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Abstract

Video games always fascinated people of all ages. In recent years, a very large in-
dustry has been developed that aims to create video games, which simultaneously
has pushed the hardware industry to manufacture more and more specialized com-
ponents for their reproduction. As a consequence, the handling of video games has
escaped conventional ways, for example gamepads, and has progressed to more so-

phisticated and interactive media, such as Nintendo Wii, Xbox Kinect and more.

The purpose of this thesis is the development of an interactive arcade game in a
reconfigurable platform, with hand motion recognition feature using an accelerom-
eter. The game we implemented is Tetris, one of the earliest and most famous
arcade video games. The game was implemented in Verilog Hardware Description

Language.



IMTepiindn

To nhextpovind mowyvida mévta cuvaprdlouv avipmroug xdle nhudag. To teheutaio
xeovia €yel avamtuydel plor ToAD ueydhn Bounyavia mou €yel oxond Tn Onuovpeyia
NAEXTEOVIXWY TALY VIBLOY, 1) oTtolar TapdAAnAa €yel wdnoel T Brounyovior UAXOU Vo xo-
TUOXEVALEL OMOEVOL XOU TO ECEWBIXEVPEVOL ECORTHUOTOL YIOL TNV oVOToEOY WY T) Toug. )¢
OLVETELY, O YEIPIOUOC TWY NAEXTOOVIXOV TOkY VOOV €YEL EEQPUYEL Umd TOUG XAAGIXOUS
TPOTOUC, Yo Mapddelypo gamepads, xou €Yel TPOYWEHOEL OE To eEEAYUEVOL o Olo-

dpaoTixd ueoa, 6mwe Nintendo Wii, Xbox Kinect xou dhha.

Ytoyoc autrc e Awmhwpotixrc Epyootiog elvon 1 avdntuln evog dabpaotinol ar-
cade Ty ViU OE ETAVATEOYEAUUUUTICOUEVT) TAXATPOPUL, UE DUVATOTNTO VLY VOLONC
xlvnong yeptol Yo To YEWRIoUO TOL, Yenoulomolwvtos alehepoueteo. To mouyvidl mou
vhorotfoape etvor to Tetris® | éva amd to mpdToL 01 O YVLO T arcade MAEXTEOVIXS,

mouyvidw. H viomoinon mpoyuatonomidnxe otn I'hddooa Ieprypagpric Thuxod Verilog.
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Chapter 1

Introduction

1.1 Purpose of This Thesis

Video games nowadays are more interactive than ever. Game developers take ad-
vantage of every contemporary technological feature in order to make video games
more and more fascinating. There are many games that detect levers in players’
hands, the movement of the hand alone, but some detect players’ entire body and
each and every move they make or even player’s gender. Naturally, all these techno-
logically modern games and features are developed in software, creating impressively
accurate and detailed graphics, displaying even the player himself. We would like
to develop such a modern and interactive game purely in Hardware Design, using
a Hardware Description Language (HDL) to configure a Field Programmable Gate
Array and implement our work. However, such precise graphics are impossible to
be developed in Hardware Design, since a Graphics Processing Unit is needed to
be developed first. Consequently, we chose to recreate an arcade video game in 2D
graphics, Tetris®. In order for our video game to be more interactive and modern
with a motion recognition feature, we are using accelerometers to control the game,

by recognizing player’s hand’s motion.
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1.2 Thesis Structure

This thesis is divided in three main parts.

The first part discusses background issues regarding every aspect of our work. More
specifically, deals with FPGA devices, describing their architecture, the
way they operate and the technical specifications of the FPGA device we used,
ZedBoard . In we analyze VGA protocol and all the information needed
in order to drive a display monitor. talks about the game we developed,

Tetris®, its game-play and facts regarding its development and licensing history.

Finally, in we explain the way accelerometers work.

In the second part we present our design and its implementation, along with a

summary report of FPGA’s resources that were used and design tools’ execution

time. In[subsection 3.1.1 we describe the implementation of the VGA driver and in

[subsection 3.1.2] we explain the game algorithm and how it was developed.

[tion 3.1.3| and [subsection 3.1.4] analyze the Linear Feedback Shift Register and the

calculations required for displaying the score respectively. SUMMARY

Finally, we describe the conclusions that we came to and discuss pos-

sible future work.



Chapter 2

Background

In this chapter we describe basic information regarding FPGA technology, the VGA

protocol and Arcade Video games for a better understanding of our work.

2.1 FPGA

An FPGA board is an integrated circuit based on tables of configurable logic blocks
and designed to be configured using HDL [1]. Although there is the solution of one
time programmable FPGAs, most common are FPGAs that can be reconfigured
each time the design evolves [2] [3]. It is not restricted to a predetermined hardware
function and allows the user to program applications and product features according
to the needs of each design. Due to their programmability, FPGAs are ideal for a
large variety of markets such as ASIC prototyping, such as Aerospace and Defence,
Automotive, Communications, High Performance Computing, Industrial, Medical

and Video and Image Processing.

2.1.1 Architecture

Most common FPGAs consist of Configurable Logic Blocks (CLBs), routing chan-
nels, SRAMs, Digital Signal Processing (DSP) modules, I/O circuitry and clock
management blocks.

The CLB is the basic logic unit in an FPGA. Their number and size vary from

device to device, but in general a CLB consists of some logical cells. A typical cell

3
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Figure 2.1: This figure shows a common FPGA’s block structure.

consists of a configurable switch matrix, selection circuitry (Multiplexer (MUX),
etc), Look-Up Tables (LUTs), full adders and flip-flops. Depending on the design
mode,normal or arithmetic, the LUTs are either combined into a larger one or feed
their outputs to the full adder [4] [5].

The routing channels are responsible for routing the signals between the clock, CLBs,
RAMs and I/Os. In order for these routes to be optimal and fast, the routing task is
hidden from the user and is completed solely by the tool, applying any optimization
needed for the design.

The I/O features of an FPGA vary from device to device. Most of them support
USB, video outputs; VGA or/and HDMI, audio lines in and out, Ethernet and con-
nectors for many other features or devices such as cameras, sensors and many more.
Digital clock management provides users the ability to manage the original clock
generated from an oscillator on the FPGA and create new clocks, with lower or
higher frequency.

Most contemporary FPGA devices are equipped with quite powerful processors,
which make them suitable for Embedded Systems and Systems on Chip (SoC) de-
velopment. With these abilities, these devices combine the software programmability
of a Processor with the hardware programmability of an FPGA, resulting in out-
standing system performance, flexibility and scalability, while also providing the

great benefits of power reduction and lower cost.
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2.1.2 ZedBoard™

Our work was developed for the ZedBoard ', which uses Xilinx Zynq®-7000 All
Programmable SoC 7z020-CLG484. The device is equipped with an ARM® Proces-
sor of approximately 900 MHz and with a variety of Hardware Programmable Logic,

allowing designers to add peripherals according to the desirable application [6].

Figure 2.2: System architecture’s block diagram for Zynqg-7000 AP SoC.

The Zyng-7000 AP SoC provides us with optimized programmable logic and great

computational capabilities. The device’s technical features are provided below.

Device Name Z-7020
Xilinx 7 Series Programmable Logic Equivalent Artix-7 FPGA
Programmable Logic Cells (Approximate ASIC Gates(4)) | 85K Logic Cells ( 1.3M)
Look-Up Tables (LUTs) 53,200
Flip-Flops 106,400
Extensible Block RAM (# 36 Kb Blocks) 560 KB (140)
Programmable DSP Slices (18x25 MACCs) 220
Peak DSP Performance (Symmetric FIR) 276 GMACs

Table 2.1: Programmable logic of ZedBoard .
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2.2 VGA Protocol

VGA is a video standard mainly used for computer monitors introduced by IBM in
1987 and has also come to mean the 15-pin VGA connector or the 640x480 resolution
itself, which is most commonly used [7]. VGA video is a stream of frames, where each
frame is consisted of horizontal and vertical series of pixels which are transmitted
from top to bottom and from left to right, like a beam is traveling through each

pixel of the screen.

Figure 2.3: This figure shows the horizontal and vertical inversion process.

Each line of a frame begins with an active display region, in which RGB values are
output for each pixel in the line. Then a blanking region follows in which a horizontal
sync pulse is transmitted in the middle of the blanking interval. The interval before
the sync pulse is known as front porch, after the sync pulse as back porch and the
sync pulse itself as horizontal sync and shows when a full pixel line of the screen
has been scanned. Respectively, each frame begins with an active display region,
followed by the front porch, the vertical sync pulse and the back porch. Image is
only displayed during the active display time and not during the front porch, back
porch nor sync time. Depending on the resolution we want to display, hsync and
vsync have different polarity and there are different pixel clocks, according to which

each region has different timings [§].
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Figure 2.4: The waveforms of hsync and vsync, which are identical regardless resolution.

Each pixel’s colour is a combination of red, green and blue, the size of which depends
on the output device. When the colour of each pixel and all the other signals are set
properly from the VGA controller, they are driven from the VGA Digital-to-Analog
Converter to the correct pins of the connector. The connector consists of 15 pins.
Six pins are used for the colours (RGB), and their respective ground signals two for

the hsync and vsync signals, two for grounds and the remaining five are not used.

Figure 2.5: The pins of the VGA connector (view from board side).
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2.3 Arcade Video Games

An arcade game is a coin-operated entertainment machine, usually installed in pub-
lic businesses, such as restaurants, bars, and particularly amusement arcades. Most
arcade games are video games, pinball machines, electro-mechanical games, redemp-
tion games, and merchandisers. The term "arcade game" is also, in recent times,
used to refer to a video game that was designed to play similarly to an arcade game
with frantic, addictive game-play. The golden age of arcade video games lasted from
the late 1970s to the late 1990s. Arcade games saw a continuous decline in popu-
larity around the world when home-based video game consoles made the transition

from 2D graphics to 3D graphics. [9].
One of the few games that achieved ultimate popularity was Tetris®.

2.3.1 Tetris Game-play

Tetris® is a puzzle video game, where the objective is to manipulate random blocks
that fall down the playing field, by moving them sideways and rotating them by 90
degrees, in order to create completed lines at the bottom of the playing field. When
such a line is created, it disappears and all the above blocks fall to the bottom. For
every ten lines that are cleared, the level increases and each new level makes the
blocks fall faster. The game is over when the blocks are stacked up to the top of the
playing field and no new blocks can be created [10 .

o e s T
T mw TEm

Figure 2.6: The Tetriminos in their colours.

These blocks, called Tetriminos, are created by four tiles which are combined in

different ways to create each shape. Each Tetrimino is symbolized by a letter from
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the English alphabet closer to its shape and has a specific color. Thus, we have [in
cyan, J in blue, L in orange, O in yellow, S in green, 7 in purple and Z in red, as
shown in Figure 2.5. All Tetriminos are able to clear single and double lines. I, J
and L are able to clear triples and only the [ Tetrimino is able to achieve a four-line
clear, which is called "TETRIS". Depending on the level and the number of lines

cleared, different points are awarded to the player.

Level 0 1 2 3 4 5 6 7 8 9

Lines
Single 40 80 120 | 160 | 200 | 240 | 280 | 320 | 360 400
Double | 100 | 200 | 300 | 400 | 500 | 600 | 700 | 800 | 900 1000
Triple 300 | 600 | 900 | 1200 | 1500 | 1800 | 2100 | 2400 | 2700 | 3000
TETRIS | 1200 | 2400 | 3600 | 4800 | 6000 | 7200 | 8400 | 9600 | 10800 | 12000
For each level n greater than 9, the score is: (n + 1)*40, (n + 1)*100,
(n + 1)*300, (n + 1)*1200.

Table 2.2: The scoring system of Tetris® for each level and number of cleared lines.

When a number of lines are cleared, the above Tetriminos fall down the exact
same distance to the cleared lines height. Contrary to the laws of gravity, this feature
may leave blocks floating above gaps instead of falling all the way to the bottom as

shown in Figure [11].

Figure 2.7: Tiles of Tetriminos floating.
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2.3.2 History

Tetris® was introduced on June 6 1984 by Alexey Pajitnov, an artificial intelligence
researcher working for the Soviet Academy of Sciences at their Computer Center
in Moscow. Being responsible for testing the capabilities of new hardware, Alexey
Pajitnov would create simple games in order to do so. The initial idea of Tetris®)
was the creation of a game around pentominoes [12|, like many puzzle games he
enjoyed as a child, but simpler since the variety of the shapes would make the game
very complicated. Thus, instead of pentominoes he switched to tetrominoes, made
of four tiles and creating only seven different shapes. The name of this new game
Tetris, comes from the prefix tetra of the game’s blocks and from tennis, which
was Pajitnov’s favourite sport. Since the Elektronika 60 that he was working on,
supported only text based display, tetrominoes were initially formed of letter char-

acters [13] [14].

Figure 2.8: The very first version of Tetris®.

Pajitnov’s game was quite popular among his colleagues and along with Dmitry
Pavlovsky and Vadim Garasimov, they ported the game to the IBM PC, which
contained background graphics featuring Russian scenes. This version of the game,
made its way to Budapest, Hungary, where it was ported to many different plat-
forms and was noticed by the British software house Andromeda. While they made
attempts to contact Alexey Pajitnov for acquiring the rights to the PC version of

the game and before the deal was settled, the rights had already been sold to Spec-
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trum HoloByte and Andromeda attempted to acquire license of this version from

the Hungarian programmers.

Soon enough the same PC version acquired from Spectrum Holobyte made its way
to the United States, where it became instantly popular and Computer Gaming
World called the game "deceptively simple and insidiously addictive". Although
the licensing issues were still unsolved, many new versions became available from
Andromeda, Microsoft and Spectrum Holobyte. Unsure of how to publish the game,
Pajitnov gave the rights to the Soviet government for ten years, which in 1988 began

to market the rights to Tetris®.

Figure 2.9: The picture that was on the front side of Tetris®’s packaging box.

By 1989, many different companies claimed rights to create and distribute the Tetris
software for home computers, game consoles, and handheld systems. In the mean-
time, Elorg organization signed the rights of the arcade version over to Atari and
the non-Japanese console and handheld rights over to Nintendo. Tetris® was on
show at the January 1988 Consumer Electronics Show in Las Vegas and from then

on, Tetris® was bundled with every Game Boy.

Tengen, Atari’s console software division, applied for copyright for their Tetris game
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Figure 2.10: Nintendo’s version of Tetris® for Game boy: (a) The opening screen and

(b) a screen-shot while playing.

for the Nintendo Entertainment System and proceeded to market and distribute it
under the name TETRIS: The Soviet Mind Game, disregarding Nintendo’s license
from Elorg. From then the lawsuits between Tengen and Nintendo over the NES

version carried on until 1993.

2.4 Accelerometers

An accelerometer is an electromechanical device that measures acceleration forces.
These forces may be static, like the constant force of gravity, or they could be dy-
namic caused by moving the accelerometer. There are different types of accelerome-
ters depending on how they work. Some accelerometers use the piezoelectric effect;
they contain microscopic crystal structures that get stressed by accelerative forces,
which cause a voltage to be generated. Others implement capacitive sensing, that

give as output a voltage dependent on the distance between two planar surfaces.

Figure 2.11: The figure shows a Pmod 3-axis accelerometer.



Chapter 3

Design and Implementation

In this chapter we introduce the design and implementation of our work; the im-
plementation of the Tetris® game in an FPGA device purely in hardware using an
HDL like Verilog. We describe how each module operates and the outputs that each
one provides, but also all the essential optimizations for reducing XST and PAR
execution time and area occupancy. Finally, we present the schematic design of

the project and the summary reports from XST and PAR that the Xilinx ISE Tool

Accelarg-
maters

provides.
Top Logic

Moniior b _ S50MHz [|5Hz| | SPI

o WA Driver Clock || Clock Y Component
Game Logic (Master FSM)

Linear Feedback Game Algorithm

Shift Register ﬂ:D ISlave FSM)

SHRAM Score
SRAMs =" Drivers Hﬁalculatinn

Figure 3.1: This figure shows the block diagram of the project.

13
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3.1 Tetris Game

The implementation of this project was for ZedBoard Zynq 7z020 and consists of
the VGA driver, the creation of a 50 MHz pixel clock and the main game logic,
which controls the game algorithm, the Linear Feedback Shift Register for generating
random blocks and the drivers for displaying images from block RAM. The game
algorithm contains the movement and collision detection algorithm, the rotation

algorithm and the completed lines detection and delete algorithm.

3.1.1 VGA Driver

For the 800x600 resolution that we used, a 50 MHz pixel clock is required and since
Zynq 72020 FPGA board oscillator provides an 100 MHz clock, we created a very
simple frequency divider.

The timings for synchronising the display correctly are shown in Table 3.1.

General Timing

Screen refresh rate | 72 Hz

Vertical refresh 48.076923076923 kHz

Pixel freq. 50.0 MHz
Horizontal Timing (Line) Vertical Timing (Frame)
Scanline part || Pixels || Time [us| || Frame part | Lines | Time [ms]
Visible area || 800 16 || Visible area | 600 12.48
Front porch 56 1.12 ||| Front porch | 37 0.7696
Sync pulse 120 2.4 ||| Sync pulse 6 0.1248
Back porch 64 1.28 ||| Back porch 23 0.4784
Whole line 1040 20.8 ||| Whole frame || 666 13.8528
Polarity of hsync pulse is positive. || Polarity of vsync pulse is positive.

Table 3.1: VGA Timings for 800x600 resolution.
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The VGA driver that we implemented, is composed of two counters, one that
counts the pixels of each line and one that counts the lines of the frame. As we can
see above, the hsync pulse should be asserted 120 pixels after the front porch, that
is including pixel zero (0) at the 975th pixel. Accordingly, the vsync pulse should be
asserted at the 642nd line of the frame. At the end of each line, horizontal counter

is zeroed and at the end of each frame, vertical counter is zeroed.

The Zynq 72020 FPGA board that we used has an RGB output of 12 bits, that
is 4 bits Red, 4 bits Green and 4 bits Blue, therefore a total of 4095 colours. Each
foursome from each colour, as well as horizontal and vertical sync pulses, are driven
to the corresponding pins of the VGA connector from the appropriate pins of the
FPGA as shown in Table 3.2. In order to obtain a 50 MHz frequency clock from the

VGA Pin Signal Description EPP Pin
1 RED Red video V20, U20, V19, V18
2 GREEN Green video AB22, AA22, AB21, AA21
3 BLUE Blue video Y21, Y20, AB20, AB19
4 ID2/RES formerly Monitor ID bit 2 NC
5 GND Ground (HSync) NC
6 RED RTN Red return NC
7 GREEN_ RTN Green return NC
8 BLUE RTN Blue return NC
9 KEY/PWR formerly key NC
10 GND Ground (VSync) NC
11 IDO/RES formerly Monitor ID bit 0 NC
12 ID1/SDA formerly Monitor ID bit 1 NC
13 HSync Horizontal sync AA19
14 VSync Vertical sync Y19
15 ID3/SCL formerly Monitor ID bit 3 NC

Table 3.2: VGA Connector and FPGA Pins. |15]
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100 MHz clock of the oscillator we needed a frequency divider. Since the IP-Core
version of Digital Clock Management for the Zynq 72020 was quite time consuming
during the execution of XST and PAR, reaching almost one hour, we had to find
an alternative solution. The simplest alternative was to create a module, where for
every assert of the 100 MHz clock signal, the signal of the 50 MHz clock toggles.
The source code can be seen in |Listing A.1|

3.1.2 Game

Master FSM

The game is controlled by a master FSM consisted of four states as shown in Figure
game_over =0 &&

3.1.
Game
Qver
frame =1
game_over =1

Figure 3.2: This figure shows the master FSM that controls the game.

done =1

During each state signals are asserted to control different functionalities and activate

states of other FSMs.

Start
The image for the background is read from the Block RAM and driven to the
monitor to be displayed and signal new block is asserted in order for a new
Tetrimino to be created. When frame is asserted after one second we move to

state Play.

Play

Signal move is asserted in order to activate movement for the Tetrimino that
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was created and the background image along with the new Tetrimino are driven

to the display. When signal done is asserted we move to state DisplayChanges

DisplayChanges
The background image, the Tetrimino that reached bottom and changes such
as the deletion of a line or lines, are driven to be displayed. When frame is
asserted and game over is not we return to state Start since we can keep on
playing and the game is not over. If game over is asserted we move to state

GameOver.

GameOver
If the game is over, a picture with the according message is read from the

Block RAM and driven to be displayed.

The source code can be seen in |Listing A.2|

Game Algorithm

The master FSM controls and communicates with a secondary FSM which is the
game algorithm that is responsible for the Tetriminos’ movement and rotation, for
collision detection, for detecting completed lines and deleting them. The same mod-

ule displays the falling Tetrimino and the next one to come.

check =1 and
first = start

row =21 and
Filledrows[row] =0

del_row=10

row 1= 21 and col |= 14 and del_row =0 or

chack =10 Filledrows[row] = 0 del_row 1= 0

Figure 3.3: This figure shows the slave FSM that controls the game.

In order to be able to display the Tetriminos, detect collision but also display all the

fallen Tetriminos we needed a collision buffer, a frame buffer and the images of all

Tetriminos in Block RAMs. Since this was not a good design technique, we use only
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one buffer for all the above. The buffer is a register of 368 words of 3 bits and rep-
resents a grid of the playing field surrounded by the walls and bottom that restrict
Tetriminos” moves. Before the game begins the buffer is initialized to zeroes and to
non-zero values at walls’ and bottom’s positions. Each Tetrimino is created by four
grids, which are represented by four variables; first, sec, third and fourth. When a
Tetrimino is created, its initial positions in the grid are written with its colour code
in order to be displayed. An other optimization that was essential is that the codes
of colours written in the buffer are not the actual hexadecimal colours, but each one
of them correspond to a 3 bit number from one to seven. Thus, the displayed result

and the equivalent state of the 14x23 buffer, are shown in Figure 3.3.

Figure 3.4: This figure shows the displayed image and the actual changes of the buffer.

For Tetriminos’ movement, it is essential first to check that all future positions in
the grid are not occupied by an other fallen Tetrimino or a wall. Therefore, as
Tetriminos’ fall, if the positions they are about to move in are zero then the move is
completed, the previous positions are zeroed and the new ones are written with the

corresponding colour code. This regards all possible movements, that are moving
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left, right, falling down and rotating. All these moves are calculated through the four
position variables first, sec, third and fourth. For left and right movement we have
to check the previous and the next positions of the most left and the most right grids
of moving Tetrimino and add -1 or +1 to the variables. For the falling movement
we have to check the positions located below the bottom Tetriminos’ grids in the
next rows and add +16 for gravity falling or +16 again for moving down, but with
a faster refresh rate of the buffer. Finally, Tetriminos rotate 90 degrees clockwise
and their next positions depend on the Tetrimino and the previous rotation, thus
they are calculated and certain values are added to the variables. Except for O, all

other Tetriminos have four different rotation states as shown in Figure 3.4.

Figure 3.5: This figure shows Tetriminos’ different rotations.

As Tetriminos are created, moved and rotated inside the playing field, they are fi-
nally placed on the bottom of the field. If a line is completed, it must be removed.
Thus, we scan the buffer, from top to bottom and assign to a register of 22 positions
zero if the line is not full and one if the line is full. Subsequently, we check the

register of completed and non-completed lines from top to bottom. When a line is
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full and must be removed, starting from that line and moving to the top of the buffer
we replace the contents of each line with the contents of the previous one. This is

repeated for every completed line in the buffer. Since there are no more completed

Figure 3.6: This figure shows how completed lines are removed and their contents replaced

appropriately.

lines to delete and all necessary changes have been made, a new Tetrimino is created
and the above process is repeated. The game ends when Tetriminos are stacked up
to the top of the playing field and new ones can not be created. The "Game Over"

message is displayed on screen as shown in Figure 3.7.

Figure 3.7: This figure shows the game over message at the end of the game.
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Slave FSM

Each state of the slave FSM executes a specific part of the process described above

as follows:

Start

All signals and buffers are initialized to their initial state.

Idle 1

When a new Tetrimino is created an LFSR determines which one it will be

and also determines which one will come next.

Idle 2

Depending on the Tetrimino, its initial positions and colour code are defined.
Also a variable keeps the initial position in order to detect game over. When

signal move is asserted we move to state BlockMove.

BlockMove

Tetriminos move towards the bottom approximately one row every second.
As level increases, so does the speed of Tetriminos. The calculations for each
movement are activated with a corresponding button. If a button is pushed
and the movement is legitimate, the values of first, sec, third and fourth are
reduced or increased at a certain amount depending on the movement and
the next positions. For moving left and right, all four of them are reduced
by one and increased by one respectively. For simple falling due to gravity,
all four of them are increased by sixteen and that is because the width of the
playing field is fourteen grids but we have to include two more for the walls.
Thus, for moving downwards and not simply falling same distance is covered,
but with a faster rate, so all four of them are increased by sixteen. For the
rotations, each one of the variables is either increased or reduced in order
to achieve the 90 degree rotation according to [Figure 3.5 As a better design
technique and since the changes are numerical according to how many grids
does each variable needs to be moved, they are summed up and added to the
four variables. When signal check is asserted, which means that our active

Tetrimino had an impact and is not able to move downwards anymore, it has
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either reached bottom or an other Tetrimino. Therefore, we either resume
the game and check for completed lines or the game is over if Tetriminos are

stacked to the top and the appropriate message appears.

DetectLines
The buffer is scanned for completed lines. For every completed line the cor-
responding location of FilledRows register is assigned to one and for non-

completed rows to zero.

CheckRows
During this state register FilledRows is scanned. When a completed line is
found we move on to the deletion at state DeleteRows. Otherwise, and if we
haven’t reached the end of the register, the scanning continues. Eventually, by
reaching the end of the register and if the last line is not full, we move back

to state Idle 1 and game flow is resumed.

DeleteRow
Since a row is completed, we not only have to delete the whole row, but also
move all the above rows downwards. Hence, the values of our completed row
need to be replaced with the values of the previous row. Each grid of the row
is written with the value of the above grid. At the end of the row we repeat
the process for the previous line in the buffer but actually the next one as we
move to the top. Finally, when we reach the top and we are at row zero, since
there are not other lines above and the values can not be replaced, the whole

row is initialized to zero.

GameOQOver

Signal game over is activated and Game Over image is displayed.

The source code can be seen in |Listing A.3|

In order for the contents of the buffer to be displayed and using the horizontal
counter of pixels and the vertical counter for lines, we calculated the actual pixel

coordinates of each grid of the playing field and determined a specific address for
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each one. Hence, as the screen display is scanned and an address is assigned, if the
corresponding position of the grid contains one of the colour codes, the appropriate

colour is displayed.

3.1.3 Linear Feedback Shift Register (LFSR)

During the original game Tetriminos are created randomly, without following a
distinctive pattern, but in reality nothing is absolutely random. Thus, in order to
create Tetriminos in a seemingly random way we needed a pseudo-random number
generator. The ideal pseudo-random number generator would use as seed outer
parameters, such as time. Since our work is purely in hardware design and such
parameters is not able to be used, we used an LFSR. LFSR is a shift register whose
input bit is a linear function of its previous state. The most commonly used linear
function of single bits is exclusive-or (XOR), therefore its input is driven by the

XOR of some bits of the overall value of the shift register [16] [17].

Figure 3.8: This figure shows the linear feedback shift register that was used.

Since Tetriminos are seven, we needed to compose three random bits in order to
create all seven types. In order to obtain a less frequent pattern, we used a 16-bit
LFSR with three XORs, which inverted give us our random numbers and a fourth

one that drives the input each time a new Tetrimino is created as we can see in

Figure 3.8. The source code can be found in [Listing A.4]

3.1.4 Score, Completed Lines and Level Display

Points are awarded to the player according to the scoring system seen in [Table 2.2]

When a number of lines is erased, line counter is increased accordingly and for every
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ten lines erased, level counter is increased by one. Level counter reaches up to
number nine, which means we only need one digit to represent it. Images of the
numbers from zero to nine are loaded in Block RAMs. For the ten possible values of
level, each Block RAM is instantiated and according to the value of level the proper
image is displayed. In order for score and completed lines to be displayed, we needed
seven and five digits respectively. Consequently, from a value of seven or five digits,
we needed to isolate each digit and display each one separately, thus we use variables
to represent each digit. In the end, all together composed, form the entire sum. For
each one of the two parameters there are two counters; one that keeps the total
amount and one that keeps the current amount. When points are awarded or in the
other case lines are erased, the total amount is increased and the difference between
these two counters is not zero and the new sum must be calculated and displayed.
The amount of difference is added to the value of units’ digit and if its value is
greater than nine, it is decreased by ten and dozens’ digit is increased by one. This
process is repeated for every digit and is continued until the digit has a maximum
value of nine. Since we are not able to use one single instantiation of each number
in Block RAM, as it is not possible to access Block RAM by multiple drivers, the

instantiations for each number need to be as many as the digits in use.
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Total Score =52
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Figure 3.9: This figure shows the way each digit of the score is isolated to be displayed.

3.1.5 Accelerometers

In our implementation we used a 3-axis digital accelerometer, powered by the analog

device ADXL345 and took advantage of the force of gravity on x and y axises,

making Tetriminos move sideways by tilting the accelerometer right or left and

down by tilting the accelerometer towards the floor. We connected the accelerometer

through the SPI interface. SPI operates in full duplex mode and uses four signals:

Slave select (SS), serial clock (SCLK), serial data out (SDO), to the accelerometer

and serial data in (SDI), from the accelerometer. Devices communicate in master-

slave mode, where master initiates the data frame.

Figure 3.10: This figure shows the master-slave communication for the SPI interface.

Our setup contains two shift registers, one in the master and one in the slave and

they are connected as a ring. Data is shifted out with the most significant bit first,

while shifting a new least significant bit into the same register.
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Figure 3.11: This figure shows the SPI 8-bit circular transfer between the two shift

registers.

We initialize the transfer with a 5 Hz clock and we transmit and receive data
at 22.4 kHz rate. The accelerometer is configured for + /- 2g operation. To convert
the output to g we have to find the difference between the measured output and
the zero-g offset and divide it by the accelerometer’s sensitivity, which is expressed
in counts/g or LSB/g. For our accelerometer in 2g sensitivity with 10-bit digital
outputs, the sensitivity is 163 counts/g or LSB/g. The acceleration would be equal

(Aout—zerog)

539 However, we did not calculate the acceleration as described

to: a =
above. We simply used the accelerometer raw output in order to move Tetriminos

according to Table 3.3.

Raw Value
Axis G Value From | To | Movement & Tilting
+y Axis | 0 through +0.5 0 175 Left
-y Axis | -0.5 through 0 | 250 | 375 Right
+x Axis | -0.5 through 0 | 250 | 375 Down

Table 3.3: Movements according to accelerometer’s outputs.

3.2 Summary Report

The tool that was used for the development of our work, Xilinx ISE Design Suite,

provides us with a summary report regarding slices, LUTs and generally how much
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of the available logic was used. As it is observable in Table 3.4, apart from a small

proportion that used device’s RAMs, the rest of the project is entirely in hardware

logic.
Slice Logic Utilization Used | Available | Utilization
Number of Slice Registers 3,599 106,400 3%
Number of Slice LUTs 24,988 53,200 46%
Number of occupied Slices 7,855 13,300 59%
Number of RAMB36E1/FIFO36E1s 12 140 8%
Number of RAMBI18E1/FIFO18Els | 132 280 47%

Table 3.4: Xilinx ISE summary report.

The above hardware logic that is occupied, corresponds to:

RAMs 2
Multipliers 24
Adders/Subtractors : 93
Registers : 1356
Comparators 0 102
Multiplexers : 7350
FSMs 0 8
Xors 0 8

3.3 Design Issues

The basic design issue that we encountered during this project was the creation of
a frame buffer; a buffer that would keep the position and the colours of Tetriminos
that had reached bottom. The initial idea was to use a buffer in order to detect
collision and the frame buffer. Since both of them were registers of more than three
hundred addresses, but also there was the issue of synchronizing them, as when a
Tetrimino reached bottom there should be a signal that activates the frame buffer to

be written. For the frame buffer to be updated, a whole frame of the display should
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be scanned. A frame buffer that keeps the RGB value for each pixel of a frame would
be enormous, therefore we needed an optimization. The frame buffer would keep the
RGB values of 26x26 pixel grids by scanning the display and keeping the RGB value
of the center pixel of each grid. Although this was an optimal solution regarding
area, it did not have the expected results, but also combined with the collision buffer
occupied a large proportion of LUTs. An other attempt to solve this issue was the
use of Block RAM instead of register for the frame buffer. Since we wanted at each
frame the frame buffer to be read and displayed, even when its values were updated,
Block RAM was not an efficient solution. Finally, we decided to combine the two
buffers in one, without using Block RAMs for displaying Tetriminos and displaying
them directly from the buffer according to a colour code for each one. Each time the
falling Tetrimino moves, the buffer is updated and the updated values are displayed

instantly on the monitor.
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Conclusion and Future Work

These days video games are developed with great and detailed graphics, requiring
very efficient manipulation of memory and image processing, but also much power
in order to be displayed. More and more technologically improved game consoles
enter the markets, promising highly effective capabilities and the most contempo-

rary interactive features.

We developed an arcade game in an FPGA device, applying many optimizations
in order to occupy minimum area and for the minimum execution time of Synthesis
and Place & Route tools. For our game to be modern and interactive, we used
accelerometers to control the game by recognizing hand motion. In conclusion, our
hardware design implementation in FPGA, requires low power since there are no
cooling issues and the only thing that needs to be supplied with power is the FPGA
chip.

However, there are some more features that we would like to address in the fu-

ture.
Firstly, we would like to add sounds and music feature as the original Tetris® game

has. Different sounds would be generated when Tetriminos move right, left or down,

rotate and when lines are completed.

29
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An other feature we would also like to include in our future work is hand gesture
recognition to control the game. This could be achieved using a camera to recognise

the player’s hand gestures, making our game even more interactive.
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Appendix A

Source Code

Listing A.1: 50 MHz Clock

. module ClkDiv_50MHz(
2 CLK,
CLKOUT
)3
- input CLK; // 100MHz onboard clock
6 output CLKOUT; // New clock output 50 MHz

7 reg CLKOUT = 1°bO0;

9 always @(posedge CLK)
10 begin
11 CLKOUT <= ~CLKOUT;

12 end

11 endmodule

Listing A.2: Master FSM

i /* The FSM that controls the main logic of the game */
2 always @( * )
begin
33



Appendix A. Source Code

34

pixel = pixel_board;
NextState = State;
move = 1°b0;

new_block = 1°b0;

case (State)
/* First the block to be shown is found pseudorandomly, *
* we initialize the Collision Buffer correctly and movex*
* to the next state. */
Start
begin
new_block = 1°bil;
pixel = pixel_grid | pixel_board | frame_pixel | pixel_score;
if (frame)
begin
NextState = Play;
end
end
Play :
begin
move = 1°bi;
pixel = pixel_grid | pixel_board | frame_pixel | pixel_score;
if (done)
NextState = DisplayChanges;
end
DisplayChanges :
begin
pixel = pixel_grid | pixel_board | frame_pixel | pixel_score;
if (frame && !game_over)
begin
NextState = Start;
end

else if (game_over)
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begin

NextState = GameOver;

end
end
GameQver:

begin

pixel = pixel_gameover;

end
default:;
endcase

end

Listing A.3: Slave FSM

/* FSM for the movement, rotation, completed *

* row check and completed row delete
case (State)
/* First initialize every signal */
Start :
begin
filled = 1°b0;
done = 1°b0;
check = 1°b0;
new_row = 5°d0;
new_col = 4°d1;
new_d_row = 5°d0;
diff_d = 9°b0;
diff_s = 9°b0;
color = 3’b000;

*/

/* Initialize the CollisionBuf */

for (A =0; 1 <23; i=1i+ 1)
begin
CollisionBuf_new[i*16] = 1°bi;

CollisionBuf_new[i*16 + 15] = 1;

for (j =1; j <15; j =3 + 1)
if (i == 22)
CollisionBuf_new[i*16 + j] =
else
CollisionBuf_new[i*16 + j] =
end

/* Initialize the FilledRows */

3’b111;

3’b000;
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for (i =0; 1 <22; i=1i+ 1)
begin
FilledRows_new[i] = 1°b0;
end
NextState = Idle_1;
end
/* Idle state until a new block is created */
Idle_1
begin
if (ok)
lines_delfsm = 3°b0;
if (new_block)
begin
tetromino_new = next_tetromino;
next_tetromino_new = next_block;
NextState = Idle_2;
end
end
/* Depending on the Tetrimino assign the initial *
* values of first, sec, third, fourth and colour *
* code for the buffer */
Idle_2 :
begin
case(tetromino)
S :
begin
start_n = 9°d8;
first_new = 9°d8;
sec_new = 9°d9;
third_new = 9°d23;
fourth_new = 9°d24;
color = 3°b001;

end

begin
start_n = 9°4d7;
first_new = 9°d7;
sec_new = 9°d23;
third_new = 9°d24;
fourth_new = 9°d25;
color = 3°b010;

end

begin
start_n = 9°d8;
first_new = 9°d8;

sec_new = 9°d23;
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third_new = 9°d24;
fourth_new = 9°d25;
color = 3’b011;

end
I
begin
start_n = 9°d6;
first_new = 9°d6;
sec_new = 9°d7;
third_new = 9°d8;
fourth_new = 9°d9;
color = 3’°b100;
end
0 :
begin
start_n = 9°47;
first_new = 9°47;
sec_new = 9°d8;
third_new = 9°d23;
fourth_new = 9°d24;
color = 3°b101;
end
L :
begin
start_n = 9°d9;
first_new = 9°d9;
sec_new = 9°d23;
third_new = 9°d24;
fourth_new = 9°d25;
color = 3°b110;
end
Z :
begin
start_n = 9°d7;
first_new = 9°d7;
sec_new = 9°d8;
third_new = 9°d24;
fourth_new = 9°d25;
color = 3’bl11;
end
endcase

if (move)
NextState = BlockMove;
end
/* Movement of the blocks */

BlockMove :
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begin
if (frame)
begin
/* When block is falling or is driven down calculate next positions */
if (DOWN && (((tetromino == I && (rotate == || rotate == 2)) && !CollisionBuf [first+32] &&
!CollisionBuf [sec+32] && !CollisionBuf [third+32] && !CollisionBuf [fourth+32]) ||
(((tetromino == T && rotate == 2) || (tetromino == Z && (rotate == 0 || rotate == 2))) &&
!CollisionBuf [first+32] && !CollisionBuf [third+32] && !CollisionBuf [fourth+32]) ||
((tetromino == J && rotate == 2) && !CollisionBuf [first+32] && !CollisionBuf [sec+32] &&
!CollisionBuf [fourth+32]) ||
((((tetromino == || tetromino == L) && (rotate == 0 || rotate == 2)) || ((tetromino ==
J || tetromino == T) && rotate == 0)) &&
!CollisionBuf [sec+32] && !CollisionBuf [third+32] && !CollisionBuf [fourth+32]) ||
((tetromino == L && rotate == 3) && !CollisionBuf [first+32] && !CollisionBuf [fourth+32])
I'l
(((tetromino == S && (rotate == || rotate == 3)) || (tetromino == J &% rotate == 1) ||
(tetromino == T && rotate == 3)) &&

'CollisionBuf [sec+32] && !CollisionBuf [fourth+32]) ||

(((tetromino == J && rotate == 3) || (tetromino == T && rotate == 1) || tetromino == 0 ||
(tetromino == L && rotate == 1) || (tetromino == Z && (rotate == || rotate == 3)))
&&

!CollisionBuf [third+32] && !CollisionBuf [fourth+32]) ||
(tetromino == I && (rotate == || rotate == 3) && !CollisionBuf [fourth+32])))
begin
diff_d = 9°d32;
check = 1°b0;
end
else if (((tetromino == I && (rotate == 0 || rotate == 2)) && !CollisionBuf [first+16] &&
!CollisionBuf [sec+16] && !CollisionBuf [third+16] && !CollisionBuf [fourth+16]) ||
(((tetromino == T && rotate == 2) || (tetromino == Z && (rotate == 0 || rotate ==
2))) &&
!CollisionBuf [first+16] && !CollisionBuf [third+16] && !CollisionBuf [fourth+16]) ||
((tetromino == J && rotate == 2) && !CollisionBuf[first+16] && !CollisionBuf [sec+16] &&
!CollisionBuf [fourth+16]) ||
((((tetromino == S || tetromino == L) && (rotate == || rotate == 2)) || ((tetromino
== J || tetromino == T) && rotate == 0)) &&
!CollisionBuf [sec+16] && !CollisionBuf [third+16] && !CollisionBuf [fourth+16]) ||
((tetromino == L && rotate == 3) && !CollisionBuf [first+16] &&
!CollisionBuf [fourth+16]) ||
(((tetromino == S && (rotate == 1 || rotate == 3)) || (tetromino == J && rotate == 1)
|| (tetromino == T && rotate == 3)) &&
!CollisionBuf [sec+16] && !CollisionBuf [fourth+16]) ||

(((tetromino == J && rotate == 3) || (tetromino == T && rotate == 1) || tetromino ==
01l
(tetromino == L && rotate == 1) || (tetromino == Z && (rotate == || rotate ==
3))) &&

!CollisionBuf [third+16] && !CollisionBuf [fourth+16]) ||
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|| rotate == 3) && !CollisionBuf [fourth+16]))

(tetromino == I && (rotate ==
begin
diff_d = 9°d16;
check = 1°b0;
end
else
begin

diff_d = 9°d0;
check = 1°b1;

end
/* When LEFT or RIGHT button is pushed calculate next positions */
|l rotate == 3)) && !CollisionBuf [first-1] &&

== I && (rotate ==
Il

if (LEFT && (((tetromino
!CollisionBuf [sec-1] && !CollisionBuf[third-1] && !CollisionBuf [fourth-1])

(((tetromino == L && rotate == 1) || (tetromino == J && rotate == 3)) &&

!CollisionBuf [first-1] && !CollisionBuf[sec-1] && !CollisionBuf [third-1])
(tetromino == T &&

|| rotate == 3)) ||

S && (rotate ==
(tetromino == Z && (rotate ==

(((tetromino ==
|| rotate ==

(rotate == || rotate == 3)) ||

3))) &&
!CollisionBuf [first-1] && !'CollisionBuf [sec-1] && !CollisionBuf [fourth-1]) ||

(((tetromino == J && rotate == 1) || (tetromino == L && rotate == 3) ) &&
!CollisionBuf [first-1] && !CollisionBuf [third-1] && !CollisionBuf [fourth-1])

S && (rotate == 0 || rotate == 2)) || tetromino == Il

(((tetromino ==
(tetromino == Z && (rotate == 0 || rotate == 2))) &&

!CollisionBuf [first-1] && !CollisionBuf [third-1]) ||

(((tetromino == J && rotate == 0) || (tetromino == L && rotate == 0) ||
(tetromino == T && rotate == 0)) &&
!CollisionBuf [first-1] && !'CollisionBuf [sec-1]) ||

|| (tetromino == L && rotate == 2)

(((tetromino == J && rotate == 2) Il

(tetromino == T && rotate == 2)) &&

'CollisionBuf [first-1] && !CollisionBuf[fourth-1]) ||
|| rotate == 2)) && !CollisionBuf[first-1])))

((tetromino == I && (rotate == 0

begin
diff_s = -9°d1;

end
else if (RIGHT &&(((tetromino == I && (rotate == || rotate == 3)) &&

!CollisionBuf [first+1] &&
1CollisionBuf [sec+1] && !CollisionBuf [third+1] &&

!CollisionBuf [fourth+1]) ||

== 1) || (tetromino == J && rotate == 3)) &&

(((tetromino == L && rotate
1CollisionBuf [first+1] && !CollisionBuf[sec+1] &&

!CollisionBuf [fourth+1]) ||
(((tetromino == S && (rotate == || rotate == 3)) || (tetromino == T &&

1 || rotate == 3)) ||

(rotate ==
(tetromino == Z && (rotate == 1 || rotate == 3))) &&
!CollisionBuf [first+1] && !CollisionBuf[third+1] &&

!CollisionBuf [fourth+1]) ||
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(((tetromino == J && rotate == 1) || (tetromino == L && rotate == 3) ) &&
!CollisionBuf [sec+1] && !CollisionBuf [third+1] &&
!CollisionBuf [fourth+1]) ||
(((tetromino == J && rotate == 0) || (tetromino == L && rotate == 0) ||
(tetromino == T && rotate == 0)) &&
!CollisionBuf [first+1] && !CollisionBuf [fourth+1]) ||
(((tetromino == J && rotate == 2) || (tetromino == L && rotate == 2) ||
(tetromino == T &% rotate == 2)) &&
!CollisionBuf [third+1] && !CollisionBuf [fourth+1]) ||
(((tetromino == S && (rotate == || rotate == 2)) || tetromino == Il
(tetromino == Z && (rotate == 0 || rotate == 2))) &&
!CollisionBuf [sec+1] && !CollisionBuf [fourth+1]) ||
((tetromino == I && (rotate == 0 || rotate == 2)) &&
!CollisionBuf [fourth+1])))
begin
diff_s = 9°d1;
end
else
begin
diff_s = 9°d0;

end

if (ROTATE)
begin
/* When ROTATE button is pushed, if the rotation can occur *
* assign the next positions of first,sec, third and fourth */
case (tetromino)
S :
begin
if (rotate == 0 && !CollisionBuf [fourth+1] && !CollisionBuf [fourth+17])
begin
diff_r_first = 9°dO0;
diff_r_sec = 9°di15;
diff_r_third = 9°d2;
diff_r_fourth = 9°di17;
rotate_new = rotate + 2°di;
end
if (rotate == 1 &% !CollisionBuf [fourth-2])
begin
diff_r_first = 9°d16;
diff_r_sec = 9°di;
diff_r_third = 9°di14;
diff_r_fourth = -9°d1;
rotate_new = rotate + 2’dil;
end
if (rotate == 2 && !CollisionBuf [first-1] && !CollisionBuf [first-15])

begin



Appendix A. Source Code

41

diff_r_first = -9°d17;
diff_r_sec = -9°d2;
diff_r_third = -9°d15;
diff_r_fourth = 9°d0;
rotate_new = rotate + 2’dil;
end
if (rotate == 3 && !CollisionBuf [first+2])
begin
diff_r_first = 9°di1;
diff_r_sec = -9°d14;
diff_r_third = -9°d1;
diff_r_fourth = -9°d16;
rotate_new = rotate + 2’dil;
end

end

begin
if (rotate == 0 && !CollisionBuf [third+16])
begin
diff_r_first = 9°di;
diff_r_sec = -9°d14;
diff_r_third = 9°d0;
diff_r_fourth = 9°di5;
rotate_new = rotate + 2’dil;
end
if (rotate == 1 &% !CollisionBuf [third-1] && !CollisionBuf [third+1] &&
!CollisionBuf [fourth+1])
begin
diff_r_first = 9°di15;
diff_r_sec = 9°di15;
diff_r_third = 9°d1;
diff_r_fourth = 9°di1;
rotate_new = rotate + 2’dil;
end
if (rotate == 2 && !CollisionBuf [first+16] && !CollisionBuf [sec+16])
begin
diff_r_first = -9°d15;
diff_r_sec = 9°d0;
diff_r_third = 9°di14;
diff_r_fourth = -9°di;
rotate_new = rotate + 2°dil;
end
if (rotate == 3 && !CollisionBuf [sec+1])
begin
diff_r_first = -9°di;
diff_r_sec = -9°dil;
diff_r_third = -9°d15;
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diff_r_fourth = -9°d15;

rotate_new = rotate + 2’dil;

end
end
T :
begin
if (rotate == 0 && !CollisionBuf [third+16])
begin
diff_r_first = 9°dO0;
diff_r_sec = 9°d1;
diff_r_third = 9°d1;
diff_r_fourth = 9°di5;
rotate_new = rotate + 2’dil;
end
if (rotate == 1 && !CollisionBuf [sec-1])
begin
diff_r_first = 9°d15;
diff_r_sec = 9°d0;
diff_r_third = 9°d0;
diff_r_fourth = 9°d0;
rotate_new = rotate + 2°dil;
end
if (rotate == 2)
begin
diff_r_first = -9°di15;
diff_r_sec = -9°dil;
diff_r_third = -9°d1;
diff_r_fourth = 9°d0;
rotate_new = rotate + 2°di;
end
if (rotate == 3 && !CollisionBuf [third+1])
begin
diff_r_first = 9°dO0;
diff_r_sec = 9°d0;
diff_r_third = 9°d0;
diff_r_fourth = -9°di5;
rotate_new = rotate + 2’dil;
end
end
I
begin

if (rotate == 0 && !CollisionBuf [third+16])
begin

diff_r_first = -9°d30;

diff_r_sec = -9°d15;

diff_r_third = 9°d0;

diff_r_fourth = 9°di15;
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rotate_new = rotate + 2’dil;
end
if (rotate == 1 && !CollisionBuf [sec-2] && !CollisionBuf [sec+1])
begin
diff_r_first = 9°di14;
diff_r_sec = -9°dil;
diff_r_third = -9°d16;
diff_r_fourth = -9°d31;
rotate_new = rotate + 2°di;
end
if (rotate == 2 && !CollisionBuf [sec+32])
begin
diff_r_first = -9°d15;
diff_r_sec = 9°d0;
diff_r_third = 9°d15;
diff_r_fourth = 9°d30;
rotate_new = rotate + 2°di;
end
if (rotate == 3 && !CollisionBuf[third-1] && !CollisionBuf [third+2])
begin
diff_r_first = 9°d31;
diff_r_sec = 9°di16;
diff_r_third = 9°d1;
diff_r_fourth = -9°di4;
rotate_new = rotate + 2’dil;
end

end

begin
diff_r_first = 9°d0;
diff_r_sec = 9°d0;
diff_r_third = 9°d0;
diff_r_fourth = 9°d0;
rotate_new = rotate + 2’dil;

end

begin
if (rotate == 0 && !CollisionBuf[third+16] && !CollisionBuf [fourth+16])
begin
diff_r_first = -9°d1;
diff_r_sec = 9°di;
diff_r_third = 9°di16;
diff_r_fourth = 9°di6;
rotate_new = rotate + 2’dil;
end
if (rotate == 1 &% !CollisionBuf [sec-1] && !CollisionBuf [third-1] &&

!CollisionBuf [sec+1])
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begin
diff_r_first = 9°d15;
diff_r_sec = 9°d0;
diff_r_third = -9°d15;
diff_r_fourth = -9°d2;
rotate_new = rotate + 2’dil;
end
if (rotate == 2 && !CollisionBuf [first-16] && !CollisionBuf [sec+16])
begin
diff_r_first = -9°d16;
diff_r_sec = -9°d16;
diff_r_third = -9°d1;
diff_r_fourth = 9°di1;
rotate_new = rotate + 2°dil;
end
if (rotate == 3 && !CollisionBuf [sec+1] && !CollisionBuf [third+1] &&
!CollisionBuf [third-1])
begin
diff_r_first = 9°d2;
diff_r_sec = 9°di15;
diff_r_third = 9°d0;
diff_r_fourth = -9°di5;
rotate_new = rotate + 2°di;
end

end

begin
if (rotate == 0 && !CollisionBuf [sec+1] && !'CollisionBuf [third+16])
begin
diff_r_first = 9°d2;
diff_r_sec = 9°d16;
diff_r_third = 9°di;
diff_r_fourth = 9°di5;
rotate_new = rotate + 2°dil;
end
if (rotate == 1 && !CollisionBuf[sec-1] && !CollisionBuf [fourth+1])
begin
diff_r_first = 9’d14;
diff_r_sec = 9°d0;
diff_r_third = 9°d15;
diff_r_fourth = 9°di1;
rotate_new = rotate + 2°di;
end
if (rotate == 2 && !CollisionBuf [third-1] && !CollisionBuf [sec-16])
begin
diff_r_first = -9°d15;
diff_r_sec = -9°dil;
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diff_r_third = -9°d16;
diff_r_fourth = -9°d2;
rotate_new = rotate + 2°di;

end

if (rotate == 3 && !'CollisionBuf[first-1] && !CollisionBuf[third+1])

begin
diff_r_first = -9°d1;
diff_r_sec = -9°d15;
diff_r_third = 9°d0;
diff_r_fourth = -9°di4;
rotate_new = rotate + 2’dil;
end
end
default
begin
diff_r_first = 9°d0;
diff_r_sec = 9°d0;
diff_r_third = 9°d0;
diff_r_fourth = 9°d0;
end
endcase
end
else
begin
diff_r_first = 9°dO0;
diff_r_sec = 9°d0;
diff_r_third = 9°d0;
diff_r_fourth = 9°d0;

end

CollisionBuf_new[first] = 3°b000;
CollisionBuf_new[sec] = 3’b000;

CollisionBuf_new[third] = 3’b000;
CollisionBuf_new[fourth] = 3’b000;

CollisionBuf_new[first+ diff_d + diff_s + diff_r_first] = color;

CollisionBuf_newl[sec + diff_d + diff_s + diff_r_sec] = color;

CollisionBuf_new[third + diff_d + diff_s + diff_r_third] = color;

CollisionBuf_new[fourth + diff_d + diff_s + diff_r_fourth] =

first_new = first + diff_d + diff_s + diff_r_first;
sec_new = sec + diff_d + diff_s + diff_r_sec;
third_new = third + diff_d + diff_s + diff_r_third;

fourth_new = fourth + diff_d + diff_s + diff_r_fourth;

/* If the block can’t move down any more */

if (check)
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begin
rotate_new = 2°d0;
block_score = 4°d12;
/* Detect game over if at the *
* initial position. */
if (first != start)
begin
NextState = DetectLines;
end
else
begin
done = 1’b1l;
NextState = GameQOver;
end
end
else
NextState = BlockMove;
end
end
/* Find all completed rows */
DetectLines
begin
for (i = 0; i < 22; i =i + 1) //detect filled lines
begin
filled = 1°bil;

for (j =1; j <15; j =3 + 1)
begin
if (!CollisionBuf[j + ix*16])
filled = 1°b0;

end

FilledRows_new[i] = filled;
end//for i

new_row = 5°d0;
new_col = 4°d1;
NextState = CheckRows;
end
/* Check if a row is completed */
CheckRows :
begin
/* If at the last row */
if (row == 5°d21)
begin
if (FilledRows[row] == 1°b0)
begin

new_row = 5°d0;
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new_col = 4°d1;
lines_delfsm = lines_delcount;
lines_delcount_n = 3°d0;
done = 1’bi;
NextState = Idle_1;
end
else
begin
FilledRows_new[row] = 1°b0;
new_d_row = row;
lines_delcount_n = lines_delcount + 3°dil;
NextState = DeleteRow;
end
end
else
begin
if (FilledRows[row] == 1°b0)
begin
new_row = row + 5°di;
NextState = CheckRows;
end
else
begin
FilledRows_new[row] = 1°b0;
new_d_row = row;
new_row = row + 5°di;
lines_delcount_n = lines_delcount + 3°dil;
NextState = DeleteRow;
end
end
end
/* Remove the completed row and replace *
* its values with the values of the *
* previous row */
DeleteRow :
begin
if (!'del_row) //if at row O
begin
CollisionBuf_new[col] = 3?b000;
if (col == 4’d14) //if at last grid write zero and check rows
begin
new_col = 4°di;
NextState = CheckRows;
end
else
begin //assign row O with zeroes

new_col = col + 4°di;

again
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562 NextState = DeleteRow;

563 end

564 end

565 else //at any other row

566 begin

567 CollisionBuf_new[col + del_row*16] = CollisionBuf[col + (del_row-1)*16];
568 if (col == 4°d14) //if at last grid change the value and go to the smaller row
569 begin

570 new_col = 4°d1;

571 new_d_row = del_row - 5°di;

572 end

573 else //at any other grid change the value and go to next grid

57 begin

575 new_col = col + 4°d1;

576 end

577 NextState = DeleteRow;

578 end

579 end

580 /* The game is over and master FSM *
581 * is informed */
582 GameOver :

583 begin

584 game_over = 1°bl;

585 NextState = GameOver;

586 end

587 default:;

552 endcase

Listing A.4: Linear Feedback Shift Register

=
|

| parameter = 3’b000, B = 3°b001, C = 3°b010, D = 3’°b011,

3]
|

= 3’b100, F

3’b101, G

3°b110, H

3’b111;

/* The Linear Feedback Shift register provides *
5 * us with pseudo-randomly generated numbers *
6 * and create pseudo randomly Tetriminos. */
7 always @(posedge vclk or posedge rst)
8 begin
9 if (rst)
10 begin

11 out = 16’°b1000_1111_0010_0010;
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Random = 3’b0;
next_block = 3°d3;
count = 1°dO;
end
else
begin
if (new_block && !count)
begin
/* Drive the input at bit 0 and shift the rest */
out = {out[14],out[13],out[12],0out[11],0ut[10],
out [9] ,out[8] ,out[7],out[6],out[5],out[4],

out [3] ,out[2] ,out[1] ,out[0],linear_feedback};

Random = {linear_feedbackl,linear_feedback2,linear_feedback3};
count = 1°di1;
end
else if (move)
begin
count = 1°b0;
end
case (Random)
A : next_block = 3°d4; //I
: next_block = 3°d1l; //S
: next_block = 3°d2; //J

: next_block = 3°d3; //T

B

C

D

E : next_block = 3’d4; //I
F : next_block = 3°d5; //0
G : next_block = 3°d6; //L
H : next_block = 3°d7; //Z
default:;

endcase

end

end
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assign linear_feedbackl ! (out [15] ~out [13]~out [12]);

assign linear_feedback2 = !(out[10]~out[8]~out[7]);

assign linear_feedback3 = !(out[5]~out[3]~out[2]);
assign linear_feedback =

(linear_feedbackl~linear_feedback2~linear_feedback3);
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