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Περίληψη

Το SPICE αποτελεί ένα κοινό βιομηχανικό πρότυπο για την προσομοίωση πολύ μεγάλης
κλίμακας ολοκληρωμένων κυκλωμάτων. Ηπροσομοίωση με το SPICE αποτελεί έναν πρότυπο
τρόπο επαλήθευσης της λειτουργίας του κυκλώματος στο επίπεδο των τρανζίστορ προτού
ξεκινήσει η διαδικασία κατασκευής του. Το SPICE αποτελεί μια υπολογιστικά απαιτητική
εφαρμογή, ειδικά όταν πρόκειται για μεγάλα κυκλώματα ή προσομοίωση σε πολλές χρονικές
στιγμές. Ακριβείς προσομοιώσεις μπορεί να χρειαστούν μέρες ή και εβδομάδες εκτέλεσης σε
σύγχρονους επεξεργαστές. Ως αποτέλεσμα υπάρχει τεράστιο κίνητρο για την επιτάχυνση του
SPICE μέσω της παραλληλοποίησης των υπολογιστικά και χρονικά ‘ακριβών’ κομματιών του.
Η αποτίμηση μοντέλων για τις συσκευές του κυκλώματος είναι η πιο δαπανηρή εργασία που
επιτελεί ένας προσομοιωτής κυκλωμάτων σαν το SPICE. Σε αυτή την εργασία προσπαθούμε
να επιταχύνουμε την αποτίμηση μοντέλων με την χρήση σύγχρονων καρτών γραφικών.
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Abstact

SPICE is the de facto industry standard for circuit level simulation of VLSI integrated circuits.
Simulating the circuit with SPICE is the industry-standard way to verify circuit operation at the
transistor level before committing to manufacturing an integrated circuit. SPICE simulation is
a computationally demanding application when it comes to large number of circuit elements
or when very large number of simulation time points are needed. Accurate simulations might
take days or weeks of runtime on modern microprocessors.

As a result, there is a significant motivation to speed up SPICE by parallelizing its com-
pute intensive parts. Device model evaluation is the most time-consuming task in analog
circuit simulators such as SPICE. In this thesis, we try to accelerate model evaluation using
modern GPUs. For this purpose we use Ngspice, an open-source circuit simulator based on
SPICE3 and a ‘GeForce GTX560 Ti’ GPU from Nvidia with 384 CUDA cores. Our experi-
ments demonstrate speedups up to 1.83x.
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Chapter 1

Introduction

1.1 Introduction and Problem Description
SPICE (Simulation Program with Integrated Circuit Emphasis) [7] is an analog circuit simu-
lator that can take days or weeks of runtime on real-world problems. It models the analog
behavior of semiconductor circuits using a compute-intensive non-linear differential equation
solver. SPICE is notoriously difficult to parallelize due to its irregular, unpredictable compute
structure, and a sloppy sequential description.

As shown in figure 1.1, SPICE simulation is an iterative computation that consists of two
key computationally-intensive phases per iteration: Model Evaluation (2 in figure 1.1) fol-
lowed by Matrix Solve (3 in figure 1.1). The iterations themselves are managed by the third
phase, which is the Iteration Controller (1 in figure 1.1). Our profiling showed that on average
71% of SPICE runtime is spent in performing Model Evaluation. This is because these evalu-
ations are performed for each device, many times per time-step, until the convergence of the
NR based non-linear equation solver. The total number of such evaluations can easily run
into billions. Therefore the speed of the Model Evaluation phase is a significant determinant
of the speed of the overall SPICE simulator.

Furthermore, over the past decades, we have relied on innovations in computer architec-
ture (clock frequency scaling, out-of-order execution, complex branch predictors) to speedup
application like SPICE. However, diminishing transistor-speed scaling and practical energy
limits have disrupted the rising clock frequency and threatened to annul Moore’s Law. This
lead to the rise of multicore and manycore systems. Recent multiprocessors with hetero-
geneous architectures have emerged as mainstream computing platforms, which typically
integrate a variety of processing elements of different computing performance, programming
flexibility and energy efficiency characteristics. Typical examples of heterogeneous platforms
are today’s personal computers (PCs) with multicore processors and manycore GPUs.VLSI
CAD developers have the opportunity to fully utilize such heterogeneous computing archi-
tectures and gain unprecedented high performance.

1.2 Thesis Contribution
The contribution of this thesis is the design, implementation and optimization of a SPICE
model evaluation algorithm targeting modern GPUs. In particular, we use the Ngspice [2], an

1



1. Introduction

Figure 1.1: Flowchart of a SPICE Simulator

open-source circuit simulator and our implementation handles BSIM4 device models, but can
easily handle a variety of other models. For the implementation we use the Compute Unified
Device Architecture (CUDA) [1], which is an open-source programming and interfacing tool
provided by NVIDIA. The GPU device we have used for the benchmarking is the NVIDIA
‘GeForce GTX 560 Ti’ with 384 CUDA cores.

1.3 Thesis Organization
Chapter 2 consist a presentation of a SPICE circuit simulator. It includes a general introduc-
tion, followed by the execution flowchart of SPICE, the parallelism potential and a few words
about Ngspice.
Chapter 3 consist an overview of the architecture of modern NVIDIA GPUs and the CUDA
programming model.
Chapter 4 presents the implementation of the model evaluation algorithm separated in stages
and there is a reference to the problems we faced during this process.
Chapter 5 presents the results from the experiments conducted.
Chapter 6 finally gives some insights for future work.

Consequently, in the Appendix we have added the results of all the experiments conducted
in every stage of the implementation.

2



Chapter 2

SPICE Review

2.1 Introduction
In modern Very Large-Scale Integrated circuit (VLSI) design, Electronic Design Automation
(EDA) tools are used to accelerate the design cycle and to help engineers improve their de-
sign. SPICE is the most important EDA tool in circuit design. It is a general purpose circuit
simulation program for DC, transient, linear AC, pole-zero, sensitivity and noise analysis. It
was developed at the EECS Department of the University of California, Berkeley by Don-
ald Pederson, Larry Nagel, Richard Newton, and many other contributors to provide a fast
and robust circuit simulation program capable of verifying integrated circuits. It is used to
simulate circuits for various applications from switching power supplies to SRAM cells and
sense amplifiers. Doing so requires the simultaneous solution of a number of equations that
capture the behavior of electronic circuits. The number of equations can be quite large for
a modern electronic circuit with transistors count from several hundred thousands to some
millions. Thus the simulation of circuits has become complex and quite time-consuming.

2.2 SPICE Algorithm
We will now present a brief overview of the sequential algorithm that SPICE follows. SPICE
simulates the dynamic analog behavior of a circuit described by its constituent non-linear
differential equations. SPICE circuit equations model the linear (e.g. resistors, capacitors,
inductors) and non-linear (e.g. diodes, transistors) behavior of devices and the conserva-
tion constraints (i.e. Kirchoff’s current laws|KCL) at the different nodes and branches of the
circuit. SPICE solves the non-linear circuit equations by alternately computing small-signal
linear operating-point approximations for the non-linear elements and solving the resulting
system of linear equations until it reaches a fixed point. The linearized system of equations
is represented as a solution of Ax⃗ = b⃗, where A is the matrix of circuit conductances, b⃗ is the
vector of known currents and voltage quantities and x⃗ is the vector of unknown voltages and
branch currents.
Spice3f5 [8] uses the Modified Nodal Analysis (MNA) technique [5] to assemble circuit equa-
tions into matrix A. The MNA approach is an improvement over conventional nodal analysis
by allowing proper handling of voltage sources and controlled current sources. It requires
the application of Kirchoff’s Current Law at all the nodes in the circuit with voltage at each

3



2. SPICE Review

Figure 2.1: Flowchart of a SPICE Simulator

node being an unknown. It then introduces unknowns for currents through branches to allow
voltage sources and controlled current sources to be represented.

The simulator calculates entries in A and b⃗ from the device model equations that describe
device transconductance (e.g., Ohm’s law for resistors, transistor I − V characteristics) in
the Model-Evaluation phase. It then solves for x⃗ using a sparse-direct linear matrix solver in
the Matrix-Solve phase. We show the steps in the SPICE algorithm in figure 2.1.

2.3 Model Evaluation

The Model-Evaluation phase of SPICE calculates the currents and conductances of all the
devices in the circuit. The computed currents and conductances are used to update the ma-
trix A and the vector b⃗ (in Ax⃗ = b⃗). At the start, the simulator processes all the devices in
the circuit. At subsequent timesteps, only the non-linear and time-varying elements change
and must be recalculated during the Model-Evaluation phase. The resistors and uncontrolled
sources have fixed conductances and do not need to update the matrix in every iteration. A
device updates the matrix according to its stamp that specifies which entries it defines in the
matrix. For an N-terminal device, we need to update at most N2 entries in the matrix. Thus,
each device in the circuit updates a constant number of entries in the matrix corresponding
to its node terminals. The resulting stamps update the shared matrix entry corresponding to
the device terminals.

For non-linear elements like diodes and transistors, the simulator must search for an
operating-point using the Newton-Raphson iterations shown in the outer loop of figure 2.2.
The conductance of the non-linear and time-varying elements is a function of the terminal
voltages x⃗. Since the terminal voltages x⃗ are computed by the Ax⃗ = b⃗ solve, we need to use
Newton-Raphson algorithm to iteratively compute the consistent solution vector x⃗. This re-
quires repeated evaluation of the non-linear model equations multiple times per timestep. For
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2.4. Matrix Solve

Figure 2.2: Flowchart of a SPICE Simulator with emphasis on Model-Evaluation

time-varying components like capacitors and inductors, the simulator must recalculate their
contributions at each timestep based on voltages and charges at several previous timesteps
(e.g. Trapezoidal integration). This also requires a re-evaluation of the device-model in each
timestep.

2.4 Matrix Solve

The simulator spice3f5 uses the Modified Nodal Analysis (MNA) technique [5] to assemble
circuit equations into matrix A. Since circuit elements (N ) tend to be connected to only a few
other elements, there are a constant number (O(1)) of entries per row of the matrix. Thus,
the MNA circuit matrix with O(N2) entries is highly sparse with O(N) nonzero entries (99% of
the matrix entries are 0). The matrix structure is mostly symmetric with the asymmetry being
added by the presence of independent sources (e.g. input voltage source) and inductors.
The underlying non-zero structure of the matrix is defined by the topology of the circuit and
consequently remains unchanged throughout the duration of the simulation. In each iteration
of the loop shown in figure 2.1, only the numerical values of the non-zeroes are updated in
the Model-Evaluation phase of SPICE with contributions from the non-linear elements. The
matrix solve stages are demonstrated in figure 2.3. To find the values of unknown node volt-
ages and branch currents x⃗, we must solve the system of linear equations Ax⃗ = b⃗ as shown
in Equation 2.14. The sparse, direct matrix solver used in spice3f5 first reorders the matrix
A to minimize fill-in using a technique called Markowitz reordering [6]. This tries to reduce
the number of additional non-zeroes (fill-in) generated during LU factorization. It then factor-
izes the matrix by dynamically determining pivot positions for numerical stability (potentially
adding new non-zeros) to generate the lower-triangular component L and upper-triangular
component U such that A = LU as shown in Equation 2.15. Finally, it calculates x⃗ using
Front-Solve Ly⃗ = b⃗ (see Equation 2.16) and Back-Solve Ux⃗ = y⃗ operations (see Equation
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Figure 2.3: Matrix Solve Stages

2.17).

2.5 Iteration Controller

As discussed in earlier, SPICE is an iterative algorithm that solves non-linear differential
equations. SPICE solves these equations using an iterative approach that first linearizes the
non-linear circuit elements and then performs a numerical integration involving time-varying
quantities. The space of algorithms for linearization and numerical integration is vast, and it
covers conflicting requirements of convergence speed, accuracy and stability while demand-
ing different amounts of computation and memory storage costs. The choice of a suitable
algorithm applicable to circuit simulation is the subject of continued research and is beyond
the scope of this thesis. Using the framework and methodology described in this chapter, we
can support newer algorithms for managing the SPICE simulation. For the purpose of this
thesis and as a proof-of-concept, we pick the algorithms used in the spice3f5 package: the
Newton-Raphson algorithm for handling non-linear elements and the Trapezoidal approxi-
mation for numerical integration.

The spice3f5 iteration controller manages two kinds of iterative loops: (1) a loop for lin-
earizing the non linear elements of the circuit, and (2) another loop for advancing the timestep
of the simulation. We show these loops in figure 2.4. The convergence conditions for the
Newton-Raphson algorithm are implemented in the block (a) of the figure. SPICE employs
the Newton-Raphson algorithm for computing the linear operating points of non-linear de-
vices like diodes and transistors. The equation for next timestep calculation is implemented
in block (b) of the figure. SPICE uses an adaptive timestep-control algorithm that adjusts
the timestep of the simulation based on an estimate of local truncation error. In block (c),
SPICE implements the dynamic breakpoint processing logic for handling source transition
timesteps in the voltage and current sources. Finally, in block (d), the analysis state ma-
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Figure 2.4: Flowchart of a SPICE Simulator with emphasis on SPICE Analysis Control Algorithms

chines implement the loop control algorithms for performing DC and transient analysis. The
Iteration Control computation constitutes a small (7%) fraction of total SPICE runtime.
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Chapter 3

GPU Architecture and the CUDA
Programming Model

3.1 Introduction
The last years we have witnessed the High Performance Computing community shift to
General-Purpose Graphics Processing Unit (GPGPU) Computing. GPGPU computing is the
use of a GPU (graphics processing unit) together with a CPU to accelerate general-purpose
scientific and engineering applications. GPU computing offers unprecedented application
performance by offloading compute-intensive portions of the application to the GPU, while
the remainder of the code still runs on the CPU. From a user’s perspective, applications sim-
ply run significantly faster. CPU + GPU is a powerful combination because CPUs consist of a
few cores optimized for serial processing, while GPUs consist of thousands of smaller, more
efficient cores designed for parallel performance. Serial portions of the code run on the CPU
while parallel portions run on the GPU.
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3.2 GPU Architecture
In this section, we discuss the architectural aspects of the NVIDIA GPUs in general and of
GeForce GTX560 Ti, GPU device used in our experiments, in particular.

Hardware Model

Hardware Implementation

The NVIDIA GPU architecture is built around a scalable array of multithreaded Streaming
Multiprocessors (SMs). When a CUDA program on the host CPU invokes a kernel grid, the
blocks of the grid are enumerated and distributed to multiprocessors with available execution
capacity. The threads of a thread block execute concurrently on one multiprocessor, and
multiple thread blocks can execute concurrently on one multiprocessor. As thread blocks
terminate, new blocks are launched on the vacated multiprocessors.

A multiprocessor is designed to execute hundreds of threads concurrently. To manage
such a large amount of threads, it employs a unique architecture called SIMT (Single Instruc-
tion, Multiple-Thread) that is described in SIMT Architecture. The instructions are pipelined
to leverage instruction-level parallelism within a single thread, as well as thread-level par-
allelism extensively through simultaneous hardware multithreading as detailed in Hardware
Multithreading. Unlike CPU cores they are issued in order however and there is no branch
prediction and no speculative execution.

SIMT Architecture

The multiprocessor creates, manages, schedules, and executes threads in groups of 32 par-
allel threads called warps. Individual threads composing a warp start together at the same
program address, but they have their own instruction address counter and register state and
are therefore free to branch and execute independently. The term warp originates from weav-
ing, the first parallel thread technology. A half-warp is either the first or second half of a warp.
A quarter-warp is either the first, second, third, or fourth quarter of a warp.

When a multiprocessor is given one or more thread blocks to execute, it partitions them
into warps and each warp gets scheduled by a warp scheduler for execution. The way a block
is partitioned into warps is always the same; each warp contains threads of consecutive, in-
creasing thread IDs with the first warp containing thread 0. Thread Hierarchy describes how
thread IDs relate to thread indices in the block.

A warp executes one common instruction at a time, so full efficiency is realized when all
32 threads of a warp agree on their execution path. If threads of a warp diverge via a data-
dependent conditional branch, the warp serially executes each branch path taken, disabling
threads that are not on that path, and when all paths complete, the threads converge back
to the same execution path. Branch divergence occurs only within a warp; different warps
execute independently regardless of whether they are executing common or disjoint code
paths.

The SIMT architecture is akin to SIMD (Single Instruction, Multiple Data) vector organi-
zations in that a single instruction controls multiple processing elements. A key difference
is that SIMD vector organizations expose the SIMD width to the software, whereas SIMT
instructions specify the execution and branching behavior of a single thread. In contrast with
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Figure 3.1: Memory Hierarchy

SIMD vector machines, SIMT enables programmers to write thread-level parallel code for
independent, scalar threads, as well as data-parallel code for coordinated threads. For the
purposes of correctness, the programmer can essentially ignore the SIMT behavior; how-
ever, substantial performance improvements can be realized by taking care that the code
seldom requires threads in a warp to diverge. In practice, this is analogous to the role of
cache lines in traditional code: Cache line size can be safely ignored when designing for cor-
rectness but must be considered in the code structure when designing for peak performance.
Vector architectures, on the other hand, require the software to coalesce loads into vectors
and manage divergence manually.

Memory Model

CUDA threads may access data from multiple memory spaces during their execution as il-
lustrated by figure 3.1. Each thread has private local memory. Each thread block has shared
memory visible to all threads of the block and with the same lifetime as the block. All threads
have access to the same global memory.
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There are also two additional read-only memory spaces accessible by all threads: the con-
stant and texture memory spaces. The global, constant, and texture memory spaces are
optimized for different memory usages. Texture memory also offers different addressing
modes, as well as data filtering, for some specific data formats. The global, constant, and
texture memory spaces are persistent across kernel launches by the same application.

An instruction that accesses addressable memory (i.e., global, local, shared, constant,
or texture memory) might need to be re-issued multiple times depending on the distribution
of the memory addresses across the threads within the warp. How the distribution affects
the instruction throughput this way is specific to each type of memory and described in the
following sections. For example, for global memory, as a general rule, the more scattered
the addresses are, the more reduced the throughput is.

Global Memory

Global memory resides in device memory and device memory is accessed via 32-, 64-, or
128-byte memory transactions. These memory transactions must be naturally aligned: Only
the 32-, 64-, or 128-byte segments of device memory that are aligned to their size (i.e., whose
first address is a multiple of their size) can be read or written by memory transactions.

When a warp executes an instruction that accesses global memory, it coalesces the mem-
ory accesses of the threads within the warp into one or more of these memory transactions
depending on the size of the word accessed by each thread and the distribution of the mem-
ory addresses across the threads. In general, the more transactions are necessary, the more
unused words are transferred in addition to the words accessed by the threads, reducing the
instruction throughput accordingly. For example, if a 32-byte memory transaction is gener-
ated for each thread’s 4-byte access, throughput is divided by 8.

To maximize global memory throughput, it is therefore important to maximize coalescing
by:

• Following the most optimal access patterns based on the Compute Capability of the
device being used

• Using data types that meet the size and alignment requirement detailed in Device Mem-
ory Accesses

• Padding data in some cases, for example, when accessing a two-dimensional array as
described in Device Memory Accesses

Local Memory

Local memory accesses only occur for some automatic variables. Automatic variables that
the compiler is likely to place in local memory are:

• Arrays for which it cannot determine that they are indexed with constant quantities

• Large structures or arrays that would consume too much register space

• Any variable if the kernel uses more registers than available (this is also known as
register spilling)
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The local memory space resides in device memory, so local memory accesses have same
high latency and low bandwidth as global memory accesses and are subject to the same
requirements for memory coalescing as described in Device Memory Accesses. Local mem-
ory is however organized such that consecutive 32-bit words are accessed by consecutive
thread IDs. Accesses are therefore fully coalesced as long as all threads in a warp access
the same relative address (e.g., same index in an array variable, same member in a structure
variable).

Shared Memory

Because it is on-chip, shared memory has much higher bandwidth and much lower latency
than local or global memory.

To achieve high bandwidth, shared memory is divided into equally-sized memory mod-
ules, called banks, which can be accessed simultaneously. Anymemory read or write request
made of n addresses that fall in n distinct memory banks can therefore be serviced simulta-
neously, yielding an overall bandwidth that is n times as high as the bandwidth of a single
module.

However, if two addresses of a memory request fall in the same memory bank, there is
a bank conflict and the access has to be serialized. The hardware splits a memory request
with bank conflicts into as many separate conflict-free requests as necessary, decreasing
throughput by a factor equal to the number of separate memory requests. If the number of
separate memory requests is n, the initial memory request is said to cause n-way bank con-
flicts.

Constant Memory

A constant memory fetch costs one memory read from the device memory only on a cache
miss, otherwise it costs one read from the constant cache. The memory bandwidth is best
utilized when all instructions that are executed in parallel access the same address of the
constant memory.

Texture Memory

The texture cache is optimized for spatial locality. In other words if instructions that are exe-
cuted in parallel read texture addresses that are close together, then the texture cache can
be optimally utilized. A texture fetch costs one memory read from device memory on a cache
miss, otherwise it costs one read from the texture cache. Device memory reads through
texture fetching routines (provided in CUDA for accessing texture memory) present several
benefits over reads from global or constant memory.

3.3 The CUDA Programming Model
This chapter introduces the main concepts behind the CUDA programming model by outlin-
ing how they are exposed in C.
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CUDAC extends C by allowing the programmer to define C functions, called kernels, that,
when called, are executed N times in parallel by N different CUDA threads, as opposed to
only once like regular C functions. A kernel is defined using the global declaration specifier
and the number of CUDA threads that execute that kernel for a given kernel call is specified
using a new <<< … >>> execution configuration syntax (see C Language Extensions).
Each thread that executes the kernel is given a unique thread ID that is accessible within the
kernel through the built-in threadIdx variable.

For convenience, threadIdx is a 3-component vector, so that threads can be identified us-
ing a one-dimensional, two-dimensional, or three-dimensional thread index, forming a one-
dimensional, two-dimensional, or three-dimensional thread block. This provides a natural
way to invoke computation across the elements in a domain such as a vector, matrix, or
volume. The index of a thread and its thread ID relate to each other in a straightforward
way: For a one-dimensional block, they are the same; for a two-dimensional block of size
(Dx,Dy),the thread ID of a thread of index (x, y) is (x+y∗Dx); for a three-dimensional block
of size (Dx,Dy,Dz), the thread ID of a thread of index (x, y, z) is (x+ y ∗Dx+ z ∗Dx ∗Dy).

There is a limit to the number of threads per block, since all threads of a block are ex-
pected to reside on the same processor core and must share the limited memory resources
of that core. On current GPUs, a thread block may contain up to 1024 threads. However, a
kernel can be executed by multiple equally-shaped thread blocks, so that the total number
of threads is equal to the number of threads per block times the number of blocks. Blocks
are organized into a one-dimensional, two-dimensional, or three-dimensional grid of thread
blocks as illustrated by figure 3.3. The number of thread blocks in a grid is usually dictated
by the size of the data being processed or the number of processors in the system, which it
can greatly exceed.

The number of threads per block and the number of blocks per grid specified in the
<<< ... >>> syntax can be of type int or dim3. Two-dimensional blocks or grids can
be specified as in the example above. Each block within the grid can be identified by a
one-dimensional, two-dimensional, or three-dimensional index accessible within the kernel
through the built-in blockIdx variable. The dimension of the thread block is accessible within
the kernel through the built-in blockDim variable.

A thread block size of 16x16 (256 threads), although arbitrary in this case, is a common
choice. The grid is created with enough blocks to have one thread per matrix element as
before. For simplicity, this example assumes that the number of threads per grid in each
dimension is evenly divisible by the number of threads per block in that dimension, although
that need not be the case.

Thread blocks are required to execute independently: It must be possible to execute them
in any order, in parallel or in series. This independence requirement allows thread blocks to
be scheduled in any order across any number of cores, enabling programmers to write code
that scales with the number of cores.

Threads within a block can cooperate by sharing data through some shared memory
and by synchronizing their execution to coordinate memory accesses. More precisely, one
can specify synchronization points in the kernel by calling the syncthreads() intrinsic function;
syncthreads() acts as a barrier at which all threads in the blockmust wait before any is allowed
to proceed. Shared Memory gives an example of using shared memory.

For efficient cooperation, the sharedmemory is expected to be a low-latencymemory near
each processor core (much like an L1 cache) and syncthreads() is expected to be lightweight.
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Figure 3.2: Grid of Thread Blocks

3.4 GeForce GTX560 Ti

GPU Engine Specifications
The GeForce GTX560 Ti is a Fermi-based architecture GPU from NVIDIA. It has 8 Multi-
processors per chip and 48 CUDA cores per Multiprocessor. It has Compute Capability 2.1.
The warp size is 32 and can support 1536 threads per Multiprocessor and 1024 threads per
block. Maximum sizes of each dimension of a block and grid are 1024 x 1024 x 1024 and
65535 x 65535 x 65535 respectively. It can support concurrent execution of multiple kernels.

Memory Specifications
The total amount of global memory for this device is 1GB. The amount of constant memory
is 65KB. Each block has available 32768 registers and 49KB of shared memory. GeForce
GTX560 Ti has available caching. The on-chip memory per multiprocessor is used for both
L1 and shared memory, and how much of it is dedicated to L1 versus shared memory is
configurable for each kernel call. Additionally, it has a global L2 cache of 524KB.
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Figure 3.3: GeForce GTX560 Ti
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Chapter 4

Implementation and Optimization

This chapter presents the implementation of the model evaluation algorithm on the GPU. At
first, we will give some details about Ngspice, the open-source circuit simulation tool, which
was used as a basis for the implementation. In particular, our approach parallelizes and ac-
celerates the transistor model evaluation for the BSIM4 models [3]. Then, follow some details
about the compilation system and the optimizations separated in stages.

4.1 Ngspice

Ngspice [2] is an open-source project. It is a general-purpose circuit simulation program
for nonlinear and linear analyses. Circuits may contain resistors, capacitors, inductors, mu-
tual inductors, independent or dependent voltage and current sources, loss-less and lossy
transmission lines, switches, uniform distributed RC lines, and the five most common semi-
conductor devices: diodes, BJTs, JFETs, MESFETs, and MOSFETs.

Ngspice is an update of Spice3f5, the last Berkeley’s release of SPICE3 simulator family.
Ngspice is being developed to include new features to existing Spice3f5 and to fix its bugs.
Improving a complex software like a circuit simulator is a very hard task and, while some
improvements have been made, most of the work has been done on bug fixing and code
refactoring.

Ngspice has built-in models for the semiconductor devices, and the user need specify only
the pertinent model parameter values. There are three models for bipolar junction transistors,
all based on the integral-charge model of Gummel and Poon; however, if the Gummel-Poon
parameters are not specified, the basic model (BJT) reduces to the simpler Ebers-Moll model.
In either case and in either models, charge storage effects, ohmic resistances, and a current-
dependent output conductance may be included. The second bipolar model BJT2 adds dc
current computation in the substrate diode. The third model (VBIC) contains further enhance-
ments for advanced bipolar devices.

The semiconductor diode model can be used for either junction diodes or Schottky barrier
diodes. There are two models for JFET: the first (JFET) is based on the model of Shichman
and Hodges, the second (JFET2) is based on the Parker-Skellern model. All the original six
MOSFET models are implemented: MOS1 is described by a square-law I−V characteristic,
MOS2 is an analytical model, while MOS3 is a semi-empirical model; MOS6 is a simple an-
alytic model accurate in the short channel region; MOS9, is a slightly modified Level 3 MOS-
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FET model - not to confuse with Philips level 9; BSIM 1; BSIM2 are the old BSIM (Berkeley
Short-channel IGFET Model) models. MOS2, MOS3, and BSIM include second-order effects
such as channel-length modulation, subthreshold conduction, scattering limited velocity sat-
uration, small-size effects, and charge controlled capacitances. The recent MOS models for
submicron devices are the BSIM3 (Berkeley BSIM3 web page) and BSIM4 (Berkeley BSIM4
web page) models. Silicon-on-insulator MOS transistors are described by the SOI models
from the BSIMSOI family (Berkeley BSIMSOI web page) and the STAG one. There is partial
support for a couple of HFET models and one model for MESA devices.

The ngspice simulator supports the following different types of analysis:

1. DC Analysis (Operating Point and DC Sweep)

2. AC Small-Signal Analysis

3. Transient Analysis

4. Pole-Zero Analysis

5. Small-Signal Distortion Analysis

6. Sensitivity Analysis

7. Noise Analysis

Ngspice on multi-core processors using OpenMP

Today’s computers typically come with CPUs having more than one core. It will thus be useful
to enhance ngspice to make use of such multi-core processors.

Using circuits comprising mostly of transistors and e.g. the BSIM3 model, around 2/3 of
the CPU time is spent in evaluating the model equations (e.g. in the BSIM3Load() function).
The same happens with other advanced transistor models. Thus this function should be par-
alleled, if possible. Resulting from that the parallel processing has to be within a dedicated
device model. Interestingly solving the matrix takes only about 10% of the CPU time, so
paralleling the matrix solver is of secondary interest here.

A recent publication [9] has described a way to exactly do that using OpenMP, which is
available on many platforms and is easy to use, especially if you want to parallel processing
of a for-loop.

Some results on an inverter chain with 627 CMOS inverters, running for 200ns, compiled
with Visual Studio professional 2008 onWindows 7 (full optimization) or gcc 4.4, SUSE LINUX
11.2, -O2, on a i7 860 machine with four real cores (and 4 virtuals using hyperthreading) are
shown in the table in figure 4.1.

So we see a ngspice speed up of nearly a factor of two! Even on an older notebook with dual
core processor, I have got more than 1.5x improvement using two threads. Similar results
are to be expected from BSIM4.
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Figure 4.1: OpenMP performance

BSIM4
Ngspice implements many of the BSIM models developed by Berkley’s BSIM group. BSIM
stands for Berkeley Short-Channel IGFET Model and groups a class of models that is con-
tinuously updated.

This is the newest class of the BSIM family and introduces noise modeling and extrinsic
parasitics. BSIM4, as the extension of BSIM3 model, addresses the MOSFET physical ef-
fects into sub-100nm regime. It is a physics-based, accurate, scalable, robust and predictive
MOSFET SPICE model for circuit simulation and CMOS technology development.

4.2 System Setup
In this chapter we will give some details about Ngspice installation and the changes in the
compilation system for CPU + GPU execution.

Ngspice installation
Ngspice can be obtained from the Ngspice webpage < http://ngspice.sourceforge.net/>. The
installation for LINUX or MS Windows is described in the file INSTALL to be found in the top
level directory.

We have used the ngpice-24 release. By this time ngspice-25 has also been released.

Briefly we installed Ngspice on the top level directory, issuing the commands:

• $ ./configure [options]

• $ make

• $ sudo make install

Regarding the options we used the ‘–enable-debug’ at first to keep debugging information,
but disabled it later to measure execution time, and ‘–enable-openmp’ to measure times for
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parallel execution on the multicore processor.

Ngspice Execution
After installation ngspice-24/ is the top level directory. It contains many folders, but the one
that interests us is the folder src/. This folder contains the source code of the application
and the executables. The directory ngspice-24/src/spicelib contains three folders. Folder
parser/ includes the source code for the front end parser which reads the circuit’s netlist and
creates the main data structures. The folder analysis/ includes routines for various types
of analyses offered by Ngspice. Ultimately, the folder devices/ includes the device models
supported by Ngspice. It contains many folders, one for each model. For example, the di-
rectory ngspice-24/src/spicelib/devices/bsim4 contains the source code for the evaluation of
the BSIM4 model which is the one being used in this thesis.

One way to run Ngspice is the interactive mode. If we issue the command ‘$ ngspice‘ at the
terminal ngspice will start and wait for manual input. For example:

• ngspice 1 -> source adder-mos.cir

loads a circuit named ‘adder-mod.cir’. Next

• ngspice 2 ->run

the ‘run’ command will simulate the circuit

• ngspice 3 ->plot allv

the ‘plot’ command will plot the selected node.

• ngspice 4 -> quit with the quit command we exit ngspice simulator

However, Ngspice can be executed as any simple executable in Linux. As mentioned above,
the directory ngspice-24/src/ contains the executable files for the simulator. The executable
that interests us is the ngspice, which conducts the simulation. For example, a simulation for
a netlist named add20.sp can be achieved by issuing the following command at the terminal:

$ ./ngspice < add20.sp > OUT
The results will be written in the text file ‘OUT’.

Ngspice Compilation
For any change performed onto the source code, to recompile the program we need to issue
a make command inside the directory ngspice-24/src/. This way the system recognizes the
changes and recompiles the particular folders.

Ngspice has a complex compilation system based on the GNU build system, also known
as Autotools. Autotools, is a suite of programming tools designed to assist in making source-
code packages portable to many Unix-like systems. Autotools consists of the GNU utility
programs Autoconf, Automake and Libtool. Figure 4.2 shows the Flow diagram of autoconf
and automake.
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Figure 4.2: Flow diagram of autoconf and automake

Compiling CUDA code inside Ngspice
Expanding the Ngspice compilation system to compile CUDA code was a non-trivial task. As
mentioned earlier we are going to deal with the BSIM4 model. So we are going to add CUDA
code inside the directory ngspice-24/src/spicelib/devices/bsim4. This directory contains the
all the .c and .h that handle the BSIM4 model evaluation along with a Makefile that compiles
the source code. The Makefile was created automatically from the Makefile.in and Make-
file.am files during the configuration step of Ngspice installation.

We have added a folder namedGPUA inside the directory ngspice-24/src/spicelib/devices/bsim,
which contains the CUDA source code. The source code consists of one file, cudabsim4.cu,
which evaluates the BSIM4 models on the GPU. The header file ‘gpua.h’ includes function
and variable declarations. To compile cuda_bsim4.cuwe need to invoke nvcc compiler inside
the Makefile.
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We have added the following inside theMakefile in the directory ngspice-24/src/spicelib/devices/bsim4:
cuda:

nvcc -I$(AM_CPPFLAGS) -c GPUA/*.cu -o GPUA/*.o -lcudart -arch=sm_21
ar rcs GPUA/libgpua.a GPUA/*.o

cuda is the target and the following two commands are the rules. The first rule compiles all
the source files inside the GPUA/ directory, but do not link. The ultimate output is in the form
of an object file for each source file. This is performed via the c flag. The I flag adds the
specified directory to the head of the list of directories to be searched for header files. The
-lcudart flag imports the CUDA runtime system. The arch flag specifies the class of NVIDIA
GPU architecture for which the cuda input files must be compiled. In our case we use sm_21,
because our device has compute capability 2.1.

The second rule produces a static library named, libgpua.a, out of the object files that
were created from the first rule.

To invoke the target cuda, we add it as a dependency to the target all, defined higher in
the Makefile.

Finally, we need to link our object file (cudabsim4.o, which is inside the static library libg-
pua.a) with the rest of the object files, to create the final executable file. This process takes
place in the top-level Makefile (the Makefile in the directory ngspice-24/ ). For this purpose
we have added the libgpua.a among the DYNAMIC_DEVICELIBS.

4.3 Program Architecture

This chapter provides information about the Ngspice program architecture, the basic data
structures and the basic functions that are being used.

To begin with, Ngspice’s heart is the SPICE3 circuit simulator [8]. SPICE3 is designed
using a toolbox approach. Each package of routines is relatively independent of every other
package, thus allowing that maintain and develop the program to select routines which best
fit the task from a wide range of available options. SPICE3 has been designed for easy
configuration. By changing relatively small number of routines, different simulators can be
produced and radical changes can be made to the behavior of the program. The interface
from the simulator to the device modeling routines has been made as simple as possible to
allow new devices and device models to be added to the program in a very short time and
without difficulty.

By decomposing SPICE3 into modules, all the routines which handle one aspect of the
problem can be grouped together but can be isolated from code which must deal with other
parts of the problem. The modules identified in SPICE3 are listed in figure 4.3.

Nevertheless, SPICE3 and therefore Ngspice is a very difficult program to understand, due
its large size and the complexity of its organization. To understand the structure of such a
program it is necessary to break it down into modules, study them individually and finally
observe how they interact. Figure 4.4 shows the basic calling structure of the program.

In this figure, the block labeled “Devices” represents all the per-device-type packages
which are incorporated into the program. These packages use and are used by the nu-
merical algorithms of SPICE3. Both the device code and the numerical routines manipulate
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Figure 4.3: Major modules in SPICE3
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Figure 4.4: Basic Calling Structure

sparse matrix through the matrix package.

Basic Data Structures
• Circuit Structure

The circuit package contains structures which describe a circuit as a whole, but not
specific of any given device or analysis. The basic structure is the CKTcircuit, which
is the primary data structure in SPICE3. It contains all variable data related to the
description and operation of the circuit.

• Device Structures

Each device type is represented by three structures describing its needs and capabil-
ities. Ngspice contains numerous device models e.g. MOS1, MOS2, MOS3, MOS6,
BSIM1, BSIM2, BSIM3, BSIM4, BSIM3soi, bjt, jfet, hfet1, hfet2. All the device models
have a standard prefix that must appear in the beginning of all of them. The standard
prefix is the following:

struct GENmodel { / * model s t r u c t u r e f o r a r e s i s t o r * /
i n t GENmodType ; / * type index of t h i s device type * /
GENmodel *GENnextModel ; / * po i n t e r to next poss ib le model i n

* l i n ked l i s t * /
GENinstance *GENinstances ; / * po i n t e r to l i s t o f ins tances t ha t have t h i s

* model * /
IFu id GENmodName; / * po i n t e r to charac te r s t r i n g naming t h i s model * /

} ;

struct GENinstance {
GENmodel *GENmodPtr ; / * backpo in te r to model * /
GENinstance *GENnextInstance ; / * po i n t e r to next ins tance of

* cu r ren t model * /
IFu id GENname; / * po i n t e r to charac te r s t r i n g naming t h i s ins tance * /

} ;
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Figure 4.5: Model-Instance Data Structure

Figure 4.6: Structure of a partial callgraph for a transient simulation of SPICE3 simulator program

Each model has a pointer to the next model. Also it has a pointer to the beginning
of the list of instances that have this model. Each instance has a pointer to the next
instance and a back-pointer to its model. BSIM4 models are described by the same
structs, with the difference that instead of ”GEN” there is ”BSIM4”. Figure 4.5 shows a
general Model-Instance structure.

Ngspice Execution Flow
The type of analysis that we have dealt with is transient analysis. Transient analysis is the
largest and most complicated simulation currently supported by SPICE3. The list of functions
called when performing transient analysis is demonstrated in figure 4.6

• DCtran() This routines orchestrates the DC transient analysis. It mainly handles the
increment of the time index and calls NIiter() to perform the analysis.
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• NIiter() This routine performs the actual numerical iteration. It handles the operation
that need to be done in every time step. It also tests for convergence.

• CKTload() This routine iterates through all the various load functions provided for the
circuit elements in the given circuit.

• BSIM4load() This routine performs the evaluations for all the transistors in the circuit
and updates the circuit matrix and the RHS vector.

Ngspice BSIM4 model evaluation
Now we will give some code details about how Ngspice performs the device evaluation for
the BSIM4 model. BSIM4 models have an already implemented OpenMP version.

Serial

At first we will describe the serial BSIM4 model evaluation. CKTload() calls the BSIM4load()
function (implemented inside the b4ld.c file).The following code shows the double for loop
which evaluates every transistor in the circuit in serial mode for BSIM4 mdels:

i n t BSIM4load (GENmodel * inModel , CKTc i rcu i t * ck t ) {
BSIM4model *model = (BSIM4model * ) inModel ;
BSIM4instance * here ;

for ( ; model != NULL ; model = model−>BSIM4nextModel ) {
for ( here = model−>BSIM4instances ; here != NULL;

here = here−>BSIM4nextInstance ) {

. . . . .

/ *
* Loading RHS
* /

m = here−>BSIM4m;
( * ( ckt−>CKTrhs + here−>BSIM4dNodePrime ) += m

* ( ceqjd − ceqbd + ceqgdtot − ceqdrn − ceqqd + Id t o t eq ) ) ;

. . . . .

/ *
* Loading mat r i x
* /

i f ( here−>BSIM4rgateMod == 1) {
( * ( here−>BSIM4GEgePtr ) += m * ge l t d ) ;
. . . . .

}
. . . . .

} / * End of MOSFET Instance * /
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} / * End of Model Ins tance * /

return (OK) ;
}

The outer for loop traverses the linked list of the different models and the nested for loop
traverses the linked list of the instances of the particular model. Inside the double for loop
resides the code that evaluates the transistor parameters. For BSIM4 models this is approx-
imately 5,000 lines of code, including a lot of computations along with numerous branches.
At the end of the evaluation code, there is some code that updates the circuit matrix and the
right hand side vector (RHS).

Parallelization with OpenMP

As every transistor model evaluation is an independent procedure we can harness the poten-
tial of the multicore processors to increase performance. For example, for a circuit containing
1,000 transistor, each core can evaluate 250 transistors, thus giving an significant overall
speedup. At the same time, the parallelization procedure seems embarrassingly easy, as
there is a simple loop to be parallelized.

However, the loop is traversing linked lists and currently it is not possible to parallelize
a pointer-chasing loop by just adding an OpenMP directive. For this reason, a new data
structure is introduced, the BSIM4InstanceArray[]. This array is included inside the struct
sBSIM4model and stores the address of each linked-list element of an instance in an array
of pointers. The variable BSIM4InstCount keeps track of the total number of elements in the
lists. The new loop for BSIM4 model evaluation can be seen in the following code fragment.
It now involves an array of pointers and an integer index instead of pointer.

i n t BSIM4load (GENmodel * inModel , CKTc i rcu i t * ck t ) {

. . . . .

#pragma omp p a r a l l e l for num_threads ( nthreads ) private ( here )
for ( i dx = 0; i dx < model−>BSIM4InstCount ; i dx ++) {

here = Ins tA r ray [ i dx ] ;
good = BSIM4LoadOMP( here , ck t ) ;

}

BSIM4LoadRhsMat ( inModel , ck t ) ;
}

i n t BSIM4LoadOMP( BSIM4instance * here , CKTc i rcu i t * ck t ) {

. . . . .

/ * model eva lua t i on code * /

. . . . .
}
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void BSIM4LoadRhsMat (GENmodel * inModel , CKTc i rcu i t * ck t ) {

. . . . .

/ * update c i r c u i t mat r i x and RHS vec to r * /

. . . . .
}

Moreover, matrix and RHS update can no more be part of the code inside the loop, because
more than one threads may try to write to the same location. As a result the result the update
takes place in a separate function, BSIM4LoadRhsMat().

More information about the OpenMP implementation of the BSIM4 models can be found in
[9].

4.4 Bottlenecks for Parallelization on GPUs

Communications Bottlenecks
This is the biggest and most classical bottleneck of accelerated computing. Most of the data
structures are resident on the systemmain CPUmemory. To conduct operations on the GPU,
the data must be sent back and forth to and from the card over the communication bus. Over-
head to initiate the communication is best minimized by sending as much data as possible in
burst mode. The overhead also includes reading the data from system memory and writing
it to the GPU local memory. DMA transfers usually increases the bandwidth, but needs lots
of data to show pronounced effect, plus the availability of data. Model evaluation takes place
numerous times during transient analysis and each times data need to be transferred to and
from the GPU.

Conditional Control Flow
SIMD architectures requires conducting the same instructions on all data points. In order
to execute programs with conditional if-else statements, it can put some of the processing
units in idle state till the specific elements takes alternative routes, or by doing “standby” ex-
ecution of predicted branches. This is one of the major drawbacks for SPICE applications,
due to their irregular and unpredictable compute structure, consisting of numerous branches.

Kernel Invocation Overheads
There is an advantage of breaking the code to very small number of kernels, ideally with 2
inputs and on output. This targets the nature of an ALU element, which has 2 inputs and
one element. It also simplifies the generation of threads. However, this will add new over-
heads. These overheads include both the typical setup required to call the kernel, as well
as overheads for fetching operands from memory. Thus, the number of kernels, the number
of inputs and outputs per kernel, and size of each kernel need to be balanced. As referred
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above, model evaluation can take place billion times for large circuits. Thus, for a GPU im-
plementation the cost of launching the kernel billion times can be large.

Data Structures
CPU-oriented programs tend to have their code in the form of linked lists, using pointers and
dynamic memory allocation. On the other hand, stream computing (or SIMD/vector comput-
ing in general) requires data to be arranged in contiguous compressed arrays (i.e. streams
or vectors). This also helps to maximize burst communications over IO buses, as well as
burst memory accesses. This is the case for SPICE applications. Data structures need to be
converted to GPU friendly structures, resulting in extra overhead.

4.5 Implementation
The implementation is based upon the parallel OpenMP implementation. In general, in all
the stages of the implementation the whole model evaluation code (i.e the code inside the
BSIMLoadOMP() function) corresponds to a GPU kernel. Thus, each thread that executes
the kernel represents a transistor. There are no data dependences between the evaluation
of different transistors and as a result every thread is independent.

The basic routine that orchestrates the model evaluation on GPU is the cudastartKernel().
It is called if the option ‘-g’ is enabled during execution. Otherwise, the parallel OpenMP
version is used. The flow of the routine is the following:

1. Memory allocation: Happens only on the first execution of the function.

2. Memory transfer to device: All the required data are transferred from the CPU to the
GPU.

3. Kernel invocation: The kernel is invoked with the appropriate geometry and arguments.

4. Memory transfer from device: The results are transferred back to the CPU.

Then the control flow returns back to the BSIM4load() and the circuit matrix and RHS vector
are updated.

Stage 1
In the first version of the implementation, the whole BSIM4InstArray array was transferred
to the GPU. As it is an array of pointers it cannot be transferred with just one cudaMem-
cpy(). Multiple cudaMemcpy() are needed, equal to the to the total number of the transistors
in the circuit, each one transferring one BSIM4Instance. Another drawback is that for each
BSIM4Instance, its corresponding BSIM4model is transferred with a separate cudaMem-
cpy().

Next, the circuit is transferred to the GPU. Here, take place again multiple cudaMemcpy()
as the CKTcircuit struct, contains pointers to arrays. In particular, CKTstates and CKTrhsOld
are transferred first and then the rest of the circuit is transferred.
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In the same way, after the completion of the kernel the data are transferred back from the
GPU to the CPU.

However, the above way of moving data between the host and the device leads to very
poor performance. The GPU execution for the first implementation was even 10 times slower
than CPU execution.

Stage 2

To harness the available bandwidth between the host and the device it is better to integrate
multiple small memory copies into a big one. This is extremely essential for the particular
application, as model evaluation takes place multiple times per time-step. As result a result
we end up having a vast number of cudaMemcpy() calls, which dominate the execution time.

In this stage we focused on merging the memory copies needed to transfer the transistor
instances to the GPU. For this purpose, two new arrays were introduced, h_InstArray and
d_InstArray of size BSIM4InstCount, for the CPU and the GPU correspondingly. At first, we
use the memcpy() routine to transfer the transistor data to h_InstArray and then one cud-
aMemcoy() is used to transfer the whole h_InstArray to d_InstArray.

What is more, only one copy of each BSIM4 model is transferred to the device and latter
on, inside the kernel each transistor is linked with its corresponding model. This way, we
avoid moving a considerable amount of Mbytes.

The result was a dramatic performance increase between the GPU versions, but we have
not managed to reach the levels of CPU execution times.

Stage 3

A profiling of the application showed that memory transfers still dominated the execution time.
For example, for a circuit with 7,454 transistors, CUDA memory copies form Host to Device
represented the 48.69% of the overall GPU execution time, CUDA memory copies from De-
vice to Host represented the 45.34% and the kernel execution represented only the 5.97%.

After a careful examination of the model evaluation code we noticed that only some
variables were needed from the host code to update the circuit matrix and the right hand
side – RHS vector. Furthermore, the host code does not change the value of any of the
BSIM4instance variables. As a result, there is no need in moving the whole BSIM4InstArray
to the GPU and then back to the CPU in every model evaluation. In this stage, we transferred
the BSIM4InstArray, only one time, at the begging of the simulation and then transferred back
to the CPU, after every evaluation only the variables that were needed.

Moreover, neither the host nor the device code changes the BSIM4model parameters
during the transient analysis. As a result, the models are transferred to the GPU memory
space at the beginning of the simulation and reside there till the end of the simulation.

Another optimization implemented concerned the transfer of the circuit structure to the
GPU. As the struct CKTcircuit contains pointers (e.g. CKTstates, CKTrhsOld), the data
pointed by them was transferred with separate cudaMemcpy(). We copy these data in a
continuous memory region and moved them with a single cudaMemcpy().

These optimizations brought a huge performance increase, resulting to better execution
times of the application against the CPU serial version. What is more, the kernel execution
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time was approximately the same with the time needed for memory transfers.

Stage 4
This is the final optimization step. As memory transfers are almost fully optimized, in this
step we tangled with kernel optimizations. As mentioned earlier, GPUs operate on a SIMD
computation model, were each thread executes the same instruction on different data. On
the other hand, SPICE has an irregular and unpredictable compute structure, consisting of
numerous branches. In order to execute programs with conditional if-else statements, some
threads may remain idle while other threads execute alternative routes.

As a result, we decided to deal with branch divergence which is one of the main bottle-
necks of the SPICE program. We profiled the kernel with the NVIDIA Visual Profiler (NVVP)
and in particular we used the option Analyze Kernel -> Divergent Branch. This option points
out in the source code branches with high level of divergence.

Next, as the branches leading in high overhead were identified we used inlining of if-then-
else code. For example a code fragment such as:

i f ( cond ) { CODE−A; }
else { CODE−B; }

would be converted into the following code fragment for execution on the GPU:

CODE−A;
CODE−B;
i f ( cond ) { return r e s u l t o f CODE−A; }
else { return r e s u l t o f CODE−B; }

This way each thread executes instructions from all the alternative paths. We do not avoid
branch divergence, but instead of threads waiting other threads to finish executing multiple
instructions of compute intensive code they now only wait for fewer instructions which are
simple result assignments.

The result was an average speedup of 1.2x, over the previous GPU version of the application.
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Chapter 5

Experimental Results

Our device model evaluation engine is implemented and integrated in an open source SPICE
tool, Ngspice. In this chapter we present the result from our profiling on Ngspice and execu-
tion times for both CPU and GPU execution, using a variety of circuits.

In all our experiments, the CPUusedwas a quad core processor from Intel (Intel®Core™2
Quad CPU Q9300) running at 2.50GHz, with 3GB of RAM memory. The operating system
we run is a linux Kubuntu 12.10 and the Kernel version 3.5.0-17-generic.

The GPU card used for our experiments is the NVIDIA GeForce GTX560 Ti, as mentioned
in chapter 3.

Table 5.1 shows the characteristics of the circuits used for the experiments. The second
column shows the number of transistor that each circuit contains. The third column shows
the time points of the transient analysis. The last two column show the number of total model
evaluations that take place for the GPU and the CPU. At first, it is noticed that the total
number of model evaluations differ from the number of time points, i.e. each time step can
take place more than one model evaluations. Furthermore, the total number of evaluations
differ between CPU and GPU. This is due to convergence issues.

Circuit name #Transistors #timePoints #evaluations GPU #evaluations CPU
add20 958 498 1573 1573

mem_plus 7454 1123 4245 4240
ram2k 13880 2006 7749 7741
voter 4244 2825 27720 12889

Table 5.1: Circuits

5.1 Profiling

This section presents the results of our profiling on the Ngspice application, provided by the
Intel VTune Amplifier. The results showed that for transient analysis of a circuit dominated by
non-linear devices, such as transistors, three are the main time consuming tasks: Evaluating
the transistors, Updating the circuit matrix and the RHS vector and Sparse matrix factoriza-
tion. These tasks are represented by the functions BSIM4load(), BSIM4loadRHSMat() and
spFactor()
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Table 5.2 shows the time in seconds that each task consumes, and in parentheses the
percentage of this time to the total execution time.

Circuit name Total runtime BSIM4load (%) BSIM4loadRHSMat (%) spFactor (%)
add20 13.98 9.25 (66.10%) 1.12 (8.04%) 1.02 (7.29%)

mem_plus 278.23 192.773 (69.28%) 19.2 (6.9%) 25.95 (9.32%)
ram2k 881.239 664.16 (75.36%) 66.74 (7.57%) 56.7 (6.43%)
voter 438.26 321.28 (73.3%) 35.36 (8.06%) 33.6 (7.66%)

Table 5.2: Ngspice Profiling

Consequently, Table 5.3, shows the average percentage of the total execution time that
each task represents, for the 4 circuits.

Task Percentage
BSIM4load 71.03%

BSIM4loadRHSMat 6.64%
spFactor 7.67%

Table 5.3: Average

5.2 Performance Analysis

This section provides information about the performance of the application. It presents and
compares execution times for both CPU and GPU execution. All the execution times are
measured in seconds

CPU Execution Times

Table 5.4 shows the execution times for the serial version and for the OpenMP version using
1, 2 and 4 threads. Table 5.5 shows the speedups obtained by the OpenMP version and the
graph in figure 5.1 shows how the execution time evolves relatively to the number of threads
that are active.

Circuit Serial 1 thread 2 threads 4 threads
add20 12.76 13.55 9.20 7.81

mem_plus 260.80 288.67 187.61 142.95
ram2k 814.33 874.79 551.15 396.38
voter 406.87 435.84 280.75 216.83

Table 5.4: CPU execution times

Ngspice runs approximately 2 times faster with OpenMP enabled and 4 threads activated. It
is also noticed that the performance of the OpenMP version using 1 thread is worse than the
serial version. This is due the fact that each version uses 1 thread but the OpenMP version
has the extra overhead of the OpenMP runtime system.
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Circuit 1 thread 2 threads 4 threads
add20 0.94 1.38 1.63

mem_plus 0.903 1.40 1.82
ram2k 0.93 1.47 2.05
voter 0.93 1.44 1.87

Table 5.5: OpenMP Speedups

Figure 5.1: OpenMP execution times

GPU Execution Times

Table 5.6 shows the execution times of Ngspice when the model evaluation phase is per-
formed on the GPU. Also it shows the speedups obtained over the serial CPU version. Exe-
cution times between CPU and GPU execution are presented graphically by the bar chart in
figure 5.2.

Circuit Time Speedup
add20 10.54 1.21

mem_plus 165.52 1.57
ram2k 443.87 1.83
voter 540.31 0.75

Table 5.6: GPU version execution times with memory transfers

Table 5.7 shows again the GPU version execution times, but now without counting the time
needed to transfer data between the CPU and GPU.
Finally, figure 5.3 shows the speedups obtained when counting communication overheads
and when not.
Themaximum speedup obtained was 1.83x when counting the overhead of thememory trans-
fers and almost 3x when memory transfers where excluded from the total execution time. It
is noticed that the circuit voter has worse performance when simulated using the GPU ver-
sion than the CPU version. This is because in the GPU version, model evaluation is invoked
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Figure 5.2: CPU and GPU execution times

Circuit Time Speedup
add20 6.40 2.00

mem_plus 107.453 2.42
ram2k 273.21 2.98
voter 325.64 1.25

Table 5.7: GPU version execution times without memory transfers

more than double the times it is invoked by the CPU version. As a result the overheads
(communication ,kernel invocation) dominate the execution time.
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Figure 5.3: Comparison of speedups when counting thememory transfers in measurements and when
excluding them
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Chapter 6

Conclusions

Given the key role of SPICE in the design process, there has been a significant interest in
accelerating SPICE. A large fraction of SPICE runtime (over 70% on average) is spent in
evaluating transistor model equations. This thesis reports our efforts to accelerate transistor
model evaluations using modern GPUs. We have integrated our transistor model evaluation
accelerator into an open source SPICE tool, Ngspice and have shownmaximum speedups of
1.83x counting memory transfers and approximately 3x without counting memory transfers.

6.1 Future Extensions
Possible extensions in this project may be the following:

• Memory coalescing
In the CUDA programming model it is essential for threads inside a warp to access
adjacent memory addresses in global memory. This is called coalesced memory ac-
cesses. For example, one modification that may bring extra performance is to convert
the array of data structures that describe transistors, from array of structs to stuct of
arrays.

• Further minimize communication overhead
In the current implementation there are 3 cudaMemcpy() happening before the kernel
invocation and 4 cudaMemcpy() happening after, except the first time the kernel is
invoked. These cudaMemcpy() may be further reduced, as it is better to have one big
cudaMemcpy(), than multiple small.

• Port the entire simulation on the GPU
This way memory transfers between CPU and GPU will be eliminated. One effort to
implement such a system is described in [4].
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Chapter 7

Appendix

7.1 Comprehensive Experimental Results
In this section we present the experimental results of every implementation stage. In par-
ticular, each one of the following tables presents the execution time of the GPU version, for
the 4 circuits used for the experiments. The speedup for each stage is measured over the
previous stage.

Circuit Time
add20 101.90

mem_plus 2148.53
ram2k 7052.90
voter 3577.55

Table 7.1: Stage 1

Circuit Time Speedup
add20 27.10 3.76

mem_plus 512.83 4.19
ram2k 1624.02 4.34
voter 964.85 1.97

Table 7.2: Stage 2

Circuit Time Speedup
add20 15.096 2.01

mem_plus 272.08 2.71
ram2k 807.50 3.12
voter 964.85 2.80

Table 7.3: Stage 3
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Circuit Time Speedup
add20 13.43 1.27

mem_plus 188.73 1.16
ram2k 519.69 1.17
voter 645.93 1.23

Table 7.4: Stage 4
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