
 “Διάφανη υποστήριξη διασυνδεμένων δομών

δεδομένων σε ετερογενή παράλληλα συστήματα.”

 “Transparent support of linked data structures on

heterogeneous parallel systems.”

 A thesis

 submitted in fulfillment

 of the requirements for the degree

 of

 Computer and Communication Engineering

 at

 The University of Thessaly

 by

 Vasiliou Zoi

 Supervisors:

 Antonopoulos Christos

 Bellas Nikolaos

 Volos, 2013

2 Aknowledgements

 Copyright © 2013 Vasiliou Zoi

 All rights reserved

3 Aknowledgements

Aknowledgements

 It gives me great pleasure in expressing my gratitude to all those

people who have supported me and had their contributions in making

this thesis possible. First and foremost, I express my profound sense of

reverence to my supervisor Christos D. Antonopoulos for his constant

guidance, support, motivation and untiring help during the course of

my thesis and especially for his confidence in me. Also, I would like to

sincerely thank my co-advisor, Nicolaos Bellas, for his help and useful

advices throughout this study. I aknowledge my parents, Fotios and

Cleopatra, and my sister Mariza for their love and support throughout

my life. Last but not least, I would like to thank my friends for their

encouragement and all the cheerful moments that I recharged myself.

Especially, I would like to thank Vasso for being such a good listener

and her encouragement, and also Ifigeneia and Kathryne for the nice

moments.

4 Abstract

Abstract

 Acceleration of applications with low power consumption can only be

attained through programming heterogeneous parallel platforms.

These architectures include a single host coordinating a collection of

accelerators in the form of GPUs, DSPs, and FPGAs. However, due to

the fact that the components of the heterogeneous platforms usually

have separate memory spaces and have different architectures, the

support of complex data structures is difficult on these systems. The

purpose of this undergraduate thesis is the transparent support of linked

data structures on heterogeneous parallel systems. Our requirements

are low-overhead and no extensive changes of code. Linked data

structures require many transfers between the components of the

system. Since transfers cost due to latency, we have developed a

method minimizing the transfers among the components of the system.

Also, since components have different architectures and compilers, the

data may not be represented in the same way, and hence we face

problem at the mapping of data from one component to another. So,

we have developed a method which ensures that the data will have

the same form among the components of the system. As for the

method minimizing the transfers, we have developed our own memory

manager which stores the nodes of the linked data structures in such a

way so as one transfer is needed. However, the linked data structures

have as elements pointers which are invalid from one component to

another. The memory manager enables the procedure of making

pointers valid thanks to the way of storing the data. As for the same

representation of data among the components, we have developed

functions that enforce the same representation for data of structure

type. Also we propose a method for supporting linked data structures

at a heterogeneous system with components with different virtual

address space bit-width. As case study we have used the application

Gerris whose primary data structure is a tree which we attempted to

transfer to a graphical processing unit. At the main part of thesis, we

describe the goals, the problems we faced, and the final solutions.

5 Περίληψη

Περίληψη

Η επιτάχυνση των εφαρμογών σε συνδυασμό με χαμηλή ισχύ μπορεί

μόνο να επιτευχθεί μέσω ετερογενών παράλληλων πλατφόρμων. Αυτές

oι αρχιτεκτονικές περιλαμβάνουν έναν μόνο κεντρικό επεξεργαστή (host)

που συντονίζει μια συλλογή από επιταχυντές όπως GPUs, DSPs και

FPGAs. Εξαιτίας του γεγονότος ότι τα συστατικά μέρη των ετερογενών

πλατφόρμων συνήθως ανήκουν σε ξεχωριστούς χώρους μνήμης και

βασίζονται σε διαφορετικές αρχιτεκτονικές, η υποστήριξη πολύπλοκων

δομών δεδομένων σε ετερογενή παράλληλα συστήματα είναι δύσκολη.

Ο στόχος της διπλωματικής είναι η διαφανή υποστήριξη

διασυνδεδεμένων δομών δεδομένων σε ετερογενή παράλληλα

συστήματα. Οι απαιτήσεις μας είναι χαμηλή επιβάρυνση και μη

εκτεταμένες αλλαγές στον κώδικα. Οι διασυνδεδεμένες δομές δεδομένων

απαιτούν πολλές μεταφορές μεταξύ των συστατικών μερών του

συστήματος. Επειδή οι μεταφορές κοστίζουν λόγω latency, έχουμε

αναπτύξει μια μέθοδο που μειώνει τις μεταφορές μεταξύ των συστατικών

μερών του συστήματος. Επίσης, επειδή τα συστατικά μέρη έχουν

διαφορετικές αρχιτεκτονικές και διαφορετικούς μεταγλωττιστές, τα

δεδομένα ίσως δεν αναπαρίστανται με τον ίδιο τρόπο μεταξύ των

συστατικών μερών, γι’αυτό αντιμετωπίζουμε το πρόβλημα της

αντιστοιχίας των δεδομένων από το ένα συστατικό μέρος στο άλλο.

Γι’αυτό το λόγο , αναπτύξαμε μια μέθοδο που επιβεβαιώνει ότι τα

δεδομένα θα έχουν την ίδια αναπαράσταση στα συστατικά μέρη του

συστήματος. Όσον αφορά τη μέθοδο που μειώνει τις μεταφορές των

δεδομένων, έχουμε αναπτύξει τον δικό μας διαχειριστή μνήμης με τον

οποίο τα δεδομένα ο οποίος αποθηκεύει τα δεδομένα με τέτοιο τρόπο

έτσι ώστε να χρειάζεται μια μεταφορά. Οι διασυνδεδεμένες δομές, όμως,

έχουν στοιχεία που χρησιμοποιούν δείκτες, οι οποίοι δείχνουν σε μη

έγκυρες θέσεις μνήμης όταν μεταφέρονται από το έναν συστατικό

μέρος στο άλλο. Ο διαχειριστής μνήμης διευκολύνει τη διαδικασία

μετατροπής των δεικτών ώστε να δείχνουν σε ώστε να δείχνουν σε

έγκυρες θέσεις μνήμης λόγω του τρόπου που αποθηκεύει τα δεδομένα,

Όσον αφορά την ίδια αναπαράσταση των δεδομένων μεταξύ των

συστατικών μερών, έχουμε αναπτύξει συναρτήσεις που εγγυώνται την

ίδια αναπαράσταση για δεδομένα που ανήκουν στον τύπο δομή.

Επίσης προτείνουμε μια μέθοδο για την υποστήριξη διασυνδεδεμένων

δομών σε ετερογενή συστήματα που αποτελείται από συστατικά μέρη με

διαφορετικό πλάτος bit του εικονικού χώρου διεύθυνσης. Ως μελέτη

περίπτωσης έχουμε χρησιμοποιήσει την εφαρμογή προσομοίωσης

κίνησης υγρών Gerris που χρησιμοποιεί ως δομή δεδομένων ένα δέντρο

6

το οποίο μεταφέραμε σε μια κάρτα γραφικών. Στο κυρίως μέρος της

διπλωματικής περιγράφουμε τους στόχους, τα προβλήματα που

αντιμετωπίσαμε και τις τελικές λύσεις.

7

Contents

Aknowledgements ... 3

Abstract .. 4

Περίληψη ... 5

Chapter 1 - Introduction .. 8

Chapter 2 - The Application Gerris .. 10

2.1 An introduction to Gerris .. 10

2.2 The data structures of Gerris .. 10

2.2.1 The quad tree .. 10

2.2.2 The full threaded tree ... 11

2.2.3 The whole domain ... 13

Chapter 3 -Heterogeneous parallel systems .. 14

3.1 From single-core era to heterogeneous era ... 14

3.1.1 Single Core Era .. 14

3.1.2 Multicore era ... 14

3.1.3 Heterogeneous Era .. 15

3.2 OpenCL ... 18

Chapter 4 - Transparent support of linked data structures on heterogeneous

parallel systems ... 22

4.1 General .. 22

4.2 Memory transfers aggregation .. 23

4.2.1 Pointer rewriting .. 26

4.3 Enforcing the same representation of data between components 28

4.3.1 Data alignment and padding .. 28

4.3.2 Same representation of structs between CPU and GPU 29

4.3.3 The same virtual address bit-width of the components 33

4.4 Limitations .. 33

4.5 Verification .. 34

Chapter 5 - Conclusion .. 35

Bibliography ... 36

8 Chapter 1 - Introduction

Chapter 1 - Introduction

 Raw performance was the ultimate objective over the past decade.

However, due to the increase of transistor density, each generation of

processors grew smaller, faster, dissipated more heat and consumed

more power. Therefore, there is a tendency to boost performance with

relatively low cost and power dissipation. There is a good reason to

believe that in a world where maximizing performance per watt is

essential, we can expect systems to increasingly depend on many

cores with specialized silicon whenever practical, since it has been

proven that the more specialized the core the more power-efficient it

is[]. For instance, general graphic processors units rely on specialized

silicon and have become increasingly attractive for general purpose

operations for addressing data parallel programming tasks.

 Since the applications usually present a mix of characteristics, there is

a transition to heterogeneous systems consisting of general processors

and specialized accelerators. For example, the data-parallel workloads

are executed on GPU, while the sequential code is executed on CPU.

Therefore, we need a hardware which is a hybrid combination of

components. Heterogeneous parallel architectures include one central

processor and a range of hardware accelerators such as GPUs, DSPs

and FPGAs e.t.c.

 Although heterogeneous systems offer high performance with

relatively low power dissipation, it is difficult to support complex linked

data structures on heterogeneous systems. The fact that the

components of the system belong to separate memory spaces and

have different architectures hinders the support of complex linked data

structures on such systems. However, most realistic applications use

linked data structures. The purpose of this thesis is the transparent

support of linked data structures on heterogeneous parallel systems

with low-overhead and no extensive changes of code.

 Linked data structures require many transfers between components

of the system. Since transfers cost due to latency, we have developed

a method minimizing the transfers among the components of the

system. In particular, we have developed our own memory manager

with which the data scattered in the heap are now stored in

segregated heaps in a continuous memory area so as one transfer is

needed. However, the linked data structures have as elements pointers

but since the components of a heterogeneous system have different

architectures, when the pointers are transferred to another

component, they will be invalid. Since we use continuous memory

9 Chapter 1 - Introduction

areas for storing the nodes of linked data structures, we can rewrite the

pointers to point to valid address space very easily. As for the same

representation of data among the components, we have developed

functions that enforce the same representation for structures. As

heterogeneous system, we use one of two components with different

virtual address space bit-width, hence the pointers of the components

have different sizes causing false mapping of the data from one

component to another and other problems. We propose a solution

which faces these problems.

 As case study, we have used the application Gerris[1][2][3]

simulating fluid flow and its primary data structure is a tree which we

transfer to a graphical processing unit.

 In chapter 2 and 3, we describe the necessary background. More

specifically, in chapter 2 we briefly present the application Gerris and

the data structures transferred to the GPU. In chapter 3, we discuss the

transition from single core era to multicore era and from multicore era

to heterogeneous era [9] and a multivendor open standard for

general-purpose parallel programming of heterogeneous systems

(OpenCL [11] [12]). In chapter 4, we discuss the memory manager we

have developed which minimizes the transfers and enables the pointer

rewriting so as pointers to be valid, how we keep the same

representation of data on different architectures, the limitations of our

implementation and how we verify its correctness. We discuss our final

thoughts in chapter 5.

10 Chapter 2 - The Application Gerris

Chapter 2 - The Application Gerris

 2.1 An introduction to Gerris

 Gerris [1][2][3] Flow Solver is a software project for computational fluid

dynamics. Named after the Gerris remigis or common water strider,

Gerris is a program for the solution of the partial differential equations

(incompressible Euler) describing fluid flow. The main objective of this

project is the primitive variables velocity and pressure to be calculated.

Gerris uses a numerical method for solving the incompressible Euler

equations, combining a quad/octree discretization, a projection

method, and a multilevel Poisson solver. The domain is spatially

discretized using square (cubic in 3D) finite volumes organized

hierarchically as a quadtree (octree in 3D). The primitive variables are

all defined at the centre of squares. For concentrating the

computational effort on the area where it is most needed, Gerris uses

dynamic adaptive mesh refinement where the quadtree structure is

discretized finer at the areas where there is more intensive fluid flow.

 Gerris can deal with simple boundaries and solid boundaries. There

are boundaries around each tree of domain. The fluid in the boundary

layer is subjected to shearing forces. A range of velocities exists across

the boundary layer from maximum to zero, provided the fluid is in

contact with the surface. So, some boundary conditions are applied to

the partial differential equations. Also, Gerris can deal with arbitrarily

complex solid boundaries embedded in the quad/octree mesh.

2.2 The data structures of Gerris

 2.2.1 The quad tree

 The type of spatial discretisation used for the integration of the Euler

equations is a quad tree for two dimensions (octree for three

dimensions). A quadtree is a tree data structure in which each internal

node has exactly four children, corresponding to four square subcells in

two dimensions. The fundamental idea behind the quadtree is that any

domain can be split into four quadtrants. Each quadrant may again be

split into four quadrants e.t.c. The corresponding three-dimensional

structure is an octree. The level of a cell is defined by starting from zero

for the root cell and by adding one every time a descendant child is

added. Each cell C may have a direct neighbor in each direction d

(four in 2D, six in 3D). Each of these neighbors is accessed through a

11 Chapter 2 - The Application Gerris

face of the cell. Also, cells cut by a solid boundary are defined as

mixed cells. The cells and tree structure of the quad tree are illustrated

in Figure 1 .

Figure 1

The quad tree

As for the total number of the cells contained in a quad tree, each k-th

level contains 4*k squares, so the tree has a total of cells:

 Ν =

2.2.2 The full threaded tree

 The full threaded tree [4] is used by Gerris as the implementation of the

quad tree (and octree for 3D). All cells are organized in groups called

octs. Each cell has a physical state vector U (vector U is the data at

which each cell points at figure) associated with it, and a pointer to an

oct which contains its children, if any, or a nil pointer. Each oct contains

four cells in 2D (eight in 3D) and information. Each oct knows its level,

which is equal to the level of the oct's cells and has a pointer to a

parent cell and four pointers (six pointers in 3D) to parent cells of

neighboring octs. This information is enough to find neighbors, children

and parents of every cell without searching. The full threaded tree

represents the intermediate cells of the tree and is illustrated in Figure 2 .

12 Chapter 2 - The Application Gerris

 Figure 2

 The full threaded tree

13 Chapter 2 - The Application Gerris

2.2.3 The whole domain

The whole domain may consist of more than one tree. The trees are

connected with each other as neighbors. Apparently, the number of

roots of domain is equal to the number of trees. An example of a

domain with three trees is illustrated in Figure 3.

 Figure 3

 The domain is consisted of three trees connected with each other. Each cell of the

tree points to a vector depicted as data. This vector represents all the variables used

by each cell.

Each cell has neighbors in all directions (four in 2D). A neighbor can be

a root, a cell, or a boundary. Cells on the boundary of the domain may

not have neighbors in all directions.

14 Chapter 3 -Heterogeneous parallel systems

Chapter 3 -Heterogeneous parallel

systems

3.1 From single-core era to heterogeneous era

 3.1.1 Single Core Era

 Raw performance was the ultimate objective over the past decade.

Squeezing more and more transistors onto a single die, increasing the

clock rate and inventing architectural novelties were the trends for

boosting the application performance.

 In accordance with Moore’s Law[8] (which predicts a doubling of

transistors every 18 months) we have increased transistor density and

we have enjoyed continuous performance improvement for four

decades. However, as we allowed more and more transistors to be

squeezed onto the same chip, the power density increased. Power

converts to heat, and too much heat can destroy a chip in seconds. So

it has been predicted that soon some of the transistors should be left

unpowered or dark while the others will be working (known as dark

silicon[5]). In addition, throughout the 1990’s microprocessor frequency

was synonymous with performance. Higher frequency meant a faster,

more capable computer. Nevertheless, the ever-increasing transistor

density and clock rate reached a plateau since they cause power

consumption and temperature dissipation increase. In addition, it is

difficult to extract more instruction-level-parallelism (ILP) from

application codes. So each generation grew smaller, faster, and

dissipated more heat, hence there was need for other innovative

methods for high performance with relatively low power dissipation

(see [8]).

3.1.2 Multicore era

 It is irrefutable that “two heads are better than one” (see [8]).

Multicore processors [8] are often clocked at lower frequencies, but

have much better performance than a single-core processor. This is

reasonable since if the work can be executed parallel, it maximizes

resource utilization and thanks to lower frequencies we have lower

power consumption. However, multicore processing posed some

challenges. Regardless of chip organization and topology, multicore

scaling will be fundamentally limited by power constraints. The

15 Chapter 3 -Heterogeneous parallel systems

percentage of chip that can be powered is decreasing so as the chip

will not cross the limit of heat dissipation. The area of chip which cannot

be powered is known as dark silicon. It is predicted that the amount of

dark silicon will be more than 50% of the chip at 8nm. Therefore, there is

a question in the point in scaling down and increasing the number of

transistors per chip if we can't use them. Also, programmers are used to

programming for a single thread and now they have to get used to

finding the concurrency in their problem, and expressing that

concurrency in their software. However, this shift to parallel

programming is a daunting challenge for programmers since the

streams of operations that will execute concurrently must be defined,

the data they operate on associated with them, and the

dependencies between them should be managed so as the same

answer is produced with the single-threaded program.

 Meanwhile, the multicore era see some interesting developments in

GPUs. GPUs improve 3D graphics performance by offloading graphics

from the CPU. GPUs support SIMD instructions that enable them to

perform parallel operations on very large sets of data and they perform

them at much lower power consumption relative to the serial

processing of similar data sets on CPUs. So GPUs became increasingly

attractive for general purpose operations for addressing data parallel

programming tasks.

3.1.3 Heterogeneous Era

 Due to performance and power scalability constraints, we should

leave the single-core designs and move to heterogeneous computing.

Heterogeneous computing refers to systems that use more than one

kind of processor. We cannot continue with more aggressive general

purpose processor designs as they cannot accelerate every kind of

application without increasing complexity and power dissipation. There

is a shift to multicore systems so as to gain performance not just by

adding cores, but also by incorporating specialized processing

capabilities to handle particular tasks with low power consumption.

Processors specialized to a specific function have few wasted

transistors because they include only these functional units required by

their special function, while a general purpose processor must include

a wide range of functional units to respond to any computational

demand. Also, the specialized processors have simple control logic

and smaller caches compared with the CPU’s. Hence, the more

specialized the core, the more power-efficient it is ([11] chapter 1,

pages 4 -12). For instance, GPGPUs are specific-purpose processors

16 Chapter 3 -Heterogeneous parallel systems

since thanks to their vector processing capabilities; GPGPUs are used

for data-parallel workloads. The applications usually present a mix of

characteristics. There are parts being control-intensive, data-intensive,

I/O intensive and compute-intensive. For instance mathematically

intensive computations on very large data sets, which can be

parallelized, should be executed on GPGPU, while the control-intensive

part should be executed on CPU. It is apparent that we need a

hardware being a hybrid of various components. Therefore, we need a

mix of processors specialized in different tasks. Heterogeneous

architectures include one central processor and a range of hardware

accelerators such as GPUs, DSPs and FPGAs e.t.c. An example of a

heterogeneous system is illustrated in Figure 5. The heterogeneous future

is inevitable, a single application will exploit a number of processors

that are specialized for different tasks and are different in location (on-

die, from local to very remote e.t.c.).

Figure 4

The figure [9] summarizes the previous analysis for the transition from single-core to

multi-core and from multi-core to heterogeneous systems.

 As discussed above, acceleration of application with low power

consumption can only be attained through programming

heterogeneous parallel platforms. We will refer some of heterogeneous

systems’ characteristics:

1) Different computational elements

The computational elements in the system may have different

instruction sets and different architectures and may run at

different speeds. An effective program must take into account

17 Chapter 3 -Heterogeneous parallel systems

these differences and appropriately map the parallel software

onto the most suitable devices.

2) Each component may have different programming model

For instance, should we want to program CPU in parallel, we can

use OpenMP or Pthreads, while programming Nvidia GPUs

means using CUDA Programming model and GPUs from multiple

vendors requires OpenCL programming model.

3) Deep complex memory hierarchy

Some components of heterogeneous systems may expose deep

complex memory hierarchies. Usually, the architecture of

components is NUMA (Non-Uniform Memory Access), where the

memory access time depends on the memory location relative

to a processor. The hardest part is that the memory hierarchy of

some accelerators is not hardware-controlled. Therefore, in these

cases the programmer should explicitly transfer the data to the

region being nearest to the processor.

4) Separate memory spaces

The components of a heterogeneous system have separate

memory spaces. That means that the components store

separate copies of data in separate memory spaces. The latter

implies that a pointer may have different “meanings” (and may

be invalid) on different components of the system. So it is

necessary the transfer of data between components. The CPU

and GPU, for example, have separate memory spaces, as the

GPU is connected with the CPU as peripheral via PCI-Express.

Figure 5

A heterogeneous systems architecture [12] accelerated processing unit with two dual

core CPUs and one GPU. The serial and task parallel workloads are assigned to the

CPUs, while the data parallel workloads are assigned to the GPU.

18 Chapter 3 -Heterogeneous parallel systems

The heterogeneous systems of interest to high performance computing

use an attached coprocessor or accelerator that is optimized for

certain types of computation. These devices typically exhibit internal

parallelism, and execute asynchronously and concurrently with the

host processor Programming heterogeneous parallel platforms [], we

have to deal not only with parallelism but with an attached

asynchronous device as well, and with the complexity on parallel

programming on that device. In particular, the program must manage

the concurrent activities between the host and device, and manage

data locality between the host and device. Hence, hardware

heterogeneity is complicated and programmers have come to

depend on high-level abstractions that hide the complexity of the

hardware. OpenCL is a framework providing that high-level

abstraction. Its key feature is functional portability across different

heterogeneous which is achieved via its abstracted and execution

model. More specifically, OpenCL implementation is correctly adjusted

to suit to the target architecture, hence allows the programmer to

make use of multiple execution devices present on a platform. Below

we present a brief introduction to the OpenCL language.

3.2 OpenCL

OpenCL(OpenComputing Language) [11][12][16] is a multivendor

open standard for general-purpose parallel programming of

heterogeneous sytems that include CPUs, GPUs and other processors

and is destined for data/task parallel computations. OpenCL promises

functional portability. OpenCL provides a uniform programming

environment for software developers to write efficient, portable code

for high-performance compute servers, desktop computer systems,

and handheld devices. Hence, OpenCL has the potential to transform

the software industry.

 The OpenCL platform layer implements platform-specific features

that allow applications to query OpenCL devices, device configuration

information, and to create OpenCL contexts using one or more

devices. An OpenCL platform always includes a single host and a

collection of devices managed by OpenCL framework. The host is

connected to one or more OpenCL devices. The device is where the

parallel routine will be executed. The OpenCL application consists of

the host program and one or more kernels. Kernels are the streams of

instructions executing on the OpenCL devices. Therefore, the OpenCL

19 Chapter 3 -Heterogeneous parallel systems

device is often referred to as compute device. OpenCL supports

multiple device classes namely CPUs, GPUs, DSPs, the IBM Cell and

other processors. The OpenCL devices are further divided into

compute units which are further divided into one or more processing

elements. Computation on a device occurs within the processing

elements. The host sends commands to devices for execution of code,

for transfer of data or synchronization. The OpenCL platform model is

illustrated in Figure 6 .

Figure 6

 The OpenCL platform model with one host and one or more OpenCL devices. The

host is connected to one or more OpenCL devices. Each OpenCL device has one or

more compute units, each of which has one or more processing elements(see [11]

chapter 1, page 12).

OpenCL provides functions to:

1) discover the components that makeup the heterogeneous

system.

2) create contexts representing the devices to be used.

3) perform host-device transfers.

4) compile the kernel function which will be executed on chosen

devices.

5) launch the kernel.

6) check for errors.

7) program the kernel functions.

20 Chapter 3 -Heterogeneous parallel systems

Memory model

The OpenCL memory model defines a relaxed consistency model. In

other words, the values seen in memory by an individual thread are not

guaranteed to be consistent across the full set of threads at all times. A

summary of the memory model in OpenCL and how the different

memory regions interact with the platform model is illustrated in Figure 7.

The host memory is a memory region being visible only by the host. The

host and OpenCL device memory models are independent of each

other.

Four types of memory are available on the OpenCL devices:

 Global memory

The largest memory of the device with relatively high latency

and visible by all threads.

 Constant memory

Small, read-only memory with low-latency.

 Local Memory

Accessible by multiple processing elements belonging to the

same compute unit. It is much faster than global memory , since

it is closer to the processing elements that global memory.

 Private memory

Memory region accessible within each processing element. It is

the fastest memory of the device since it is similar to registers in a

CPU core.

Figure 7

 The OpenCL memory management is explicit. The data must be moved from host

memory to global memory, from global memory to local memory and back.

21

Steps for creating an OpenCL application:

An OpenCL application must carry out the following steps (see Figure 8):

1) Discover the components that make up the heterogeneous

system.

2) Probe the characteristics of these components and choose

which are suitable for the application.

3) Create the kernels that will run on the platform.

4) Transfer data from host to devices.

5) Execute the kernels in the right order and on the right

components of the system.

6) Transfer the final results from devices to the host.

 Figure 8

 Steps for an OpenCL application

22

Chapter 4 - Transparent support of linked

data structures on heterogeneous parallel

systems

4.1 General

 The current trend for using linked data structures on heterogeneous

systems[7][9][10] is to be avoided. This happens since it is difficult the

support of linked structures on heterogeneous systems. However, most

realistic applications use linked data structures. In order to solve this

problem, we have developed a transparent method supporting this

kind of structures on heterogeneous systems. Our demands are low-

overhead and no extensive changes of code.

 Linked data structures cause many transfers of data between the host

and the device since the nodes are scattered in the memory. Transfers

between the components of the system cost due to latency (see [14]),

thus we have developed a method minimizing these transfers and we

discuss it at section

4.2 Memory transfers aggregation”. At this section, we propose the use

of a continuous memory area so as one transfer is needed. In addition,

since the architecture of the device is different from the host’s one, the

pointers of the linked data structures on the device will be invalid,

Hence, it is necessary to rewrite the pointers which is enabled by the

fact that continuous memory areas are allocated. Also, the

components of a heterogeneous system have different architectures,

therefore the data may be represented in different way. This problem is

more frequent when the form of the data is structure as padding is

added differently due to the different compilers of the components.

We have developed a method which guarantees the same

representation of data between the components of the system and it is

described at section”4.3 Enforcing the same representation of data

between components”. Finally we describe the “Σφάλμα! Το αρχείο

προέλευσης της αναφοράς δεν βρέθηκε.” of our implementation and

the “4.5 Verification” of its correctness.

23

Chapter 4 - Transparent support of linked data structures on heterogeneous parallel
systems

4.2 Memory transfers aggregation

 One of the trickiest things in programming heterogeneous systems is

managing the transfer of data between devices. Transferring data

takes time and the programmer must be careful so that the transfer

time does not overpower any performance gains from parallelizing the

algorithm. When it comes to transfer time, we usually think of it as

having two components: the time due to latency and the time

depending on the size of data being transferred. The last time is

calculated as the size of data divided by the bandwidth, while the

time due to latency is constant. So the latency is added cumulatively

at each transfer, thus, we prefer as few transfers as possible so as not to

have high overhead of latency.

Linked data structures have nodes which are scattered in the heap.

We cannot sustain this form of data structure as we must transfer each

node to the device implying many small data transfers. Thus the nodes

must be stored in a large continuous memory area.

 It is preferred one large transfer instead of many smaller since we pay

the transfer latency one time and exploit the bandwidth better.

However, one large transfer is not easy because the data are

scattered in the memory. Therefore, we should do some extra work

creating our own memory manager.

 In order to avoid many small data transfers between host and device,

the solution is the use of a continuous memory area. In particular, our

technique is illustrated at Figure 9 where the data are scattered in the

first heap, and we save them in a continuous memory area in the

second heap. We allocate initially a contiguous memory area and

here in after we assign addresses from this area. When the first data

segment is allocated, we put a pointer to point at the end of that

segment. So, the second data segment is allocated next to the first,

and generally every data segment is allocated next to the previous

one. In this way, the nodes of the linked data structures are stored as

segregated heaps in a continuous memory area so as one transfer is

needed.

24

Chapter 4 - Transparent support of linked data structures on heterogeneous parallel
systems

 Figure 9

 From data scattered in the heap to segregated heaps in a continuous memory area.

Memory manager:

We present the form of our memory manager.

Once the program starts to execute, a contiguous memory region is

allocated:

contiguous_memory = my_malloc(sizeof contiguous memory region);

The memory manager intercepts the mallocs of the program calling a

function with the following form.:

void *my_malloc(size) {

 …

 …

 returnPointer = nextPointerFree

 nextPointerFree +=size;

 …

 return returnPointer;

}

Each time my_malloc is called, it returns an address of the contiguous

memory region allocated at the beginning. At the end of my_malloc,

the pointer nextPointerFree(see Figure 10) holds the address which will

be returned at the next call. More precisely, nextPointerFree takes as

value the address at which the previous data was allocated plus the

size of the current data.

25

Chapter 4 - Transparent support of linked data structures on heterogeneous parallel
systems

Figure 10

It is illustrated how the pointer nextPointerFree points to the next available address

with each call.

The use of memory manager in Gerris

The memory manager was tested in application Gerris. The data

structures of Gerris are examined at Chapter 2 - The Application Gerris.

Its basic data structure used is a quad tree.

We have allocated continuous memory areas for:

 Tree (all tree nodes except roots)

The full threaded tree (see Figure 2) represents this kind of nodes.

 Roots

The roots of the trees (see Figure 3).

 Boundaries

Cells cut by boundaries of the domain

 Data

Each node points to a separated heap holding the data (see

Figure 3). The data contains the variables (velocity, pressure and

other variables) and elements for cells cut by solid boundaries.

The Figure 11 depicts the data structures and some connections with

pointers by the intervention of our own memory manager.

26

Chapter 4 - Transparent support of linked data structures on heterogeneous parallel
systems

Figure 11

 The figure illustrates the data structures of Gerris with the intervention of our own

memory manager. We have allocated one continuous area for each object type.

4.2.1 Pointer rewriting

 The linked data structures use structures with pointers. Once the

pointers are transferred on the device, they will be invalid, as the host

and the device are different architectures and have separate memory

spaces (see Separate memory spaces). As it was referred at the

previous section, all the nodes and the data used by the tree are

scattered in the heap and therefore the tree is transferred to the

device in segments. Therefore, the conversion of the device pointers so

as to point to a valid address space is impossible.

 The memory manager that we have developed solves the previous

problem of the invalid device pointers. In particular, we allocate

continuous memory areas for each data type. As the base addresses

of the continuous memory areas allocated on the host and on the

device are known, we can make the device pointers valid with

pointer arithmetic.

 At Figure 12, it is illustrated the procedure of pointer rewriting. Start is the

base address of the host buffer and start ‘ is the base address of the

device buffer. If a host pointer p points to the memory address start +

offset, the corresponding device pointer p’ will be rewritten as start’+

offset.

27

Chapter 4 - Transparent support of linked data structures on heterogeneous parallel
systems

The expression for the conversion of the device pointers is:

devicePointer = deviceBaseAddress + HostPointer -

- HostBaseAddress

Figure 12

It is illustrated the procedure of pointer rewriting. Start is the base address of the host

buffer, while start ‘ is the base address of the device buffer. Each host pointer p

points at the memory address start + offset. Each device pointer p’ will be rewritten

as start’ + offset.

 As it is referred at Chapter 2 - The Application Gerris, the full threaded

tree is used for the representation of the quad tree and consists of

structures with pointers. The continuous memory areas allocated for

each data type are illustrated at

 We chose to use a heterogeneous system of a CPU and a GPU. We

transfer the continuous memory areas (each for a data type, see Figure

11.) of the data structures of Gerris to the GPU. The pointers of the

structures of the tree will point to invalid memory addresses. Thus, we

rewrite the pointers so as to point to valid memory space with the

technique illustrated at Figure 12.

 In order to have low overhead, the pointer rewriting has been

performed totally parallel on GPU. Each thread is responsible for

rewriting the pointers of one element of the continuous memory areas

Tree and Roots. Therefore we need these continuous memory areas to

be arrays with elements of a specific type, so as each thread to be

responsible for one element. For having continuous memory areas of a

specific type, we allocate separate continuous areas instead of one

large continuous area. However, we do not need the continuous

memory area Data to be an array of a specific type, as each thread

accesses it via the arrays Tree and Roots.

28

Chapter 4 - Transparent support of linked data structures on heterogeneous parallel
systems

 The positive thing is that the connections of the tree does not change

on device, hence the tree is transferred to the device only once. If the

connections of the tree were changed on the GPU, we would transfer

the tree back to the CPU and update the connections. In this case,

additional calculations would be added. Nonetheless, the data at

which each node of the tree points are changed, thus we transfer the

continuous memory area Data from CPU to GPU and inversely at each

kernel call so as the updated data are used from the CPU and the

GPU.

 One alternative solution for keeping the connections among the

nodes of the tree is to replace the pointers of structures with indices in

the arrays. However, this is not such a good approach as we should

change the code which is complex. Also, there are pointers pointing to

more than one array. For instance a neighbor can be a root, a node,

or a boundary. One last reason for not using indices is that the type of

elements of the contiguous memory space Data is not specific

(Variables and solids are stored in this space).

4.3 Enforcing the same representation of data

between components
 The size of a struct between a CPU and GPU may differ. Compilers

add padding between elements if necessary in order to align the data

address on a specific boundary. Due to the fact that CPU and GPU

have different compilers, padding [13] can be placed differently. If

CPU padding differs from GPU padding, there will be problem to the

mapping of data from CPU to GPU.

As it is referred at Chapter 2 - The Application Gerris, all the data

structures of Gerris that we transfer to the GPU consist of structures with

basic type elements and pointers. Thus, we have faced this problem of

different structure sizes between host and device.

4.3.1 Data alignment and padding

 Data alignment [13] helps CPU to fetch data to memory effectively.

Given the ultimate objective is high performance, CPU does not read

one byte at a time but in 2, 4, 8 e.t.c. byte chunks at a time. Hence, the

address of each data object is aligned at a specific boundary.

29

Chapter 4 - Transparent support of linked data structures on heterogeneous parallel
systems

 Most compilers align variables on their natural length boundaries [13].

However, the struct member variables must be aligned according to

their next neighboring elements’ alignment rules in order to prevent

performance penalties. Therefore, the compiler pads bytes between

the elements of a struct. An example is illustrated at Figure 13.

Figure 13

We have a struct with one char and one int. The compiler will pad three bytes

between them so as the int will be aligned on a 4-byte boundary. Therefore, the size

of struct will be 8 bytes instead of 5 bytes.

4.3.2 Same representation of structs between CPU and GPU

 As heterogeneous programming language we have used OpenCL

[11][12][16]. OpenCL is derivative of C99 rules, thus compilers are free

to insert padding between struct members and at the end of the

struct. If we want to pass structs to kernels it makes sense to specify

alignment attributes 1 rather than attempting to guess what the

particular OpenCL compiler we have installed is doing. Inserting hand-

crafted padding members means that your program may not work

correctly in a different computer.

 If CPU padding and GPU padding differ, the size of structs at CPU and

GPU differ too. Hence, the data will not be mapped correctly from CPU

to GPU, and as a result the wrong data will be accessed (see Figure 14).

 We have developed functions for each type of struct that we transfer

to the GPU. These functions compare the structs of CPU and GPU, and

specify how many bytes should be pad. Subsequently, the user should

add the appropriate aligned attributes, and then run the program for

verifying that sizes of structs are the same between host and device.

1
 The aligned attribute forces the compiler to align a variable on a specific boundary.

30

Chapter 4 - Transparent support of linked data structures on heterogeneous parallel
systems

Figure 14

Provided that we have a struct with an unsigned int and a pointer, the figure depicts

different padding between CPU and GPU. CPU pads four bytes between the two elements of

the struct, while GPU adds no padding. If we attempt to read the pointer at GPU, instead of

the pointer we will read the bytes padded by CPU. It is apparent the mapping of data from

CPU to GPU is not correct.

We have as host a 64-bit CPU and as device a 32-bit GPU. Therefore,

the CPU pointer has the size of eight bytes, while the GPU pointer has

the size of four bytes. As the data structures of Gerris are structs with

pointers, the sizes of structs between CPU and GPU are different, and

as a result the mapping of data from CPU to GPU is not correct.

One solution to this problem is to pad four bytes after each GPU

pointer. Gerris have some arrays of pointers. However, we cannot pad

bytes in between elements of an array. Since array is a contiguous

block of memory, C does not allow padding between the elements of

an array. Nonetheless, an array of structures may have padding added

to each element as part of the struct itself.

Two dimensional array

 We can solve this problem by a two-dimensional array (see Figure 15).

For instance, if we have an array void * a[4] and convert it to void

*a[4][2], four bytes padding is added after each pointer since GPU

pointer’s size is four bytes.

31

Chapter 4 - Transparent support of linked data structures on heterogeneous parallel
systems

Figure 15

We convert one dimensional array of pointers to two dimensional in order to have

four bytes padded after each pointer (because GPU pointer’s size is four bytes).

Union

We should leave the solution of the two-dimensional array since there is

a problem at the 4.2.1 Pointer rewriting. The GPU pointer has the size of

four bytes, while the CPU pointer has the size of eight bytes. Hence,

during the procedure of pointer rewriting, the CPU pointers are read

half.

The expression for the pointer rewriting is:

GPU Pointer = GPU Base Address + CPU Pointer – CPU Base Address (1)

For example, If CPU pointer is 0x7f036d799014, we read 0x799014 at

GPU.

 The solution is the replacement of pointers with unions. All the elements

of union share the same memory space, thus the size of union equals

the highest size of all the elements.

32

Chapter 4 - Transparent support of linked data structures on heterogeneous parallel
systems

We replace each pointer with the following type (see Figure 16):

union customPointer {

 global void * ptr;

 unsigned long ptrFull

 }

For the pointer rewriting of the Gerris tree, we read the ptrFull pointer (8

bytes) for getting the CPU Pointer, and after performing the expression

(1) we assign the valid GPU address to pointer ptr (4bytes). In this way,

we read the whole CPU pointer, and mapping of data is correct since

now the pointer type is 8 bytes regardless of the GPU architecture.

Figure 16

Union has the same syntax with struct, but differs at the storage allocated. Variables of a

structure are stored at different memory areas, while variables of a union share the same

memory area. Union’s size is equal to the maximum memory required by the members of

the union. In this way, we read the whole CPU pointer and padding is automatically added

after each pointer. With unions we have solved the problem of adding padding at arrays of

pointers. So, the mapping of data from CPU to GPU is correct.

33

Chapter 4 - Transparent support of linked data structures on heterogeneous parallel
systems

4.3.3 The same virtual address bit-width of the components

The question is why we make the situation so complicated as we can

use components with the same virtual address bit-width leaving the

complex solution of unions. As far as CPU is concerned, we can set it so

as to be 32 bit, but in this case we do not use data more than 4GB. As

for the GPU, we can use a 64-bit one, but we prefer one of 32-bit. There

are not GPUs with DRAM memory more than 4GB. So if we have a GPU

64 bit, we cannot take advantage of it. Also, if we have a GPU 64 bit,

we need more registers comparing with a GPU 32 bit. However,

registers are limited resources [15] (e.g. the Fermi architecture has 63

registers per thread) but applications need registers because kernels

store their local variables in registers. Having 64 bit pointers implies need

for more registers, and as a result the possibility of register spilling2 [15] is

increased. Register spilling brings more memory transfers, and

consequently deterioration in performance. Lastly, with 64 bit pointers,

each thread needs more registers, therefore less threads can run

concurrently and again there will be performance decrease.

4.4 Limitations

There are some limitations of our implementation. Firstly, the

replacement of pointers with unions is drawback since we must

change the code. Also, If an application changed the connections of

the linked data structure on the device, each time we would transfer

the pointers from device to host, we would make the pointers to point

to the host’s address space. Apparently, our implementation is not

appropriate for this kind of applications as it adds many transfers and

calculations. The last limitation is related to the memory footprint of an

application. Lastly, if the memory footprint of an application does not

increase almost continuously meaning that the program frees

constantly memory, our approach is not appropriate. In particular,

“holes” are created in the continuous memory area and as a result

unnecessary data are transferred between host and device.

2
 Register spilling definition: when the code overcomes the maximum number of registers per thread

then some variables are transferred or “spilled” to local memory.

34

4.5 Verification

 We have transferred a function traversing the trees so as to verify that

the changes of the code do not affect the correctness of the

application. The traversal of the tree cells is recursive. The cells are

visited recursively, and it is checked if they are at a specific level. If yes,

the node calls a function. The traversal of the tree is called with an

argument defining a specific level varying from zero level to a

maximum desired level. However, the GPU does not support recursion.

As the cells call the function per level, there is independence at the

same level, and thus the cells can call the function in parallel.

Therefore, we do not traverse the tree, but we traverse the arrays Roots

and Tree (see Figure 11) which contain all the cells of the tree. Each

thread checks one element of either Roots (one cell) array or Tree

array (four cells). If the cells are at the desired level, a function is called.

35 Chapter 5 - Conclusion

Chapter 5 - Conclusion

 The heterogeneous future is inevitable, a single application will exploit

a “jungle” of enormous numbers of cores that are increasingly different

in kind (specialized for different tasks) and different in location (on-die,

from local to very remote e.t.c.). Although we harness performance

with relatively low power dissipation of heterogeneous systems

[7][8][9][10] , the current trend for using linked data structures at these

systems is to be avoided. However, most applications use complex

structures. The components of the heterogeneous systems have usually

separate memory spaces and have different architectures. Therefore, it

is the latency of transfers and the different representation of data

among components that make the support of linked data structures

difficult. The goal of this undergraduate thesis is the transparent support

of linked data structures on heterogeneous systems. We have

developed a memory manager that minimizes the transfers of the

nodes of the linked data structures from the host to the device and a

method ensuring that the data representation is the same on different

architectures so as the mapping from host to device is correct. Our

demands are low-overhead and not extensive changes of code. As

heterogeneous system, we have used a CPU and a GPU. We program

this system with OpenCL[11][12][16] and as case study we have used a

fluid simulation application named Gerris [1][2][3]whose basic data

structure is a tree.

36 Bibliography

Bibliography

[1] Gerris page: http://gfs.sourceforge.net/wiki/index.php/Main_Page

[2] Stephane Popinet: “Gerris: a tree-based adaptive solver for the

incompressible Euler equations in complex geometries”, National

Institute of Water and Atmospheric Research, PO Box 14-901 Kilbirnie,

Wellington, New Zealand

[3]Gerris reference:

 http://src.gnu-darwin.org/ports/science/gerris/work/gerris-

0.6.0/doc/html/book1.html

[4] A.M. Khokhlov, Fully Threaded Tree for Adaptive Mesh Refinement

Fluid Dynamic Simulations Washington, DC 220375, (5-7)

[5] Hadi Esmaeilzadeh, Emily Blem, Renée St. Amant, Karthikeyan

Sankaralingam, Doug Burger, “Dark Silicon and the End of Multicore

Scaling” on ISCA’11

[6] The Heterogeneous Programming Jungle:

 http://www.hpcwire.com/hpcwire/2012-03-

19/the_heterogeneous_programming_jungle.html?page=1

[7] Heterogeneous Processing: a Strategy for Augmenting Moore's Law:

 http://www.linuxjournal.com/article/8368

[8] A brief history of microprocessors:

 http://www.csa.com/discoveryguides/multicore/review2.php

[9] Graphics and CPUs to gether: Are the Heterogeneous Processors

 the Future of Computing?

 http://forwardthinking.pcmag.com/none/282278-graphics-and-

cpus-together-are-heterogeneous-processors-the-future-of-computing

[10] What is Heterogeneous Systems Architecture (HSA)?

 http://developer.amd.com/resources/heterogeneous-

computing/what-is-heterogeneous-system-architecture-hsa/

[11] OpenCL Programming Guide – A. Munshi, et al., (Pearson, 2012)

 BBS

[12] The OpenCL specification Khronos Group

http://src.gnu-darwin.org/ports/science/gerris/work/gerris-0.6.0/doc/html/book1.html
http://src.gnu-darwin.org/ports/science/gerris/work/gerris-0.6.0/doc/html/book1.html
http://www.hpcwire.com/hpcwire/2012-03-%2019/the_heterogeneous_programming_jungle.html?page=1
http://www.hpcwire.com/hpcwire/2012-03-%2019/the_heterogeneous_programming_jungle.html?page=1
http://www.linuxjournal.com/article/8368
http://www.csa.com/discoveryguides/multicore/review2.php
http://forwardthinking.pcmag.com/none/282278-graphics-and-cpus-together-are-heterogeneous-processors-the-future-of-computing
http://forwardthinking.pcmag.com/none/282278-graphics-and-cpus-together-are-heterogeneous-processors-the-future-of-computing
http://developer.amd.com/resources/heterogeneous-computing/what-is-heterogeneous-system-architecture-hsa/
http://developer.amd.com/resources/heterogeneous-computing/what-is-heterogeneous-system-architecture-hsa/

37 Bibliography

 [13] Data alignment

 http://www.songho.ca/misc/alignment/dataalign.html

[14] A look at GPU memory transfer:

 http://blog.theincredibleholk.org/blog/2012/11/29/a-look-at-gpu-

memory-transfer/

[15] Lecture “Local Memory and Register Spilling”, Paulius Micikevicius

 NVIDIA

 [16] Khronos Forums: http://www.khronos.org/message_boards/

http://www.songho.ca/misc/alignment/dataalign.html
http://blog.theincredibleholk.org/blog/2012/11/29/a-look-at-gpu-memory-transfer/
http://blog.theincredibleholk.org/blog/2012/11/29/a-look-at-gpu-memory-transfer/
http://www.khronos.org/message_boards/

