Οι συντελεστές του DCT

2.13 Η ενέργεια των συντελεστών.

ΚΕΦΑΛΑΙΟ 3

<u>ΥΛΟΠΟΙΗΣΗ</u>

Στο κεφάλαιο αυτό θα περιγράψουμε το εργαλείο που υλοποιήθηκε και τις υπηρεσίες που παρέχει.

3.1 Διατύπωση του προβλήματος

Στόχος της έρευνας μας είναι η παρουσίαση ενός εργαλείου που διαχέει τη θερμότητα σε ένα κύκλωμα ομοιόμορφα. Το κύριο σημείο επικεντρώνεται στον υπολογισμό της θερμοκρασίας με βάση τη συνολική έκλυση θερμότητας κυκλωματικού στοιχείου.

Τοπικές περιοχές του chip με υψηλή ροή θερμότητας δημιουργούν «hot spots», περιοχές όπου η θερμοκρασία είναι σημαντικά αυξημένη σε σχέση με αυτή του υπολοίπου κυκλώματος, με αποτέλεσμα η εμφάνισή τους να υπονομεύει την επίδοση, αξιοπιστία και αποδοτικότητά του. Σε υψηλής επίδοσης ολοκληρωμένα κυκλώματα οι περιοχές αυτές δημιουργούνται από τον συνωστισμό των τρανζίστορς και από την έκλυση θερμότητας που προέρχεται από τους επεξεργαστές του πυρήνα.

3.1 Temperature profiles with (left) random placement and (right) thermal placement

Προτείνουμε, λοιπόν, ένα τρόπο εξάλειψης των προβληματικών περιοχών λαμβάνοντας υπόψη την ισχύ που εκλύει κάθε στοιχείο.

3.1.1 Κατανάλωση Ισχυός

Η κατανάλωση ισχύος οφείλεται σε δύο παράγοντες τη δυναμική κατανάλωση και τη στατική.

$$P_{avg} = P_{dynamic} + P_{static}$$

Ως στατική ισχύ (quiescent power dissipation) χαρακτηρίζεται η ισχύ που καταναλώνει μια πύλη είτε είναι αδρανής είτε όχι. Η στατική ισχύς ισούται με το γινόμενο της τάσης τροφοδοσίας V_{CC} επί το ρεύμα τροφοδοσίας I_{CC}, το οποίο ρέει προς το κύκλωμα από τους ακροδέκτες τροφοδοσίας. Το ρεύμα I_{CC} οφείλεται κυρίως στο άθροισμα των ρευμάτων διαρροής στις ημιαγωγικές επαφές του κυκλώματος και αυξάνεται με την αύξηση της θεοκρασίας, είναι δε ανάλογο της πολυπλοκότητας του ψηφιακού κυκλώματος.

Η δυναμική ισχύς (active power dissipation), που θα μας απασχολήσει παρακάτω, προκύπτει από τη μετάβαση των εσωτερικών κόμβων και εξόδων του κυκλώματος από τη μία λογική κατάσταση στην άλλη. Η ισχύς αυτή καταναλώνεται όταν μια πύλη είναι ενεργή καθώς οι τάσεις του δικτύου εναλλάσσονται λόγω κάποιου εξωτερικού ερεθίσματος που έχει εφαρμοστεί στην έξοδο. Επειδή η τάση στην είσοδο μπορεί να αλλάξει, χωρίς αυτό να συνεπάγεται κάποια λογική μεταβολή στην έξοδο, δυναμική ισχύς καταναλώνεται και όταν η έξοδος δεν αλλάζει τη λογική κατάσταση.

Ο τύπος που υπολογίζει τη δυναμική ισχύ είναι

 $P_{dyn} = \alpha \times C \times V_{DD}^2 \times f_p$

Όπου: C ~ η χωρητικότητα εξόδου

V_{DD} ~ η τάση τροφοδοσίας

f_p ~ συχνότητα παλμού

α ~ παράγοντας μεταβάσεων, ο οποίος υπολογίζει τον αριθμό των μεταβάσεων ανά κύκλο ρολογιού

Συνεπώς, η δυναμική κατανάλωση ισχύος εξαρτάται γραμμικά από τη συχνότητα λειτουργίας του κυκλώματος.

Θα χρησιμοποιήσουμε τον τύπο που είδαμε πιο πάνω με μια προσθήκη, την απώλεια ισχύος που παρουσιάζεται σε κάθε στοιχείο, για να υπολογίσουμε την ισχύ που καταναλώνει κάθε πύλη του κυκλώματος. Άρα ο νέος τύπος γράφεται:

Όπου leakage η διαρροή ισχύος της πύλης.

3.2.2 Μια διαφορετική προσέγγιση του προβλήματος σύνθεσης πινάκων.

Τη βάση του προβλήματός μας αποτελεί ένα πίνακας Μ που αποτελείται από μη αρνητικούς πραγματικούς αριθμούς καθένας από τους οποίους αντιπροσωπεύει την ισχύς που εκλύει κάθε πύλη στην περίπτωσή μας. Ένας τετραγωνικός υποπίνακας τάξης (t x t), μικρότερης σε σύγκριση με αυτή τον M, αντιστοιχεί σε μια υποπεριοχή του παραπάνω πίνακα και έστω S_t(M) το σύνολο τον υποπινάκων. Ο υποπίνακας με το μεγαλύτερο άθροισμα αντιπροσωπεύει το «hot spot» του κυκλώματος. Επόμενο βήμα είναι η εναλλαγή των στοιχείων του πίνακα M με τέτοιο τρόπο που να ελαχιστοποιεί το άθροισμα τέτοιων περιοχών.

Θα προχωρήσουμε σε ένα παράδειγμα ώστε να γίνει κατανοητή η παραπάνω μεθοδολογία. Έστω ότι έχουμε τον παρακάτω πίνακα μεγέθους 4x3. Οι αριθμοί αντιπροσωπεύουν την ισχύ που εκλύεται σε κάθε περιοχή. Θεωρούμε το t=2 οπότε οι υποπεριοχές θα είναι πίνακες τάξης 2x2.

3.2 Σχήμα (α): Αρχική κατάσταση

Αθροίζουμε τα στοιχεία κάθε πίνακα και βρίσκουμε ότι το μεγαλύτερο άθροισμα είναι 28 άρα εκείνη η περιοχή είναι «hot spot». Εναλλάσσουμε τα στοιχεία με τέτοιο τρόπο ώστε να μειώσουμε το άθροισμα των υποπινάκων. Μια βέλτιστη λύση του προβλήματος είναι

Παρατηρούμε ότι στο σχήμα (β) που απεικονίζει τη βέλτιστη τοποθέτηση έχουμε μείωση του αθροίσματος σε 13. Είναι πρακτικά αδύνατον να εξαλείψουμε τα «hot spots», αλλά μπορούμε να ομαλοποιήσουμε την κατανομή της θερμότητας. Η βελτίωση που προκύπτει στο συγκεκριμένο παράδειγμα είναι της τάξης 48%.

Ορισμός Κρίσιμου Κατωφλίου:

Για ένα συγκεκριμένο πλήθος στοιχείου ενός πίνακα Μ που αναπαριστά τις απώλειες ισχύος, και μιας τιμής t, ως το Κρίσιμο Κατώφλι του Μ χαρακτηρίζεται η μεγαλύτερη τιμή αθροίσματος που αντιστοιχεί στον υποπίνακα txt, μεταξύ εναλλακτικών τοποθετήσεων των στοιχείων του πίνακα M.

Έστω ότι ορίζουμε ζ(Μ) ως το κρίσιμο κατώφλι ενός πίνακα Μ πραγματικών αριθμών, τάξης mxm. Οι πραγματικοί αυτοί αριθμοί αναπαριστούν τις απώλειες ισχύος. Έστω St το σύνολο των txt υποπινάκων του Μ. Έχουμε σ(Μ) το συνολικό άθροισμα όλων των καταχωρήσεων του Μ. Τέλος, $\mu_t(M) = \max_{S \in St} \sigma(S).$ Ταξινομούμε τα στοιχεία με τέτοιο τρόπο ώστε η τιμή του $\mu_t(M)$ να είναι ελάχιστη.

Άρα έχουμε ζ(M) = Min($\mu_t(M)$).

Η εύρεση μια ελάχιστης ταξινόμησης των καταχωρήσεων του πίνακα είναι ισοδύναμη με την τοποθέτηση των κυκλωματικών στοιχείων σε ένα chip.

Με παρόμοιο τρόπο κινηθήκαμε και στην κατασκευή του αλγορίθμου. Αφού χωρίσουμε σε τετραγωνικές περιοχές το chip, επιλέγουμε την τάξη του υποπίνακα. Βρίσκουμε τα αρχικά αθροίσματα καθενός και εν συνεχεία με εναλλαγές προσπαθούμε να βρούμε την βέλτιστη λύση.

3.2 Προτεινόμενος αλγόριθμος

Ο προτεινόμενος αλγόριθμος είναι ένας καινούργιος αλγόριθμος τοποθέτησης, οποίος βασίζεται στην παραπάνω ιδέα των πινάκων. Αυτή η ιδέα αντιμετωπίζει το chip ως ένας πίνακας M (mxm), τον οποίο χωρίζουμε σε περιοχές, κάθε μια αποτελεί το κελί του Μ. . Ένα netlist κύκλωμα παρουσιάζεται ως ένα σταθμισμένο υπέρ-γράφημα με m=|M| κορυφές. Η αρχική τοποθέτηση επιδιώκει να αντιστοιχίσει όλες τις m μετακινούμενες πύλες πάνω σε επιτρεπτές θέσεις της δισδιάστατης περιοχής διάταξης (chip).

Αφού τοποθετήσουμε τυχαία τις πύλες πάνω στο χώρο, βρίσκουμε τις συνταγμένες τους και την ισχύ τους. Στη συνέχεια ορίζουμε το t, που αντιπροσωπεύει τον υποπίνακα (txt), μια υποπεριοχή πάνω στο χώρο. Στη συνέχεια αφού βρούμε και το άθροισμα των υποπεριοχών βρίσκουμε ποια έχει το μικρότερο, ποια το μεγαλύτερο και ανταλλάζουμε τα περιεχόμενα.

Ξανατρέχουμε τον αλγόριθμο με βάση τα νέα δεδομένα, προσέχοντας να μην επιλέγονται συνεχώς τα ίδια τετράγωνα στην περίπτωση που παραπάνω από δύο τετράγωνα έχουν το ίδιο άθροισμα.

Με βάση τα παραπάνω θα μπορούσαμε να συνοψίσουμε τον αλγόριθμο στα παρακάτω βήματα:

- 1. Ξεκινά με την τυχαία τοποθέτηση των πυλών πάνω στο chip
- Βρες την δυναμική ισχύ κάθε στοιχείου του κυκλώματος με βάση τον τύπο:

$P_{dyn} = \alpha x C x V_{DD}^2 x f_p + leakage$

- Χώρισε το chip σε τετραγωνικές περιοχές (δημιουργείται ένα πίνακας mxm), και για κάθε μια από αυτές βρες από πόσα κυκλωματικά στοιχεία αποτελείται και το συνολικό άθροισμα των P_{dyn} τους.
- Επίλεξε την τάξη του πίνακα txt (πρέπει να είναι τα t<m). Για κάθε υποπίνακα, βρες τα αθροίσματα όλων των υποπινάκων.
- 5. Βρες ποιος υποπίνακας έχει το μεγαλύτερο και ποιος το μικρότερο άθροισμα.
- Αντάλλαξε τις πύλες που περιέχονται στον υποπίνακα με το μεγαλύτερο άθροισμα με τις πύλες που περιέχονται σε αυτόν με το μικρότερο.
- Αν έχουν γίνει m² προχώρα πιο κάτω διαφορετικά πήγαινε στο βήμα 5 και επανέλαβε.
- 8. Συνέλεξε τα αποτελέσματα και βρες το μικρότερο άθροισμα άρα και το καλύτερο placement.

3.3 Πειραματικά Αποτελέσματα

3.3.1 Benchmarks Circuits

Ο πιο δημοφιλής τρόπος ελέγχου του τελικού αποτελέσματος είναι η επιλογή των κατάλληλων Benchmarks Circuits τα οποία θα δοθούν ως είσοδος στο λογισμικό.

Στην εργασία χρησιμοποιήθηκαν τα κυκλώματα ISCAS '89 προκειμένου να τρέξουμε τον αλγόριθμο και να εξάγουμε τα αντίστοιχα αποτελέσματα του καθενός κυκλώματος. Οι κυκλωματικές περιγραφές των ISCAS '89 παρέχονται τόσο σε structural όσο και σε behavioral μορφή. Το σύνολό τους, αυτά τα υψηλού επιπέδου μοντέλα σχεδίασης έχουν αποδειχθεί, ιδιαιτέρως, χρήσιμα ως εργαλεία έρευνας σε πολλούς τομείς της ψηφιακής σχεδίασης. Αξίζει να σημειωθεί ότι το γράμμα s στην ονομασία των κυκλωμάτων σημαίνει ότι τα κυκλώματα είναι σύγχρονα ακολουθιακά (synchronous sequential) και ο αριθμός που ακολουθεί το γράμμα s αντιπροσωπεύει τον αριθμό των γραμμών διασύνδεσης μεταξύ των κυκλωματικών στοιχείων.

Ο πίνακας που ακολουθεί παρουσιάζει τα κυκλώματα που χρησιμοποιήσαμε στα πειράματά μας.

Circuits Name	#of Primary Inputs	#of Primary Outputs	#of Gates
S27	7	4	19
s208	18	9	57
s298	17	20	100
s344	24	17	189
s349	24	17	172
s382	24	27	144
s386	13	13	134
s400	24	27	137
s420	35	18	202
s444	24	27	169
s510	25	13	280
s526	24	27	174
s641	54	42	282
s713	54	42	278
s820	23	24	258
s832	23	24	302
s838	66	33	322
s953	22	29	417
s1196	31	31	512
s1238	31	31	564
s1423	91	79	741
s1488	14	25	513
s1494	14	25	599
s5378	214	213	1037
s9234	247	250	1502

3.4 Πίνακας κυκλωμάτων

3.3.2 Πειραματικά αποτελέσματα

Θα παρουσιάσουμε τα πειραματικά αποτελέσματα από την εφαρμογή του αλγορίθμου πάνω στο σύνολο των benchmark circuits που προαναφέραμε.

Θέτουμε τις παραμέτρους τις εξίσωσης με την οποία θα βρούμε την ισχύ κάθε πύλης :

$P_{dyn} = \alpha X C X V_{DD}^2 X f_p + leakage$

όπου α=1, V_{DD} =1, f_p =1, για τις τιμές των C και leakage διαβάζουμε βιβλιοθήκη που περιέχει τα στοιχεία όλων των πυλών. Τρέχουμε όλα τα κυκλώματα για διαφορετικές περιπτώσεις.

Στους παρακάτω πίνακες παρουσιάζονται οι μέγιστες τιμές των hots pots και η βελτιστοποίησή τους μετά την εφαρμογή του αλγορίθμου. Ως hot spot ορίζουμε τον υποπίνακα txt με το πιο μεγάλο άθροισμα. Το initial hot spot είναι η διαφορά του μεγαλύτερου υποπίνακα με τον μικρότερο, τις τιμές των οποίων παράγει η τυχαία τοποθέτηση των πυλών πάνω στο chip. Το final η διαφορά που προκύπτει μετά την εφαρμογή του αλγορίθμου. Όσο πιο μικρή η διαφορά, τόσο πιο ισοκατανεμημένη είναι η θερμότητα.

Size of M matrix	Size of t submatrix	Initial hotspot	Final hotspot	% improvement
4x4	2x2	881406.038750	687372.862070	22.01
4x4	3x3	678980.028750	58139.891250	99.10
5x5	2x2	798256.582930	583026.565820	26.96
5x5	3x3	1305570.11668	816334.400430	37.47
5x5	4×4	972452.673750	64752.286250	93.34
10x10	2x2	840623.642930	735926.380000	12.45
10x10	4x4	883259.289500	693843.249930	21.44
10x10	5x5	929665.171680	561701.981680	39.58
15x15	5x5	988411.567930	769786.658250	22.11
15x15	10x10	1385533.14125	677097.73500	51.07
20x20	2x2	803646.952500	435683.762500	45.78
20x20	5x5	625838.747500	459973.005000	26.50
20x20	10x10	1120439.305000	800334.068250	28.56
30x30	2x2	472660.452930	367963.190000	22.15
30x30	10x10	984359.738250	893464.958750	9.23
30x30	20x20	1087892.504180	428648.477930	60.59

Παρατηρούμε ότι σε όλα τα κυκλώματα υπάρχει βελτίωση.

3.5 Στιγμιότυπα τρεξίματος για το Circuits Name: S27

Size of M matrix	Size of t submatrix	Initial hotspot	Final hotspot	% improvement
4x4	2x2	1394171.207005	648783.617750	53.46
4x4	3x3	782231.257745	372824.183120	52.33
5x5	2x2	1347184.703380	965058.559620	28.36
5x5	3x3	815122.806625	629639.21799	22.75
5x5	4×4	658706.055375	158664.872625	75.91
10x10	2x2	893587.872000	667780.060500	25.26
10x10	4×4	1432416.479370	891492.293870	37.76
10x10	5x5	1209070.352130	759039.494380	37.22
15x15	5x5	1123724.34937	1041427.108255	7.23
15x15	10x10	1424376.901745	988378.511870	30.60
20x20	2x2	693559.320000	435683.762500	37.18
20x20	5x5	1178585.018245	779380.027745	33.87
20x20	10x10	1496937.804870	841644.533375	43.77
20x20	15x15	1056620.184005	650138.03137	38.47
30x30	2x2	415031.601250	367963.190000	11.34
30x30	10x10	1520748.135620	1177313.175620	22.58
30x30	20x20	1570370.968870	1183342.521865	24.64

3.6 Στιγμιότυπα τρεξίματος για το Circuits Name: S208

Size of M matrix	Size of t submatrix	Initial hotspot	Final hotspot	% improvement
4x4	2x2	2303552.912375	970699.897375	57.86
4x4	3x3	1776803.693125	31361.443000	98.23
5x5	2x2	1571947.150375	1070736.556125	31.88
5x5	3x3	2864852.536125	1232111.835125	56.99
5x5	4×4	1504923.025875	926405.032750	33.44
10x10	2x2	1011470.953750	997963.637500	1.33
10x10	4×4	2188495.778875	1372645.857750	37.27
10x10	5x5	2401655.346500	2059564.895500	14.24
15x15	5x5	1544481.611625	1426673.407250	7.62
15x15	10x10	2904260.256875	1664841.391875	42.67
20x20	2x2	769874.808250	557586.838250	27.57
20x20	5x5	1088069.589500	978791.074000	10.04
20x20	10x10	2234855.855125	1420911.808125	36.42
20x20	15x15	1858371.451125	1057502.627375	43.09
30x30	2x2	439442.830000	435683.762500	0.85
30x30	10x10	1756287.500500	1605120.587000	8.60
30x30	20x20	2331667.24900	1686246.923250	27.68

3.7 Στιγμιότυπα τρεξίματος για το Circuits Name: S298

Size of M matrix	Size of t submatrix	Initial hotspot	Final hotspot	% improvement
4x4	2x2	2370481.913570	1694981.500374	28.49
4x4	3x3	4885446.230563	1518233.392032	68.92
5x5	2x2	2661826.760438	1380976.023375	48.11
5x5	3x3	4202396.773624	1769988.934641	57.88
5x5	4x4	2922899.863749	546998.936094	81.28
10x10	2x2	1493958.655500	1119576.627500	25.05
10x10	4x4	2472368.841976	1635292.136282	33.85
10x10	5x5	3100985.594812	1749934.718563	43.56
15x15	5x5	2387575.461132	2059804.979851	13.72
15x15	10x10	4934680.184040	3847892.327540	22.02
20x20	2x2	1014972.415500	883626.155000	12.94
20x20	5x5	2804015.681750	2142616.469000	23.58
20x20	10x10	3381011.302679	2104532.100335	37.75
20x20	15x15	4342303.487813	3430291.512813	21.00
30x30	2x2	936212.404500	934422.305000	0.19
30x30	10x10	2770423.268281	2743049.822875	0.98
30x30	20x20	3376096.401328	3106379.273125	0.07

3.8 Στιγμιότυπα τρεξίματος για το Circuits Name: S344

Size of M matrix	Size of t submatrix	Initial hotspot	Final hotspot	% improvement
4x4	2x2	1553215.421125	1434881.481531	7.61
4x4	3x3	729586.49700	718307.589875	1.54
5x5	2x2	2098340.007875	1449899.209492	30.90
5x5	3x3	804591.020820	374023.878219	53.51
5x5	4×4	963111.923226	386351.801031	59.88
10x10	2x2	1186598.546000	1131632.188750	4.63
10x10	4×4	2458667.680211	1663718.877680	32.33
10x10	5x5	3141614.709430	2077417.752930	33.87
15x15	5x5	3422964.012500	2569357.388375	24.93
15x15	10x10	2226530.593101	1719367.190601	22.77
20x20	2x2	736014.530000	735926.380000	0.01
20x20	5x5	1613980.415187	1513907.94225	6.20
20x20	10x10	2263926.188437	1895874.848437	12.25
20x20	15x15	1529518.37200	1051012.534000	31.28
30x30	2x2	781930.940000	482264.905500	38.32
30x30	10x10	2552116.835750	2041194.209375	20.01
30x30	20x20	2273986.233805	1889762.689305	16.89

3.9 Στιγμιότυπα τρεξίματος για το Circuits Name: S349

Size of M matrix	Size of t submatrix	Initial hotspot	Final hotspot	% improvement
4x4	2x2	2946069.775625	767044.093130	73.96
4x4	3x3	1504405.862125	73214.358500	95.13
5x5	2x2	2471014.851245	1396398.729620	43.48
5x5	3x3	1682264.617750	580359.480625	65.50
5x5	4x4	658625.409255	214966.211005	67.36
10x10	2x2	1470298.135620	1245963.943750	15.25
10x10	4x4	1929628.282125	1618438.864620	16.12
10x10	5x5	2996905.397875	1893874.707495	36.80
15x15	5x5	1906773.285120	1593483.239625	16.43
15x15	10x10	2175159.848250	1307725.280130	39.87
20x20	2x2	930464.324500	752186.734500	19.16
20x20	5x5	1504928.783125	1449584.402620	3.67
20x20	10x10	2827857.772995	1901890.661995	32.74
20x20	15x15	1481595.418625	927820.271500	37.37
30x30	2x2	798480.817500	735926.380000	7.83
30x30	10x10	2383239.385995	1471132.40500	38.27
30x30	20x20	2563634.206380	817871.178500	68.09

3.10 Στιγμιότυπα τρεξίματος για το Circuits Name: S382

Size of M matrix	Size of t submatrix	Initial hotspot	Final hotspot	% improvement
4x4	2x2	1905062.105812	708961.199420	62.78
4x4	3x3	1728420.422494	183480.907370	89.38
5x5	2x2	2047010.597351	942266.807682	53.96
5x5	3x3	15315303.830430	1318028.062508	13.93
5x5	4×4	2311918.582475	441200.164819	80.91
10x10	2x2	1432283.104344	1183706.632180	17.35
10x10	4×4	2464437.379430	1918186.858125	22.16
10x10	5x5	2749878.125105	1579497.963313	42.56
15x15	5x5	3055732.196836	2342718.204305	23.33
15x15	10x10	1874744.554493	1818789.302748	2.98
20x20	2x2	928843.977500	823969.177500	11.29
20x20	5x5	1989928.952774	1969376.530524	1.03
20x20	10x10	3099138.665713	2270308.377682	26.74
20x20	15x15	1994238.984937	1506708.56800	24.44
30x30	2x2	736014.530000	497885.601870	32.35
30x30	10x10	2354941.512344	1976365.963594	16.07
30x30	20X20	1948147.195101	1670626.160539	14.24

3.11 Στιγμιότυπα τρεξίματος για το Circuits Name: S386

Size of M matrix	Size of t submatrix	Initial hotspot	Final hotspot	% improvement
4x4	2x2	2342986.865620	1173784.187120	49.90
4x4	3x3	3258305.659000	1307643.131870	59.86
5x5	2x2	2392585.413880	1419892.603250	40.65
5x5	3x3	3142225.573760	1203847.710130	61.68
5x5	4x4	3357422.112620	807766.577990	75.94
10x10	2x2	1547882.576120	1505844.338620	2.71
10x10	4x4	2426489.624750	1744650.420380	28.09
10x10	5x5	2246965.360510	1718070.600750	23.53
15x15	5x5	2381610.599870	1742277.592870	26.84
15x15	10x10	3323391.911620	1856859.677620	44.12
20x20	2x2	1290919.750500	827936.195000	35.86
20x20	5x5	2066046.500500	1851619.946750	10.37
20x20	10x10	3471209.855370	2799035.905760	19.36
20x20	15x15	3085237.921370	1147996.312740	62.79
30x30	2x2	735926.380000	735926.380000	0
30x30	10x10	2924960.664500	2760918.054500	5.60
30x30	20X20	3137117.536740	1166127.311120	62.8

3.12 Στιγμιότυπα τρεξίματος για το Circuits Name: S400

Size of M matrix	Size of t submatrix	Initial hotspot	Final hotspot	% improvement
4x4	2x2	4098761.471993	2695235.13118	34.24
4x4	3x3	4251653.561570	2363104.358570	44.41
5x5	2x2	3655471.614250	2968581.329880	18.79
5x5	3x3	5324851.962762	2660137.519430	50.04
5x5	4×4	3998555.103810	770037.961748	80.74
10x10	2x2	2016194.869750	1685469.517000	16.40
10x10	4×4	3714562.725607	2659626.370570	28.40
10x10	5x5	5602015.380925	5409180.021055	3.44
15x15	5x5	3282439.388740	3180021.303678	3.12
15x15	10x10	4838757.925817	3176688.134817	34.34
20x20	2x2	817957.6670000	804513.425000	1.64
20x20	5x5	2364410.174050	2079394.839250	12.05
20x20	10x10	4893416.633813	4430433.078313	9.46
20x20	15x15	4697640.424742	3961714.044742	15.66
30x30	2x2	944635.653750	925930.886750	1.98
30x30	10x10	3342773.348312	2617359.080492	21.70
30x30	20X20	4579934.833812	3516484.739872	23.21

3.13 Στιγμιότυπα τρεξίματος για το Circuits Name: S420

Size of M matrix	Size of t submatrix	Initial hotspot	Final hotspot	% improvement
4x4	2x2	3532678.336875	1777403.272188	49.68
4x4	3x3	2963871.653187	1890413.011375	36.21
5x5	2x2	2591031.487562	2200058.357750	15.08
5x5	3x3	2382173.429562	1148227.237063	51.79
5x5	4×4	2747570.372375	1389916.761625	49.41
10x10	2x2	1785454.28500	1612428.961125	9.69
10x10	4×4	3077874.776812	2572710.016062	16.41
10x10	5x5	3987685.437562	2709924.676500	32.04
15x15	5x5	2516962.033000	2399482.032312	4.66
15x15	10x10	3275383.714687	2717379.793687	17.03
20x20	2x2	898667.318000	753199.222000	16.18
20x20	5x5	1600184.958250	1284492.248750	0.98
20x20	10x10	3914799.075750	2732454.602750	30.20
20x20	15x15	3243522.088875	3000635.734125	7.48
30x30	2x2	594810.935500	594810.935500	0
30x30	10x10	2808923.356500	2746095.189687	2.23
30x30	20X20	3372913.418125	3007178.796125	10.84

3.14 Στιγμιότυπα τρεξίματος για το Circuits Name: S444

Size of M matrix	Size of t submatrix	Initial hotspot	Final hotspot	% improvement
4x4	2x2	2848293.738919	1969853.716997	48.81
4x4	3x3	3393753.270552	900189.121227	73.47
5x5	2x2	3484099.101385	2462931.441875	29.30
5x5	3x3	3890579.626364	2482016.487800	36.20
5x5	4×4	3390517.381175	1791073.551377	47.17
10x10	2x2	1658050.499800	1492750.141742	9.96
10x10	4×4	4048403.271107	3425549.299612	15.38
10x10	5x5	4547479.932419	4176298.075667	10.13
15x15	5x5	2921825.121250	2887794.449500	1.16
15x15	10x10	4868496.161885	4132569.781885	15.11
20x20	2x2	1440191.628868	1103977.720000	23.34
20x20	5x5	2467138.492680	1993186.832558	19.21
20x20	10x10	4266260.748867	3530246.218867	17.25
20x20	15x15	5269223.127450	3705361.247450	29.67
30x30	2x2	923008.48625	5731882.699000	6.21
30x30	10x10	3882273.610740	3463612.111123	10.78
30x30	20X20	5123507.703440	4880325.096455	4.74

3.15 Στιγμιότυπα τρεξίματος για το Circuits Name: S510

Size of M matrix	Size of t submatrix	Initial hotspot	Final hotspot	% improvement
4x4	2x2	2485586.268773	2327270.665059	6.36
4x4	3x3	2518867.388089	410566.299402	83.70
5x5	2x2	2497256.365149	2248822.347745	9.94
5x5	3x3	3330701.511402	1794472.414572	46.12
5x5	4×4	695198.203969	345899.907318	50.24
10x10	2x2	2220802.750000	1816254.076000	18.21
10x10	4×4	2863495.762464	1531547.288223	46.51
10x10	5x5	3288871.891433	2619517.697274	20.35
15x15	5x5	2720822.422433	1814070.174839	33.32
15x15	10x10	3098831.387923	2697007.919673	12.96
20x20	2x2	866289.540000	782734.144500	9.64
20x20	5x5	2416863.081125	1866847.973180	22.75
20x20	10x10	3442479.393050	2796552.069253	18.76
20x20	15x15	1663582.390370	1345164.601745	19.14
30x30	2x2	803646.952500	435683.762500	45.78
30x30	10x10	2917373.120245	2354113.521870	19.30
30x30	20X20	3571631.637457	2467653.917457	30.90

3.16 Στιγμιότυπα τρεξίματος για το Circuits Name: S526

Size of M matrix	Size of t submatrix	Initial hotspot	Final hotspot	% improvement
4x4	2x2	2707695.04695	2285600.983445	15.58
4x4	3x3	2495913.115062	1181022.417033	52.68
5x5	2x2	2805772.095312	2376041.346133	15.31
5x5	3x3	3139348.068320	926057.215055	70.50
5x5	4×4	3072967.330179	949594.153959	69.09
10x10	2x2	1984124.740750	1918684.880500	3.29
10x10	4×4	2534560.818242	2233115.385757	11.89
10x10	5x5	2697400.833985	2672710.636485	0.91
15x15	5x5	2880658.373930	2591728.423305	10.02
15x15	10x10	4103583.734595	3465742.545970	45.54
20x20	2x2	1597377.167500	999383.747500	37.43
20x20	5x5	2087235.545180	1948818.538805	6.63
20x20	10x10	3364696.925993	2812708.065993	16.40
20x20	15x15	3959099.262375	3460861.062375	12.58
30x30	2x2	950499.460000	847583.312000	10.82
30x30	10x10	2678278.437180	2612098.137243	2.47
30x30	20X20	3704075.604915	2832708.079915	23.52

3.17 Στιγμιότυπα τρεξίματος για το Circuits Name: S641

Size of M matrix	Size of t submatrix	Initial hotspot	Final hotspot	% improvement
4x4	2x2	2724426.728188	2583524.984821	5.17
4x4	3x3	4982419.774562	842489.547078	83.09
5x5	2x2	2529900.771915	1601514.551422	36.69
5x5	3x3	2581775.702486	832050.915633	67.77
5x5	4×4	2550178.248444	1431728.242709	43.85
10x10	2x2	1863908.357500	1291119.464805	30.73
10x10	4x4	3130794.619571	2090277.976680	33.23
10x10	5x5	4007605.391556	3137954.191556	21.70
15x15	5x5	2614040.523180	2435630.084375	6.82
15x15	10x10	4946613.204041	3807150.964041	23.03
20x20	2x2	1081067.332500	930340.736180	13.94
20x20	5x5	3001897.530258	2380397.998258	20.70
20x20	10x10	3965636.127104	3199162.337104	19.32
20x20	15x15	737008.278180	735926.380000	0.14
30x30	2x2	778748.455500	735926.380000	5.49
30x30	10x10	3000435.199618	2476269.510680	17.46
30x30	20X20	3309790.130867	2764830.557931	16.46

3.18 Στιγμιότυπα τρεξίματος για το Circuits Name: S713

Size of M matrix	Size of t submatrix	Initial hotspot	Final hotspot	% improvement
4x4	2x2	3133319.903585	1267620.429430	59.54
4x4	3x3	3491653.315438	624451.188281	82.11
5x5	2x2	3320657.922562	1541598.550782	53.57
5x5	3x3	2873780.640438	2373413.854399	17.41
5x5	4×4	2628752.860220	1230585.721970	53.18
10x10	2x2	1859498.521875	1693842.891555	8.90
10x10	4×4	3076950.353742	1731501.702875	43.72
10x10	5x5	3516800.229063	1848411.504063	47.44
15x15	5x5	2190232.315781	1813773.058460	17.18
15x15	10x10	4512881.685835	2915920.050835	35.38
20x20	2x2	927568.412930	760813.860000	17.97
20x20	5x5	2251369.695250	2137562.199500	5.05
20x20	10x10	4048739.149335	3910797.882335	3.40
20x20	15x15	3052648.083540	2579987.630610	15.48
30x30	2x2	575859.803875	544148.803625	5.50
30x30	10x10	2725123.190680	2357774.579617	13.48
30x30	20X20	3855468.627656	2984101.102656	22.60

3.19 Στιγμιότυπα τρεξίματος για το Circuits Name: S820

Size of M matrix	Size of t submatrix	Initial hotspot	Final hotspot	% improvement
4x4	2x2	4824955.051541	3200032.204297	33.67
4x4	3x3	6126953.640206	813392.114480	86.72
5x5	2x2	5205387.741345	3708132.207289	28.76
5x5	3x3	7241364.479533	2726282.964618	62.35
5x5	4×4	4124195.301225	3023817.281344	26.68
10x10	2x2	2536832.975070	1817000.841938	28.37
10x10	4×4	5374274.425712	4295908.899609	20.06
10x10	5x5	6761293.177706	5774328.571831	14.59
15x15	5x5	4724049.810782	4614257.558033	2.32
15x15	10x10	5970098.598907	4996639.176953	16.30
20x20	2x2	1334314.856250	1009582.045930	24.33
20x20	5x5	3523660.129993	2830083.229298	19.68
20x20	10x10	7516558.426091	7061296.756216	6.05
20x20	15x15	6105802.034000	5660042.206250	7.30
30x30	2x2	1166444.007500	1145211.201250	1.82
30x30	10x10	4816208.461674	4601325.518048	4.46
30x30	20X20	6437266.609324	5701340.229324	11.43

3.20 Στιγμιότυπα τρεξίματος για το Circuits Name: S832

Size of M matrix	Size of t submatrix	Initial hotspot	Final hotspot	% improvement
4x4	2x2	2695294.228373	1089340.566406	59.58
4x4	3x3	2185763.318052	401929.218271	81.61
5x5	2x2	3095553.198463	1493687.418495	51.74
5x5	3x3	3069432.836270	1308197.682530	57.37
5x5	4×4	2247235.900432	942688.766812	58.05
10x10	2x2	1998488.337745	1609796.879495	19.44
10x10	4×4	3194849.537875	2179219.579030	31.78
10x10	5x5	2900339.062498	2190195.569026	24.48
15x15	5x5	2772827.252307	2183414.697494	21.25
15x15	10x10	3112845.053176	2145802.103176	31.06
20x20	2x2	870615.878000	870615.878000	0
20x20	5x5	1986975.644656	1891085.396875	4.82
20x20	10x10	2808027.647150	2759530.842494	1.72
20x20	15x15	1695833.021896	1327869.831896	21.69
30x30	2x2	702489.639250	619594.160625	11.80
30x30	10x10	2959987.504750	2107261.382156	28.80
30x30	20X20	3246082.989650	2878031.649650	11.33

3.21 Στιγμιότυπα τρεξίματος για το Circuits Name: S838

Size of M matrix	Size of t submatrix	Initial hotspot	Final hotspot	% improvement
4x4	2x2	6864024.351073	5153626.537435	24.91
4x4	3x3	3850590.950327	2017094.620487	47.61
5x5	2x2	3609622.404672	3376187.361369	6.46
5x5	3x3	8073616.891698	4327038.848198	46.40
5x5	4×4	3194837.421267	1480541.973642	53.65
10x10	2x2	2291302.258250	2252790.651563	1.68
10x10	4×4	5816084.889461	3842681.789876	33.93
10x10	5x5	5417922.873427	4639549.560826	14.36
15x15	5x5	3460139.667860	3097211.403625	10.48
15x15	10x10	5664193.673768	3986802.967924	29.61
20x20	2x2	1623593.698000	1078166.340500	33.59
20x20	5x5	2688961.109875	2483908.141125	7.62
20x20	10x10	6419912.993856	6222378.418825	3.07
20x20	15x15	5322700.993736	4244647.018610	20.25
30x30	2x2	901914.935000	837507.230750	7.14
30x30	10x10	4046559.650688	3727158.451023	7.89
30x30	20X20	6001716.347178	4897562.327178	18.39

3.22 Στιγμιότυπα τρεξίματος για το Circuits Name: S953

Size of M matrix	Size of t submatrix	Initial hotspot	Final hotspot	% improvement
4x4	2x2	5168794.593656	2699845.343200	47.76
4x4	3x3	5268588.330871	2639788.141909	49.89
5x5	2x2	3131776.781893	2833310.439190	9.53
5x5	3x3	7466226.626999	3662940.069600	50.93
5x5	4×4	6637566.762091	1526697.217675	76.99
10x10	2x2	3109342.557110	1865771.624245	39.99
10x10	4×4	4357622.651099	4252288.843177	2.41
10x10	5x5	5006309.462838	3672742.637465	26.63
15x15	5x5	4067702.173816	4038466.942948	0.71
15x15	10x10	4971728.820805	4201942.162555	15.48
20x20	2x2	1144126.760710	1136083.193210	0.70
20x20	5x5	2850545.096732	2646689.921856	7.15
20x20	10x10	5678688.185308	4196117.491509	26.10
20x20	15x15	5648960.239546	4085098.359546	27.68
30x30	2x2	862597.320835	855436.276250	0.83
30x30	10x10	4450901.486564	3957889.134250	11.07
30x30	20X20	4797288.274963	3779384.492463	21.21

3.23 Στιγμιότυπα τρεξίματος για το Circuits Name: S1196

Size of M matrix	Size of t submatrix	Initial hotspot	Final hotspot	% improvement
4x4	2x2	7262443.811832	2743178.928759	62.22
4x4	3x3	6746669.621999	999128.022703	85.19
5x5	2x2	4483376.175942	3659366.146280	18.37
5x5	3x3	5826032.615279	1655287.202705	59.25
5x5	4×4	2882730.086776	2597177.583875	9.90
10x10	2x2	6140154.579283	5397039.899622	12.10
10x10	4×4	6537551.207434	4404227.965308	32.63
10x10	5x5	5259122.699114	4300545.407093	18.22
15x15	5x5	6643886.365432	5782563.691682	12.96
15x15	10x10	4233122.410563	3939688.472058	6.93
20x20	2x2	7450098.646718	5080796.871587	31.80
20x20	5x5	3828541.173618	3555256.284368	7.13
20x20	10x10	7303044.051357	6437359.173857	11.85
20x20	15x15	6032950.149047	4532225.437547	24.87
30x30	2x2	1080470.267500	997066.020000	7.71
30x30	10x10	5637442.657117	4815746.894435	14.57
30x30	20X20	9402071.420361	8632284.762111	8.18

3.24 Στιγμιότυπα τρεξίματος για το Circuits Name: S1238

Size of M matrix	Size of t submatrix	Initial hotspot	Final hotspot	% improvement
4x4	2x2	4871253.210165	4248508.549339	12.78
4x4	3x3	4310188.884633	2297718.805143	46.69
5x5	2x2	4307252.430187	3601071.765255	16.39
5x5	3x3	6311698.683117	2322101.772470	63.20
5x5	4×4	4408613.934541	1405042.850056	68.12
10x10	2x2	2259900.752306	2148176.900930	4.94
10x10	4×4	5791266.545641	4089664.637673	29.38
10x10	5x5	6099988.396445	3667048.807930	39.88
15x15	5x5	4346202.765563	3587276.988883	17.46
15x15	10x10	6060269.550092	4732102.094114	21.91
20x20	2x2	1495008.336828	1470719.773328	1.62
20x20	5x5	3308604.022311	2626325.724305	20.62
20x20	10x10	6406642.563678	4702185.105241	26.60
20x20	15x15	4065693.054032	3418445.622782	15.91
30x30	2x2	982208.497500	920270.737500	6.30
30x30	10x10	4102618.648578	3670578.180078	10.53
30x30	20X20	6029657.477679	5410714.136399	10.26

3.25 Στιγμιότυπα τρεξίματος για το Circuits Name: S1423

Size of M matrix	Size of t submatrix	Initial hotspot	Final hotspot	% improvement
4x4	2x2	7744409.109029	5053199.817085	34.75
4x4	3x3	5231625.730522	727379.266219	86.09
5x5	2x2	6192214.083108	3235166.369967	47.75
5x5	3x3	7231529.058421	5305199.744468	26.63
5x5	4×4	6107904.555412	1890354.590351	69.05
10x10	2x2	3724928.463625	2389301.600000	35.85
10x10	4×4	6495624.043218	5022256.319085	22.68
10x10	5x5	9096083.061350	8108822.631350	10.85
15x15	5x5	5136063.729665	4756759.377859	7.38
15x15	10x10	6354861.202140	5019616.691075	21.01
20x20	2x2	1524134.225875	1507873.871375	1.06
20x20	5x5	3208107.369625	3188160.400625	0.62
20x20	10x10	8475390.945951	7524891.485951	11.21
20x20	15x15	7638469.933014	6718517.883014	12.04
30x30	2x2	1003245.498750	935295.663500	6.77
30x30	10x10	5984083.022000	5039347.149360	15.78
30x30	20X20	7256754.454224	6269089.277724	13.61

3.26 Στιγμιότυπα τρεξίματος για το Circuits Name: S1488

Size of M matrix	Size of t submatrix	Initial hotspot	Final hotspot	% improvement
4x4	2x2	7062221.794763	4401297.392251	37.67
4x4	3x3	8405149.125784	2460918.783618	70.72
5x5	2x2	6794646.890351	5312148.833291	21.81
5x5	3x3	8688141.180498	5578341.713693	35.79
5x5	4×4	8433957.076087	2855572.168477	66.14
10x10	2x2	2874826.003805	2825376.201430	1.72
10x10	4×4	6859466.453044	5472205.331299	20.22
10x10	5x5	7134923.392316	6455830.036615	9.51
15x15	5x5	5940833.023169	4531411.419172	23.72
15x15	10x10	10654855.290668	8405405.970918	21.11
20x20	2x2	1499961.630625	1453957.070625	3.06
20x20	5x5	4725267.590805	4401206.980930	6.85
20x20	10x10	8482071.079362	6642166.979362	21.69
20x20	15x15	9782433.467355	8063640.112102	17.57
30x30	2x2	1137749.848250	1023499.744800	10.04
30x30	10x10	5762653.465616	5492951.348555	4.68
30x30	20X20	1905062.105812	708961.199420	62.78

3.27 Στιγμιότυπα τρεξίματος για το Circuits Name: S1494

Size of M matrix	Size of t submatrix	Initial hotspot	Final hotspot	% improvement
4x4	2x2	7645094.766940	4202951.256294	45.02
4x4	3x3	7424793.827189	1924004.928917	74.08
5x5	2x2	6702400.094497	4657274.131671	30.51
5x5	3x3	8147759.442819	3080595.148999	62.19
5x5	4×4	4382249.897699	3039395.889394	30.64
10x10	2x2	3493774.926055	3427168.768617	1.90
10x10	4×4	6717640.897449	6517348.363760	2.98
10x10	5x5	6946056.516761	5600292.221347	19.37
15x15	5x5	5254894.540934	4372351.286562	16.79
15x15	10x10	8320440.066939	7015738.326476	15.68
20x20	2x2	1537905.265969	1535194.334719	0.17
20x20	5x5	4115131.737807	4000781.784245	2.77
20x20	10x10	7672499.191695	7013685.741749	8.58
20x20	15x15	6903912.585339	5849481.897339	15.27
30x30	2x2	1515360.160000	1332324.253500	12.07
30x30	10x10	5155344.858427	4547975.214863	11.78
30x30	20X20	8420197.012904	7024523.520404	16.57

3.28 Στιγμιότυπα τρεξίματος για το Circuits Name: S5378

Size of M matrix	Size of t submatrix	Initial hotspot	Final hotspot	% improvement
4x4	2x2	10997793.304663	9265769.366301	15.74
4x4	3x3	8263764.521735	6118940.215168	25.95
5x5	2x2	10128728.954027	7627143.226330	24.69
5x5	3x3	12890261.796908	7245120.540937	43.79
5x5	4×4	7165834.378825	3228130.194516	54.95
10x10	2x2	4708382.487204	3714749.354627	21.10
10x10	4×4	9748655.979417	9082979.657684	6.82
10x10	5x5	12904118.249403	9773749.493719	24.25
15x15	5x5	7441591.076844	6197121.883710	16.72
15x15	10x10	14575599.951790	11867378.079414	18.58
20x20	2x2	2279655.450375	2265921.303945	0.60
20x20	5x5	6592538.160485	6419309.052684	2.62
20x20	10x10	13887149.728697	11526106.109428	17.00
20x20	15x15	7665923.238457	7494907.012908	2.23
30x30	2x2	1750285.178000	1491025.361000	14.81
30x30	10x10	8816651.624996	8806962.412838	0.10
30x30	20X20	11990519.216294	10418015.959794	13.11

3.29 Στιγμιότυπα τρεξίματος για το Circuits Name: \$9234

3.4 Συγκριτικά αποτελέσματα

Στην ενότητα αυτή θα παρουσιαστούν γραφικά τα αποτελέσματα των πειραμάτων. Παρατηρείται πως όσο πιο μικρή είναι η διαφορά του Μ και t τόσο μεγαλύτερη βελτιστοποίηση παρατηρείται.

S526

S641

κυκλώματα

S510

\$\$20 \$\$32 \$\$33 \$\$53 \$\$953 \$\$126 \$\$1236 \$\$1238 \$\$1423 \$\$1423 \$\$1423 \$\$1423 \$\$1494 \$\$5378 \$\$5378

S713

5 0

S298

S344 S349 S386 S400 S420 S424

S382

S208

S27

53

3.5 Μελλοντικές επεκτάσεις

Ο αλγόριθμος που παρουσιάστηκε μπορεί να αποτελέσει τη βάση για περαιτέρω εξέλιξη και βελτιστοποίηση. Οι πιθανές επεκτάσεις και παραλλαγές παρουσιάζονται συνοπτικά παρακάτω.

- Δημιουργία γραφικής διεπαφής
- Βελτιστοποίηση μεθόδου χωρισμού τετραγώνων, με βάση της μεθόδου Matrix Synthesis.
- Συνδυασμός υπάρχοντος αλγορίθμου με αλγόριθμο που λαμβάνει υπόψη άλλες σχεδιαστικές παραμέτρους, όπως wirelength.
- Υπολογισμός των παραμέτρων που χρησιμοποιούνται στο τύπο της ισχύς βάσει των παραμέτρων που δίνει ο χρήστης.
- Υπολογισμός των παραμέτρων που χρησιμοποιούνται στο τύπο της ισχύς βάσει της εκάστοτε εξεταζόμενης σχεδίασης.
- Χωροθέτηση ενός πλαισίου με μη διαθέσιμους προς επεξεργασία χώρους.
- Αναπαράσταση των πυλών και των άλλων κυκλωματικών στοιχείων βάσει των πραγματικών τους διαστάσεων και όχι ως σημεία.
- Υλοποίηση αλγορίθμου που μειώνει τη θερμότητα πάνω στο chip στο σύνολό της και όχι απλά να ισοκατανέμει την ήδη υπάρχουσα.
- Παραλληλοποίηση αλγορίθμου.
- Εφαρμογή του αλγορίθμου σε 3D δομές

<u>ΒΙΒΛΙΟΓΡΑΦΙΑ</u>

- [1] Ghosal, P. Tuhina Samantam Rahaman, H. Dasgupta, P., "Thermal-Aware Placement of Standard Cells and Gate Arrays: Studies and Observations," Symposium on VLSI, 2008. ISVLSI '08. IEEE Computer Society Annual, vol., no., pp.369,374, 7-9 April 2008.
- [2] Antonios Dadaliaris. Reliability Driven Placement Algorithms. PhD thesis, Computer Science Dept., University Of Thessaly, June 2012.
- [3] C. C. N. Chu and D. F. Wong. A matrix synthesis approach to thermal placement. IEEE Transactions on Computer-aided design of Integrated Circuits and Systems, 17(11):1166-1174, 1998.
- [4] Yong Zhan Tianpei Zhang and Sachin S. Sapatnekar. Temperature-aware routing in 3d ics. In Proceedings of the Asia-South Pacific Design Automation Conference, pages 309-314, 2006.
- [5] Y.-K. Cheng and S.-M. Kang, "A temperature-aware simulation environment for reliable ULSI chip design," IEEE Trans. Computer-Aided Design, vol. 19, pp. 1211–1220, Oct. 2000.

- [6] C. H. Tsai and S. M. Kang. Cell-level placement for improving substrate thermal distribution. IEEE Transactions on Computer-aided design of Integrated Circuits and Systems, 19(2):253-266, February 2000.
- Kim, N.S.; Austin, T.; Baauw, D.; Mudge, T.; Flautner, K.; Hu, J.S.; Irwin, M.J.;
 Kandemir, M.; Narayanan, V., "Leakage current: Moore's law meets static power," *Computer*, vol.36, no.12, pp.68,75, Dec. 2003
- [8] K-Y Chao and D. F. Wong. Thermal placement for high performance multichip modules. In Proceedings of the International Conference on Computer Design, pages 218-223, October 1995.
- [9] E J Paradise K-K Lee and S K Lim. Thermal-driven Circuit Partitioning and Floorplanning. GIT-CERCS Technical Report, Georgia Institute of Technology, 2003.
- [10] F. Najm. A survey of power estimation techniques in vlsi circuits. IEEE Trans. on VLSI Systems, 2(4):446-455, 1994.
- [11] K. Banerjee, A. Mehrotra, A. Sangiovanni-Vincentelli, and C. Hu, "On thermal effects in deep sub-micron VLSI interconnects," Proceedings of the ACM/IEEE Design Automation Conference, pp. 885-891, 1999.
- [12] M. C. Tang and J. D. Carothers, "Consideration of thermal constraints during multichip module placement," Electron. Lett., vol. 33, no. 12, pp. 1043–1045, 1997.
- [13] G. E. Ellison, "Thermal analysis of circuit boards and microelectronic components using an analytical solution to the heat conduction equation," in Proc. 12th IEEE SEMI-THERM Symp., 1996, pp. 144–150.
- [14] W. Maly and A. P. Piotrowski, "Heat exchange optimization technique for high-power hybrid ICs," IEEE Trans. Comp., Hybrids, Manufact. Technol., vol. 2, pp. 226–231, June 1979.
- [15] R. E. Simons, "Microelectronics cooling and semitherm: A look back," in Proc. 10th Semiconductor Thermal and Temperature Measurement Symp. 1994, pp. 1-16.
- [16] M. Pecht and J. Naft, "Thermal reliability management in PCB design," in Proc. 1987 Annu. Rel. Maintainability Symp., 1987, pp. 27–29.

- [17] M. Pedram, "Power minimization in IC design: Principles and applications" ACM Trans. Design Automat. Electron. Syst., vol. 1, no.1, pp. 2-56, 1990.
- [18] G. Chen and S. S. Sapatnekar. Partition-driven standard cell thermal placement. In Proceedings of the International Symposium on Physical Design, pages 75–80, 2003.
- [19] K. Y. Chao and D. F. Wong, "Low power considerations in floorplan design", in Proc. 1994 Int. Workshop Low Power Design, 1994, pp 45-50.
- [20] Eisenmann, Hans; Johannes, F.M., "Generic global placement and floorplanning," Design Automation Conference, 1998. Proceedings, vol., no., pp.269,274, 19-19 June 1998
- [21]] R. Eliasi, T. Elperin, and A. Bar-Cohen, "Monte Carlo thermal optimization of populated printed circuit board," IEEE Trans. Comp, Hybrids, Manufact. Technol., vol. 13, pp. 953–960, Dec. 1990.
- [22] A. L. Palisoc and C. C. Lee, "Exact thermal representation of multilayer rectangular structures by infinite plate structures using the method of images," J. Appl. Phys., vol. 12, no. 64, pp. 6851–6857, 1988.
- [23] T. D. Yuan, "Thermal management in PowerPC microprocessor multichip modules applications," in Proc. 13th IEEE SEMI-THERM Symp., 1997, pp. 247– 256.
- [24] Jeng-Liang Tsai; Chen, C.C.-P.; Guoqiang Chen; Goplen, B.; Haifeng Qian; Yong Zhan; Sung-Mo Kang; Wong, M. D F; Sapatnekar, S.S., "Temperature-Aware Placement for SOCs," Proceedings of the IEEE, vol.94, no.8, pp.1502,1518, Aug. 2006
- [25] .Sangiovanni-Vincentelli, A. , "The tides of EDA," Design & Test of Computers, IEEE, Nov.-Dec. 2003
- [26] M. Osterman and M. Pecht, "Component placement for reliability on conductivity cooled printed wiring boards," Trans. ASME J. Electron. Packag., vol. 111, pp. 149–156, 1989.

- [27] Golshan, K. "Physical Design Essentials: An ASIC Design Implementation Perspective". New York: Springer (2007), ISBN: 978-0-387-36642-5.
- [28] Lavagno, Martin and Schaeffer. "EDA for IC Implementation, Circuit Design, and Process Technology (Electronic Design Automation for Integrated Circuits)". CRC Press, 2006. ISBN: 9780849379239.
- [29] Fastplace: Efficient analytical placement using cell shifting, iterative local refinement and a hybrid net model – Natarajan Viswanathan, Chris Chongnuen Chu – 2004.
- [30] Jansen, D. "The Electronic Design Automation Handbook". Kluwer Academic Publishers. (2003). ISBN 1-4020-7502-2.
- [31] Roy, J.A. and Markov, I.L., "Seeing the Forest and the Trees: Steiner Wirelength Optimization in Placement," Computer-Aided Design of Integrated Circuits and Systems, IEEE Transactions on, April 2007.
- [32] Robert Brayton and Jason Cong. Electronic Design Automation Past, Present and Future. NFS Workshop, Jul 2009.
- [33] Sarrafzadeg, M. and Wang, M. , "Global and detailed placement," In Proceedings of International conference on Computer-Aided Design.
- [34] Dunlop, A.E. and Kernighan, B.W., "A Procedure for Placement of Standard-Cell VLSI Circuits," Computer-Aided Design of Integrated Circuits and Systems, IEEE transactions on, January 1985.
- [35] D. J. Dean, Thermal Design of Electronic Circuit Boards and Packages. Edinburgh, Scotland: Electrochemical Publications, 1985.
- [36] Forum for Electronics, [online] Available: <u>http://www.edaboard.com</u>
- [37] <u>http://users.auth.gr/linardis/Courses/MetaptyxVLSI/LowPower/low_power</u> <u>1.pdf</u>
- [38] <u>http://en.wikipedia.org/wiki/Physical_design_(electronics)</u>
- [39] <u>http://en.wikipedia.org/wiki/Integrated_circuit</u>

- [40] <u>http://cc.ee.ntu.edu.tw/~ywchang/Courses/PD/EDA_placement.pdf</u>
- [41] <u>http://en.wikipedia.org/wiki/Electronic design automation</u>
- [42] <u>http://en.wikipedia.org/wiki/Computer-aided_design</u>
- [43] <u>http://asic-soc.blogspot.in/2008/04/low-power-design-techniques.html</u>
- [44] <u>http://en.wikipedia.org/wiki/Integrated_circuit_design</u>