“Alapavn vTooTNEIEN SIACLVEEUEVV SOUWV
SeSouEvV O€ €TELOYEV TTAPAAANAQ cvoTNUaTa.”

“Transparent support of linked data sfructures on
heterogeneous parallel systems.”

A thesis
submitted in fulfillment
of the requirements for the degree
of
Computer and Communication Engineering
af
The University of Thessaly

by

Vasiliou Zoi

Supervisors:
Antonopoulos Christos

Bellas Nikolaos

Volos, 2013

Aknowledgements

Copyright © 2013 Vasiliou Zoi

All rights reserved

Aknowledgements

Aknowledgements

It gives me great pleasure in expressing my gratitude to all those
people who have supported me and had their contributions in making
this thesis possible. First and foremost, | express my profound sense of
reverence to my supervisor Christos D. Antonopoulos for his constant
guidance, support, motivation and untiring help during the course of
my thesis and especially for his confidence in me. Also, | would like to
sincerely thank my co-advisor, Nicolaos Bellas, for his help and useful
advices throughout this study. | aknowledge my parents, Fotios and
Cleopatra, and my sister Mariza for their love and support throughout
my life. Last but not least, | would like to thank my friends for their
encouragement and all the cheerful moments that | recharged myself.
Especially, | would like to thank Vasso for being such a good listener
and her encouragement, and also Ifigeneia and Kathryne for the nice
moments.

Abstract [N

Absiract

Acceleration of applications with low power consumption can only be
attained through programming heterogeneous parallel platforms.
These architectures include a single host coordinating a collection of
accelerators in the form of GPUs, DSPs, and FPGAs. However, due to
the fact that the components of the heterogeneous platforms usually
have separate memory spaces and have different architectures, the
support of complex data structures is difficult on these systems. The
purpose of this undergraduate thesis is the tfransparent support of linked
data structures on heterogeneous parallel systems. Our requirements
are low-overhead and no extensive changes of code. Linked data
structures require many fransfers between the components of the
system. Since transfers cost due to latency, we have developed a
method minimizing the transfers among the components of the system.
Also, since components have different architectures and compilers, the
data may not be represented in the same way, and hence we face
problem at the mapping of data from one component to another. So,
we have developed a method which ensures that the data will have
the same form among the components of the system. As for the
method minimizing the transfers, we have developed our own memory
manager which stores the nodes of the linked data structures in such a
way so as one fransfer is needed. However, the linked data structures
have as elements pointers which are invalid from one component to
another. The memory manager enables the procedure of making
pointers valid thanks to the way of storing the data. As for the same
representation of data among the components, we have developed
functions that enforce the same representation for data of structure
type. Also we propose a method for supporting linked data structures
at a heterogeneous system with components with different virtual
address space bit-width. As case study we have used the application
Gerris whose primary data structure is a free which we attempted to
transfer to a graphical processing unit. At the main part of thesis, we
describe the goals, the problems we faced, and the final solutions.

NepiAnyn

MepiAnyn

H emTOyLVON TWV EPAPUOYWV G CLVOLACKO PE XAUNAN 10XV UTTOPEI
LOVO VA €TMTELXOE PECW ETEQOYEVWY TTAPAAANAGDY TTAATPOPUWY. AVTEG
Ol APXITEKTOVIKEG TTEQIAQUPAVOLYV Evav UOVO KEVTPIKO emte€epyacTn (host)
TTOL ouLvTOoVilel JIa CLANOYN aTTO emTaAXLVTEG OTTWS GPUs, DSPs kai
FPGAs. E€aitiag Tou yeyovoTog OTI TO CLOTATIKA HEPN TWV ETEPOYEVRV
TTAQTPOPUWY CLVNBWG AVNKOLY O EEXWPICTOLS XWPEOLG PVAPNG KAl
BaocilovTtal oe SIAPOPETIKEG APXITEKTOVIKEG, N LITOCTNPIEN TTOAVTTAOKLV
SopwV SeSopivy Ot TEPOYEV TTAPAAANAQ CLOTAUATA Eival SOLOKOAN.
O OoT1Ox0G NG SITTAUATIKAG €ivalr n Slagpavr vrrooTNPEIEN
Slacuvoedbepevoy douwy debouEvawv o€ €TEPOYEVR TTAPGAANAC
ocvoThuarta. O1 amaImnoeag Pag eivar xaunAn empPapovvon KAl un
EKTETAPEVEG AANAYEC OTOV KWIKA. O Siacuvéedepéveg SOUEC SeSOUEVRV
ATTAITOLY TTOAAEG HETAPOPEG MHETAEL TWV OCLOTATIKWY MHEPWY TOUL
oLOTAUATOG. Emelbr) ol petapopéc kooTtilovv AOYw latency, &xouue
avamTLuel PIa UEBOSO TTOL PEICVEI TIG UETAPOPES WETAEL TV CLOTATIKWY
UEQGV TOL CLOTAUATOG. Emiong, emadn Ta CLOTATIKA HEPN EXOLV
SIOPOPETIKEG QPXITEKTOVIKEG KAl SIAPOPETIKOLS PETAYAWTTIOTEG, TA
Sedboueva iowg dev avarmapioTavral Je Tov idlo TPOTTO HETAEL TwV
OLOTATIKWY HEPWYV, YI'ALTO avTIheTMI(oLUE TO TIPORANUA TNG
QVTIOTOIXIAG TV SeSopEvV ATTO TO £va CLOTATIKO WUEPOG OTO AAAO.
MN'avtd 1T0 AOyo , avamTtbéaue pia peBodo mouv empPePalcovel OTI TA
sdedopéva Ba Exouvv TNV iSlIa avamapdoTacn OTA CLOTATIKA PEPN TOL
oLOTAPATOG. OooV APOPA TN PEBOSO TTOL HPEIVE TIG PETAPOPES TWV
SedopEvay, exovpe avarmTulel Tov 8IKO Pag SIaxEIPIoTH PUVAUNG e TOV
oTT0i0 Ta SebopEva O OTTOIOG ATTOBNKELEN TA Se50UEVA E TETOIO TOOTTO
£T01 OTE va Xpelaletal pia yeta@opd. Or Siacuvéedeuéveg S0UEG, OUWG,
EXOLV OTOIXEIO TTOL XPENOIPOTTIOIOLY &¢EiKTEG, OI OTToIol &eiXVOoLV OE N
EYKLPEC OECEIC PvAUNG OTAV PETAPEQOVTAlI ATTO TO £&vav CLOTATIKO
UEPOC OTO CGANO. O SiaxelpioTnC pvAuNg SiebkoAvvel TN Siadikaoia
UETATOPOTING TV SEKTWV WOTE VA SEiXVOLV Ot WOTE va &eixvouv o€
EYKLPEC BETEIG PVNUNG AOYW TOL TPOTTOL TTOL ATTOBNKELEN Ta SedoUEVA,
‘Oocov apopd TNV idla avamapaoTacn TV SeS0UEVRYV PETAEL TWV
OLOTATIKWV HEPWV, £XOLHE AVATITLEEI CLVAPTACEIS TTOL EYYLWVTAI TNV
idla avamapdoTaon yia &edoueva TTOL AVAKOLY OTov TOTTO Sour.
Emmiong mporteivovue pia peBodo yia tnv vrrooTnpiEn dlacuvoedepévav
SOUV O€ ETEQOYEVI CLOTAPIATA TTOL ATTOTEALITAI ATTO CLOTATIKA PEON UE
SIAPOPETIKO TTAATOC bit ToL €IKOVIKOL XwpPoL blebBuvong. QG PEAETN
TTEQITITONG £XOLPE XPENOIUOTIOINTEl TNV £PAPMOYN TIPOCOU0IONG
Kivnong vypwv Gerris TToL XPNOTIUOTTOIE ¢ Soun Sedopevy eva SEvTpo

TO OTIOIO PETAQEPAPE OE IO KAPTA YPAPIKWY. LTO KLPIWG HUEPOS TNG
SITAUATIKAG TTEPIYPAPOLPE TOLG OTOXOLG, TA TPEOPRAAUATA TTOL
QVTILUETWTTICAUE KAl TIG TEAIKEG AVOEIC.

Contents

AKNOWIEAGEMENTS ...ttt sttt 3
ADSTIACT ottt 4
TTEDIANUIN 1ttt ettt b et et b et s st besess b esebess s ebesess s ebesess s esesansseses 5
Chapter T - INTTOAUCTION ..ottt ne e 8
Chapter 2 - The APPIHCATION GEITIS......ccuieeieeeeeece et 10
2.1 AN INTrOAUCTON 1O GEITIS ..ouvuiieiiieieieeee e 10
2.2 The data STruCtures Of GEeITIS. ... 10
2.2.1 TNE QUAA T ettt st et 10
2.2.2 The full threAded Tree.....ouiiiieeeee s 11
2.2.3 The WO & AOMGAIN ..t 13
Chapter 3 -Heterogeneous parallel SYSTEMSccovvererererieneeesesee e 14
3.1 From single-core era to heterogeneous €racevevveceneceneceneceseees 14
3.1.1 SINGIE COrE ErQ.eiiiiieeee et 14
3.1.2 MUIICOTE ©IQ1 ..ttt 14
3.1.3 HETErOgENEOUS EIQ ..ot 15
3.2 OPENC Lttt ettt ettt r e e bbb et e aeereereearenes 18
Chapter 4 - Transparent support of linked data structures on heterogeneous
PAFAIE] SYSTEIMS ..ttt ettt et et er et ebesreebeebesteernebesaeensenns 22
4.1 GENEIAN ittt 22
4.2 Memory transfers aggregation ... 23
4.2.1 POINTEN TEWIITING ettt ettt 26
4.3 Enforcing the same representation of data between components........ 28
4.3.1 Data alignment and pAdding.....ccceveereineineeeeiseeeesese s 28
4.3.2 Same representation of structs between CPU and GPU...................... 29
4.3.3 The same virtual address bit-width of the components..................... 33
44 LIMITOTIONS 1ttt ettt 33
4.5 VETTICATION 1ottt ettt 34
ChAPTEN 5 = CONCIUSION vttt ettt ettt et ereebsereeresreereennees 35

BIDlIOGIOPNY ettt 36

Chapter 1 - Introduction _

Chapter 1 - Introduction

Raw performance was the ultimate objective over the past decade.
However, due to the increase of transistor density, each generation of
processors grew smaller, faster, dissipated more heat and consumed
more power. Therefore, there is a tendency to boost performance with
relatively low cost and power dissipation. There is a good reason to
believe that in a world where maximizing performance per watt is
essential, we can expect systems to increasingly depend on many
cores with specialized silicon whenever practical, since it has been
proven that the more specialized the core the more power-efficient it
is[]. For instance, general graphic processors units rely on specialized
silicon and have become increasingly attractive for general purpose
operations for addressing data parallel programming tasks.

Since the applications usually present a mix of characteristics, there is
a fransition to heterogeneous systems consisting of general processors
and specialized accelerators. For example, the data-parallel workloads
are executed on GPU, while the sequential code is executed on CPU.
Therefore, we need a hardware which is a hybrid combinatfion of
components. Heterogeneous parallel architectures include one central
processor and a range of hardware accelerators such as GPUs, DSPs
and FPGAs e.t.c.

Although heterogeneous systems offer high performance with
relatively low power dissipation, it is difficult to support complex linked
data structures on heterogeneous systems. The fact that the
components of the system belong to separate memory spaces and
have different architectures hinders the support of complex linked data
structures on such systems. However, most realistic applications use
linked data structures. The purpose of this thesis is the transparent
support of linked data structures on heterogeneous parallel systems
with low-overnead and no extensive changes of code.

Linked data structures require many transfers between components
of the system. Since transfers cost due to latency, we have developed
a method minimizing the fransfers among the components of the
system. In particular, we have developed our own memory manager
with which the data scatftered in the heap are now stored in
segregated heaps in a continuous memory area so as one transfer is
needed. However, the linked data structures have as elements pointers
but since the components of a heterogeneous system have different
architectures, when the pointers are fransferred to another
component, they will be invalid. Since we use continuous memory

Chapter 1 - Introduction _

areas for storing the nodes of linked data structures, we can rewrite the
pointers to point to valid address space very easily. As for the same
representation of data among the components, we have developed
functions that enforce the same representation for structures. As
heterogeneous system, we use one of two components with different
virtual address space bit-width, hence the pointers of the components
have different sizes causing false mapping of the data from one
component to another and other problems. We propose a solution
which faces these problems.

As case study, we have used the application Gerris[1][2][3]
simulating fluid flow and its primary data structure is a tree which we
transfer to a graphical processing unit.

In chapter 2 and 3, we describe the necessary background. More
specifically, in chapter 2 we briefly present the application Gerris and
the data structures transferred to the GPU. In chapter 3, we discuss the
transition from single core era to multicore era and from multicore era
to heterogeneous era [9] and a multivendor open standard for
general-purpose parallel programming of heterogeneous systems
(OpenCL [11] [12]). In chapter 4, we discuss the memory manager we
have developed which minimizes the transfers and enables the pointer
rewrifing so as pointers to be valid, how we keep the same
representation of data on different architectures, the limitations of our
implementation and how we verify its correctness. We discuss our final
thoughts in chapter 5.

Chapter 2 - The Application Gerris

Chapter 2 - The Application Gerris

2.1 An introduction to Gerris

Gerris [1][2][3] Flow Solver is a software project for computational fluid
dynamics. Named after the Gerris remigis or common water strider,
Gerris is a program for the solution of the partial differential equations
(incompressible Euler) describing fluid flow. The main objective of this
project is the primitive variables velocity and pressure to be calculated.
Gerris uses a numerical method for solving the incompressible Euler
equations, combining a quad/octree discretization, a projection
method, and a mulililevel Poisson solver. The domain is spatially
discretized using square (cubic in 3D) finite volumes organized
hierarchically as a quadtree (octree in 3D). The primitive variables are
all defined at the centre of squares. For concentrating the
computational effort on the area where it is most needed, Gerris uses
dynamic adaptive mesh refinement where the quadiree structure is
discretized finer at the areas where there is more intensive fluid flow.

Gerris can deal with simple boundaries and solid boundaries. There
are boundaries around each free of domain. The fluid in the boundary
layer is subjected to shearing forces. A range of velocities exists across
the boundary layer from maximum to zero, provided the fluid is in
contact with the surface. So, some boundary conditions are applied to
the partial differential equations. Also, Gerris can deal with arbitrarily
complex solid boundaries embedded in the quad/octree mesh.

2.2 The data structures of Gerris

2.2.1 The quad tree

The type of spatial discretisation used for the integration of the Euler
equations is a quad tree for two dimensions (octree for three
dimensions). A quadtree is a free data structure in which each internal
node has exactly four children, corresponding to four square subcells in
two dimensions. The fundamental idea behind the quadtree is that any
domain can be split intfo four quadtrants. Each quadrant may again be
split into four quadrants e.t.c. The corresponding three-dimensional
structure is an octree. The level of a cell is defined by starting from zero
for the root cell and by adding one every time a descendant child is
added. Each cell C may have a direct neighbor in each direction d
(four in 2D, six in 3D). Each of these neighbors is accessed through a

Chapter 2 - The Application Gerris

face of the cell. Also, cells cut by a solid boundary are defined as
mixed cells. The cells and tree structure of the quad tree are illustrated
in Figure 1 .

A NN ANVANS

Figure 1

The quad tree

As for the total number of the cells contained in a quad free, each k-th
level contains 4*k squares, so the tree has a total of cells:

N=Ynr_,4%

2.2.2 The full threaded tree

The full threaded tree [4] is used by Gerris as the implementation of the
quad free (and octree for 3D). All cells are organized in groups called
octs. Each cell has a physical state vector U (vector U is the data at
which each cell points at figure) associated with it, and a pointer to an
oct which contains its children, if any, or a nil pointer. Each oct contains
four cells in 2D (eight in 3D) and information. Each oct knows its level,
which is equal to the level of the oct's cells and has a pointer to a
parent cell and four pointers (six pointers in 3D) to parent cells of
neighboring octs. This information is enough to find neighbors, children
and parents of every cell without searching. The full threaded tree
represents the infermediate cells of the tfree and is illustrated in Figure 2 .

Chapter 2 - The Application Gerris

Figure 2

The full threaded tree

Chapter 2 - The Application Gerris

2.2.3 The whole domain

The whole domain may consist of more than one tree. The frees are
connected with each other as neighbors. Apparently, the number of
roots of domain is equal to the number of trees. An example of a
domain with three frees is illustrated in Figure 3.

Figure 3

The domain is consisted of three frees connected with each other. Each cell of the
free points fo a vector depicted as data. This vector represents all the variables used
by each cell.

Each cell has neighbors in all directions (four in 2D). A neighbor can be
aroot, a cell, or a boundary. Cells on the boundary of the domain may
not have neighbors in all directions.

Chapter 3 -Heterogeneous parallel systems

Chapter 3 -Heterogeneous parallel
systems

3.1 From single-core era to heterogeneous era

3.1.1 Single Core Era

Raw performance was the ultimate objective over the past decade.
Squeezing more and more transistors onto a single die, increasing the
clock rate and inventing architectural novelties were the trends for
boosting the application performance.

In accordance with Moore’s Law([8] (which predicts a doubling of
transistors every 18 months) we have increased transistor density and
we have enjoyed continuous performance improvement for four
decades. However, as we allowed more and more transistors to be
squeezed onto the same chip, the power density increased. Power
converts to heat, and too much heat can destroy a chip in seconds. So
it has been predicted that soon some of the transistors should be left
unpowered or dark while the others will be working (known as dark
silicon[5]). In addition, throughout the 1990's microprocessor frequency
was synonymous with performance. Higher frequency meant a faster,
more capable computer. Nevertheless, the ever-increasing transistor
density and clock rate reached a plateau since they cause power
consumption and temperature dissipation increase. In addition, it is
difficult to extract more instruction-level-parallelism (ILP) from
application codes. So each generation grew smaller, faster, and
dissipated more heat, hence there was need for other innovative
methods for high performance with relatively low power dissipation
(see [8]).

3.1.2 Multicore era

It is irrefutable that “two heads are better than one” (see [8]).
Multicore processors [8] are often clocked at lower frequencies, but
have much better performance than a single-core processor. This is
reasonable since if the work can be executed parallel, it maximizes
resource utilization and thanks to lower frequencies we have lower
power consumption. However, multicore processing posed some
challenges. Regardless of chip organization and topology, multicore
scaling will be fundamentally limited by power constraints. The

Chapter 3 -Heterogeneous parallel systems

percentage of chip that can be powered is decreasing so as the chip
will not cross the limit of heat dissipation. The area of chip which cannot
be powered is known as dark silicon. It is predicted that the amount of
dark silicon will be more than 50% of the chip at 8nm. Therefore, there is
a question in the point in scaling down and increasing the number of
transistors per chip if we can't use them. Also, programmers are used to
programming for a single thread and now they have to get used to
finding the concurrency in their problem, and expressing that
concurrency in their software. However, this shift to parallel
programming is a daunting challenge for programmers since the
streams of operations that will execute concurrently must be defined,
the data they operate on associated with them, and the
dependencies between them should be managed so as the same
answer is produced with the single-threaded program.

Meanwhile, the multicore era see some interesting developments in
GPUs. GPUs improve 3D graphics performance by offloading graphics
from the CPU. GPUs support SIMD instructions that enable them to
perform parallel operations on very large sets of data and they perform
them at much lower power consumption relative to the serial
processing of similar data sets on CPUs. So GPUs became increasingly
attractive for general purpose operations for addressing data parallel
programming tasks.

3.1.3 Heterogeneous Era

Due to performance and power scalability constraints, we should
leave the single-core designs and move to heterogeneous computing.
Heterogeneous computing refers to systems that use more than one
kind of processor. We cannot continue with more aggressive general
purpose processor designs as they cannot accelerate every kind of
application without increasing complexity and power dissipation. There
is a shift to multicore systems so as to gain performance not just by
adding cores, but also by incorporating specialized processing
capabilities to handle particular tasks with low power consumption.
Processors specialized to a specific function have few wasted
transistors because they include only these functional units required by
their special function, while a general purpose processor must include
a wide range of functional units to respond to any computational
demand. Also, the specialized processors have simple conftrol logic
and smaller caches compared with the CPU's. Hence, the more
specialized the core, the more power-efficient it is ([11] chapter 1,
pages 4 -12). For instance, GPGPUs are specific-purpose processors

Chapter 3 -Heterogeneous parallel systems

since thanks to their vector processing capabilities; GPGPUs are used
for data-parallel workloads. The applications usually present a mix of
characteristics. There are parts being control-intensive, data-intensive,
/O intensive and compute-intensive. For instance mathematically
intensive computations on very large data sets, which can be
parallelized, should be executed on GPGPU, while the control-intensive
part should be executed on CPU. It is apparent that we need a
hardware being a hybrid of various components. Therefore, we need a
mix of processors specialized in different tasks. Heterogeneous
architectures include one cenfral processor and a range of hardware
accelerators such as GPUs, DSPs and FPGAs e.t.c. An example of a
heterogeneous system is illustrated in Figure 5. The heterogeneous future
is inevitable, a single application will exploit a number of processors
that are specialized for different tasks and are different in location (on-
die, from local to very remote e.t.c.).

Figure 4

The figure [?] summarizes the previous analysis for the transition from single-core to
multi-core and from multi-core to heterogeneous systemes.

As discussed above, acceleration of application with low power
consumption can only be attained through programming
heterogeneous parallel platforms. We will refer some of heterogeneous
systems’ characteristics:

1) Different computational elements
The computational elements in the system may have different

instruction sets and different architectures and may run at
different speeds. An effective program must take info account

Chapter 3 -Heterogeneous parallel systems

these differences and appropriately map the parallel software
onto the most suitable devices.

2) Each component may have different programming model
For instance, should we want to program CPU in parallel, we can
use OpenMP or Pthreads, while programming Nvidia GPUs
means using CUDA Programming model and GPUs from multiple
vendors requires OpenCL programming model.

3) Deep complex memory hierarchy
Some components of heterogeneous systems may expose deep
complex memory hierarchies. Usually, the architecture of
components is NUMA (Non-Uniform Memory Access), where the
memory access fime depends on the memory location relative
to a processor. The hardest part is that the memory hierarchy of
some accelerators is not hardware-controlled. Therefore, in these
cases the programmer should explicitly transfer the data to the
region being nearest to the processor.

4) Separate memory spaces
The components of a heterogeneous system have separate
memory spaces. That means that the components store
separate copies of data in separate memory spaces. The latter
implies that a pointer may have different “meanings” (and may
be invalid) on different components of the system. So it is
necessary the fransfer of data between components. The CPU
and GPU, for example, have separate memory spaces, as the
GPU is connected with the CPU as peripheral via PCI-Express.

Figure 5

A heterogeneous systems architecture [12] accelerated processing unit with two dual
core CPUs and one GPU. The serial and task parallel workloads are assigned to the
CPUs, while the data parallel workloads are assigned to the GPU.

Chapter 3 -Heterogeneous parallel systems

The heterogeneous systems of interest to high performance computing
use an aftached coprocessor or accelerator that is optimized for
certain types of computation. These devices typically exhibit internal
parallelism, and execute asynchronously and concurrently with the
host processor Programming heterogeneous parallel platforms [], we
have to deal not only with parallelism but with an attached
asynchronous device as well, and with the complexity on parallel
programming on that device. In particular, the program must manage
the concurrent activities between the host and device, and manage
data locality between the host and device. Hence, hardware
heterogeneity is complicated and programmers have come to
depend on high-level abstractions that hide the complexity of the
hardware. OpenCL is a framework providing that high-level
abstraction. Its key feature is functional portability across different
heterogeneous which is achieved via its abstracted and execution
model. More specifically, OpenCL implementation is correctly adjusted
to suit to the target architecture, hence allows the programmer to
make use of multiple execution devices present on a platform. Below
we present a brief introduction to the OpenCL language.

3.2 OpenClL

OpenCL(OpenComputing Language) [11][12][16] is a multivendor
open standard for general-purpose parallel programming of
heterogeneous sytems that include CPUs, GPUs and other processors
and is destined for data/task parallel computations. OpenCL promises
functional portability. OpenCL provides a uniform programming
environment for software developers to write efficient, portable code
for high-performance compute servers, desktop computer systems,
and handheld devices. Hence, OpenCL has the potential to fransform
the software industry.

The OpenCL platform layer implements platform-specific features
that allow applications to query OpenCL devices, device configuration
information, and to create OpenCL contexts using one or more
devices. An OpenCL platform always includes a single host and a
collection of devices managed by OpenCL framework. The host is
connected to one or more OpenCL devices. The device is where the
parallel routine will be executed. The OpenCL application consists of
the host program and one or more kernels. Kernels are the streams of
instructions executing on the OpenCL devices. Therefore, the OpenCL

Chapter 3 -Heterogeneous parallel systems

device is often referred to as compute device. OpenCL supports
multiple device classes namely CPUs, GPUs, DSPs, the IBM Cell and
other processors. The OpenCL devices are further divided into
compute units which are further divided info one or more processing
elements. Computation on a device occurs within the processing
elements. The host sends commands to devices for execution of code,
for tfransfer of data or synchronization. The OpenCL platform model is
illustrated in Figure 6 .

Figure 6

The OpenCL platform model with one host and one or more OpenCL devices. The
host is connected to one or more OpenCL devices. Each OpenCL device has one or
more compute units, each of which has one or more processing elements(see [11]
chapter 1, page 12).

OpenCL provides functions to:

1) discover the components that makeup the heterogeneous
system.

2) create contexts representing the devices to be used.

3) perform host-device fransfers.

4) compile the kernel function which will be executed on chosen
devices.

5) launch the kernel.

6) check for errors.

7) program the kernel functions.

Chapter 3 -Heterogeneous parallel systems

Memory model

The OpenCL memory model defines a relaxed consistency model. In
other words, the values seen in memory by an individual thread are not
guaranteed to be consistent across the full set of threads at all times. A
summary of the memory model in OpenCL and how the different
memory regions interact with the platform model is illustrated in Figure 7.
The host memory is a memory region being visible only by the host. The
host and OpenCL device memory models are independent of each
other.

Four types of memory are available on the OpenCL devices:

e Global memory
The largest memory of the device with relatively high latency
and visible by all threads.

e Constant memory
Small, read-only memory with low-latency.

e Local Memory
Accessible by multiple processing elements belonging to the
same compute unit. It is much faster than global memory , since
it is closer to the processing elements that global memory.

e Private memory
Memory region accessible within each processing element. It is
the fastest memory of the device since it is similar to registers in a
CPU core.

Private Private
Memory Memory

Work-lItem 1 Work-Iterm M

Compute Unit M

| -

Local Memory I
Global f Constant Memory Data Cache

Compute Dewvice

Compute Device Memory

Figure 7

The OpenCL memory management is explicit. The data must be moved from host
memory to global memory, from global memory to local memory and back.

Steps for creating an OpenCL application:

An OpenCL application must carry out the following steps (see Figure 8):

1) Discover the components that make up the heterogeneous
system.

2) Probe the characteristics of these components and choose
which are suitable for the application.

3) Create the kernels that will run on the platform.

4) Transfer data from host to devices.

5) Execute the kernels in the right order and on the right
components of the system.

6) Transfer the final results from devices to the host.

CPU

Initialize data GPU

Kermel processes data at
high spead

Analyze output

Figure 8

Steps for an OpenCL application

Chapter 4 - Transparent support of linked
data structures on heterogeneous parallel
systems

4.1 General

The current trend for using linked data structures on heterogeneous
systems[7][?][10] is to be avoided. This happens since it is difficult the
support of linked structures on heterogeneous systems. However, most
realistic applications use linked data structures. In order to solve this
problem, we have developed a transparent method supporting this
kind of structures on heterogeneous systems. Our demands are low-
overhead and no extensive changes of code.

Linked data structures cause many transfers of data between the host
and the device since the nodes are scattered in the memory. Transfers
between the components of the system cost due to latency (see [14]),
thus we have developed a method minimizing these transfers and we
discuss it at section

4.2 Memory transfers aggregation”. At this section, we propose the use
of a continuous memory area so as one transfer is needed. In addition,
since the architecture of the device is different from the host’s one, the
pointers of the linked data structures on the device will be invalid,
Hence, it is necessary to rewrite the pointers which is enabled by the
fact that continuous memory areas are allocated. Also, the
components of a heterogeneous system have different architectures,
therefore the data may be represented in different way. This problem is
more frequent when the form of the data is structure as padding is
added differently due to the different compilers of the components.
We have developed a method which guarantees the same
representation of data between the components of the system and it is
described at section”4.3 Enforcing the same representation of data
between components”. Finally we describe the “IpdAual To apxeio
TTPOEAELONG TNG avaPopPacg dev Ppidnke.” of our implementation and
the “4.5 Verification” of its correctness.

Chapter 4 - Transparent support of linked data structures on heterogeneous parallel
systems

4.2 Memory transfers aggregation

One of the ftrickiest things in programming heterogeneous systems is
managing the fransfer of data between devices. Transferring data
takes time and the programmer must be careful so that the transfer
time does not overpower any performance gains from parallelizing the
algorithm. When it comes to tfransfer time, we usually think of it as
having two components: the time due to latency and the time
depending on the size of data being fransferred. The last time is
calculated as the size of data divided by the bandwidth, while the
time due to latency is constant. So the latency is added cumulatively
at each transfer, thus, we prefer as few transfers as possible so as not to
have high overhead of latency.

Linked data structures have nodes which are scattered in the heap.
We cannot sustain this form of data structure as we must transfer each
node to the device implying many small data transfers. Thus the nodes
must be stored in a large continuous memory area.

It is preferred one large transfer instead of many smaller since we pay
the fransfer latency one time and exploit the bandwidth better.
However, one large transfer is not easy because the data are
scattered in the memory. Therefore, we should do some exira work
creating our own memory manager.

In order to avoid many small data transfers between host and device,
the solution is the use of a continuous memory area. In particular, our
technique is illustrated at Figure 9 where the data are scattered in the
first heap, and we save them in a continuous memory area in the
second heap. We allocate initially a configuous memory area and
here in affer we assign addresses from this area. When the first data
segment is allocated, we put a pointer to point at the end of that
segment. So, the second data segment is allocated next to the first,
and generally every data segment is allocated next to the previous
one. In this way, the nodes of the linked data structures are stored as
segregated heaps in a continuous memory area so as one transfer is
needed.

Chapter 4 - Transparent support of linked data structures on heterogeneous parallel
systems

Data 1 Data 2 Data 3 Data 4

Figure 9

From data scattered in the heap to segregated heaps in a continuous memory area.
Memory manager:
We present the form of our memory manager.

Once the program starts to execute, a contiguous memory region is
allocated:

contfiguous_memory = my_malloc(sizeof contiguous memory region);

The memory manager intercepts the mallocs of the program calling a
function with the following form.:

void *my malloc(size) {

returnPointer = nextPointerFree

nextPointerFree +=size;

return returnPointer;

}

Each time my_malloc is called, it returns an address of the contiguous
memory region allocated at the beginning. At the end of my_malloc,
the pointer nextPointerfree (see Figure 10) holds the address which will
be returned at the next call. More precisely, nextPointerFree takes as
value the address at which the previous data was allocated plus the
size of the current data.

Chapter 4 - Transparent support of linked data structures on heterogeneous parallel
systems

nextPointerfFree

I

Figure 10

It is illustrated how the pointer nextPointerfFree points to the next available address
with each call.

The use of memory manager in Gerris

The memory manager was tested in application Gerris. The data
structures of Gerris are examined at Chapter 2 - The Application Gerris.
Its basic data structure used is a quad tree.

We have allocated continuous memory areas for:

e Tree (all tree nodes except roots)
The full threaded tree (see Figure 2) represents this kind of nodes.
e Roots
The roots of the trees (see Figure 3).
e Boundaries
Cells cut by boundaries of the domain
e Data
Each node points to a separated heap holding the data (see
Figure 3). The data contains the variables (velocity, pressure and
other variables) and elements for cells cut by solid boundaries.

The Figure 11 depicts the data structures and some connections with
pointers by the intervention of our own memory manager.

Chapter 4 - Transparent support of linked data structures on heterogeneous parallel
systems

Figure 11

The figure illustrates the data structures of Gerris with the intervention of our own
memory manager. We have allocated one continuous area for each object type.

4.2.1 Pointer rewriting

The linked data structures use structures with pointers. Once the
pointers are fransferred on the device, they will be invalid, as the host
and the device are different architectures and have separate memory
spaces (see Separate memory spaces). As it was referred at the
previous section, all the nodes and the data used by the free are
scattered in the heap and therefore the tree is transferred to the
device in segments. Therefore, the conversion of the device pointers so
as to point to a valid address space is impossible.

The memory manager that we have developed solves the previous
problem of the invalid device pointers. In particular, we allocate
continuous memory areas for each data type. As the base addresses
of the continuous memory areas allocated on the host and on the
device are known, we can make the device pointers valid with
pointer arithmetic.

At Figure 12, it is illustrated the procedure of pointer rewriting. Start is the
base address of the host buffer and start * is the base address of the
device buffer. If a host pointer p points to the memory address start +
offset, the corresponding device pointer p’ will be rewritten as start’+
offset.

Chapter 4 - Transparent support of linked data structures on heterogeneous parallel

systems
The expression for the conversion of the device pointers is:
devicePointer = deviceBaseAddress + HostPointer -
- HostBaseAddress
Figure 12

It is illustrated the procedure of pointer rewriting. Start is the base address of the host
buffer, while start ' is the base address of the device buffer. Each host pointer p
points at the memory address start + offset. Each device pointer p’ will be rewritten
as start’ + offset.

As it is referred at Chapter 2 - The Application Gerris, the full threaded
free is used for the representation of the quad tree and consists of
structures with pointers. The continuous memory areas allocated for
each data type are illustrated at

We chose to use a heterogeneous system of a CPU and a GPU. We
transfer the contfinuous memory areas (each for a data type, see Figure
11.) of the data structures of Gerris to the GPU. The pointers of the
structures of the free will point to invalid memory addresses. Thus, we
rewrite the pointers so as to point to valid memory space with the
technique illustrated at Figure 12.

In order to have low overhead, the pointer rewriting has been
performed totally parallel on GPU. Each thread is responsible for
rewriting the pointers of one element of the continuous memory areas
Tree and Roofts. Therefore we need these continuous memory areas to
be arrays with elements of a specific type, so as each thread to be
responsible for one element. For having continuous memory areas of a
specific type, we dllocate separate contfinuous areas instead of one
large continuous area. However, we do not need the confinuous
memory area Data to be an array of a specific type, as each thread
accesses it via the arrays Tree and Roofs.

Chapter 4 - Transparent support of linked data structures on heterogeneous parallel
systems

The positive thing is that the connections of the tree does not change
on device, hence the tree is tfransferred to the device only once. If the
connections of the tree were changed on the GPU, we would fransfer
the tree back to the CPU and update the connections. In this case,
additional calculations would be added. Nonetheless, the data at
which each node of the tree points are changed, thus we transfer the
continuous memory area Data from CPU to GPU and inversely at each
kernel call so as the updated data are used from the CPU and the
GPU.

One alternative solution for keeping the connections among the
nodes of the tree is to replace the pointers of structures with indices in
the arrays. However, this is not such a good approach as we should
change the code which is complex. Also, there are pointers pointing to
more than one array. For instance a neighbor can be a rootf, a node,
or a boundary. One last reason for not using indices is that the type of
elements of the contiguous memory space Data is not specific
(Variables and solids are stored in this space).

4.3 Enforcing the same representation of data

between components

The size of a struct between a CPU and GPU may differ. Compilers
add padding between elements if necessary in order to align the data
address on a specific boundary. Due to the fact that CPU and GPU
have different compilers, padding [13] can be placed differently. If
CPU padding differs from GPU padding, there will be problem to the
mapping of data from CPU to GPU.

As it is referred at Chapter 2 - The Application Gerris, all the data
structures of Gerris that we fransfer to the GPU consist of structures with
basic type elements and pointers. Thus, we have faced this problem of
different structure sizes between host and device.

4.3.1 Data alignment and padding

Data alignment [13] helps CPU to fetch data to memory effectively.
Given the ultimate objective is high performance, CPU does not read
one byte at a time butin 2, 4, 8 e.t.c. byte chunks at a time. Hence, the
address of each data object is aligned at a specific boundary.

Chapter 4 - Transparent support of linked data structures on heterogeneous parallel
systems

Most compilers align variables on their natural length boundaries [13].
However, the struct member variables must be aligned according to
their next neighboring elements’ alignment rules in order to prevent
performance penalties. Therefore, the compiler pads bytes between
the elements of a struct. An example is illustrated at Figure 13.

0x0000
1-Byte 3-Padding bytes e charc
0x0004
int i
4 -bytes e
Figure 13

We have a struct with one char and one int. The compiler will pad three bytes
between them so as the int will be aligned on a 4-byte boundary. Therefore, the size
of struct will be 8 bytes instead of 5 bytes.

4.3.2 Same representation of structs between CPU and GPU

As heterogeneous programming language we have used OpenCL
[11]1[12][16]. OpenCL is derivative of C99 rules, thus compilers are free
to insert padding between struct members and at the end of the
struct. If we want to pass structs to kernels it makes sense to specify
alignment attributes ' rather than attempting to guess what the
particular OpenCL compiler we have installed is doing. Inserting hand-
crafted padding members means that your program may not work
correctly in a different computer.

If CPU padding and GPU padding differ, the size of structs at CPU and
GPU differ too. Hence, the data will not be mapped correctly from CPU
to GPU, and as a result the wrong data will be accessed (see Figure 14).

We have developed functions for each type of struct that we transfer
to the GPU. These functions compare the structs of CPU and GPU, and
specify how many bytes should be pad. Subsequently, the user should
add the appropriate aligned attributes, and then run the program for
verifying that sizes of structs are the same between host and device.

'The aligned attribute forces the compiler to align a variable on a specific boundary.

Chapter 4 - Transparent support of linked data structures on heterogeneous parallel
systems

0x 0000 0x0000
unsigned int unsigned int
Ox 0004 o
4-padding bytes 0x0004
O0x 0008 .
x pointer pointer
CPU GPU
Figure 14

Provided that we have a struct with an unsigned int and a pointer, the figure depicts
different padding between CPU and GPU. CPU pads four bytes between the two elements of
the struct, while GPU adds no padding. If we attempt to read the pointer at GPU, instead of
the pointer we will read the bytes padded by CPU. It is apparent the mapping of data from
CPU to GPU is not correct.

We have as host a é64-bit CPU and as device a 32-bit GPU. Therefore,
the CPU pointer has the size of eight bytes, while the GPU pointer has
the size of four bytes. As the data structures of Gerris are structs with
pointers, the sizes of structs between CPU and GPU are different, and
as a result the mapping of data from CPU to GPU is not correct.

One solution to this problem is to pad four bytes after each GPU
pointer. Gerris have some arrays of pointers. However, we cannot pad
bytes in between elements of an array. Since array is a contiguous
block of memory, C does not allow padding between the elements of
an array. Nonetheless, an array of structures may have padding added
to each element as part of the struct itself.

Two dimensional array

We can solve this problem by a two-dimensional array (see Figure 15).
For instance, if we have an array void * a[4] and convert it to void
*a[4][2], four bytes padding is added after each pointer since GPU
pointer’s size is four bytes.

Chapter 4 - Transparent support of linked data structures on heterogeneous parallel
systems

void * a[4]1[2]:

Pointer Padding
Pointer Padding
Pointer Padding
Pointer Padding

Figure 15

We convert one dimensional array of pointers to two dimensional in order to have
four bytes padded after each pointer (because GPU pointer’s size is four bytes).

Union

We should leave the solution of the two-dimensional array since there is
a problem at the 4.2.1 Pointer rewriting. The GPU pointer has the size of
four bytes, while the CPU pointer has the size of eight bytes. Hence,
during the procedure of pointer rewriting, the CPU pointers are read
half.

The expression for the pointer rewriting is:
GPU Pointer = GPU Base Address + CPU Pointer - CPU Base Address (1)

For example, If CPU pointer is 0x7f036d799014, we read 0x799014 at
GPU.

The solution is the replacement of pointers with unions. All the elements
of union share the same memory space, thus the size of union equals
the highest size of all the elements.

Chapter 4 - Transparent support of linked data structures on heterogeneous parallel
systems

We replace each pointer with the following type (see Figure 16):
union customPointer {
global void * pifr;

unsigned long pfirFull
}

For the pointer rewriting of the Gerris tfree, we read the pfirFull pointer (8
bytes) for getting the CPU Pointer, and after performing the expression
(1) we assign the valid GPU address to pointer ptr (4bytes). In this way,
we read the whole CPU pointer, and mapping of data is correct since
now the pointer type is 8 bytes regardless of the GPU architecture.

Figure 16

Union has the same syntax with struct, but differs at the storage allocated. Variables of a
structure are stored at different memory areas, while variables of a union share the same
memory area. Union’s size is equal to the maximum memory required by the members of
the union. In this way, we read the whole CPU pointer and padding is automatically added
after each pointer. With unions we have solved the problem of adding padding at arrays of
pointers. So, the mapping of data from CPU to GPU is correct.

Chapter 4 - Transparent support of linked data structures on heterogeneous parallel
systems

4.3.3 The same virtual address bit-width of the components
The question is why we make the situation so complicated as we can
use components with the same virtual address bit-width leaving the
complex solution of unions. As far as CPU is concerned, we can set it so
as to be 32 bit, but in this case we do not use data more than 4GB. As
for the GPU, we can use a é4-bit one, but we prefer one of 32-bit. There
are not GPUs with DRAM memory more than 4GB. So if we have a GPU
64 bit, we cannot take advantage of it. Also, if we have a GPU 64 bit,
we need more registers comparing with a GPU 32 bit. However,
registers are limited resources [15] (e.g. the Fermi architecture has 63
registers per thread) but applications need registers because kernels
store their local variables in registers. Having 64 bit pointers implies need
for more registers, and as a result the possibility of register spilling2 [15] is
increased. Register spilling brings more memory transfers, and
consequently deterioration in performance. Lastly, with 64 bit pointers,
each thread needs more registers, therefore less threads can run
concurrently and again there will be performance decrease.

4.4 Limitations

There are some limitations of our implementation. Firstly, the
replacement of pointers with unions is drawback since we must
change the code. Also, If an application changed the connections of
the linked data structure on the device, each time we would transfer
the pointers from device to host, we would make the pointers to point
to the host's address space. Apparently, our implementation is not
appropriate for this kind of applications as it adds many transfers and
calculations. The last limitation is related to the memory footprint of an
application. Lastly, if the memory footprint of an application does not
increase almost continuously meaning that the program frees
constantly memory, our approach is not appropriate. In particular,
“holes” are created in the continuous memory area and as a result
unnecessary data are transferred between host and device.

2 Register spilling definition: when the code overcomes the maximum number of registers per thread
then some variables are transferred or “spilled” to local memory.

4.5 Verification

We have transferred a function traversing the trees so as to verify that
the changes of the code do not affect the correctness of the
application. The traversal of the tree cells is recursive. The cells are
visited recursively, and it is checked if they are at a specific level. If yes,
the node calls a function. The traversal of the tree is called with an
argument defining a specific level varying from zero level to a
maximum desired level. However, the GPU does not support recursion.
As the cells call the function per level, there is independence at the
same level, and thus the cells can call the function in parallel.
Therefore, we do noft fraverse the free, but we fraverse the arrays Roots
and Tree (see Figure 11) which contain all the cells of the free. Each
thread checks one element of either Roots (one cell) array or Tree
array (four cells). If the cells are at the desired level, a function is called.

Chapter 5 - Conclusion

Chapter 5 - Conclusion

The heterogeneous future is inevitable, a single application will exploit
a “jungle” of enormous numbers of cores that are increasingly different
in kind (specialized for different tasks) and different in location (on-die,
from local to very remote e.t.c.). Although we harness performance
with relatively low power dissipation of heterogeneous systems
[7118][9]1[10] . the current frend for using linked data structures at these
systems is to be avoided. However, most applications use complex
structures. The components of the heterogeneous systems have usually
separate memory spaces and have different architectures. Therefore, it
is the latency of transfers and the different representation of data
among components that make the support of linked data structures
difficult. The goal of this undergraduate thesis is the fransparent support
of linked data structures on heterogeneous systems. We have
developed a memory manager that minimizes the transfers of the
nodes of the linked data structures from the host to the device and a
method ensuring that the data representation is the same on different
architectures so as the mapping from host to device is correct. Our
demands are low-overhead and not extensive changes of code. As
heterogeneous system, we have used a CPU and a GPU. We program
this system with OpenCL[11][12][16] and as case study we have used a
fluid simulation application named Gerris [1][2][3]whose basic data
structure is a free.

Bibliography
Bibliography

[1] Gerris page: http://gfs.sourceforge.net/wiki/index.php/Main_Page

[2] Stephane Popinet: “Gerris: a tree-based adaptive solver for the
incompressible Euler equations in complex geometries”, National
Institute of Water and Atmospheric Research, PO Box 14-901 Kilbirnie,
Wellington, New Zealand

[3]Gerris reference:
http://src.gnu-darwin.org/ports/science/gerris/work/gerris-
0.6.0/doc/html/book].html

[4] A.M. Khokhlov, Fully Threaded Tree for Adaptive Mesh Refinement
Fluid Dynamic Simulations Washington, DC 220375, (5-7)

[5] Hadi Esmaeilzadeh, Emily Blem, Renée St. Amant, Karthikeyan
Sankaralingam, Doug Burger, “Dark Silicon and the End of Multicore
Scaling” on ISCA’11

[6] The Heterogeneous Programming Jungle:
http://www.hpcwire.com/hpcwire/2012-03-
19/the _heterogeneous programming jungle.html2page=1

[7] Heterogeneous Processing: a Strategy for Augmenting Moore's Law:
http://www.linuxjournal.com/article /8368

[8] A brief history of microprocessors:
http://www.csa.com/discoveryguides/multicore/review?2.php

[?] Graphics and CPUs to gether: Are the Heterogeneous Processors
the Future of Computing?
http://forwardthinking.pcmag.com/none/282278-graphics-and-

cpus-together-are-heterogeneous-processors-the-future-of-computing

[10] What is Heterogeneous Systems Architecture (HSA)?
http://developer.amd.com/resources/heterogeneous-
computing/what-is-heterogeneous-system-architecture-hsa/

[11] OpenCL Programming Guide — A. Munshi, et al., (Pearson, 2012)
BBS

[12] The OpenCL specification Khronos Group

http://src.gnu-darwin.org/ports/science/gerris/work/gerris-0.6.0/doc/html/book1.html
http://src.gnu-darwin.org/ports/science/gerris/work/gerris-0.6.0/doc/html/book1.html
http://www.hpcwire.com/hpcwire/2012-03-%2019/the_heterogeneous_programming_jungle.html?page=1
http://www.hpcwire.com/hpcwire/2012-03-%2019/the_heterogeneous_programming_jungle.html?page=1
http://www.linuxjournal.com/article/8368
http://www.csa.com/discoveryguides/multicore/review2.php
http://forwardthinking.pcmag.com/none/282278-graphics-and-cpus-together-are-heterogeneous-processors-the-future-of-computing
http://forwardthinking.pcmag.com/none/282278-graphics-and-cpus-together-are-heterogeneous-processors-the-future-of-computing
http://developer.amd.com/resources/heterogeneous-computing/what-is-heterogeneous-system-architecture-hsa/
http://developer.amd.com/resources/heterogeneous-computing/what-is-heterogeneous-system-architecture-hsa/

Bibliography

[13] Data alignment
http://www.songho.ca/misc/alignment/dataalign.html

[14] A look at GPU memory transfer:
http://blog.theincredibleholk.org/blog/2012/11/2%9/a-look-at-gpu-
memory-transfer/

[15] Lecture “Local Memory and Register Spilling”, Paulius Micikevicius
NVIDIA

[16] Khronos Forums: http://www.khronos.org/message boards/

http://www.songho.ca/misc/alignment/dataalign.html
http://blog.theincredibleholk.org/blog/2012/11/29/a-look-at-gpu-memory-transfer/
http://blog.theincredibleholk.org/blog/2012/11/29/a-look-at-gpu-memory-transfer/
http://www.khronos.org/message_boards/

