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Περίληψη 
  

Η επίλυση γραμμικών συστημάτων της μορφής 𝐴𝑥 =  𝑏, για συμμετρικούς 
πίνακες με κυρίαρχη διαγώνιο αποτελεί πρόβλημα θεμελιώδους θεωρητικής 
σημασίας καθώς επίσης χρησιμοποιείται σε αμέτρητες εφαρμογές στην α-
ριθμητική ανάλυση, τη μηχανική και τις επιστήμες. Ο πρώτος αξιόπιστα α-
ποδοτικός επιλυτής τέτοιων συστημάτων για γενικές και αυθαίρετα σταθμι-
σμένες τοπολογίες, προτάθηκε μόλις πριν λίγα χρόνια. Ο επιλυτής αυτός 
στηρίζεται στις αρχές της θεωρίας γράφων και επιτυγχάνει εξαιρετικά απο-
τελέσματα ενώ παράλληλα παρέχει ισχυρές εγγυήσεις για την ταχύτητα σύ-
γκλισης.  
 
Σκοπός αυτής της διπλωματικής εργασίας είναι η επιτάχυνση της απόδοσης 
του συγκεκριμένου επιλυτή για συστήματα τα οποία εμφανίζονται στην προ-
σομοίωση κυκλωμάτων πολύ μεγάλης κλίμακας. Οι πίνακες που εμφανίζο-
νται σε αυτά τα μεγάλα συστήματα έχουν αραιή δομή με αποτέλεσμα οι μέ-
θοδοι για τον αποδοτικό χειρισμό τους να είναι συχνά κρίσιμοι για την επί-
δοση πολλών εφαρμογών συμπεριλαμβανομένης και της προσομοίωσης κυ-
κλωμάτων. Έχει αποδειχτεί πως οι πράξεις πολλαπλασιασμού αραιού πίνακα 
με διάνυσμα (SpMV) έχουν ιδιαίτερη σημασίας στην υπολογιστική επι-
στήμη. Αποτελούν το κυρίαρχο κόστος σε πολλές επαναληπτικές μεθόδους 
που χρησιμοποιούνται στην επίλυση μεγάλων γραμμικών συστημάτων και η 
επιτάχυνσή τους παραμένει πρόκληση για την επιστημονική κοινότητα. 
 
Το εύρος ζώνης της μνήμης αποτελεί  μείζον περιοριστικό παράγοντα για 
την απόδοση των επαναληπτικών μεθόδων που βασίζονται στις πράξεις πολ-
λαπλασιασμού SpMV. Προκειμένου να ξεπεράσουμε αυτό το εμπόδιο, προ-
σπαθήσαμε να ενσωματώσουμε έναν καινούριο γρήγορο παράλληλο αλγό-
ριθμο υλοποιημένο σε μια κάρτα γραφικών (GPU), η οποία προσφέρει τε-
ράστιες επιδόσεις σε πολλές υψηλής-απόδοσης εφαρμογές. Ο καινούριος αλ-
γόριθμος, που αποκαλείται segSpMV, βασίζεται στην μορφή αποθήκευσης 
αραιών πινάκων συμπιεσμένων γραμμών (CSR)  και μπορεί να εφαρμοστεί 
σε ένα εύρος αριθμητικών εφαρμογών τόσο δομημένων όσο και μη δομημέ-
νων πινάκων. Στην εργασία μας μελετάμε τις επιπτώσεις της χρήσης του αλ-
γορίθμου αυτού στον γραφοθεωρητικό μας επιλυτή, ο οποίος αποκαλείται 
CMG. 

 
Λέξεις Κλειδιά: 
Γραμμικά συστήματα, Μέθοδοι επίλυσης, Προρυθμιστές, Πολλαπλασιασμός Α-
ραιού Πίνακα με Διάνυσμα, Κάρτα Γραφικών, Προγραμματισμός Υψηλών Επιδό-
σεων 
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Abstract 
 

The solution of linear systems in the form 𝐴𝑥 =  𝑏, on symmetric diago-
nal dominant matrices (SDDs) is a problem of fundamental theoretical 
importance but also one with a myriad of applications in numerical math-
ematics, engineering and science. The first reliably efficient SDD solver 
for general and arbitrary weighted topologies was first proposed in recent 
years. The solver is based on support theory principles and it achieves 
state of the art empirical results while providing robust guarantees on the 
speed of convergence.  
 
In this thesis, we try to accelerate the performance of this solver for sys-
tems that occur in very large scale circuit simulation. Matrices that arise in 
those very large systems are sparse matrices, and as a result, methods for 
efficiently manipulating them are often crucial to the performance of 
many applications including circuit simulation. Sparse matrix-vector mul-
tiplication (SpMV) operations have proven to be of particular importance 
in computational science. They represent the dominant cost in many iter-
ative methods for solving large-scale linear systems and it remains a chal-
lenge for the research community to accelerate them.  
 
Memory bandwidth is a major limiting factor in the performance of itera-
tive algorithms that rely on SpMV. To overcome that limit, we try to apply 
a new fast parallel algorithm on GPU platforms, which offers a tremen-
dous performance in many high-performance computing applications [1]. 
The new algorithm, called segSpMV, is based on the Compressed Sparse 
Row (CSR) format and can be applied to wide computational applications 
with both structured and unstructured matrices. We study the implications 
of using that SpMV kernel in the CMG solver. 

 
Keywords: 
Linear Systems, Solution Methods, Preconditioners, Sparse Matrix-Vector Mul-
tiplication, Graphics Processing Unit, High Performance Computing  
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Chapter 1 

Introduction 

 
1.1 Problem Description 

Circuit simulation is a technique where a computer software is used to simulate the behavior 
of an electronic circuit or system, using mathematical models. New designs can be tested, 
evaluated and diagnosed without actually constructing the circuit or device. It is used across a 
wide spectrum of applications, ranging from integrated circuits(IC) and microelectronics to 
electrical power distribution networks and power electronics. Simulating a circuit’s behavior 
before actually building it can greatly improve design efficiency by making faulty designs 
known as such, and providing insight into the behavior of electronics circuit designs. In par-
ticular, for integrated circuits, the tooling is expensive, breadboards are impractical, and prob-
ing the behavior of internal signals is extremely difficult. Therefore almost all integrated cir-
cuits design relies heavily on simulation. 

  

1.2 Thesis Contribution         
The core of circuit simulation is based on the solution of linear systems in the form 𝐴𝑥 =  𝑏. 
Those systems arise after the Modified Nodal Analysis. In Electrical Engineering Modified 
Nodal Analysis or MNA is an extension of nodal analysis which not only determines the cir-
cuit's node voltages (as in classical nodal analysis), but also some branch currents [2]. Several 
algorithms are based on solving such sort of linear systems. The contribution of this thesis is 
the acceleration of the CMG solver for SDD systems that arise in circuit simulation. 
 
Starting from a C implementation [11] of the algorithm we ported the most time consuming 
part of the solver to a GPU with a view to improve the performance of the solve phase of the 
CMG solver. The results of our evaluation showed that if we do not include the time spent 
transferring data between the CPU and GPU, we achieve time speedups up to 7.9x over the 
sequential version. 
 
For the implementation we used the Compute Unified Device Architecture (CUDA) [3], 
which is an open-source programming and interfacing tool provided by NVIDIA. The GPU 
device we used for the benchmarking is the NVIDIA® TESLA™ C2075 with 448 CUDA 
cores. 

 

1.3 Formation of the thesis 
 
In chapter 2 we give background material on the existing solution methods of linear systems. 
We begin with a review of what sparsity means and we describe the most useful sparse matrix 
storage. Then, we mainly refer to stationary, nonstationary and multigrid methods.                            
 
In chapter 3 we review some basic notions of preconditioner matrices. We discuss about the 
importance of preconditioning, how it is used and how it helps to the convergence of the 
methods. 
 
In chapter 4 we give some background material on support theory for graphs and we describe 
the Steiner preconditioner. In the second section we give some background material on solvers 
and we present CMG.  
 
In chapter 5 we present the GPU architecture and the CUDA programming model. Also, we 
present the basic characteristics of the NVIDIA® TESLA™ C2075. 
 
Finally, in chapter 6 we present our attempt to improve the performance of CMG. Firstly, we 
review both the segSpMV method and the existing methods that are relevant with segSpMV.
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Then we describe our implementation and we present the results from the experiments con-
ducted. In the last section we make a conclusion and we give some tips for further future 
improvement of our implementation. 



 

3 

 

Chapter 2 

Solution Methods of the 𝜜𝒙 = 𝒃 
 

 
2.1 Introduction 
 
There are two broad categories of methods for solving linear equations in the form 𝐴𝑥 =  𝑏 

when 𝐴 is large and sparse: direct and iterative. While for some techniques such as direct 
solvers, we only provide brief descriptions, for iterative solvers, we go into more depth to 
describe the algorithms, since they are of interest to us here. 
 

A direct method for solving the system of equations 𝐴𝑥 =  𝑏 is any method that produces 
the solution x after a finite number of operations. An example of a direct method is using 

Gaussian elimination to factor 𝐴 into matrices L and U where L is lower triangular and U is 
upper triangular and then solving the triangular systems by forward and back substitution. 
Direct methods are typically preferred for dense linear systems. The problem with direct meth-
ods for sparse systems is that the amount of computational effort and storage required can be 
prohibitive [4]. 
 
An alternative to direct methods of solution are iterative methods, which involve the construc-

tion of a sequence {𝑥(𝑖)} of approximations to the solution 𝑥, for which 𝑥(𝑖)→𝑥. Iterative 
methods for solving general, large sparse linear systems have been gaining popularity in many 
areas of scientific computing. Until recently, direct solution methods were often preferred to 
iterative methods in real applications because of their robustness and predictable behavior. 
However, a number of efficient iterative solvers were discovered and the increased need for 
solving very large linear systems triggered a noticeable and rapid shift toward iterative tech-
niques in many applications [5].  
 
In this thesis we are interested only in iterative methods on sparse matrices. But before we 
analyze some of the most well-known, let’s see what the term sparse refers to. 
 

2.1.1 Sparsity Overview 

 
Consider the solution of linear systems of the form  
 

𝐴𝑥 =  𝑏,           (2.1) 
 

where A is a nxn matrix, and both 𝑥 and 𝑏 are 𝑛𝑥1 vectors. Of special interest is the case 

where 𝐴 is large and sparse. The term sparse above refers to the relative number of non-zeros 

in the matrix 𝐴. A nxn matrix 𝐴 is considered to be sparse if 𝐴 has only 𝑂(𝑛) non-zero 
entries. In this case, the majority of the entries in the matrix are zeros, which do not have to 

be explicitly stored. An nxn dense matrix has Ω(𝑛2) non-zeros. There are many ways of storing 
a sparse matrix. Whichever method is chosen, some form of compact data is required that 
avoids storing the numerically zero entries in the matrix. It needs to be simple and flexible so 
that it can be used in a wide range of matrix operations. This need is met by the primary data 
structure in CSparse1, a compressed-column matrix [6]. Some basic operations that operate on 
this data structure are matrix-vector multiplication, matrix-matrix multiplication, matrix addi-
tion, and transpose. 
 
The simplest sparse matrix data structure is a list of the nonzero entries in arbitrary order. The 
list consists of two integer arrays i and j and one real array x of length equal to the number of 
entries in the matrix

                                                 
1 CSparse is a C library which implements a number of direct methods for sparse linear sys-
tems. 
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For example, the matrix [7] 
 

A = [

4.5 0 3.2 0
3.1 2.9 0 0.9
0

3.5
1.7
0.4

3.0 0
0 1.0

]                             (2.2) 

 

is presented in zero-based triplet form below. A zero-based data structure for a mxn matrix 

contains row and column indices in the range 0 to m-1 and n-1, respectively. 
 
 

     𝑖 =  {2, 1, 3, 0, 1, 3, 3, 1, 0, 2} 

      𝑗 =  {2, 0, 3, 2, 1, 0, 1, 3, 0, 2} 

                                             𝑥 =  {2, 1, 3, 0, 1, 3, 3, 1, 0, 2} 
 
 
 
The triplet form is simple to create but difficult to use in most sparse matrix algorithms. The 
compressed-column storage (CCS) is more useful and is used in almost all functions in 

CSparse. An m-by-n sparse matrix that can contain up to 𝑛𝑧𝑚𝑎𝑥 entries is represented with 

an integer array 𝑝 of length 𝑛 + 1, an integer array 𝑖 of length 𝑛𝑧𝑚𝑎𝑥, and a real array 𝑥 of 

length 𝑛𝑧𝑚𝑎𝑥. Row indices of entries in column j are stored in 𝑖[𝑝[𝑗]] through 𝑖[𝑝[𝑗 + 1] −
1], and the corresponding numerical values are stored in the same locations in 𝑥. The first 

entry 𝑝[0] is always zero, and 𝑝[𝑛]  ≤  𝑛𝑧𝑚𝑎𝑥 is the number of actual entries in the matrix. 
The example matrix (2.2) is represented as 

  
𝑝 =  {   0,    3,    6,   8,    10} 

       𝑖  =  {   0,    1,    3,   1,     2,    3,    0,    2,     1,   3}  
                                                  𝑥 =  {4.5, 3.1, 3.5, 2.9, 1.7, 0.4, 3.2, 3.0, 0.9, 1.0} 
 
One of the goals of dealing with sparse matrices is to make efficient use of the sparsity in order 
to minimize storage throughout the computations, as well as to minimize the required number 
of operations. Sparse linear systems are often solved using different computational techniques 
than those employed to solve dense systems. 

 
 

2.2 Overview of the Methods 
 
Below are short descriptions of each of the methods to be discussed, along with brief notes 
on the classification of the methods in terms of the class of matrices for which they are most 
appropriate. In later sections of this chapter more detailed descriptions of these methods are 
given [8]. 
 
 

• Stationary Methods 
 

– Jacobi. 
The Jacobi method is based on solving for every variable locally with respect 
to the other variables; one iteration of the method corresponds to solving for 
every variable once. The resulting method is easy to understand and imple-
ment, but convergence is slow. 
 
– Gauss-Seidel 
The Gauss-Seidel method is like the Jacobi method, except that it uses updated 
values as soon as they are available. In general, if the Jacobi method converges, 
the Gauss-Seidel method will converge faster than the Jacobi method, though 
still relatively slowly.
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– SOR 
Successive Overrelaxation (SOR) can be derived from the Gauss-Seidel 

method by introducing an extrapolation parameter 𝜔. For the optimal choice 

of 𝜔, SOR may converge faster than Gauss-Seidel by an order of magnitude. 
 
 

• Nonstationary Methods 
 

– Conjugate Gradient (CG). 
The conjugate gradient method derives its name from the fact that it generates 
a sequence of conjugate (or orthogonal) vectors. These vectors are the residu-
als of the iterations. They are also the gradients of a quadratic functional, the 
minimization of which is equivalent to solving the linear system. Conjugate 
gradient (CG) is an extremely effective method when the coefficient matrix is 
symmetric positive definite (SPD), since storage for only a limited number of 
vectors is required. 
 
 
– Generalized Minimal Residual (GMRES). 
The Generalized Minimal Residual method computes a sequence of orthogo-
nal vectors, and combines these through a least-squares solve and update. 
However, it requires storing the whole sequence, so that a large amount of 
storage is needed. For this reason, restarted versions of this method are used. 
In restarted versions, computation and storage costs are limited by specifying 
a fixed number of vectors to be generated. This method is useful for general 
nonsymmetric matrices. 
 
– BiConjugate Gradient (BiCG). 
The biconjugate gradient (BiCG) method generates two CG-like sequences of 
vectors, one based on a system with the original coefficient matrix A, and one 

on 𝐴𝑇. Instead of orthogonalizing each sequence, they are made mutually or-
thogonal, or “bi-orthogonal”. This method, like CG, uses limited storage. It is 
useful when the matrix is nonsymmetric and nonsingular; however, conver-
gence may be irregular, and there is a possibility that the method will break 
down. BiCG requires a multiplication with the coefficient matrix and with its 
transpose at each iteration. 

 
 

2.3 Stationary Methods 

 
Iterative methods that can be expressed in the simple form 
 

𝑥(𝑘) = 𝐵𝑥(𝑘−1) + 𝑐,                                 (2.3) 
 

(where neither 𝐵 nor 𝑐 depend upon the iteration count 𝑘) are called 𝑠𝑡𝑎𝑡𝑖𝑜𝑛𝑎𝑟𝑦 iterative 
methods. In this section, we present the three main stationary iterative methods: the Jacobi 
method, the Gauss-Seidel method and the Successive Overrelaxation (SOR) method. 

 

2.3.1 The Jacobi Method 

 

The Jacobi method is easily derived by examining each of the n equations in the linear system 

𝐴𝑥 =  𝑏 in isolation. If in the 𝑖𝑡ℎ  equation 
 

∑ 𝑎𝑖,𝑗
𝑛
𝑗=1 𝑥𝑗 =  𝑏𝑖,  

 
 

we solve for the value of 𝑥𝑖 while assuming the other entries of 𝑥 remain fixed, we obtain 

𝑥𝑖 = (𝑏𝑖 − ∑ 𝑎𝑖,𝑗
 
𝑗≠𝑖 𝑥𝑗)/𝑎𝑖,𝑖 .                     (2.4)
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This suggests an iterative method defined by 
 

     𝑥𝑖
(𝑘)

= (𝑏𝑖 − ∑ 𝑎𝑖,𝑗
 
𝑗≠𝑖 𝑥𝑗

(𝑘−1)
)/𝑎𝑖,𝑖               (2.5) 

 
which is the Jacobi method. Note that the order in which the equations are examined is irrel-
evant, since the Jacobi method treats them independently. For this reason, the Jacobi method 
is also known as the method of simultaneous displacements, since the updates could in 
principle be done simultaneously.  
 
In matrix terms, the definition of the Jacobi method in (2.3) can be expressed as 
  

 𝑥(𝑘) = 𝐷−1(𝐿 + 𝑈)𝑥(𝑘−1) + 𝐷−1𝑏,                (2.6) 
 
where the matrices D, −L and −U represent the diagonal, the strictly lower-triangular, and the 
strictly upper-triangular parts of A, respectively. 

 

The pseudocode for the Jacobi method is given below in Figure 2.1. Note that an auxiliary 

storage vector, 𝑥 is used in the algorithm. It is not possible to update the vector 𝑥 in place, 

since values from 𝑥(𝑘−1)are needed throughout the computation of 𝑥(𝑘) 
 
 

 

Figure 2.1: The Jacobi Method 

 

2.3.2 The Gauss-Seidel Method 

 
Consider again the linear equations (2.2). If we proceed as with the Jacobi Method, but now 
assume that the equations are examined one at a time in sequence, and the previously com-
puted results are used as they are available, we obtain the Gauss-Seidel method pseudocode in 

Figure 2.2.
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Figure 2.2: The Gauss-Seidel Method 

 

                                       𝑥𝑖
(𝑘)

= (𝑏𝑖 − ∑ 𝑎𝑖,𝑗
 
𝑖>𝑗 𝑥𝑗

(𝑘)
− ∑ 𝑎𝑖,𝑗

 
𝑗>𝑖 𝑥𝑗

(𝑘−1)
)/𝑎𝑖,𝑖                  (2.7) 

 
Two important facts about the Gauss-Seidel method should be noted. First, the computations 
in (2.5) appear to be serial. Since each component of the new iterate depends upon all previ-
ously computed components, the updates cannot be done simultaneously as in the Jacobi 

method. Second, the new iterate 𝑥 
(𝑘) depends upon the order in which the equations are ex-

amined. The Gauss-Seidel method is sometimes called the method of successive displacements 
to indicate the dependence of the iterates on the ordering. If this ordering is changed, the 
components of the new iterate (and not just their order) will also change. 
 

These two points are important because if 𝐴 is sparse, the dependency of each component of 
the new iterate on previous components is not absolute. The presence of zeros in the matrix 
may remove the influence of some of the previous components. Using a judicious ordering of 
the equations, it may be possible to reduce such dependence, thus restoring the ability to make 
updates to groups of components in parallel. However, reordering the equations can affect 
the rate at which the Gauss-Seidel method converges. A poor choice of ordering can degrade 
the rate of convergence; a good choice can enhance the rate of convergence. 
 
In matrix terms, the definition of the Gauss-Seidel method in (2.5) can be expressed as 
 

𝑥(𝑘) = (𝐷 − 𝐿)−1(𝑈𝑥(𝑘−1) + 𝑏)                  (2.8) 
 
As before D, −L and −U represent the diagonal, lower-triangular, and upper-triangular parts 

of A, respectively. 
 

2.3.3 The Successive Overrelaxation Method (SOR) 
 

The Successive Overrelaxation Method, or SOR, is devised by applying extrapolation to the 
Gauss-Seidel method. This extrapolation takes the form of a weighted average between the 
previous iterate and the computed Gauss-Seidel iterate successively for each component: 
 

𝑥𝑖
(𝑘)

= 𝜔𝑥𝑖
(𝑘)

+ (1 − 𝜔)𝑥𝑖
(𝑘−1)

.
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(where 𝑥𝑖 denotes a Gauss-Seidel iterate, and ω is the extrapolation factor). The idea is to 
choose a value for ω that will accelerate the rate of convergence of the iterates to the solu-
tion. 
 
 
In matrix terms, the successive overrelaxation (SOR) algorithm can be written as follows: 
 

𝑥(𝑘) = (𝐷 − 𝜔𝐿)−1(𝜔𝑈 + (1 − 𝜔)𝐷)𝑥(𝑘−1) + 𝜔(𝐷 − 𝜔𝐿)−1𝑏 .          (2.9) 
 

The pseudocode for the SOR algorithm is given above in Figure 2.3. 
 

 

Figure 2.3: The SOR Method 

 
 

2.4 Nonstationary Methods 

 
Nonstationary methods differ from stationary methods in that the computations involve in-
formation that changes at each iteration. Typically, constants are computed by taking inner 
products of residuals or other vectors arising from the iterative method. 
 

2.4.1 Generalized Minimal Residual (GMRES) 
 
The GMRES method generates a sequence of orthogonal vectors, but in the absence of sym-
metry this can no longer be done with short recurrences; instead, all previously computed 
vectors in the orthogonal sequence have to be retained. For this reason are used restarted 

versions of the method. The GMRES algorithm has the property that residual norm ∥ 𝑏 −
 𝐴𝑥𝑖 ∥ can be computed without the iterate having been formed. Thus, the expensive action 
of forming the iterate can be postponed until the residual norm is deemed small enough. The 
GMRES iterates are constructed as: 
 

𝑥𝑖 = 𝑥0 + 𝑦1𝑢1+. . . +𝑦𝑖𝑢
𝑖 ,        (2.10)
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The GMRES method retains orthogonality of the residuals by using long recurrences, at the 
cost of a larger storage demand. 
 

The pseudocode for the restarted GMRES algorithm with preconditioner M is given in Figure 

2.4. 
 
 

 

Figure 2.4: The Preconditioned GMRES(m) Method 

 

2.4.2 Conjugate Gradient (CG) 

 
The Conjugate Gradient method is an effective method for symmetric positive definite sys-
tems. It is the oldest and best known of the nonstationary methods discussed here. The 
method proceeds by generating vector sequences of iterates (i.e., successive approximations 
to the  solution), residuals corresponding to the iterates, and search directions used in updat-
ing the iterates and residuals. Although the length of these sequences can become large, only 
a small number of vectors needs to be kept in memory. In every iteration of the method, two 
inner products are performed in order to compute update scalars that are defined to make the 
sequences satisfy certain orthogonality conditions. On a symmetric positive definite linear sys-
tem these conditions imply that the distance to the true solution is minimized in some norm.
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Figure 2.5: The Preconditioned Conjugate Gradient Method 

 
 
The pseudocode for the Preconditioned Conjugate Gradient (PCG) Method is given above in 

Figure 2.5. It uses a preconditioner M; for M = I one obtains the unpreconditioned version 
of the Conjugate Gradient Algorithm. 
 

2.4.3 BiConjugate Gradient (BiCG) 

 
The Conjugate Gradient method is not suitable for nonsymmetric systems because the residual 
vectors cannot be made orthogonal with short recurrences. The GMRES method retains or-
thogonality of the residuals by using long recurrences, at the cost of a larger storage demand. 
The BiConjugate Gradient method takes another approach, replacing the orthogonal sequence 
of residuals by two mutually orthogonal sequences, at the price of no longer providing a min-
imization. 
 
The update relations for residuals in the Conjugate Gradient method are augmented in the 

BiConjugate Gradient method by relations that are similar but based on 𝐴𝑇 instead of A. The 
pseudocode for the Preconditioned BiConjugate Gradient Method with preconditioner M is 

given in the top of the next page in Figure 2.6.
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Figure 2.6: The Preconditioned BiConjugate Gradient Method 

 

 

2.5 Computational Aspects of the Methods 

 
Efficient solution of a linear system includes the selection of the proper choice of iterative 
method. However, to obtain good performance, consideration must also be given to the com-
putational kernels of the method and how efficient they can be executed on the target archi-
tecture. The performance of direct methods, is largely that of the factorization of the matrix. 
However, this lower efficiency of execution does not imply anything about the total solution 
time for a given system. Furthermore, iterative methods are usually simpler to implement than 
direct methods, and since no full factorization has to be stored, they can handle much larger 
systems than direct methods. Table 2.1 lists the type of operations performed per iteration and 
the storage required for each method (without preconditioning).
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Method Inner 
Product 

SAXPY Matrix-Vector 
Product 

Precond 
Solve 

Storage 
Reqmnts 

JACOBI   1𝑎  Matrix + 3n 

Gauss Seidel  1 1𝑎   

SOR  1 1𝑎  Matrix + 2n 

GMRES i+1 i+1 1 1 Matrix + (i+5)n 

CG 2 3 1 1 Matrix + 6n 

BiCG 5 5 1/1 1/1 Matrix + 10n 

Table 2.1: Summary of Operations for Iteration 𝑖:”𝑎/𝑏” means ”𝑎” multiplications with 

the matrix and ”𝑏” with its transpose. Storage requirements for the methods in iteration 𝑖: 
𝑛 denotes the order of the matrix. 

 
 
 
 

2.6 Multigrid Methods 

 
Before closing this chapter we would like to discuss about the multigrid (MG) methods. MG 
methods in numerical analysis is defined as a group of algorithms for solving differential equa-
tions using a hierarchy of discretizations. They are an example of a class of techniques called 
multiresolution methods, very useful in problems exhibiting multiple scales of behavior. For 
example, many basic relaxation methods exhibit different rates of convergence for short- and 
long-wavelength components, suggesting these different scales be treated differently, as in a 
Fourier analysis approach to multigrid. MG methods can be used as solvers as well as precon-
ditioners. 
 
The main idea of MG is to accelerate the convergence of a basic iterative method by global 
correction from time to time, accomplished by solving a coarse problem2. This principle is 
similar to interpolation between coarser and finer grids. The typical application for multigrid 
is in the numerical solution of elliptic partial differential equations in two or more dimensions. 
 
Multigrid can be applied in combination with any of the common discretization tech-
niques.MG methods are among the fastest solution techniques known today. In contrast to 
other methods, multigrid methods are general in that they can treat arbitrary regions and 
boundary conditions. They do not depend on the separability of the equations or other special 
properties of the equation. 

 
 
 
 

                                                 
2 Coarse problem is an auxiliary system of equations used in an iterative method for the 
solution of a given larger system of equations. It is basically a version of the same problem at 
a lower resolution, retaining its essential characteristics, but with fewer variables. 
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Chapter 3 

Introduction to Preconditioners 

 
3.1 Introduction 

 
In chapter 2 we discussed about many iterative methods. The convergence rate of iterative 
methods depends on spectral properties of the coefficient matrix. Hence one may attempt to 
transform the linear system into one that is equivalent in the sense that it has the same solution, 
but that has more favorable spectral properties. A preconditioner  is a matrix that effects 
such a transformation. For SPD systems, the rate of convergence of the conjugate gradient 
method depends on the distribution of the eigenvalues of A. The purpose of preconditioning 
is that the transformed matrix in question will have a smaller spectral condition number, 
and/or eigenvalues clustered around 1. For nonsymmetric problems the situation is more 
complicated, and the eigen-values may not describe the convergence of nonsymmetric matrix 
iterations like GMRES. On parallel machines there is a further tradeoff between the efficacy 
of a preconditioner in the classical sense, and its parallel efficiency. Many of the traditional 
preconditioners have a large sequential component. 
 
If M is a nonsingular matrix that approximates A, then the linear system (3.1) has the same 
solution as (2.1) but must be significantly easier to solve. 
 

𝑀−1𝐴𝑥 = 𝑀−1𝑏 ,                      (3.1) 
 

     𝐴𝑀−1𝑦 = 𝑏, 𝑥 = 𝑀−1𝑦            (3.2) 
 

          𝑀1
−1𝐴𝑀2

−1𝑦 = 𝑀1
−1𝑏, 𝑥 = 𝑀2

−1𝑦              (3.3) 
 

The system (3.1) is preconditioned from the left, (3.2) is preconditioned from the right. At 

(3.3) is performed split preconditioning where the preconditioner is 𝑀 =  𝑀1𝑀2. 
 
Iterative algorithms such as the Conjugate Gradient method, converge to a solution using only 

matrix-vector products with 𝐴. It is well known that iterative algorithms suffer from slow 

convergence properties when the condition number of 𝐴, 𝜅(𝐴), which is defined as the ration 

of the largest over the minimum eigenvalue of 𝐴, is large. What preconditioned iterative meth-

ods attempt to do is to remedy the problem by changing the linear system to 𝑀−1𝐴𝑥 = 𝑀−1𝑏. 

In this case, the algorithms use matrix-vector products with 𝐴, and solve linear systems of the 

form 𝑀𝑦 =  𝑧. So now the speed of convergence depends on the condition number  

𝜅(𝐴, 𝑀). 
 
The condition number is defined as: 
 

𝜅(𝐴, 𝑀) = 𝑚𝑎𝑥𝑥
𝑋𝑇𝐴𝑥

𝑋𝑇𝑀𝑥
 ∙ 𝑚𝑎𝑥𝑥

𝑋𝑇𝑀𝑥

𝑋𝑇𝐴𝑥
 .           (3.4) 

 

where x is taken to be outside the null space of 𝐴. There are two contradictory goals one has 

to deal in constructing a preconditioner 𝑀: (i) The linear systems in 𝑀 must be easier than 

those in 𝐴 to solve, (ii) The condition number must be small so it will minimize the number 
of iterations. 
 

Historically, preconditioners were natural parts of the matrix 𝐴. We analyze some of the most 
well-known preconditioners below.
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3.2 Jacobi Preconditioner 

 
The simplest preconditioner consists of just the diagonal of the matrix 
 

    𝑚𝑖,𝑗 = {
𝑎𝑖,𝑖 ,

0 ,
   

𝑖𝑓 𝑖 = 𝑗
𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 

 
This is known as the (point) Jacobi preconditioner. 
 

For the model problem, 𝜅(𝐵−1𝐴)  =  𝑂(𝑛)  =  𝜅(𝐴), so the asymptotic rate of convergence 
is not improved with diagonal scaling. B in this case does not need to be factored. The storage 

required for the preconditioner is 𝑂(𝑛) since it is a sparse matrix. And, the preconditioner 
system is very easy to solve, since it simply requires dividing each vector entry by the corre-
sponding diagonal entry of B. 
 
Even through the asymptotic rate of convergence is not improved, diagonal scaling can some-
times make the difference between convergence and non-convergence for an ill-conditioned 

matrix 𝐴. Moreover, diagonal scaling generally achieves some reduction in the number of it-
erations, and is so cheap to apply that it might as well be done. 
 

 

3.3 SSOR Preconditioner 

 
Another example of a preconditioner is the SSOR preconditioner which like the Jacobi pre-
conditioner, can be easily derived from the coefficient matrix without any work. 
 
Assume we have a symmetric matrix A. If this matrix is decomposed as 
 

𝐴 =  𝐷 +  𝐿 + 𝐿𝑇 
 
in its diagonal, lower, and upper triangular part, the SSOR matrix is defined as 
 

𝑀 =  (𝐷 +  𝐿)𝐷−1(𝐷 +  𝐿)𝑇 
 

or, parametrized by 𝜔 
 

   𝑀(𝜔) = 1

2−𝜔
(

1

𝜔
𝐷 + 𝐿) (

1

𝜔
𝐷)

−1

(
1

𝜔
𝐷 + 𝐿)

𝑇

. 

 
The SSOR matrix is given in factored form, so this preconditioner shares many properties of 
other factorization-based methods. For example, its suitability for vector processors or parallel 
architectures depends strongly on the ordering of the variables. 

 
 

3.4 Incomplete Factorization Preconditioners 
 
A broad class of preconditioners is based on incomplete factorizations of the coefficient ma-
trix. We call a factorization incomplete if during the factorization process certain fill elements, 
nonzero elements in the factorization in positions where the original matrix had a zero, have 

been ignored. Such a preconditioner is then given in factored form  𝑀 + 𝐿𝑈 with 𝐿 lower 

and 𝑈 upper triangular. The efficacy of the preconditioner depends on how well 𝑀−1 approx-

imates 𝐴−1 . 
 
When a sparse matrix is factored by Gaussian elimination, fill-in usually takes place. In that 

case, sparsity-preserving pivoting techniques can be used to reduce it. The triangular factors 𝐿 

and 𝑈 of the coefficient matrix 𝐴 are considerably less sparse than 𝐴.
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Sparse direct methods are not considered viable for solving large linear systems due to time 
and space limitations, however, by discarding part of the fill-in in the course of the factoriza-

tion process, simple but powerful preconditioners can be obtained in the form 𝑀 =  𝐿𝑈, 

where 𝐿 and 𝑈 are the incomplete (approximate) 𝐿𝑈 factors. 
 
Summarizing, it can be said that existing solutions to the problem for incomplete factorization 
preconditioners for general SPD matrices follow one of two cases: simple inexpensive fixes 
that result in low quality preconditioners in terms of convergence rating, or sophisticated, 
expensive strategies that produce high quality preconditioners. 
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Chapter 4 

A Multigrid-Like SDD solver 

      
In this chapter we give some background material on support theory of preconditioning and 
we describe CMG, the solver that we studied and tried to optimize. The CMG was proposed 
by I. Koutis and Gary Miller and is characterized by the form of the preconditioner [9] [10] . 
The first implementation was in MATLAB [11] and later transformed into C code [12] . The 
basis of our implementation is the C code of the CMG solver.  
 
 

4.1 Support Theory for Preconditioning 
 

The main goal of the support theory is to provide techniques to bound the generalized eigen-
values and condition number for a matrix pencil (A, B) where B  is  a preconditioner for A. In 
this section we review fragments of support theory that are relevant to the design of the CMG. 
We refer the reader to [13] for an extensive explosion of support theory. 
 

4.1.1 Electric Networks as Graphs – Support Basics 
 

The cornerstone of combinatorial preconditioners is the following intuitive yet paradigm-shift-
ing idea explicitly proposed by Vaidya [14]: A preconditioner for the Laplacian of a graph 
A should be the Laplacian of a simpler graph B, derived in a principled fashion from 
A. 
 
There is a fairly well known analogy between graph Laplacians and resistive networks [15]. If 

G is seen as an electrical network with the resistance between nodes 𝑖 and 𝑗 being 1/𝑤𝑖,𝑗 , 

then in the equation 𝐴𝑣 =  𝑖, if 𝑣 is the vector of voltages at the node, 𝑖 is the vector of 

currents. Also, the quadratic form 𝑣𝑇𝐴𝑣 =  ∑ 𝑤𝑖,𝑗𝑖,𝑗 (𝑣𝑖 − 𝑣𝑗)
2
 expresses the power dissi-

pation on G, given the node voltages 𝑣. In view of this, the construction of a good precon-
ditioner B amounts to the construction of a simpler resistive network (for example by deleting 

some resistances) with an energy profile close to that of 𝐴. 
 

The support of A by B, defined as 𝜎(𝐴/𝐵)  =  𝑚𝑎𝑥𝑣
𝑣𝑇𝐴𝑣

𝑣𝑇𝐵𝑣
  is the number of copies of 𝐵 that 

are needed to support the power dissipation in 𝐴, for all settings of voltages. The principal 
reason behind the introduction of the notion of support, is to express its local nature, captured 
by the Splitting Lemma. 
 

Lemma 4.1 (Splitting Lemma) If 𝐴 = ∑ 𝐴𝑖
𝑚
𝑖=1  and 𝐵 = ∑ 𝐵𝑖

𝑚
𝑖=1  where 𝐴𝑖 , 𝐵𝑖 are Laplaci-

ans, then 𝜎(𝐴, 𝐵) ≤  𝑚𝑎𝑥𝑖𝜎(𝐴𝑖, 𝐵𝑖) 
 

The Splitting Lemma allows us to bound the support of 𝐴 by 𝐵, by splitting the power dissi-

pation in 𝐴 into small local pieces, and “supporting” them by also local pieces in 𝐵. 
 

For example, in his work Vaidya proposed to take 𝐵 as the maximal weight spanning tree of 

𝐴. Then, it is easy to show that 𝜎(𝐵, 𝐴)  ≤  1, intuitively because more resistances always 

dissipate more power. In order to bound 𝜎(𝐴, 𝐵), the basic idea to let the 𝐴𝑖 be edges on 

𝐴 (the ones not existing in 𝐵), and let 𝐵𝑖 be the unique path in the tree that connects the two 

end-points of 𝐴𝑖  . Then one can bound separately each 𝜎(𝐴𝑖, 𝐵𝑖). In fact, it can be shown that 

any edge in 𝐴 that doesn’t exist in B, can be supported only by the path 𝐵𝑖 
 

As an example, consider the example in Figure 4.1 of the two (dashed) edges 𝐴1, 𝐴2 and their 

two paths in the spanning tree (solid) that share one edge “𝑒”.
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In this example, the dilation of the mapping is equal to 3, i.e. the length of the longest of two 

paths. Also, as “𝑒” is uses two times, we say that the congestion of the mapping is equal to 2. 
A core Lemma in Support Theory [16] [13] is that the support can be upper bounded by the 

product congestion∗ dilation. 

 

 

Figure 4.1: A graph and its spanning tree - obtained by deleting the dashed edges 

  

 

4.1.2 Steiner Preconditioners 
 

Steiner preconditioners, introduced in [17] and extended in [18] introduce external nodes into 

preconditioners. The proposed preconditioner is based on a partitioning of the 𝑛 vertices in 

𝑉 into 𝑚 vertex disjoint clusters 𝑉𝑖 For each 𝑉𝑖, the preconditioner contains a star graph 𝑆𝑖with 

leaves corresponding to the vertices in 𝑉𝑖 rooted at a vertex 𝑟𝑖. The roots 𝑟𝑖 are connected and 

form the quotient graph 𝑄. This general setting is illustrated in Figure 4.2. 
 

Let 𝐷′ be the total degree of the leaves in the Steiner preconditioner 𝑆. Let the restriction 𝑅 

be an n × m matrix, where 𝑅(𝑖, 𝑗) = 1 if vertex 𝑖 is in cluster 𝑗 and 0 otherwise. Then, the 

Laplacian of S has 𝑛 +  𝑚 vertices, and the algebraic form 
  

𝑆 = (
𝐷′ −𝐷′𝑅

−𝑅𝑇𝐷′ 𝑄 + 𝑅𝑇𝐷′𝑅
).          (4.1) 

 

A troublesome feature of the Steiner preconditioner 𝑆 is the extra number of dimensions/ver-

tices. Gremban and Miller [17] proposed that every time a system of the form 𝐵𝑧 =  𝑦 is 
solved in an usual preconditioned method, the system 
 

𝑆 (
𝑧
𝑧′) = (

𝑦
0 

) 

  

should be solved instead, for a set of don't care variables 𝑧′.  They also showed that the 
operation is equivalent to preconditioning with the dense matrix 
  

   𝐵 = 𝐷′ − 𝑉(𝑄 + 𝐷𝑄)
−1

𝑉𝑇          (4.2) 

 

where 𝑉 =  𝐷′𝑅 and 𝐷𝑄  =  𝑅𝑇𝐷′𝑅. The matrix B is called the Schur complement of 𝑆 with 

respect to the elimination of the roots 𝑟𝑖. It is a well-known fact that 𝐵 is also a Laplacian. 
 

The analysis of the support 𝜎(𝐴/𝑆), is identical to that for the case of subgraph precondition-

ers. For example, going back to Figure 4.2 the edge (𝑣1, 𝑣4) can only be supported by the 

path (𝑣1, 𝑟1, 𝑣4), and the edge (𝑣4, 𝑣7) only by the path (𝑣4, 𝑟1, 𝑟2, 𝑣7). Similarly we can 

see the mappings from edges in 𝐴 to paths in 𝑆 for every edge in 𝐴. In the example, the 
dilation of the mapping is 3, and it can be seen that to minimize the congestion on every 

edge of 𝑆 (i.e. make it equal to 1), we need to take 𝐷′ =  𝐷, where 𝐷 are the total degrees of 

the nodes in 𝐴, and 𝑤(𝑟1, 𝑟2)  =  𝑤(𝑣3, 𝑣5)  +  𝑤(𝑣4, 𝑣7). More generally, for two roots 

𝑟𝑖,𝑟𝑗 we should have: 
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𝑤(𝑟𝑖, 𝑟𝑗) = ∑ 𝑤𝑖,𝑗𝑖′∈𝑉𝑖,𝑗′∈𝑉𝑗
. 

 

Under this construction, the algebraic form of the quotient 𝑄 can be seen to be 𝑄 =  𝑅𝑇𝐴𝑅. 
 

In [18] it was shown that the support 𝜎(𝑆/𝐴) reduces to bounding the support 𝜎(𝑆𝑖, 𝐴[𝑉𝑖]), 

for all 𝑖, where A[𝑉𝑖] denotes the graph induced in 𝐴 by the vertices 𝑉𝑖. The key behind bound-
ing 𝜎(𝑆𝑖, 𝐴[𝑉𝑖]) is called conductance. Let us give the definition of conductance.  
 

Definition 4.1 The conductance 𝜙(𝐴) of a graph 𝐴 =  (𝑉, 𝐸, 𝑤) is defined as 

 

𝛷(𝛢) = 𝑚𝑖𝑛𝑆⊆𝑉

𝑤(𝑆, 𝑉 − 𝑆)

min (𝑤(𝑆), 𝑤(𝑉 − 𝑆))
 

 
where 𝑤(𝑆, 𝑉 −  𝑆) denotes the total weight connecting the sets 𝑆 and 𝑉 − 𝑆, and where 

𝑤(𝑆) denotes the total weight incident to the vertices in 𝑆. 
 
The main result of [18] is captured by the following Theorem. 
 

Theorem 4.1 The support σ(S/A) is bounded by a constant 𝑐 independent from 𝑛, if and only 

if for all 𝑖 the conductance of the graph 𝐴0[𝑉𝑖] induced by the nodes in 𝑉𝑖 augmented by the 

edges leaving 𝑉𝑖  is bounded by a constant c′. 
 
 

 

Figure 4.2: A graph and its Steiner preconditioner. 

 

4.1.3 Predicting the performance of solvers  
 

Theorem 4.1 doesn’t give a way to pick clusters, but it does provide a way to 𝑎𝑣𝑜𝑖𝑑 bad 
clustering. In recent work [19], Grady proposed a multigrid method where the construction 
of the “coarse” grid follows exactly the construction of the quotient graph in the previous 
section. Specifically, Grady’s algorithm proposes a clustering such that every cluster contains 
exactly one pre-specified ‘coarse’ nodes. It then defines the restriction matrix R and he lets the 

coarse grid be 𝑄 =  𝑅𝑇𝐴𝑅, identically to the construction of the previous Section. The algo-
rithm is iterated to construct a hierarchy of grids. The question then is whether the proposed 
clustering provides the guarantees that by Theorem 4.1 are necessary for the construction of 
a good Steiner preconditioner. The following figure, is the Figure 2 of [19], with a choice of 
weights that force the depicted clustering. 

 

Figure 4.3: A bad clustering.
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Every cluster in Figure 4.3 contains exactly one black/coarse node. The problem with the 

clustering is that the top left cluster, has a very low conductance when 𝑀 ≫ 1. In general, in 
order to satisfy the requirement of the previous Theorem, there are cases where the clustering 
has to contain clusters with no coarse nodes in them. As we will discuss in later the behavior 
of the multigrid algorithm proposed in [19] is closely related to the quality of the Steiner pre-
conditioner induced by the clustering. This implies that the multigrid of [19] can suffer bad 
convergence. 
 
The canonical clustering in Grady’s algorithm is very suitable for GPU implementations, when 
other solvers may be less suitable. This gives to it an advantage on this type of hardware. Even 
in the presence of a number of relatively bad clusters, it can be faster relative to a solver that 
uses better clusters. However the advantage is lost when the computed clusters cross a nega-
tive threshold in quality, a threshold that depends on several hardware-dependent factors. The 
value of Support Theory is evident in this case. Grady’s algorithm can be instrumented with a 
very fast routine that measures the quality of the formed clusters and predicts its performance, 
and reverts to another solver when needed. One can also imagine hybrid clustering algorithms 
where the majority clusters are formed using the algorithm [19] and the “sensitive” parts of 
the system are treated separately. 
 
 

4.2 The Combinatorial Multigrid Solver 
 

The present chapter describes the Combinatorial Multigrid Solver (CMG).At the beginning, 
we give a short review of multigrid solvers and then we describe the basic components of 
CMG. 

 

4.2.1 Related work on SDD solvers 
 

Multigrid was originally conceived as a method to solve linear systems that are generated by 
the discretization of the Laplace (Poisson) equation over relatively nice domains [20]. The 

underlying geometry of the domain leads to a hierarchy of grids 𝐴 =  𝐴0, . . . , 𝐴𝑑 that look 
similar at different levels of detail; the picture that the word multigrid often invokes to mind 

is that of a tower of 2D grids, with sizes  2𝑑−𝑖𝑥2𝑑−𝑖 for 𝑖 =  0, . . . , 𝑑. Its provably asymptot-
ically optimal behavior for certain classes of problems soon lead to an effort, known as Alge-
braic Multigrid (AMG), to generalize its principles to arbitrary matrices. In contrast to classical 
Geometric Multigrid (GMG) where the hierarchy of grids is generated by the discretization 
process, AMG constructs the hierarchy of “coarse” grids/matrices based only on the algebraic 
information contained in the matrix. Various flavors of AMG, based on different heuristic 
coarsening strategies, have been proposed in the literature. AMG has been proven successful 
in solving more problems than GMG, though some times at the expense of robustness, a by-
product of the limited theoretical understanding. 
 
A solver with provable properties for arbitrary SDD matrices, perhaps the “holy grail” of the 
multigrid community, was discovered only recently. The path to it was Support Theory [13], a 
set of mathematical tools developed for the study of combinatorial subgraph preconditioners, 
originally introduced by Vaidya [14] [21] .It has been at the heart of the seminal work of Spiel-
man and Teng [22] who proved that SDD systems can be solved in nearly-linear time. Koutis 
and Miller [23] proved that SDD matrices with planar connection topologies (e.g. 4-connec-

tivity in the image plane) can be solved asymptotically optimally, in 𝑂(𝑛) time for n-dimen-
sional matrices. The complexity of the Spielman and Teng solver was recently significantly 

improved by Koutis, Miller and Peng [24] [25], who described an O(𝑚𝑙𝑜𝑔 𝑛) algorithm for 
the solution of general SDD systems with m non-zero entries. 
 
It is fair to say that these theoretically described solvers are still impractical due to the large 
hidden constants, and the complicated nature of the underlying algorithms. Combinatorial 
Multigrid (CMG) [9] is a variant of multigrid that reconciles theory with practice. Similarly to 
AMG, CMG builds a hierarchy of matrices/graphs. The essential difference from AMG is that 
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the hierarchy is constructed by viewing the matrix as a graph, and using the discrete geometry 
of the graph, for example notions like graph separators and expansion. It is, in a way, a hybrid 
of GMG and AMG, or a discrete-geometric MG. The re-introduction of geometry into the 
problem allows us to prove sufficient and necessary conditions for the construction of a good 
hierarchy and claim strong convergence guarantees for symmetric diagonally dominant (SDD) 
matrices based on recent progress in Steiner preconditioning [17] [26] [18]. 

 

4.2.2 SDD linear systems as graphs 
 

In this subsection we discuss how SDD linear systems can be viewed entirely as graphs. Com-
binatorial preconditioning advocates a principled approach to the solution of linear systems. 
The core of CMG and all other solvers designed in the context of combinatorial precondi-

tioning is in fact a solver for a special class of matrices, graph Laplacians. The Laplacian 𝐴 of 

a graph 𝐺 =  (𝑉, 𝐸, 𝑤) with positive weights, is defined by: 
 

𝐴𝑖,𝑗 = 𝐴𝑗,𝑖 = −𝑤𝑖,𝑗 𝑎𝑛𝑑 𝐴𝑖,𝑖 = − ∑ 𝐴𝑖,𝑗

𝑖≠𝑗

 

 
More general systems are solved via light-weight transformations to Laplacians. Consider for 

example the case where the matrix 𝐴 has a number of positive off-diagonal entries, and the 

property 𝐴𝑖,𝑖 = ∑ |𝐴𝑖,𝑗|𝑖≠𝑗 . Positive off-diagonal entries have been a source of confusion for 

AMG solvers, and various heuristics have been proposed. Instead, CMG uses a reduction 

known as double-cover [17] . Let 𝐴 = 𝐴𝑝 +  𝐴𝑛 +  𝐷, where D is the diagonal of 𝐴 and 𝐴𝑝 

is the matrix consisting only of the positive off-diagonal entries of 𝐴. It is easy to verify that 
 

𝐴𝑥 = 𝑏 ⟺ (
𝐷 + 𝐴𝑛 −𝐴𝑝

−𝐴𝑝 𝐷 + 𝐴𝑛
) (

𝑥
−𝑥

) = (
𝑏

−𝑏
) 

 
In this way, the original system is reduced to a Laplacian system, while at most doubling the 
size. In practice it is possible to exploit the obvious symmetries of the new system, to solve it 
with an even smaller space and time overhead. 
  

Matrices of the form 𝐴 + 𝐷𝑒 , where 𝐴 is a Laplacian and 𝐷𝑒 is a positive diagonal matrix have 
also been addressed in various ways by different AMG implementations. In CMG, we again 

reduce the system to a Laplacian. If 𝑑𝑒 is the vector of the diagonal elements of 𝐷, we have 
 

𝐴𝑥 = 𝑏 ⟺ (

 𝐴 + 𝐷𝑒      0          −𝑑𝑒

0
−𝑑𝑒

𝑇

𝐴 + 𝐷𝑒    −𝑑𝑒

        −𝑑𝑒
𝑇      ∑ 𝑑𝑒(𝑖)

𝑖

) (
𝑥

−𝑥
0

) = (
𝑏

−𝑏
0

) 

 
Again it’s possible to implement the reduction in a way that exploits the symmetry of the new 
system, and with a small space and time overhead work only implicitly with the new system. 
 

A symmetric matrix 𝐴 is called diagonally dominant (SDD), if  𝐴𝑖,𝑖 ≥  ∑ |𝐴𝑖,𝑗|𝑖≠𝑗 .  The two 

reductions above can reduce any SDD linear system to a Laplacian system. Symmetric positive 
definite matrices (SPD) with non-positive off-diagonals are known as M-matrices. It is well 

known that if 𝐴 is an M-matrix, there is a positive diagonal matrix 𝐷 such that 𝐴 =  𝐷𝐿𝐷 

where 𝐿 is a Laplacian. Assuming 𝐷 is known, an M-system can also be reduced to a Laplacian 

system via a simple change of variables. In many application 𝐷 is given, or it can be recovered 
with some additional work [27]. 
 
There is a one-to-one correspondence between Laplacians and graphs, so we will be often 
using the terms interchangeably. 
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4.2.3 A graph decomposition algorithm 
 

The crucial step for the construction of a good Steiner preconditioner is the computation of 
a group decomposition that satisfies, as best as possible, the requirements of Theorem 4.1. 
Before the presentation of the Decompose-Graph algorithm, that extends the ideas of [18], 

we need to introduce a couple of definitions. Let 𝑣𝑜𝑙𝐺(𝑣) denote the total weight incident to 

node 𝑣 in graph 𝐺. The 𝑤𝑒𝑖𝑔ℎ𝑡𝑒𝑑 𝑑𝑒𝑔𝑟𝑒𝑒 of a vertex 𝑣 is defined as the ratio   

 

𝑤𝑑(𝑣) =
𝑣𝑜𝑙(𝑣)

𝑚𝑎𝑥𝑢∈𝑁(𝑣)𝑤(𝑢, 𝑣)
 

 

The average weighted degree of the graph is defines as 
 

 𝑎𝑤𝑑(𝐺) = (
1

𝑛
) ∑ 𝑤𝑑(𝑣)𝑣∈𝑁  . 

 

 

Figure 4.4: Decompose Graph Algorithm 

 

It is not very difficult to prove that the algorithm Decompose-Graph presented in Figure 

4.4 produces a partitioning where the conductance of each cluster depends only on 𝑎𝑤𝑑(𝐴) 

and the constant 𝜅. In fairly general sparse topologies that allow high degree nodes, 𝑎𝑤𝑑(𝐴) 

is constant and the number of clusters 𝑚 returned by the algorithm is such that 𝑛/𝑚 >  2 
(and in practice larger than 3 or 4).  

 

4.2.4 The Multigrid algorithm 
 

In this subsection we outline the intuition behind Steiner preconditioners and multigrid. De-
tails and proofs can be found in [26]. Algebraically, any of the classic preconditioned iterative 

methods, such as the Jacobi and Gauss-Seidel iteration, is nothing but a matrix 𝑆, which gets 

applied implicitly to the current error vector 𝑒, to produce a new error vector 𝑒′ =  𝑆𝑒. For 

example, in the Jacobi iteration we have 𝑆 =  (𝐼 −  𝐷−1𝐴). This has the effect that it reduces 
effectively only part of the error in a given iterate, namely the components that lie in the low 

eigenspaces of 𝑆 (usually referred to as high frequencies of 𝐴). The main idea behind a two-

level multigrid is that the current smooth residual error 𝑟 =  𝑏 −  𝐴𝑥, can be used to calculate 

a correction 𝑅𝑇𝑄−1𝑅𝑟, where Q is a smaller graph and R is an m×n restriction operator. The 

correction is then added to the iterate 𝑥. The hope here is that for smooth residuals, the low-

rank matrix 𝑅𝑇𝑄−1𝑅𝑟 is a good approximation of 𝐴−1. Algebraically, this correction is the 

application of the operator 𝑇 =  (𝐼 −  𝑅𝑇𝑄−1𝑅𝐴) to the error vector 𝑒. The choice of 𝑄 is 
most often not independent from that of R, as the Galerkin condition is employed: 
 

𝑄 =  𝑅𝐴𝑅𝑇 
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The Galerkin condition ensures that 𝑇 is a projection operator with respect to the A-inner 
product. Two level convergence proofs are then based on bounds on the angle between the 

subspace 𝑁𝑢𝑙𝑙(𝑃) and the high frequency subspace of 𝑆. 
 

At a high level, the key idea behind CMG is that the provably small condition number 𝜅(𝐴, 𝐵) 

where B is given in expression 4.2, is equal to the condition number 𝜅( 𝐴̂, 𝐵̂ ) where 𝐴̂ =

𝐷−1/2𝐴𝐷−1/2 and  𝐵̂ = 𝐷−1/2𝐵𝐷−1/2. This in turn implies a bound on the angle between 

the low frequency of 𝐴̂ and the high frequency of 𝐵̂ [18]. The latter subspace is Null(𝑅𝑇𝐷1/2). 

This fact suggests to choose 𝑅𝑇𝐷1/2 as the projection operator while performing relaxation 

with (𝐼 − 𝐴̂) on the system 𝐴̂𝑦 =  𝐷−1/2𝑏, with 𝑦 =  𝐷1/2  𝑥. Combining everything, we 

get the following two-level algorithm in Figure 4.5. 

 

 

Figure 4.5: Two-level Combinatorial Multigrid 

 

The two-level algorithm can naturally be extended into a full multigrid algorithm, by recur-
sively calling the algorithm when the solution to the system with Q is requested. This produces 

a hierarchy of graphs 𝐴 =  𝐴0, . . . , 𝐴𝑑 . The full multigrid algorithm we use, after simplifica-

tions in the algebra of the two-level scheme is as follows in Figure 4.6. 
 

 

Figure 4.6: Full Combinatorial Multigrid 

  

If 𝑛𝑛𝑧(𝐴) denotes the number of non-zero entries in matrix 𝐴, we pick 
 

𝑡𝑖 = 𝑚ax{⌈
𝑛𝑛𝑧(𝐴𝑖)

𝑛𝑛𝑧(𝐴𝑖+1)
− 1⌉,1} 

 
This choice for the number of recursive calls, combined with the fast geometric decrease of 
the matrix sizes, targets a geometric decrease in the total work per level, while optimizing the 
condition number. 
 
As we can see at the above figure, the operation of sparse matrix-vector multiplication (SpMV) 
occurs in steps 3, 7 and 11 of the CMG algorithm. Those multiplications consist the worst 
bottleneck in CMG solver, so our implementation focuses on solving those bottlenecks 
accelerating the time required for those SpMV operations. The full Combinatorial Multigrid 

algorithm is called from PCG method every time we have to solve 𝑀𝑧𝑖−1 = 𝑟𝑖−1 in 
preconditioner-solve step. Details on how we tried to improve the performance of the SpMV 
operations are given in Chapter 6. 
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Chapter 5  

GPU Architecture and the CUDA  

Programming Model 

 
5.1 Introduction 

 
General-Purpose Graphics Processing Unit (GPGPU) Computing only became practical and 
popular after ca. 2001, with the advent of both programmable shaders and floating point sup-
port on graphics processors. GPGPU computing is the use of a GPU together with a CPU to 
accelerate scientific, analytics, engineering, consumer, and enterprise applications.  
 
GPU-accelerated computing offers unprecedented application performance by offloading 
compute-intensive portions of the application to the GPU, while the remainder of the code 

still runs on the CPU as illustrated by Figure 5.1. From a user's perspective, applications 
simply run significantly faster. 
 
 

 

Figure 5.1: How GPU Acceleration Works 

 

 
 
A simple way to understand the difference between a CPU and GPU is to compare how they 
process tasks. A CPU consists of a few cores optimized for sequential serial processing while 
a GPU has a massively parallel architecture consisting of thousands of smaller, more efficient 

cores designed for handling multiple tasks simultaneously as shown in Figure 5.2. 
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Figure 5.2: CPU vs GPU Architecture 

 

 

5.2 Hardware Implementation 
 

The NVIDIA GPU architecture is built around a scalable array of multithreaded Streaming 
Multiprocessors (SMs). When a program on the host CPU invokes a kernel grid, the blocks of 
the grid are enumerated and distributed to multiprocessors with available execution capacity. 
The threads of a thread block execute concurrently on one multiprocessor, and multiple thread 
blocks can execute concurrently on one multiprocessor. As thread blocks terminate, new 
blocks are launched on the vacated multiprocessors. 

A multiprocessor is designed to execute hundreds of threads concurrently. To manage such a 
large amount of threads, it employs a unique architecture called SIMT (Single-Instruction, 
Multiple-Thread). The instructions are pipelined to leverage instruction-level parallelism 
within a single thread, as well as thread-level parallelism extensively through simultaneous 
hardware multithreading as detailed in Hardware Multithreading. Unlike CPU cores they are 
issued in order however and there is no branch prediction and no speculative execution. 

5.2.1 SIMT Architecture  

The multiprocessor creates, manages, schedules, and executes threads in groups of 32 parallel 
threads called warps. Individual threads composing a warp start together at the same program 
address, but they have their own instruction address counter and register state and are there-
fore free to branch and execute independently. The term warp originates from weaving, the 
first parallel thread technology. A half-warp is either the first or second half of a warp. A quar-
ter-warp is either the first, second, third, or fourth quarter of a warp. 

When a multiprocessor is given one or more thread blocks to execute, it partitions them into 
warps and each warp gets scheduled by a warp scheduler for execution. The way a block is 
partitioned into warps is always the same; each warp contains threads of consecutive, increas-
ing thread IDs with the first warp containing thread 0. Thread hierarchy, which describes how 
thread IDs relate to thread indices in the block, is described in a later section. 

A warp executes one common instruction at a time, so full efficiency is realized when all 32 
threads of a warp agree on their execution path. If threads of a warp diverge via a data-de-
pendent conditional branch, the warp serially executes each branch path taken, disabling 
threads that are not on that path, and when all paths complete, the threads converge back to 
the same execution path. Branch divergence occurs only within a warp; different warps execute 
independently regardless of whether they are executing common or disjoint code paths.
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The SIMT architecture is akin to SIMD (Single Instruction, Multiple Data) vector organiza-
tions in that a single instruction controls multiple processing elements. A key difference is that 
SIMD vector organizations expose the SIMD width to the software, whereas SIMT instruc-
tions specify the execution and branching behavior of a single thread. In contrast with SIMD 
vector machines, SIMT enables programmers to write thread-level parallel code for independ-
ent, scalar threads, as well as data-parallel code for coordinated threads. For the purposes of 
correctness, the programmer can essentially ignore the SIMT behavior; however, substantial 
performance improvements can be realized by taking care that the code seldom requires 
threads in a warp to diverge. In practice, this is analogous to the role of cache lines in tradi-
tional code: Cache line size can be safely ignored when designing for correctness but must be 
considered in the code structure when designing for peak performance. Vector architectures, 
on the other hand, require the software to coalesce loads into vectors and manage divergence 
manually. 
 

5.3 Device Memory Model 

Threads may access data from multiple memory spaces during their execution as illustrated 

by Figure 5.3. Each thread has private local memory. Each thread block has shared memory 
visible to all threads of the block and with the same lifetime as the block. All threads have 
access to the same global memory. 

There are also two additional read-only memory spaces accessible by all threads: the constant 
and texture memory spaces. The global, constant, and texture memory spaces are optimized 
for different memory usages. Those memory spaces are persistent across kernel launches by 
the same application. Texture memory also offers different addressing modes, as well as data 
filtering, for some specific data formats. 

An instruction that accesses addressable memory (i.e., global, local, shared, constant, or texture 
memory) might need to be re-issued multiple times depending on the distribution of the 
memory addresses across the threads within the warp. How the distribution affects the in-
struction throughput this way is specific to each type of memory and described in the following 
sections. For example, for global memory, as a general rule, the more scattered the addresses 
are, the more reduced the throughput is.                                   
 
 

 

Figure 5.3: Memory Hierarchy 

5.3.1 Global Memory 
 
Global memory resides in device memory and device memory is accessed via 32-, 64-, or 128-
byte memory transactions. These memory transactions must be naturally aligned: Only the 32-
, 64-, or 128-byte segments of device memory that are aligned to their size (i.e., whose first 
address is a multiple of their size) can be read or written by memory transactions.
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When a warp executes an instruction that accesses global memory, it coalesces the memory 
accesses of the threads within the warp into one or more of these memory transactions de-
pending on the size of the word accessed by each thread and the distribution of the memory 
addresses across the threads. In general, the more transactions are necessary, the more unused 
words are transferred in addition to the words accessed by the threads, reducing the instruction 
throughput accordingly. For example, if a 32-byte memory transaction is generated for each 
thread’s 4-byte access, throughput is divided by 8. 
 
How many transactions are necessary and how much throughput is ultimately affected varies 
with the compute capability of the device. For devices of compute capability 1.1, the require-
ments on the distribution of the addresses across the threads to get any coalescing at all are 
very strict. For devices of compute capability 2.x, like the Tesla C2075 we use, and higher, the 
memory transactions are cached, so data locality is exploited to reduce impact on throughput. 
 
To maximize global memory throughput, it is therefore important to maximize coalescing by: 
 

 Following the most optimal access patterns based on the Compute Capability of the 
device being used 

 Using data types that meet the size and alignment requirement  

 Padding data in some cases, for example, when accessing a two-dimensional array  
 

5.3.2 Local Memory 
 
Local memory accesses only occur for some automatic variables. Automatic variables that the 
compiler is likely to place in local memory are: 

 Arrays for which it cannot determine that they are indexed with constant quantities 

 Large structures or arrays that would consume too much register space 

 Any variable if the kernel uses more registers than available (this is also known as 
register spilling) 

 
The local memory space resides in device memory, so local memory accesses have same high 
latency and low bandwidth as global memory accesses. Local memory is however organized 
such that consecutive 32-bit words are accessed by consecutive thread IDs. Accesses are there-
fore fully coalesced as long as all threads in a warp access the same relative address (e.g., same 

index in an array variable, same member in a structure variable). 

 

5.3.3 Shared Memory 
 
Because it is on-chip, shared memory has much higher bandwidth and much lower latency 
than local or global memory. 

To achieve high bandwidth, shared memory is divided into equally-sized memory modules, 
called banks, which can be accessed simultaneously. Any memory read or write request made 
of n addresses that fall in n distinct memory banks can therefore be serviced simultaneously, 
yielding an overall bandwidth that is n times as high as the bandwidth of a single module. 

However, if two addresses of a memory request fall in the same memory bank, there is a bank 
conflict and the access has to be serialized. The hardware splits a memory request with bank 
conflicts into as many separate conflict-free requests as necessary, decreasing throughput by a 
factor equal to the number of separate memory requests. If the number of separate memory 
requests is n, the initial memory request is said to cause n-way bank conflicts. 

5.3.4 Constant Memory 
 
The constant memory space resides in device memory and is cached in the constant cache. A 
constant memory fetch costs one memory read from the device memory only on a cache miss, 
otherwise it costs one read from the constant cache. The memory bandwidth is best utilized 
when all instructions that are executed in parallel access the same address of the constant 
memory.
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5.3.5 Texture Memory 

The texture memory space reside in device memory and is cached in texture cache, so a texture 
fetch costs one memory read from device memory only on a cache miss, otherwise it just costs 
one read from texture cache. The texture cache is optimized for 2D spatial locality, so threads 
of the same warp that read texture addresses that are close together in 2D will achieve best 
performance. Also, it is designed for streaming fetches with a constant latency; a cache hit 
reduces DRAM bandwidth demand but not fetch latency. 

Reading device memory through texture fetching present some benefits that can make it an 
advantageous alternative to reading device memory from global or constant memory: 

 If the memory reads do not follow the access patterns that global or constant memory 
reads must follow to get good performance, higher bandwidth can be achieved provid-
ing that there is locality in the texture fetches 

 Addressing calculations are performed outside the kernel by dedicated units 

 Packed data may be broadcast to separate variables in a single operation 

 8-bit and 16-bit integer input data may be optionally converted to 32 bit floating-point 
values in the range [0.0, 1.0] or [-1.0, 1.0] 

 

5.4 The CUDA Programming Model 
 
This chapter introduces the main concepts behind the CUDA programming model by outlin-
ing how they are exposed in C. 
 
CUDA stands for Compute Unified Device Architecture. It is a parallel programming para-
digm released in 2007 by NVIDIA. It is used to develop software for graphics processors and 
is used to develop a variety of general purpose applications for GPUs that are highly parallel 
in nature and run on hundreds of GPU’s processor cores.  
 
CUDA C extends C by allowing the programmer to define C functions, called kernels, that, 
when called, are executed N times in parallel by N different CUDA threads, as opposed to 
only once like regular C functions. A kernel is defined using the global declaration specifier 
and the number of CUDA threads that execute that kernel for a given kernel call is specified 
using a new <<< … >>> execution configuration syntax (see C Language Extensions). Each 
thread that executes the kernel is given a unique thread ID that is accessible within the kernel 
through the built-in threadIdx variable. 
 
For convenience, threadIdx is a 3-component vector, so that threads can be identified using a 
one-dimensional, two-dimensional, or three-dimensional thread index, forming a one dimen-
sional, two-dimensional, or three-dimensional thread block. This provides a natural way to 
invoke computation across the elements in a domain such as a vector, matrix, or volume. The 
index of a thread and its thread ID relate to each other in a straightforward way: For a one-

dimensional block, they are the same; for a two-dimensional block of size (𝐷𝑥, 𝐷𝑦), the thread 

ID of a thread of index (𝑥, 𝑦) is (𝑥 + 𝑦 ∗ 𝐷𝑥); for a three-dimensional block of size 

(𝐷𝑥, 𝐷𝑦, 𝐷𝑧), the thread ID of a thread of index (𝑥, 𝑦, 𝑧) 𝑖𝑠 (𝑥 + 𝑦 ∗ 𝐷𝑥 + 𝑧 ∗ 𝐷𝑥 ∗ 𝐷𝑦). 
 
There is a limit to the number of threads per block, since all threads of a block are expected 
to reside on the same processor core and must share the limited memory resources of that 
core. On current GPUs, a thread block may contain up to 1024 threads. However, a kernel 
can be executed by multiple equally-shaped thread blocks, so that the total number of threads 
is equal to the number of threads per block times the number of blocks. Blocks are organized 
into a one-dimensional, two-dimensional, or three-dimensional grid of thread blocks as illus-

trated by Figure 5.4 given in next page. 
 
The number of thread blocks in a grid is usually dictated by the size of the data being processed 
or the number of processors in the system, which it can greatly exceed. The number of threads 
per block and the number of blocks per grid specified in the <<< ... >>> syntax can be of 
type int or dim3. Two-dimensional blocks or grids can be specified as in the example above. 
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Each block within the grid can be identified by a one-dimensional, two-dimensional, or three-
dimensional index accessible within the kernel through the built-in blockIdx variable. The di-
mension of the thread block is accessible within the kernel through the built-in blockDim 
variable. 
 
A thread block size of 16x16 (256 threads), although arbitrary in this case, is a common choice. 
The grid is created with enough blocks to have one thread per matrix element as before. For 
simplicity, this example assumes that the number of threads per grid in each dimension is 
evenly divisible by the number of threads per block in that dimension, although that need not 
be the case. 
 
Thread blocks are required to execute independently: It must be possible to execute them in 
any order, in parallel or in series. This independence requirement allows thread blocks to be 
scheduled in any order across any number of cores, enabling programmers to write code that 
scales with the number of cores. 

 
Threads within a block can cooperate by sharing data through some shared memory and by 
synchronizing their execution to coordinate memory accesses. More precisely, one can specify 

synchronization points in the kernel by calling the 𝑠𝑦𝑛𝑐𝑡ℎ𝑟𝑒𝑎𝑑𝑠() intrinsic function; 

𝑠𝑦𝑛𝑐𝑡ℎ𝑟𝑒𝑎𝑑𝑠() acts as a barrier at which all threads in the block must wait before any is 
allowed to proceed.  
  
For efficient cooperation, the shared memory is expected to be a low-latency memory near 

each processor core (much like an L1 cache) and 𝑠𝑦𝑛𝑐𝑡ℎ𝑟𝑒𝑎𝑑𝑠() is expected to be light-
weight.   
 
 

 

Figure 5.4: 2D Grid of Thread Blocks 

5.5 NVIDIA® TESLA™ C2075 

 
Based on the NVIDIA Fermi architecture, the TESLA™ C2075 computing processor has 
been engineered from the ground up for High Performance Computing, as is capable of reach-
ing 1.03 TFLOPs and 515 GFLOPs peak performance for single and double precision float-
ing-point operations respectively. This was a good reason for us to choose this GPU card for 
our implementation because our algorithms are based on double floating-point precision arith-
metic operations. 
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5.5.1 Engine Specifications 
 
The TESLA™ C2075 has 14 Multiprocessors with 32 CUDA cores each, which means 448 
CUDA cores with 1.15 GHz clock rate per core. It has compute capability 2.0. The warp size 
is 32 and it can support up to 1536 threads per multiprocessor and 1024 threads per block. 
The maximum sizes of each dimension of a block and grid are 1024 x 1024 x 64 and 65535 x 
65535 x 65535 respectively. Also it can support concurrent copy and kernel execution.  
 

5.5.2 Memory Specifications 
 
The total amount of global memory for this device is 6.144GB and with ECC support enabled 
the user’s available memory is 5.376GB. The total amount of constant memory is 65KB. Each 
block has available 49KB of shared memory and 32768 registers. The memory clock rate is 
1.57GHz. TESLA™ C2075 has available caching. The on-chip memory per multiprocessor is 
used for both L1 and shared memory, and how much of it is dedicated to L1 versus shared 
memory is configurable for each kernel call. Additionally, is has a unified L2 cache for all of 
the processor cores of 786KB.  The maximum texture dimension size for 1D is (65536), for 
2D is (65536, 65535) and for 3D is (2048, 2048, 2048).   
 

      Figure 5.5 shows the architecture of Fermi Streaming Multiprocessor. 
TESLA™ C2075 is consists of 14 such SMs. 
 
 

               

      Figure 5.5: Fermi SM 
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Chapter 6 

Improving The Performance of CMG 
 

The CMG solver is an extension of the preconditioned conjugate gradient method (PCG), 
described in subsection 2.4.2 .Therefore, its core is based on sparse matrix-vector multiplica-

tion 𝑀𝑧𝑖−1 = 𝑟𝑖−1 where M is the Steiner preconditioner. The PCG approximates the solu-
tion iteratively until the solution is satisfactory, so in the solve phase exist too many matrix-
vector multiplications which are the biggest bottleneck of CMG. This bottleneck appeared 

also at the results of the performance profiling we done using Intel® VTune𝑇𝑀 Amplifier. In 
this section we represent our implementation of a new SpMV method on Nvidia GPUs. Be-
fore the description of our implementation, we review some relevant existing SpMV methods. 

 

6.1 Review of existing SPMV methods on GPU 
 

6.1.1 Introduction 
 
Sparse matrix-vector multiplication (SpMV) is of crucial importance in sparse linear algebra as 
it plays an important role in many numerical and scientific computing applications such as 
finite difference and finite element based methods. SpMV operation represents the dominant 
computing cost in those problems and it is very important to improve the efficiency of the 
SpMV algorithms. As a result, several research efforts have been proposed for parallelizing 
SpMV on GPU platforms.  
 
There are many sparse matrices formats such as DIA, ELL, CSR, HYB, PKT and COO for 
both structure and unstructured matrices [28] . The Combinatorial Multigrid Solver is based 
on Compressed Column Storage (CCS) and as it is designed for symmetric matrices, we focus 
on the CSR format. It is easy to see that CSR is equal to CCS for symmetric matrices with the 
difference that we use row major storing-access. The serial CPU kernel for the CSR SpMV is 

shown in Algorithm 6.1 . 
 
 

double* spmv(int n, double *a, int *ia, int *ja, double *x, double *y){ 

      unsigned int i, j; 

 

      /* Initialize y vector */ 

      for (i = 0; i < n; i++) { 

   y[i] = 0; 

      } 

 

      for (i = 0; i < n; i++) { 

   for (j = ia[i]; j < ia[i + 1]; j++) 

       y[i] = y[i] + a[j] * x[ja[j]]; 

      } 

 

      return (y); 

} 

 
 

Algorithm 6.1: Serial CPU kernel for the CSR SpMV 
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6.1.2 Relevant SpMV algorithms on GPU platforms 
 
In this subsection, we describe some SpMV implementations on the GPU. The SpMV com-

puting consists of two phases: the first 𝑝𝑟𝑜𝑑𝑢𝑐𝑡 𝑝ℎ𝑎𝑠𝑒, which performs the element-element 

production between the matrix and the vector, the second 𝑠𝑢𝑚𝑚𝑎𝑡𝑖𝑜𝑛 phase adds the results 
for each row to get the final result. The existing methods are the mentioned below. 
 
  

1. The row-based B&G method: Bell and Garland [28] first proposed a straight-
forward implementation, in which each row will take care of all the computa-

tion (multiplication and summation) by a single thread as shown in Figure 6.1. 
The algorithm only requires one kernel launch. The performance, however, 
turns out to be unsatisfying. A careful analysis reveals two major reasons lead-
ing to significant inefficiency. First, the memory access cannot be coalesced 
because one thread needs to load varying number of data words from global 
memory. Secondly, the load balance is poor since there could be hundreds of 
nonzero elements in some rows, while most other rows have only a few. There-
fore, the GPU run time is dominated by those less sparse rows. The SpMV 

kernel using one thread per matrix row is given in Figure 6.2. 
 
 
 

 

Figure 6.1:  Row-Based B&G Method 

 

 

Figure 6.2: SpMV kernel for the CSR sparse matrix format using one thread per matrix 

row
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2. The warp-based B&G method: The row-based B&G method was further 
improved by the warp-based B&G method in [28] in which one warp is as-
signed to each row of a matrix. After the multiplication phase, the intra-warp 
thread reduction is performed to compute the per-thread result. The algorithm 

is illustrated in Figure 6.3. Compared to the row-based B&G method, its 
memory accesses can be coalesced because 32 continuous threads in the same 
warp could work together to load the non-zero elements in one row.  This 
approach is extremely efficient for those matrices with long strips of non-zeros 
and a throughput of over 10 GFLOPS can be achieved. However, it may suf-
fers low performance when the number of nonzeros in each row is smaller 
than 32, which can be the case for many finite difference and finite element 
based methods. The SpMV kernel using one 32-thread warp per matrix row is 

given in Figure 6.4. 
 

 

 

     Figure 6.3: Warp-Based P&G Method 

   

 

 

Figure 6.4: SpMV kernel for the CSR sparse matrix format using one 32-thread warp per 

matrix row
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3. The P&S method: Deng et al  later proposed [29] an improved SpMV method, 

called P&S method for many electronic design automation (EDA) related 
problems. They realized that the SpMV problem actually consists of two 
phases with different available parallelism. In the first phase, every non-zero 
matrix element must be multiplied by a corresponding vector element. From 
this point of view, the multiplication operations are fully regular. The second 
phase, calculates the sum of the products on each row. Here the number of 
summations per row is determined by the distributions of non-zeros and thus 
cannot be regular for general cases. The approach will not directly operate on 
the CSR data structure. Instead, it creates a new vector, called 

𝑒𝑥𝑝𝑎𝑛𝑑𝑒𝑑 𝑣𝑒𝑐𝑡𝑜𝑟, of the same size of the 𝑑𝑎𝑡𝑎 𝑣𝑒𝑐𝑡𝑜𝑟, as shown in Figure 

6.5. The expanded vector consists of the elements from the multiplication vec-

tor 𝑣 =  [𝑏1, . . . , 𝑏3] and each element in the expanded vector has the value 

𝑣_𝑒𝑥𝑝𝑎𝑛𝑑𝑒𝑑[𝑖]  =  𝑣[𝑐𝑜𝑙[𝑖]] where 𝑐𝑜𝑙[𝑖] stores the column index of the 

element 𝑑𝑎𝑡𝑎[𝑖] .The two vectors (𝑣_𝑒𝑥𝑝𝑎𝑛𝑑𝑒𝑑  and 𝑑𝑎𝑡𝑎) will be multi-
plied in the production phase. After the generation of expand vector, the re-
maining operations become two vector multiplication and partial summation 
over rows. The two phases can be organized as two succeeding GPU kernels 

as shown in Figure 6.6. 
 
  

`  

          Figure 6.5: Vector expansion concept in P&S Method 

  

 

 

    Figure 6.6: P&S Method
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6.2 SegSpMV - A new SPMV method 

 

In this section we present our method of choice to accelerate the SpMV operations performed 
into PCG in the solve phase of CMG. The new algorithm, called segSpMV [1] can overcome 
the aforementioned problems in the P&S method.  

The new algorithm is also based on the expanded vector concept for the multiplication phase. 
But unlike the P&S method, the new algorithm can mitigate the irregular memory access prob-
lems in the summation phase, and thus lead to simpler implementation and better perfor-
mance. The main idea is to partition the rows into a number of fixed-length regular segments 
before the operation. The length of the segment typically is selected to be just bigger than the 
average number of nonzero elements per row in a matrix and they also should be the power 
of 2 for easy reduction operation. For example, if the average number of nonzero elements is 

18, then segment length 25  =  32 is selected. For rows with more nonzeros than the average 
number, multiple segments will be needed. 
 
After the segment length is determined, the each row is partitioned into a number of regular 
segments. If a segment does not fully filled by the elements from the given row, 0 is padded 

to the rest of the empty elements in the segment as shown in Figure 6.7. In this figure, one 0 
is padded at the end of seg1 and seg4. This segment-based expansion is performed for both 

𝑜𝑟𝑖𝑔𝑖𝑛𝑎𝑙 𝑑𝑎𝑡𝑎 vector and the 𝑒𝑥𝑝𝑎𝑛𝑑𝑒𝑑 𝑣𝑒𝑐𝑡𝑜𝑟. After this step, the two segment-expanded 
vectors are sent to GPU global memory for multiplication and addition phases with just one 

kernel launch as shown in Figure 6.7. Note that it takes O(#nonzeros) to do the zero padding. 
In the product phase, each thread first will read two elements from the two segment-expended 
vectors respectively via the coalesced memory access from the GPU global memory. Then 
each thread multiplies one pair of elements from the two segment-expanded vectors. A crucial 
fact for the performance of the algorithm is that it saves the product result immediately into 
the shared memory. In this case, all the partial product results from all threads are stored in 
shared memory, which is ready for the second phase of addition operation right away. 
 
We note that the new method will never run out of shared memory as the amount of memory 
needed is 8 times of number of threads in each block as each thread takes care of one double 
precision element. So given 1K maximum thread allowed in each block in Tesla C2075 GPU, 
the maximum memory is just 8K, which is far less than the 49K shared memory in each block. 
This is also the case for other GPUs as well. 
 
As a result, we do not need to write the product results back to global memory and then read 
them back again, which leads to one more kernel launch saving. In the addition phase, each 
thread sums the products in one segment and each block is responsible of the same number 
of segments. The number of non-zero elements in each row may be different, but all segments 
are with the same length. Therefore, according to this method we achieve better load balance 
than the P&S and we enjoy the coalesced memory access.   
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Figure 6.7: The new segSpMV method 

 

In the summation phase, the new algorithm does not need to check the boundaries of each 
row any more, which causes the irregular memory access, as it can simply add all the results 
for each regular segment instead. Because the segment size is fixed, the summation can be 
very easily done by one thread or by multiple threads via reduction. Also the addition operation 

will take almost same time for all the threads. We add the __𝑠𝑦𝑛𝑐𝑡ℎ𝑟𝑒𝑎𝑑𝑠() to ensure all the 
partial results from each segment finish first before they are written back into global memory 
using the coalesced memory access. Finally, segSpMV adds up the immediate results of seg-
ments corresponding to the same row in the CPU side to get the final results, which can be 
done very efficiently. The segSpMV kernel that we implemented is given at the next section. 
 
Kai He et al proved that the segSpMV method constantly outperforms all published algo-
rithms and the SpMV method in the recent cuSPARSE library [30] based on a set of public 
matrix benchmarks. 

 

 

6.3 Implementation and Optimizations 
 

 
This section presents and describes our implementation of segSpMV which we developed 
with the expectation of improving the performance of the CMG solve phase. We start by 
giving the hardware and software used in our performance study and the IBM benchmarks 
used in our experiments. We will then represent our implementation, the optimizations we 
done and our experimental results.   
 

6.3.1 System Specifications and IBM Power Grid Benchmarks 
 

Hardware and software specifications of our system are listed in Table 6.1. The host code 

is been compiled with Intel ICC compiler for better performance. For the compilation of 

our implementation which includes CUDA code, we use the NVCC compiler which make 

use of the GCC compiler to compile the host code together with the device code.
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CPU 6 Intel(R) Xeon(R) E5645 @2.40GHz 

GPU Nvidia® Tesla™ C2075 

MEMORY 24GB DDR3 

OS Kubuntu 12.10 Quantal( Linux 3.5.0-34 ) 

CUDA CUDA 5.5 

INTEL COMPILER ICC 13.1.1 

GNU COMPILER GCC 4.7.2 

NVIDIA COMPILER NVCC 5.5 

Table 6.1: Test platform specifications 

 
All the power grid benchmarks presented in this section are drawn from real designs, and vary 
over a reasonable range of size and difficulty. Those netlists are generated in Spice format. For 

more information for such Benchmarks we refer the reader to [31].Table 6.2 shows the IBM 
Power Grid Benchmarks we used for the DC Analysis.  
 

Netlist #i #n #r #s #v #l 

ibmpg1 10.774 30.638 30.027 14.208 14.308 2 

ibmpg2 37.926 127.238 208.325 1.298 330 5 

ibmpg3 201.054 851.584 1.401.572 461 955 5 

ibmpg4 276.976 953.583 1.560.645 11.682 962 6 

Table 6.2: IBM Power Grid Benchmarks for DC Analysis 
 

         i for current sources 

         n for nodes (total number, does not take shorts into account) 

         r for resistors (include shorts) 

         s for shorts (zero value resistors and voltage sources) 

         v for voltage sources (include shorts) 

         l for metal layers 
 

For the MNA analysis of IBM netlists we used a software we had already implemented. This 
software parses the netlist file and creates the corresponding sparse MNA array “A” and right-

hand side vector “b”, which will be used later for solving the system 𝐴𝑥 = 𝑏. Table 6.3 shows 
the dimensions and the number of non-zero elements of the MNA arrays corresponding to 
each IBM netlist.  
 

Netlist Dimensions Non-zeros 

ibmpg1 44.943 × 44.943 147.315  

ibmpg2 127.565 × 127.565 544.545 

ibmpg3 852.536 × 852.536  3.656.107  

ibmpg4 954.542 × 954.542 4.058.866 

Table 6.3: Matrix size and non-zero elements of MNA arrays 
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6.3.2 SegSpMV implementation and experimental results 
 

The summation phase of the segSpMV can be implemented with 2 different ways as 

proposed at [1] . In the first one, the summation is done by one thread per segment while 

at the second version called segSpMV-r is formed by reduction. The average segment 

length of the matrices compose the hierarchy of Steiner preconditioners for all IBM 

benchmarks is very small as shown in Table 6.4.As a result we choose the first 

approximation. For matrices with large segment size (above 32), segSpMV-r would be 

faster than segSpMV. Table 6.4 shows the number of levels-matrices including in the 

Steiner preconditioner hierarchy of graphs for each benchmark, the average non-zeros per 

row and the average segment length for all that matrices.    

 

Netlist Hierarchy Levels Average non-zeros 
per row 

Average Segment 
Length 

ibmpg1 5 4.8 8 

ibmpg2 6 5.3 8 

ibmpg3 7 5.3 8 

ibmpg4 7 5.3 8 

Table 6.4: Hierarchy levels, average non-zeros per row and average segment length for 

the IBM benchmarks 

 
For our segSpMV, we set the number of thread per blocks to be 256, which is the best choice 
based on our observation. For shared memory configuration, the segSpMV method only re-
quires (thread per block)*8 = 2048 bytes per block, so it is always satisfied for C2075 GPU.  

 
The compilation of the original CPU code was made using the ICC with the optimization 
mode -O2 which gives as the best performance based on our observation. The compile 
command we used is:   
 

                 “ icc  -O2  *.c  -o  cmg  -lm ”,  
 
which compiles all the C files together and link them with the math library to produce the 
executable.  

For our implementation we used the NVCC to compile host and device code together. The 
optimization mode for the host code which gave as the best execution times was -O4. The 
compile command we used is:  
    

     “ nvcc  -O4  *.cu  *.c  -arch=sm_20  -o  cmg  -lm  -lcuda  -lcudart ”,   
 
which compiles all the C and CU(CUDA) files together and link them with math and CUDA 
library and runtime, to produce the executable. 

The CMG solver C code [12] was taking advantage of the symmetry occurred in our SDD 
matrices by storing only the upper triangular part of the matrix. This approach leads to less 
memory requirements. SpMV multiplications for all the levels of the preconditioner included 

inside the operation 𝑀𝑧𝑖−1 = 𝑟𝑖−1 of the PCG method, are implemented as shown in 

Algorithm 6.1 with a small difference. The code for the approach where we are storing only 

the upper triangular part of the sparse matrix is called sspmv2 and is shown in Algorithm 6.2.
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double* sspmv2(int n, double *a, int *ia, int *ja, double *x,double *y) 

{ 
    unsigned int i, j, k; 
    double sum; 
 

    /* Initialize y vector */ 
    for (i = 0; i < n; i++) { 
        y[i] = 0; 
    } 
 

    for (i = 0; i < n; i++) { 
        sum = a[ia[i]] * x[i]; 
        for (j = ia[i] + 1; j < ia[i + 1]; j++) { 
            k = ja[j]; 
            sum += a[j] * x[k]; 
            y[k] += a[j] * x[i]; 
        } 
        y[i] += sum; 
    } 
 

    return (y); 
 

} 
 

 

Algorithm 6.2: Serial CPU SpMV kernel for the CSR sparse matrix format storing the 

upper triangular part 

  

At this approximation, for each element of the sparse matrix that we stored, we compute the 
result for both the corresponding row and for the row which corresponds to the symmetric 
value (which is not stored) to get the correct solution.  
 
However, this method causes problems when we try to implement it on a GPU architecture. 

The problem that occur is that the time where a thread  with row index “𝑖” adds a value to the 

current value 𝑦[𝑖] of the solution vector, at the same time another thread which  has row index 

“𝑧” will may also try to add a value to the current value 𝑦[𝑖] for the corresponding symmetric 
position at the primal matrix. This case appears when the column index of the second thread 

𝑘 = 𝑗𝑎[𝑗] is equal to “𝑖” and it is called race condition. This case can cause wrong results and 
it can be resolved using atomic operations. However, the atomic operations at the GPU and 
especially those that access the global memory are very expensive.   
 
This fact led us to try storing the whole sparse matrices of each hierarchy at the memory and 

make the SpMV operation as described in Algorithm 6.1. The experimental results of this 

approximation is shown in Table 6.5 where we compare the execution times of those two 
methods. We also show the time spent for the segmentation of the hierarchy sparse matrices 
and the segmentation-expansion of the vectors.    

  

 
 

Netlist 

Storing full hierarchy 
matrices 

Storing the upper part of 
hierarchy matrices 

SpMV 
(sec) 

PCG 
(sec) 

SEGMENT-
EXPAND 

(sec) 

SpMV 
(sec) 

PCG 
(sec) 

SEGMENT-
EXPAND 

(sec) 

ibmpg1 2,34 7,70 4,00 2,21 7,00 3,00 

ibmpg2 0,40 0,78 0,90 0,30 0,72 0,50 

ibmpg3 3,56 7,00 5,50 3,15 6,50 4,43 

ibmpg4 2,23 4,40 4,15 1,90 4,00 3,00 

Table 6.5: Times when storing full hierarchy matrices vs times when storing the upper 

part of hierarchy matrices 
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The above results shows that when we take advantage of symmetry and we save memory 
resources, we only get a very small execution time speedup for the SpMV operations and 
consequently for the PCG solve phase of CMG. Also, we observe that the time we spend for 
the computation of non-zeros per row and segment length of all sparse arrays of each 
hierarchy, the expansion of all vectors to be multiplied with each matrix and for the 
segmentation of both hierarchy arrays and all vectors is not much better (Segmentation-
Expansion speedup). We can see those small speedups in Table 6.6.   
 

Netlist SpMV speedup PCG speedup Segmentation-

Expansion 

speedup 

ibmpg1 1,06x 1,10x 1,38x 

ibmpg2 1,13x 1,08x 1,24x 

ibmpg3 1,33x 1,09x 1,80x 

ibmpg4 1,17x 1,10x 1,33x 

Table 6.6: Solve phase time speedups (Storing the upper part of hierarchy matrices over 

storing full hierarchy matrices) 

 

Based on our experiments we decided that it would be more efficient to implement a GPU 
kernel that would made the Sparse Matrix-Vector Multiplication based on the full sparse 
matrices storage in order to achieve better performance from our kernel and exploit the GPU 
parallelism. Consequently, we will describe that kernel with the optimizations we tried and 
report our experimental results and the speedups we achieved with our implementation. 
 
The first step in our segSpMV is the computation of segment length of the hierarchy matrices 
which only requires to find the number of non-zeros per matrix row. Also, we compute the 

size of zero padding required for each row and we create an array called “𝑠𝑒𝑔𝑃𝑡𝑟”, which 
contains the number of the first segment of each row and it helps us to access all the segments 
of each row. We can then call our segmentation method to segment each sparse array of the 
Steiner preconditioner hierarchy. 

In the second step we continue by solving the Steiner preconditioned system 𝑀𝑧𝑖−1 = 𝑟𝑖−1 
using the full multigrid algorithm described in Figure 4.6. As we mentioned in a previous 
section  we focus on SpMV operations of steps 3, 7 and 11. It is obvious that the vectors are 
changing continuously, so we have to segment and expand the vector each time before we do 
the corresponding SpMV operation. 

In the next step we have to copy the matrix  𝐴𝑖 of current hierarchy level “𝑖” and the 
corresponding vector to the GPU to have our data ready for multiplication and addition 
phases. The SpMV kernel works as described in section 6.2. The implementation of segSpMV 

kernel is given in Algorithm 6.3, where 𝑑𝑎𝑡𝑎_𝑒𝑥𝑝 and 𝑥_𝑒𝑥𝑝 stand for matrix and vector 

segmented-expanded data, 𝑖𝑛𝑡𝑒𝑟𝑚𝑒𝑑𝑖𝑎𝑡𝑒_𝑟𝑒𝑠𝑢𝑙𝑡 stores the sum of all the elements for each 

segment and 𝑠𝑒𝑔_𝑙𝑒𝑛𝑔𝑡ℎ is the segment length.
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__global__ void segSpmv(double *intermediate_result, double *data_exp, 

double *x_exp, int seg_length){ 

 

double sum; //segment's partial sum 

     int i; 

 

 int id=blockIdx.x * blockDim.x + threadIdx.x; 

       

     __shared__ double product [256]; 

     

     product[threadIdx.x] = data_exp[id] * x_exp[id]; 

  

__syncthreads(); /*ensure that all threads of the same segment 

has finished before computing the partial 

sums*/ 

     

     if( (id % seg_length) == 0){     

       

       sum = 0.0; 

     

       for(i=threadIdx.x;i<(threadIdx.x + seg_length);i++){ 

   sum += product[i]; 

       } 

    

       intermediate_result[id/seg_length] = sum;   

    } 

  

} 
 

 

Algorithm 6.3: segSpmv kernel - The first approach 

 
As shown in the above kernel each thread reads the two corresponding elements from global 
memory, multiplies this pair of elements and stores the result immediately into the shared 
memory. After all products of each segment is computed, the first thread of each segment can 
now proceed with the summation phase. For all elements of the segment, it sums the 

corresponding products and stores the sum in global memory (𝑖𝑛𝑡𝑒𝑟𝑚𝑒𝑑𝑖𝑎𝑡𝑒_𝑟𝑒𝑠𝑢𝑙𝑡). 

Finally, we copy intermediate results back to the CPU where we use "𝑠𝑒𝑔𝑃𝑡𝑟" array to find 
the final result by adding all the intermediate results of the segments belonging to each row. 

Table 6.7 shows the time speedups we achieved using our segSpMV kernel implementation 
without including the time spent transferring data between the CPU and GPU. For all 
benchmarks we get an average performance acceleration 5.8x and for the biggest netlist we 
achieved 7.9x speedup.     

 

Netlist SPMV 
(sec) 

SegSpMV 
(sec) 

Speedup 

ibmpg1 2,34 0,60 3,84x 

ibmpg2 0,40 0,08 4,65x 

ibmpg3 3,56 0,52 6,85x 

ibmpg4 2,23 0,28 7,88x 

Table 6.7: GPU SegSpMV execution time speedup over CPU SpMV 

   
However, the number of PCG iterations and the number of SpMV operations including in 

the recursive full multigrid algorithm leads to many memory copies of the sparse matrix  𝐴𝑖 

of current hierarchy level “𝑖” and the corresponding vector to the GPU. As a result, the time 
spending for those memory copies has a negative effect to the total PCG time spent for the 

solution of the linear system. Table 6.8 shows the slowdown of PCG solve method 
comparatively with the CPU implementation using the serial version of SpMV.
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Netlist PCG with SPMV 
(sec) 

PCG with 
segSpMV 

(sec) 

Slowdown 

ibmpg1 7,60 38,50 5,00x 

ibmpg2 0,78 5,10 6,37x 

ibmpg3 7,03 44,00 6,30x 

ibmpg4 4,40 21,00 4,70x 

Table 6.8:  PCG slowdown using the SegSpMV 

 

6.3.3 The next approach  
 
It is obvious that if we want to improve the performance of PCG using our segSpMV kernel 
we have to reduce the transfers between the CPU and GPU.  

As mentioned above, the hierarchy of preconditioner matrices, unlike the vectors, does not 
change over the SpMV operations in PCG iterations. Therefore, we tried to copy the full 
hierarchy to the GPU before the call of PCG method and do not copy the corresponding level 
at each SpMV operation. Of course before we copy the hierarchy we have already segmented-
expanded each matrix. So, we create a structure which includes all the levels of the 
preconditioner and inside the kernel we access the level corresponding to the current SpMV 

multiplication. The kernel of our new approach is given in Algorithm 6.4 . 

For this implementation we used two array of pointers, one for all the hierarchy matrices called 

ℎ𝑖𝑒𝑟𝑎𝑟𝑐ℎ𝑦_𝑑𝑎𝑡𝑎 and one for the sum of each segment for all the hierarchy levels called 

𝑖𝑛𝑡𝑒𝑟𝑚𝑒𝑑𝑖𝑎𝑡𝑒_𝑟𝑒𝑠𝑢𝑙𝑡. Also, we have to pass the current hierarchy level as argument to the 
kernel, so we can access the corresponding hierarchy preconditioner matrix and intermediate 
result. 

 

__global__ void segSpmvNew(double **intermediate_result,  

double **hierarchy_data, double *x_exp, int seg_length, int level){ 

  

    double sum; //segment's partial sum 

    int i; 

 

    int id=blockIdx.x * blockDim.x + threadIdx.x; 

    

    __shared__ double product[256]; 

   

 product[threadIdx.x] = hierarchy_data[level][id] * x_exp[id]; 

  

  

    __syncthreads();  

     

    if( (id % seg_length) == 0){     

       

      sum = 0.0; 

    

      for(i=threadIdx.x;i<(threadIdx.x + seg_length);i++){ 

  sum += product[i]; 

      } 

    

      intermediate_result[level][id/seg_length] = sum;  

    } 

     

} 
 

 

Algorithm 6.4: segSpmvNew kernel – The second approach 



6.3. Implementation and Optimizations 

 

45 

 

Table 6.9 lists the full copy time speedups we achieved as we expected, using our second 
implementation. We can see that if we copy the hierarchy of preconditioner matrices once, we 
get an average speedup of 2x. 

 

Netlist COPY TIME with 
segSpMV 

(sec) 

COPY TIME with 
segSpmvNew 

(sec) 

Speedup 

ibmpg1 7,91 3,95 2,00x 

ibmpg2 0,98 0,53 1,85x 

ibmpg3 7,82 3,66 2,14x 

ibmpg4 4,47 2,25 1,99x 

Table 6.9: segSpmvNew over segSpMV time speedup  

 

The second implementation also improved the total time spent for the solve phase using 

the PCG method giving an average speedup of 2.2x. The time speedups of the PCG method 

when using our new kernel over using the previous segSpMV is shown in Table 6.10. 

 

Netlist PCG with 
segSpMV 

(sec) 

PCG with 
segSpmvNew 

(sec) 

Speedup 

ibmpg1 38,50 15,30 2,52x 

ibmpg2 5,10 2,37 2,15x 

ibmpg3 44,00 18,70 2,35x 

ibmpg4 21,00 11,80 1,78x 

Table 6.10: PCG speedups when using our new approach of segSpMV 

 

However, we see that the new kernel performs worse than our first segSpMV approach as 

shown in Table 6.11. This slowdown is caused by the problem of 𝑝𝑜𝑖𝑛𝑡𝑒𝑟 𝑐ℎ𝑎𝑠𝑖𝑛𝑔. Pointer 

chasing occurs when a thread tries to access an element of the two “𝑡𝑤𝑜 − 𝑑𝑖𝑚𝑒𝑛𝑠𝑖𝑜𝑛𝑎𝑙” 
arrays ( ℎ𝑖𝑒𝑟𝑎𝑟𝑐ℎ𝑦_𝑑𝑎𝑡𝑎[𝑙𝑒𝑣𝑒𝑙][𝑖𝑑] & 𝑖𝑛𝑡𝑒𝑟𝑚𝑒𝑑𝑖𝑎𝑡𝑒_𝑟𝑒𝑠𝑢𝑙𝑡[𝑙𝑒𝑣𝑒𝑙][𝑖𝑑/𝑠𝑒𝑔_𝑙𝑒𝑛𝑔𝑡ℎ] ). 
This happens because each thread has at first to access the global memory at address 

ℎ𝑖𝑒𝑟𝑎𝑟𝑐ℎ𝑦_𝑑𝑎𝑡𝑎[𝑙𝑒𝑣𝑒𝑙] to find where the current level matrix elements are stored and then 
go to another location in the global memory to read the corresponding element. In the same 

way the first thread of each block writes to the address 𝑛𝑡𝑒𝑟𝑚𝑒𝑑𝑖𝑎𝑡𝑒_𝑟𝑒𝑠𝑢𝑙𝑡[𝑙𝑒𝑣𝑒𝑙][𝑖𝑑/
𝑠𝑒𝑔_𝑙𝑒𝑛𝑔𝑡ℎ] .  

 

Netlist SegSpMV 
(sec) 

segSpmvNew 
(sec) 

Slowdown 

ribmpg1 0,60 1,37 2,28x 

ibmpg2 0,08 0,24 3,00x 

ibmpg3 0,52 1,82 3,50x 

ibmpg4 0,28 1,12 4,00x 

Table 6.11: segSpMV slowdown caused by pointer chasing 
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Chapter 7 

Conclusion 
 

In conclusion, given the key role of circuit simulation in the design process, there has been a 
significant interest in accelerating the heart of simulation which is the solution of a very large 
system. This thesis reports our efforts to accelerate the performance of a linear system multi-
grid-like solver called CMG using modern Nvidia GPUs.  
 
Specifically, we focused on the solution phase of CMG and especially on the acceleration of 
sparse matrix-vector multiplications (SpMV). We have shown maximum speedups of 8x with-
out counting memory transfers, using our new segmentation-based GPU-accelerated SpMV 
algorithm. Although, memory transfers do not allow to achieve a better total performance 
over the serial CPU version of solve phase. 
 
The new SpMV algorithm tries to mitigate the low computing to communication ratio issues 
in the SpMV operations by regularizing the access patterns during the two operations of the 
SpMV. It is a very efficient multiplication method and it can give the best performance that 
can achieved for an SpMV multiplication on GPU. Of course, the proposed segSpMV method 
can be applied to a myriad other applications based on SpMV multiplications.  

 

7.1 Future Work 
 

Possible extensions in this project may be the following: 

 Implement the segment-expansion operations and the computations of the 
final SpMV result on the GPU 

A first improvement of the segSpMV algorithm is simple and can be made by 
implementing both segment-expansion of matrix and vectors and the computation of 
final multiplication result inside our kernel, unlike our current implementation in 
which both are implemented in the CPU side. 

 

 Use asynchronous memory copy for the preconditioner hierarchy matrices 

The time margin between the transfer of preconditioner hierarchy and the time we use 
it inside the kernel gives us the chance to make this copy asynchronous using 

𝑐𝑢𝑑𝑎𝑀𝑒𝑚𝑐𝑝𝑦𝐴𝑠𝑦𝑛𝑐 CUDA function. This function gives us the opportunity to hide 
the copy latency by overlapping with serial host code computations. 

 

 Port the entire PCG method on the GPU 

 This way memory transfers between CPU and GPU will be eliminated and we can 
possibly achieve a much better acceleration compared with the CPU version. 
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