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Abstract
Γραμμικά συστήματα της μορϕής Ax = b, για συμμετρικούς πίνακες με
κυρίαρχη διαγώνιο, προκύπτουν πολύ συχνά σε προβλήματα προσομοίωσης
πολύ μεγάλης κλίμακας κυκλωμάτων. Την τελευταία δεκαετία έχουν αναπτυ-
χθεί ένα πλήθος εξειδικευμένων επιλυτών με σκοπό να αντιμετωπίσουν
περιορισμένες τοπολογίες από συστήματα τέτοιου είδους που προκύπτουν
από μία συλλογή ποικίλων προβλημάτων. Σε αυτή την διπλωματική εργασία
θα εξηγήσουμε και θα εϕαρμόσουμε τη θεωρία γράϕων, ένα σύνολο τεχνικών
που αναπτύχθηκαν από την επιστημονική κοινότητα, με σκοπό την κατασ-
κευή επιλυτών με αποδεδειγμένες ιδιότητες. Για να παρουσιάσουμε την
ισχύ αυτών των τεχνικών, παρουσιάζουμε και περιγράϕουμε έναν αποτελε-
σματικό γραϕοθεωρητικό επιλυτή ο οποίος στηρίζεται στις αρχές της
θεωρίας γράϕων. Ο επιλυτής αντιμετωπίζεις προβλήματα σε αρκετά γενικές
και αυθαίρετα σταθμισμένες τοπολογίες που δεν υποστηρίζονταν από
προηγούμενες υλοποιήσεις. Επιτυγχάνει εξαιρετικά αποτελέσματα ενώ πα-
ράλληλα παρέχει ισχυρές εγγυήσεις για την ταχύτητα σύγκλισης. Η μέθοδος
αξιολογηθηκε σε μια ποικιλία εϕαρμογών σχετικές με την προσομοίωση
κυκλωμάτων.

Λέξεις Κλειδιά:
γραμμικά συστήματα, προρυθμιστές, μέθοδοι επίλυσης, condition number,
θεωρία γράϕων, multigrid
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Abstract
Linear systems of the form Ax = b, on symmetric diagonally dominant
matrices (SDDs) occur frequently in very large scale circuit simulation.
In the past decade a multitude of specialized solvers have been developed
to tackle restricted instances of SDD systems for a diverse collection of
problems. In this thesis we explain and apply the support theory of graphs,
a set of tecnhiques developed by the computer science theory community, to
construct SDD solvers with provable properties. To demonstrate the power
of these techniques, we describe an efficient multigrid-like solver which
is based on support theory principles. The solver tackles problems in fairly
general and arbitrarily weighted topologies not supported by prior solvers. It
achieves state of the art empirical results while providing robust guarantees
on the speed of convergence. The method is evaluated on a variety of circuit
simulation applications.

Keywords:
linear systems, preconditioning, solution methods, condition number, support
theory, multigrid
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Chapter 1

Introduction

1.1 Problem Description

Circuit simulation is a tecnhique for checking and verifying the design of electrical and elec-
tronic circuits and systems prior to manufacturing and deployment. It is used across a wide
spectrum of applications, ranging from integrated circuits and microelectronics to electrical
power distribution networks and power electronics. Circuit simulation is a mature and es-
tablished art and also remains an important area of research. It uses mathematical models
to replicate the behavior of an actual electronic device or circuit. Simulation software allows
for modeling of circuit operation and is an invaluable analysis tool. Simulating a circuit’s
behavior before actually building it can greatly improve design efficiency by making faulty
designs known as such, and providing insight into the behavior of electronics circuit designs.
In particular, for integrated circuits, the tooling is expensive, breadboards are impractical, and
probing the behavior of internal signals is extremely difficult. Therefore almost all integrated
circuit (IC) design relies heavily on simulation.

1.2 Thesis Contribution

The solution of linear systems of equations of the form Ax = b is at the heart of many
computations in science, engineering, and other disciplines. Several algorithms are based on
solving such sort of linear systems. These algorithms generally produce results of high quality.
However, existing solvers are not always efficient, and in many cases they operate only on
restricted topologies. The unavailability of reliably efficient solvers has arguably hindered the
adoptability of approaches and algorithms based on symmetric diagonally dominant (SDD)
systems, especially in applications involving very large systems.

In this thesis we review and apply the support theory of graphs, a set of of techniques de-
veloped by the computer science theory community, to construct SDD solvers with provable
properties. To demonstrate the power of these techniques, we describe an efficient multigrid-
like solver which is based on support theory principles. The solver tackles problems in fairly
general and arbitrarily weighted topologies not supported by prior solvers. It achieves state of
the art empirical results while providing robust guarantees on the speed of convergence. The
method is evaluated on a variety of circuit simulation like applications. The new method is
an extension of the preconditioned conjugate gradient method (PCG), and is characterized by
the form of the preconditioner [17].

Starting from a MATLAB implementation [18] of the algorithm we transformed the initial
MATLAB code into C code. Our purpose was to embed the preconditioner into various
electronic design automation (EDA) algorithms and evaluate how well it performs in the
context of these algorithms. The systems that we considered were large, sparse, symmetric,
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1. Introduction

and diagonally dominant with non-positive off-diagonals. The results from the evaluation
of combinatorial multigrid (CMG) preconditioner showed that CMG solved our SDD linear
sytems in some cases even x8 times faster than the other well-known preconditioner which
is the Jacobian preconditioner.

1.3 Formation of this thesis

The formation of this thesis is as follows. In chapter 2 we give background material on the
existing solution methods of linear equations.

In chapter 3 we review some basic notions of preconditioner matrices. We discuss about the
importance of the preconditioning, how it is used and how it helps to the convergence of the
methods.

In chapter 4 we give some background material on support graph theory for graphs. We also
review how support combine its strength with the strength of preconditioning.

In chapter 5 we give some background material on solvers and present CMG. The theoretical
foundation of CMG has been laid in previous work [29], but the solver itself and its applica-
tion to EDA tools are new.

Finally in chapter 6 we present the experiments we made that compare CMG preconditioner
to the Jacobi preconditioner along with the time results we took after the evaluation.

2



Chapter 2

Solution Methods of the Ax = b

2.1 Introduction

There are two broad categories of methods for solving linear equations of the form Ax = b
when A is large and sparse: direct and iterative. While for some tecnhiques such as direct
solvers, we only provide brief descriptions, for iterative solvers, we go into more depth to
describe the algorithms, since they are of interest to us here.

A direct method for solving the system of equations Ax = b is any method that produces
the solution x after a finite number of operations. An example of a direct method is using
Gaussian elimination to factor A into matrices L and U where L is lower triangular and U is
upper triangular, then solving the triangular systems by forward and back substitution. Direct
methods are typically preferred for dense linear systems. The problem with direct methods
for sparse systems is that the amount of computational effort and storage required can be
prohibitive [7].

An alternative to direct methods of solution are iterative methods, which involve the construct-
ion of a sequence {x(i)} of approximations to the solution x, for which x(i) → x. Iterative
methods for solving general, large sparse linear systems have been gaining popularity in many
areas of scientific computing. Until recently, direct solution methods were often preferred to
iterative methods in real applications because of their robustness and predictable behavior.
However, a number of efficient iterative solvers were discovered and the increased need for
solving very large linear systems triggered a noticeable and rapid shift toward iterative techni-
ques in many applications [19].

In this thesis we are interested only in iterative methods on sparse matrices. But before we
analyze some of the most well-known, lets see what the term sparse refers to.

2.1.1 Sparsity Overview
Consider the solution of linear systems of the form

Ax = b, (2.1)

where A is an nxn matrix, and both x and b are nx1 vectors. Of special interest is the case
where A is large and sparse. The term sparse above refers to the relative number of non-zeros
in the matrix A. An nxn matrix A is considered to be sparse if A has only O(n) non-zero
entries. In this case, the majority of the entries in the matrix are zeros, which do not have to
be explicitly stored. An nxn dense matrix has Ω(n2) non-zeros. There are many ways of storing
a sparse matrix. Whichever method is chosen, some form of compact data is required that
avoids storing the numerically zero entries in the matrix. It needs to be simple and flexible so
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2. Solution Methods of the Ax = b

that it can be used in a wide range of matrix operations. This need is met by the primary data
structure in CSparse1, a compressed-column matrix [6]. Some basic operations that operate
on this data structure are matrix-vector multiplication, matrix-matrix multiplication, matrix
addition, and transpose.

The simplest sparse matrix data structure is a list of the nonzero entries in arbitrary order.
The list consists of two integer arrays i and j and one real array x of length equal to the
number of entries in the matrix. For example, the matrix [5]

A =


4.5 0 3.2 0

3.1 2.9 0 0.9

0 1.7 3.0 0

3.5 0.4 0 1.0

 , (2.2)

is presented in zero-based triplet form below. A zero-based data structure for an m-by-n
matrix contains row and column indices in the range 0 to m-1 and n-1, respectively.

i =
{
2, 1, 3, 0, 1, 3, 3, 1, 0, 2

}
j =

{
2, 0, 3, 2, 1, 0, 1, 3, 0, 2

}
x =

{
2, 1, 3, 0, 1, 3, 3, 1, 0, 2

}
The triplet form is simple to create but difficult to use in most sparse matrix algorithms. The
compressed-column form is more useful and is used in almost all functions in CSparse.
An m-by-n sparse matrix that can contain up to nzmax entries is represented with an integer
array p of length n + 1, an integer array i of length nzmax, and a real array x of length
nzmax. Row indices of entries in column j are stored in i[p[j]] through i[p[j+1]− 1], and the
corresponding numerical values are stored in the same locations in x. The first entry p[0] is
always zero, and p[n] ≤ nzmax is the number of actual entries in the matrix. The example
matrix (2.2) is represented as

p =
{
0, 3, 6, 8, 10

}
i =

{
0, 1, 3, 1, 2, 3, 0, 2, 1, 3

}
x =

{
4.5, 3.1, 3.5, 2.9, 1.7, 0.4, 3.2, 3.0 0.9, 1.0

}
One of the goals of dealing with sparse matrices is to make efficient use of the sparsity in
order to minimize storage throughout the computations, as well as to minimize the required
number of operations. Sparse linear systems are often solved using different computational
techniques than those employed to solve dense systems.

2.2 Overview of the Methods

Below are short descriptions of each of the methods to be discussed, along with brief notes
on the classification of the methods in terms of the class of matrices for which they are most
appropriate. In later sections of this chapter more detailed descriptions of these methods are
given [1].

1CSparse is a C library which implements a number of direct methods for sparse linear systems.
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2.2. Overview of the Methods

• Stationary Methods

– Jacobi.
The Jacobi method is based on solving for every variable locally with respect to
the other variables; one iteration of the method corresponds to solving for every
variable once. The resulting method is easy to understand and implement, but con-
vergence is slow.

– Gauss-Seidel
The Gauss-Seidel method is like the Jacobi method, except that it uses updated
values as soon as they are available. In general, if the Jacobi method converges,
the Gauss-Seidel method will converge faster than the Jacobi method, though still
relatively slowly.

– SOR
Successive Overrelaxation (SOR) can be derived from the Gauss-Seidel method by
introducing an extrapolation parameter ω. For the optimal choice of ω, SOR may
converge faster than Gauss-Seidel by an order of magnitude.

• Nonstationary Methods

– Conjugate Gradient (CG).
The conjugate gradient method derives its name from the fact that it generates a
sequence of conjugate (or orthogonal) vectors. These vectors are the residuals of
the iterates. They are also the gradients of a quadratic functional, the minimization
of which is equivalent to solving the linear system. conjugate gradients (CG) is
an extremely effective method when the coefficient matrix is symmetric positive
definite (SPD), since storage for only a limited number of vectors is required.

– Generalized Minimal Residual (GMRES).
The Generalized Minimal Residual method computes a sequence of orthogonal vec-
tors, and combines these through a least-squares solve and update. However, it
requires storing the whole sequence, so that a large amount of storage is needed.
For this reason, restarted versions of this method are used. In restarted versions,
computation and storage costs are limited by specifying a fixed number of vectors
to be generated. This method is useful for general nonsymmetric matrices.

– BiConjugate Gradient (BiCG).
The biconjugate gradient (BiCG) method generates two CG-like sequences of vec-
tors, one based on a system with the original coefficient matrix A, and one on
AT . Instead of orthogonalizing each sequence, they are made mutually orthog-
onal, or “bi-orthogonal”. This method, like CG, uses limited storage. It is useful
when the matrix is nonsymmetric and nonsingular; however, convergence may be
irregular, and there is a possibility that the method will break down. BiCG requires
a multiplication with the coefficient matrix and with its transpose at each iteration.

5



2. Solution Methods of the Ax = b

2.3 Stationary Methods

Iterative methods that can be expressed in the simple form

x(k) = Bx(k−1) + c, (2.3)

(where neither B nor c depend upon the iteration count k) are called stationary iterative
methods. In this section, we present the three main stationary iterative methods: the Jacobi
method, the Gauss-Seidel method and the Successive Overrelaxation (SOR) method.

2.3.1 The Jacobi Method

The Jacobi method is easily derived by examining each of the n equations in the linear system
Ax = b in isolation. If in the ith equation

n∑
j=1

ai,jxj = bi,

we solve for the value of xi while assuming the other entries of x remain fixed, we obtain

xi = (bi −
∑
j ̸=i

ai,jxj)/ai,i. (2.4)

This suggests an iterative method defined by

x
(k)
i = (bi −

∑
j ̸=i

ai,jx
(k−1)
j )/ai,i. (2.5)

which is the Jacobi method. Note that the order in which the equations are examined is irrel-
evant, since the Jacobi method treats them independently. For this reason, the Jacobi method
is also known as the method of simultaneous displacements, since the updates could in
principle be done simultaneously.

In matrix terms, the definition of the Jacobi method in (2.3) can be expressed as

x(k) = D−1(L+ U)x(k−1) +D−1b, (2.6)

where the matrices D, −L and −U represent the diagonal, the strictly lower-triangular, and
the strictly upper-triangular parts of A, respectively.
The pseudocode for the Jacobi method is given in below. Note that an auxiliary storage vector,
x is used in the algorithm. It is not possible to update the vector x in place, since values from
x(k−1) are needed throughout the computation of x(k).
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2.3. Stationary Methods

Algorithm 1 The Jacobi Method.
1: Choose an initial guess x(0) to the solution x.
2: for k = 1, 2, ... do
3: for i = 1, 2, ..., n do
4: xi = 0
5: for j = 1, 2, ..., i− 1, i+ 1, ...n do
6: xi = xi + ai,jx

(k−1)
j

7: end for
8: xi = (bi − xi)/ai,i
9: end for
10: x(k) = x
11: check convergence; continue if necessary
12: end for

2.3.2 The Gauss-Seidel Method
Consider again the linear equations (2.2). If we proceed as with the Jacobi Method, but
now assume that the equations are examined one at a time in sequence, and the previously
computed results are used as they are available, we obtain the Gauss-Seidel method:

Algorithm 2 The Gauss-Seidel Method.
1: Choose an initial guess x(0) to the solution x.
2: for k = 1, 2, ... do
3: for i = 1, 2, ..., n do
4: σ = 0
5: for j = 1, 2, ..., i− 1 do
6: σ = σ + ai,jx

(k)
j

7: end for
8: for j = i+ 1, ..., n do
9: σ = σ + ai,jx

(k−1)
j

10: end for
11: x

(k)
i = (bi − σ)/ai,i

12: end for
13: check convergence; continue if necessary
14: end for

x
(k)
i = (bi −

∑
i>j

ai,jx
(k)
j −

∑
j>i

ai,jx
(k−1)
j )/ai,i. (2.7)

Two important facts about the Gauss-Seidel method should be noted. First, the computations
in (2.5) appear to be serial. Since each component of the new iterate depends upon all pre-
viously computed components, the updates cannot be done simultaneously as in the Jacobi
method. Second, the new iterate x(k) depends upon the order in which the equations are ex-
amined. The Gauss-Seidel method is sometimes called the method of successive displacements
to indicate the dependence of the iterates on the ordering. If this ordering is changed, the
components of the new iterate (and not just their order) will also change.

These two points are important because if A is sparse, the dependency of each component of
the new iterate on previous components is not absolute. The presence of zeros in the matrix
may remove the influence of some of the previous components. Using a judicious ordering
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2. Solution Methods of the Ax = b

of the equations, it may be possible to reduce such dependence, thus restoring the ability to
make updates to groups of components in parallel. However, reordering the equations can
affect the rate at which the Gauss-Seidel method converges. A poor choice of ordering can
degrade the rate of convergence; a good choice can enhance the rate of convergence.

In matrix terms, the definition of the Gauss-Seidel method in (2.5) can be expressed as

x(k) = (D − L)−1(Ux(k−1) + b). (2.8)
As before D, −L and −U represent the diagonal, lower-triangular, and upper-triangular parts
of A, respectively.

The pseudocode for the Gauss-Seidel algorithm is given in at the top of this page.

2.3.3 The Successive Overrelaxation Method (SOR)
The Successive Overrelaxation Method, or SOR, is devised by applying extrapolation to the
Gauss-Seidel method. This extrapolation takes the form of a weighted average between the
previous iterate and the computed Gauss-Seidel iterate successively for each component:

x
(k)
i = ωxi

(k) + (1− ω)x
(k−1)
i .

(where xi denotes a Gauss-Seidel iterate, and ω is the extrapolation factor). The idea is to
choose a value for ω that will accelerate the rate of convergence of the iterates to the solution.

Algorithm 3 The SOR Method.
1: Choose an initial guess x(0) to the solution x.
2: for k = 1, 2, ... do
3: for i = 1, 2, ..., n do
4: σ = 0
5: for j = 1, 2, ..., i− 1 do
6: σ = σ + ai,jx

(k)
j

7: end for
8: for j = i+ 1, ..., n do
9: σ = σ + ai,jx

(k−1)
j

10: end for
11: σ = (bi − σ)/ai,i

12: x
(k)
i = x

(k−1)
i + ω(σ − x

(k−1)
i )

13: end for
14: check convergence; continue if necessary
15: end for

In matrix terms, the successive overrelaxation (SOR) algorithm can be written as follows:

x(k) = (D − ωL)−1(ωU + (1− ω)D)x(k−1) + ω(D − ωL)−1b. (2.9)
The pseudocode for the SOR algorithm is given above.

2.4 Nonstationary Methods

Nonstationary methods differ from stationary methods in that the computations involve in-
formation that changes at each iteration. Typically, constants are computed by taking inner
products of residuals or other vectors arising from the iterative method.
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2.4. Nonstationary Methods

2.4.1 Generalized Minimal Residual (GMRES)
The GMRES method generates a sequence of orthogonal vectors, but in the absence of symme-
try this can no longer be done with short recurrences; instead, all previously computed vectors
in the orthogonal sequence have to be retained. For this reason are used restarted versions
of the method . The GMRES algorithm has the property that residual norm ∥b − Axi∥ can
be computed without the iterate having been formed. Thus, the expensive action of forming
the iterate can be postponed until the residual norm is deemed small enough. The GMRES
iterates are constructed as:

xi = x0 + y1u
1 + ...+ yiu

i, (2.10)

The GMRES method retains orthogonality of the residuals by using long recurrences, at the
cost of a larger storage demand.

The pseudocode for the restarted GMRES algorithm with preconditioner M is given in next
page.

Algorithm 4 The Preconditioned GMRES Method.
1: x(0) is an initial guess
2: for i = 1, 2, ... do
3: Solve r from Mr = b−Ax(0)

4: v(1) = r/∥r∥2
5: s := ∥r∥2e1
6: for i = 1, 2, ...,m do
7: Solve w from Mw = Av(i)

8: for k = 1, ..., i do
9: hk,i = (w, v(k))
10: w = w − hk,iv

(k)

11: end for
12: hi+1,j = ∥w∥2
13: v(i+1) = w/hi+1,i

14: apply J1, ..., Ji−1 on (h1,i, ..., hi+1,i)
15: construct Ji acting on ith and (i+ 1)st component
16: of h.,i such that (i+ 1)st component of Jih.,i is 0
17: s := Jis
18: if s(s+ 1) is small enough then (UPDATE(x, i) and quit)
19: end for
20: UPDATE(x,m)
21: end for
22:
23: In this schem UPDATE(x, i)
24: replaces the following computations:
25:
26: Compute y as the solution of Hy = s, in which
27: the upper ixi triangular part of H has hi,j as
28: its elements (in least squares sense if H is singular),
29: s represents the first i components of s
30: s(i+1) = ∥b−Ax∥2
31: if x is an accurate enough approximation then quit
32: else x(0) = x

9



2. Solution Methods of the Ax = b

2.4.2 Conjugate Gradient (CG)

The Conjugate Gradient method is an effective method for symmetric positive definite systems.
It is the oldest and best known of the nonstationary methods discussed here. The method
proceeds by generating vector sequences of iterates (i.e., successsive approximations to the
solution), residuals corresponding to the iterates, and search directions used in updating the
iterates and residuals. Although the length of these sequences can become large, only a small
number of vectors needs to be kept in memory. In every iteration of the method, two inner
products are performed in order to compute update scalars that are defined to make the
sequences satisfy certain orthogonality conditions. On a symmetric positive definite linear
system these conditions imply that the distance to the true solution is minimized in some
norm.

Algorithm 5 The Preconditioned Conjugate Gradient Method.
1: Compute r(0) = b−Ax(0) for some initial guess x(0)

2: for i = 1, 2, ... do
3: solve Mz(i−1) = r(i−1)

4: ϱi−1 = r(i−1)T z(i−1)

5: if i = 1 then
6: p(1) = z(0)

7: else
8: βi−1 = ϱi−1/ϱi− 2
9: p(i) = z(i−1) + βi−1p

(i−1)

10: end if
11: q(i) = Ap(i)

12: αi = ϱi−1/p
(i)T q(i)

13: x(i) = x(i−1) + αp(i)

14: r(i) = r(i−1) − αiq
(i)

15: check convergence; continue if necessary
16: end for

The pseudocode for the Preconditioned Conjugate Gradient Method is given above. It uses
a preconditioner M ; for M = I one obtains the unpreconditioned version of the Conjugate
Gradient Algorithm.

2.4.3 BiConjugate Gradient (BiCG)

The Conjugate Gradient method is not suitable for nonsymmetric systems because the residual
vectors cannot be made orthogonal with short recurrences. The GMRES method retains or-
thogonality of the residuals by using long recurrences, at the cost of a larger storage demand.
The BiConjugate Gradient method takes another approach, replacing the orthogonal sequence
of residuals by two mutually orthogonal sequences, at the price of no longer providing a mini-
mization. The update relations for residuals in the Conjugate Gradient method are augmented
in the BiConjugate Gradient method by relations that are similar but based on AT instead of A.

The pseudocode for the Preconditioned BiConjugate Gradient Method with preconditioner M
is given in the top of the next page.
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2.5. Computational Aspects of the Methods

Algorithm 6 The Preconditioned BiConjugate Gradient Method.
1: Compute r(0) = b−Ax(0) for some initial guess x(0)

2: Choose r(0) (for example, r(0) = r(0)

3: for i = 1, 2, ... do
4: solve Mz(i−1) = r(i−1)

5: solve MT z(i−1) = r(i−1)

6: ϱi−1 = z(i−1)T r(i−1)

7: if ϱi−1 = 1 then
8: method fails
9: end if
10: if i = 1 then
11: p(i) = z(i−1)

12: p(i) = z(i−1)

13: else
14: βi−1 = ϱi−1/ϱi− 2
15: p(i) = z(i−1) + βi−1p

(i−1)

16: p(i) = z(i−1) + βi−1p
(i−1)

17: end if
18: q(i) = Ap(i)

19: q(i) = AT p(i)

20: αi = ϱi−1/p
(i)T q(i)

21: x(i) = x(i−1) + αp(i)

22: r(i) = r(i−1) − αiq
(i)

23: r(i) = r(i−1) − αiq
(i)

24: check convergence; continue if necessary
25: end for

2.5 Computational Aspects of the Methods

Efficient solution of a linear system includes the selection of the proper choice of itera-
tive method. However, to obtain good performance, consideration must also be given to the
computational kernels of the method and how efficient they can be executed on the target
architecture. The performance of direct methods, is largely that of the factorization of the
matrix. However, this lower efficiency of execution does not imply anything about the total
solution time for a given system. Furthermore, iterative methods are usually simpler to im-
plement than direct methods, and since no full factorization has to be stored, they can handle
much larger sytems than direct methods.

Method Inner SAXPY Matrix- Precond Solve Storage Reqmnts
Product Vector Product

JACOBI 1a matrix+3n
Gauss Seidel 1 1a

SOR 1 1a matrix+2n
GMRES i+ 1 i+ 1 1 1 matrix + (i+ 5)n

CG 2 3 1 1 matrix + 6n
BiCG 2 5 1/1 1/1 matrix + 10n

Table 2.1: Summary of Operations for Iteration i. ”a/b” means ”a” multiplications with the
matrix and ”b” with its transpose, and storage requirements for the methods in iteration i: n
denotes the order of the matrix.
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2. Solution Methods of the Ax = b

2.6 Multigrid Methods

Before closing this chapter we would like to discuss about the multigrid (MG) methods. MG
methods in numerical analysis is defined as a group of algorithms for solving differential
equations using a hierarchy of discretizations. They are an example of a class of techniques
called multiresolution methods, very useful in problems exhibiting multiple scales of behavior.
For example, many basic relaxation methods exhibit different rates of convergence for short-
and long-wavelength components, suggesting these different scales be treated differently, as
in a Fourier analysis approach to multigrid. MG methods can be used as solvers as well as
preconditioners.

The main idea of MG is to accelerate the convergence of a basic iterative method by global
correction from time to time, accomplished by solving a coarse problem2. This principle is
similar to interpolation between coarser and finer grids. The typical application for multigrid
is in the numerical solution of elliptic partial differential equations in two or more dimensions.

Multigrid can be applied in combination with any of the common discretization techniques.
MG methods are among the fastest solution techniques known today. In contrast to other
methods, multigrid methods are general in that they can treat arbitrary regions and boundary
conditions. They do not depend on the separability of the equations or other special properties
of the equation.

2Coarse problem is an auxiliary system of equations used in an iterative method for the solution of
a given larger system of equations. It is basically a version of the same problem at a lower resolution,
retaining its essential characteristics, but with fewer variables.
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Chapter 3

Introduction to Preconditoners

3.1 Introduction

In chapter 2 we discussed about many iterative methods. The convergence rate of iterative
methods depends on spectral properties of the coefficient matrix. Hence one may attempt to
transform the linear system into one that is equivalent in the sense that it has the same solu-
tion, but that has more favorable spectral properties. A preconditioner is a matrix that effects
such a transformation. For SPD systems, the rate of convergence of the conjugate gradient
method depends on the distribution of the eigenvalues of A. The purpose of preconditioning
is that the transformed matrix in question will have a smaller spectral condition number,
and/or eigenvalues clustered around 1. For nonsymmetric problems the situation is more
complicated, and the eigen-values may not describe the convergence of nonsymmetric matrix
iterations like GMRES. On parallel machines there is a further tradeoff between the efficacy
of a preconditioner in the classical sense, and its parallel efficiency. Many of the traditional
preconditioners have a large sequential component.

If M is a nonsingular matrix that approximates A, then the linear system (3.1) has the same
solution as (2.1) but must be significantly easier to solve.

M−1Ax = M−1b, (3.1)

AM−1y = b, x = M−1y (3.2)

M−1
1 AM−1

2 y = M−1
1 b, x = M−1

2 y (3.3)

The system (3.1) is preconditioned from the left, (3.2) is preconditioned from the right. At (3.3)
is performed split preconditioning where the preconditioner is M = M1M2.

Iterative algorithms such as the the Conjugate Gradient method, converge to a solution using
only matrix-vector products with A. It is well known that iterative algorithms suffer from
slow convergence properties when the condition number of A, κ(A), which is defined as
the ration of the largest over the minimum eigenvalue of A, is large. What preconditioned
iterative methods attempt to do is to remedy the problem by changing the linear system to
M−1Ax = M−1b. In this case, the algorithms use matrix-vector products with A, and solve
linear systems of the form My = z. So now the speed of convergence depends on the condi-
tion number κ(A,M).

The condition number is defined as:

κ(A,M) = max
x

xTAx

xTMx
·max

x

xTMx

xTAx
(3.4)
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where x is taken to be outside the null space of A. There are two contradictory goals one has
to deal in constructing a preconditioner M : (i) The linear systems in M must be easier than
those in A to solve, (ii) The condition number must be small so it will minimize the number
of iterations.

Historically, preconditioners were natural parts of the matrix A. We analyze some of the most
well-known preconditioners below.

3.2 Jacobi Preconditioner

The simplest preconditioner consists of just the diagonal of the matrix

mi,j =

{
ai,i if i = j
0 otherwise

This is known as the (point) Jacobi preconditioner.

For the model problem, κ(B−1A) = O(n) = κ(A), so the asymptotic rate of convergence is
not improved with diagonal scaling. B in this case does not need to be factored. The storage
required for the preconditioner is O(n) since it is a sparse matrix. And, the preconditioner
system is very easy to solve, since it simply requires dividing each vector entry by the corre-
sponding diagonal entry of B.

Even through the asymptotic rate of convergence is not improved, diagonal scaling can some-
times make the difference between convergence and non-convergence for an ill-conditioned
matrix A. Moreover, diagonal scaling generally achieves some reduction in the number of
iterations, and is so cheap to apply that it might as well be done.

3.3 SSOR Preconditioner

Another example of a preconditioner is the SSOR preconditioner which like the Jacobi
preconditioner, can be easily derived from the coefficient matrix without any work.

Assume we have a symmetric matrix A. If this matrix is decomposed as

A = D + L+ LT

in its diagonal, lower, and upper triangular part the SSOR matrix is defined as

M = (D + L)D−1(D + L)T

The SSOR matrix is given in factored form, so this preconditioner shares many properties of
other factorization-based methods. For example, its suitability for vector processors or parallel
architectures depends strongly on the ordering of the variables.

3.4 Incomplete Factorization Preconditioners

A broad class of preconditioners is based on incomplete factorizations of the coefficient ma-
trix. We call a factorization incomplete if during the factorization process certain fill elements,
nonzero elements in the factorization in positions where the original matrix had a zero, have
been ignored. Such a preconditioner is then given in factored form M +LU with L lower and
U upper triangular. The efficacy of the preconditioner depends on how well M−1 approximates
A−1.
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3.4. Incomplete Factorization Preconditioners

When a sparse matrix is factored by Gaussian elimination, fill-in usually takes place. In that
case, sparsity-preserving pivoting techniques can be used to reduce it. The triangular factors
L and U of the coefficient matrix A are considerably less sparse than A.

Sparse direct methods are not considered viable for solving very large linear systems due
to time and space limitations , however, by discarding part of the fill-in in the course of
the factorization process, simple but powerful preconditioners can be obtained in the form
M = LU m where L and U are the incomplete (approximate) LU factors.

Summarizing, it can be said that existing solutions to the problem for incomplete factorization
preconditioners for general SPD matrices follow one of two cases: simple inexpensive fixes
that result in low quality preconditioners in terms of convergence rating, or sophisticated,
expensive strategies that produce high quality preconditioners.
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Chapter 4

Support Theory for Graphs

4.1 Introduction

Support theory, is a recent methodology for bounding condition numbers of preconditioned
systems. More specifically, it is a set of tools and techniques for bounding extremal eigenvalues.
For some iterative methods (conjugate gradients in particular), the ratio of largest to smallest
eigenvalues provides an upper bound on the number of iterations.In this section we review
fragments of support theory that are relevant to the design of the CMG solver. For an extensive
exposition of support theory we refer the reader to [3].

4.2 Graph Theory

In this section, we will review some basic, relevant results in graph theory. First we start with
the following basic definitions.

An undirected graph G = (V,E) is a collection V of nodes or vertices, together with a set
E of edges where each edge in E is an unordered pair of nodes. A self − loop is an edge in
wich the vertices are identical. We denote the cardinality of a set of vertices S by ∥S∥, and
the cardinality of a set of edges E by ∥E∥. An udirected graph is depicted as a set of points
connected by lines.

A graph G = (V,E), is said to be ordered if each of the n vertices in V is assigned a
unique number in the range 1, ..., n; such an assignment is called ordering. Given an ordered
graph G, we will denote vertices by V = {v1, ...vn}, and the edges E = {e1, ...en}, where
ei = (vj , vk) = (vk, vj), for some j, k. We will assume that all graphs are ordered.

Let G = (V,E) be a graph. If ei = (vk, vj) ∈ E, then vertices vj and vk are called adjacent,
denoted vj and vk. Let v ∈ V ; the degree of v, deg(v), is the number of distinct vertices
adjacent to v.

A complete graph is a graph in which all vertices are pairwise adjacent. We denote by Kn the
complete graph on n vertices.

A walk is an alternating sequence of vertices and edges that begins and ends with a vertex,
such that any edge in the sequence connects the vertex preceding it to the vertex following it.

A path is a walk in which all the vertices are distinct.

A cycle is a walk in which the first and the last vertex are the same.
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4. Support Theory for Graphs

A graph is connected if there exists a path between every pair of vertices. Let G1, ..., Gm be
subgraphs of G such that each Gi is connected and there exists no edges between Gj and Gk

for j ̸= k; then the Gj are called the connected components of G.

A tree is a connected graph with no cycles. A forest is a graph with nocycles, and is therefore
a collection of trees.

A directed graph G is a graph in which the edges are ordered pairs; that is, vj , vk) ̸= (vk, vj).
For an edge e = (vj , vk), vj is termed to tail of the edge, and vk is the head. A directed graph
G is depicted as a set of points connected by lines with arrowheads denoting the orientation
from tail to head.

A weighted graph G (directed or undirected) is a graph together with function w : E → ℜ,
which assigns weights to edges.

Let G = (V (G), E(G)) and H = (V (H), E(H)) be graphs. H is subgraph of G if V (H) ⊆ V (G),
and E(H) ⊆ E(G). G is then a supergraph of H .

Let S ⊆ V (G). Let H be the subgraph of G given by V (H) = S, and (vi, vj) ∈ E(H) iff vi ∈ S
and vj ∈ S. Then H is the subgraph of G induced by the set S.

Let G = (V,E) be a graph and S ⊆ V . Let H be the subgraph of G induced by S. The the
frontier, or boundary, of H is the set of edges (vi, vj) such that either vi ∈ S and vj ∋ S, or
vi ∋ S and vj ∈ S.

Let G and H be graphs. An embedding of H into G is a mapping of vertices of H onto vertices
of G, and edges of H onto paths in G. The dilation of the embedding is the length of the
longest path in G onto wich an edge of H is mapped; we denote the dilation of the embedding
by δ(G,H). The conjestion of an edge e in G is the number of paths of the embedding that
contain e. The conjestion of the embedding is the maximum conjestion of the edges in G. We
denote the conjestion of the embedding by γ(G,H).

4.3 Graphs as electric networks

The cornerstone of combinatorial preconditioners is the following intuitive yet paradigm-
shifting idea explicitly proposed by Vaidya [22]: A preconditioner of a graph A should be
the Laplacian of a simpler graph B, derived in a principled fashion from A.

There is an analogy between graph Laplacians and resistive networks [8] . If G is seen as
an electrical network with the resistance between nodes i and j being 1/wi,j , then in the
equation Au = i, if u is the vector of voltages at the node, i is the vector of currents. Also,
the quadratic form uTAu =

∑
i,j wi,j(vi − vj)

2 expresses the power dissipation on G, given
the node voltages v. In view of this, the construction of a good preconditioner B amounts to
the construction of a simpler resistive network with an energy profile close to that of A.

The support of A by B, defined as s(A/B) = maxv vTAv
vTBv

is the number of copies of B that
are needed to support the power dissipation in A, for all settings of voltages. The principlar
reason behind the introduction of the notion of support, is to express its local nature, captured
by the Splitting Lemma.

Lemma (Splitting Lemma) If A =
∑m

i=1 Ai and B =
∑m

i=1 Bi, where Ai, Bi are Laplacians,
then s(A,B) ≤ maxi s(Ai, Bi)
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4.3. Graphs as electric networks

The Splitting Lemma allows us to bound the support of A by B, by splitting the power dissi-
pation in A into small local pieces, and ”supporting” them by also local pieces in B.

For instance, in his work Vaidya proposed to take B as the maximal weight spanning tree
of A. Then, it is easy to show that s(A,B) ≤ 1, intuitively because more resistances always
dissipate more power. In order to bound s(A,B), the basic idea to let Ai be edges on A
(the ones not existing in B), an let Bi be the unique path in the tree that connects the two
end-points of Ai. Then one can bound separately each s(Ai, Bi). In fact, it can be shown that
any edge in A that doesn’t exist in B, can be supported only by the path Bi.

As a toy example, consider the example in Figure 4.1 of the two (dashed) edges A1, A2 and
their two paths in the spanning tree (solid) that share one edge e.

In this example, the dilation of the mapping is equal to 3, i.e. the length of the longest of
two paths. Also, as e is uses two times, we say that the congestion of the mapping is equal
to 2. A core Lemma in Support Theory [[3], [2]] is that the support can be upper bounded by
the product congestion∗dilation.

Figure 4.1: A graph and its spanning tree - obtained by deleting the dashed edges.
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4. Support Theory for Graphs

4.4 Graphs as SDD linear sytems

In this Section we discuss how SDD linear systems can be viewed entirely as graphs. Combina-
torial preconditioning advocates a principled approach to the solution of linear systems. The
core of CMG and all other solvers designed in the context of combinatorial preconditioning
is in fact a solver for a special class of matrices, graph Laplacians. The Laplacian A of a
graph G = (V,E,w) with positive weights, is defined by:

Ai,j = Aj,i − wi,j and Ai,i = −
∑
i̸=j

Ai,j .

More general systems are solved via light-weight transformations to Laplacians. Consider for
example the case where the matrix A has a number of positive off-diagonal entries, and the
property Ai,i =

∑
i̸=j |Ai,j |. Positive off-diagonal entries have been a source of confusion for

algebraic multigrid (AMG) solvers, and various heuristics have been proposed. Instead, CMG
uses a reduction known as double-cover [10]. Let A = Ap +An +D, where D is the diagonal
of A an Ap is the matrix consisting only of the positive off-diagonal entries of A. It is easy
to verify that

Ax = b ⇔

(
D +An −Ap

−Ap D +An

)(
x

−x

)
=

(
b

−b

)
In this way, we reduce the original system to a Laplacian system, while at most doubling the
size. In practice it is possible to exploit the obvious symmetries of the new system, to solve it
with an even smaller space and time overhead.

Matrices of the form A + De, where A is a Laplacian and De is a positive diagonal matrix
have also been addressed in various ways by different AMG implementations. In CMG, we
again reduce the system to a Laplacian. If de is the vector of the diagonal elements of D, we
have

Ax = b ⇔

A+De 0 −de

0 A+De −de

−dTe −dTe
∑

i de(i)


 x

−x

0

 =

 b

−b

0


Again it’s possible to implement the reduction in a way that exploits the symmetry of the new
system, and with a small space and time overhead work only implicitly with the new system.

A symmetric Matrix A is diagonally dominant (SDD), if Ai,i ≥
∑

i̸=j |Ai,j |. The two reductions
above can reduce any SDD linear system to a Laplacian system. Symmetric positive definite
matrices with non-positive off-diagonals are known as M-matrices. It is well known that if
A is an M-matrix, there is a positive diagonal matrix D such that A = DLD where L is a
Laplacian. Assuming D is known, an M-system can also be reduced to a Laplacian system
via a simple change of variables. In many application D is given, or it can be recovered with
some additional work [4].

The reduction of SDD systems to Laplacians allows us to concentrate on them for the rest of
the paper. There is a one-to-one correspondence between Laplacians and graphs, so we will
be often using the terms interchangeably.

4.5 Graph Partitioning

Partitioning weighted graphs into disjoint and dissimilar clusters of similar vertices is ar-
guably one of the most important algorithmic problems. Naturally, in applications, one is
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4.5. Graph Partitioning

interested in obtaining good clusterings with as few clusters as possible, i.e. with a large
reduction factor p, defined as the number of vertices in the given graph over the number of
clusters.

Let G = (V,E,w) be a weighted graph. The Laplacian of G is the matrix AG defined by
Aii = −wij and Aii =

∑
j ̸=i Aij . If G1 = (V,E,w1), G2 = (V,E,w2) and G = (V,E,w1+w2), we

have AG = AG1 +AG2. We will often identify graphs with their Laplacians using this natural
one-to-one correspondence. The total incident weight

∑
u∈N(v) w(u, v) of vertex v is denoted

by vol(v). For any V ′ ⊆ V we let vol(V ′) =
∑

v∈V ′ vol(v), and out(V ′) =
∑

v∈V ′,u∋V ′ w(u, v).
We also let

cap(U, V ) =
∑

u∈U,v∈V

w(u, v)

denote the total weight connecting the nodes of the disjoints set U, V . The sparsity of an
edge cut into V ′ and V − V ′ is defined as the ratio

cap(V, V − V ′)

min(vol(V ′), vol(V − V ′))
.,
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4. Support Theory for Graphs

4.6 Steiner preconditioners

This section requires some well known definitions and facts from the support theory for
preconditioning.

Definition 4.1. [Support and condition numbers]
The support σ(A,B) of two Laplacians (A,B) is defined as

σ(A,B) = min{t ∈ R : xt(τB −A)x ≥ 0, ∀x,∀τ ≥ t}.

The condition number is defined as

κ(A,B) = σmax(A,B)σ(B,A).

Definition 4.2. [Generalized eigenvalues]
The set of generalized eigenvalues Λ(A,B) of pair Laplacians is defined by

Λ(A,B) = {λ : there is real vector x such thatAx = λBx}.

Lemma 4.3. [Rayleigh quotient characterization of support]
if A,B have the same size, we have

λmax(A,B) = σ(A,B) = maxxT j ̸=j(x
TAx)/(xTBx),

where j denotes the constant vector.

Definition 4.4. [Schur complement]
Let T be a weighted star graph with n + 1 vertices and edge weights d1, ..., dn. The Scur
complement S(T, v) of T with respect to its root v, is the graph defined by the weights
Sij(T, v) = didj/D where D =

∑
i di. Let A be any graph, A[V − v] be the graph induced in A

by the vertices in V − v, and Tu be the star graph consisting of the edges incident to v in A.
The Scur complement S(A, v) of A with respect to vertex v is the graph A[V −v]+S(Tv, v). Let
W ⊂ V and v be any vertex in W . The Scur complement with S(A,W ) is recursively defined
as

S(A,W ) = S(S(A, v),W − v) = S(S(A,W − v), v).

Let A,B be positive definite matrices. We let λi ≤ ... ≤ λn denote the eigenvalues of A
and µ1 ≤ ... ≤ µn denote the eigenvalues of B. Let κmax and κmin denote λmax(A,B) and
λmin(A,B). We therefore have λmax(B,A) = 1/κmin and λmin(B,A) = 1/κmax.

Steiner preconditioners, introduced in [10] and then extended in [15], introduce external
nodes into preconditioners. The steiner preconditioner is based on a partitioning of the n
vertices in V into m vertex-disjoint clusters Vi. So, for each Vi, the preconditioner contains
a star graph Si, with leaves corresponding to the vertices in Vi rooted at vertex ri. The roots
ri are connected and form the quotient graph Q. This general setting is illustrated in Figure
3.1(b).

Let D′ be the total degree of the leaves in the Steiner preconditioner S. Let the restriction
R be an nxm matrix, where R(i, j) = 1 if vertex i is in cluster j and 0 otherwise. Then, the
Laplacian os S has n+m vertices, and the algebraic form
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4.6. Steiner preconditioners

S =

(
D′ −D′R

−RTD′ Q+RTD′R

)
, (4.1)

A concerned feature of the Steiner preconditioner S is the extra number of dimensions/vertices.
Gremban and Miller [10] that every time a system of the form Bz = y is solved in an usual
preconditioned method, the system

S

(
z

z′

)
=

(
y

0

)
should be solved instead, for a set of don’t care variables z′. They also showed that the
operation is equivalent to preconditioning with the dense matrix

B = D′ − V (Q+DQ)
−1V T , (4.2)

where V = D′R, and DQ = RTD′R. The matrix B is called the Schur complement of S with
respect to the elimination of the roots ri. It is a well known fact that B is also a Laplacian.

The analysis of the support σ(A/S), is identical to that for the case of subgraph precon-
ditioners. For instance, going to Figure 4.2, the edge (v1, v4) can only be supported by the
path (v1, r1, v4), and the edge (v4, v7) only by the path (v4, r1, r2, v7). Similarly we can see the
mappings from edges in A to paths in S for every edge in A. In the example, the dilation of
the mapping 3, it can be seen that to minimize the conjestion on every edge of S (i.e. make
it equal to 1), we need to take D′ = D, where D are the total degrees of the nodes in A, and
w(r1, r2) = w(v3, v5) + w(v4, v7). More generally, for two roots ri, rj we should have

W (ri, rj) =
∑

i′∈Vi,j′∈Vj

wi,j .

Under this construction, the algebraic form of the quotient Q can be seen to be Q = RTAR.

In [15] it was shown that the support σ(S/A) reduces to bounding the support of σ(Si, A[Vi]),
for all i, where A[Vi] denotes the graph induced in A by the vertices Vi.

Figure 4.2: A graph and its Steiner preconditioner.
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4. Support Theory for Graphs

4.7 Graph conductance

The conductance ϕ(A) of a graph A = (V,E,w) is defined as

ϕ(A) = min
S⊆V

w(S, V − s)

min(w(S), w(V − S))

where w(S, V −S) denotes the total weight connecting the sets S and V −S, and where w(S)
denotes the total weight incident to the vertices in S.

The main result of [15] is captured by the following Theorem.

Theorem 4.1 The support σ(S/A) is bounded by a constant c independent from n, if and
only if for all i the conductance of the graph Ao[Vi] induced by the nodes in Vi augmented
by the edges leaving Vi is bounded by a constant c′.

Although Theorem doesn’t give a way to pick to clusters, it does provide a way to avoid bad
clusterings.

4.8 Support theory and Grady’s clusterings

In hir recent work [9], Grady proposed a multigrid method where the construction of the
“coarse” grid follows exactly the construction of the quotient graph in the previous section.
Specifically, Grady proposes a clustering such that every cluster contains exactly one of certain
pre-specified “coarse” nodes. He then defines the restriction matrix R and he lets the coarse
grid be Q = RTAR, identically to the construction of the previous Section. The question then
is whether the proposed clustering provides the guarantees that by the previous Theorem are
necessary to construct a good Steiner preconditioner. In the following Figure, we replicate
Figure 3.2 of [9], with a choice of weights that force the depicted clustering.

Figure 4.3: A bad clustering

Every cluster in Figure 4.3 contains exactly one black/coarse node. The problem with the
clustering is that the top left cluster, has a very low conductance when M » 1. In general, in
order to satisfy the requirement of the previous Theorem, there are cases where the clustering
has to contain clusters with no coarse nodes in them. As we will discuss in later the behav-
ior of the multigrid algorithm proposed in [9] is closely related to the quality of the Steiner
preconditioner induced by the clustering. This implies that the multigrid of [20] can suffer
bad convergence.

The canonical clustering in Grady’s algorithm is very suitable for GPU implementations, when
other solvers may be less suitable. This gives to it an advantage on this type of hardware. Even
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4.8. Support theory and Grady’s clusterings

in the presence of a number of relatively bad clusters, it can be faster relative to a solver that
uses better clusters. However the advantage is lost when the computed clusters cross a negative
threshold in quality, a threshold that depends on several hardware-dependent factors. The
value of Support Theory is evident in this case. Grady’s algorithm can be instrumented with a
very fast routine that measures the quality of the formed clusters and predicts its performance,
and reverts to another solver when needed. One can also imagine hybrid clustering algorithms
where the majority clusters are formed using the algorithm [9] and the ‘sensitive’ parts of the
system are treated seperately.
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Chapter 5

The Combinatorial Multigrid Solver

In this chapter we decribe the Combinatorial Multigrid Solver (CMG) which for a given nxn
matrix A with m non-zero elements, has a time complexity O(mlogn). We start with a short
review of multigrid algorithms and other SDD solvers, which we think is necessary to explain
why CMG is different from previous implementations of multigrid algorithms.

5.1 Related work on SDD solvers

Multigrid was firstly conceived as a method to solve linear systems that generated by the
discretization of the Laplace equation over relatively nice domains [21]. The geometry that
lies under those domains leads to a hierarchy of grids A = A0, ..., Ad, that look similar ata
different levels of detail; someone can think of multigrid as a tower od 2D grids, with sizes
2d−ix2d−i for i = 0, ..., d. Its provably asymptotically optimal behavior for certain classes of
problems soon lead to an effort -known as Algebraic Multigrid (AMG)- to generalize its prin-
ciples to arbitrary matrices. In contrast to classical Geometric Multigrid (GMG) where the
hierarchy of grids is generated by the discretization process, AMG constructs the hierarchy of
‘coarse’ grids/matrices based only on the algebraic information contained in the matrix. Vari-
ous flavors of AMG –based on different heuristic coarsening strategies– have been proposed in
the literature. AMG has been proven successful in solving more problems than GMG, though
some times at the expense of robustness, a by-product of the limited theoretical understanding.

A solver with provable properties for arbitrary SDD matrices, was discovered only recently.
The path to it was Support Theory [3], a set of mathematical tools developed for the study
of combinatorial subgraph preconditioners, originally introduced by Vaidya [[22], [11]]. It has
been at the heart of the seminal work of Spielman and Teng [20] who proved that SDD sys-
tems can be solved in nearly-linear time. Koutis and and Miller [14] proved that SDD matrices
with planar connection topologies can be solved asymptotically optimally, in O(n) time for
n-dimensional matrices. The complexity of the Spielman and Teng solver was recently signifi-
cantly improved by Koutis, Miller and Peng [[16], [13]], who described an O(mlogn) algorithm
for the solution of general SDD systems with m non-zero entries.

These theoretically described solvers have to deal with large hidden constants and with the
complicated nature of the underlying algorithms, which makes them impractical. Combina-
torial Multigrid (CMG) is a variant of multigrid that reconciles theory with practice. CMG
also builds a hierarchy of matrices/graphs as AMG does. But the main and essential dif-
ference from AMG is that the hierarchy is constructes after viewing the matrix as a graph,
and using the discrete geometry of the graph, for example notions like graph separators and
expansion. The re-introduction of geometry into the problem allows us to prove sufficient and
necessary conditions for the construction of a good hierarchy and claim strong convergence
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5. The Combinatorial Multigrid Solver

guarantees for symmetric diagonally dominant (SDD) matrices based on recent progress in
Steiner preconditioning. [[10], [12], [15]].

5.2 A graph decomposition algorithm

The crusial step of constructing a good Steiner preconditioner is the computation of a group
decomposition that satisfies, as best as possible, the requirements of Theorem 1. Before the
presentation of the DecomposeGraph algorithm, that extends the ideas of [15], we need to
introduce a couple of definitions. Let volG(v) denote the total weight incident to node v in
graph G. The weighted degree of a vertex v is defined as the ratio

wd(v) =
vol(v)

maxu∈N(v) w(u, v)

The average weighted degree of the graph is defines as awd(G) = (1/n)
∑

y∈N wd(v).

Algorithm 7 Algorithm Decompose Graph.
1: Algorithm Decompose Graph
2:
3: Input: Graph A = (V,E,w)
4: Output: Disjoint Clusters Vi with V =

∪
i Vi

5: Let W ⊆ V be the set of nodes satisfying wd(v) > κ· awd(A), for some constant κ > 4.
6: Form a forest graph F , by keeping the heaviest incident edge of v for each vertex v ∈ V

in A.
7: For every vertex w ∈ W such that volT (w)< volG(w)/awd(A) remove from F the edge

contributed by w in Step 2.
8: Decompose each tree T in F into vertex-disjoint trees of constant conductance.

It is not very difficult to prove that the algorithm Decompose-Graph produces a partitioning
where the conductance of each cluster depends only on awd(A) and the constant κ. In fairly
general topologies that allow high degree nodes, awd(A) is constant and the number of clusters
m returned by the algorithm is such that n = m > 2 (and in practice larger than 3 or 4).
There are many easy ways to implement Step 3. Our current implementation makes about
three passes of A. Of course, one can imagine variations of the algorithm (i.e. a correction
step, etc) that may make the clustering phase a little more expensive with the goal of getting
a better conductance and an improved condition number, if the application at hand requires
many iterations of the solver.

5.3 From Steiner preconditioners to Multigrid

Algebraically, any of the classic preconditioned iterative methods, such as the Jacobi and
Gauss-Seidel iteration, is nothing but a matrix S, which gets applied implicitly to the current
error vector e, to produce a new error vector e′ = Se. For example, in the Jacobi iteration we
have S = (I − D1A). This has the effect that it reduces effectively only part of the error in
a given iterate, namely the components that lie in the low eigenspaces of S (usually referred
to as high frequencies of A). The main idea behind a two-level multigrid is that the current
smooth residual error r = b − Ax, can be used to calculate a correction PTQ−1Pr, where
Q is a smaller graph and P is an mxn restriction operator. The correction is then added to
the iterate x. The hope here is that for smooth residuals, the low-rank matrix PTQ−1P is a
good approximation of A−1. Algebraically, this correction is the application of the operator
T = (I − PTQ−1PA) to the error vector e. The choice of P and Q is such that T is a pro-
jection operator with respect to the A-inner product, a construction known as the Galerkin
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condition. Twolevel convergece proofs are then based on bounds on the angle between the
subspace Null(P ) and the high frequency subspace of S.

At a high level, the key idea behind CMG is that the provably small condition number κ(A,B),
is equal to the condition number κ(Â, B̂) where Â = D−1/2AD−1/2 and B̂ = D−1/2BD−1/2.
This in turn implies a bound on the angle betwqeen the low frequency of Â and the high
frequency of B̂. The latter subspace includes Null(RTD1/2). THis fact suggests to choose
RTD1/2 as the projection operator with performing relaxation with (I − Â) on the system
Ây = D−1/2b, with y = D1/2x. Combining everything we get the following two-level algorithm.

Algorithm 8 Two-level Combinatorial Multigrid.
1: Two-level Combinatorial Multigrid
2:
3: Input: Laplacian A = (V,E,w), vector b, approximate solution x, nxm restriction matrix

R
4: Output: Updated solution x for Ax = b
5: D := diag(A); Â := D−1/2AD−1/2;
6: z := (I − Â)D1/2x+D−1/2b;
7: r := D−1/2b− Âz;w := RTD1/2r;
8: Q := RTAR; Solve Qy = w.
9: x := D−1/2((I − Â)z +D−1/2b)z;

The two-level algorithm can anturally be extended into a full multigrid algorithm, by recur-
sively calling the algorithm when the solution to the system with Q is requested. This produces
a hierarchy of graphs A = A0, ..., Ad. The full multigrid algorithm we use, after simplifications
in the algebra of the two-level scheme is as follows.

Algorithm 9 Full Multigrid Algorithm.
1: function x := CMG(Ai, bi)
2: D := diag(A)
3: x := D−1b
4: ri := bi −Ai(D

−1b)
5: bi+1 := Rri
6: z := CMG(Ai+1, bi+1)
7: for i = 1 → ti − 1 do
8: ri+1 := bi+1 −Ai+iz
9: z := z + CMG(Ai+1, ri+1)
10: end for
11: x := x+RT z
12: x := ri −D−1(Aix− b)

If nnz(A) denotes the number of non-zero entries in matrix A, we pick

ti = max{⌈ nnz(Ai)

nnz(Ai+1)
⌉, 1}

This choice for the number of recursive calls, combined with the fast geometric decrease of
the matrix sizes, targets a geometric decrease in the total work per level, while optimizing the
condition number.
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Chapter 6

Results and conclusions

Our implementation was written in C and compiled with the Intel Parallel Studio XE 2013
suite. It relies on standard C Libraries, Csparse Library and Intel Math Kernel Library. CMG
consists of two phases. The setup up phase where a process of the initial matrix takes place
and the hierarchy-preconditioner is prepared, and the solution phase where Conjugate Gra-
dient method uses the preconditioner to solve the system of equations. Our benchmark runs
were performed on an Intel Core i7 at 2.4GHz, with 6 cores and 24GB main memory. All
benchmarks were solved for a specific b-side, and the stopping criterion for convergence was
taken to be ∥Ax− b∥ ≤ 1e− 04 ∗ ∥b∥. In this chapter is made a comparative analysis between
CMG preconditioner and Jacobi preconditioner.

The table below shows the results of the benchmarks where an initial guess of the solution x
(where x ̸= 0) is given.

Matrix Dimensions Non-zero Hierarchy CMG CMG Jacobi Jacobi
elements time (sec) iterations time (sec) iterations time (sec)

ad1 210904 2112590 0.66 9 0.30 171 1.59
ad3 450927 4191415 1.01 10 0.75 202 3.92
ad4 494716 4076449 1.15 10 0.73 219 4.32
bb2 534782 4407059 1.13 9 0.70 196 4.09
bb4 2169183 19437167 5.48 10 3.68 258 25.41
nb6 1248150 11591932 2.97 12 2.41 187 10.24
nb7 2481272 21370078 4.81 9 3.74 237 26.86

Table 6.1: Summary of the results for the given sets (matrix,initial guess x ̸= 0,right hand side
b), including time performance and number of iterations of the CG method in both cases.

In the following table is given the reduction of the iterations that comes from the CMG
preconditioner and the execution time speedup.

Matrix Iteration Reduction Exec. Time Speedup Exec. Time Speedup (w/o hierarchy)
ad1 19 1.65 5.30
ad3 20.2 2.22 5.22
ad4 21.9 2.29 5.91
bb2 21.77 2.23 5.84
bb4 25.8 2.77 6.90
nb6 15.58 1.90 5.24
nb7 26.33 3.14 7.18

Table 6.2: Iteration Reduction of CMG and Execution Speedup Time
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6. Results and conclusions

The table below shows the results of the benchmarks where an initial guess of the solution x
(where x = 0) is given.

Matrix Dimensions Non-zero Hierarchy CMG CMG Jacobi Jacobi
elements time (sec) iterations time (sec) iterations time (sec)

ad1 210904 2112590 0.66 9 0.27 216 1.79
ad3 450927 4191415 1.01 9 0.61 223 4.27
ad4 494716 4076448 1.15 10 0.65 226 5.14
bb2 534782 4407058 1.13 10 0.71 220 4.50
bb4 2169183 19437167 5.48 10 3.62 307 29.97
nb6 1248150 11591932 2.97 12 2.40 269 14.65
nb7 2481272 21370078 4.81 10 4.16 257 29.41

Table 6.3: Summary of the results for the given sets (matrix,initial guess x = 0,right hand side
b), including time performance and number of iterations of the CG method in both cases.

In the following table is given the reduction of the iterations that comes from the CMG
preconditioner and the execution time speedup.

Matrix Iteration Reduction Exec. Time Speedup Exec. Time Speedup (w/o hierarchy)
ad1 24 1.94 6.62
ad3 24.77 2.63 7
ad4 26.6 2.85 7.90
bb2 22 2.44 6.33
bb4 30.7 3.29 8.27
nb6 22.41 2.72 6.10
nb7 25.7 3.27 7.06

Table 6.4: Iteration Reduction of CMG and Execution Speedup Time
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