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Περίληψη
Αρκετοί αλγόριθμοι για προβλήματα συμπεριλαμβανομένου του power grid  βάσίζονται  σε SDD 
γραμμικά συστήματα. Αυτοί  οι αλγόριθμοι  γενικά παράγουν  αποτελέσματα υψηλής ποιότητας. 
Ωστόσο, τα υπάρχοντα εργαλεία για την επίλυσή τους δεν είναι  πάντα αποτελεσματικά, και  σε 
πολλές περιπτώσεις λειτουργούν μόνο σε περιορισμένες τοπολογίες. Η μη διαθεσιμότητα 
αξιόπιστων εργαλείων  επίλυσης έχει  εμποδίσει την υιοθέτηση προσεγγίσεων  και  αλγορίθμων με 
βάση SDD συστήματα, ειδικά σε εφαρμογές που περιλαμβάνουν πολύ μεγάλα αραιά συστήματα.

ΈΈνα βασικό θέμα αυτής της διπλωματικής είναι  ότι  προσεγγίσεις που  βασίζονται σε SDD 
συστήματα μπορούν να θεωρηθούν πρακτικές και  αξιόπιστες. Παρουσιάζεται  το Combinatorial 
Multigrid (CMG), που χειρίζεται  τα προβλήματα σε γενικές και αυθαίρετα σταθμισμένες τοπολογίες. 
Ο solver δανείζεται  τη δομή και  τους τελεστές των multigrid αλγορίθμων και ενσωματώνει σε αυτά 
ισχυρούς συνδυαστικούς preconditioners, με βάση τα εργαλεία από την θεωρία γραφημάτων.

Για να παρουσιαστεί η παραγωγή του  CMG, επανεξετάζονται και αναλύονται  βασικές έννοιες των 
γραφημάτων, επαναληπτικές μέθοδοι  επίλυσης γραμμικών  κυκλωμάτων και μέθοδοι διαχείρισης 
αραιών  συστημάτων. Τα αποτελέσματα ελέγχονται σε πολύ  μεγάλα συστήματα και  benchmark 
κυκλώματα της IBM. Τέλος, ελέγχεται  η συμπεριφορά και  η λύση τους σε ένα τύπου  Spice  
προσομοιωτή που αναπτύχθηκε για τον σκοπό αυτό, ο οποίος εκτελεί DC ανάλυση.

Λέξεις Κλειδιά:
Επαναληπτικές μέθοδοι, θεωρία γράφων, MNA, Multigrid

 Συνδυαστικοί προρυθμιστές



Abstract
Several algorithms for problems including power grid are based on SDD linear

systems. These algorithms generally produce results of high quality. However,
existing solvers are not always e�cient, and in many cases they operate only on
restricted topologies. The unavailability of reliably e�cient solvers has impeded
the adoptability of approaches and algorithms based on SDD systems, especially
in applications involving very large sparse systems.

A central claim of this thesis is that SDD-based approaches can be consid-
ered practical and reliable. It is presented Combinatorial Multigrid (CMG), that
handles problems in general and arbitrary weighted topologies. The solver bor-
rows the structure and operators of multigrid algorithms and embeds into them
powerful combinatorial preconditioners, based on tools from support graph theory.

In order to present the derivation of CMG, we review and exemplify key notions
of support graphs, iterative solvers and handlers for sparse systems. We validate
our claims on very large systems and on IBM benchmark circuits. Finally, we test
their behavior and solution in a Spice - like simulator developed for this purpose,
who performs DC analysis.

Keywords:
Iterative methods,support graph theory, MNA, Multigrid
Combinatorial preconditioning
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Chapter 1

Introduction

1.1 Introduction and Problem Description

Electronic circuit simulation uses mathematical models to replicate the behavior of an actual
electronic circuit. Simulation software allows for modeling of circuit operation and is an
invaluable analysis tool.

Simulating a circuits behavior before actually building it can greatly improve design ef-
ficiency by making faulty designs known as such, and providing insight into the behavior of
electronics circuit designs.

In particular, for integrated circuits, the tooling is expensive, breadboards are impractical,
and probing the behavior of internal signals is extremely di�cult. Therefore almost all IC
design relies heavily on simulation.

The most well known analog simulator is SPICE, however in our case we constructed a
SPICE-like simulator that performs AC and DC analysis, to parse, solve and simulate the
results.

1.2 Overall Flow

1



1. Introduction

Figure 1.1: Overall Circuit Simulation Flow.

2



Chapter 2

MNA formulation

In this chapter MNA is described an introduction at modified nodal approach, a widely
used method for formulating circuit equations in computer-aided network analysis and design
programs.

2.1 NA formulation

As it was described in section ??, the behavior of a circuit is described by a set of equations
that are formulated by combining Kircho↵s Current Law (KCL) and Kircho↵s Voltage Law
(KVL) and the element equations. Those results can be represented in a set of simultaneous
nonlinear first-order di↵erential equations. For a linear circuit, the equations are a system of
simultaneous linear algebraic equations.

u2 =
R2

R1 +R2
V (2.1)

From the figure 2.1 to put a figure here is provided the following equation which is sub-
stituted into KCL and KVL .

According to NA the network contains no voltage sources. herefore, it is not usable for
general circuit simulation. As a result to the above, the branch equations can be written in
the following form:

i = iY + s (2.2)

Figure 2.1: Linear Circuit.

3



2. MNA formulation

Substitute the branch equation i = iY + s into KCL, then use KVL leads to the NA
formulation:

AY ATu = �As (2.3)

Conclusions and remarks

The nodal formulation emerges as a block elimination process on the tableau formulation. It
generates a compact formulation which is not general and is restricted to elements that have
the form �Y V

b

+I = J , therefore independent voltage sources, ideal Current Controlled Volt-
age Source (CCVS), ideal Current Controlled Current Source (CCCS) can not be represented
in this manner.

2.2 MNA formulation.

As it was described at 3.1 ,NA shows the way forward to MNA.The widely used nodal method
is a method of determining the voltage potential di↵erence between nodes in an electrical
circuit in terms of the branch currents. It has been used for formulating circuit equations in
computer-aided network analysis and design programs. Although several limitations exist in
this method including the inability to process voltage sources and current-dependent circuit
elements in a simple and e�cient way. Moreover, this approach does not scale e�ciently in
large circuits. As a result, a systematic equation formulation like MNA approach is needed.
This formulation can be applied to any circuit in a methodical manner and the equations
can be gathered directly from the circuits specification. dditionally, the coe�cient matrix is
sparse. MNA splits the circuit elements into groups. The first group contains the elements
that have admittance description and the second group the elements that do not have one.
MNA is described at Ho et al. (1975), in the following steps:

• Write KCL as Ai = 0.

• Use the element equations to eliminate as many current variables as possible from KCL,
leading to equations in terms of mostly branch voltages.

• Use KVL to replace all the branch voltages by nodal voltages to ground.

• Append element equations of those elements whose current variables could not be elim-
inated as additional equations of the MNA system.

Those steps lead to the following MNA system:


s
u

s
i

�
=


Y B
C Z

�
⇥


u
i

�

2.3 Element Groups.

All elements whose currents are to be eliminated are referred to as being in group 1, while all
other elements are referred to as group 2. As a result, at the vector i the currents of group
1 elements are put into i1 , and the rest are grouped into i2 . Also, we partition the branch

4



2.4. Assembling the MNA System.

voltage vector u, so that all group 1 element voltages are grouped into u1 , and the rest are
grouped into u2 .

The reduced MNA form is summerized to the following system:


A11Y11A

T

1 A2

�AT

2 Z22

�
⇥


u
i2

�
=


�A1s1
s2

�

2.4 Assembling the MNA System.

In a simulator, the above matrix equations arent used to construct the MNA system. Instead,
it can be built by inspection, on the fly, in linear time, as the circuit description file subjected
to parsing. (is being read in) There are two methods to construct the MNA system.

1. as it was described above at 3.2 For every node other than the reference node, write
KCL, then:

a) Eliminate all currents of group 1 elements using branch equations.

b) Replace all branch voltages in terms of node voltages using KVL.

2. For every group 2 element, write its branch equation, then replace all branch voltages
in terms of node voltages using KVL.

The current of every element will appear twice as a KCL current in the top equations.
Elements connected to the reference node will appear once. For a group 2 element, its current
and its terminal voltages will also appear as part of its element equation in the bottom
equations.

2.5 Element Stamps.

The MNA equation can be formulated without using oriented graphs or incidence matrices
A1, A2Element stamp is called the contribution of every element to the matrix equation. The
process is described below:

1. matrix is initialized.

2. Right Hand Side (RHS) vector is set to zero.

3. the element stamps are added to the matrix and RHS vector as the elements are read
in.

4. all the elements are read.

At this point the matrix equation is complete and begins one of the solution techniques .
symbolization:

5



2. MNA formulation

u+ u- RHS
u+ 1

R

� 1
R

u- � 1
R

1
R

Table 2.1: Element stamp for a resistor in group 1.

Figure 2.2: Element stamp for a resistor in group 1.

u+ u- i RHS
u+ +1
u- -1
i +1 -1 -R

Table 2.2: Element stamp for a resistor in group 2.

Figure 2.3: Element stamp for a resistor in group 2.

u+ u- RHS
u+ +1
u- -1

Table 2.3: Element stamp for an independent current source in group 1.

u+ u- i RHS
u+ +1
u- -1
i 1 1

Table 2.4: Element stamp for an independent current source in group 2.

6



2.6. MNA Sparsity.

Figure 2.4: Element stamp for an independent current source in group 1.

Figure 2.5: Element stamp for an independent current source in group 2.

2.6 MNA Sparsity.

1 +
n�1X

k=1

1 + d(k) = n+ 2m (2.4)

The concept of sparsity is useful in areas which have a low density of significant data or
connections. An (n⇥n) matrix is sparse if it has O(n) non-zero entries. If 1+

P
n�1
k=1 1 + d(k) =

n+2m the matrix is sparse, because, in a graph, the sum of all vertex degrees is equal to twice
the number of edges. The MNA matrix has n � 1 rows.Also, the element stamps contribute
no more than 6 non-zero entries per stamp, then the total number of non-zero entries is no
more than 6m. Therefore, if m is O(n), which it usually is, then the MNA matrix is sparse.

The MNA matrix can become singular during the numerical solution process and, there-
fore, requires careful pivoting.

2.7 Formulation of linear dynamic equations and Element
Stamps.

In this section we study the case when the network contains (linear) capacitors and inductors.
In that case it is linear dynamic. The equations can be inserted at the system by an extension
of the MNA formulation.


A1Y11A

T

1 A2

�AT

2 Z22

�
⇥


u
i2

�
+


A1C11A

T

1 0
0 L22

�
⇥


u0

i02

�
=


�As1
s2

�
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2. MNA formulation

A capacitor C has an admittance of j!C, can be either in group 1 or 2. An inductor L
has an impedance ofj!L , and must be in group 2.

2.8 MNA Sparsity.

• Superposition can be used to solve a network with voltage sources using multiple appli-
cations of nodal analysis (although that would be expensive).

• For dynamic circuits, the challenge is to make sure that the order of complexity or index
of the di↵erential equations, is no greater than 2.

• Circuits with controlled sources, whether linear or nonlinear, have more problems, and
require more constraints, typically of a topological nature.

• In practice, with an accurate circuit model, su�cient parasitics will typically exist in the
circuit description file, which helps avoid pathological behavior, so that most practical
circuits are found to be uniquely solvable.

8



Chapter 3

Iterative methods and
Preconditioners

In this chapter is described the basic theory and some of the basic techniques for the iterative
solution of very large SDD sparse linear systems, especially focused on algebraic methods
suitable for sparse matrices and incomplete factorization methods as well. Also, an intro-
duction at multilevel solvers is made. Support preconditioning theory and the most common
preconditioners are presented.

3.1 Theory for Iterative Methods for the solution of linear
circuits.

Until recently, direct solution methods were often preferred against iterative methods because
of their predictable behavior. However, the solution of very large linear systems triggered a
shift toward iterative techniques. A significant number of e�cient iterative solvers were
discovered and are represented in the folowing sections.

Basic Iterative Methods.

The basic iterative methods according to [1] for solving linear systems are Jacobi, Gauss-
Seidel, and SOR. The solution of very large sparse linear systems of the form

Ax = b (3.1)

Where A = a
i,j

, of the equation 3.1 is an n ⇥ n matrix, and b a vector. The equation
above remaines the central to numerous numerical simulations in computer-aided network
analysis and design programs and is often the most time-consuming part of a computation.

Most of the methods covered in this chapter involve passing from one iterate to the next
by modifying one or a few components of an approximate vector solution at a time. The
convergence of these methods is rarely guaranteed for all matrices, but a large body of theory
exists for the case where the coe�cient matrix arises from the finite di↵erence discretization
of Elliptic Partial Di↵erential Equation (PDE)s.

9



3. Iterative methods and Preconditioners

Jacobi Method.

A = D � L� U (3.2)

From the decomposition 3.9 , D is the diagonal of A, L its lower part, and U its upper
part, . It is always assumed that the diagonal entries of A are all nonzero. The Jacobi
iteration in vector form can be writed as:

xk+1 = D�1(L+ U)xk +D�1b (3.3)

GS Method.

As we proceed as with the Jacobi method, but in this case we assume that the equations are
examined one at a time in sequence, and that previously computed results are used as soon
as they are available, we obtain the Gauss-Seidel method:

xk
i

=
(b

i

�
P

j<i

a
i,j

xk
j

�
P

j>1 ai,jx
k�1
j

a
i,i

(3.4)

Interesting facts about the Gauss Siedel method is that the computations in 3.11 appear
to be serial and that the new iterate x

k

depends upon the order in which the equations
are examined. In matrix terms, the definition of the Gauss-Seidel method in 3.11 can be
expressed as:

xk = D � L�1(Ux
k�1 + b), (3.5)

where D, L and U represent the diagonal, lower-triangular, and upper-triangular parts of
A.

SOR Method.

The SOR method, is devised by applying extrapolation to the GS method. This extrapolation
takes the form of a weighted average between the previous iterate and the computed Gauss-
Seidel iterate successively for each component. The idea is to choose a value for ! that will
accelerate the rate of convergence of the iterates to the solution.

xk
i

= !x̄k
i

+ (1� !)xk�1
i

, (3.6)

where x̄ denotes a Gauss-Seidel iterate, and ! is the extrapolation factor in the 3.6. In
matrix terms, the SOR algorithm has the following form:

xk = (D � !L)�1(!U + (1� !)D)xk�1 + !(D � !L)�1b (3.7)

CG Method .

The Conjugate Gradient method is an e↵ective method for Symmetric Positive Definite (SPD)
systems. The method proceeds by generating vector sequences of iterates, residuals corre-
sponding to the iterates, and search directions used in updating the iterates and residuals.
Only a small number of vectors needs to be kept in memory. In every iteration of the method,
two inner products are performed in order to compute update scalars that are defined to make
the sequences satisfy certain orthogonality conditions. On a symmetric positive definite linear

10



3.2. Computational Characteristics of the Methods.

system these conditions imply that the distance to the true solution is minimized in some
norm.

The CG method is not suitable for nonsymmetric systems because the residual vectors
cannot be made orthogonal with short recurrences.

GMRES method.

The GMRES method generates a sequence of orthogonal vectors, but in the absence of sym-
metry this can no longer be done with short recurrences; instead, all previously computed
vectors in the orthogonal sequence have to be retained. For this reason are used restarted ver-
sions of the method . The GMRES algorithm has the property that residual norm k b�Axi k
can be computed without the iterate having been formed. Thus, the expensive action of
forming the iterate can be postponed until the residual norm is deemed small enough. The
GMRES iterates are constructed as:

xi = x0 + y1u
1 + · · ·+ y

i

ui (3.8)

The GMRES method retains orthogonality of the residuals by using long recurrences, at
the cost of a larger storage demand.

BiCG method.

The BiConjugate Gradient method replaces the orthogonal sequence of residuals by two mu-
tually orthogonal sequences, at the price of no longer providing a minimization. The update
relations for residuals in the Conjugate Gradient method are augmented in the BiConjugate
Gradient method by relations that are similar but based on AT instead of A. Thus we update
two sequences of residuals and two sequences of search directions. The implementation is
described ??:

3.2 Computational Characteristics of the Methods.

E�cient solution of a linear system includes the selection of the proper choice of iterative
method. However, to obtain good performance, consideration must also be given to the
computational kernels of the method and how e�cientlys they can be executed on the target
architecture. The performance of direct methods, is largely that of the factorization of the
matrix. However, this lower e�ciency of execution does not imply anything about the total
solution time for a given system. Furthermore, iterative methods are usually simpler to
implement than direct methods, and since no full factorization has to be stored, they can
handle much larger sytems than direct methods.

3.3 Multigrid method.

Multigrid (MG) method in numerical analysis is defined as a group of algorithms for solving
di↵erential equations using a hierarchy of discretizations. They are an example of a class
of techniques called multiresolution methods, very useful in problems exhibiting multiple
scales of behavior. For example, many basic relaxation methods exhibit di↵erent rates of
convergence for short- and long-wavelength components, suggesting these di↵erent scales be

11



3. Iterative methods and Preconditioners

Summary of Operations for Iteration i
Method Inner Product SAXPY Matrix Vector Product Precond Solve storage reqmts
JACOBI 1a matrix + 3n
G- S 1 1a

SOR 1 1a matrix + 2n
CG 2 3 1 1 matrix + 6n
GMRES i+1 i+1 1 1 matrix + (i + 5)n
BiCG 2 5 1/1 1/1 matrix + 10n

Table 3.1: Summary of Operations for Iteration i.

Figure 3.1: Flowchart of iterative methods.

12



3.4. Preconditioning.

treated di↵erently, as in a Fourier analysis approach to multigrid. MG methods can be used
as solvers as well as preconditioners.

The main idea of MG is to accelerate the convergence of a basic iterative method by global
correction from time to time, accomplished by solving a coarse problem.1 This principle is
similar to interpolation between coarser and finer grids. The typical application for multigrid
is in the numerical solution of elliptic partial di↵erential equations in two or more dimensions.

Multigrid can be applied in combination with any of the common discretization techniques.
MG methods are among the fastest solution techniques known today. In contrast to other
methods, multigrid methods are general in that they can treat arbitrary regions and boundary
conditions. They do not depend on the separability of the equations or other special properties
of the equation.

3.4 Preconditioning.

Preconditioner is a matrix that transforms the system 3.1 into another system with more
preferable properties for iterative solution. Preconditioning generally attempts to improve the
spectral properties of the coe�cient matrix. For SPD problems, the rate of convergence of the
conjugate gradient method depends on the distribution of the eigenvalues of A. The purpose
of preconditioning is that the transformed matrix in question will have a smaller spectral
condition number, and/or eigenvalues clustered around 1. For nonsymmetric problems the
situation is more complicated, and the eigen-values may not describe the convergence of
nonsymmetric matrix iterations like GMRES. On parallel machines there is a further trade-
o↵ between the e�cacy of a preconditioner in the classical sense, and its parallel e�ciency.
Many of the traditional preconditioners have a large sequential component.

If M is a nonsingular matrix that approximates A, then the linear system 3.9 has the
same solution as 3.1 but must be significantly easier to solve.

M�1Ax = M�1b (3.9)

AM�1y = b, x = M�1y (3.10)

M�1
1 AM�1

2 y = M�1
1 b, x = M�1

2 y (3.11)

The system 3.9 is preconditioned from the left, 3.10 is preconditioned from the right. At
3.11 is performed split preconditioning where the preconditioner is M = M1 M2.

Preconditioner Construction Basic Goals.

• The linear system M should be easier than A to solve.

• For dynamic circuits, the challenge is to make sure that the order of complexity or index
of the di↵erential equations, is no greater than 2.

1Coarse problem is an auxiliary system of equations used in an iterative method for the solution of
a given larger system of equations. It is basically a version of the same problem at a lower resolution,
retaining its essential characteristics, but with fewer variables.

13



3. Iterative methods and Preconditioners

• Circuits with controlled sources, whether linear or nonlinear, have more problems, and
require more constraints, typically of a topological nature.

• In practice, with an accurate circuit model, su�cient parasitics will typically exist in the
circuit description file, which helps avoid pathological behavior, so that most practical
circuits are found to be uniquely solvable.

Convergence.

Preconditioning is a concept created to improve the convergence of iterative methods. One
of the biggest problems with preconditioning is that convergence analysis is generally limited
to simple model problems. For problems with irregular numerical or topological structure,
condition number bounds are generally di�cult to obtain.

The convergence of the methods described at 3.1 , 3.1 , 3.1 , ( Jacobi, GS and SOR ) is
rarely guaranteed for all matrices, but a large body of theory exists for the case where the
coe�cient matrix arises from the finite di↵erence discretization of Elliptic PDEs.

The convergence behavior of the di↵erent algorithms seen in this chapter can be analyzed
by exploiting optimality properties whenever such properties exist. This is the case for CG
and GMRES algorithms.

If A and M are SPD, the convergence of many preconditioned iterative methods (and
specifically, PCG) depends on the condition number of the preconditioned operator.

We define the generalized (spectral) condition number by

(A,B) = max
x

xTAx

xTBx
⇥max

x

xTBx

xTAx
, (3.12)

where x, is outside the null space of A.
The fact whether or not, or the rate at which, an iterative method approaches the solution

of a linear system. Convergence can be:

Linear: Some measure of the distance to the solution decreases by a constant factor in each
iteration.

Smooth: The measure of the error decreases in all or most iterations, though not necessarily by
the same factor.

Irregular: The measure of the error decreases in some iterations and increases in others. This
observation unfortunately does not imply anything about the ultimate convergence of
the method.

Stalled: The measure of the error stays more or less constant during a number of iter- ations.
As above, this does not imply anything about the ultimate convergence of the method.

The convergence speed of iterative methods may depend on the ordering used, and often
the parallel e�ciency of a method on a Parallel Computer 2 is strongly dependent on the
ordering used.

2Computer with multiple independent processing units. If the processors have immediate access
to the same memory, the memory is said to be shared; if processors have private memory that is not
immediately visible to other processors, the memory is said to be distributed. In that case, processors
communicate by message-passing.
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3.4. Preconditioning.

Iterative Preconditioners.

Although the methods seen in chapters 3.1 , 3.1 , 3.1 , ( BiCG, CG and GMRES ) are
well founded theoretically, they are all likely to su↵er from slow convergence for problems
which arise from typical applications such as fluid dynamics or electronic device simulation.
Preconditioning is a key ingredient for fast convergence.

x
i+1 = (I �M�1A)x

i

+ b0 (3.13)

where 3.13 is the basic method of iterative preconditioning.

Incomplete Factorization Preconditioners.

A broad class of preconditioners is based on incomplete factorizations of the coe�cient matrix.
We call a factorization incomplete if during the factorization process certain fill elements,
nonzero elements in the factorization in positions where the original matrix had a zero, have
been ignored. Such a preconditioner is then given in factored form M = LU with L lower and U
upper triangular. The e�cacy of the preconditioner depends on how well M�1 approximates
A�1.

When a sparse matrix is factored by Gaussian elimination, fill-in usually takes place. In
that case, sparsity-preserving pivoting techniques can be used to reduce it. The triangular
factors L and U of the coe�cient matrix A are considerably less sparse than A.

Sparse direct methods are not considered viable for solving very large linear systems due
to time and space limitations , however, by discarding part of the fill-in in the course of
the factorization process, simple but powerful preconditioners can be obtained in the form
M = L̄Ū , where L̄ and Ū are the incomplete (approximate) LU factors.

Summarizing, it can be said that existing solutions to the problem for incomplete factor-
ization preconditioners for general SPD matrices follow one of two cases: simple inexpensive
fixes that result in low quality preconditioners in terms of convergence rating, or sophisticated,
expensive strategies that produce high quality preconditioners.
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Chapter 4

Graph Theory

In this chapter is described the basic graph theory, an overview of the definitions and methods
for graph clustering, that is, finding sets of related vertices in graphs. Moreover, it is shown
how weighted graph [�,⇢ ] decompositions can be used in the first known linear work parallel
construction of provably good preconditioners. Furthermore, it is presented the reduction to
the same problem in a sparser, tree-like, spanning subgraph of the given graph. For fixed
degree graphs, it is presented a parallel construction of combinatorial preconditioners with a
constant condition number.

4.1 Support Theory for Graphs.

Support theory, is a recent methodology for bounding condition numbers of preconditioned
systems. More specifically, it is a set of tools and techniques for bounding extremal eigenval-
ues. For some iterative methods (conjugate gradients in particular), the ratio of largest to
smallest eigenvalues provides an upper bound on the number of iterations.

Definitions of graph theory

Graphs are structures formed by a set of vertices (also called nodes) and a set of edges that
are connections between pairs of vertices. Graph clustering is the task of grouping the vertices
of the graph into clusters taking into consideration the edge structure of the graph in such
a way that there should be many edges within each cluster and relatively few between the
clusters.

Terminology

Worst-case running time The worst-case running time of an algorithm for a problem in-
stance of size x is the number of computation steps needed to execute the algorithm for
the most di�cult instance of size x possible.

Worst-case memory consumption The number of memory units that the algorithm will
need to simultaneously occupy in the worst possible case for an instance of size x.

Computational complexity The interest is in characterizing how the running time and
memory consumption grow when size x grows.
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4. Graph Theory

Approximation algorithms They focus is finding e�ciently a solution that di↵ers no more
than a fixed factor from the exact solution.

A graph G is a pair of sets G=(V,E). V is the set of vertices and the number of vertices
n = |V | is the order of the graph. The set E contains the edges of the graph. In an undirected
graph, each edge is an unordered pair v, w. In a directed graph, edges are ordered pairs. The
vertices v and w are called the end points of the edge. The edge count |E| = m is the size
of the graph. In a weighted graph, a weight function ! : E ! R is defined that assigns a
weight on each edge. A graph is planar if it can be drawn in a plane without any of the edges
crossing.

Graph density of a graph G = (V, E) as the ratio of the number of edges present to the
maximum possible, �(G) = m/( n

2 ) .
A graph of density one is called complete. Also, If v, u 2 E,then v is a neighbour of u.

The set of neighbours for a given vertex v is called the neighbourhood of v and is denoted by
�(v). A vertex v is a member of its own neighbourhood�( v) if and only if the graph contains
a reflexive edge v, v. The adjacency matrix A

G

of a given graph G = (V, E) of order n⇥n
matrix A

G

= (aG
v

, u) , where

A
G

= (aG
v

, u) =

⇢
1 if v, u 2 E,
0, otherwise.

The number of edges incident on a given vertex v is the degree of v and is denoted by
deg(v). A graph is regular if all of the vertices have the same degree; if 8v 2 V inG = (V,E)
we have deg(v) = k, the graph G is k-regular.

A partition of the vertices V of a graph G = (V, E) into two nonempty sets is called a
cut. The length of a path is the number of edges on it, and the distance between v and u
is the length of the shortest path connecting them in G. The distance from a vertex to itself
is zero: the path from a vertex to itself is an empty edge sequence. A graph is connected if
there exist paths between all pairs of vertices. If there are vertices that cannot be reached
from others, the graph is disconnected. The minimum number of edges that would need to
be removed from G in order to make it disconnected is the edge-connectivity of the graph.
A cycle is a simple path that begins and ends at the same vertex. A graph that contains no
cycle is acyclic and is also called a forest. A connected forest is called a tree. A subgraph
G

S

= (S,ES) of G = (V,E) is composed of a set of verticesS ✓ V and a set of edges E
S

✓ E
such that v, u 2 E

S

implies v, u 2 S; the graph G is a supergraph of G
S

. A connected acyclic
subgraph that includes all vertices is called a spanning tree of the graph. A spanning tree
has necessarily exactly n - 1 edges. If the edges are assigned weights, the spanning tree with
smallest total weight is called the minimum spanning tree. Note that there may exist several
minimum spanning trees that may even be edge-disjoint.

The number of iterations of the conjugate gradient method for the solution of systems of
linear equations Ax = b is bounded above by the square root of the spectral condition number
(A) of A. (The actual number of iterations can be significantly smaller in some cases.) The

condition number is the ratio of the extreme eigenvalues of A, (A) = �

max

(A)
�

min

(A) . The conjugate
gradient method can be used to solve consistent linear systems with a singular coe�cient
matrix A (in floating-point arithmetic, it helps to orthogonalize the search directions against
the null space if A is singular). In such cases, the number of iterations is proportional to the
square root of the ratio of the extreme positive eigenvalues. When a preconditioner B is used
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4.1. Support Theory for Graphs.

in the conjugate gradient method, the number of iterations is proportional to the square root
of the ratio of the extreme finite generalized eigenvalues of the pencil (A,B), defined below.

Definition of the number �: is a finite generalized eigenvalue of the matrix pencil (A,B)
if there exists a vectorx 6= 0 such that Ax = �Bx and Bx 6= 0. We denote the set of
finite generalized eigenvalues by �

f

(A, B).

Generalized eigenvalues: The set of generalized eigenvalues ⇤(A,B) of a pair of Lapla-
cians and is defined by: ⇤(A,B) = there is real vector x such that Ax = �Bx

Rayleigh quotient characterization of support: If A, B have the same size, we have:

�
max

(A,B) = �(A,B) = maxxT j 6= 0
(xTAx)

xTBc
, (4.1)

where j denotes the constant vector.

Schur complement: Let T be a weighted star with n + 1 vertices and edge weights
d1, . . . , dn. The Schur complement S(T, v) of T withrespect to its root v, is the graph
defined by the weights S

ij

(T, u) = didj/D where D =
P

i

d
i

. Let A be any graph, A[V �v]
be the graph induced in A by the vertices in V v, and T

v

be the star graph consisting of
the edges incident to v in A. The Schur complement S(A, v) of A with respect to vertex
v is the graph A[V v] + S(T

v

, v). Let W ⇢ V and v be any vertex in W. The Schur
complement with S(A,W) is recursively defined as:

S(A,W ) = S(S(A, v),Wv) = S(S(A,Wv), v). (4.2)

Let A, B be positive definite matrices. We let �1  . . .  �
n

denote the eigenvalues of A
and µ1  . . .  µ

n

denote the eigenvalues of B. Let 
max

and 
min

denote �
max

(A,B)
and �

min

(A,B).

We therefore have �
max

(B,A) = 1/min and �
min

(B,A) = 1


max

.

Splitting Lemma: If A =
P

m

i=1Ai

and M =
P

m

i=1Mi

where A
i

,M
i

are Laplacians, then
�(A,M)  max

i

�(A
i

,M
i

) .

The Splitting Lemma allows bounding of the support of A by M, by splitting the power
dissipation in A into small local pieces, and supporting them by also local pieces in M.

If we take M as the maximal weight spanning tree of A, it is easy to show that �(M,A) 
1, intuitively because more resistances always dissipate more power. In order to bound
�(A

i

,M
i

), the basic idea to let the A
i

be edges on A (the ones not existing in M), and
let M

i

be the unique path in the tree that connects the two end-points of A
i

. Then one can
bound separately each �(A

i

,M
i

). In fact, it can be shown that any edge in A that doesnt
exist in M, can be supported only by the path M

i

. Steiner preconditioners, introduced in
3.4 introduce external nodes into preconditioners. CMG is based on a partitioning of the n
vertices in V into m vertex-disjoint clusters V

i

. For each V
i

, the preconditioner contains a
star graph S

i

with leaves corresponding to the vertices in V
i

rooted at a vertex r
i

. The roots
r
i

are connected and form the quotient graph Q.
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4. Graph Theory

S =

✓
D0 �D0R

�RTD0 Q+RTD0R

◆

D’ is the total degree of the leaves in the Steiner preconditioner S. R is the restriction of an
n⇥m matrix, where R(i, j) = 1 if vertex i is in cluster j and 0 otherwise. Then, the Laplacian
of S has n + m vertices, and the algebraic form is the above.

Every time a system of the form Bz = y is solved in an usual preconditioned method, the
system:

S

✓
z
z0

◆
=

✓
y
0

◆

should be solved instead, for a set of dont care variables z’. Also the operation is equivalent
to preconditioning with the dense matrix

B = D0 � V (Q+D
Q

)�1V T , (4.3)

where V = D0R and D
Q

= RTD0R and B is the Laplacian which is also called the Schur
complement of S with respect to the elimination of the roots r

i

.
The analysis of the support �(A,S)), is identical to that for the case of subgraph precon-

ditioners. For two roots r
i

, r
j

we should have

w(r
i

, r
j

) =
X

i

02V
i

,j

02V
j

w
i,j

. (4.4)

Thus, he algebraic form of the quotient Q is Q = RTAR.

Graph Conductance.

The conductance of the graph is the minimum sparsity value over all possible cuts. It
controls how fast a random walk on G converges to a uniform distribution.

P partitions the vertices of a graph G = (V,E,w) into disjoint sets V
i

, i = 1, . . . ,m and
G

i

denotes the graph induced by the vertices in V
i

. The n/m is the vertex reduction factor of
P and it is denoted by ⇢. P is set as a (�,� ) decomposition if the conductance of each G

i

is

bounded below by � and for each vertex v 2 V
i

, cap(v,V
i

v)
vol(v) � � .

It is considered a variant of (�,� ) decompositions. For each G
i

in the partition, is set a
vertex on each edge leaving G

i

. If W
i

is the set of newly set vertices forG
i

, then P is [�,� ]
decomposition if the closure graph Go

i

induced by the vertices in V
i

[ W
i

has conductance
bounded below by � and the vertex reduction factor of P is at least ⇢. By definition, Go

i

is G
i

with additional degree one vertices hanging o↵ of it. Therefore, any edge cut in G
i

induces a
sparser cut in Go

i

, and thus the conductance of G
i

must be lower bounded by �. Besides, if

G
i

contains two vertices v1 , v2 such that cap(v
j

,V

i

v

j

)
vol(v

j

)  � for 1, 2,· · · the conductance of Go

i

is

less than �.
It turns out that the parallel computation of [�,⇢ ] decompositions is not trivial even for

trees, for which is needed machinery from parallel tree contraction algorithms.

Theorem 1 Trees have a [1/2,6/5] - decomposition that can be computed with linear work
in O(log n) parallel time.
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4.2. Graph Clustering.

Theorem 2 Planar graphs have a [�,⇢ ]-decomposition such that �⇢ is constant. The de-
composition can be constructed with linear work in O(logn) parallel time.

Theorem 3 Graphs with no K
s

minor or s2 genus have a [(1/(log3 ns2logs)), O(1)] decom-
position which can be computed in O(n log 2n) time.

Theorem 4 The support �(S/A) is bounded by a constant c independent from n, if and only
if for all i the conductance of the graph Ao[V

i

] induced by the nodes in V
i

augmented
by the edges leaving V

i

is bounded by a constant c’.

Thus, the conductance �(A) of graph A = (V,E,w) is defined as

�(A) = min
S✓V

w(S, V � S)

min(w(S), w(V � S))
, (4.5)

where w(S, V-S) denotes the total weight connecting the sets S and V - S, and w(S) denotes
the total weight incident to the vertices in S.

4.2 Graph Clustering.

Any nonuniform data contains underlying structure due to the heterogeneity of the data. The
process of identifying this structure in terms of grouping the data elements is called clustering.
Graph clustering in the sense of grouping the vertices of a given input graph into clusters1

The goal of clustering is to divide the data set into clusters such that the elements assigned
to a particular cluster are similar or connected in some predefined sense.

Clustering is an important issue in the analysis and exploration of data. There is a wide
area of applications as e.g. VLSI, data mining, design, computer graphics and gene analysis.
A natural notion of graph clustering is the separation of sparsely connected dense subgraphs
from each other.

Matrix diagonalization in itself is an important application of clustering algorithms, as
there are e�cient computational methods available for processing diagonalized matrices, for
example, in our case, to solve linear systems. Such computations enable e�cient algorithms
for graph partitioning, as the graph partitioning problem can be written in the form of a set
of linear equations.

The goal in graph partitioning is to minimize the number of edges that cross from one
subgroup of vertices to another, usually posing limits on the number of groups as well as to
the relative size of the groups.

Weighted graph decomposition occurs, with n vertices into a collection P of vertex dis-
joint clusters such that, for all clusters C 2 P, the graph induced by the vertices in C and the
edges leaving C, has conductance bounded below by �. It is shown that for planar graphs a
decomposition P can be computed such that | P |< n/⇢, where ⇢ is a constant, in O(log n)
parallel time with O(n) work. Slightly worse guarantees can be obtained in nearly linear
time for graphs that have fixed size minors or bounded genus. It is shown how these decom-
positions can be used in the first known linear work parallel construction of provably good
preconditioners for the important class of fixed degree graph Laplacians.

Partitioning weighted graphs into disjoint and dissimilar clusters of similar vertices is
one of the most important algorithmic problems with applications in web clustering, text

1and must not be confused with the clustering of sets of graphs based on structural similarity.
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retrieval,computer aided diagnosis and computational biology. The importance of good clus-
terings with as few clusters as possible, defined as the number of vertices in the given graph
over the number of clusters, is critical.

The quality of a clustering is characterized by the minimum conductance � over the clus-
ters and the ratio � of the weight going between clusters over the total weight of the edges in
the graph. An interesting property of this bicriteria mea- sure, that we will subsequently call
�,� aug decomposition, is its connection to the sparsest cut problem. Assuming a two-way
algorithm returns a cut of sparsity at most when there is cut of sparsity � , its recursive
application returns a((�/�)1/, [(��)v]avg) decomposition when the graph has a(�,� avg) de-
composition. The complexity of the recursive algorithm is at least a logarithmic factor slower
than the two-way algorithm, but it can be considerably slower because in general the two-way
algorithm is not expected to return balanced cuts.

A stronger type of clusterings, (�,� ) decompositions, is implicit in the laminar decompo-
sitions , that usually describe a tree, constructed in the context of low congestion oblivious
routing. In a (�,� ) decomposition all clusters have minimum conductance phi, but now the
for every vertex v the total weight incident to v that stays within vs cluster is at least a
fraction � of the total weight incident to v.

The vertex reduction factor is constant in average, but there are no guarantees for the
reduction factor between subsequent levels of the decomposition.

The local partitioning algorithm as well as other heuristic variants exploit the connection
of (�,� ) decompositions with random walks. A particle doing a random walk tends to get
trapped in clusters of high conductance when the vertices of the cluster are connected to
the exterior with relatively light edges; then the probability distribution P t

v

after a small
number t of steps of the random walk starting at a given vertex v is expected to provide
information about the cluster where v belongs. While this local intuition can be captured
mathematically, obtaining a multi-way decomposition by computing independently several
such probability distributions , is a quite complicated task when the running time must be
nearly linear. In contrast, computing arbitrary distribution mixtures of the form

P
v2V w

v

P t

u

is straightforward and can be done in time linear in t and the number of edges in the graph.

4.3 Planar Decompositions.

Tree decompositions of graphs are of fundamental importance in structural and algorithmic
graph theory. Planar decompositions generalise tree decompositions by allowing an arbitrary
planar graph to index the decomposition. Every graph that excludes a fixed graph as a
minor has a planar decomposition with bounded width. Planar decompositions are intimately
related to the crossing number. In particular, a graph with bounded degree has linear crossing
number if and only if it has a planar decomposition with bounded width and linear order. It
follows from the above result about planar decompositions that every graph with bounded
degree and an excluded minor has linear crossing number.

cap(U, V ) =
X

u2U,v2V
w(u, v) (4.6)

cap(V, V 0 � V )

min(vol(V 0), vol(V � V 0))
(4.7)
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The total weight connecting the nodes of the disjoint sets U,V is modeled at 4.6 , where,
G = (V,E,w) a weighted graph. Also, the sparsity of an edge cut into V andV �V is defined
as the ratio at 4.7 . The total incident weight f vertex v is denoted by vol(v).

4.4 Graphs as electric networks.

There is a fairly well known analogy between graph Laplacians and resistive networks. If
G is seen as an electrical network with the resistance between nodes i and j being 1/wi,j, then in
the equation Av = i is v is the vector of voltages at the node, i is the vector of currents. Also,
the quadratic form vTAv =

P
i,j

w
i,j

(v
i

� v
j

)2 expresses the power dissipation on G, given
the node voltages v. In view of this, the construction of a good preconditioner M amounts
to the construction of a simpler resistive network (for example by deleting some resistances)
with an energy profile close to that of A.

The support of A by M, defined as �(A/M) = max
v

v

T
Av/vT

M , where v is the number of
copies of M that are needed to support the power dissipation in A, for all settings of voltages.
The principal reason behind the introduction of the notion of support, is to express its local
nature, captured by the Splitting Lemma.

4.5 Graphs as SDD linear systems.

SDD linear systems can be viewed entirely as graphs. CMG advocates a principled ap-
proach to the solution of linear systems. The core of CMG and all other solvers designed in
the context of combinatorial preconditioning is in fact a solver for a special class of matrices,
graph Laplacians. The Laplacian A of a graph G = (V, E, w) with positive weights, is defined
by:

A
i,j

= A
j,i

= �w
i,j

and (4.8)

A
i,i

= �
X

i 6=j

A
i,j

. (4.9)

More general systems are solved via light-weight transformations to Laplacians. Consider
for example the case where the matrix A has a number of positive o↵-diagonal entries, and
the property A

i,i

=
P

i 6=j

|A
i,j

|. Positive o↵-diagonal entries have been a source of confusion
for Algebraic Multigrid (AMG) solvers, and various heuristics have been proposed. Instead,
CMG uses the double- cover reduction. Let A = A

p

+A
n

+D, where D is the diagonal of A
and A

p

is the matrix consisting only of the positive o↵-diagonal entries of A. Then from:
In this way, the original system is reduced to a Laplacian system, while at most doubling the
size. In practice it is possible to exploit the obvious symmetries of the new system, to solve
it with an even smaller space and time overhead.

Matrices of the form A+D
e

, where A is a Laplacian and D
e

is a positive diagonal matrix
have also been addressed in various ways by di↵erent AMG implementations. In CMG, we
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again reduce the system to a Laplacian. If d
e

is the vector of the diagonal elements of D,
then:

Ax = b ()

0
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It is possible to implement the reduction in a way that exploits the symmetry of the new
system, and with a small space and time overhead work only implicitly with the new system.

A symmetric matrix A is SDD, if A
i,i

�
P

i 6=j

|A
i,j

|. The two reductions above can reduce
any SDD linear system to a Laplacian system. Those matrices with non-positive o↵ diagonals
are known as M-matrices. It is well known that if A is an M-matrix, there is a positive
diagonal matrix D such that A = DLD, where L is a Laplacian. Assuming D is known, an
M-system can also be reduced to a Laplacian system via a simple change of variables. In
many application D is given, or it can be recovered with some additional work.

There is a one-to-one correspondence between Laplacians and graphs, so the terms are
often used interchangeably.
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Chapter 5

Support Graphs

In this chapter is analyzed the Support Theory which is a fairly recent methodology for
bounding condition numbers of preconditioned systems and extremal eigenvalues. It is also
covered the relation between CMG and support graph theory.

5.1 Support Graph Preconditioning.

Support-graph preconditioning is to first construct a graph according to a given matrix A,
and then compute the preconditioner M as a reduced matrix based on the support of the
graph. The support is usually a specific subgraph extracted from the full graph.

Formally, support-graph preconditioning is to compute a preconditioner M such that the
generalized eigenvalues and the condition number of the matrix pencil (A, M ) are bounded.
If both A and M are SPD matrices, the convergence depends on the condition number (A,P)
computed as follows:

(A,M) =
�
max

(A,M)

�
min

(A,M)
(5.1)

where �(A,M) denotes the generalized eigenvalue. A stronger theoretical result on conver-
gence can be derived as follows. Define the support of (A,M), denoted by �(A,P ), as follows:

�(A,M) = {⌧ 2 R|xT (⌧P �A)x � 08x 2 Rn} (5.2)

To more e↵ectively trade o↵ the the memory consumption and convergence rate of iter-
ative algorithms, support-graph preconditioner can be naturally applied to accelerate large-
scale power grid analysis by extracting the maximum spanning tree from the original power
grid structure. Existing direct matrix solvers can be applied to generate the support-graph
preconditioner based upon the spanning- tree theory. Since the support graph maintains a
tree-structure, during the matrix factorization process, the number of new fill-ins can be very
well controlled, especially when appropriate node ordering techniques are used. As a result,
compared with existing black-box incomplete matrix factorization-based preconditioners such
as incomplete Cholesky preconditioner, the matrix factor associated with the support graph
can serve as a more e�cient preconditioner with guaranteed convergence. To achieve higher
e�ciency in large-scale power grid analysis, hierarchical support graphs are used.
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5. Support Graphs

Hierarchical Support Graph.

Instead of using the low-stretch spanning tree, it is used a maximum spanning tree to ap-
proximate the low-stretch spanning tree. The procedure is the following:

Arbitrarily pick a starting node, add it to the visited node list, choose the maximum
weighted outgoing edge from the visited node list, and add the new node in. Repeat the
above procedure until all nodes are visited.

5.2 Preconditioning for fixed degree graphs.

A simple and fully parallel implementation can be made in the case of fixed degree graphs.
The decomposition is computed by performing the following simple steps:

I From the given graph A, form the graph Â by independently perturbing each edge by a
random constant in (1, 2).

II For each vertex u keep in A the heaviest incident edge of u in Â , to form a subgraph B
of A, which is a forest of trees.

III Independently split each tree in B into clusters of size at most k for some constant k.

To see why step 1 generates a forest B, consider the graph B̂ consisting of the edges of
B with their weighting in Â. The graph B̂ is unimodal, i.e. for each path u1, . . . , u

k

there is
no edge u

i

, u
i+1 which is lighter than its two adjacent edges. This happens because u

i

, u
i+1

is the heavier incident edge of either u
i

or u
i+1 . From this it also follows that B̂ and thus B

are forests of trees. If the maximum degree in the graph is d, this simple process generates
a [2d2k, 2] decomposition. This occurs because the conductance of the closure of each cluster
in B̂ is at least 1

dk

by the unimodality property. This implies that the conductance of the
closure of every class in A is at most 1

2d2k . The reduction factor is at least 2 because every
vertex is assigned to a cluster. Decomposition can be used to construct a preconditioner with
a constant condition number and at most n

2 Steiner vertices.

5.3 Combinatorial Preconditioning.

Combinatorial preconditioning which is motivated by the problem of simplifying linear sys-
tems and is defined by a technique that relies on graph algorithms to construct e↵ective
preconditioners. It studies the approximation of graphs by other simpler graphs with respect
to the condition number metric.

The simplest applications of combinatorial preconditioning target a class of matrices that
are isomorphic to a weighted undirected graph. The coe�cient matrix A is viewed as its
isomorphic graph G

A

. A specialized graph algorithm constructs another graph G
B

such that
the isomorphic matrix B is a good preconditioner for A. The graph algorithm aims to achieve
two goals: the inverse of B should be easy to apply, and the spectrum of B�1A should be
clustered. It turns out that the spectrum of B�1A can be bounded in terms of properties of
the graphs G

A

and G
B

; in particular, the quality of embeddings of G
A

in G
B

(and sometimes
vice versa) plays a fundamental role in these spectral bounds.
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5.4. Steiner Preconditioners.

5.4 Steiner Preconditioners.

The fast construction of preconditioners that use extra vertices.The laminar decomposition
can be used for the construction of provably good Steiner trees which can be extended from
Steiner trees to more general Steiner graphs. At 5 is shown that graphs can be used as
preconditioners. Steiner preconditioners implement that theory with the use of multi-way
clusterings as well.

According to [4] , given a graph A with n vertices, a Steiner support graph S for A is
a graph with n vertices corresponding to the vertices of A and m extra or Steiner vertices.
The analysis of their quality can be reduced to the analysis of the support of the pair (A, B)
where B is the Schur complement with respect to the Steiner vertices of S.

Quotient and Steiner graphs.

Let P be an edge cut, i.e. a partitioning of the vertices of the graph A into disjoint sets Vi,
i = 1, . . . ,m. Let T

i

be a tree with: (i) leaves corresponding to the vertices in V
i

, (ii) root r
i

,
and (iii) for each u 2 V

i

, w(r
i

, u) is the total incident weight of u in A. We define the quotient
graph Q on the set of the roots of the trees T

i

, by letting w(r
i

, r
j

) = cap(V
i

, V
j

) . We define
the Steiner graph with respect to P, as S

P

= Q+
P

m

i=1 Ti

.
The main result of this section is a Theorem that characterizes the support �(S

P

, A) with
respect to the parameters �,� of the decomposition P . Before we get there we need to show
some Lemmas.

Theorems and Lemmas

Lemma1: If S is a Steiner graph for A and B
S

is Schur complement with respect to the
elimination of the Steiner vertices of S, we have

�(B
S

, A) = max
x

min
y

x!
y!(x�y)!

T

xTAx
(5.3)

where y 2 Rm , and x is orthogonal to the constant vector.

Lemma2: Steiner support transitivity Let S, S be Steiner graphs for A, with the same
number of vertices. Also, let B

S

, B
S

be the Schur complements with respect to the
elimination of the Steiner vertices of S, S .

�(B
S

, A)  �(S0, S)�(B
S

0 , A) (5.4)

Lemma3: Star complement support Let A be a graph with n vertices of volumes ↵1 
· · · ↵

n

and S be the star graph with n edges corresponding to the vertices of A.
Assume that 8i  n� 1 the weight c

i

of the ith edge of S satisfies c
i

 ��1↵
i

. Then if
c
n

 ��1↵
n

or ↵
n

�
P

kn�1 ↵k

we have �(S,A)  2
��

2
A

, where �
A

the conductance of

A.

Theorem: If P is a (�,� ) decomposition of A then �(S
P

, A)  3(1 + 2
��

2 ) . If P is a [�,⇢ ]

decomposition of A then �(S
P

, A)  3(1 + 2
�

3 ) .
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From steiner preconditioners to multigrid.

Algebraically, any of the classic preconditioned iterative methods, such as the Jacobi and
GS iteration, is nothing but a matrix S, which gets applied implicitly to the current error
vector e, to produce a new error vector e0 = Se. For example, in the Jacobi iteration we have
S = (I � D�1A). This has the e↵ect that it reduces e↵ectively only part of the error in a
given iterate, namely the components that lie in the low eigenspaces of S.

The main idea behind CMG is that the current smooth residual error r = b - Ax, can
be used to calculate a correction RTQ�1Rr, where Q is a smaller graph and R is an m ⇥
n restriction operator. The correction is then added to the iterate x. The hope here is
that for smooth residuals, the low-rank matrix RTQ�1R is a good approximation of A�1.
Algebraically, this correction is the application of the operator T = (I � RTQ�1RA) to the
error vector e. The choice of Q is most often not independent from that of R. Also,

Q = RART (5.5)

Steiner preconditioners, introduced in 3.4 introduce external nodes into preconditioners.
CMG is based on a partitioning of the n vertices in V into m vertex-disjoint clusters V

i

. For
each V

i

, the preconditioner contains a star graph S
i

with leaves corresponding to the vertices
in V

i

rooted at a vertex r
i

. The roots r
i

are connected and form the quotient graph Q.

5.5 Multigrid Preconditioning.

An MG method, mentioned at 3.2 with an intentionally reduced tolerance can be used as an
e�cient preconditioner for an external iterative solver. The solution may still be obtained
in time as well as in the case where the multigrid method is used as a solver. Multigrid
preconditioning can be used in linear systems.

Generalized multigrid methods.

Multigrid methods can be generalized in many di↵erent ways. They can be applied nat-
urally in a time-stepping solution of parabolic PDEs, or they can be applied directly to
time-dependent PDEs. Multigrid methods can also be applied to integral equations, or for
problems in statistical physics.

Other extensions of multigrid methods include techniques where no PDE nor geometrical
problem background is used to construct the multilevel hierarchy. Such algebraic multigrid
methods (AMG) construct their hierarchy of operators directly from the system matrix, and
the levels of the hierarchy are simply subsets of unknowns without any geometric interpre-
tation. Thus, AMG methods become true black-box solvers for sparse matrices. However,
AMG is regarded as advantageous mainly where geometric multigrid is too di�cult to apply.

CMG method.

Combinatorial Multigrid (CMG), is a variant of Algebraic Multigrid (AMG) providing strong
convergence guarantees for SDD linear systems. It is fundamental the potential for immediate
impact on the design of industrial strength code for important applications. In contrast to
AMG, CMG o↵ers strong convergence guarantees for the class of SDD matrices and under
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5.5. Multigrid Preconditioning.

certain conditions for the even more general class of symmetric M-matrices. The conver-
gence guarantees are based on recent progress in spectral graph theory and combinatorial
preconditioning 5.3. At the same time, linear systems from these classes play an increasingly
important role in various fields [2].

MG algorithms are commonly used as preconditioners to other iterative methods, as a
result the main advantage of the CMG solver comparing to other iterative methods is that it
can be used as a preconditioner to CG.

CMG Description and Parallel Implementation Details.

At a high level, the key idea behind CMG is that the provably small condition number
(A,B), where B is given in 4.3, is equal to the condition number (Â, B̂). We have the
two-level algorithm, which is described in the appendix and can be extended into a full
multigrid algorithm, by recursively calling the algorithm when the solution to the system
with Q is requested. This produces a hierarchy of graphs. The full multigrid algorithm, after
simplifications in the algebra of the two-level scheme is described in the appendix as well.

More detailed, the CMG algorithm consists of the setup phase which computes a multigrid
hierarchy, and the solve phase. The setup phase constructs a hierarchy of SDD matrices
A = A0, . . . , Ai

. As with most variants of AMG, CMG uses the Galerkin condition 5.5 to
construct the matrix A

i+1 from A
i

. This amounts to the computation of a restriction operator
R

i

2 Rdim(A
i

)dim(A
i+1), and the construction of A

i+1 via the relation A
i+1 = RT

i

A
i

R
i

. CMG
constructs the restriction operator R

i

by grouping the variables/nodes of A
i

into dim(A
i+1)

disjoint clusters and letting R(i, j) = 1 if node i is in cluster j, and R(i, j) = 0 otherwise.
This simple approach is known as aggregate-based coarsening, and it has recently attracted
significant interest due to its simplicity and advantages for parallel implementations. Classic
AMG constructs more complicated restriction operators that can be viewed as (partially)
overlapping clusters. The main di↵erence between CMG and other AMG variants is the
algorithm for clustering, which in the CMG case is combinatorially rather than algebraically
driven. The running time of the CMG setup phase is negligible comparing to the actual MG
iteration.

The solve phase of CMG , which is dominated by Sparse Matrix-Vector multiplication
(SpMV) operations, is quite similar to the AMG solve phase. the pseudo- code is given in the
appendix. When t

i

= 1, the algorithm is known in the MG literature as the V-cycle, while
when t

i

= 2, it is known as the W-cycle. It has been known that the aggregate- based AMG
does not exhibit good convergence for the V-cycle. More complicated cycles are expected to
converge fast, without blowing up the total work performed by the algorithm. t

i

is as follows:

t
i

= max

⇢
d nnz(A

i

)

nnz(A
i

+ 1)
� 1e, 1

�
. (5.6)

where, nnz(A) denotes the number of nonzero entries of A. This choice for the number
of recursive calls, combined with the fast geometric decrease of the matrix sizes, targets a
geometric decrease in the total work per level.

In the parallel Matlab implementation, CMG solve phase has been optimized by using
di↵erent SpMV implementations for di↵erent matrix sizes. When the matrix size is larger
than 1K, is used the blocked version of SpMV, and when it is smaller than that, it is resorted
to the plain parallel implementation, where the matrix is stored in full and each row can be
computed in parallel. The reason is that the blocked version of SpMV has higher overhead
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5. Support Graphs

than the simple implementation for smaller matrices.
The CMG solve phase is the implicit inverse of a symmetric positive operator B. The

condition number (A,B) can therefore be defined, and it characterizes the rate of convergence
of the preconditioned CG iteration. The CMG core works with the assumption that the system
matrix A is SDD.

In summary, CMG exploits both symmetry and precision reduction, in applications that
are well suited for the diagonal hierarchical blocking approach, where a decomposition of a
matrix into a tree of submatrices occurs. Moreover, the performance improvements we see
for CMG are expected to carry over to other flavors of multigrid.

The CMG algorithm is described at the Appendix 6.2 . At 6.2 is also presented the
structure of the Spice-like simulator including the CMG preconditioner.
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Chapter 6

Results and conclusions

In this chapter is made a comparative analysis between CMG preconditioner and incomplete
cholesky preconditioner.

6.1 Results

IBM Power Grid Benchmarks for DC Analysis

i for current source

n for nodes (total number, does not take shorts into account)

r for resistors (include shorts)

s for shorts (zero value resistors and voltage sources)

v for voltage sources (include shorts). 0 for SPD system

IBM Power Grid Benchmarks
DC Analysis-tolerance 1e-3

Name i n r s v l CMG time CMG iter incChol time incChol iter
ibmpg2 37926 127238 208325 1298 0 5 1.413250 20 32.606550 1284
ibmpg4 276976 953583 1560645 11682 0 6 5.361745 17 508.570326 2254
ckt1 1.2 6.29 12.57 0 0 5 36.9 40 640 850

Table 6.1: IBM Power Grid Benchmark for DC Analysis with tolerance 1e-3

IBM Power Grid Benchmarks
DC Analysis-tolerance 1e-6

Name i n r s v l CMG time CMG iter incChol time incChol iter
ibmpg2 37926 127238 208325 1298 0 5 1.119179 32 39.246141 1485
ibmpg4 276976 953583 1560645 11682 0 6 9.756959 27 582.352378 2500
ckt1 1.2 6.29 12.57 0 0 5 56.6 62 1054 1400

Table 6.2: IBM Power Grid Benchmark for DC Analysis with tolerance 1e-6
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6. Results and conclusions

l for metal layers

6.2 Graph vertices, density and reduction

IBM Power Grid Benchmark number 2

Level 1: Graph vertices:127235
Level 2. Graph vertices: 42599
Density : 5.11413
Reduction factor in vertices : 2.98681
Reduction factor in edges : 2.49652
*****************
Level 3. Graph vertices: 10582
Density : 5.38896
Reduction factor in vertices : 4.02561
Reduction factor in edges : 3.82031
*****************
Level 4. Graph vertices: 2572
Density : 6.23639
Reduction factor in vertices : 4.11431
Reduction factor in edges : 3.55524
*****************
Level 5. Graph vertices: 676
Density : 6.38462
Reduction factor in vertices : 3.80473
Reduction factor in edges : 3.7164
*****************
Level 6. Graph vertices: 161
Density : 6.10559
Reduction factor in vertices : 4.19876
Reduction factor in edges : 4.39064
*****************

IBM Power Grid Benchmark number 3

Level 2. Graph vertices: 283993
Density : 5.3102
Reduction factor in vertices : 2.9986
Reduction factor in edges : 2.42311
*****************
Hierarchy constructed in 0.260000 seconds
Level 3. Graph vertices: 82313
Density : 5.4089
Reduction factor in vertices : 3.45016
Reduction factor in edges : 3.3872
*****************
Level 4. Graph vertices: 22790
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Density : 5.58605
Reduction factor in vertices : 3.6118
Reduction factor in edges : 3.49727
*****************
Level 5. Graph vertices: 5832
Density : 6.21399
Reduction factor in vertices : 3.90775
Reduction factor in edges : 3.51286
*****************
Level 6. Graph vertices: 1339
Density : 6.53249
Reduction factor in vertices : 4.35549
Reduction factor in edges : 4.14313
*****************
Level 7. Graph vertices: 343
Density : 6.34111
Reduction factor in vertices : 3.90379
Reduction factor in edges : 4.02161
*****************
Hierarchy constructed in 1.440000 seconds

IBM Power Grid Benchmark number 4

Level 1: Graph vertices:953580
Level 2. Graph vertices: 325447
Density : 5.63642
Reduction factor in vertices : 2.93006
Reduction factor in edges : 2.21164
*****************
Level 3. Graph vertices: 99139
Density : 5.29665
Reduction factor in vertices : 3.28273
Reduction factor in edges : 3.49331
*****************
Level 4. Graph vertices: 24226
Density : 6.04408
Reduction factor in vertices : 4.09226
Reduction factor in edges : 3.58619
*****************
Level 5. Graph vertices: 5894
Density : 6.54496
Reduction factor in vertices : 4.11028
Reduction factor in edges : 3.79573
*****************
Level 6. Graph vertices: 1477
Density : 6.63981
Reduction factor in vertices : 3.99052
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Reduction factor in edges : 3.93352
*****************
Level 7. Graph vertices: 363
Density : 6.43251
Reduction factor in vertices : 4.06887
Reduction factor in edges : 4.2
*****************
Hierarchy constructed in 1.550000 seconds

IBM Power Grid Benchmark number 5

Level 2. Graph vertices: 515791
Density : 5.07972
Reduction factor in vertices : 3.13716
Reduction factor in edges : 2.26217
*****************
Level 3. Graph vertices: 148103
Density : 6.43242
Reduction factor in vertices : 3.48265
Reduction factor in edges : 2.75027
*****************
Level 4. Graph vertices: 32774
Density : 5.96876
Reduction factor in vertices : 4.51892
Reduction factor in edges : 4.86996
*****************
Level 5. Graph vertices: 6996
Density : 6.0223
Reduction factor in vertices : 4.68468
Reduction factor in edges : 4.64303
*****************
Level 6. Graph vertices: 199
Density : 2.15578
Reduction factor in vertices : 35.1558
Reduction factor in edges : 98.2098
*****************
Hierarchy constructed in 2.390000 seconds
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Appendix

Overall Circuit Simulation Flow

Algorithms

In the appendix are presented the basic algorithms that have been mentioned in the previous
sections and are implemented in the thesis.

Algorithm 1 Preconditioned Conjugate Gradient (PCG)

r(0) = b�Ax(0) for some initial guess x(0)

for i = 1, 2, . . . do

solve Mzi�1 = ri�1

⇢
i�1 = r(i�1)T z(i�1)

if (i = 1) then
p(1) = z(0)

else

�i�1 = ⇢

i�1

⇢

i�2

pi�1 = zi�1 + �
i�1p

i�1

end if

q(i) = Ap(i)

↵
i

=
⇢(i�1)

p

(i)T
q(i)

r(i) = r(i�1) � ↵(i)q
(i)

check convergence; continue if necessary

end for

Code implementation structure
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Appendix

Figure 1: Overall Circuit Simulation Pseudo-Code.
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Code implementation structure

Algorithm 2 Preconditioned BiCG

r(0) = b�Ax(0) for some initial guess x(0)

choose r̃(0) for example: r̃(0) = r(0)

for i = 1, 2, . . . do

solve Mzi�1 = ri�1

solve MT z̃i�1 = r̃i�1

⇢
i�1 = r̃(i�1)T z(i�1)

if (i = 1) then
p(1) = z(0)

p̃(1) = z̃(0)

else

�i�1 = ⇢

i�1

⇢

i�2

pi�1 = zi�1 + �
i�1p

i�1

p̃i�1 = z̃i�1 + �
i�1p̃

i�1

end if

q(i) = Ap(i)

q̃(i) = AT p̃(i)

↵
i

=
⇢(i�1)

p̃

(i)T
q(i)

x(i) = x(i�1) � ↵(i)p
(i)

r(i) = r(i�1) � ↵(i)q
(i)

r̃(i) = r̃(i�1) � ↵(i)q̃
(i)

check convergence; continue if necessary

end for

Algorithm 3 Two-level CMG

Input: Laplacian A=(V,E,w),vector b, approximate solution x, n⇥m restriction matrix R

Output: Updated solution x for Ax = b
1. D : diag(A); Â := D�1/2AD�1/2
2. z := (I � Â)D�1/2x+D�1/2AD�1/2

3. r := D�1/2b� Âz;w := RD1/2

4. Q := RART ;SolveQy = w;
5. z := z +D1/2RT y;
6. x := D�1/2((I � Â)z +D�1/2b)
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Algorithm 4 CMG

function x := CMG(A
i

, B
i

)
1. D : diag(A);
2. x := D�1b
3. r

i

:= b
i

�A
i

D�1b
4. b

i+1 := Rr
i

5. z := CMG(A
i+1, Bi+1)

for i = 1, t
i

� 1 do

7. r
i+1 := b

i+1 �A
i+1z

8. z := z + CMG(A
i+1, ri+1)

end for

10. x := x+RT z
11. x := r

i

�D�1(A
i

x� b)

Figure 2: Structure of preconditioner.
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