MNoveniotripio Osocaliog
Tunpa Mnxovikwyv H/Y, TnAemikowwviwy & AKTUWV

Department of Computer
& Communication Engineering
University of Thessaly

Volos Greece

AutAwpatiki Epyaocia

O&ua:
«ZXESLAOMAC KaL avantuén evoc cuoTOTog SLtaxeiplong
HETPROEWV TWV XOLPAKTNPLOTIKWV TOU KavaAlol o€ acUppata
Sdiktua.»

«Channel measurement methodology in wireless networks.»
EmpeAntnc:
Naooag Bipyidlog tou Mpnyopiou

EmuBAEnwy KaBnyntnc:
TaoloUAag Aéavdpocg
(KaBnyntrc)

YuveriBAEnwv Kabnyntnc:
Katoapog AnuntpLog
(AékTopacg)

2°° suvermuPAénwv KaBnyntnc:
Kopdkng¢ ABavaoclog

BoAog, OktwBplog 2012

[Tavemompio Oecoariog

[Tavemompio Oecoariog

Euxaplotieg

Yotepa amo Ml Topeia TEVIE €Twv oto TuAua Mnxoavikwv H/Y
TnAemikolvwVvIwV Kot Atktuwv Tou MNaveniotnuiov Oscoaiiag, oOAoKANpwWVW
TIC TIPOTITUXLOKEG HMOU OTOUSEG HE TNV EKMOVNON TNG TOPOUCOC
SUTAWHATLKAG Epyaciac.

Oa ABeAa apyxlka va euxaplotiow BOepud tov k. Kopdkn ABavacilo, tou
TuApatog Mnxovikwv H/Y ThAEMKOWWVIWY Kot AKTOWVY, YO TIG XPHOLUECS
oUMBOUAEC Kkal uTtodeielc Tou KaBwg Kal ylwo TNV UMoothplén mou Hou
npoodepe kata tn Oldpkela NG doltnong pou, oAAA Kol KATA TNV
EKTIOVNON TNG SUTAWHATIKAG HOU Epyaciag.

Euxoplotw emiong tov emiBA€movia tnNC epyaciag pou, Kabnynt tou
Tunuatoc Mnxovikwv H/Y TnAsmikowwviwv kot AlKtowv, K. ToaoloUAa
N€avdpo Kot Tov cuvemiPBAEmovta Aéktopa Tou TuRpatog Mnxavikwv H/Y
TnAemkowwviwyv Kat Alktowy, K. Katoapod AnuAtplo yia tnv kobodriynon
TOUuC.

Ano kapblac Ba nbeha va euvxaplotiow tov K. Kepavidén Euvotpdrtio,
vrtoPnoo Adaktopa tou Turnpoatoc Mnxavikwv H/Y TnAemikowwviwy Ko
Aktowv, Kot yevikotepa oAa ta matdiad tou NiTLab ywa tnv moAuTiun
ouvOpour Toug oto va dEPw €LC TTEPAC TNV SUTAWMATLKI LOU €pyacia.

TéNog, euxaploTw Oepud TNV OLKOYEVELD HOU Ylo TNV OUEPLOTN
CUUTIOPAOTOON TIOU OV Ttapeixe OAa aUTA Ta XPOvLa yla TNV OAOKANpwOoN
TWV TIPOTITUXLAKWV OTIOUSWV HoU.

2 TNV OLKOYEVELA LOU

[Tavemompio Oecoariog 3

Contents

AB ST RACT ... iititeeeiierreensssssrrrensssssssmmssssssssssnssssssssssssssssssssssnnssssssssnnnsssssssnnnnnssssnss 7
1. INTRODUCTION .iiieeeeeuiierrennsssssersensssssssssssssssssssssnssssssssssnsssssssssnnssssssssnnnnsssssss 8
1.1 ELECTROMAGNETIC INTERFERENCE AT 2.4 GHZ oot s snenns 8
1.2 RECOGNISE SUCH KINDS OF INTERFERENCE ..veeutstssesessessessessessessessesssssssssssssssssssssssssesssssessessenes 9
1.3 THE NITOS WIRELESS TESTBED .uetuerersersessessessssessessessessessessessessessessessessessssssssssssssssssssssesssssees 10
2. CHANNEL SENSING HARDWARE.......cciitmmmemnssssrmrnsnsssssssmssssssssssssnsssssssnns 11
2.1 PRESENTATION OF USRP ettt sse e sessessess s s s s s s ssssssssas s s sne s ssesnnns 11
2.1.1 DESCITPUION Of USRP ..ottt sevss s esissssissssasssessssesassssassssas s ssessssessssss s sasessasssessssesassssassssessssssssssasssssssssesessenioes 11
2.1.2 APDDIICATIONS ceoeerereererresseeseesseesasesissesssesssesssesssssassesssesseesssssassesssesssesssssassssssesssesssssasssassesssesssesssesassssssesssessnssssssansesssesssssanssansees 12
2.1.3 USRP RArdWaATe ATIVEY ([UHD) ...oooreeeeeveeerereerisssiassesssesassasissssissssssssessssessssssssssssssssssssessssesassssissassssssssssssassessssssssssanises 13
A 8] 2 S 14
b2 B 0K 23 B 14
2.2.2 USRP N210 eoooeoeeeoeoeeoeeeeeeseeesseesessssessssssssssessssssssssssssssssssssssssssssssssssssseessesessssssesssssessssssessssssessnes 16
2.3 DAUGHTERBOARDS ..ooutiirerecsersessessessesssssssssssssssssssssessessssssssssssssssssssessessasssnsssssnssnssnssssssssssssessens 18
2.3.1 XCVR2450 2.4 GHz-2.5 GHZ, 4.9 GHZ-5.9 GHZ TX/RX.cooorrrccoorrevrssvsseesssssserssssssesssmsssesssmsssesssssssesssmsssessssseee 18
2.3.2 SBX 400-4400 MHZ RX/TX covvvvvsssreeesssseesssmsssesssmsssesssssssssssssssessesssssssee 19
3. GNU RADIO ..ceuuiiiirmemnnssssrmsensssssssmnnssssssssesssssssssssssssssssssssnssssssssnsnnsssssssssnnnssnns 20
3.1 DESCRIPTION OF GINU RADIO c.utiiiirrirrisresrississessesesessessesssssessessssssssssssssssssssssssnssssssssssssessessens 20
3.2 GINU RADIO COMPANION tutererrerrersessessessesssssssssssssssssssessessessssssssssssssssssssssssssassssssnsssssssssssssssessens 21
4. MEASUREMENT COLLECTION FRAMEWORKcootteeeusssrrrnnssssssrrsnnnss 22
4.1 DESCRIPTION OF OML oviciieisiieressersessessesssssssssssssssssssessessessssssssssssssesssssanssnsasssnssnssnssnssnsssessssses 22
4.2 WAYS OF IMPLEMENTING OML ..ottt s e s e ssessessesssssessssssssssssssssssnssnssnssnssnssssses 24
2.1 C/CH+ SOUTCE COUE cuumrrurireerrersereseereseesisessissssssssessssesassessssssesesesssssssssssassesas s sasss s R a5 R A1t R AR AR R0 24
2.2 W ADPOTS covvurerrureeussserassesassesisessssssessssesassesassssassssasssessssssassssesssssssessssssassssas sssssssssssssssssssassssassssessssssssssssessansssssssssssssssnsesansssenss 25
2RI =5 (ol 2 a0 15 Yole) PO 25
5. IST METHODiiiiiirirmeeeennnsssssssssseesmmmsssnssssssssssssssssssssssnnnssssssssssssssssssnnnnnnnnnns 28
5.1 DESCRIPTION OF THE METHOD ..cuceutueesssesesessssesesessssssessssssesssns 28
5.2 DEMONSTRATION ..uttvsueeeesasesesessesessssssessesssssssssssssssssns 29
5.3 USE CASES OF 1ST METHOD .uvvtueeereseeesesesesessssssesessssssessns 31
5.3.7 IS USE COASC: WI-FT DATNIS e eeveeseeeessseseaseseseasssseasasssessassseseasssseasasssestasssmseassssseasasssessassssseassssseasasnnmnen 31
5.3.22nd USE CASC: MODIIE NEOEWOTK DTS ..oeeeeeeeeeeeeeeeeeeeeeeeseeeeeseaeeeeesteveeseanessseasasssestasssmseassssseassssessasssmseassssseassnsenes 32

[Tavemompio Oecoariog 4

6. 2ND METHOD......ccciimnmnmnsmsenensssnsmssnsssssens 33

6.1 DESCRIPTION OF THE METHOD utsuisessessessesssssssssssssessessessessessessessessessessessesssssssssssssssssssssssssssessens 33
0.2 DEMONSTRATION ..uevrueeeerassesssessesessesssssssssssssssssns 35
6.3 EXAMPLE OF SQLITE ...ttt s s 37
0.4 USE CASE OF 2ZIND METHOD wuteueisessessessessesssssssssssssssssssessessessesssssessessessens 37
7. FUTURE WORK . .itteeuiierrrensssssermsnssssssssesnnsssssssssnssssssssssnssssssssnsnnsssssssssnnnssnns 38
8. REFERENCESoiteeeiiiirrenssssssrmmensssssssmsnssssssssnsnssssssssssnnssssssssnnnssssssssnnnssssssnnn 40

[Tavemompio Oecoariog

NEPINAHWH

H mapouoa SUTAWHATIKA gpyacia npaypatevetal tnv oxedioon Kal
QVATTUEN EVOC CUOTAMATOC SLaXELPLONG LETPROEWY TWV XOPAKTNPLOTIKWVY
Tou KavoAlol o€ acUppata diktua.

To MpwWTo PEPOC armoTeAEiTAL OO LA ELOAYWYH OTA oloUppaTa
Siktua, oTic e€wTEPIKEG TAPEUPBOAEC KAl OTNV avAyKN YLo EpyaAEia Tou va
TTOPOUV VAl TIG OVayVWPLooUV.

210 6€UTEPO HEPOG KAVOUE Lo Ttapouciaon tou hardware mou
xpnotpomnotjoape (USRP) kat twv Aoylopikwv (GNU Radio, OML) ota onoia
BAOLOTAKOME YLO VO AVATITUEOUUE TO cUOTNMA O,

To teAevutaio HEPOG TNC SUTAWUATLKAC SLATIPAYHATEVETAL TNV
UAOTIOLNGN TOU CUOTHUOTOC, OITOTEAOUEVOU aTto 2 HeEBOSOUG Kal LEPLKEG
TIEPUTTWOELG OTIOU UIopEl va BpeL epappoyr] TO MPOTELVOUEVO CUOTNHAL.

[Tavemompio Oecoariog

ABSTRACT

The present Final Project Dissertation — Thesis deals with the design
and development of a framework for measurement of channel
characteristics in wireless networks.

The first part of the project consists of an introduction about wireless
networks, the external interference and the need of tools that can sense all
kind of interference.

At the second part, we briefly present the USRPs, which is the
hardware platform we use in order to take the measurements, the GNU
Radio Project and the OML framework.

At the third part lies the implementation of our framework. We give a
description of the two methods that we constructed and some use cases of
our framework.

[Tavemompio Oecoariog 7

1. Introduction

In the last decade testbeds have been set-up to evaluate network
protocols and algorithms under realistic settings. In order to draw solid
conclusions about the corresponding experimental results, it is important
for the experimenter to have a detailed view of the existing channel
conditions. Moreover, especially in the context of non-RF-isolated wireless
testbeds, where external interference severely impacts the resulting
performance, the requirement of experimenters for accurate channel
monitoring becomes a prerequisite.

1.1 Electromagnetic interference at 2.4 GHz

Microwave ovens operate by emitting a very high power signal in
the 2.4 GHz band. Older devices have poor shielding, and often emit a
very "dirty" signal over the entire 2.4 GHz band. This can cause
considerable difficulties to Wi-Fi and Video senders, resulting in reduced
range or complete blocking of the signal.

Many ZigBee / IEEE 802.15.4-based wireless data networks
operate in the 2.45-2.4835 GHz band, and so are subject to interference
from other devices operating in that same band.

Certain car manufacturers use the 2.4 GHz frequency for their car
alarm internal movement sensors. These devices transmit on 2.45 GHz
(between channels 8 and 9) at a strength of 500 mW. Because of channel
overlap, this will cause problems for channels 6 and 11 which are
commonly used default channels for Wi-Fi connections.

[Tavemompio Oecoariog 8

1.2 Recognise such kinds of interference

Due to the fact that commercial Wi-Fi cards cannot decode all the
packets, for instance if rssi low or the packet is partially collapsed it discards
the packet or if a microwave oven is in function, there is the need for
sensitive and accurate tools. A solution to this is the SDR.

A software-defined radio system, or SDR, is a radio communication
system where components that have been typically implemented in
hardware (e.g. mixers, filters, amplifiers, modulators/demodulators,
detectors, etc.) are instead implemented by means of software on a
personal computer or embedded system. While the concept of SDR is not
new, the rapidly evolving capabilities of digital electronics render practical
many processes which used to be only theoretically possible.

Our framework is based on software-defined radio (SDR) devices that
feature highly flexible wireless transceivers and are able to provide highly
accurate channel sensing measurements.

My Custom SDR Course

< SDR Design Basics >

SDR Deployment Considerations

GNU Radio - Advanced) USRP - Advanced

[Tavemompio Oecoariog 9

1.3 The NITOS Wireless Testbed

The most important part of my work based on NITOS testbed. CERTH
has developed a wireless testbed called Network Implementation Testbed
using Open Source platforms (NITOS). NITOS is a testbed offered by NITLab
and consists of 50 wireless nodes based on open source software. The
testbed is outdoor and uses a wireless layout of nodes which can be used
for measurements and experiments in a real time environment. That gives
the opportunity to observe the results of an experiment out of the
“secured” environment of a simulation program and to take conclusions in
real dangers or problems that the final product maybe deal with.

@ Red dots represent Grid Nodes
Yellow dots represent Orbit Nodes

@ Green dots represent GNU/MIMO Nodes
@ Blue dots represent Diskless Nodes

[Tavemompio Oecoariog 10

2. Channel Sensing Hardware

2.1 Presentation of USRP

2.1.1 Description of USRP

The Universal Software Radio Peripheral (USRP) products are
computer-hosted software radios. They are designed and sold by Ettus
Research, LLC and its parent company, National Instruments. The USRP
product family is intended to be a comparatively inexpensive hardware
platform for software radio, and is commonly used by research labs,
universities, and hobbyists. USRPs connect to a host computer through a
high-speed USB or Gigabit Ethernet link, which the host-based software
uses to control the USRP hardware and transmit/receive data. Some USRP
models also integrate the general functionality of a host computer with an
embedded processor that allows the USRP Embedded Series to operate in a
standalone fashion.

The USRP family was designed for accessibility, and many of the
products are open source. The board schematics for select USRP models are
freely available for download. All USRP products are controlled with the
open source UHD driver. USRPs are commonly used with the GNU Radio
software suite to create complex software-defined radio systems. The USRP
product family includes a variety of models that use a similar architecture. A
motherboard provides the following subsystems: clock generation and
synchronization, FPGA, ADCs, DACs, host processor interface, and power
regulation. These are the basic components that are required for baseband
processing of signals. A modular front-end, called a daughterboard, is used
for analog operations such as up/down-conversion, filtering, and other
signal conditioning. This modularity permits the USRP to serve applications
that operate between DC and 6 GHz.

[Tavemompio Oecoariog 11

In stock configuration the FPGA performs several DSP operations,
which ultimately provide translation from real signals in the analog domain
to lower-rate, complex, baseband signals in the digital domain. In most use-
cases, these complex samples are transferred to/from applications running
on a host processor, which perform DSP operations.

The code for the FPGA is open-source and can be modified to allow high-
speed, low-latency operations to occur in the FPGA.

All products in Ettus Research Bus Series use a USB 2.0 interface to transfer
samples to and from the host computer. These are recommended for
applications that do not require the higher bandwidth and dynamic range
provided by the Network Series(USRP N200 and USRP N210).

2.1.2 Applications

This is a list of some of the applications the USRP has been used for:
o An APCO25 compatible transmitter/receiver and decoder
J RFID reader
o testing equipment
J a cellular GSM base station
J a GPS receiver
J an FM radio receiver
J an FM radio transmitter
J a digital television (ATSC) decoder
J passive radar
J synthetic aperture radar
J an amateur radio
J a teaching aid
. Digital Audio Broadcasting (DAB/DAB+/DMB) transmitter
. Mobile WiMAX receiver with USRP N2x0

[Tavemompio Oecoariog 12

2.1.3 USRP hardware driver (UHD)

The USRP hardware driver (UHD) is the device driver provided by Ettus
Research for use with the USRP product family. It supports Linux, MacQOS,
and Windows platforms. Several frameworks including GNU Radio,
LabVIEW, MATLAB and Simulink use UHD. The functionality provided by
UHD can also be accessed directly with the UHD API, which provides native
support for C++. Any other language that can import C++ functions can also
use UHD. This is accomplished in Python through SWIG, for example.

UHD provides portability across the USRP product family. Applications
developed for a specific USRP model will support other USRP models if
proper consideration is given to sample rates and other parameters.

It works on all major platforms (Linux, Windows, and Mac); and can be built
with GCC, Clang, and MSVC compilers.

The goal of UHD is to provide a host driver and API for current and
future Ettus Research products. Users will be able to use the UHD driver
standalone or with third-party applications such as:

 GNU Radio

e LabVIEW

e Simulink

* OpenBTS

[Tavemompio Oecoariog 13

2.2 USRPs

2.2.1 USRP1

RF RFa
Ettus o | 3'
o O T TR TSI v

www.etlus.com

[Tavemompio Oecoariog

CLK 1O

USRP

Universal

Software Hadiao Periphbaral

14

The USRP1 is the original USRP product and consists of:

e Four high-speed analog-to-digital converters, each capable of 64
MS/s at a resolution of 12-bit, 85 dB SFDR (AD9862).

e Four high-speed digital-to-analog converters, each capable of 128
MS/s at a resolution of 14-bit, 83 dB SFDR (AD9862).

e An Altera Cyclone EP1C12Q240C8 FPGA.

e A Cypress EZ-USB FX2 High-speed USB 2.0 controller.

* Four extension sockets (2 TX, 2 RX) in order to connect 2—-4
daughterboards.

* 64 GPIO pins available through four BasicTX/BasicRX daughterboard
modules (16 pins each).

e Up to 8 MHz of RF bandwidth in the receive

e Glue logic

ADC/DAC Ik

FPGA - Altera Cyclone I g Doughte

00¢ 3 Board
Owal s
s DECIM g e 64 MELPS cemee—d i
[{
= L :
Interp ™ =
— e, —_— | ——
. d
o | 3

- 3 vo
]
uHD
use 2.0 ”m Command & Control
Type B USB PHY N . Dota Streaming o

——— Decim am et sthis |

o § Doughter
o Dol %
Interp s a2
a [— e | 1%
Dac Bl
s
I :
DC/DACC \ga
<
5
S
3

IRk | R Vo
TCXO |
fr— ADC/DAC Cik
Clock Distrubution
— wma o Qo
. Research”

[Tavemompio Oecoariog 15

2.2.2 USRP N210

Ettus Research ::ng{. @ @ USRP N210

[Tavemompio Oecoariog 16

USRP N210 is part of the networked series and one of the highest
performing class of hardware of Ettus Research

The USRP N210 consists of:

o A Xilinx Spartan-3A DSP 3400 FPGA

J 1 MB High-Speed SRAM

J Gigabit Ethernet interface

. Dual 100 MS/s, 14-bit, analog-to-digital converter

o Dual 400 MS/s, 16-bit, digital-to-analog converter

. Up to 50 MHz of RF bandwidth in the receive

J Flexible Clocking and Synchronization

. External Inputs for 10 MHz and 1 PPS signals (SMA)

J Optional GPS Disciplined Oscillator

J Ettus Research MIMO Cable that can be used to synchronize two
USRP devices (sold separately)

J Support for timed commands and LO alignment with the SBX
daughterboard

FPGA - Xilinx Spartan 3A-DSP
DoC

e DOCIM g -—

o
—R§seist

PPPPPPP

SMA 1PPS

SMA Ext Ref se— - i

SMA GPS e GZSDID Ett u S O

o Research”

o Qo

[Tavemompio Oecoariog 17

2.3 DaughterBoards

2.3.1 XCVR2450 2.4 GHz-2.5 GHz, 4.9 GHz-5.9 GHz Tx/Rx

:

1933258

. XCVR2450 Rcvm .
2.4GHz and 5 GHz Transceiver
) Copyright 2007 Ettus Research LLC

The XCVR2450 is a high-performance transceiver intended for
operation 2.4 GHz and 5.9 GHz range. Filtering on the XCVR2450 provides
exceptional selectivity and dynamic range in the intended bands of
operation. The typical power output of the XCVR2450 is 100 mW.

Example applications include public safety, UNII, ISM, Japanese wireless and
UWB development platforms. The XCVR2450 is a half-duplex transceiver.

[Tavemompio Oecoariog 18

2.3.2 SBX 400-4400 MHz Rx/Tx

O
-
el
¥ —
[
—
o
e
»
o
(o
(%)
— 3
-—
-
L <

The SBX is awide bandwidth transceiver that provides up to 100 mW
of output power, and atypical noise figure of 5 dB. The local oscillators for
the receive and transmit chains operate independently, which allows dual-
band operation. The SBX isMIMO capable, and provides 40 MHz of
bandwidth. The SBX isideal for applications requiring access to a variety of
bands in the 400 MHz-4400 MHz range. Example application areas include
Wi-Fi, WiMax, S-band transceivers and 2.4 GHz ISM band transceivers.

[Tavemompio Oecoariog 19

3. GNU Radio

3.1 Description of GNU Radio

GNU Radio)))

GNU Radio is a free & open source software development toolkit
that provides signal processing blocks to implement software-defined
radio systems. It can be used with readily-available low-cost external RF
hardware to create software-defined radios, or without hardware in a
simulation-like environment. It is widely used in hobbyist, academic and
commercial environments to support both wireless communications
research and real-world radio systems.

GNU Radio applications are primarily written using the Python
programming language, while the supplied performance-critical signal
processing path is implemented in C++ using processor floating-point
extensions, where available. Thus, the developer is able to implement
real-time, high-throughput radio systems in a simple-to-use, application-
development environment.

GNU Radio supports development of signal processing algorithms
using pre-recorded or generated data, avoiding the need for actual RF
hardware.

GNU Radio is a signal processing package, which is distributed
under the terms of the GNU General Public License. All of the code is
copyright of the Free Software Foundation. The goal is to give ordinary
software people the ability to 'hack' the electromagnetic spectrum, that
is, to understand the radio spectrum and think of clever ways to use it.

As with all software-defined radio systems, reconfigurability is the

key feature. Instead of purchasing multiple expensive radios, a single
generic radio is purchased which feeds signal processing software.

[Tavemompio Oecoariog 20

Currently only a few forms of radio can be processed in GNU Radio
but if one understands the math of a radio transmission system, one can

reconfigure GNU Radio to receive it.

3.2 GNU Radio Companion

GNU Radio has a graphical tool that visualize the signal processing
blocks, the GNU Radio Companion (GRC)

GNU Radio Companion (GRC) is a graphical tool for creating signal

flow graphs and generating flow-graph source code.

Here is an example:

A graph that does something

Options Variable Variable Variable | | variable
1D: top_block 1D: samp _rate | | 1D: taps 1D: sps | 1D: nfits
Generate Options: 07 GUI Value: 32k Value: firdes.root_ralsed_ Value: 4 r Value: 32

GLFSR Source

£ Polyphase Resampler
Repeat: Yes Rikara
Mask: 0 Float To Complex Bl :::':: oo
Seed: -1k ‘
— Size (# phases): 32
GLFSR Source
Degree: 32
Repeat: Yes
Mask: 0
Seed: - 245

Variable
1D: ntaps
Valve: 1408k

[Tavemompio Oecoariog

21

4. Measurement Collection Framework

4.1 Description of OML

-
~‘

OML is a software framework for measurement collection. It gives you
a way to collect all the measurement data being recorded by a bunch of
devices that are recording some sort of measurement data to a central
location, via the network. OML is a generic framework that can be adapted
to many different uses. Networking researchers who use testbed networks
to run experiments would be particularly interested in OML as a way to
collect data from their experiments. In fact, that's why the OML developed
in the first place! However, any activity that involves measurement on many
different computers or devices that are connected by a network could
benefit from using OML. For instance, network monitoring, distributed
simulations, or distributed sensor networks.

The OML framework is based on a client/server architecture and uses
IP multicast for the client to report the collected data to the server in real-
time. It defines the data structures and functions for sending/receiving,
encoding/decoding and storing experiment data. With user-friendly and
generic APls, it can be easily integrated into user applications. Users can
define what measurements are to be collected and stored. The clients at
the experiment nodes collect measurements and send them to the
collection server over a multicast channel after encoding them into XDR
format.

[Tavemompio Oecoariog 22

OML supports multiple multicast channels and instances of the
collection server per experiment to enhance the network scalability and
provide reliability of data collection by load balancing and redundancy. An
SQL database is used for persistent storage of experiment data that also
allows access using standard data analysis tools like Matlab. Note that
although OML is written initially with a focus on the ORBIT testbed, it can be
used in various wired and wireless networking testbeds and distributed
systems for data collection.

Measurement points Filters Measurement streams Database tables
> Em—
; ’
Application OML
or Service Server
_ > —>
File
g
— ——
- Database
(sqlite)
€ > 6
OML client library

[Tavemompio Oecoariog 23

4.2 Ways of implementing OML

4.2.1 C/C++ source code

You can include OML measurement collection into your C and C++
applications by doing the following:
« Include the oml2/omlc.h header file in your source file: #include
<oml2/omlc.h>
« Call omlc_init(), passing in the command line arguments from main(),
before doing any option processing in your own code.
« Add measurement points using omlc_add_mp()
« Call omlc_start() to start the measurement collection process. At this
point, interval-based measurement streams begin sampling.
« Call omlc_inject() whenever you want to record a measurement
sample.
« Call omlc_close() when your program has finished all measurement
collection activities.
« Compile and link your program against the libomlI2 library.

The disadvantage of this method is that you have to modify the code when
you change the application that you want to use.

Initialize omleg. dinit ()

U

Establish MP’s omlc add mp ()

2)

Main
application Record measurements omlc_inject ()
loop

])

End application omlc close ()

[Tavemompio Oecoariog 24

4.2.2 Wrappers

If the source code is not available and the only thing that you have is
an executable binary then you will have to develop a wrapper application,
which will launch the executable, captures its output, formats it, and passes
it on to OML. It is possible to write wrappers in C or C++ that read output
from a program, parse it, and record it directly using liboml2.

It is also achievable to write a wrapper in almost any language by
implementing the simple OML Text Protocol

4.2.3 Text Protocol

The text protocol was defined to simplify the sourcing of
measurement streams from applications written in languages which are not
supported by the OML library or where the OML library is considered too
heavy. We primarily envision this protocol to be used for low-volume
streams which do not require additional client side filtering. The OML client
package includes a Ruby class which implements this protocol and provides
convenient meta programming extensions to define measurement points
easily. However, implementing the protocol from scratch in any language of
choice should be very straight forward.

The protocol is loosely modeled after HTTP. The client opens a TCP
connection to an OML server and then sends a header followed by a
sequence of measurement tuples. The header consists of a sequence of key,
value pairs terminated by a new line. The end of the header section is
identified by an empty line. Each measurement tuple consists of a new-line-
terminated string which contains TAB-separated text-based serialisations of
each tuple element. Finally, the client ends the session by simply closing the
TCP connection.

[Tavemompio Oecoariog 25

Header

The header contains the following keys. All of them have to appear
exactly once, except for the 'schema’ field which needs to appear once for
every measurement stream carried by the connection.
protocol: Has to be "1"
experiment-id: String identifying the session and with it the database the
measurements will end up in
start-time: Local UNIX time in seconds taken at the time the header is being
sent
sender-id: A string identifying the source
app-name: A string identifying the application producing the measurements
content: Encoding of tuples, needs to be "text"
schema: Describes the schema of each measurement stream.

Schema Description

The description of the schema used in each measurement stream is a space-
delimited concatenation of the following elements:

 local schemaid

- name of the schema

- asequence of name, type pairs, one for each element. The name and

“w,n

type in each pair are separated by a “:

Each client should number its measurement streams contiguously starting
from 1.

[Tavemompio Oecoariog 26

Measurement Tuple Serialization

Each tuple is serialized into a new-line terminated string with all elements
separated by a TAB. In addition, three new elements are inserted before the
measurements themselves. These three elements are defined as follows:

- time_stamp: A time stamp in seconds relative to the header's 'start-

time'
« stream_id: This is the same number as used in the 'schema’ header
definition

- seg_no: A sequence number in the context of the specific
measurement stream.

The sequence numbers of each measurement stream is independent of the
others. That is, the first measurement in a given stream should have seq_no
=0, and all subsequent measurements in the stream should increment the
sequence number by 1.

Example

protocol: 1

experiment-id: ex1

start-time: 1281591603

sender-id: senderl

app-name: generator

schema: 1 generator_sin label:string phase:double value:double
schema: 2 generator_lin label:string counter:long

content: text

0.903816 2 0 sample-1 1
0.903904 1 O sample-1 0.000000 0.000000
1.903944 2 1 sample-2 2
1.903961 1 1 sample-2 0.628319 0.587785
2.460049 2 3 sample-3 3
2.460557 1 3 sample-3 1.256637 0.951057

[Tavemompio Oecoariog 27

5. 1° Method

5.1 Description of the method

In this method, based on GNU Radio signal processing blocks, we
wrote some scripts in python in order to gather measurement points
from the USRPs into files and then open these files in order to filter the
data store them and sent the results to the OML server using the module
oml4r.

In detail, we developed python scripts that call signal processing
blocks that take input from the USRPs and then store the input to files.
When all calls end then the script is responsible to open all the files,
filter the data and store them for future use from the user.

Afterwards make the computations and print the results to the
standard output. In order to transfer these results to the OML server we
use the Ruby module oml4r and wrote a wrapper in Ruby according to
our needs. So the procedure that we just explain is actually executed by
running this wrapper that it will call the python scripts and will wait to
read the python script’s output and then send the output to the server.
This output will be stored to an SQLITE database in an efficient way.

Last step, another python script read the output and plot the results.

Source . E :1] }—l_> Sink
.

Files ’ Files

Micophone Speakers

Other programs Other programs

Radio hardware Radio hardware
GUIs

[Tavemompio Oecoariog 28

5.2 Demonstration

The main scope of the spectrum scanning procedure is to estimate the
occupancy ratio per sampled frequency, regarding only Received Signal
Strength (RSS) measurements that exceed a predefined RSS threshold.
Asfor thefirst step, the reservation of the appropriate nodes that are
equipped with USRPs is required. Asfor the second step, the experimenter
simply executes specifically developed scripts that enable the definition of
multiple sampling parameters, such as:

— thelist of frequencies that will be sampled,
— the duration of sampling per individual frequency,

— the number of iterations of the repeated sensing procedure,
— the overall sampling period,

— and the RSS threshold that will be used for measurement filtering.

In the next step, the actual spectrum sensing is performed on each
frequency among the list of frequencies that have been specified by the user
and the gathered samples are saved locally at each nodein an .out file
format. Each frequency is sampled for duration equal to the provided
duration and this sampling procedure is repeated for the specified number of
iterations with interspace equal to the specified sampling period.

In the following step, al the locally saved files are filtered out, so that
only values that are equal or above the specified threshold are taken into
account. In order to accomplish this step, we set all values that are lower than
the threshold equal to zero and save the filtered file into a new one.
Afterwards, we calculate the average channel occupancy ratio per sampled
frequency among the multiple measurements that have been gathered and
store the corresponding results at an SQLITE database, with a unique
identification tag. A flowchart representation of the sensing procedure
follows:

[Tavemompio Oecoariog 29

Repeat for each
Channelcie C

Capture channe
ci for X secs
nd save sample
to _name .out

User defined parameters

Wait for

: set of given channels
S secs

: sampling duration(secs)
: number of iterations

: sampling period

: RSSI threshold

0= X0

Repeat for each
Channel cie C

Filter values
below T

Repeat for each
Channelcie C

alculate averag
percentage of
samples above T

l

Plot average
alues per channel

cieC

Finally, the user is able to get a graphical representation of each
measurement set that has been stored in SQLITE database. Various statistical
measures can be extracted from the corresponding records, such as average
and deviation values per each frequency or per each individual iteration.

[Tavemompio Oecoariog 30

5.3 Use cases of 1st method

5.3.1 1st Use Case: Wi-Fi bands

Real Experimental results gathered from NITOS testbed

100 -

Estimated Channel Occupancy Ratio

80

60 -

40+

Percentage %

20+

0.0 2.412 2.417 2.422 2.427 2.432 2.437 2.442 2.447 2.452 2.457 2.462 5.18 5.22

[Tavemompio Oecoariog

53 5.7
Operating Frequency (GHz)

31

5.3.2 2nd Use Case: Mobile Network bands

With the aid of the SBX daughterboard we are able to monitor
the frequency that is used for data transfer in 3G Networks

Amplitude

100} e—e sample_3G.out |

80t
—_—)
2
0 60f
T
=
i
2
£ 40f
<

20t

80 05 1.0 15 2.0 25
Time (s)

[Tavemompio Oecoariog 32

6. 2" Method

6.1 Description of the method

In this method, we constructed a GNU Radio signal processing
block in C++ that it takes a variable number of inputs of variable types
and streams them to an OML server. So in this case we do not need to
write the measurements into files and then access the files in order to

send them to OML server.
Here is a schema of our method:

—""_.

_]—’ OML
Source > | BLOCK
Files " Send the
Micophone measurement
Other programs points to
Radio hardware OML Server

The general idea of a GNU Radio block and its structure:

‘/
-’.
-"
.,'

-

gnuradio.foo

C++ Library R

libgnuradio-foo.so o

N

-,

[Tavemompio Oecoariog

Python Script

a Python Module N T

GNU Radio
Companion

C++
application

33

The python script initializes the blocks, connect them and send the
command for execution. The GNU Radio Companion part is an XML file
that represent the block in the graphical tool. In the C++ application the
signal processing is taking place.

In order to construct this block, we use the tool gr_modtool.py

which help us to create a new module and then add a new block to this
empty module. It's capable to change all the makefiles that we will use
afterwards for our compiling.

A module in GNU Radio contains the following directories:

apps: Contains test applications and examples.

doc: Contains documentation files, including Doxygen .dox files to
describe the component.

examples: Contains example code to demonstrate usage of
component blocks and algorithms.

lib: Contains source files for the developed block.

include: Contains header files for the developed block.

python: Contains python scripts.

swig: As GNU Radio combines C++ programmed blocks with
Python flowgraphs, Swig tool is employed to automatically
generate python interfaces for C++ blocks. Files .i required by this
tool are stored in this folder.

grc: Contains the .xml files needed by the grc tool.

After we deployed the functionality of our block filling the source and
header files we compiled the module and installed it to the GNU Radio
project so as to be available for our python scripts.

[Tavemompio Oecoariog

34

The task that now remain is to write a python script in order to test
our block that works correctly. Afterwards we have to expand our script
so as to take environment variables, namely the OML server settings:

* Experimentid

e Sender id

* OML server (in the form "tcp:serverhostname:port")

These environment variables will send to our block using it’s
accessors for setting values to its variables and then use them to make
the TCP connection and send the measurements.

6.2 Demonstration

Order of the functions:
* Getthe server settings
* Open a TCP connection with the OML server
* Construct the header of the message
* Take as input the measurements
* Construct and send the measurement tuples
When the sensing ends, close the TCP connection

[Tavemompio Oecoariog 35

Here is the flowgraph:

Get server settings
from the user

v

Open a TCP
connection

v

Construct
the header

l

Take measurements
— Make mp tuples
Send to server

Repeat

as long as
the user
defined

'

Close the TCP
connection

This method does not include any plotting function of the gathered
measurements. We just aim at storing measurements in an efficient way
and so all results are available for further processing.

[Tavemompio Oecoariog 36

6.3 Example of SQLITE

1|356628|60.949927|27.669845|1|153
1|35662960.949958|27.66985|1|156
1|356630(60.949984|27.669854 | 1232
1|356631|60.950198|27.669859| 1205
1|35663260.950236|27.673867|1|195
1|445159|67.596977|50.589441 6| 190
1|445160|67.597144|50.589446 | 6| 186
1|445161|67.597309|50.58945 | 6]295
1|445162|67.597476|50.589455|6 | 252
1|445163|67.597641|50.58946|6|179
1|445165|67.597973|50.589544 | 11299
1|445166|67.598231|50.589551|11|180
1|445167|67.598329|50.589556|11|227
1|445168|67.598556|50.594609 |11 185
1|445169|67.598658|50.594649|11|163

6.4 Use case of 2nd method

Use Case : CONCRETE

CONCRETE is a wireless environment monitoring tool and we can
include our method to this tool. Because the testing is still in progress
we are waiting the results and feedback.

[Tavemompio Oecoariog 37

7. Future Work

There are many things to do with this framework for measurement of
channel characteristics in wireless networks.

Firstly, we expand our block in such way that what inputs it takes
and streams them to the OML server then it will pass them on as outputs
to the next block.

Secondly, we implement the .xml file of our block so as to be
available to GNU Radio Companion and to be included to a signal
processing flowgraph. Here is a first version of it:

[~ Properties: mp_cc + X

Parameters:

ID [omlBlock_mp_cc_O

10 Type Multiple 2

Number of Inputs [3

Name of Inputs

_—

Error Messages:

Sink - in0(0):
Port is not connected.

Sink -in1(1):
Port is not connected.

Sink - in2(2):
Port is not connected.

L@Cancel H o/ OK] :

[Tavemompio Oecoariog 38

Finally, the developed framework can be connected with the
majority of existing GNU Radio Blocks as a result, we can take a step
further and also consider more sophisticated techniques than plain
energy detection, such as Feature detection. Feature detection enables
distinction between transmissions generated by heterogeneous devices.

[Tavemompio Oecoariog 39

8. References

[1] USRP & DaughterBoards http://www.ettus.com/home

[2] USRP http://en.wikipedia.org/wiki/USRP

[3] GNU Radio project
http://gnuradio.org/redmine/projects/gnuradio/wiki

[4] modtool https://cgran.org/wiki/devtools

[5] C++ http://www.cplusplus.com/reference/

[6] Python http://docs.python.org/index.html

[7] OML http://omf.mytestbed.net/projects/oml/wiki

[8] TextProtocol
http://omf.mytestbed.net/projects/oml/wiki/Description_of Text_prot
ocol

[9] ORBIT Measurements Framework and Library (OML): Motivations,
Design, Implementation, and Features, Manpreet Singh, Maximilian Ott,
Ivan Seskar, Pandurang Kamat

WINLAB, Rutgers University

[10] Exposing GNU Radio: Developing and Debugging
http://www.trondeau.com/gr-tutorial /

[11] NiTLab http://nitlab.inf.uth.gr/NITlab/

[12] Wikipedia http://en.wikipedia.org/wiki/Main_Page

[13] OML Introduction and Tutorial, Christoph Dwertmann

[Tavemompio Oecoariog 40

[14] UHD wiki http://ettus-
apps.sourcerepo.com/redmine/ettus/projects/uhd/wiki

[15] Electromagnetic interference at 2.4GHz
http://en.wikipedia.org/wiki/Electromagnetic_interference_at_2.4_GHz

[16] Corgan Labs http://corganlabs.com/joomla/

[17] GNU Radio Screencasts
http://www.youtube.com /user/2011HPS?feature=watch

&

http://www.youtube.com /playlist?list=PL.618122BD66C8B3C4&feature
=plcp

[Tavemompio Oecoariog 41

