
Studies of Ab Initio 
Genome Assembly 
Algorithms 
In HPC Platforms

Nikolaos Ioannidis
niioanni@gmail.com

M a d r i d
7 / 1 3 / 2 0 1 2

mailto:niioanni@gmail.com


Contents
1. Genome Description and Characteristics..................................................................4
2. Description of Genome Assembly............................................................................6

2.1 The Procedure.................................................................................................6
2.2 Examples.........................................................................................................9
2.3 Aims of Genome Assembly.......................................................................... 10

3. Categorization......................................................................................................... 10
3.1 Categorization by Existance of Reference.................................................... 11
3.2 Categorization by Sequencing Technology.................................................. 11
3.2.1 Reads Analysis.......................................................................................... 11
3.3 Categorization of Assemblers based on graphs............................................18
3.3.2 The Overlap/Layout/Consensus Assemblers.............................................20
3.3.2.1 Advantages-Disadvantages....................................................................20
3.3.3 The de Bruijn Graph Approach assemblers..............................................21
3.3.3.1 De Bruijn Graph Construction (and Compression)...............................21
3.3.3.2 Error Correction....................................................................................22
3.3.33 Scaffolding............................................................................................ 22
3.3.3.4 Finishing ................................................................................................22
3.3.3.5 The advantages of De Brujin Graphs:...................................................23
3.4 Errors that occur during the genome asmebly process.................................. 24

4. Algorithmic analysis and description......................................................................25
4.1 ALLPATHSLG.............................................................................................26
4.2 Ray................................................................................................................28

5. Hardware and Software inquiry of Mageri .............................................................30
5.1 Profile of the machine ...................................................................................30
5.2 SLURM (Simple Linux Utility for Resource Management) ........................30

6. Use of assemblers and Building ..............................................................................32
6.1 ALLPATHSLG.............................................................................................32
6.1.1 ALLPATHS LG How to Build..................................................................32
6.1.1.1 Requirements .........................................................................................32

1



33
33
34
34
36
40
41
42
42
42
43
44
45
45
46
47
47
48
49
49
50
51
51
59
60
60
63
64
66
69
71
74

6.1.1.2 System Requirements..............
6.1.1.3 The Build Procedure ................
6.1.1.4 ALLPATHS pipeline overview.
6.1.1.5 Preparing data for ALLPATHS .
6.1.1.6 Running conversion script.......
6.1.1.7 Running ALLPATHS...............
6.1.1.8 Assembly Results....................
6.2 Ray......................................................................................
6.2.1 Requirements...................................................................
6.2.2 The Build Procedure.......................................................
6.2.3 Data preparation for Ray.................................................
6.2.4 Run Ray...........................................................................
6.2.5 Input files and their declaration.......................................
6.2.6 Assembly results.............................................................
Input Data Profile..........................................................................
7.1 Profile of the genomes and their genomic libraries............
7.1.1 Staphylococcus aureus....................................................
7.1.2 Escherichia coli MG1655................................................
7.1.3 Escherichia coli MG1655................................................
7.1.4 Rhodobacter sphaeroides 2.4.1.......................................
7.2 The criteria for the selected libraries..................................
Examination..................................................................................
8.1 Ray k-mer evaluation..........................................................
8.3 Result Comparison of Ray and ALLPATHSLG.................
8.4 Analysis of Time Distribution............................................
8.4.1 Ray..................................................................................
8.4.2 ALLPATHSLG ................................................................
8.5 Analysis of Time in Relation With The Genomic Libraries
8.6 Memory Analysis ................................................................
8.7 Cost analysis.......................................................................
Appendix .......................................................................................

Bibliography...............................................................................

2



3



1. Genome Description and Characteristics

All of the biological information of every organism, including humans, is 
included in the genome. This biological information that is contained in the genome is 
encoded in DNA or, for many types of virus, in RNA. The genome is divided into 
discrete units called genes. Except from the genes includes the non-coding sequences of 
the DNA/RNA. With the non-coding DNA are described the components of an 
organism's DNA sequences that do not encode for protein sequences and because much 
of this DNA does not have important information and no known biological functions 
referred as “junk DNA”. Non-coding RNAs are functional RNA molecules that are not 
translated into protein.

Gene

C hromosome 

Nucleus

At the picture of 
the left is seen the different 
parts of the cell, where the 
chromosomes are located 
and the part that is 
considered as genome.

A chromosome is a single piece of coiled DNA that contains many genes and 
other nucleotide sequences. The chromosomes contain the associated proteins, which 
serve to pack the DNA and control its functions. A chromosome is a structure of DNA 
which is organized for the purpose of the above tasks.

4



The double stranded 
nature of the DNA.

The DNA strands 
consisted of the four bases 
Adenine, Guanine Thymine 
Cytosine.

Adenine is creating 
bonds and connected only 
with Thymine and Guanine 
only with Cytosine.

Nucleotides are the basic building blocks of DNA, consisting of a sugar 
(deoxyribose) with a phosphate group attached to it, and a base. The base of a 
nucleotide can be one of the following: adenine, cytosine, guanine and thymine. In 
graphical or textual representations of DNA molecules, nucleotides are commonly 
denoted through the abbreviations of their base names A, T, C and G. In this case, the 
DNA can be written as the sequence of these four letters. Nucleotide A from one strand 
of the DNA always bonds to a nucleotide of the other strand of the DNA, and vice versa. 
For this reason A and T nucleotides are called complements. The same applies for the C 
and the G nucleotides.

O
Phosphate

O =  P —  O

B

Nitrogenous Base 
(A,T,C or G)

5



2. Description of Genome Assembly

Genome assembly refers to the process of taking a large number of short DNA 
sequences and putting them back together to create a representation of the original 
chromosomes from which the DNA originated.

2.1 The Procedure

The goal of Genome assembly is to create a representation of the original 
chromosomes of the living organism from which the DNA originated. This living 
organism could be an animal, a plant, a bacterium, a virus, a fungus, an archaean or a 
protist. It is the process of taking a large number of short DNA sequences and putting 
them together in order to create the above representation. The point of this process is the 
determination of the complete genome sequence and important genome encoded 
features.

In order to see how the overall DNA sequence is produced, the first step is to de­
termine the method that the DNA sequences are extracted and given to genome assem­
blers as inputs. So, let’s take a look at the basic and primal method and the parts of it, so 
that a general idea will be produced before the later analysis. This method that is uti­
lized for DNA sequencing is known as the Sanger method or chain termination. This 
method can only be used for shorts strands that their size is 100 up to 1000 basepairs. 
This is an extremely important limitation, since the DNA can be up to a few billion nu­
cleotides long.Therefore, the longer sequences must be subdivided so that smaller frag­
ments are going to be produced, which can be subsequently reassembled and give the 
overall sequence. The principal method which is used for sequencing the entire genome 
by dividing it in smaller fragments is called whole genome shotgun (WGS) sequencing.

The shotgun sequencing, or shotgun cloning, is named like this because of the 
random firing pattern of a shotgun. With this method the DNA is randomly fragmented 
into numerous small segments, which after are sequenced by the sequencing machines 
in order to produce the final reads that are going be used as inputs by the genome 
assemblers. The shotgun method a preliminary step at the genome sequencing, is 
applied for several rounds in multiple copies of the genome which are extracted from a 
single one template. Each copy is sheared into random fragments. Next from these 
random fragments are selected the ones that are size appropriate. Continuing from the 
size fractioned fragments the sequencing machine is producing the reads. There are 
several types of sequencing machines using different methods, but in this case the 
Sanger machines use chain termination to produce the reads. So, in this way, multiple 
reads, that are overlapping, are obtained in order when combined to give the original 
full genomic sequence.

6



Multiple copies of the genome

Sheared random fragments

Size fractioned fragments

Reads

I 1 I

These reads are then given as input to automated sequencing machines, the 
genome assemblers. The reads in fact are sequences of a certain number of nucleotides 
or bases. With bases, as explained before, is meant adenine(A), cytosine(C), guanine(G)

7



and thymine(T). Since this information is known, by the meaning that the reads have 
been given as an input, the algorithm works on this information and attempts to merge 
them. The reads that overlap can be merged together and form the contigs. The contigs 
are sets of overlapping reads, which when are align together are forming a consensus 
region of DNA. This process continues and combining the information of the sequenced 
contigs are formed the scaffolds. The scaffolds, or super contigs, are a portion of 
genome sequence, composed of contigs and gaps. The gaps occur from errors at the 
assembly procedure.

Contigs

Scaffolds

The genome assembly algorithms work in simple steps but really difficult ones 
when it comes to actual implementation. The genome assembly is a problem with great 
difficulty and it becomes more difficult because of the abundance in many genomes of 
sequences that are identical. These regions can occur in thousands different locations 
and from completely different parts.

Before continuing with an example to make clearer the problem, let’s see the 
distinction between the genomes, according to the size of them

• Small, size is about a few Megabases, 
e.g. bacterial genomes

• Medium, size varies among several hundred Megabases 
e.g. lower plant genomes

• Large, size ranges in Gigabases 
e.g. mammalian and plant genomes

8



The problem of sequence assembly can be compared to taking many copies of a 
book, passing them all through a shredder, and piecing the text of the book back 
together just by looking at the shredded pieces. Besides the obvious difficulty of this 
task, there are some extra practical issues: the original may have many repeated 
paragraphs, and some shreds may be modified during shredding to have typos. Excerpts 
from another book may also be added in, and some shreds may be completely 
unrecognizable.

a) A set of DNA fragments that are cut from multiple copies of the genome 
sequence

2.2 Examples

ATGA ATG ATGATC
TCGA ATCG GACAGTA
CAGTA ACAGTA

b) Reads, randomly selected DNA fragments, subject to noise

R 1 : ATGA R 3 : ATCG R 5 : ATGATC
R 2 : TCGA R4 : ACAGTA R 6 : GACAGTA

c) Construct the sequence by identifying overlaps between reads

R 1 : A T G A 

R 5 : A T G A T C

R 3 : A T C G

R2 : T C G A

R 6 : G A C A G T A

R4 : A C A G T A

S : A T G A T C G A C A G T A

the sequence 
deduced from 
the overlaps

9



In a general way, the genome assembler's job is to put the reads in the proper 
order by comparing each read to every other with the criteria of how the different reads 
are overlapping. It would be really easy if the reads that overlap belong next to each 
other in the final sequence, but over 30% of sequence that the genome contains is 
repeated numerous times. By this, a repeat of reads could exist between fragments that 
are millions base pairs apart in the genome. The given output of an assembler is a 
collection of large stretches of the genome that are put correctly together.

2.3 Aims of Genome Assembly
The aim of genome sequencing is to extract and gain information about the 

complete set of genes in the examined genome sequence. Also the representation of 
each genomic sequence in a single scaffold, however this is not always possible. 
Moreover, by the time the scientist have a clearer image about the role of the non­
coding DNA, or “junk DNA”, and it is really important to have a good background, by 
the meaning of a complete genome sequence, that will work as a base reference for the 
understanding of the genetics and the biology of any given organism. In addition, 
projects of genome assembly don't aim only in the determination of the DNA sequence 
but also in gene prediction. This part refers to set the bases in order to find where the 
genes are in a genome and what those genes do. Also, the produced sequences that are 
outcome of the genome assembler's are used in genome browsers.

The genome browsers web are interfaces connected to databases that contain 
sequences produced by the various genome sequencing projects and the related notes. 
Through them is possible to study the anatomy of the genomes at various degrees of 
detail, until the final sequence, displaying at the same time all the structural and 
functional characteristics available for that section of the genome. In addition, for each 
stretch of DNA is possible to display mapping data, where available.

3. Categorization

The genome assemblers divide in several categories, depending on nthe input 
data, the existence of a genome reference, how they handle and build the graph of the 
assembly.

10



3.1 Categorization by Existence of Reference

Two main categories can be distinguished in the sequence assembly:

1. De-novo: short reads are assembled to create full-length contiguous sequences 
called contigs, followed by the process of correctly ordering contigs into 
scaffolds, without having a reference genome

2. Mapping: reads are assembled with reference at an existing backbone sequence, 
the sequence that is builded at the end it is not necessary to be identical to 
reference sequence. The pre-existing reference genome sequence can be used to 
align the reads.

The de novo assemblies are slower and need more memory than the mapping 
assemblies, and the prior reason for this is that in de novo every read need to compare 
with every other read, but the importance of de novo assembly is the creation and 
production of new sequence assemblies for genomes that previously were not assembled 
or characterized. This kind of assemblers is going to be evaluated and concern us.

3.2 Categorization by Sequencing Technology

3.2.1 Reads Analysis
So far we made clear about sequence assembly that is a problem that refers to the 

alignment and merge of DNA fragments, or reads, of a DNA sequence that comes from 
a genome so that the original genome sequence will be reconstructed. Although, we 
have not seen the factors, that affect the complexity of that problem. The two major 
factors are

• the number of the reads

• the length of the reads

The dilemma with the number and the length of the reads is that, with more reads 
that are also longer is achieved better identification of sequence overlaps but the 
complexity behaviour is quadraticaly or even exponentially analogous to the number of 
the reads and the length of them. These values depend on the sequencing platforms.

Before the analysis of the sequencing platforms and methods let’s take a closer look

11



at the reads and the structure of them. These fragments of DNA as mentioned previously 
are consisted from nucleotides. The generic molecular structure of the nucleotides is the 
following:

5 ’

ch2

4 ’

3 ’

O

2 ’

1’

OH H

As shown the carbon atoms are numerated from the right to the left, 1 up to 5. 
These numbers are not random, the bond of the nucleotides on the DNA in order to form 
a strand, is always created between the ends with the numbers 3’ and 5’, through the 
phosphate group (P), the sugar-based backbone composing a polymer chain and a series 
of bases (B) extend above it. During the sequencing process the DNA is always 
extended with the 5th carbon with the direction to the 3’ end, so that the DNA sequence 
is always read from its 5’ end towards to the 3’ end.

phosptiateN 5. ^

deoxyribose

9 MM

sugar-phosphate
ο acKoone

complementary
base pairing hydrogen bonds

H D ·

12



The double-stranded nature of DNA consisting of A, C, T and G nucleotides.

The sequencing process of a DNA fragment can be made in two different ways:

• sequencing only one strand of DNA from the 5’ end, called the single-end (SE) 
reads

• sequencing the fragment in both strands from their 5’ ends, called the paired-end 
(PE) reads.

5' AGATTACATATATAAACAGTAGTATTCCATGA 3'

5' AGATTACATATATAAACAGTAGTATTCCATGA 3'
~  I
I i

I I I I I I I I I I

I I I I I I I I I I

TCTAATGTATATATTTGTCATCATAAGGTACT

< -------------

3 5

single-end DNA fragment read.

a paired-end DNA fragment

At paired end reads another thing that is important is the orientation of the reads. 
The orientation of the reads depends on the sequencing technology. Each type of 
orientation has its significance.

Left Right, or (+/-), or Forward Reverse

This is the orientation of normal reads. The two reads are left and right respectively o f the 
unsequenced part of the sequenced DNA fragment when aligned back to the reference genome.

LL,RR / (+/+) (-/-) / FF RR

Implies inversion in the sequenced DNA with respect to reference.

13



or

RL / (-/+) / RF

Implies duplication or translocation with respect to reference.

Another categorization of the assemblers can be done by the data reads are given 
as an input. These data are generated by the sequencing platforms. The sequencing 
platforms are distinguished in two categories based on the technology they use:

3.2.2 Categorizations and Analysis of Sequencing Technologies

The first generation (“Sanger”) sequencing. Is the primar tool for the last 30 
years, which is still widely used for small-scale experiments. It is based on the chain 
termination method using capillary electrophoresis. It is significantly slow compared 
with the new generation sequencers and expensive. Moreover, this process of 
sequencing can deliver read lengths up to 1000 bases, high raw accuracy, and allow for 
384 samples to be sequenced in parallel, generating 24 bases per instrument second. 
Great shortcomings of this method are its high price, and long sequencing time. 
Examples of machines used for first generation sequencing include the Applied 
Biosystems Automated 3730 DNA Analyzer. To process a billion bases of DNA 
fragment it could take over a year to read and the cost would be excessive.

The new generation sequencing (NGS) methods. Compared to the Sanger 
method they generate reads much shorter and the total number of reads is respectively 
greater. The NGS methods where introduced in 2005 and lead the sequence machines to 
be able to go from serial to parallel and multiple sequencing production of DNA 
fragments simultaneously. The massive parallelism of NGS technology has greatly 
improved the throughput and lowered the cost of sequencing a genome. Among the 
most known NGS platforms we can name the Genome Sequencer from Roche 454 Life 
Sciences, the Solexa Genome Analyzer from Illumina, the SOLiD System from Applied 
Biosystems, Ion Storm and Ion Proton from LifeTechnologies, the Heliscope from

14



Helicos. There are several different methods that these technologies use for sequencing: 
parallelized pyrosequencing (454), sequencing by synthesis -  cyclic reverse termination 
(Solexa), ligating degenerated probes (SOLiD), ion semiconductor (Ion Proton) and 
single molecule sequencing (Heliscope). Read lengths obtained from the NGS reads are 
in the 700bp range (454), the 100bp range (Solexa), the 75bp range (SOLiD) or less.

3.2.3 Comparison
To the next tables is made a comparison and gathering of characteristics between 

the most used new generation sequencing technologies. Also in the table exist and a 
Sanger machine in order to be seen the amount of difference between second and first 
generation.

Technology 454 Sequencing Illumina Sanger

Machine GS FLX Titanium 
XL+

HiSeq 2000 3730xl

Sequencing
Chemistry

Pyrosequencing sequencing by 
synthesis (SBS)

Dideoxy chain 
termination

Mb per run 700 Mb 600 Gb (2 x 100 bp) 1.9~84Kb

Time per run ~23 hours ~11 days 20Mins~3Hours

Read length 700 bp (up to 1000bp) ~100bp 400~900bp

Cost per Mb $ 84.39 $ 0.03 $2400

Accuracy 99.997%
(15x coverage)

98%,(100PE) 99.999%

Cost per 
instrument

$ 500,000 $ 690,000 $ 95,000

Technology SOLiD Ion Torrent HeliScope

machine 5500 series Ion Proton™ tSMS™
Sequencer

Sequencing Ligation-based Ion semiconductor single molecule
Chemistry sequencing sequencing sequencing

15



Mb per run 170Gb Up to 10 Gb 21 to 35 Gigabases 
per run

Time per run ~9 days ~2 hours ( 100bp) ~7 days

Read length 35bp + 75 bp Up to 200 bp 25 + 55 bp

Cost per Mb $ 0.04 $ 4,85 $ 0,005 per base

accuracy Up to 99.99% 99.6% 99.995%

Cost per 
instrument

$ 595,000 $ 149,000 $ 999.000

instrument Advantages Disadvantages

Sanger 1. High quality
2. Long read length

1. High cost
2. Low throughput

Roche 454 1. Handles GC-rich regions 
(fairly) well
2. Long reads
3. Fast sequencing runs

1. Low throughput
2. Error rate at 1%
3. Homopolymeric 
regions are problematic

Solexa/Illumina 1. Highest throughput 
(max 600 gigabases/run)

2. Low cost per base

1. Error rate at 1%
- only substitutions
2. Problems with AT- 
and GC-rich regions
3. Long sequencing 
times (dependent on the 
read length

SOLiD 1. High throughput
2. Low cost per base
3. High accuracy when a 
reference genome is avail­
able

1. Few software work­
ing with “color space”
2. Problems with AT- 
and GC-rich regions
3. Long sequencing 
times (dependent on the 
read length)

Ion Torrent 1.Fastest throughput 
2.Inexpensive instrument

1.Relatively low 
throughput, hence high 
cost per base

16



and consumables 2. Still prone to 
homopolymer error, 
though better 
performance than 454

HeliScope 1.Ease of library 
preparation

1.High error rates com­
pared with other re­
versible terminator 
chemistries

The second-generation platforms give different reads of different size. It depends 
on the needs of the research which reads are more suitable for use. It is subject to the 
nature of the problem, if the researcher need long reads, or faster results, or the most 
accurate. Currently the Illumina platform is the most widely-used instrument.

It is obvious, that the genome centres adopted the new technology because of the 
much higher throughput and the lower cost. That had as a result the sequence 
assemblers to evolve in order to follow the new type of sequences. Primarily the 
assemblers that were created for long reads could also function for the sort reads, 
because the principals of detecting overlaps and building contigs are the same. However, 
this attempt failed due to poor performance and a variety of reason such as that many 
assemblers in order to work properly needed a minimum read length. Also the total 
number of reads is massive comparing to the previous technology. Another reason is 
that the algorithms based on long reads require a minimum amount of overlap that with 
short reads is impossible, because is too long.

In any sequence assembler the step that the overlaps are calculated is the most 
critical in order to have a good base to start. New short read sequencing projects had to 
be designed so that this step could be computationally realistic, and that is because, in 
order to have the same level of coverage that is achieved with the long reads are needed 
many more short reads. By coverage, is the average number of reads representing a 
given nucleotide, and so, 8X coverage indicate that the genome is sequenced eight times 
over. Considering this, with an increased amount of reads the computation of overlaps 
enlarges significantly. This problem is exacerbated by the fact that short-read projects 
compensate for read length by obtaining deeper coverage, and it is not unusual to see 
NGS projects at 30X, 40X, or 50X coverage rather than the 8X coverage that is typical 
of Sanger sequencing projects.

The assemblers that use the new generation sequencing platforms, had to 
approach differently the problem, set carefully the parameters used for computing the

17



overlaps and use new strategies and algorithms that work better with NGS data. The 
DNA sequencing data from the NGS platforms present shorter read lengths, lighter 
coverage and different error profile than Sanger sequencing data. The second- 
generation machines are characterized by highly parallel operation, higher yield, simpler 
operation, much lower cost per read, and shorter reads.

These are the main reasons that forced the creation of a new generation of 
genome assemblers, especially for handling the challenges of assembling very short 
reads. These assemblers include: Velvet, ALLPATHSLG, ABySS, and Ray. The 
common part of all these assemblers is that are graph based. But moreover are using the 
same method for building the graph, which at the moment is considered as the best 
method that copes with the illumina/Solexa reads (which are from the most widely-used 
instrument as previously mentioned) but also with a mix of reads of the sequencing 
technologies.

At the following chapter is made a comparison of the different graph methods 
that assemblers use and we conclude at the referring one.

3.3 Categorization of Assemblers based on graphs

The Next Generation Sequence (NGS), or Second Generation Sequence (SGS), 
assemblers can be organized into three categories, all based on graphs.

• The de Bruijn Graph (DBG) methods use some form of K-mer graph.

• The Overlap/Layout/Consensus (OLC) methods rely on an overlap graph.

• The greedy graph algorithms that can use OLC and DBG.

3.3.1 The Greedy Assemblers

They are the first of the NGS assemblers following a greedy strategy. They are 
checking, which are the reads that are most similar to each other and they join them.

The basic operation that characterizes the followed strategy is, given an 
unassembled read extent by adding one more read or contig that overlaps. Scanning 
through the unassembled reads the assemble process continues iteratively. Each time 
the next join is made by comparing all possible overlaps between the reads and 
assigning a score. Considering the highest- scoring overlap that it could be achieved, the 
reads are merged together. The process is repeated until no more extension are possible.

The greedy algorithms are considered as implicit graph algorithms, that they 
simplify the graph by passing only from the high-scoring edges. Also in order to avoid 
misassemblies the greedy algorithms have mechanisms that are terminating the 
extension process when conflicting information is found. The conflicting information is 
overlaps that two or more reads have with a contig, but the reads do not overlap each

18



other. In this order, the contig would be extended false.

Read 1

Contig

I

Read 2

The dark blue area is where 
the two reads overlap with 
the contig, but the two of 
them do not overlap between 
them in the continue of their 
length.

However, although the greedy algorithms are easy at implementation, present 
dis-advantages. Because they consider the local information at every step and ignore the 
long range connexions between reads, the assembler could be easily confused by 
complex repeats because it is not easy to detect and resolve them. Also, all the current 
versions of assemblers that implement greedy algorithm are more memory intensive 
than the other implementations.

An example is shown below, where the assembler joins, in order, reads 1 and 2 (overlap 
= 200 bp), then reads 3 and 4 (overlap = 150 bp), then reads 2 and 3 (overlap = 50 bp) 
thereby creating a single contig from the four reads provided in the input. The 
disadvantage of the simple greedy approach is that because local information is 
considered at each step, the assembler can be easily confused by complex repeats, 
leading to misassemblies.

Read 1________________
200bp________ Read 2

Read 4
Read 3_________ 150bp

Read 4
Read 1 Read 3 i50bp

200bp_____________ 50bp
Read 2

Some of the most known Greedy assemblers:

SSAKE, SHARCGS, VCAKE, QSRA

19



3.3.2 The Overlap/Layout/Consensus Assemblers

Currently the OLC approach is one of the two mainstream approaches of the de 
novo DNA assembly, and is especially used during the assembly of long (longer in 
comparison with the De Bruijn), high-quality reads. OLC assemblers use an overlap 
graph. Their operation has three phases in which first is finding all overlapping reads, 
next merge optimal overlapping reads into contigs and last derive the DNA sequence 
and correct read errors.

At the overlap phase each read is compared with every other read. This 
comparison in a pairwise manner is done in order to be constructed an overlap graph. 
All k-mers are sorted in reads and then the graph is builded by finding pairs of reads 
that are sharing a k-mer. Each read is a node and if an overlap exist between two reads 
then the nodes of these reads are connected with and edge. But these edges are 
constructed based on some criteria which differ among the OLC algorithms. Generally 
an edge is created if an overlap is at least K base pairs of length with least X% similarity. 
Also in this step

At the layout stage, the ultimate goal is to conclude in a single path that passes 
from each node in the overlap graph exactly one time. Graph algorithms are applied to 
the overlap graph that simplify and analyse him in order to identify the appropriate 
paths that correspond to segments of the genome sequence. These paths are collection of 
reads that overlap and are forming the contigs. The contigs in this case are sub graphs 
with many connections between the nodes that they contain. The sub graphs are 
compressed into one node so that the graph is simplified. Analysing these sub graphs is 
produced an approximate layout of the reads along the genome.

Finally at the consensus stage, the graph is reduced in large scaffolds by multiple 
sequence alignments. Ideally the original could be fragmented and composed from 
multiple scaffolds that have gaps between them. Anyhow, the goal is the original 
genome sequence to be inferred through the aligned reads.

3.3.2.1 Advantages-Disadvantages
Analysing the OLC algorithm approach, an advantage is that because the OLC 

assemblers are read based, the overlaps among the reads may vary in length. According 
to this, the input data of OLC assemblers could either from NGS or Sanger platforms.

Another advantage is that the three distinguished stages of the OLC approach

20



allow easiest optimization. The OLC algorithms, because of the natural three stage 
implementation, can be easily divided and modified to the needs of the assembly 
problem so that an optimization can be achieved.

However, the OLC approach is memory intensive and has a high processing cost. 
The overlap stage is very time consuming because of the determination of every overlap 
among every read of the sequence. In particular, the OLC approach was initially 
designed to receive input data from Sanger based platforms. These data are commonly a 
lot less than the data that are generated from the NGS platforms. The OLC assemblers 
can handle this kind of data, but because of the greater amount of data and the nature of 
them (short reads from NGS), can drive into two problems. The calculation time for the 
overlaps is increased significantly and too many ambiguous connections could be pro­
duced.

In addition, a very important observation is that in the layout stage, finding a 
path that traverses every node in the graph only once leads to a Hamilton path problem 
( the Travelling Salesman Problem ), which is NP-hard and is not solvable in 
polynomial time. Because of this, OLC becomes more difficult and dependant on 
various heuristics to produce reliable results.

Some of the most known OLC assemblers:
Newbler, Edena, CABOG, Shorty, Forge

3.3.3 The de Bruijn Graph Approach assemblers
The algorithms that belong in this category have the following structure and 

every base-step is personalized in a different way in every algorithm. The basic 
structure of the algorithms relies on k-mer graphs, whose attributes make it suitable for 
vast quantities of short reads such these that are extracted of the NGS platforms.

3.3.3.1 De Bruijn Graph Construction (and Compression)
The common first stage of de Bruijn graph based de novo assemblers is to build 

the graph to store all the k-mers and their neighbouring nucleotides. This first stage can 
be summarized in following three steps; firstly the construction and the definition of 
all the unique length-k-mers. Next is done the node creation based on the k-mers and 
finally is done the edge creation based on the overlaps of the k-mers. The node and the 
edge construction in general is the same but personalize on the different algorithms. 
Also, when a k-mer is overlapping with multiple, different k-mers by k-1 length on the

21



side then multiple edges derive from the node that is dedicated to this k-mer. After the 
graph construction it is possible many of the assemblers to simplify and compress the 
graph without any loss of information.

3.3.3.2 Error Correction

Errors in assembly are found and corrected or removed once the graph is created. 
In order to move to the next step, the graph has to be cleaned from the vertices and the 
edges that are created at the graph construction step. Assembly errors can occur for two 
main reasons, because incomplete or incorrect information is provided to the assembler 
or due to the limitations of the assembly algorithm. Because of this, pieces could be 
incorrectly discarded as mistakes or repeats, and others could be joined up in the wrong 
places or with wrong orientation. In theory, the size of the de Bruijn graph depends only 
on the size of the genome and should be independent of the number of reads since it 
relies on k-mers. Though, because sequencing errors create their own graph nodes, 
inevitably the size of the de Bruijn graph is increased. Later will be explained the 
different kinds of errors and following with the algorithmic explanation of the 
assemblers will be seen how they handle them.

3.3.3.3 Scaffolding
At the step of scaffolding the algorithms analyze higher order information to 

achieve resolving ambiguities. This information is used to group, orient and join the 
continuous sequences that are formed, known as contigs, in order to link them to an 
unambiguous path in the de bruijn graph. This information could be paired-end 
sequences that are reads from the two ends of the DNA sequence and sequenced on GS 
FLX from the Roche 454 machine family. Mate paired sequences, that are reads similar 
to the paired end although are adapted to the Illumina HiSeq 2000 technology. 
Restriction map, that is a map of know locations of the DNA containing specific 
sequences of nucleotides. Or finally, clone maps or physical maps, that contain posi­
tional information about the contigs.

3.3.3.4 Finishing
Assemblies containing gaps are called draft assemblies, while the process of 

filling the gaps is called finishing. Finishing involves obtaining missing sequences, 
improving low quality regions, resolving misassemblies and ordering scaffolds. In order 
to fill gaps, further sequencing is usually required, either by amplifying and sequencing 
fragments spanning gaps, or by re sequencing the entire DNA. Tools that perform gap 
closure and finishing do exist although some hybrid assemblers perform gap closure 
indirectly by incorporating reads from multiple sequencing platforms such as Velvet.

22



3.3.3.5 The advantages of De Brujin Graphs:
The de bruijn graph based assemblers, conversely with the OLC assemblers 

which are read based, are k-mer centric. This is the fundamental difference between 
these two structures, while the OLC assemblers are depended directly from the length 
and the placement of the fragments, whereas the de bruijn assemblers are not affected 
how the reads are fragmented since they are k -mer centric. This is especially useful 
when attempting mixed-length sequencing or comparative genomics.

Also the use of de bruijn graphs give the assemblers the ability to reduce the 
memory consumption by having k-mers instead of reads as nodes. Additionally, because 
of the one to one relationship between paths and sequences that is formed due to the de 
bruin graph construction, the overlapping sequences follow necessarily the same path.

The de bruijn graphs have been regarded as heavy structures which require a lot 
of physical memory, but also because of the structure can efficiently be distributed on a 
cluster or small commodity computers . So, many parallel assembly tools based on the 
de bruijn approach exist, others because are especially designed for this purpose and 
other intergraded multithreading support in later versions.

Moreover, the error correction within the sequences it is significantly easier task 
using de bruijn graphs. The error correction is a major problem during the assembly 
process especially when using short reads. Also, the repeats are easier recognizable than 
in an overlap graph. (Although, the de bruijn graphs are sensitive to sequencing errors 
and repeats, because they lead to new k-mers and this adds complexity to the graph).

Finally, unlike the case of the OLC assemblers that have to find overlaps 
pairwise, the assemblers that use the de bruijn approach do not have to do all these 
explicit computations which is a very expensive computational process. For this reason, 
the de bruijn approach provides great performance when very large data sets are given. 
Finding an Eulerian path (de bruijn) through the edges of a graph is known to be a 
polynomial problem, and therefore can be executed more efficiently than finding a 
Hamiltonian path (OLC) []. Athough, because there can be many Eulerian paths in a 
graph, each de bruijn based assembler has to set constraints so that the path that 
represents the original genomic sequence can be found. The adding of this kind of 
constaints makes the assembly process more difficult, and could transform this 
polynomial problem to a NP-hard problem, so they have to be added carefully.

The disadvantages of De Brujin Graphs:

So far it is said that de Bruijn graph assemblers are much faster and can 
accommodate sequences of very different length. Although the de bruijn assemblers, as 
described above ,can handle both Sanger and NGS data, by dividing long reads from 
Sanger sequencing into short k-mers, there is an effective loss of long range 
connectivity information implied by each read.

Also, the de bruijn assemblers don’t integrate all the calculations for finding 
pairwise overlaps to produce the overlap graph, because is no needed when following

23



this approach. But the disadvantage is that, especially with long reads, global pairwise 
alignments can be extremely useful to determine reliably if two reads really come from 
the same genomic locus. Constrained by the k-mer length, the de Bruijn graph can 
accumulate false-positive overlaps which could have easily been detected by pairwise 
alignment. These false-positive overlaps can make the resolution of repeats even more 
complex.

Some of the most known de bruijn assemblers:

EulerSR, Velvet, ABySS, SOAPdenovo, ALLPATHSLG, Ray.

Considering the above comparison and based on the machine (which will be 
presented later) in which the genome assemblers are going to be examined, more 
suitable are the de novo de bruijn graph based assemblers that handle short reads.

3.4 Errors that occur during the genome asmebly process

As it is said, sequencing errors make the de Bruijn graph more complicated as it 
is more sensitive to them, but many errors are easily recognized by their structure in the 
graph. Errors can bring the following problems de Bruijn graphs (but also in overlap 
graphs and generally, graph based algorithms):

The first kind of errors is the bubbles. Are errors in the middle of a read, that 
create alternate paths by separating a path into two branches that later join together 
forming again one path terminating at the same node. That kind of problems could be 
caused by sequencing errors that occur in the middle of a read. Also another reason 
could be the appearance of polymorphisms in the genome, and by polymorphism is 
meant when a genome contains two or more versions of the same sequence or set of 
sequences.

>

Continuing, the next category is the spurs, short dead-end branches (divergences) 
of the main path. This error can occur because the same pattern could be induced by 
coincidence of zero coverage after polymorphism near a repeat. Also a spur could be

24

http://www.broadinstitute.org/crd/wiki/index.php/Genome
http://www.broadinstitute.org/crd/wiki/index.php/Sequence


due to a sequencing error toward one end of a read.

>

The third category is converging and diverging paths. Known as the “frayed rope” 
pattern, is when two paths converge into on a path and afterwards diverges again into 
two separate different paths. The possible causes for this of error are repeats in the 
genome sequence.

And last, are the cycles. These errors are paths that at some point meet 
themselves and are caused of repeats in the genome.

Although sequencing technology has greatly improved, still no sequencing 
platform can produce sufficient data to assemble a complete genome from a single 
experiment. One of the key problems in shotgun sequencing is caused by repeats in 
genome sequences. Repeats, in cases when they are longer than fragment reads, induce 
problems during the overlap phase of assembly. As a result, assemblies result in 
fragmented contigs, separated by gaps. Repeat caused fragmentation is more 
pronounced in the NGS technology, since reads are generally of smaller size. Other than 
repeats, gaps can also be caused by other, technology-specific reasons.

4. Algorithmic analysis and description

25



Two assemblers are going to be tested and understand their behaviour 
ALLPATHSLG introduced on January 2011 by broad institute and Ray introduced by 
Boisvert S., Laviolette F., Corbeil J. on October 2010. They are assemblers based on de 
bruijn graphs but use different approaches. Both of them are expanding the graph using 
seeds, a method which will be explained later for both of the assemblers. The main 
difference is that ALLPATHSLG uses Shared Memory Parallelization and does not 
support distributed computing using MPI, so it will run in one machine. On the other 
hand, Ray is an assembler that can run in parallel on numerous interconnected 
computers using the message-passing interface standard. Moreover ALLPATHSLG 
handles the k-mer internally while Ray let the user choose the k-mer value. Below 
follows the analysis of the two approaches.

4.1 ALLPATHSLG

ALLPATHSLG is a whole-genome shotgun assembler that can generate high- 
quality genome assemblies using short reads (~100bp) such as those produced by the 
new generation of sequencers. The significant difference between ALLPATHSLG and 
traditional assemblers is that ALLPATHSLG assemblies are not necessarily linear, but 
instead are presented in the form of a graph. ALLPATHSLG uses the same steps as his 
predecessor ALLPATHS, which can routinely assemble small genomes, but has 
improvements so that can handle Large Genomes like mammalian.

The ALLPATHSLG algorithm starts with 2 pre-processor steps. The first is 
about read correction, and by this the algorithm applies a step in which identifies the 
trusted K-mers. A K-mer is concidered as trusted when it occurs at high frequency in 
reads and at high quality. Each K-mer is examined and the algorithm tries to find all of 
its instances in the reads, then the collection of the reads is examined for the quality 
score for each base in the K-mer. The algorithm retains reads whose K-mers are trusted. 
Untrusted K-mers can be rehabilitated from the algorithm and change their status to 
trusted. This could be under two conditions, in the first one reads are restored if there 
are up to two substitutions to low quality score calls, which makes its K-mers trusted. 
An in the second one, K-mers are restored later if they are essential for building a path 
between paired-end reads.

Continuing, at the second pre-processor step, the algorithm creates unipaths. At 
this step the algorithm uses the reads to compute the unipaths. It finds the (K+1)-kmers 
in the reads whose first and last Kmers are trusted .The unipaths are mathematically 
defined by the trusted kmers together with these (K+1)-mers, which define adjacencies 
between the trusted k-mers. The algoritm continues, with the calculation of perfect read 
overlaps seeded by these K-mers. Every K-mer gets a numerical identifier 
corresponding to the appearance frequency of it in reads and overlaps. The algorithm 
then merges intervals to an extent that is consistend with all the reads. The operation is 
equivalent to de Bruijn graph construction. The database implementation reduces the 
RAM requirement for the graph construction, which comes next. Also at this step the

26



algorithm tries to group together most or all the reads of a given region of the genome, 
which aims to help the algorithm later to tile the genome by overlapping regions, 
assemble each region separately and then glue them together to form one big assembly 
of the entire genome.

ALLPATHSLG now builds a de bruijn graph from the database implemented in 
the previous step. The first graph operation is spur erosion, which it calls unipath graph 
shaving. After the initial creation of the unipaths , in many cases read errors result in 
short terminal branches (spurs) within the graph. Those that the length of them is 
shorter than 20 K-mers, are removed in order to make clearer that there is a longer 
alternative branch. Moreover, ALLPATHS apply a unipath recovery step, At this step 
the algorithm identifies unipaths that are not represented in the current structure of 
assembly. It tries to extend them unambiguously where possible, with the aim to add 
them to the assembly. The point of this step is to find small regions that have relatively 
high copy number. Copy number is a number which infers from read coverage of the 
unipaths.

Having set the bases with the help of the previous steps, at next ALLPATHSLG 
partitions the graph that as said above aims to resolve genomic repeats by assembling 
regions that are locally non-repetitive. At first, the algorithm chooses the seeds. Seeds 
are called the unipaths around of which the algorithm is going to build these regions. 
Seeds that are long and have low copy number are ideal, but is not necessary to use 
every ideal unipath as a seed. The choosing of seeds is done by starting from a set of all 
the unipaths and iteratively remove the non-suitables until no unipaths can be removed 
from the set. The evaluation process for each unipath starts by finding its left and right 
neighbour unipaths using short-range paired-ends (for a tighter variance). If the distance 
between the neighbours is less than a threshold the given evaluated unipath is removed.

The next step is the neighbourhood building around the seeds. The goal is to 
assemble the extensions around the two sides of the seeds. As neighbourhood is 
considered the genomic region that contains the read and extends 10 kb on each one of 
the two sides of it. This is achieved using a set of low copy unipaths and two sets of 
reads. The unipaths that are used are those covering partially the neighbourhood. The 
first set of reads contains those that concur with the neighbour unipaths, and the partners 
of these reads. In the second set are contained all the short-fragment read pairs that the 
sequence of the both pairs can be assembled from the first set reads. The second set may 
contain pairs outside of the neighbour region. The problem is that the second set is quite 
numerous, so the algorithm merges these short-fragment read pairs, thereby taking a 
decreased set with more information and less closures.

Then, the algorithm performs a step that glues together the closures of the local 
assembly forming in this way the neighbourhood graphs. This is analogous to joining 
contigs based on sequence overlaps. This step works by iteratively joining closures that 
have long end-to-end overlapping stretches. . But in many cases the process will glue 
together some identical sequences that come from different parts of the genome, 
forming long perfect repeats. ALLPATHSLG assembles each partition separately and in

27



parallel, end when the process finishes the algorithm glue all of these local assembly 
graphs in a single sequence graph. The graph could have several components; this is 
analogous to the number of the chromosomes and the success of the process. The next 
move of the algorithm is to handle the above mentioned perfect repeats, while building 
the global assembly graph, by assemble them on top of each other. These collapsed 
repeats of the assembly may be encountered at the next step which is the editing part, 
where this imperfect representation of the genome sequence is improved with heuristic 
methods. Allpaths remove spurs, small disconnected components, paths not spanned by 
paired-ends and It also uses paired-ends to tease apart, where is possible, collapsed 
repeats that display the frayed rope pattern. Consistent it is.

This is the basic structure that ALLPATHSLG follow to assemble. 
ALLPATHSLG in order to handle larger genomes had some improvements by the time 
such as the use of jumping libraries, which is helpful due to the fact that the junction 
point of a jump will often lie within one of the two reads. Moreover, the data sets of 
mammalian genomes are large (~3 χ 109 reads), and the handling of overlapping reads 
in this size of genome require a large amount of data be held concurrently in memory. 
Due to this, the algorithm uses more economically the data structures and makes 
efficient use of shared memory parallelization.

4.2 Ray

The Ray algorithm is an implementation of greedy algorithm on a de bruijn 
graph. Is a parallel short-read assembler and has been developed to distribute the graph 
across multiple computers through MPI. Also allows simultaneous assembly of reads 
from a mix of new generation sequencing technologies.

Ray is based on a de bruijn graph and follows the next steps for the genome 
assembly problem. At first the algorithm builds the de bruijn graph that is defined as 
follows, given a family of reads D, the de bruijn parameter k, which stands for the size 
of k-mer, and a coverage cut-off c. The V vertices of the graph are k-mers that are c- 
confident, which means that each k-mer that participates in the graph appears at least c 
times in the reads D. And the set of the edges is composed of all the edges between two 
V vertices that form a (k+1)-mer with l-confidence. In example for k=4 and c=2, in 
order to be vertices of the graph the k-mers ATGT and TGTC , have to appear at least 2 
times in the family of reads D. Also the edge between these two k-mers will be in the 
graph only if ATGTC appears at least once in the family of reads D.

Moreover, in order to reduce the running time and the memory consumption is 
applied a simplification step to the graph. At this step, the sequence data that are 
provided by the reads are used through a de bruijn graph annotation, and each read is 
being annotated only once and attached to a single vertex of the graph. Since each read 
is annotated only once, this step is not memory intensive.

28



Furthermore, Ray does not perform error correction like the most de Bruijn 
based assemblers. Instead, it just avoids erroneous k-mers. The user has to be careful 
with a k-mer that is too large because Ray does not attempt at all to correct the reads. 
The erroneous k-mers all go in an “abyss” and are not really utilised at all.

During the next step, the algorithm defines specific sub sequences that are called 
seeds. The seeds are paths that are strongly considered that are sub sequences of the 
genomic sequence, based on the criteria stated by the algorithm. This is achieved by 
considering a de bruijn graph with a great cut-off value. The cut-off value is defined as 
the average of the average coverage and the number that indicates where the number of 
errors is lower than the number of true sequences. This process gives a de Bruijn graph 
that has a very small amount of errors but also, this stringent graph has a huge loss of 
information contained in the reads. This loss of information does not really affect the 
algorithm because this process is only determining the seeds and not the form of the de 
bruijn graph. The above procedure gives in the graph only the vertices that participate in 
the seeds. While the algorithm defines and chooses these seeds, the process is followed 
by the extension of each one of these seeds into a contig. This process is controlled by 
heuristics that are applied during the extension process. The process of an extension is 
stopped if at some point the family of reads does not clearly indicate the direction of the 
extension. For example, if we consider the following graph, and say that the seed is 
consisted of the vn until the vm , then the vz will be added if most of the reads that 
overlap the seed are also containing the vz. If this does not happen the algorithm 
chooses another direction. But, in the case that there is no obvious extension the process 
stops.

Vz

V1 Vn Vm

According to the criteria of the heuristics, the reads that overlap numerous times 
a contig have higher importance in contrast with the reads that traverse only a small 
number of the last vertices of the contig. This is because, according to the philosophy of 
the algorithm, the reads which overlap at a greater degree with the given contig that is 
constructed, are more suitable and contain better information about the direction in 
which the extension should proceed. The overlapping degree is measured with the 
functions offset and offset paired . With this process and applying the specific heuristics 
the length of the contigs is limited when compared with other algorithms contigs but

29



then again give the advantage of decreasing the assembly errors. Furthermore, by the 
use of these heuristics the algorithm obtain a greedy traversal strategy. This means that 
Ray uses greedy algorithms for choosing which extension should follow in order to 
have the desired structure. The greedy choice is considered so that the algorithm runs in 
polynomial time.

This is the logic that Ray follows in order to expand from seeds to contigs and 
then to scaffolds so that in the end the output is a completed genomic sequence ideally 
or a group of contigs and scaffolds with a respective high number of coverage.

5. Hardware and Software inquiry of Magerit

5.1 Profile of the machine

Magerit is a cluster consisting of 260 computer nodes, of which 245 nodes are 
eServer BladeCenter PS702 2S with 16 Power7 processors 3'3 GHz (26.4 GFlops) and 
32 GB RAM, and the rest are 15 nodes eServer BladeCenter HS22 with eight Intel 
Xeon 2'5GHz (10.2 GFlops) processors with 96 GB RAM, implying 4,160 CPUs and 
9.2TB RAM. All the nodes operate independently and with the same software 
configuration. The system has a local storage capacity of about 192 TB, provided by 
256 disks of 750 GB, which uses a distributed and fault tolerant system (GPFS).

Because of its size, the system is configured to process packets of jobs in batch 
mode. It uses the SLURM queue manager that plans various jobs with the dual aim of 
maximizing the use of computer power and process jobs of different users as quickly as 
possible.

5.2 SLURM (Simple Linux Utility for Resource Management)

SLURM is an open source, highly scalable and fault-tolerant cluster manager 
and job scheduling system for large clusters of compute nodes. SLURM provides three 
key functions, the first is that allocates in an exclusive and/or nonexclusive fashion the 
access to resources ,which are the computer nodes, to the users for a duration of time so 
they can perform a job. Also, distributes jobs to a set of allocated nodes with a 
framework for starting, executing, and monitoring job, which typically is a parallel job 
(such as MPI). Finally, maintain a queue of pending jobs and manages the overall 
utilization of resources.

The configuration of the queuing system aims to ensure that the users have fair

30



access to the resources, and that them are shared fairly. The approach that is used is 
known as fairshare scheduling. Whether a job is started before another job depends on 
two factors, when the job was submitted and how many resources are available to the 
user. In general, jobs belonging to users who, in the recent past, have not consumed 
much CPU time will tend to start before jobs that belong to more active users (by the 
meaning that have used more CPU time in the resent past). But, this mechanism is 
essential only when jobs compete for resources. If enough resources are available, a job 
will be started.

The architecture of SLURM can be characterized as a fairly traditional cluster 
management. At the top is a pair of cluster controllers, which work as the managers of 
the compute cluster, implementing a management daemon, called slurmctld. The 
slurmctld daemon monitors the resources, but the most important part of its work is that 
maps incoming jobs to the compute resources.

Each node implements a daemon called slurmd. The job of slurmd daemon is the 
management of the node and the monitoring of the tasks that are running on the node. 
Also, slurmd daemon, accepts jobs from the controller, and maps these jobs to tasks on 
the cores within the node. Moreover, if it is requested from the controller, it can stop 
tasks for executing.

Furthermore, other daemons exist but these are the most important that concern 
our work. The SLURM entity is consisted of different partitions. These partitions are 
sets of nodes, which are individual computers, collected in logical groups. The 
partitions can be configured with constrains about the time size limit of the jobs or 
about the users that allowed to use them. Also, commonly the partitions include a queue 
of incoming jobs. In more detail, a job is a resource allocation, a refinement of the 
partition that is mapping a set of nodes inside the partition for a user for a certain period 
of time for work. Each job consists of one or more job steps. The job steps are sets of 
(typically parallel) tasks that are executed on that prescribed subset of nodes.

Partition B j

Cluster

Step1 Job2



The jobs, as explained above, are executing resource allocation, which means 
specific processors and memory or entire nodes allocated to a user for a given time 
period. The jobs can be interactive and executed in real-time or a script queued for later 
execution, called batch. The user is allowed to set constrains that are available to the 
execution of the job and each job is distinguished by an ID number identification. The 
states that a job can be in the system are the following:

6. Use of assemblers and Building

6.1 ALLPATHSLG

6.1.1 ALLPATHS LG How to Build

6.1.1.1 Requirements
To compile and run ALLPATHS-LG you will need a Linux/UNIX system with at 

least 16 GB of RAM. The suggested are, a minimum of 32 Gb for small genomes, and 
512 Gb for mammalian sized genomes

32



6.1.1.2 System Requirements
The assembler has been builded and tested by the Broad Institute on a modern 

version of Linux for the x86_64 architecture. ALLPATHSLG does not run on 32-bit 
machines, it is necessary to have a 64-bit Linux system. It can be builded and executed 
in a variety of Linux distributions including Ubuntu, RedHat, and SUSE. It can work 
fine in any distribution of x86_64 Linux, as long as the system provides the basic com­
piler and library requirements. These are the next packages:

GCC, with its associated g++ compiler for the C++ language.

The GMP library compiled with the C++ interface, the GCC installation may al­
ready include GMP

Also the program requires the architecture type of the machines processor to be 
little endian.

6.1.1.3 The Build Procedure
After downloading the package from the FTP site, move it to a location on the 

system where it is preffered the software to be builded. (Although be careful when 
downloading from the ftp server)

% t a r  x z f  a l l p a t h s l g - < r e l e a s e > . t a r  // Extract the contents 

After extracting move into the source directory, using the command:

% c d  a l l p a t h s l g - < r e l e a s e > . t a r

Then execute the configuration script by typing:

% . / c o n f i g u r e  - - p r e f i x = / p a t h / t o / i n s t a l l / d i r e c t o r y

At this point for the specific intel node on which the program was builded, a change has 
been made in the configure file in order to accept the gcc compiler:

a x _ c o m p a r e _ v e r s i o n = ' e c h o  " x $ a x _ c o m p a r e _ v e r s i o n _ A

x $ a x _ c o m p a r e _ v e r s i o n _ B "  | s e d  ' s / A * / / ’ | s o r t  - r  | s e d
" s / x $ { a x _ c o m p a r e _ v e r s i o n _ A } / t r u e / ; s / x $ { a x _ c o m p a r e _ v e r s i o n _ B  
} / f a l s e / ; 1 q " '

a x _ c o m p a re _ v e rs io n = tru e  (this is the added line)

And after build the software with:

33



make

here the user can set the parameter - j < n >

- j < n > Split the compilation into n parallel processes. If n is set equal to the number of 
CPUs on the machine, it will speed up compilation approximately n-fold. It is a useful 
tip because the building of the code is a lengthy process.

Finally, install it with:

% m a k e  i n s t a l l

The executables are in / p a t h / t o / i n s t a l l / d i r e c t o r y / b i n  but the user has to 
make sure this is on his PATH. Either with the export command every time is going to 
use the program or adding the path to the . b a s h _ p r o f i l e  f i l e .

6.1.1.4 ALLPATHS pipeline overview
ALLPATHS is consisted of a series of modules, where each module performs a step of 
the assembly process. These different modules is possible that the user can run them 
manually, indivisualy and in varying order depending on the parameters of the assem­
bly. But alternatively, and as recomented from the manual, the user is able to run a sin­
gle module called RunAllPathsLG that controls the entire pipeline, deciding which 
modules to run and how to run them. The RunAllPathsLG module, uses the Unix make 
utility to control the assembly pipeline and creates a special makefile that call each 
module.

6.1.1.5 Preparing data for ALLPATHS
The ALLPATHSLG uses a specific pipeline directory structure and before the 

assembling process the data should be prepared and imported. Moreover, the input data 
should meet certain requirements such as that any input dataset should include at least 
one fragment library and one jumping library. As fragment library is defined a library 
with a short insert separation. The insert separation should be less than twice the read 
length, so that the reads may overlap. For example reads from 100bp generated from 
180bp inserts. As a jumping library, is defined a library with longer separation, which 
typically varies in a range from 3kbp to 10kbp. The libraries that are going to be used 
should have about 45x coverage.

Moreover ALLPATHS also supports long jumping libraries, this kind of libraries 
are optional and used only to improve the scaffolding process in mammalian-sized ge­
nomes. As a jumping library, is defined a library with an insert size that is larger than 20

34



kbp. In long jumping libraries the coverage is not required to be so high as the previous 
libraries, typically long jump coverage of less than 1x is sufficient to significantly im­
prove scaffolding.

Any other type of library construction is not supported by ALLPATHS at this point. 

Generally, the input format data is specified by the model seen in the next table.

Libraries, insert 
types

Fragment size Read length Sequence
coverage

Required

Fragment 180bp >100b X45 Yes
Short jump 3,000bp >100b preferable X45 Yes

Long jump 6,000bp >100b preferable X5 No

Fosmid jump 40,000bp >26b X1 No

ALLPATHSLG team has adopted this model because applying it only a few li­
braries are required to be constructed. In this way the laboratory load of work is a lot 
less in manners of time and required DNA amount. Additionally, the fragment library 
has the characteristic that the inserts are ~1.8 times the sequencing read length. This 
ensures that the inserts are short enough so that sequencing reads from each end overlap 
by ~20% and can be merged to create a single longer “read”. As a final point, by using 
“jumping libraries” ALLPATHSLG achieve to obtain long-range connectivity, since 
current technology cannot sequence fragments greater than ~1 kb.

Another point that the user of AllPATHS should be very careful and examine 
before using the libraries is the read orientation. The reads of the fragment libraries are 
expected to be oriented towards each other (inward).

On the other hand, the reads of the Jumping library are expected to be oriented 
away from each other (outward), as a result of the typical jumping library construction 
methods.

Finally, the reads of the long jumping libraries are expected to be oriented with 
the same orientation as the fragment libraries reads that is towards each other (inward).

Having specified and selected the input libraries that the algorithm is going to receive, 
the next step is to define the files and run the P r e p a r e A l l P a t h s i n p u t s . p l  script 
that is going to prepare the field for the assembly process.

An example of the P r e p a r e A l l P a t h s l n p u t s . p l  script running through a bash file 
appropriate for Magerit is given below,

35



6.1.1.6 Running conversion script

#!/bin/bash
#  ---------------------------Start jo b  desc rip tion ----------------------------
#@  class = standard
#@  partition = intel
#@  initialdir = /hom e/A 10100002/visitor102/E_coli/preprun
#@  output = /hom e/A10100002/visitor102/E_coli/preprun/errout/% j-out.log
#@  error = /hom e/A10100002/visitor102/E_coli/preprun/errout/% j-err.log
#@  total_tasks = 1
#@  tasks_per_node = 8
#@  wall_clock_lim it = 06:00:00
#  ------------------------  End job  description ----------------------------

#  ---------------------------Start execution -.........................................

# R un our program
#ALLPATHS-LG needs 100 M B o f stack space. In  'csh' run  'lim it stacksize 100000'. 
u lim it -s 100000

# NOTE: The option GENOM E_SIZE is OPTIONAL.
# It is useful w hen com bined w ith  FRA G _CO V ERA G E and JU M P_COVERAGE
# to downsam ple data sets.
# By itself it enables the com putation o f  coverage in  the data sets
# reported in  the last table at the end o f  the preparation step.

PrepareAllPathsInputs.pl\
DATA_DIR=/home/A10100002/visitor102/E_coli\
PLOIDY=2\
IN_GROUPS_CSV=in_groups_e.csv\
IN_LIBS_CSV=in_libs_e.csv\
OVERWRITE=True\
| tee ecolipre.out

#................................ End execution.................................

DATA_DIR

Is the directory that holds the information that is essential in order to do the as­
sembly process. The data directory for ease of use has the name of the genome that is 
going to be assembled but is always in the choose of the user. This directory should 
contain files that have the sequenced reads, the quality scores of them, information 
about their pairing, and also the ploidy file. These files may already exist if the user 
continues or restarts an existing assembly.

PLOIDY

Ploidy is the number of sets of chromosomes in a biological cell. The file ploidy, 
contains the number that indicates the ploidy of the genome. Is a single line file contain-

36



ing the numbers 1 or 2. This number indicates the ploidy of the genome with 1 for hap­
loid genomes and 2 for diploid genomes. Polyploid genomes are not currently supported. 
The specific file name is:

<REF>/<DATA>/ploidy

IN_GROUPS_CSV:
The in_groups.csv file contains the location of the libraries that are going to be used and 
has the following structure:

In_groups.csv

file_name, group_name, library_name,
/seq/Illumina/011/302.bam, frags, Illumina_011,

/seq/Illumina/012/303.?.fasta, jumps, Illumina_012,
/seq/PacBio/007/100.*.fastq.gz, short, PacBio_007,

Each column in i n _ g r o u p s . c s v  file provides, for each data file, the following infor­
mation:

f i l e  n a m e :

this field contains the complete path to the data file. Because the paired reads 
files are distinguished with 1 and 2 or A and B, or may be used multiple unpaired fastq 
or fasta files, the in_groups.csv file structure permit the user to make use of wildcards ‘*’ 
and ‘?’ but with the restriction that cannot be used in the extension. Extensions that are 
supported: ‘.bam’, ‘.fasta’, ‘.fa’, ‘.fastq’, ‘.fq’, ‘.fastq.gz’, and ‘.fq.gz’, all case- 
insensitive. For ‘.fasta’ and ‘.fa’ it is expected that corresponding ‘.quala’ and ‘.qa’ files 
exist, respectively.

l i b r a r y  n a m e :

it is field containing the name of the library to which the data set belongs. Usual­
ly is the platform which was used followed by an ID number. Additionally, has to be the 
same with the corresponding field at in_libs.csv file.

g r o u p  n a m e :

a UNIQUE nickname for this specific data set.

IN_LIBS_CSV
The In_libs.csv file contains information of the different files to be converted, and has 
the structure that is shown next:

37



In libs.csv

library_name, project_name, organism_name, type, paired, frag_size, frag_stddev, insert_size, insert_stddev, read_orientation, genomic_start, 
genomic_end

Illumina_011,
0,

Illumina_011,
0,

PacBio_007,
0,

test_h_1, human_Chromosome_14, fragment, 1, 155, 50, , , inward,

test_h_1, human_Chromosome_14, jumping, 1, , , 2500, 500, outward,

test_ h_1, human_Chromosome_14, long, 1, , , 35305, 1000, inward,

Each column in i n _ l i b s  . c s v  describes a specific field of a library. These fields are:

l i b r a r y  n a m e :
it contains the library name and matches the same field in i n _ g r o u p s . c s v .

p r o j e c t  n a m e :
it is a string that is characterizing and naming the project.

o r g a n i s m  n a m e :
the organisms name and probably some identification number of the experiment or the 
sample.

t y p e :
fragment, jumping, etc. This field is only informative. 

p a i r e d : 0 : Unpaired reads

1 : paired reads

f r a g  s i z e :

contains the average number of bases in the fragments and is only defined for fragment 
libraries.

f r a g  s t d d e v :

it is a number that is the estimated standard deviation of the fragments sizes and is only 
defined for fragment libraries.

i n s e r t _ s i z e :

contains the average number of bases in the inserts it is defined only for jumping librar­
ies. If the insert length in higher than 20 kb then the library is considered to be a long 
jumping library.

38



i n s e r t  s t d d e v :
it is a number that is the estimated standard deviation of the inserts sizes and is only 
defined for jumping libraries.

r e a d  o r i e n t a t i o n :
can take only two values inward or outward. The outward oriented reads will be re­
versed.

g e n o m i c  s t a r t :
has the index of the first genomic base in the reads, if the value is non-zero then all the 
bases before g e n o m i c _ s t a r t  will be trimmed out.

g e n o m i c  e n d :
has the index of the last genomic base in the reads, if the value is non-zero then all the 
bases after g e n o m i c _ e n d  will be trimmed out.

After a successful run of PrepareAllPathsInputs.pl the necessary ALLPATHS input files 
should be in place and ready for an assembly run to start.

39



6.1.1.7 Running ALLPATHS

#!/bin/bash
#---------------------- Start job description-----------------------
#@ class = standard
#@ partition = intel
#@ initialdir = /home/A10100002/visitor102/all_human_Chromosome_14/preprun
#@ output =

/home/A10100002/visitor102/all_human_Chromosome_14/preprun/errout/%j-out.log 
#@ error =

/home/A10100002/visitor102/all_human_Chromosome_14/preprun/errout/%j-err.log 
#@ total_tasks = 1
#@ tasks_per_node = 8
#@ wall_clock_limit = 06:00:00
# -------------------- End job description-------------------------

# ----------------------- Start execution-------------------------

# Run our program 

RunAllPathsLG\
PRE=/home/A10100002/visitor102\
REFERENCE_NAME=all_human_Chromosome_14\
DATA_SUBDIR=.\
RUN=run\
SUBDIR=test_h_8\
THREADS=8\
OVERWRITE=True\
| tee -a humanrun16.out

# ----------------------- End execution--------------------------

PRE
The command-line argument PRE specifies the location of the pipeline directory 

structure.

REFERENCE_NAME
The REFERENCE directory is the directory containing the reference genome 

that is going to be assembled. The use of this argument is done in order to separate the 
assembly projects by organism and also by isolate if the user has two different 
references of the same organism. The naming of the REFERENCE directory usually 
occurs of the organism. For each given organism or an isolate of it, the REFERENCE 
directory will contain all the assembly projects. In this directory will be stored all the

40



intermediated files that are going to be generated. The need of a reference genome is not 
required but is useful while the algorithm can perform evaluations at the several stages 
of the assembly process that are going to be useful on the duration. In any case, even 
with the absence of a reference genome, the user should create a REFERENCE 
directory for the organism that is going to be used. Moreover, in the REFERENCE 
directory the user could store various DATA directories each one for a certain set of 
read data to assemble.

DATA_SUBDIR
The DATA directory, as the name declares, contains the original read data that 

are used in a particular assembly process. The form of the data is in fastb, qualb, pairs 
which are internal ALLPATHS formats. In this file also are existent the intermediate 
files that are resulting from the original data. These files are used normally during the 
process of evaluation and are independent from the individual assembly tries. 
At each DATA directory the user could set various RUN directories each one for a 
particular attempt to assemble the original data using a different set of parameters.

RUN
In the RUN directory are located all the intermediated files that are generated 

during the preparation for the final assembly stage from the original data reads. In 
addition, this file may contain the intermediate files that are used in the evaluation 
process and are independent on the each particular assembly attempt and the parameters 
of them.

SUBDIR
At the SUBDIR directory the user can locate the files of the final assembly 

process. Moreover, there are some intermediate files produced during the assembly 
process and some evaluation files.

THREADS
The THREADS argument is declaring the number of threads that the user is 

going to make use of. The maximum number that makes sense is the number of the 
threads the node supports.

Kmer size, K
A sensible observation that can be made it that nowhere is defined the k-mer 

value. As suggested from the ALLPATHSLG team the user should not adjust the K-mer 
size from the default value of K=96. As previously mentioned the ALLPATHSLG uses 
k-mers of various sizes internally.

6.1.1.8 Assembly Results
The results of the assembly pipeline are given in the following two files in the assembly 
s u b _ d i r  directory:

f i n a l . a s s e m b l y . f a s t a  a n d  f i n a l . a s s e m b l y . e f a s t a

41



Both these files contain the final flattened and scaffolded assembly. The e f a s t a ,  

“enhanced” f a s t a , file is a new format used by ALLPATHSLG and is based on the 
standard f a s t a  file format.

The user may also find useful information and statistics about the process in the follow­
ing files:

a s s e m b l y . r e p o r t  
a s s e m b l y  s t a t s . r e p o r t  
f i n a l . s u m m a r y  
l i b r a r y  c o v e r a g e . r e p o r t

and information about some errors that could occur during the assembly pipeline in the 
file: :
% j - e r r . l o g

also useful information about the algorithms outputs and how the assembly pipeline 
developed the user can get them from the file:

% j - o u t . l o g

6.2 Ray

6.2.1 Requirements
It is required that the system in which Ray is going to be builded will have a 

C++ compiler, make and an implementation of MPI.

6.2.2 The Build Procedure
// Extract the contents
t a r  x j f  R a y - x . y . z . t a r . b z 2

After extracting move into the source directory, using the command: 

c d  R a y - x . y . z

And after build the software with:

m a k e  P R E F I X = b u i l d

42



here the program comes with some spesifications that the user can set according to the 
assembly, the user can change the compiler:

m a k e  P R E F I X = b u i l d  M P I C X X = / s o f t w a r e / o p e n m p i - k . l . m / b i n / m p i c + +

or the user can change the maximum length of the k-mers that are going to be used (the 
default maximum k-mer is 31) .Larger k-mers utilise more memory.

m a k e  P R E F I X = b u i l d  MAXKMERLENGTH=64

or can change both of them 

and install it with:

m a k e  i n s t a l l

after the user can find and use the assembler which is located at the prefix folder :

l s  b u i l d

6.2.3 Data preparation for Ray

The Ray does not use such a strict pipeline directory as the previous algorithm. 
The user does not have to make such a preparation of the data before the assembling 
process, although should meet some requirements.

The algorithm can function without the presence of jumping libraries, only using 
fragments libraries, though would be helpful. Anyhow, the reads of the libraries that are 
going to be inserted should have inwards or outwards orientation. The Ray cannot han­
dle other libraries.

If the library that the user is going to import does not meet these requirements 
can use the FASTX-Toolkit, a short read preprocessing tool(appendix).

Ray does not require any specific coverage of the library.

The supported input files are the following:
.fasta
.fastq
.csfasta (color-space reads)
.sff (paired reads must be extracted manually)

Also other types of files are supported,basically the same but compressed, however the 
user should first define some parameters at the compilation step.

.fasta. gz set the HAVE_LIBZ=y at compilation

43



.fasta.bz2 set the HAVE_LIBBZ2=y at compilation

.fastq.gz set the HAVE_LIBZ=y at compilation

.fastq.bz2 set the HAVE_LIBBZ2=y at compilation

6.2.4 Run Ray

#!/bin/bash
# ---------------------- Start job description-----------------------
#@ class = standard
#@ initialdir = /home/A10100002/visitor102/resultray/Human_14_outputs
#@ output = /home/A10100002/visitor102/resultray/Human_14_outputs/errout/%j-

out.log
#@ error = /home/A10100002/visitor102/resultray/Human_14_outputs/errout/%j-

err.log
#@ total_tasks = 512
#@ tasks_per_node = 16
#@ wall_clock_limit = 20:10:00
# ---------------------- End job description-------------------------

#- Start execution

# Run our program
srun ~/Ray-v2.0.0-rc7/build/Ray -n 512 -k 45 \
-p ~/Human_Chromosome_14/frag_1.fastq ~/Human_Chromosome_14/frag_2.fastq\
-p ~/Human_Chromosome_14/shortjump_1.fastq ~/Human_Chromosome_14/shortjump_2.fastq\ 
-p ~/Human_Chromosome_14/longjump_1.fastq ~/Human_Chromosome_14/longjump_2.fastq\ 
-o Human51245

# ----------------------- End execution----------------------------

To run Ray the user can put the executable in the PATH or can call Ray by the 
full path, in both cases from the bash file.

-n
The - n  parameter is the number of the ranks that the algorithm in going to use and 
must match the number of the total_tasks in the job description section.

-k
The -k parameter set the k-mer length, selects the length of k-mers that the algorithm is 
goingto use for the assembly process. The default value of the k-mer if the user do not 
set it, is 21. The value of the -k must be odd and cannot take even numbers because 
reverse-complement vertices are stored together.

44



The choice of the k-mer length depends on the needs of the given genome library and 
the characteristics that the user want to provide to the assembly. The choice of a k-mer 
length too small though could provoke many ambiguous k-mers. On the other hand, a 
choice of a k-mer length too large could cause sequencing errors and destroy the 
connectivity while also more memory is needed. Longer k-mer provides more 
specificity but also decreases the usable coverage. A practical recommendation is the 
user to scan on a certain range for the proper k-mer length by trying several values and 
then should pick the assembly with large N50 value and long contigs. practical 
recommendation: parameter scan - try several values for k and pick assembly with long 
contigs

6.2.5 Input files and their declaration

Ray handles the following input files with the declaration shown next:

-p
leftSequenceFile rightSequenceFile [averageOuterDistance standardDeviation] 

The user provides two files containing paired-end reads, the user has the option not to 
provide the averageOuterDistance and standardDeviation values, then the algorithm 
automatically compute them.

- i
interleavedSequenceFile [averageOuterDistance standardDeviation]

The user provides one file containing interleaved paired-end reads, as above the user has 
the option not to provide the averageOuterDistance and standardDeviation values, then 
the algorithm compute them automatically.

- s  sequenceFile
The user provides a file containing single-end reads.

-o
With the - o  parameter the user specifies the directory that the algorithm is going 

to use for the output files. If not declared the default is RayOutput. If the user attempt to 
make another assembly with the same output file the algorithm is going to crash, so it is 
important at each assembly attempt the user to specify an output directory with different 
unique name.

6.2.6 Assembly results

The results of the Ray assembly process are the following:

Contigs:

45



•  C o n t i g s . f a s t a , contains the contiguous sequences in FASTA format
•  C o n t i g L e n g t h s . t x t , contains the lengths of contiguous sequences

Scaffolds:
•  S c a f f o l d s . f a s t a , contains the scaffold sequences in FASTA format
•  S c a f f o l d C o m p o n e n t s . t x t , contains the components of each scaffold
•  S c a f f o l d L e n g t h s . t x t , contains the length of each scaffold
•  S c a f f o l d L i n k s . t x t , contains the scaffold links

The user may also find useful information and a summary in the following file: 

R a y O u t p u t / O u t p u t N u m b e r s . t x t , contains the overall numbers for the assembly

Furthermore, some more information about the de Bruijn graph are located at the 
following files:

R a y O u t p u t / C o v e r a g e D i s t r i b u t i o n . t x t , The distribution of coverage values
R a y O u t p u t / C o v e r a g e D i s t r i b u t i o n A n a l y s i s . t x t , Analysis of the coverage 

distribution
R a y O u t p u t / d e g r e e D i s t r i b u t i o n . t x t , Distribution of ingoing and 

outgoing degrees
R a y O u t p u t / k m e r s .  t x t , k-mer graph, required option: -write-kmers 

The resulting file is not utilised by Ray.
The resulting file is very large.

7. Input Data Profile
At this point are presented the data that are going to be assembled and their 

characteristics. Before though going further is necessary the understanding of the format 
of the files that are going to be examined. The common types of input files are the .fasta 
and .fastq.

The .fasta files have the following format:

>gi|5524211|gb|AAD44166.1| cytochrome b [Elephas maximus maximus] 
LCLYTHIGRNIYYGSYLYSETWNTGIMLLLITMATAFMGYVLPWGQMSFWGATVITNLFSAIPYIGTNLV

The first line begins with a greater-than (">") symbol in the first column which 
is followed by a single line sequence identifier and the description of the library. It is 
recommended that all lines of text be shorter than 80 characters. When a sequence ends

46



another one is starting with the exact same routine.
After the first line, follows the sequence in one or more lines with respect to the 

80 characters per line as mentioned. The significance of the characters is cited at the 
appendix due to the size of the information. However the most important are the ACTG 
for the known common bases. Also if in a given sequence a base is not known, is 
symbolized with N.

The .fastq files have the following format:

@SRR022868.923/1
TTGTTATCCAGTCATTCGTTAGAACTCCTTATAGTACTTATACCNNNNNNNNNNNNNNNNNNNNNNNNNN
+
,I?,F>>$.II.&0@+)I:,6(,2#+*#+#*.,(,,,+$54%$*!!!!!!!!!!!!!!!!!!!!!!!!!!

Again the first single-line is an identifier of the library followed by an optional 
description. The next line contains the raw sequence data followed by the symbol ‘+’ in 
another line. The last line contains the encoded form of the quality values for the raw 
data.

The variety of the characters is a lot simpler and the significance of the 
characters is the four bases for ACTG. Also with N is symbolized the unknown base.

7.1 Profile of the genomes and their genomic libraries.

7.1.1 Staphylococcus aureus 

Genomic size: 2.839.469 bp 

Abstract:
Staphylococcus aureus was sequenced using Illumina sequencing technology 

and then assembled. The libraries were sequenced using short reads and were either 
fragment or paired end or jumping libraries.

Center Project:
Staphylococcus aureus Assembly Development

47



Experiment
design:

Paired library Jumping
library

Sample: SRS004752 SRS004751
Run: SRR022868 SRR022865
Library: Solexa-8293 Solexa-3932
Avg. Read length: 101bp 37bp
Insert length: 180bp 3500bp
Strategy: WGS WGS
Instrument Illumina Illumina
model: Genome 

Analyzer II
Genome 
Analyzer II

Run Read Count 1,294,104 3,494,070
Run Base Count 131Mb 129Mb
Coverage 29.1 637.0

7.1.2 Escherichia coli MG1655 (from now on used as E.coli small) 

Genomic size: 4.639.675 bp 

Abstract:
Escherichia coli whole genome sequencing with utilization of next generation 

sequencing technologies.

Center Project:
E.coli Allpaths Assembly Development

Experiment
design:

180bp Paired 
End

Illumina 5kb 
Jump Library

Sample: SRS009994 SRS269404
Run: SRR034509 SRR401827
Library: Solexa-11748 Solexa-44956
Avg. Read length: 101 93
Insert length: 180bp 5000bp
Strategy: WGS WGS
Instrument Illumina Illumina
model: Genome 

Analyzer II
HiSeq 2000

Run Read Count 10,353,618 1,615,703

Run Base Count 2Gb 300Mb
Coverage 212.7 216.0

48



7.1.3 Escherichia coli MG1655 (from now  on used as E .coli big)

Genomic size: 4.639.675 bp 

Abstract:
Escherichia coli whole genome sequencing utilizing next generation 

sequencing technologies.

Center Project:
E.coli Allpaths Assembly Development

Experiment
design:

Fragment Library Construction Illumina 5kb Jump Library

Sample: SRS302375 SRS269404
Run: SRR447625 SRR447685 SRR401827 SRR492488
Library: Solexa-25396 Solexa-44956 Solexa-42866
Avg. Read length: 101 93 93
Insert length: 180 5000 5000
Strategy: WGS
Instrument
model:

Illumina HiSeq 2000

Run Read Count 13,479,432 13,457,571 1,615,703 362,200
Run Base Count 2.8G 2.8G 313.4M 67.4M
Coverage 468.3 472.0 110.4 198.4

7.1.4 Rhodobacter sphaeroides 2.4.1 

Genomic size: 4.607.000 bp 

Abstract:
Rhodobacter sphaeroides whole genome sequencing with the use of next 

generation sequencing technologies.

Center Project:
Rhodobacter sphaeroides Allpaths Assembly Development

Experiment
design:

180bp PCR Free Library 4kb Jumping Library

Sample: SRS004732 SRS004732
Run: SRR125492 SRR034527 SRR034528

49



Library: Solexa-11749 Solexa-11767
Avg. Read 
length:

101 101 101

Insert length: 180 4000 4000
Strategy: WGS
Instrument
model:

Illumina Genome Analyzer II

Run Read Count 11,339,101 17,746,938 20,162,859
Run Base Count 2.3G 3.6G 4.1G
Coverage 153.0 1931.3 2054.9

Li Staphylococcus 
aureus

U E. coli MG1655 
(small sample)

w E. coli MG1655 (big 
sample)

Li Rhodobacter 
sphaeroides 2.4.1

Left, there is a gra­
phical comparison am-ong 
the four libraries in order 
to be clear the difference 
in their sizes.

7.2 The criteria for the selected libraries

Firstly, also other libraries where tested before the conclusion in these four. The 
aim was to have a proper amount of libraries of different sizes with various 
characteristics. To begin with, at a level of genomic size the Staphylococcus aureus is 
the smallest the two E.coli libraries have the same genomic size and finally, the 
Rhodobacter has a genomic size on the same level with E.coli.

On a library size level the Staphyloccocus is again the smallest one, with the 
smallest library coverage. Is a library already tested from the GAGE 
(http://gage.cbcb.umd.edu/), an evaluation of the very latest large-scale genome 
assembly algorithms. The specific library was used as a guidance and to test the 
assemblers with very small libraries.

Next the E.coli MG1655 is a well-known organism with a genomic size double 
of the Staphylococcus. The E.coli small library has the half of the coverage of the E.coli 
big library, and it are selected in order to be studied the assemblers on the same 
organism with two different sizes of data. Moreover, the library size of the E.coli big is

50

http://gage.cbcb.umd.edu/


doule the size of E.coli small.
Furthermore, Rhodobacter is the biggest library although the organism by it self 

has the same genomic size as the E.coli. The theme of this library is that the fragment 
library has really low coverage and a lot of ambiguities, contrariwise the jumping 
libraries have really high levels of coverage. The point is to study how the assemblers 
respond to such difficult input data and if is made right use of the extra information that 
the jumping libraries supply.

Finally, the size of the Rhodobacter library is bigger than the E.coli big, however 
the fragment library of E.coli big has the double size of the Rhodobacter library. 
Moreover, the size of the jumping libraries of the Rhodobacter is greatly bigger than the 
E.coli big. The aim is to study how the assemblers are going to behave through time and 
assembly results having a small fragment library and huge jumping information and a 
big fragmante library with small jumping information.

8. Examination

At this chapter are the results of the assemblers analysis; the assemblers study refers 
to their efficiency and their performance. The evaluation of the previous characteristics 
is achieved by the measurement of the size and the depth of the produced contigs and 
scaffolds, and the resource consumption.

The produced contigs and scaffolds can be evaluated with the following values:
• N50 of contigs (or scaffolds): is the longest length such that at least 50% of all 

base pairs are contained in contigs of this length or larger. Provides a standard 
measure of assembly connectivity, higher N50 lengths indicate better 
performance

• Contigs (or scaffolds) number: the number of the contigs at the end of the assembly 
should be small. The smaller the number of contigs the better the assembly, always is 
desired a high value of N50.

• Contigs (or scaffolds)length and distribution. A good criteria is the length of the 
largest contig and the total length of the contigs

The evaluation of the resource consumption of a certain assembler, consist of examine 
of the total processing time, and the use of RAM.

8.1 Ray k-mer evaluation

In order to locate the best assembly output of the assembler there where applied 
two steps, first for each genome, run the assembler for different k-mer values in the 
range of 25 to 55 with a step of 10. Then a k-mer searching around the area with the 
highest N50 contigs value, with a step of 2.

After the location of the best k-mer, the assembler was tested running in a range 
of 16 up to 128 CPUs, such that to study the internal functions time distribution, the

51



running time, the cost of each running based on the total CPU time and the RAM 
consumption.

Below is the examination of the N50 values, for the four different samples, of 
contigs and scaffolds greater than 500bp. For each genome, is analyzed which k-mer 
length range is going to be examined in parallel with the graph and a sample of the 
results.

N50 of Contigs
120.000

100.000

80.000

60.000o

40.000

20.000

25 35 45
k-mer length

55

I Staphylococcus E.coli small E.coli big Rhodobacter sphaeroides

52



N50 of scaffolds
250.000

200.000

v  150.000
_3

>
o
LO

100.000

50.000

o
o
σι

m
(~v|

25 35 45 55
k-mer length

For each genome is presented a sample as a  help to the reader, the results w ith  more specific 
values are at the appendix w ith  the indicated number.

Staphylococcus aureus: The N50 values, along with the population of k-mers, 
indicate strongly that the most suitable k-mer should have approximate 25bp length. 
When the length of the k-mer is growing the number of contigs is growing a lot bigger 
and the same is happening with the number of scaffolds.

k-mer 25 35 45 55
Contigs 150 751 1.928 1.962
N50 of contigs 33.600 5.896 1.508 965
Scaffolds 60 559 1.924 1.959
N50 of scaffolds 179.392 19.222 1.512 970

From table st1.

E.coli small: The highest scaffold’s N50 is for k-mer length of 25, with the other 
values of scaffold’s N50 enough smaller. So the appropriate area for the selection step 
could be considered as the one around the 25 k-mer length, but then the fact that the 
contig’s N50 values among the 25 and 35 k-mer length is really close and high, indicate 
that the best k-mer length sould be between these two sizes. Outside of that range, it is 
obvious that the longer the k-mer than 35, the smaller the N50. Also between the k-mer 
size of 25 and 35 the contig and scaffold population stay in the same levels but when the

53



k-mer size is not in this range the population of them reaches even double values.

k-mer length 25 35 45 55
Contigs 99 99 132 210
N50 of contigs 95.873 95.685 73.095 40.410
Scaffolds 40 66 108 167
N50 of scaffolds 237.900 171.870 87.944 53.396

From table ecs1.

E.coli big: In this case the results are not so clear, because for the different k- 
mer lengths the numbers of contig and scaffold N50 and the populations of them do not 
differentiate significantly enough even though a peak at 45 is caught. In this case, the 
range of examination in order to get the proper k-mer length was from 35 to 55 with a 
step of 2.

k-mer length 25 35 45 55
Contigs 200 126 96 116
N50 of contigs 39.048 94.322 110.466 99.273
Scaffolds 139 93 88 100
N50 of scaffolds 64.387 116.428 126.319 111.426

From table ecb1.

Rhodobacter sphaeroides 2.4.1: As seen, the results in this case are significally 
lower than in the other cases and thus not so clear because of the small range. This is 
due to the large amount of N sequences, thus the library contains a lot of erroneous 
areas and areas with gaps. The rising values of N50 as the k-mer length is getting 
smaller and analogous the decreasing number of contigs indicate that the proper k-mer 
should have length around 25 and maybe should be examined and lower sizes.

k-mer 25 35 45 55
Contigs >= 500 nt 1.560 1.773 2.111 2.688
N50 of contigs >= 500 nt 7.394 5.823 3.723 1.936
Scaffolds >= 500 nt 1.522 1.736 2.082 2.665
N50 7.515 6.078 3.630 1.974

From table rh1

Considering all the above, each genome at the next step was tested in the proper 
range of k-mer length. As seen the k-mer length generally tend to numbers from 25 to 
35 but sometimes may go out of that range. So, having the results of the first step, the

54



next is to focus on a more specific range of k-mer length for each genome library.

At the case of staphylococcus there was a peak at 25 k-mer length. Examining 
the area around this k-mer length the best results were given with k-mer length of 21, 23 
and 25. In the case of 25 kmer length the scaffold and the contigs population is bigger 
than the 21 and 23, but the point is that the highest N50 of scaffolds and contigs is at 25 
k-mer length.

Staphylococcus aureus k-mer selection
200.000

180.000

160.000

140.000

£ 120.000 
_3

IS 100.000
O

80.000

60.000

40.000

20.000

21 23 25 27 29
Axis Title

k-mer 21 23 25 27 29
Contigs 149 145 150 173 209
N50 of contigs 30.722 30.730 33.600 26.912 23.570
Scaffolds 52 53 60 61 77
N50 of scaffolds 161.951 177.685 179.392 165.255 128.857

From table st2.

At the case of E.coli small, there was not a peak but an area in which the results 
where significally higher, so searching in this area the results for kmer length of 29 were 
by difference the best among the other k-mer lengths. The largest scaffold, as seen for 
k-mer length in not the largest one, comparing with the value for 31 k-mer length but 29 
is preferable because appears N50 with a value double to the others. The largest 
lengthof scaffolds and contigs is also listed so that a comparison will be done with the

55



E.coli big.

E.coli small k-mer selection
450.000

400.000

350.000

300.000 

0  250.000 

2  200.000

150.000

100.000 

50.000

21 25 27 29 31 33 35

■ N50 of contigs >= 500 nt ■ N50 of scaffolds >= 500 nt

k-mer length 21 25 27 29 31 33 35
Contigs 118 99 85 83 92 95 99
N50 of contigs 73.198 95.873 116.361 116.738 99.058 96.364 95.685
Largest 239.530 356.997 414.139 414.178 356.801 356.802 356.808
Scaffolds 58 40 50 41 48 59 66
N50 of scaffolds 153.816 237.900 219.424 422.888 251.426 134.554 171.870
Largest 407.484 648.988 535.911 685.259 692.155 664.549 573.799

The E.coli big k-mer selection is located in a lot bigger range as pointed previously; and 
totally different from the E.coli small, since different fragment libraries are used. Below is a 
sample of results of the selection step (the results for the k-mer lengths 35, 41,43, 50 are 
placed in the graph but not in the table for further analysis due to space economy), at the 
appendix is the whole table. A peak is located for 49 k-mer length with a N50 value of contigns 
not so higher than the others but with a good enough scaffold's population and N50 
comparing with the results for the other k-mer length.

56



E.coli big k-mer selection
140.000

120.000

100.000

80.000

60.000

40.000

20.000

35 41 43 45 47 49 51 53 55

■ N50 of contigs >= 500 nt ■ N50 of scaffolds >= 500 nt

k-mer length 45 47 49 51 53
Contigs 96 93 97 99 114
N50 of contigs 110.466 110.466 112.928 110.675 105.950
Largest 414.206 388.518 413.092 388.518 388.518
Scaffolds 88 80 84 82 103
N50 of scaffold 126.319 126.319 132.846 124.342 113.037
Largest 414.206 388.518 413.092 388.518 388.518

The point here is that, comparing the best results from E. coli small with the 
E.coli big, although the second one has library coverage much bigger, the results from 
the first one are much more encouraging. At first sight, the N50 of contigs are quite in 
the same level but this is not happening for the N50 of scaffolds. The same happens 
with the contig numbers, are fairly same, however the E.coli small population of 
scaffolds is a lot less and more concentrated. Moreover, comparing the values of the 
largest contigs it seem that are in the same level, but when it comes to the sizes of the 
largest scaffolds the assembly of E.coli big do not evolve so much as the E.coli small. 
Thus, the information of the input should be at the proper amount and not over feed the 
assembler with information that may confuse him and will prevent him to evolve the 
assembly. Not always is the larger the better.

57



Viewing the results of Rhodobacter, are a lot lower than any other case and do 
not evolve at all. The N50 value of contigs is in the same level with N50 of scaffolds, so 
the assembly does not develop depth and does not grow. That is because of the high 
amount of N’s in the libraries, and the fact that Ray does not make error correction. 
Nevertheless, a peak appears for k-mer length 21, but not so clear as seen comparing 
with the N50 for k-mer length 19. And also the number of scaffolds do not differentiate 
so much, in order to select the one with the less scaffolds. Also the number of the largest 
scaffold is bigger with k-mer length 19. That is why a closer look at the results of the 
total length of scaffolds will help. The total length of scaffolds in case of 19 k-mer 
length is bigger than the actual genomic size, while with k-mer length 21 the total 
length is in range.

Rhodobacter sphaeroides 2.4.1:

Rhodobacter k-mer selection

19 21 25 27 29

■ N50 of contigs >= 500 nt ■ N50 of scaffolds >= 500 nt

k-mer 19 21 25 27 29
Contigs 1.617 1.422 1.560 1.602 1.648
N50 of contigs 6.443 8.426 7.394 5.973 6.312
Scaffolds 1.500 1.359 1.522 1.569 1.617
N50 of scaffolds 9.019 10.009 7.515 6.499 6.519
Total length: 4.946.244 4.605.126 4.691.477 4.664.705 4.760.427
Largest 115.145 77.734 92.734 78.911 66.546

Considering, the results from E.coli big and Rhodobacter, it is obvious that Ray 
does not uses to the fullest the extra information that is given from the jumping libraries. 
It is noticeable that Ray relies more on the fragment libraries that have a logical 
coverage.

58



As mentioned before, using ALLPATHs does not require from the user to select 
a k-mer, instead ALLPATHS declares a general k-mer length 96 and depending the 
function that the algorithm is running and the stage of assembly changes the k-mer 
length internally. At this point is appreciated the effort that was done for the libraries 
preparation, the algorithm does not consume more resources than required for the 
assembly process.

8.2 ALLPATHLG assembly evaluation

organism Staphylococcus aureus E.coli small E.coli big Rhodobacter
contigs>=1000 37 83 93 76
N50 contigs 149.700 95.500 87.800 240.400
scaffolds 10 1 7 54
N50 scaffolds 1.474.400 4.562.000 4.539.000 2.956.000

At the case of E.coli big for ALLPATHSLG are observed the same results as for 
Ray, the E.coli small have an assembly clearer and more concrete than the E.coli big. 
Moreover, at the case of Rhodobacter the assembler handles the lack of a good 
fragment library with the use of the jumping libraries.

8.3 Result Comparison of Ray and ALLPATHSLG

From the results of the ALLPATHLG runs, with ease comes the assumption that 
have more space and generally the scaffold numbers are very encouraging. The 
population of the contigs at each organism is significantly smaller in comparison with 
Ray’s. But these results also are affected of the fact that at the case of ALPATHSLG the 
algorithm gives an output for contigs that their length is greater than 1000 bases; while 
Ray gives output for contigs that have length greater than 500 bases. Moreover, in every 
case, ALLPATHSLG presents a more concrete and with bigger depth assembly than Ray. 
Next, follows a comparison between the results of the two assemblers.

Staphylococcus aureus
A s s e m b le r R ay A LLP A T H S LG
Contigs 150 37
N50 Contigs 33.600 149.700
Scaffolds 60 10
N50 Scaffolds 179.392 1.474.400

E.coli small
A s s e m b le r R ay A LLP A T H S LG
Contigs 83 83
N50 Contigs 116.738 95.500
Scaffolds 41 1
N50 Scaffolds 422.888 4.562.000

Staphylococcus aureus: At this case 
ALLPATHSLG has numbers better than Ray, 
the N50 of scaffolds is the half of the genomic 
size, while Ray has low numbers.

E.coli small: Ray and ALLPATHSLG have the 
same number of contigs and Ray presents 
higher N50 value. But ALLPATHLS evolves the 
assembly much better and ends up with one 
unique scaffold that reaches the genomic size 
of E.coli at a very close point.

59



E.coli big
A s s e m b le r R ay A LLP A T H S LG
Contigs 97 93
N50 Contigs 112.928 87.800
Scaffolds 84 7
N50 Scaffolds 132.846 4.539.000

Rhodobacter
A s s e m b le r R ay A LLP A T H S LG
Contigs 1.422 76
N50 Contigs 8.426 240.400
scaffolds 1.359 54
N50 scaffolds 10.009 2.956.000

E.coli big: Again, for Ray and 
ALLPATHSLG the numbers of contigs 
range in the same level and Ray 
presents higher N50 value. However 
ALLPATHSLG's assembly grows 
greater with N50 that reaches the 
genomic size of E.coli.

Rhodobacter: At this case, as 
mentioned Ray does not manage to 
handle the big areas of N's and the 
ambiguities, contrariwise 
ALLPATHSLG reaches the assembly at 
a very satisfying level with high 
numbers

As seen, from the above comparison Ray lacks in the growth of the assembly in 
the scaffolding level. This is due to the fact that Ray does not perform error correction, 
losing by this valuable data of the libraries. This is more noticeable at the case of 
Rhodobacter where the fragment library has many errors and ambiguities. Ray at this 
case ends up with a number of 25 times up the number of scaffolds of ALLPATHSLG 
and with a N50 295 times lower.

8.4 Analysis of Time Distribution

At this point, is made an analysis of the time distribution that the algorithms 
make internally, in relation with the functions that they make use of. It is important 
when is assigned the assemble of a genome to be known the parts of the assembly that 
are going to consume more time than the others, the parts that work better in more 
CPUs and the opposite.

8.4.1 Ray
At the graph that follows are contained all the steps- functions that Ray uses 

during the assembly process. For each number of CPUs used is stated the percentage 
that a given step is using through the assembly process. By this, is given a general idea 
how the algorithm distributes the time among his steps and is made clear the pattern of 
it.At the following graph:

• with yellow shades are mentioned the parts that their time of execution is zero 
or almost zero and do not affect even slightly the total time. The fact that a lot of 
them are not present is because the value is zero.

• With blue shades are mentioned the parts that are neutral to the total time and are 
not affected in a big grade by the number of the CPUs that are used. These steps 
are scaling more with the size of the provided data.

60



• With green shades are declared the parts of the algorithm that while the number 
of CPUs is getting bigger, the smaller is becoming the execution time.

• Finally, with red shades are mentioned the parts that while the number of CPUs 
is getting bigger the execution time is increased also.

61



Ray internal time analysis
100%

90%

80%

70%

60%

50%

40%

30%

20%

10%

0%
16 32 48 64 80 96 112 128

Number of CPUs

■ Computing neighbourhoods
■ Loading tree
■ Counting sequence biological abundances
■ Graph coloring
■ Scaffolding of contigs
■ Merging of redundant path
S  Estimation of outer distances for paired reads
■ Selection of optimal read markers
■ Graph construction
■ K-mer counting
■ Counting sequences to assemble

■ Processing gene ontologies
■ Loading taxons
■ Counting contig biological abundances
■ Counting sequences to search
■ Generation of contigs
■ Bidirectional extension of seeds 
a  Detection of assembly seeds
■ Null edge purging
■ Coverage distribution analysis
■ Sequence loading
■ Network testing

62



8.4.2 ALLPATHSLG

At the graph that follows are contained only a number of steps- functions that 
the assembler is using during the assembly process. The steps that are not mentioned is 
because their execution time is either zero or is not affected in a such grade from the 
CPU number that is used. Totally ALLPATHSLG passes from 53 stages and here are 
cited the 10 most time consuming. Next, is presented a pattern that ALLPATHLG 
follows at the assembly as progresses in relation with the CPUs used. Conversely with 
Ray, ALLPATHSLG follows a more linear time distribution, and all the steps are 
reducing while more CPUs are used; which is natural because we are talking about 
shared memory.

At the most time consuming steps are included the Finderrors, that tries to 
correct the erroneous reads at the begging of the assembly process and the LocalizeLG 
that runs an assembly around the selected seed in order to expand the unipaths. Also 
another observation is that the AlignReads, even after the fixes and the error corrections 
that are done to the graph with the functions that are between the first and the second 
execution of AlignReads, the time stays in the same levels.

Internal time analysis

2 4 8
Number of CPUs

■ FixLocal

■ AlignReads 2

■ AlignReads

■ LocalizeReadsLG

■ CommonPather

■ UnipathPatcher

■ CloseUnipathGaps

■ CommonPather

■ CleanCorrectedReads

■ FindErrors

63



8.5 Analysis of Time in Relation With The Genomic Libraries

Ray Time Analysis

16 32

Staphylococcus aureus 

E.coli big

48 64 80
Number of CPUs 

M E.coli small

96 112 128

Rhodobacter sphaeroides 2.4.1

8

Stap/coccus 00:37:49 00:24:20 00:24:31 00:14:33 00:20:14 00:17:53 00:23:26 00:15:16 00:26:11

E.coli small 07:51:49 03:30:39 02:24:44 02:00:17 01:53:37 01:36:16 02:12:38 01:56:19 02:09:01

E.coli big 13:40:19 07:04:50 04:18:16 03:49:07 03:21:34 03:32:57 03:10:01 03:49:01 05:04:14

Rhodobacter 00:00:00 00:00:00 08:08:45 06:39:49 05:22:18 04:52:17 04:36:27 04:10:28 03:58:37

The results of the different runnings that are listed above are indicating that 
using the proper number of CPUs and not making abuse of the resources give the best 
results. In the case of Staphylococcus is not so clear, nevertheless using more than 16 
cores for a genome of that size is wasteful, even if the best time appears for 3 nodes. 
Furthermore, for genome libraries with file size from 3 Gb up to 20Gb, to get the fastest 
results a good estimation could be 4 nodes. Although again, 16 nodes would be 
sufficient because the running time does not differentiate a lot and the cost as will 
explained later is high. Also, running this size of libraries in more than 4 nodes 
increases the running time due to the data dependencies and the message passing that is 
needed. At the case of libraries with total file size bigger than 24-25 Gb Ray should run 
I more than 1 node, because the memory is not enough to manage the size of the graph. 
The assembler does not stops but becomes particularly slow because of the lack of

64



RAM. It will continue but the cost of the assembly will be unusual expensive for this 
size of genomes. 4 to 5 nodes are enough, the time with more than this number of nodes 
does not increase significantly.

ALLPATHSLG Time Analysis
19:12:00 \2 ,Φ ·13,19:12:00 

1 e-/i Q-nn

1/10/1 -nn
\

12:00:00
vvAS-32

<uP na-QC-nn

-j .0 -.20'·40

09:36: 00
1—

07:12:00

n/i - a  Q-nn

05-.0031 ^  - X

mo/1 -nn

00:00:00

00:27:10 00:24:00 00:13:28

2 4 8
♦ staphy 00:27:10 00:24:00 00:13:28
M E.coli sma 05:00:31 02:56:23 02:32:14

Ecoli big 18:03:23 11:45:52 07:25:46
)( Rhodo 10:20:40 06:59:39 06:17:05

Number of CPUs

With shared memory the facts are simpler since all the computations are done in 
one node. The algorithm reduces the time linearly. Using all the CPUs of the node the 
time falls almost to the half. At this point, les take a look at the line of Rhodobacter and 
E.coli big, the expected is the line of Rhodobacter should be above E.coli’s, in other 
words the times of Rhodobacter should be bigger. The fact that is above is due to the 
detail that E.coli has a fragment library twice the size of the fragment library of the 
Rhodobacter. So, should be noticed that in order to compute the time consumption 
should be considered firstly the size of the fragments library.

Furthermore, the algorithm was tested also using one CPU but is not listed due 
to the fact that the algorithm crushed. A bug was found at the SelectSeeds stage running 
with 1 thread and reported (the fix is in the next version r42347). Altghough the 
algorithm could run in a single thread mode would be really slow.

65



8.6 Memory Analysis

Ray memory per rank (Gb)

8 16 32 48 64 80 96 112 128
Φ Staphylococcus 0,36 0,29 0,28 0,27 0,29 0,28 0,30 0,28 0,32
B  E.coli small 1,40 0,61 0,42 0,36 0,36 0,34 0,32 0,33 0,32

E.coli big 1,65 0,87 0,57 0,47 0,43 0,39 0,41 0,36 0,40
)( Rhodobacter sphaeroides 

2.4.1 - - 1,14 0,84 0,70 0,61 0,56 0,53 0,49

Ranks

The memory results for the use of Ray were as expected to be, as can be seen 
form the graphs the memory per rank reduces to the half; except from the case of 
Staphylococcus because of the significantly small size of the sample. Also due to the 
size of the Rhodobacter the algorithm could not run with less than 2 ranks.

The point is that for this size of genome libraries the use of 1 to2 nodes is 
enough to reduce the memory to the half and maintain the speed of the algorithm. Using 
more than 2 to 3 nodes the use of total memory is raising high levels with no reason and 
are wasted more resources and the assembly costs more.

66



Ray total memory use
70,00

60,00

50,00

S  40,00 
<£
£·o

30,00

20,00

10,00

0,00
8 16 32 48 64 80 96 112 128

♦  Staphylococcus 2,85 4,66 8,93 12,88 18,32 22,05 29,16 31,3 40,45
M E.coli small 11,20 9,82 13,31 17,43 23,15 27,21 31,01 36,56 40,55

E.coli big 13 13,96 18,16 22,62 27,23 30,92 39,21 40,80 50,66
)( Rhodobacter sphaeroides 

2.4.1 - - 36,35 40,30 45,03 48,91 53,53 59,02 62,50

CPUs

67



ALLPATHSLG Memory Use

80

70

60

50

40

30

20

10

0

90

73,34

47,53

18,31

2,71

Staphylococcus E.coli small Ecoll big Rhodobacter

In the case of shared memory, the memory is raising analogous to the size of the 
genome library. Using ALLPATHSLG the highest RAM usage was almost 80% of the total 
memory of the node. This gives the prospect that using the intel nodes with ALLPATHLS could 
be assembled larger genome libraries but not outside of the range of bacteria libraries.

68



8.7 Cost analysis

Ray Costs per CPUs used
90.00 €

80.00 €

70.00 €

60.00 €

50.00 €

40.00 €

30.00 €

20.00 €

10,00 €

- €
8 16 32 48 64 80 96 112 128

■ Staphylococcus E.coli small E.coli big Rhodobacter sphaeroides 2.4.1

Analyzing the cost of use of Ray, the fewer nodes the less cost. The fact is that 
for this size of libraries heaving results faster costs more. Keeping in mind that every 
assembly should be a low cost case Ray should be used with the fewer nodes possible. 
The same happens with ALLPATHS, if the user wants to have a cheap assembly should 
use the minimum number if CPUs he is allowed. From the results with the use of 2 
CPUs the libraries are assembled with the half cost of the assemblies with 8 CPUs .

Comparing ALLPATHS and Ray obviously the first costs less. As the size of the 
library is getting bigger the difference is significant. For example, using Ray with 2 
nodes for Rhodobacter costs 31,30 €, while with ALLPATHS and 2 CPUs of the intel 
node costs 2,48€. As seen, the use of Ray costs 10 times more.

69



ALLPATHSLG costs per CPUs
8,00 €

7.00 €

6.00 €

5.00 €

4.00 €

3.00 €

2.00 € 

1,00 € 

0,00 €

I Staphylococcus 
E.coli small 
E.coli big 
Rhodobacter

70



9. Appendix

Ray steps

1 Network testing
2 Counting sequences to assemble
3 Sequence loading
4 K-mer counting
5 Coverage distribution analysis
6 Graph construction
7 Null edge purging
8 Selection of optimal read markers
9 Detection of assembly seeds

10 Estimation of outer distances for paired 
reads

11 Bidirectional extension of seeds
12 Merging of redundant paths
13 Generation of contigs
14 Scaffolding of contigs
15 Counting sequences to search
16 Counting contig biological abundances
17 Counting sequence biological abundances
18 Loading taxons
19 Loading tree
20 Processing gene ontologies
21 Computing neighbourhoods

ALLPATHSLG steps

1 ValidateAllPathsInputs Performs basic validation on inputs to ALL­
PATHS

2 RemoveDodgyReads Remove reads that are poly-A.

71



3 FindErrors Error correct reads
4 CleanCorrectedReads Remove reads with low frequency kmers and 

maybe haploidify
5 PathReads Path corrected fragment reads
6 FillFragments Use corrected fragment reads to create filled 

fragment reads
7 CommonPather Pathing reads: filled reads.fastb
8 MakeRcDb Prepares a data structure (Db) to lookup kmers 

and kmer paths, generated using the module 
CommonPather.

9 Unipather Creating unipaths from filled reads
10 CloseUnipathGaps Try extending reads to close gaps between 

unipaths
11 ShaveUnipathGraph Shave extended unipaths (K40)
12 ReplacePairsStats Update filtered read stats with new values
13 RemoveDodgyReads Remove reads that are poly-A or duplicate 

molecules.
14 SamplePairedReadStats Use filled fragment unipaths to compute read 

pair separations
15 UnipathPatcher Try to patched unipaths
16 CommonPather Pathing reads: extended.fastb, 

filled reads ext.fastb
17 MakeRcDb prepares a data structure (Db) to lookup kmers 

and kmer paths, generated using the module 
CommonPather.

18 Unipather Re-creating unipaths for extended unibases
19 FilterPrunedReads Remove reads containing kmers removed dur­

ing unipath extending/patching/etc.
20 CreateLookupT ab Create lookup table from unibases
21 ErrorCorrectJump Correct jumping library reads by aligning to 

fragment unibases
22 SplitUnibases Split the unibases into readlike objects
23 MergeReadSets Merging reads:

{filled_reads_filt,unibases_as_reads,jump_read 
s ec}

24 MakeRcDb
25 UnibaseCopyNumber3 Estimating the copy number of unibases (and 

the corresponding unipaths), based on how 
many k-mers pile on each unibase.

26 UnipathLocsLG For building a unipath link graph, aligning 
reads to unipaths

27 SamplePairedReadDistributions Use filled fragment unipaths to compute frag­
ment read pair separations

28 BuildUnipathLinkGraphsLG Building unipath link graph, showing approx­
imate distance between pairs of unipaths

72



29 SelectSeeds Select seed unipaths
30 LocalizeReadsLG Performing an ALLPATHS assembly from the 

read-estimated unipaths and the error-corrected 
paired reads

31 MergeNeighborhoodsl Performing an ALLPATHS assembly from the 
read-estimated unipaths and the error-corrected 
paired reads, phase 1

32 MergeN eighborhoods2
33 MergeNeighborhoods3
34 RecoverUnipaths recover unipaths that did not make it into the 

assembly.
35 FlattenHKP Flatten the assembly HKP into fastavectors, to 

make a trivial scaffold structure
36 AlignPairsToFasta Align jumping reads to the assembly fasta.
37 RemoveHighCNAligns Remove reads that align portion of contigs 

with CN greater than ploidy
38 MakeScaffoldsLG Use linking info to build true scaffolds out of a 

trivial scaffold structure.
39 CleanAssembly Remove small scaffolds (and/or contigs) from 

assembly
40 RemodelGaps Recompute some gaps.
41 PostPatcher Patch gaps in scaffolds.
42 ApplyGapPatches Apply gap patches.
43 AlignReads Build read locations on the assembly for some 

of the reads.
44 FixPrecompute Precompute stuff for FixSomeIndels and Fix- 

AssemblyBaseErrors
45 FixSomeIndels Fix minor indel errors in final assembly
46 ApplyAssemblyEdits Apply edits to the assembly
47 AlignReads Build read locations on the assembly for some 

of the reads.
48 FixLocal Locally reassemble and and attempt to correct 

errors
49 KPatch Patch some gaps in the final assembly by walk­

ing through the unipath graph
50 TagCircularScaffolds Identify and tag circular scaffolds
51 RebuildAssemblyFiles Rebuild final set of assembly files
52 AllPathsReport Generate basic stats - without a reference
53 LibCoverage Generate basic library coverage stats - without 

a reference

73



10. Bibliography
[1] Next Generation Sequencing. (n.d.). Retrieved 3 6, 2012, from Eurofins mwg

Operon: http://www.eurofinsdna.com/service-corner/faqs-products-
services/faqs-genome-sequencing/questions-on-genome-sequencing-
services/what-is-a-mate-pair-library.html

[2] Human Genome Project Information. (2009, 10 9). Retrieved 3 4, 2012, from Human
Genome Project Information:
http://www.ornl.gov/sci/techresources/Human Genome/project/benefits.shtml

[3] Queueing System . (2012, 6 2). Retrieved 6 2, 2012, from Freie Universitat Berlin:
http://www.zedat.fu-berlin.de/Compute/EN/SorobanQueueingSystem

[4] Ahmed, M., Ahmad, I., & Khan, S. U. (2010). A comparative analysis of parallel
computing approaches for genome assembly. 011 Mar;3(1):57-63. Epub 2011 
Mar 3.

[5] Alhakim, A. (n.d.). A Simple Combinatorial Algorithm For De Bruijn Sequences. 
Potsdam. The American Mathematical Monthly. Vol. 117, No. 8 (October 2010), pp. 
728-732

[6] Compeau, P., Pevzner, P., & Tesler, G. (2011). How to apply de Bruijn graphs to
genome assembly. Nature Biotechnology 29, 987-991 (2011)

[7] Genomes. DeWeerdt, S. E. (2003, 1 15). Retrieved 3 3, 2012, from Genome News
Network:
http://www.genomenewsnetwork.org/resources/whats a genome/Chp1 1 1.sht 
ml#genome1

[8] Genes. (n.d.). Retrieved 3 4, 2012, from News Medical: http://www.news-
medical.net/health/Genes-What-are-Genes.aspx

[9] Genetics Home Reference. (n.d.). Retrieved 3 4, 2012, from Genetics Home
Reference: http://ghr.nlm.nih.gov/

[10] JGI Genome Portal. (n.d.). Retrieved 3 5, 2012, from JGI Genome Portal:
http://genome.igi-psf.org/help/index.html

[11] Jones, M. T. (2012, 5 22). Optimizing resource management in supercomputers
with SLURM. Retrieved 6 1, 2012, from developersWork: 
http://www.ibm.com/developerworks/library/l-slurm-utilitv/

[12] NCBI. (n.d.). Retrieved 3 1, 2012, from A SCience Primer:
http://www.ncbi.nlm.nih.gov/About/primer/genetics.html

[13] Pop., M., Salzberg, S. L., & Shumway, M. (n.d.). Genome Sequence

74

http://www.eurofinsdna.com/service-corner/faqs-products-services/faqs-genome-sequencing/questions-on-genome-sequencing-services/what-is-a-mate-pair-library.html
http://www.eurofinsdna.com/service-corner/faqs-products-services/faqs-genome-sequencing/questions-on-genome-sequencing-services/what-is-a-mate-pair-library.html
http://www.eurofinsdna.com/service-corner/faqs-products-services/faqs-genome-sequencing/questions-on-genome-sequencing-services/what-is-a-mate-pair-library.html
http://www.ornl.gov/sci/techresources/Human_Genome/project/benefits.shtml
http://www.zedat.fu-berlin.de/Compute/EN/SorobanQueueingSystem
http://www.genomenewsnetwork.org/resources/whats_a_genome/Chp1_1_1.shtml%23genome1
http://www.genomenewsnetwork.org/resources/whats_a_genome/Chp1_1_1.shtml%23genome1
http://www.news-medical.net/health/Genes-What-are-Genes.aspx
http://www.news-medical.net/health/Genes-What-are-Genes.aspx
http://ghr.nlm.nih.gov/
http://genome.jgi-psf.org/help/index.html
http://www.ibm.com/developerworks/library/l-slurm-utility/
http://www.ncbi.nlm.nih.gov/About/primer/genetics.html


Assembly:Algorithms and Issues. Yhe Insitute of Genomic Research. July 2002 
(vol. 35 no. 7)

[14] De Bruijn Graphs. n.d. http://www.homolog.us/blogs/2011/07/29/de-bruiin-graphs-
ii/ (accessed 2012).

[15] Dent A. Earl, Keith Bradnam, John St. John, Aaron Darling, Dawei Lin, Joseph
Faas, Hung On Ken Yu, Buffalo Vince, Daniel R. Zerbino, Mark Diekhans,
Ngan Nguyen, Pramila Nuwantha, Ariyaratne Wing-Kin Sung, Zemin Ning, 
Matthias Haime, Jared T. Simpson, Nuno. Assemblathon 1: A competitive 
assessment of de novo short read assembly methods. Genome Research. 2011 
Dec;21(12):2224-41. Epub 2011 Sep 16

[16] Guia del Usuario de Magerit-Ejecucion de trabajos. n.d.
http://docs.cesvima.upm.es/magerit-user-
guide/es/magerit/scheduler.html#magerit-scheduler (accessed 2012).

[17] Jason R. Miller, Sergey Koren, Granger Sutton. Assembly algorithms for next-
generation sequencing data..Genomics. 2010 Jun;95(6):315-27. Epub 2010 Mar 
6.

[18] Michael C. Schatz, Arthur L. Delcher, Steven L. Salzberg. "Assembly of large
genomes using second-generation sequencing. Genome Research. 2010 
Sep;20(9):1165-73. Epub 2010 May 27.

[19] Laboratory of Phil Green, Research. n.d. http://www.phrap.org/index.html
(accessed 2012).

[20] Sante Gnerrea, Iain MacCalluma, Dariusz Przybylskia, Filipe J. Ribeiroa, Joshua N.
Burtona, Bruce J. Walkera, Ted Sharpea, Giles Halla, Terrance P. Sheaa, Sean 
Sykesa, Aaron M. Berlina, Daniel Airda, Maura Costelloa, Riza Dazaa, Louise 
Williamsa, Robert N. High-quality draft assemblies of mammalian genomes 
from massively parallel sequence data. 2010. PNAS January 25, 2011 vol. 108 
no.4 1513-1518

[21] Whole genome sequencing. n.d.
http://en.wikipedia.org/wiki/Full genome sequencing (accessed 2012).

[22] Zhang W, Chen J, Yang Y, Tang Y, Shang J. A Practical Comparison of De Novo
Genome Assembly Software Tools for Next-Generation Sequencing 
Technologies. PLoS ONE 6(3): e17915. doi:10.1371/journal.pone.0017915

[23] Iain MacCallum, Dariusz Przybylski, Sante Gnerre, Joshua Burton, Ilya Shlyakhter,
Andreas Gnirke, Joel Malek, Kevin McKernan, Swati Ranade, Terrance P Shea,

75

http://www.homolog.us/blogs/2011/07/29/de-bruijn-graphs-ii/
http://www.homolog.us/blogs/2011/07/29/de-bruijn-graphs-ii/
http://docs.cesvima.upm.es/magerit-user-guide/es/magerit/scheduler.html%23magerit-scheduler
http://docs.cesvima.upm.es/magerit-user-guide/es/magerit/scheduler.html%23magerit-scheduler
http://www.phrap.org/index.html
http://en.wikipedia.org/wiki/Full_genome_sequencing


Louise Williams, Sarah Young, Chad Nusbaum and David B Jaffe. ALLPATHS 2: 
small genomes assembled accurately and with highcontinuity from short paired 
reads. Genome Biology. 10:R103. Epub 2009 Oct 1.

[24] Boisvert, S., Laviolette, F., & Corbeil, J. (2010). Ray: Simultaneous Assembly of
Reads from a Mix of High-Throughput Sequencing Technologies. Journa l o f  
C om puta tionalB io logy.2010  Nov;17(11):1519-33. Epub 2010 Oct 20.

[25] Ahmed, M., Ahmad, I., & Khan, S. U. (2010). A comparative analysis of parallel
computing approaches for genome assembly.Interdisciplinary sciences, 
coputational life sciences. 2011 Mar;3(1):57-63. Epub 2011 Mar 3.

[26] Sovic, I. (s.f.). Approaches to D N A de novo assembly. Center for informatics and
computing. Zagreb: Ruder Boskovic Institute.

[27] Can Alkan, Saba Sajjadian & Evan E Eichler. Limitations of next-generation 
genome sequence assembly. Nature Methods 8, 61-65 (2011) doi:10.1038/nmeth.1527

[28] Steven L. Salzberg and James A. Yorke. Beware of mis-assembled genomes. 
Bioinformatics (2005) 21 (24): 4320-4321.

[29] Monya Baker. De novo genome assembly: what every biologist should know. 
Nature Methods 9, 333-337 (2012) doi:10.1038/nmeth.1935

76


